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Abstract—In this paper, the adaptive tracking control problem
is investigated for multibody high-speed train dynamic model in
the presence of unknown parameters, which is an open adaptive
control problem. A 4-car train unit model with input signals
acting on the 2nd and 3rd cars and output signals being the
speeds of the 1st and 3rd cars is chosen as a benchmark model,
in which the aerodynamic resistance force is also considered. To
handel the nonlinear term, the feedback linearization method
is employed to decompose the system into a control dynamics
subsystem and a zero dynamics subsystem. A new and detailed
stability analysis is conducted to show that such a zero dynamic
system is Lyapunov stable and is also partially input-to-state sta-
ble under the condition that the speed error between the 1st and
3rd cars is exponentially convergent (to be ensured by a nominal
controller) or belongs to theL1 signal space (to be achieved by a
properly designed adaptive controller). The system configuration
leads to a relative degree 1 subsystem and a relative degree
2 subsystem, for which different feedback linearization-based
adaptive controllers and their nominal versions are developed to
ensure the needed stabilization condition, the desired closed-loop
system signal boundedness and asymptotic output speed tracking.
Detailed closed-loop system stability and tracking performance
analysis are given for the new control schemes. Simulation results
from a realistic train dynamic model are presented to verify the
desired adaptive control system performance.

Index Terms—Adaptive control, output tracking, high-speed
train, multibody models, feedback linearization, zero dynamics

I. I NTRODUCTION

With the developments of railway systems, high-speed trains
are being updated to run at higher speeds and more loading
capacities. Speed tracking is the fundamental requirement
for the punctuality of the operation of a train, which leads
to the increasing of the automatic train operation control
capabilities of high-speed trains. Great efforts have been
devoted to the control design for high-speed trains, such as
active communication-based control [1], data-based control
[2], iterative learning control [3], robust control [4]- [5],
adaptive control [6], and so on.

In studies of train control, there are mainly two types of
models used in the literatures, namely, the single mass point
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model and the cascade mass point model [7]. The former
considers the whole train as one single mass point and ignores
in-train dynamics of the train, see [8]- [10]. The latter models
a train as individual mass points that are inter-connected via
springlike couplers, see [11]- [13]. For the traditional trains,
such as heavy-haul-trains, the traction force only acts on the
head car, i.e., only the head car is the power car, so that the
connections between each cars should be ensured to tolerant
the traction force and do not break under the train operating.
The single mass point model is enough to study the control
problem.

Nowadays, to achieve the high speed for trains, the powers
are distributed in a train, i.e., for a high-speed train, several
cars are power cars and others are trailer cars, which makes
the inter-force generated by the connections cannot be ignored
in control design. This results in the cascade mass point model
for controller design, for which the multibody model (i.e.,
cascade mass point model) is wildly employed [15]- [17]. In
[18], a distributed and fault-tolerant control design approach is
presented to develop tracking and braking control schemes for
high-speed trains with a multibody system. In [19], a tracking
controller is designed for the high-speed trains using the multi-
agent technology. In [20], a robust control criterion for the
velocity tracking control of high-speed trains is developed
based on a multi-particle model. Among these results, it is
assumed that the considered models are always full-actuated
with the traction forces acting on every car and being designed
separately, or the condition that the train is operating under the
equilibrium state. Therefore, the in-train dynamics related to
the inter-forces have not been fully analyzed.

