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Abstract—In this paper, the adaptive tracking control problem
is investigated for multibody high-speed train dynamic moetl in
the presence of unknown parameters, which is an open adaptv
control problem. A 4-car train unit model with input signals

acting on the 2nd and 3rd cars and output signals being the

model and the cascade mass point model [7]. The former
considers the whole train as one single mass point and ignore
in-train dynamics of the train, see [8]- [10]. The latter retd

a train as individual mass points that are inter-connectad v

speeds of the 1st and 3rd cars is chosen as a benchmark modelSPringlike couplers, see [11]- [13]. For the traditionaitrs,

in which the aerodynamic resistance force is also considede To
handel the nonlinear term, the feedback linearization metlod

is employed to decompose the system into a control dynamics
subsystem and a zero dynamics subsystem. A new and detailed

stability analysis is conducted to show that such a zero dymaic
system is Lyapunov stable and is also partially input-to-site sta-
ble under the condition that the speed error between the 1stral
3rd cars is exponentially convergent (to be ensured by a nomal

controller) or belongs to the L' signal space (to be achieved by a

properly designed adaptive controller). The system configation

leads to a relative degree 1 subsystem and a relative degree

2 subsystem, for which different feedback linearization-lased
adaptive controllers and their nominal versions are develped to
ensure the needed stabilization condition, the desired cted-loop
system signal boundedness and asymptotic output speed tkdng.
Detailed closed-loop system stability and tracking perfomance
analysis are given for the new control schemes. Simulatioresults
from a realistic train dynamic model are presented to verify the
desired adaptive control system performance.

Index Terms—Adaptive control, output tracking, high-speed
train, multibody models, feedback linearization, zero dyramics

|. INTRODUCTION

such as heavy-haul-trains, the traction force only actshen t
head car, i.e., only the head car is the power car, so that the
connections between each cars should be ensured to tolerant
the traction force and do not break under the train operating
The single mass point model is enough to study the control
problem.

Nowadays, to achieve the high speed for trains, the powers
are distributed in a train, i.e., for a high-speed train,esal
cars are power cars and others are trailer cars, which makes
the inter-force generated by the connections cannot beégno
in control design. This results in the cascade mass poineinod
for controller design, for which the multibody model (i.e.,
cascade mass point model) is wildly employed [15]- [17]. In
[18], a distributed and fault-tolerant control design aggmh is
presented to develop tracking and braking control schepres f
high-speed trains with a multibody system. In [19], a tragki
controller is designed for the high-speed trains using tb#im
agent technology. In [20], a robust control criterion foeth
velocity tracking control of high-speed trains is develdpe
based on a multi-particle model. Among these results, it is
assumed that the considered models are always full-adtuate

With the developments of railway systems, high-speedsdraiwith the traction forces acting on every car and being design

are being updated to run at higher speeds and more loadéegarately, or the condition that the train is operatingeunice
capacities. Speed tracking is the fundamental requiremequilibrium state. Therefore, the in-train dynamics mdato

for the punctuality of the operation of a train, which leadthe inter-forces have not been fully analyzed.

to the increasing of the automatic train operation control In this paper, a 4-car train unit from CRHChina Railway
capabilities of high-speed trains. Great efforts have beeétigh-speed 2), with the 2nd and 3rd cars being power cars,
devoted to the control design for high-speed trains, such iaschosen as the benchmark model, see Fig. 1, which is an
active communication-based control [1], data-based obntunderactuated 4-car system containing the in-train dyosmi
[2], iterative learning control [3], robust control [4]- 5 These in-train dynamics are the “internal” behaviors that

adaptive control [6], and so on.

cannot be controlled by the input signals directly, whick ar

In studies of train control, there are mainly two types ofalled zero dynamics [21]- [22]. The stability performarice
models used in the literatures, namely, the single masg pdine zero dynamics is a key part to ensure the effectiveness
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of the controller. However, this analysis for the underatdd
4-car train model has not been obtained in the current gesult
Moreover, considering the fact that actual values of system
parameters are not obtained easily, and the trajectorkitrg.c
problem is an important topic for train control systems, the
adaptive control technique is an effect way to deal with the
unknown parameters to achieve high tracking performance
[23]- [27]. Thus, the adaptive tracking control for an under
actuated 4-car system with unknown parameters is of both
theoretical challenges and practical importance.



:i, :i, :L, ﬁ, wherez; is the position of the-th car, M; is the mass of the

! ', N ! i-th car, F; is the traction force, which is only for the power

! ok 4k L4k ‘. car, F;,, is the in-train force between theth and (i + 1)-
0—’W‘— 0—’\/\/‘— th cars, F;, is the general resistance. The resista¢e is

different from the resistances of the other cars.
The general resistandg., (t) is approximated by a function
(see [18], [20], [30] and [31]):

Fo={ o + b0 (t) + e vE(t), i=1, @)
The purpose of this paper is to solve an open adaptive con- = "7 | a,, + by, v;(t), i=2,...,m,
trol problem for high-speed tra_lns represented by a nor:nhneWhere vi(t) is the speed of the-th car, a,., b, and ¢,
underactuated 4-car system with unknown system parameters . - s U :
. . X o are the resistance coefficients. The tetpw?(t) represents
to achieve the speed tracking. The main contributions &f thi . ) . v
. aerodynamic drag, while the remaining terms andb,., v; (t)
paper are as follows: :

i ] ] ] ) are considered to be rolling mechanical resistances.

(i) A typical 4-car train unit from a real CRHhigh-speed  The in-train forces are generated through the couplers
train is chosen as a benchmark model, which is modellg@yveen cars. which can be modelled by [30]

as a nonlinear underactuated 4-car system with unknown

system parameters. The feedback linearization method Fin, (t) = ki(zi — zit1) + di(2 — Zi1), 3)
e ey sanaheret, and, re the spring and dampig contas.
.. . o . andz;, z;,1 are the speeds and the positions of ikt and
(i) A new and detailed stability study of the zero dynamic i Zitl P P

. . o i + 1)-th cars, respectively.
subsystem is presented, while a new partial mput—to—statstzeJr ) b 4

i S A .- According to the well-developed measurement techniques
issta;jkza"rlit\yegr(l)\ﬁl)c?rré}:)\l/se?I;;]eenpir;/(iiglarﬁ?;élilﬁgt;?‘gsgﬁgggi%?r high-speed trains, such as the leaky coaxial synth@size
input-to-state stability is clarified, ptical cable and the fibre optic gyroscope inertial navigeat

(i) For the relative degrees 1 and 2 subsystems from th stem [29]- [31], the position; and speed; of each car can

system configuration, the new feedback linearization- measured accurately [S].
based adaptive controllers with the key stability progesrti
are clarified and achieved to guarantee the stability of tfe Train Model of Motion
zero dynamics subsystem and the tracking performanceBased on the force analysis, the motion dynamic equations
respectively. Also, the stability properties of the corresf the train withn cars are given by
sponding nominal controller are presented. B ) )
The rest of the paper is organized as follows: Section 150 =F(t) = ki(2(t) = 22(8) = di(21(t) = 2(0))

Fig. 1: A 4-car rail vehicle

describes the 4-car nonlinear benchmark model and foresilat = (ar, +br, 21(8) + e, (1)) (4)
the adaptive tracking control problem. Section Ill decosg® M, Z;(t) = Fi(t) — ki(zi(t) — zig1(t)) — ki1 (2zi(t) — zi—1 (1))
the system into a control dynamics subsystem and a zero —di(Zi(t) — 21 (8)) — di1 (Zi(t) — Zi1 (1))

dyna}mlcs subsygtem by feedback Ilnearlzatlon. Section IV s by E(D), =21, 5)
studies the stability analysis for the zero dynamics subgys i ’ '

Sections V provides the adaptive tracking control scherae- SMnZn(t) = Fu(t) = kn-1(20(t) = 20-1(1))

tion VI includes the simulation study, followed by concloss —dp—1(2n(t) = 2n-1(t)) — (ar, +br, 20(t)), (6)

In Section VII. wherez; and z; are the speed and the position of thth car,

respectivelyk; andd; are the spring and damping constants
Il. SYSTEM DESCRIPTION ANDPROBLEM FORMULATION  of the coupler systems)/; and F; are the mass and traction
A high-speed train consists of several same type units, figrce of thei-th car, respectively.
which the typical unit, shown in Fig. 1 is made up of 4 cars
with the 2nd and 3rd ones being power cars. Here, this kind @f Benchmark System
unit is chosen as the benchmark model to study the trackin

gHere, the 4-car train model shown in Fig. 1 is chosen as
control problem.

the benchmark system to study the adaptive control problem.
From (4)-(6), it can be seen when the speeds are non-zero,
A. Individual Car Model of Motion the positions of cars may be infinity, which means the states

To obtain the train dynamic model, it is necessary to analyzé(t): z2(1), z3(t) and z4(t) go to infinity, if 2,(z), 2 (1),
the forces acting on the cars. A high-speed train consisting3(?) @1dZ4(?) do not go to zero. It is impossible to analyze
n cars can be considered asnass points connected hy— 1 and obtain the stability property for the stategt), z(?),
couplers. For the-th car, the longitudinal dynamic movemengs(t) @ndzu(t) in the train dynamic model (4)-(6). However,
can be described by [28]- [29]; the relative positions, such as; (t) — z2(t), 22(t) — 25(t)
and z3(t) — z4(t), between each cars should and must be
M;Z(t)=F;(t) + Fin,_, (t) — Fin, (t) — Fy-,(t), (1) bounded. Otherwise the connections between adjoining cars



will be broken. Thus, the relative positions are chosenagst cars as the controlled variables, which can be considered as
to model the train dynamics for an adaptive controller desigthe output of the system (7), i.e.,
For the 4-car benchmark model, choose the system state

o) = [0 = [0, a0, () - vo=[ = e =] 20 e
z9(t), z'g(t)l, zz(t)—§3(t), 23(t), 123@)721@), 2-4&)]T€ ya(t) x6(t) 23(¢)
R®, and setm, = zv% dpg = I‘é—;; kpqg = I’;—I’; ap, = Czlsz Therefore, the control objective of this paper can be sum-

b, = ?VTT; andc; = ?lel with p,q = 1,2, 3,4. From (4)-(6), marized_as follows: an adaptive controller is to be designed
the dynamic equation for 4-car train unit in Fig. 1 can bf" the high-speed train system (7) to make the states (@)tpu
Z1(t) and z3(t) tracking the same desired speed signalt),

written as ! !
and simultaneously to keep the statagt) — z2(t), 22(t),
i(t) = Az(t) + BF(t) — By — Bea3(t), (7)  22(t)—z3(t), 23(t) —24(t), andz4(t) bounded, in the presence
of the nonlinear terne; #(¢) and unknown system parameters
where A is given in (8), dpq, kpq, mp anda, for p,q =1,2,3,4.
T
B= 0000 m 0 0 00 I1l. SYSTEM FEEDBACK LINEARIZATION
000 0 0 mg 0O ’
Fa() It can be seen that the high-speed train dynamic system (7)
F(t)= { F2(t) } , (9) is a nonlinear system with the nonlinear terx3(¢) in the
3 T’ dynamics equationi,(t). To handle this class of nonlinear
B,=[0 a1 0 az 0 ag 0 ag ] , term, the feedback linearization method will be employed to
B.— [ 0 ¢s 000000 }T , (10) decompose this system (7) into a control dynamics subsystem

and a zero dynamics subsystem.
with dpg > 0, kpq > 0, my, > 0, ap, b, andc; being unknown

parameters. A. Relative Degrees

Remark 1: There are several basic units of high-speed As described in [21], the vector relative degree is crucial
trains, such as a unit containing 4 cars with the 1st, 2nd atwdfeedback linearization-based adaptive controllergresor
3rd cars being power cars, or the 3rd and 4th cars being powenlinear systems, which will be calculated for the syst&jn (
cars, or a unit containing 3 cars with the 1st and 3rd carggbeito achieve the linearization.
power cars, and so on. In this paper, we mainly develop anFrom (7) and (11), the train nonlinear dynamics can be
adaptive control framework for the high-speed train beratkm rewritten as a general nonlinear form:
model (7), which can be easily extended to the other high-

speed train models. O i(t)=f(z) + g(z)u(t) + Bq, (12)
y(t)=h(z), (13)

D. Control objective where f(z) = Axz(t) — Ber3(t), g(z) = [91(z), g2(2)] =
B, u(t) = F(t), B, is given in (10) andh(z) =

In practice, the speed and position of each car can Pﬁ(x), ha(2)]T = [2(t), w6(t)].
available, that is, the states(t) of the system (7) are all = 1ha vector relative degrelp; = 2, p» = 1} can be obtained
measurable, among which any state can be chosen as ghg, 1. hi(z) = 0, Lg,hi(z) = 0, Ly, Lphi(z) = dyyms #
controlled variable for adaptive controller design. As thg hg;(:c) ~ 0 andL. ho () = mgg;é 0. Further, it can be
trajectory tracking is the important task for trains, andhé ., jated: 92
head car (1st car) can track the desired speed trajectory and

the connections work normally, the whole train could ackiev Alz) & LglL’}l_lfh(ﬂ?) LgQL’}l_lfh(ﬂ?)
the tracking performance. Moreover, there is a nonlinesn te LglL’f‘lhg(a:) LgQL’f_lhg(a:)
c123(t) in the 1st car, while the inputs, (t) and F3(¢) do not d 0
act on the 1st car directly. From the practical application, = [ ”0m2 ] , (14)
order to deal with the nonlinear terex3(¢) and the unknown s
system parameters, we choose the speeds of the 1st andigmbnsingular for allx.
[0 1 0 0 0 0 0 0 i
0 —d11 — b1 —k’n d11 0 0 0 0
0 1 0 —1 0 0 0 0
0 di2 k12  —dia —dag —ba  —kao doa 0 0
A= 0 0 0 1 0 -1 0 0 ’ (8)
0 0 0 da3 ko3 —da3 —dsz — bz —ks3 ds3
0 0 0 0 0 1 0 -1
_0 0 0 0 0 d34 k34 —d34 — b4




Under the relative degrefg, p2 }, differentiatingy; andys
in (12)-(13) or (7)-(11), with respect to timg; andp, times,
respectively, we obtain

§1(t) = —(d11 + b1)2(t) — kr1a2(t) + k11wa(t)

—c12w2(t)22(t) + di1(diaza(t) + kiaz3(1)
—(di2 + daa + ba)x4(t)) — koows(t) + daawe(t)

+dy1(az + moFs(t)), (15)
U2 (t) = dazxs(t) + kosws(t) — (dag + das + b3)xe(t)
—kazxr(t) + dssxs(t) + msFs(t) + as, (16)

for which the feedback linearization can be designed. Itukho

be pointed out that the variabig (¢) is the acceleration of the w1 (t)=m(t), xo(t) = E1(t), x3(t) = na(t),
1st car, which is measurable and can be used in the controller

design directly.