In this paper, a 4-car train unit from CRH2 (China Railway
High-speed 2), with the 2nd and 3rd cars being power cars,
is chosen as the benchmark model, see Fig. 1, which is an
underactuated 4-car system containing the in-train dynamics.
These in-train dynamics are the “internal” behaviors that
cannot be controlled by the input signals directly, which are
called zero dynamics [21]- [22]. The stability performancefor
the zero dynamics is a key part to ensure the effectiveness
of the controller. However, this analysis for the underactuated
4-car train model has not been obtained in the current results.
Moreover, considering the fact that actual values of system
parameters are not obtained easily, and the trajectory tracking
problem is an important topic for train control systems, the
adaptive control technique is an effect way to deal with the
unknown parameters to achieve high tracking performance
[23]- [27]. Thus, the adaptive tracking control for an under-
actuated 4-car system with unknown parameters is of both
theoretical challenges and practical importance.
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Fig. 1: A 4-car rail vehicle

The purpose of this paper is to solve an open adaptive con-
trol problem for high-speed trains represented by a nonlinear
underactuated 4-car system with unknown system parameters
to achieve the speed tracking. The main contributions of this
paper are as follows:

(i) A typical 4-car train unit from a real CRH2 high-speed
train is chosen as a benchmark model, which is modelled
as a nonlinear underactuated 4-car system with unknown
system parameters. The feedback linearization method
is employed to decompose the system into a control
dynamics subsystem and a zero dynamics subsystem.

(ii) A new and detailed stability study of the zero dynamics
subsystem is presented, while a new partial input-to-state
stability property is given and the stabilization condition
is derived. Moreover, the physical meaning of such partial
input-to-state stability is clarified.

(iii) For the relative degrees 1 and 2 subsystems from the
system configuration, the new feedback linearization-
based adaptive controllers with the key stability properties
are clarified and achieved to guarantee the stability of the
zero dynamics subsystem and the tracking performance,
respectively. Also, the stability properties of the corre-
sponding nominal controller are presented.

The rest of the paper is organized as follows: Section II
describes the 4-car nonlinear benchmark model and formulates
the adaptive tracking control problem. Section III decomposes
the system into a control dynamics subsystem and a zero
dynamics subsystem by feedback linearization. Section IV
studies the stability analysis for the zero dynamics subsystem.
Sections V provides the adaptive tracking control scheme. Sec-
tion VI includes the simulation study, followed by conclusions
in Section VII.

II. SYSTEM DESCRIPTION ANDPROBLEM FORMULATION

A high-speed train consists of several same type units, in
which the typical unit, shown in Fig. 1 is made up of 4 cars
with the 2nd and 3rd ones being power cars. Here, this kind of
unit is chosen as the benchmark model to study the tracking
control problem.

A. Individual Car Model of Motion

To obtain the train dynamic model, it is necessary to analyze
the forces acting on the cars. A high-speed train consistingof
n cars can be considered asn mass points connected byn−1
couplers. For thei-th car, the longitudinal dynamic movement
can be described by [28]- [29]:

Miz̈i(t)=Fi(t) + Fini−1
(t)− Fini

(t)− Fri(t), (1)

wherezi is the position of thei-th car,Mi is the mass of the
i-th car,Fi is the traction force, which is only for the power
car, Fini

is the in-train force between thei-th and (i + 1)-
th cars,Fri is the general resistance. The resistanceFr1 is
different from the resistances of the other cars.

The general resistanceFri(t) is approximated by a function
(see [18], [20], [30] and [31]):

Fri(t)=

{

ari + brivi(t) + criv
2
i (t), i = 1,

ari + brivi(t), i = 2, . . . , n,
(2)

where vi(t) is the speed of thei-th car, ari , bri and cri
are the resistance coefficients. The termcriv

2
i (t) represents

aerodynamic drag, while the remaining termsari andbrivi(t)
are considered to be rolling mechanical resistances.

The in-train forces are generated through the couplers
between cars, which can be modelled by [30]

Fini
(t)=ki(zi − zi+1) + di(żi − żi+1), (3)

whereki anddi are the spring and damping constants,żi, żi+1

and zi, zi+1 are the speeds and the positions of thei-th and
(i+ 1)-th cars, respectively.

According to the well-developed measurement techniques
for high-speed trains, such as the leaky coaxial synthesized
optical cable and the fibre optic gyroscope inertial navigation
system [29]- [31], the positionzi and speeḋzi of each car can
be measured accurately [5].

B. Train Model of Motion

Based on the force analysis, the motion dynamic equations
of the train withn cars are given by

M1z̈1(t)=F1(t)− k1(z1(t)− z2(t))− d1(ż1(t)− ż2(t))

−
(

ar1 + br1 ż1(t) + cr1 ż
2
1(t)

)

, (4)

Miz̈i(t)=Fi(t)− ki(zi(t)− zi+1(t))− ki−1(zi(t)− zi−1(t))

−di(żi(t)− żi+1(t))− di−1(żi(t)− żi−1(t))

− (ari + bri żi(t)) , i = 2, . . . , n− 1, (5)

Mnz̈n(t)=Fn(t)− kn−1(zn(t)− zn−1(t))

−dn−1(żn(t)− żn−1(t))− (arn + brn żn(t)) , (6)

whereżi andzi are the speed and the position of thei-th car,
respectively,ki anddi are the spring and damping constants
of the coupler systems,Mi andFi are the mass and traction
force of thei-th car, respectively.

C. Benchmark System

Here, the 4-car train model shown in Fig. 1 is chosen as
the benchmark system to study the adaptive control problem.
From (4)-(6), it can be seen when the speeds are non-zero,
the positions of cars may be infinity, which means the states
z1(t), z2(t), z3(t) and z4(t) go to infinity, if ż1(t), ż2(t),
ż3(t) and ż4(t) do not go to zero. It is impossible to analyze
and obtain the stability property for the statesz1(t), z2(t),
z3(t) andz4(t) in the train dynamic model (4)-(6). However,
the relative positions, such as,z1(t) − z2(t), z2(t) − z3(t)
and z3(t) − z4(t), between each cars should and must be
bounded. Otherwise the connections between adjoining cars
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will be broken. Thus, the relative positions are chosen as states
to model the train dynamics for an adaptive controller design.

For the 4-car benchmark model, choose the system state
x(t) = [x1(t), . . . , x8(t)]

T = [z1(t), ż1(t), z1(t) −
z2(t), ż2(t), z2(t)−z3(t), ż3(t), z3(t)−z4(t), ż4(t)]

T ∈
R8, and setmp = 1

Mp
, dpq =

dp

Mq
, kpq =

kp

Mq
, ap =

arp

Mp
,

bp =
brp
Mp

, and c1 =
cr1
M1

, with p, q = 1, 2, 3, 4. From (4)-(6),
the dynamic equation for 4-car train unit in Fig. 1 can be
written as

ẋ(t)=Ax(t) +BF (t) −Ba −Bcx
2
2(t), (7)

whereA is given in (8),

B=

[

0 0 0 m2 0 0 0 0
0 0 0 0 0 m3 0 0

]T

,

F (t)=

[

F2(t)
F3(t)

]

, (9)

Ba=
[

0 a1 0 a2 0 a3 0 a4
]T
,

Bc=
[

0 c1 0 0 0 0 0 0
]T
, (10)

with dpq > 0, kpq > 0, mp > 0, ap, bp andc1 being unknown
parameters.

Remark 1: There are several basic units of high-speed
trains, such as a unit containing 4 cars with the 1st, 2nd and
3rd cars being power cars, or the 3rd and 4th cars being power
cars, or a unit containing 3 cars with the 1st and 3rd cars being
power cars, and so on. In this paper, we mainly develop an
adaptive control framework for the high-speed train benchmark
model (7), which can be easily extended to the other high-
speed train models. 2

D. Control objective

In practice, the speed and position of each car can be
available, that is, the statesx(t) of the system (7) are all
measurable, among which any state can be chosen as the
controlled variable for adaptive controller design. As the
trajectory tracking is the important task for trains, and ifthe
head car (1st car) can track the desired speed trajectory and
the connections work normally, the whole train could achieve
the tracking performance. Moreover, there is a nonlinear term
c1x