B. Feedback Linearization

If the parameterd,,,, k,q, m;, anda, forp,q =1,2,3,4in
the dynamics (15)-(16) are known, with the nonsingulas:)
in (14), we can design the linearizing control laws,

1 .
*d ( - (d11 + bl)ICQ(t) — ku:CQ(t) + k11£C4(t)
1112
—c1219 (t)i‘g (t) + dyj1as + di1 (dlgl‘g (t) + k1223 (t)
—(dr2 + daz + b2)xa(t) — koows(t) + daows(t))

Vz(t)>,

1
p— <d23=’C4 (t) + kasws(t) — (dog + ds3 + bs)xs(t)

Fy(t)

(17)

Fy(t)

—k‘33$7(t) + d33xg (t) +as — Vg(t)). (18)

n
Applying (17) and (18) to (15) and (16), respectively, we

obtain the linearized system as

(1) =va(t),
Yo(t) =ws(t),

(19)
(20)

wherew,(t) andvs(t) are linear feedback control laws to be

designed to stabilize the linearized system (19)-(20).
We have obtained the linearization controllers(¢) and
F5(t). If the parametersl,,, k,q, m, and a, for p,q

Then, we should find the remaining 5 partial coordinate
functionsgy(z), ¢s(x), d6(x), ¢7(x), ¢s(x), to complete the
transformation such thdt,, ¢4(z) = L, ¢6(x) = Ly, d6(x) =
Ly, ¢7(x) = Ly, ¢s(x) = 0, for i = 1,2, by taking

m(t)=oa(z) = 21(t), m2(t) = ¢s(x) = x3(t), (24)
n3(t) =6 (x) = w5(t), Ma(t) = dr(x) = 27(2),
n5(t) = ga(w) = x5(2). (25)

Further, it can be calculated that the Jacobian matrix of the
transformation®(z) = [¢1(z), ---,¢s(x)]? is nonsingular
for all z, and the inverse transformation is given by

(26)
wat)= T (1) + () + 2 (r) + g2
11 11 11 11
_diual’ z5(t) = n3(t), (27)
z6(t) =&3(t), w7(t) = na(t), as(t) =ns(0). (28)

Then, in these new coordinates (21)-(25), with the lin-
earizing control laws (17) and (18), the the high-speedtrai
dynamic system (7) can be transformed into two subsystems:
the control dynamics subsystem

6:1 (t) :§Q(t)7 (29)
6_2@) =w(t), (30)
§3(t) =vs(t), (31)
and the zero dynamic subsystem
m(t)=£&(t), (32)
ki1 by 1 c1
2(t) = —d—um(t) - d—uﬁl(t) - d11€2(t) i HO)
ai
+d—11, (33)
) k11 di1 + b1 1 1
n3(t) = dn 2(t) dn &i(t) + d_u€2(t) + d—uﬁf(t)
—&alt) — 7+, (34)
11
na(t) =—ns(t) + &3(2), (35)
15(t) = k3ana(t) — (dza + ba)ns(t) 4+ d3a&3(t) +as,  (36)

1,2,3,4 in the dynamics (15)-(16) are unknown, adaptivg, \yhich (32)-(36) is completely decoupled from the input

controllers need to be designed to repldégt) and Fs(t).

To design the adaptive controller, the stability perforogn

signal, and¢; (t) = xza(t) = 21(t), &3(t) = x6(t) = 23(t) are
the speeds of the 1st and 3rd cars, respectively.

for the whole system should be analyzed. The coordinate

transformation (diffeomorphism) will be introduced withet
feedback linearization controller to obtain a normal foron f
controller design and stability analysis.

C. Normal Form
According to the relative degreépi,p2}, the 3 partial

coordinate functions to transform the nonlinear systen)j-(12

(13) into a normal form, can be set as
() =1(z) = ha(x) = 22(t), (21)
&(t)=¢2(x) = Lyhi(x) = —(di1 + b1)x2(t) — k1ixs(t)
+d111‘4(t) — Cll'g(t) -+ a17(22)

F(0) =[F,®0,FO 20, 2,(0),++,2,(1), 2,()

Zero dynamic
subsystem stabilization

Actuators Sensors

>
>

Feedback
Normal form . .
linearization

v v

Adaptive controller
E ), F ()

Fig. 2: Framework of the proposed adaptive control system



So far, we have obtained the linearized normal form of thH&. Lyapunov Stability

train dynamic system (7), which contains a control dynamics For the system (37), the signalt) is considered as an extra

subsystem and a zero dynamics subsystem. To achieve .the .
tracking performance, the stability analysis should beiedr IPUt. To check the Lyapunov stability for (37), we should se

out for the zero dynamics subsystem (32)-(36) to help t f) = 0 andy(t) = 0. Then, the characteristic polynomial of
. . 7) can be calculated:
adaptive controller design. Then, the framework of the pro-

posed adaptive control can be implemented as Fig. 2, in which 1
the designed adaptive controllefs,(¢t) and F3(t) replace P(M:d_n
F5(t) and F3(t) to control the train.

A2(dia A+ k11) (A2 + by + dsg A + ksq). (39)

From (39), the matrix4; in (37) has two zero eigenvalues,

IV. SYSTEM ZERO DYNAMICS ANALYSIS corresponding to the dynamic equations
Zero dynamicss an important concept for nonlinear control _ _ _ _
systems, which describes some “internal” behaviors of the mn (t):O,kLe., Z1(t)k: Z1(t) =0,  (40)
systems [21]. The stablhty performance of zero dynamu_:s i (t) +7'73(t):—i772(t) + 2772(15) — 0,
could influence the effectiveness of the designed adaptive di1 di1
controller. In this section, the detailed stability anayfor i.e., 3(t) —5(t) = 21(t) — 24(t) = 0, (41)
the zero dynamics subsystem (32)-(36) will be studied, and
the stabilization condition will also be derived. which implies
A. Zero Dynamic System m(t)=z(t) = z1(0), (42)
Since the terms;-a; and ay in (33), (34) and (36) are 12(t) +13(t) = 21(t) = 24(t) = 21(0) — 24(0),

constants, then(t) = [n:(t), n2(t), 13(t), ma(t), ns()]", 1€ za(t) = 24(0). (43)

g(f’) = [gl(f’)a f%(f’)a €Q(t)7 €3(t)]T andw(t) = [;_1117 a4]T’ . .
can be introduced to rewrite the subsystem (32)-(36) as From (42) and (43), the the dynamics (37) corresponding
to the two zero eigenvalues are stable. Further, the zeros of

0(t) = Aun(t) + Bi&(t) + Bayh(t), (37)  (diy A + k11)(A? + bah + dsa) + ksa) having negative real
where parts means that the other three non-zero eigenvalues of
r o 0 0 0 0 are stable. Hence, we can conclude that the zero dynamic (37)
0 7% 0 0 0 is Lyapunov stable.
A= 0 S_ﬂ 0 0 0 7 Then, the following result can be obtained directly.
o 0 0 0 -1 Lemma 1: The zero dynamic (37) is Lyapunov stable.
LO 0 0 Fkay —(dss+0bs)
Tl 0 0 0 0 0 Since the the zero dynamic system (37) is linear and time-
_;_1 —o _{% 0 1 0 invariant, Lemmg 1 is equivalent to the fact that the sotutio
B, = dlé#él dc_lll dil 1| .By=| -1 0 n(t) of = Ayn is bounded for any;(0) # 0.
0o 0 0 1 0 0
0 0 0 dss 0 1

(38) C. Partial Input-to-State Stability (ISS) Analysis

) The objective now is to analyze the input-to-state stabilit
_ The dynamics of the subsystem (37) are caletb dynam- ¢ oy stem (37) witre (¢) and(¢) as inputs. It should be noted
ics driven byg_(t) andw(t)_, the state vector of (29)'(31_)_ andthat for matrix Ay, all the elements in the first row and first
the constant signal. We will analyze the Lyapunov stabdity column are zero.