2
2(t) in the 1st car, while the inputsF2(t) andF3(t) do not

act on the 1st car directly. From the practical application,in
order to deal with the nonlinear termc1x22(t) and the unknown
system parameters, we choose the speeds of the 1st and 3rd

cars as the controlled variables, which can be considered as
the output of the system (7), i.e.,

y(t)=

[

y1(t)
y2(t)

]

=

[

x2(t)
x6(t)

]

=

[

ż1(t)
ż3(t)

]

. (11)

Therefore, the control objective of this paper can be sum-
marized as follows: an adaptive controller is to be designed
for the high-speed train system (7) to make the states (outputs)
ż1(t) and ż3(t) tracking the same desired speed signalvm(t),
and simultaneously to keep the statesz1(t) − z2(t), ż2(t),
z2(t)−z3(t), z3(t)−z4(t), andż4(t) bounded, in the presence
of the nonlinear termc1x22(t) and unknown system parameters
dpq, kpq, mp andap for p, q = 1, 2, 3, 4.

III. SYSTEM FEEDBACK LINEARIZATION

It can be seen that the high-speed train dynamic system (7)
is a nonlinear system with the nonlinear termc1x22(t) in the
dynamics equatioṅx2(t). To handle this class of nonlinear
term, the feedback linearization method will be employed to
decompose this system (7) into a control dynamics subsystem
and a zero dynamics subsystem.

A. Relative Degrees

As described in [21], the vector relative degree is crucial
to feedback linearization-based adaptive controller design for
nonlinear systems, which will be calculated for the system (7)
to achieve the linearization.

From (7) and (11), the train nonlinear dynamics can be
rewritten as a general nonlinear form:

ẋ(t)= f(x) + g(x)u(t) +Ba, (12)

y(t)=h(x), (13)

wheref(x) = Ax(t) − Bcx
2
2(t), g(x) = [g1(x), g2(x)] =

B, u(t) = F (t), Ba is given in (10) andh(x) =
[h1(x), h2(x)]

T = [x2(t), x6(t)]
T .

The vector relative degree{ρ1 = 2, ρ2 = 1} can be obtained
from Lg1h1(x) = 0, Lg2h1(x) = 0, Lg1Lfh1(x) = d11m2 6=
0, Lg1h2(x) = 0, andLg2h2(x) = m3 6= 0. Further, it can be
calculated:

A(x),

[

Lg1L
ρ1−1
f h1(x) Lg2L

ρ1−1
f h1(x)

Lg1L
ρ2−1
f h2(x) Lg2L

ρ2−1
f h2(x)

]

=

[

d11m2 0
0 m3

]

, (14)

is nonsingular for allx.

A =

























0 1 0 0 0 0 0 0
0 −d11 − b1 −k11 d11 0 0 0 0
0 1 0 −1 0 0 0 0
0 d12 k12 −d12 − d22 − b2 −k22 d22 0 0
0 0 0 1 0 −1 0 0
0 0 0 d23 k23 −d23 − d33 − b3 −k33 d33
0 0 0 0 0 1 0 −1
0 0 0 0 0 d34 k34 −d34 − b4

























, (8)
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Under the relative degree{ρ1, ρ2}, differentiatingy1 andy2
in (12)-(13) or (7)-(11), with respect to time,ρ1 andρ2 times,
respectively, we obtain

ÿ1(t)=−(d11 + b1)ẋ2(t)− k11x2(t) + k11x4(t)

−c12x2(t)ẋ2(t) + d11(d12x2(t) + k12x3(t)

−(d12 + d22 + b2)x4(t)) − k22x5(t) + d22x6(t)

+d11(a2 +m2F2(t)), (15)

ẏ2(t)=d23x4(t) + k23x5(t)− (d23 + d33 + b3)x6(t)

−k33x7(t) + d33x8(t) +m3F3(t) + a3, (16)

for which the feedback linearization can be designed. It should
be pointed out that the variablėx2(t) is the acceleration of the
1st car, which is measurable and can be used in the controller
design directly.

B. Feedback Linearization

If the parametersdpq, kpq, mp andap for p, q = 1, 2, 3, 4 in
the dynamics (15)-(16) are known, with the nonsingularA(x)
in (14), we can design the linearizing control laws,

F2(t)=−
1

d11m2

(

− (d11 + b1)ẋ2(t)− k11x2(t) + k11x4(t)

−c12x2(t)ẋ2(t) + d11a2 + d11(d12x2(t) + k12x3(t)

−(d12 + d22 + b2)x4(t)− k22x5(t) + d22x6(t))

−ν2(t)

)

, (17)

F3(t)=−
1

m3

(

d23x4(t) + k23x5(t)− (d23 + d33 + b3)x6(t)

−k33x7(t) + d33x8(t) + a3 − ν3(t)

)

. (18)

Applying (17) and (18) to (15) and (16), respectively, we
obtain the linearized system as

ÿ1(t)= ν2(t), (19)

ẏ2(t)= ν3(t), (20)

whereν2(t) andν3(t) are linear feedback control laws to be
designed to stabilize the linearized system (19)-(20).

We have obtained the linearization controllersF2(t) and
F3(t). If the parametersdpq, kpq, mp and ap for p, q =
1, 2, 3, 4 in the dynamics (15)-(16) are unknown, adaptive
controllers need to be designed to replaceF2(t) and F3(t).
To design the adaptive controller, the stability performance
for the whole system should be analyzed. The coordinate
transformation (diffeomorphism) will be introduced with the
feedback linearization controller to obtain a normal form for
controller design and stability analysis.

C. Normal Form

According to the relative degree{ρ1, ρ2}, the 3 partial
coordinate functions to transform the nonlinear system (12)-
(13) into a normal form, can be set as

ξ1(t)=φ1(x) = h1(x) = x2(t), (21)

ξ2(t)=φ2(x) = Lfh1(x) = −(d11 + b1)x2(t)− k11x3(t)

+d11x4(t)− c1x
2
2(t) + a1,(22)

ξ3(t)=φ3(x) = h2(t) = x6(t). (23)

Then, we should find the remaining 5 partial coordinate
functionsφ4(x), φ5(x), φ6(x), φ7(x), φ8(x), to complete the
transformation such thatLgiφ4(x) = Lgiφ6(x) = Lgiφ6(x) =
Lgiφ7(x) = Lgiφ8(x) = 0, for i = 1, 2, by taking

η1(t)=φ4(x) = x1(t), η2(t) = φ5(x) = x3(t), (24)

η3(t)=φ6(x) = x5(t), η4(t) = φ7(x) = x7(t),

η5(t)=φ4(x) = x8(t). (25)

Further, it can be calculated that the Jacobian matrix of the
transformationΦ(x) = [φ1(x), · · · , φ8(x)]

T is nonsingular
for all x, and the inverse transformation is given by

x1(t)= η1(t), x2(t) = ξ1(t), x3(t) = η2(t), (26)

x4(t)=
d11 + b1

d11
ξ1(t) +

1

d11
ξ2(t) +

k11

d11
η2(t) +

c1

d11
ξ21(t)

−
1

d11
a1, x5(t) = η3(t), (27)

x6(t)= ξ3(t), x7(t) = η4(t), x8(t) = η5(t). (28)

Then, in these new coordinates (21)-(25), with the lin-
earizing control laws (17) and (18), the the high-speed train
dynamic system (7) can be transformed into two subsystems:
the control dynamics subsystem

ξ̇1(t)= ξ2(t), (29)

ξ̇2(t)= ν2(t), (30)

ξ̇3(t)= ν3(t), (31)

and the zero dynamic subsystem

η̇1(t)= ξ1(t), (32)

η̇2(t)=−
k11

d11
η2(t)−

b1

d11
ξ1(t)−

1

d11
ξ2(t)−

c1

d11
ξ21(t)