input-to-state stability of the zero dynamics (37), to depe For n representing th n ition of
a set of cond?tions to ensure that the desired adaptive adonttrh e %rsgtltggd?/, ?hz,-l E:ﬁgnt(regl izj?e étivgeﬁsiosggﬁi?avae gezci)rse;efspo
performance is guaranteed. tracking, that is, the speegl (t) = 2;(t) tracks the desired
Stability definitions. The original input-to-state stability speed trajectory, while the positiop () = 2;(¢t) may be
requires that with the initial conditiom(0), n(t) goes to unbounded, that idim; ., 771 (t) = co. Hence, in the analysis
zero ast goes to infinity [32]. Since the system (37) is af the bounded-input-bounded-state (bounded-output)lisya
linear system, a weak input-to-state stability concept bél of (37), the state variable, (¢) is separated from the rest of the
introduced(t) is bounded for bounded initial conditiong0) state variables im(¢) and only the boundedness of the partial
and bounded input§(t) and(t). This will be characterized state vectom(t) = [12(t),n3(t),n4(t), n5(t)]* is considered.
by the Lyapunov stability ofy = A;7n and the bounded-input- Thus, for the zero dynamics system (37), we study the partial
bounded-state stability of(t) = Ain(t) + B1&(t) + B2t (t). input-to-state stability, due to the perhaps unboungiéd).
We will first establish the desired Lyapunov stability for Eliminating the statey (¢) from (37), the following transfer
n = Ain, while the input-to-state stability will be studiedfunction matrix from¢ and+ to 77 can be calculated:
based on the bounded-input-bounded-state stability(of =
Arn(t) + Bi&(t) + B2y(t). M(s) = G1(s)&(s) + Ga(s)i(s), (44)



where for & (t) # &(t) and §13(t) = &1(t) — &(t) € LY, that is
Gata) = als) (n2(5), 73(5), 14(8), 15 (8)] Jo (&1(t) — &3(t))dt < oo, n3(t) is also bounded, as
Es)  [as), &(s), &(s), &(s)T . (5)2221(8) +Z24(8)€ (5) + Zon (s )51 ()
Zu(s) Zias) Zis(s) Zuals) ’ P(s) 77 P(s)
L | Zoa(s) Zaa(s) Zas(s) Zoa(s) L Z22(8) o Za3(s)
= 45
P | Zols) Zasls) Zasl(s) Zaals) | Bs) 1) T gy () (49)
Za(s) Zao(s) Zaz(s) Zaa(s)
. . . . Z21(s)+Z22(s)
- (6) ﬁ(s)  [als), (), mals), s (5)]T |2 V\(/hICh th; z(e)rOS = 0 of P(s) is cancelled ==,
Ga o(s) [E(s), as(s)]T ;2(5 and3t 5 § Moreovergs(t), £3(t) andéy(t) are bound-
dy 0 ed, and all poles oizgl(i‘;’), Z;,"Ei‘;’) and ZZ“E(;) are stable except
s 0 for one ats = 0 anddy3(¢) is integrable. Hence, we have:
di1s+ki1 46
m ’ (46) Corollary 1: Under the condition that; (t) — &;(¢) € L,
P ey P the partial state vectom(t) = [n2(t),n3(t), na(t), n5(t)]"
in the zero dynamic (37) is bounded for boundgd) =
with the elements in (45) being given as [E1(1), €2(¢), £ (1), & (1)] T
P(s)= dis(dns 4 k11) (8% 4 bys + dsas + k3a),  (47) Remark 2: It should be noted that a special case oft) —
11

b
Z11(s) = —d—llls(s2 + bys + dsas + ksa),

Z12(s) = —;—1115(82 + bys + dsyas + ksa),

1
213(5) = —d—5(82 + bys + d3us + k34), 214(5) =0,

11

1
——(b15 + d115 + k11) (8% + bas + dzas + ksa),
11

Zao(s) = dc—llls(s2 + bys + dsas + k3a),

221(5) =

&(t) € LY is limy_o0 (£1(t) — &5(¢)) = 0 exponentially for
Corollary 1. Thus, if the nominal operating condition(t) =
&(t) or limy—, oo (&1 () —€3(1)) = 0 exponentially, or a relaxed
operating conditiort; (t) — &(t) € L' can be satisfied, the
statesns(t), n3(t) , na(t), ns(t), (i.e., z1(t) — 22(t), z2(t) —
z3(t), z3(t) — z4(t), 24(t)) of the zero dynamics (37) can be
bounded andj, (t) = z1(¢) has the position performancel

D. Simulation Verification
We have studied and established the key condition for

223(5):L5(82 + bys + dags + ksq), the zero dynamic system to be Lyapunov stable and partial
d11 bounded-input-bounded-state stable (see Lemmas 1 and 2, an
Zoa(s) = (d115 + ke11)(s2 + bys + dsas + kay) Corollary 1). Now, we will use a real CRHhigh-speed train
model from [29] to illustrate the effectiveness of the preed
231(8):0, Zsz( ) =0, Zs3(s) =0, stabilization condition, where the general resistance iand
Zsa(s) = —s s(di1s + ki1)(s + by), train force curves are shown in Fig. 3.
11
Zy1(s)=0, Zsa(s) =0, Zaz(s)=0, TABLE I: CRHs train parameters
1 S a— -
_ = ymbol  Description Unit Value
Za(s) = di1 s(di1s + k11)(dsas + ksa). (48) M 1st car mass ton 50
. - Mo 2nd car mass ton 48
From now on, the input-to-state stability problem of the iz 3rd car mass ton 51
zero dynamics (37) has been transferred to the bounded-inpu M+ 4th %af malss - ton 53
bounded-state stability of1(s) and Gs(s) in (44), where a1, as g oo TESIStANCE - Nston 6.63
G1(s) has a poles = 0 andG2(s) in (46) is stable. 4p.ay  Mechanical resistance oo 543
From (45) and (47)-(48), it can be seen that under the Coeffric'e_”tsl “ ’
operating conditiort, (t) = &(t), the zeras = 0 of P(s) can b1, b ijecmgg'ﬁg resfs 8% N's(mton)  0.06382
be canceledNt()zl) the zero= 0 in the numerators 7y (s), th2at ba. bs me%hqmctal resistance g ton) 0.07041
is, G1(s) (o) P(s) = (k11 +di15)(k3a +bas +daas + %) gg‘raoclii/lﬁgniic resistance
is stable, which implies that the states(t), ns(t), n4(t) c coefficient N s*/(m? ton)  0.00107
andn;(t) are bounded, if;(t) = &(t) and£2(t), &(t) are ki,ks  spring coefficients N/m 500 x 109
ko spring coefficient N/m 650 x 10
bounded.' = . . dy,ds damper coefficients Ns/m 2 x 104
Recalling thatiiz(s) is stable, we have the following result. ;. damper coefficient Ns/m 2.2 % 104
Lemma 2: Under the operating condition tha (¢t) = £5(¢)
(ie., 1(t) = 24(t)), the system (44) is bounded-input- The parameters in the simulation are as table I. Here, we

bounded-state (BIBS) stable.

Moreover, it can be verified from (37) that for(t) # &3(t),

ns(s) = Zzl(5)51(S)+Zzz(S)if(SI)D(+523(5)52(5)+Zz4(5)§3(8)_ Then,

consider the two stabilization conditions: (i) ideal casehie
speeds of the 1st and 3rd cars are synchronouszi.¢), =
23(t) (&1(t) = &5(t)); and (ii) relaxed case is the speeds of 1st
and 3rd cars satisfy,; performance, i.e.;(t) — 23(t) € L*



(&1(t)—&3(t) € LY). To makes; (t)—23(t) € LY, an additional

)

@
3
8
3

signal0.005exp(—0.2t) is applied onz (t) asz(t) = 23(t) + <

0.005exp(—0.2t), which makes; () — 23(t) € L. Then, the - —, .,
. . . . 0 10 20 30 40 50 60 70 80 90 100

simulation results are shown in figs. 4-7. (sec)

Figs. 4 and 6 show the simulation results of the speeds fi € *" [ relive poston beveen 1t and 2ndcars]
the 2nd and 4th cars including the plant speed (solid) ar ﬁgkm ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
referred speed of 3rd car (dashed) under the ideal conditi o B g T o e
& (t) = &(t) and the relaxed conditiogy (1) — &3(t) € L1, L& [ reiive posion between znd and ard cars
respectively, in which the initial values of the 2nd and 4t 52 °

. . 3_0_01 L L L L L L L L L
cars’ speeds are 0.01m/s. From figs. 4 and 6, it can be se A N
that the speeds of the 2nd and 4th cars are bounded. o€ ool [ onive postes bomween s ana at o]
g2 of
= 70'010 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 8‘0 9‘0 100
140 . (sec)
a+bv+cv’
120
ool Fig. 5: Positions of cars undef: (t) = &3(t) (21(t) = 23(t))
2
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§ L7 60
% 60r Lol ]
20| P ’ é 20r _—speed of 2nd car
7 @ ) ) ) ) ) ) - - speed of 3rd car
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s (sec)
o g E T ) ) 60 .
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(a) Aerodynamic and mechanical components of resis- g 2o
) ) ) ) ) ) speed of 3rd car
tances versus Speed G0 10 20 30 40 50 60 70 80 90 100
(sec)
1000 Fig. 6: Speeds of the 2nd and 4th cars unéeft) — &3(t) € L'
_ (#1(t) — 24(t) € L")
=< 500
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(b) Coupler Force versus position ~ ooz (sec)
g0 ; ;
F|g 3 General resistance and in-tl’ain forces %% 0/‘_ ) ) ) ‘—‘relatlve‘posltlon ?etween?nd and?rdcars‘i
= _0'020 10 20 30 40 50 60 70 80 90 100
(sec)
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Fig. 7: Positions of cars undef; (t) — &3(t) € L*

0 10 20 30 40 50 60 70 80 90 100
(sec) (2':1 (t) — 2’4(t) S Ll)
60 T T T T T T T T T
E40* 4
8 20 — . .
2% z3(t) — z4(t), under the ideal conditiog, (t) = £3(¢) and the
o

0 10 20 30 40 50 60 70 80 90
(sec)

100 relaxed conditiorg; (t) —&3(t) € LY, respectively. The relative

positions become constants under the stabilization ciondit
while the position of the 1st car would go infinity when the
speed of the 1st does not go to zero, which is in consistence
with the real case.

Figs. 5 and 7 show the position of the 1st car and the The simulation results show that the proposed stabilinatio
relative positions between the 1st and 2nd cafg$) — z2(¢), conditions can achieve the boundedness of the speeds and the
the 2nd and 3rd cars,(t) — z3(t), and the 3rd and 4th carsrelative positions, and the position of the 1st car satibiy t

Fig. 4: Speeds of the 2nd and 4th cars unéeft) = &3(t)
(21(t) = 2s(t))



performance. Then, in the next section, we will design a northat the desired speed, (t), the acceleration,, (¢t) and its
inal control scheme to ensure thiat; .. (&1 (t) — &3(t)) =  derivatived,, (t) are bounded.
0 exponentially, and an adaptive control scheme to ensureSubmittingr»(t) into the system (50), it has
&(t) — &(t) € LY, so that the closed-loop control system .o R .
is stable and asymptotic output speed tracking is achieved. E2(8) = Im(t) = —aa(@2(t) = om(t))
—aa(x2(t) — vm(t)). (52)

V. SPEED TRACKING CONTROL SCHEMES With the tracking errofes(t) = x2(t) — v (t) = &ui(t) —

Considering the speed tracking task for the train, we chood (). (52) leads to

the desired speed trajectory, (¢). Besides the stabilization Ea(t) +aréa(t) + ages(t) =0, (53)
condition proposed in Corollary 1, the controller should be, . . . . o . .
designed such that the stat€s(t), &(t) and &3(t) are S’)?;%Zelmglﬁs thatlim, o0 €2(8) = limioo €(t) = 0
bounded, and the speed tracking performance is achieeed, I. '
limy s 00 (€1(t) — v (t)) = 0 @andlimy—, 0 (£5(t) — v (t)) = 0. Output tracking control v5(t) design The design proce-

Moreover, if lim;_,oo(€1(t) — v (t)) = 0 exponential- dure for the control signals;(t), similar to that ofv,(t), will
ly and lim; o (£3(t) — vn(t)) = 0 exponentially, then be given. The dynamics of stagg(t) can be written as:
limy oo (&1(t) — &3(t)) = 0 exponentially; and if&; (t) — S () — _
Um(t) € L and&s(t) — vm(t) € LY, thenéy (t) — &5(t) € LY. &alt) =6(t) = ra(0) 4
The stabilization condition proposed in Corollary 1 can bwherezs(t) = 25(¢) is the speed of the 3rd car, the control
equivalent to the new one théitn, . (&1 () — vy (t)) = 0 Signalus(t) is designed as:
exponentially andim;_,(§3(t) — v (t)) = 0 exponentially, Vs(t) = 0 (t) — az(@6(t) — v (L)), (55)
or &1(t) — v (t) € LY and&s(t) — v, (t) € L. . .

In this section, the nominal controller will be presentedith @ >0 a design constant. .
to make lim;_,o0 (&1 (£) — vm(t)) = 0 exponentially and For (54), the signal (55) leads to thgt.the tracking error
limy o0 (€3(t) — vm(t)) = 0 exponentially, and the adaptive®s(t) = 6(t) — vm () = &3(t) — vm(t) satisfies:
controller will be proposed to ensuig (t) — v, (t) € L1, é6(t) +azeg(t) = 0, (56)
&(t) — vm(t) € LY, limyyoo(é1(t) — vm(t)) = 0 and o . _
limy o0 (€3(t) — vm () = 0, in the presence of the unknownwhich implies thatlim; ., eg(t) = 0 exponentially.
system parametet$,,, k,q, m, anda, for p,q¢ = 1,2,3,4. Remark 3: For the relative degree 2 subsystem (50), the
Then, from the nominal and adaptive closed-loop contratcelerationio(t) (#1(t)) of the 1st car is used in the output
systems, the overall system stability analysis will be\deti  tracking controllery(t) design. In practice, the accelerations
of these cars are usually measurable. So, the proposed alomin
controllers F»(¢t) and F3(t) can be implemented for a real

A. Nominal Control Schemes .
train, when the system parameters are known. O

If the parametersl,,, k,q, m, anda, for p,q = 1,2,3,4
in the dynamics (15)-(16) are known, the linearizing cohtrgg_ Adaptive Control Design foF(t)
laws (17) and (18) can be used directly with the coordi- As the system parametets,, ma, dia, k11, by, c1. ki, d
nates (21)-(25) to_obtain the linearized system (29)_(3@', andksqs are unknown, an 1eildai)’tivleQ'colritiro}l"éﬁ;(’lt) 1|r213t<§('2;1d
Then,_ for the r_nommal controllers_ (17) and (18), the ma'('ff the nominal controlleF;(¢) should be designed, such that
task is to design the control signals(t) and vs(t) to 1 .
achieve thaflim; . (¢1(t) — v (t)) = 0 exponentially and §(t) —vm(t) € L andlimy o0 (€1(1) = vm(t)) = 0.
lim;—, o0 (&3(t) — v (t)) = 0 exponentially. Adaptive controller structure . Since there is no unknown
) ) . parameter in the linearized system (50) or (29)-(30), thpwu
Output tracking control v»(t) design According to the ycying control vy (¢) in (51) can be used directly in the
coordinate transformations (21)-(23), it @agt) = z2(¢) and ~ 5qantive controller design. To design the adaptive cdetrol