+
a1

d11
, (33)

η̇3(t)=
k11

d11
η2(t) +

d11 + b1

d11
ξ1(t) +

1

d11
ξ2(t) +

c1

d11
ξ21(t)

−ξ3(t)−
a1

d11
, (34)

η̇4(t)=−η5(t) + ξ3(t), (35)

η̇5(t)=k34η4(t)− (d34 + b4)η5(t) + d34ξ3(t) + a4, (36)

in which (32)-(36) is completely decoupled from the input
signal, andξ1(t) = x2(t) = ż1(t), ξ3(t) = x6(t) = ż3(t) are
the speeds of the 1st and 3rd cars, respectively.

2 3( ) [ ( ), ( )]TF t F t F t
1 1 4 4( ), ( ), , ( ), ( )z t z t z t z t

2 3
ˆ ˆ( ), ( )F t F t

Fig. 2: Framework of the proposed adaptive control system
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So far, we have obtained the linearized normal form of the
train dynamic system (7), which contains a control dynamics
subsystem and a zero dynamics subsystem. To achieve the
tracking performance, the stability analysis should be carried
out for the zero dynamics subsystem (32)-(36) to help the
adaptive controller design. Then, the framework of the pro-
posed adaptive control can be implemented as Fig. 2, in which
the designed adaptive controllerŝF2(t) and F̂3(t) replace
F2(t) andF3(t) to control the train.

IV. SYSTEM ZERO DYNAMICS ANALYSIS

Zero dynamicsis an important concept for nonlinear control
systems, which describes some “internal” behaviors of the
systems [21]. The stability performance of zero dynamics
could influence the effectiveness of the designed adaptive
controller. In this section, the detailed stability analysis for
the zero dynamics subsystem (32)-(36) will be studied, and
the stabilization condition will also be derived.

A. Zero Dynamic System

Since the terms 1
d11

a1 and a4 in (33), (34) and (36) are
constants, thenη(t) = [η1(t), η2(t), η3(t), η4(t), η5(t)]

T ,
ξ(t) = [ξ1(t), ξ21(t), ξ2(t), ξ3(t)]

T andψ(t) = [ a1

d11
, a4]

T ,
can be introduced to rewrite the subsystem (32)-(36) as

η̇(t),A1η(t) +B1ξ(t) + B2ψ(t), (37)

where

A1=













0 0 0 0 0

0 −k11

d11

0 0 0

0 k11

d11
0 0 0

0 0 0 0 −1
0 0 0 k34 −(d34 + b4)













,

B1=













1 0 0 0

− b1
d11

− c1
d11

− 1
d11

0
d11+b1
d11

c1
d11

1
d11

−1

0 0 0 1
0 0 0 d34













, B2 =













0 0
1 0
−1 0
0 0
0 1













.

(38)

The dynamics of the subsystem (37) are calledzero dynam-
ics driven byξ(t) andψ(t), the state vector of (29)-(31) and
the constant signal. We will analyze the Lyapunov stabilityand
input-to-state stability of the zero dynamics (37), to develop
a set of conditions to ensure that the desired adaptive control
performance is guaranteed.

Stability definitions. The original input-to-state stability
requires that with the initial conditionη(0), η(t) goes to
zero ast goes to infinity [32]. Since the system (37) is a
linear system, a weak input-to-state stability concept will be
introduced:η(t) is bounded for bounded initial conditionsη(0)
and bounded inputsξ(t) andψ(t). This will be characterized
by the Lyapunov stability oḟη = A1η and the bounded-input-
bounded-state stability oḟη(t) = A1η(t) + B1ξ(t) + B2ψ(t).
We will first establish the desired Lyapunov stability for
η̇ = A1η, while the input-to-state stability will be studied
based on the bounded-input-bounded-state stability ofη̇(t) =
A1η(t) +B1ξ(t) +B2ψ(t).