&(t) = (1) Then, the controller design for the dynamics;, ;) 'the parameters of the nominal controllEx(¢) in (17)
&1(t) and &(t) is equivalent to that for the dynamias (¢)

are defined:

andxg(t). 1
The dynamics system (29)-(30) can be rewritten as 1= T the = di1dia — k11, 613 = di1 + b1, (57)

11772
E1(t) =E2(t) = va(2), (50)  Ou=c1, 015 =dukia, 017 =diks, bi1s=diidaa,
016 =dq1d di1d di1by — k 09 =d 58
wherez,(t) = #,(t) is the speed of the 1st car, the control ' © ' =~ +dudez +duby =k, the = duaz, (58)
signalv,(t) is proposed as which lead to the nominal controlldr, (¢) being written as
VQ(t) :'Um(t) - 041(3.72 (t) - 'l']m(t)) FQ(t) = 7911 <912Z2(t) — 91512@) — 2914%2(15)1-2 (t)
—az(w2(t) — vm(t)), (51)

+01523(t) — Or2a(t) — Or725(t) + O1s26(2)

with 0 and 0 being design parameters such that
o= @ = g an p +019 — V2(t)>- (59)

52 4+ a15 + ay is a Hurwitz polynomial. It should be noted



Design the adaptive controlldf,(t) as Then, from (62)-(65), the time derivative & (e, 0,) is
Fo(t) = —bui(t) (éw(t);@(t) s (t)in(t) ‘171_(52’@1) L
() (0)iat) + Ors (s ) — fro(t)a(t) IR AR

_ _ _ 0 _
—é17(t)$5 (t) + élg (t)a?ﬁ(t) + élg(t) — Vg(t)) = 76;(15)@62(15) + eg(t)P |: 1 :| d11m21/2(t)
+0o(t), (60) =—&5 (1)Qex(t) + (pr2ea(t) + pazéa(t))dirmain(t)
where d; (t) are the estimations df;,, for p = 1,2,...,9 :755(15)@52(15) — dumzfifpizea(t) + p2éa()], (67)

v2(t) is given in (51), and’i(t) is a designed signal. where@Q = QT > 0 andd;;m»3; > 0. (67) indicates that the
closed-loop system consisting of (61), (64) and (65) isletab
. - ; : and its solutions are bounded, that is, all the variablgs)
tive laws for 6,(¢), with o = 1,2,...,9, we define the and ©,(#) are bounded. (67) also implies(f) € L? and
parameter erroré,(t) = 601,(t) — 01, and use the control (p12e2(t) + pazéa(t)) € L. The boundedness of the signal

law (60) and the system (15) under the definition (57)-(58). 1, ) will be analyzed in the following Subsection D.

Closed-loop adaptive control systemTo design the adap-

obtain
Remark 4: It should be noted that due to the unknown
2(t) = Zm(t) — a1(d2(t) = Om(t)) — 2(22(t) — vm(?)) boundedness of signa¥, (¢), the adaptive controller design
+611(t) Fa(t) — 012(t)z2(t) + 013(¢)22(t) method in [33] for relative degree 2 case, cannot be useceto th
12014 ()22 () @2 () — O15(t)as(t) + O16() 24 (t) E:gg)tro!lﬁr ddesign f(l)r sy(s6t§)m (21)_. ThT(réeS\;v_adaptive c(;)r%rgl
5 5 = _ with adaptive law and signal is proposed td dea
Hor7(t)25(t) = Ors () (t) = Or1o(t) + dumama(t), (i i case, where the signal (65) is introduced to make
which can be rewritten as (p12ea(t) + p22éa(t)) € LY, to ensure the needed stabilization
B ) condition for the zero dynamic subsystem. O
(D) (t) “+ e (t) + oes (t)
=01 (OWA(t) + dimata(t), (61) . Adaptive Control Design foFs (t)
with ex(t) = 2a(t) — vn(t), 22(t) = &(t), O.(t) = It should be noted that the relative degrees §oft) and
[011(t), 012(1),...,019(1)]T and Wi(t) = [Fa(t),—xa(t), w2(t) are different (2 and 1, respectively). Then, the design
Bo(t), 22 (t)d2(t), —23(t), 2a(t), v5(t), —x6(t), —1]T. procedure of the adaptive controllét(¢) for the dynamics
Let ex(t) = [e2(t) é2(t)]T. Then error dynamics (61) canés(t) with relative degree 1 is a bit different from that of
be recast as Fy(t) for the dynamice, (t) with relative degree 2.
Ealt) = [ 0 1 } e (1) Adaptive controller structure . According to the linearized
—2 —n system (54) or (30), the output tracking contrglt) in (55)
0 can be used directly in the adaptive controller design. To
+ [ élT(t)Wl (t) + dy1mobo(t) ] (62) design the adaptive controller, the parameters of the namin

] - _controller F3(t) in (18) are defined as
Due to the Hurwitz polynomiaé* + a1 s + as, there exist

1
positive definite matrice® = PT = | P P12 | 5 ¢ and O21=—, 032 =da3, 023 =kos, 025 =ks3, (68)
P12 P22 ms3
Q = QT > 0 to satisfy o4 =da3 + d33 + b3, O = dz3, 027 = aa, (69)
0 1 1" 0 1 which lead to the nominal controlldrs(¢) being written as
[ ] P—i—P[ ]z—Q. (63)
—Qg —Oq —Qg —Oq
F3 (t) = 7921 (9221‘4 (t) + 9231‘5 (t) — 9241‘6 (t) — 9251‘7 (t)
_Adaptive laws. The adaptive law for ©,(t) =
(011, 612,...,019)T and signali(t) are designed as +026758(t) + 27 — V3(t)>- (70)
él(t) =—T1W1(t)(prze2(t) + p2éa(t)), (64) The adaptive controllefy(t) is designed as
U2 (t) = —pisign(pizea(t) + pazéa(t)), (65) R . . R .
) F3 (t) = —921(t) (922 (t)l‘4 (t) + 923 (t)l‘5 (t) - 924(t)$6 (t)
wherel'; = diag{v11,712, -, 719} > 0, Y14, ¢ = 1,2,...,9,
are adaptation gain®,, and ps, are the elements in matrix e (1 O 4 fo(t O 4 O (£) — palt
P, 5, > 0 is a design parameter related to the convergence 25 ()27 (t) + 026 (t)s (t) + Oar () — s (1)
rate of x5 (t) — vm (). —Basgn(z(t) — vim (1)), (71)

Subsystem analysisConsider the Lyapunov function WhereéQQ(t) are the estimations af,,, for o = 1,2,...,7,

) _ 1. ) 1- o v3(t) is given in (55),3; > 0 is a design parameter related to
Vi(ea(t),01(t)) = gezT(t)Pez (t) + 591T(t)r1 '©1(t)(66) the convergence rate ofs(t) — v (t).