B. Lyapunov Stability

For the system (37), the signalψ(t) is considered as an extra
input. To check the Lyapunov stability for (37), we should set
ξ(t) = 0 andψ(t) = 0. Then, the characteristic polynomial of
(37) can be calculated:

P (λ)=
1

d11
λ2(d11λ+ k11)(λ

2 + b4λ+ d34λ+ k34).(39)

From (39), the matrixA1 in (37) has two zero eigenvalues,
corresponding to the dynamic equations

η̇1(t)=0, i.e., ẋ1(t) = ż1(t) = 0, (40)

η̇2(t) + η̇3(t)=−
k11

d11
η2(t) +

k11

d11
η2(t) = 0,

i.e., ẋ3(t)− ẋ5(t) = ż1(t)− ż4(t) = 0, (41)

which implies

η1(t)=z1(t) = z1(0), (42)

η2(t) + η3(t)=z1(t)− z4(t) = z1(0)− z4(0),

i.e., z4(t) = z4(0). (43)

From (42) and (43), the the dynamics (37) corresponding
to the two zero eigenvalues are stable. Further, the zeros of
(d11λ + k11)(λ

2 + b4λ + d34λ + k34) having negative real
parts means that the other three non-zero eigenvalues ofA1

are stable. Hence, we can conclude that the zero dynamic (37)
is Lyapunov stable.

Then, the following result can be obtained directly.

Lemma 1: The zero dynamic (37) is Lyapunov stable.

Since the the zero dynamic system (37) is linear and time-
invariant, Lemma 1 is equivalent to the fact that the solution
η(t) of η̇ = A1η is bounded for anyη(0) 6= 0.

C. Partial Input-to-State Stability (ISS) Analysis

The objective now is to analyze the input-to-state stability
of system (37) withξ(t) andψ(t) as inputs. It should be noted
that for matrixA1, all the elements in the first row and first
column are zero.

For ξ1(t) andη1(t) representing the speed and position of
the first body, the control objective is to achieve desired speed
tracking, that is, the speedξ1(t) = ż1(t) tracks the desired
speed trajectory, while the positionη1(t) = z1(t) may be
unbounded, that is,limt→∞ η1(t) = ∞. Hence, in the analysis
of the bounded-input-bounded-state (bounded-output) stability
of (37), the state variableη1(t) is separated from the rest of the
state variables inη(t) and only the boundedness of the partial
state vector̄η(t) = [η2(t), η3(t), η4(t), η5(t)]

T is considered.
Thus, for the zero dynamics system (37), we study the partial
input-to-state stability, due to the perhaps unboundedη1(t).

Eliminating the stateη1(t) from (37), the following transfer
function matrix fromξ andψ to η̄ can be calculated:

η̄(s)= Ḡ1(s)ξ(s) + Ḡ2(s)ψ(s), (44)
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where

Ḡ1(s)=
η̄(s)

ξ(s)
=

[η2(s), η3(s), η4(s), η5(s)]
T

[ξ1(s), ξ21(s), ξ2(s), ξ3(s)]T

=
1

P (s)









Z11(s) Z12(s) Z13(s) Z14(s)
Z21(s) Z22(s) Z23(s) Z24(s)
Z31(s) Z32(s) Z33(s) Z34(s)
Z41(s) Z42(s) Z43(s) Z44(s)









(45)

Ḡ2(s)=
η̄(s)

ϕ(s)
=

[η2(s), η3(s), η4(s), η5(s)]
T

[ a1

d11

(s), a4(s)]T

=











d11

d11s+k11

0
−d11

d11s+k11
0

0 −1
s2+(d34+b4)s+k34

0 s
s2+(d34+b4)s+k34











, (46)

with the elements in (45) being given as

P (s)=
1

d11
s(d11s+ k11)(s

2 + b4s+ d34s+ k34), (47)