Closed-loop adaptive control systemTo design the adap-

tive laws for égg(t), WithA o = 1,2,...,7, we define the
parameter erroréy, (t) = 02,(t) — 02,. Using the control law

(71), the system (16) under the definition (68)-(69) follows

d6(t) = 2m(t) — as(@6(t) — vm(t)) + G20 () F5(t)
(= Baalt)eat) + Bra)() + Bua(ta()

Hs(t)a7(0) ~ Baa0)os(0) ~ ()

*m3ﬂ25igr‘(x6 (t) — Um (t»a (72)
which leads to
é6(t) + aze(t) = OF (t)Wa(t) — msfasgn(es), (73)
with es(t) = z6(t) — vm(t), z6(t) = &(t), Oa(t) =
[021(1), 022(t), . .., O27(1)]" and Wa(t) = [F3(t), —z4(2),
l‘5(t),l‘6(t),l'7(t),*Zg(t), —1]7.
Adaptive laws. The update laws for O,(t) =
(021,052, . ..,047]" are chosen as
O(t) = —TaWa(t)es(t), (74)
Wherng = diag{’ygl,’ygg, A ,’}/27} > 0, Y2q, 4 = 17 2, ey 7,

are adaptation gains.
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limg o0 (31(t) — vm(t) = 0, limy_o(23() — vm(t)) = 0

exponentially.
Proof: See Appendix A.

Adaptive control system performance When the system
parameters are unknown, the proposed adaptive controllers
(60) and (71) are used to replace the nominal controllers
(17) and (18), and the stability performance is analyzethfro
the time derivative of the Lyapunov functiof§ (-, ©,) and
‘/2(66,(':)2) in (67) and (76). With Corollary 1, we have the
following result:

Theorem 2: The adaptive controllers (60) and (71), with
the signals (51), (55) and (65), adaptive laws (64) and (74),
and p;o > 0, applied to the system (7), guarantee that the
corresponding closed-loop state signalgt), z1(t) — za2(t),
Zo(t), 22(t) —23(t), 23(t), 23(t)—24(t), 24(t) are bounded, and
the speed tracking errors satisfyn;_, o, (21 (t) — v (t)) = 0,
limy 00 (23(2) — v (2)) = 0.

Proof: See Appendix B.

Discussion of p1o. To guarantee the effectiveness of the
proposed adaptive controller, it is required that the el@me
p12 in the definite positive matrixP is positive. If the
definite positive matrix@) is chosen as a diagonal matrix,
Q = diag{q1, ¢2} with ¢; > 0 andgs > 0, it can be calculated

Subsystem analysis For the system (73), consider the,, — - > ( from (63). Then, the following corollary can

Lyapunov function

(£),0a(t) = 3
Then, the time derivative of;(eg, ©5) is
Va(es(t), O2(t))

= es(t)és(t) + OF ()51 Oa(t)
—aged(t) — mafales(t)], az >0, mzBa > 0,(76)

Vales colt) + 507015 0:(). (75)

which indicates that the closed-loop system consistingZ8j (

and (74) is stable and its solutions are bounded, that is,

the variables:s(t) and ©,(t) are bounded. (76) also |mpI|es

es(t) € L2 N L. The boundedness of the sigridkh(t) will
also be analyzed in the following Subsection D.

D. Overall System Stability Analysis

be obtamed

Corollary 2: For a diagonal definite positive matrig) =
diag{q1, ¢=}, the adaptive controllers (60) and (71), with the
signals (51), (55) and (65), adaptive laws (64) and (74),
applied to the system (7), guarantee that the corresponding
closed-loop states (t), z1(t) — z2(t), 22(t), 22(t) — 23(t),
23(t), z3(t) — z4(t), 24(t) are bounded, and the speed tracking
errors satisfylim; o (21(¢) — v, (t)) = 0, limy 00 (23(t) —

v (t)) = 0.

For the 4-car train system (7) with two control inputs acting

n the 2nd and 3rd cars, the proposed nominal controller (17)
nd (18) and adaptive controllers (60) and (71), can gueeant
partial input-to-state stability and the Lyapunov staypitif the

zero dynamics subsystem, desired tracking performandesof t
control dynamics subsystem, and the speed error having the
exponential convergence under the nominal controller, ahd

aII

In this subsection, the stability performance of the notingerformance under the adaptive controller.

and adaptive control system will be given, respectively.

Remark 5: It should be noted that the adaptive con-

Nominal control system performance It can be seen that trollers (60) and (71) are different from the corresponding

the nominal controllers (17) and (18) with the signalét) and

v3(t) designed in (51) and (55) can achieve the tracking erragis,é2(¢)) and msS2sign(es).

nominal controllers (17) and (18), due msign(pizea(t) +
As the system parameters are

e2(t) andeg(t) of the control dynamics subsystem (29)-(31)yinknown, the adaptive controllers (60) and (71) without the

satisfying lim; . e2(t) = lim;, o €2(t) = 0 exponentially

andlim,_, -, eg(t) = 0 exponentially. Further, with Lemma 2, achieve theL? convergence of; (¢)

we can have the following result:

Theorem 1. The nominal controllers (17) and (18), with
the signal (51) and (55), applied to the system (7), gua

antee that the corresponding closed-loop state sig@als),
Zl(l‘,) — Zg(f,), Z'g(f,), ZQ(!‘,) — 23(1‘,), 2',’3(75), Zg(t) — Z4(t),

termsﬁlsigr‘(pueg (t)+p22é2 (t)) andm3ﬂ25i9m66> can Only

— &3(t). The proposed

adaptive controllers (60) and (71) can result in fleconver-

gence of¢; () — &3(¢), which satisfies the desired convergence
roperty of ;(t) — &3(t), needed for ensuring the internal

stability (of the zero dynamic). O

Remark 6: The proposed adaptive controller design method

24(t) are bounded, and the speed tracking errors satisfyould be extend to the case of disturbances or uncertainties
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For the disturbances or uncertainties in the sensors whiignals (51), (55) and (65) and adaptive laws (64) and (74)
means the measurements used to construct the adaptive eve-used. The gains of the adaptive laws in (64) and (74)
troller contain the noises, the filters, such as the straamtking are chosen a8, and the parameters are chosempas = 2,
filter [34], or nonlinear robust filter [35], can be used tgq, = 4.

make the needed signals having the satisfied accuracy. &or th

modelling uncertainties, the robust adaptive technigee ésg. e

[27] and [36]) can be employed. O @ a0k l
Remark 7: So far, we have discussed adaptive controlle L 1

design problems for the 4-car train model (7) with inputragti R e e

on the 2nd and 3rd cars. For the high-speed trains in Chi T w w e s w7 @ w e

there are some other units as mentioned in Remark 1. For any
unit systems, we can use the feedback linearization method
to decouple the original system into a control dynamics sub-
system and a zero dynamics subsystem, based on the rele*" "~
degrees. For the zero dynamics subsystem, the Lyapunov .
partial input-to-state stability can be obtained undettaier
conditions. The nominal controller and the correspondir
adaptive controller can be developed to make the speeds S - deared spoat
the control dynamics subsystem to track the desired ti@ject oo
and satisfy the needed tracking performance (exponential o
LY, which guarantees the stabilization condition of the zero
dynamics subsystem. The proposed adaptive controllegmulesi
scheme with the stabilization condition can make the parti~ L
states of the closed-loop system bounded, the speeds tr o

the desired trajectories, and the closed-loop systemfisatis -o0sf 1
the desired displacement performance, in the present of - 01 ]

Fig. 8: Speeds of the 1st car

60

IS
S
T
I

speed (mis)

N
S
T

o

L L
60 70 80 90 100

o

50
t (sec)

Fig. 9: Speeds of the 3rd car

speed (m/s)

unknown system parameters. O N 1=
o 0 10 20 30 40 ‘(50 ) 60 70 80 90 100
VI. SIMULATION STUDY Fig. 10: Speed tracking errors of the 1st car

To verify the proposed controller design method, simutatio
study on a real train model from [29] is presented in this

section. 4 cars with two inputs acting on the 2nd and 3rd ce oY

are considered, in which the general resistance and in-tr. 2 0[

forces are similar to those in Fig. 3. The parameters of tl 5 -0 1
simulation are shown in Table I1. "0z} 1

— I I I I 1
o 10 20 30 40 50 60 70 80 90 100
t (sec)

TABLE II: CRH; train parameters

Symbol _ Description Unit Value Fig. 11: Speed tracking errors of the 3rd car

My 1st car mass ton 42.8

]\]‘2 g?{fc‘:;rr?;;: ttgr’: 22.5 Figs. 8 and 9 show the simulation results of the speeds

M, 4th car mass ton 42 for the 1st and 3rd cars including the plant speed (solid) and

a1, a4 E)i%ﬁgglﬁg resistance o 8.63 desired speed (dashed), in which the initial values of the 1s
mechanical resistance and 3rd cars speeds are 0.01m/s. Figs. 10 and 11 show the

42,83 coefficients Ns/ton 9.03 speed tracking errors for the 1st and 3rd cars. From Figs. 10

b, ba g)ee%ﬁgglﬁg resistance \ ¢/mton)  0.07295 and 11, it can be seen that the tracking errors are close to 0.
mechanical resistance There are transit responses due to the adaptive laws and zero

b2,b3  oefficients N s/(m ton)  0.08015 dynamics. Figs. 12-14 show the position of the 1st car and the

. gg;%ciicyizﬁric resistance \ 2/m2 ton)  0.00112 relative positions between the 1st and 2nd carg) — z»(t)

kiks  spring coefficients N/m 800 x 106 and between the 3rd and 4th caggt) — z4(¢). As the speeds

ko spring coefficient N/m 600 x 106 of the 1st and 3rd cars are synchronous, the error becomes

di,d3  damper coefficients Ns/m 8 x 104 a constant in steady case, which is in consistence with the

da damper coefficient Ns/m 6 x 10% real case. The simulation results show that the proposbtesta

adaptive control framework can achieve the close-looplgtab
The initial conditions are chosen as:(0) = even in the presence of unknown parameters.

0.5 0.01 0 001 0 0.01 0 0.01]7, and the initial It is visible from the simulation results that chattering
parameter estimates &@5% of their nominal values. The occurs at the initial stage in figs. 10-14. This is caused by
adaptive controllers proposed in (60) and (71), with thie discontinuous controllers (60) and (71) due to the sign
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function, which results in a discontinuous right hand sidexponentially, andim;_,~ (z2(t) — 26(t)) = 0 exponentially,
in the dynamical equation (7). In real implementation, thiee., lim;,~ (&1 (t) — &5(t)) = 0 exponentially.
chattering can be reduced or even removed by using boundarpue to v,,(t) and v,,,(¢) being boundedzz(t), z2(t) and
layer method in which the discontinuous sign function is¢(¢) (i.e., 21(t), 21 (¢) and z3(t)) are bounded, which means
approximated by the continuous saturation function pregos¢; (t), £2(t), & (t) and &3(t) are bounded. Considering the
in [37], [38] and [39]. Furthermore, for high-speed traitt®2  dynamicsG (s) andGa(s) in (44),lim; s (&1 (1) —&3(t)) =0
chattering with small amplitude usually can be accepted. exponentially results imo(t), 73(t), na(t), n5(¢t) (i.e., z1(t) —
29(t), z2(t)—23(t), z3(t)—2z4(t), 24(t)) are bounded. Recalling
- the inverse coordinate transformatieg(t) (32(¢)) in (27), and
/ with the bounded system parametéks, b1, k11, ¢1, andaq,
— | [poiionoiisial x4(t) is also bounded. Then, with the control signaiét) and
t (sec)
Fig. 12: Position of 1st car

5000

position (m)

o2

v3(t) given in (51) and (55) and the structure of the nominal
controllers (59) and (70), the boundednes$eft) and F5(t)
are ensured.

APPENDIXB
PROOF OFTHEOREM 2

L_’/// [—relative position between 1st and 2nd cars

~0.01 L L L L L
0 10 20 30 40 50 60 70 80 90 100

t(sec)

relative position (m)
o

L' performance. For (67), lete(t) £ pigea(t) + pagéa(t),
thenes(t) = ——=——[e(t). According to [27], if £2 > 0,
€(t) € L' results inex(t) € LY, i.e., & (t) — vy (t) € L. With
eo(t) = &(t) —vm(t) € L, it has&i(t) — &(t) € LY.

Tracking error es(t) performance. Moreover, é;(t) is
bounded, i.e.¢2(t) andéx(t) are bounded. Themy(t), 2(t)
and ©1(t) (i.e., 011(t), O12(t), 013(t), 01a(t), O15(t), O16(t),
017(t), 61s(t), O19(t)) are bounded. Withey(t) € L? and
Barbalat Lemmalim;,« e2(t) = 0. Further, from (67), the
variableseg(t) and©,(t) are bounded. Theng(t) and©x(t)
(i.e., 621(1&), 922(75), 923(!‘,), 924(1‘1)1 925(t)1 926("')1 927(t)) are
bounded.

Fig. 13: Relative position between 1st and 2nd cars

0.01 T T T T T T T T T
0
[——relative position between 3rd and 4th cars
—o.01 . . . . .

0 10 20 30 40 50 60 70 80 %0 100
t (sec)

relative position (m)

Fig. 14:Relative position between 3rd and 4th cars

VIlI. CONCLUSIONS

In this paper, the adaptive tracking controller design prob zero dynamics subsystem performanceDue tov,, (¢) and
lem has been investigated for underactuated 4-car higeespg  (¢) being bounded and with boundeg{t), és(t) andeg (#),
train motion systems even if the parameters are unknowjyas thatrs (t), i2(t) andzg(t) are bounded, i.e&; (), & (t)
To design the adaptive tracking controller, the nonlinear 4nq¢,(¢) are bounded. Therg2(¢) is bounded. Considering
car train system is decoupled into a control dynamics SUfgie dynamicsG, (s) and Go(s) in (44), & (t) — &(t) € L
system and a zero dynamics subsystem using the feedbagli hounded; (), £2(¢), & (¢) and&s(t) result in that, (t),
linearization techniques. A new and detailed stabilitylgsia . (1) 7, (¢), andns(t) are bounded, i.e33(t), z5(t), z7(t)
is presented to show that the zero dynamic system is tgﬁdﬂjg(t) are bounded.

Lyapunov stable and partially input-to-state stable urttier . .

developed stabilization condition. The system configorati Boundedness of F»(t) and F3(t). Recalling the inverse
leads to a relative degree 1 subsystem and a relative degteerdinate transformationy(t) (¢2(t)) in (27), and with the
2 subsystem, for which the new adaptive controllers ak®unded system parametets, by, ki1, c1 anday, z4(t) is
proposed to ensure the needed system stabilization comgditialso bounded. Then, according to the structure of the agapti
and make the desired closed-loop system signal bounded &agtrollers (60) and (71), and with the bounded signals),
asymptotic speed tracking. Simulation results furtherficon v3(t) andi»(t) and the bounded controller parameters(t)

the obtained theoretical results.

APPENDIXA
PROOF OFTHEOREM 1

and©,(t), the boundedness df,(t) and F3(t) are ensured.

Tracking error eg(t) performance. Further, it has that
Wi(t) and W(t) are bounded. From (62) and (73)(t)
and é¢(t) are bounded. Witheg(t) € L?( L' and Barbalat

When the system parameters are known, for the nominamma,lim;_, . eg(t) = 0.
controllers (17) and (18) with (51) and (55), it follows from

(53) and (56), thatlim; o ea(t) = limyooé2(t) = 0

exponentially andim;_, . eg(t) = 0 exponentially, which im-

plies that nominal controllergy(¢) and F(t) with v»(t) and
v3(t) can makelim;_, o (z2(t) — v (t)) = limy_y oo (d2(t) —
Um(t)) = 0 exponentially,lim; o (x6(t) — v (t)) = 0
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