Z11(s)=−
b1

d11
s(s2 + b4s+ d34s+ k34),

Z12(s)=−
c1

d11
s(s2 + b4s+ d34s+ k34),

Z13(s)=−
1

d11
s(s2 + b4s+ d34s+ k34), Z14(s) = 0,

Z21(s)=
1

d11
(b1s+ d11s+ k11)(s

2 + b4s+ d34s+ k34),

Z22(s)=
c1

d11
s(s2 + b4s+ d34s+ k34),

Z23(s)=
1

d11
s(s2 + b4s+ d34s+ k34),

Z24(s)=−
1

d11
(d11s+ k11)(s

2 + b4s+ d34s+ k34),

Z31(s)=0, Z32(s) = 0, Z33(s) = 0,

Z34(s)=
1

d11
s(d11s+ k11)(s+ b4),

Z41(s)=0, Z42(s) = 0, Z43(s) = 0,

Z44(s)=
1

d11
s(d11s+ k11)(d34s+ k34). (48)

From now on, the input-to-state stability problem of the
zero dynamics (37) has been transferred to the bounded-input-
bounded-state stability of̄G1(s) and Ḡ2(s) in (44), where
Ḡ1(s) has a poles = 0 and Ḡ2(s) in (46) is stable.

From (45) and (47)-(48), it can be seen that under the
operating conditionξ1(t) = ξ3(t), the zeros = 0 of P (s) can
be canceled by the zeros = 0 in the numerators in̄G1(s), that
is, Ḡ1(s) =

N(s)

P̄ (s)
, P̄ (s) = (k11+d11s)(k34+b4s+d34s+s

2)

is stable, which implies that the statesη2(t), η3(t), η4(t)
and η5(t) are bounded, ifξ1(t) = ξ3(t) and ξ21(t), ξ2(t) are
bounded.

Recalling thatḠ2(s) is stable, we have the following result.

Lemma 2: Under the operating condition thatξ1(t) = ξ3(t)
(i.e., ż1(t) = ż4(t)), the system (44) is bounded-input-
bounded-state (BIBS) stable.

Moreover, it can be verified from (37) that forξ1(t) 6= ξ3(t),
η3(s) =

Z21(s)ξ1(s)+Z22(s)ξ
2

1
(s)+Z23(s)ξ2(s)+Z24(s)ξ3(s)
P (s) . Then,

for ξ1(t) 6= ξ3(t) and δ13(t) = ξ1(t) − ξ3(t) ∈ L1, that is
∫

∞

0
(ξ1(t)− ξ3(t))dt <∞, η3(t) is also bounded, as

η3(s)=
Z21(s) + Z24(s)

P (s)
ξ3(s) +

Z21(s)

P (s)
δ13(s)

+
Z22(s)

P (s)
ξ21(s) +

Z23(s)

P (s)
ξ2(s), (49)

in which the zeros = 0 of P (s) is cancelled inZ21(s)+Z22(s)
P (s) ,

Z22(s)
P (s) andZ23(s)

P (s) . Moreover,ξ3(t), ξ21(t) andξ2(t) are bound-

ed, and all poles ofZ21(s)
P (s) , Z22(s)

P (s) and Z23(s)
P (s) are stable except

for one ats = 0 andδ13(t) is integrable. Hence, we have:

Corollary 1: Under the condition thatξ1(t) − ξ3(t) ∈ L1,
the partial state vector̄η(t) = [η2(t), η3(t), η4(t), η5(t)]

T

in the zero dynamic (37) is bounded for boundedξ(t) =
[ξ1(t), ξ

2
1(t), ξ2(t), ξ3(t)]

T .

Remark 2: It should be noted that a special case ofξ1(t)−
ξ3(t) ∈ L1 is limt→∞(ξ1(t) − ξ3(t)) = 0 exponentially for
Corollary 1. Thus, if the nominal operating conditionξ1(t) =
ξ3(t) or limt→∞(ξ1(t)−ξ3(t)) = 0 exponentially, or a relaxed
operating conditionξ1(t) − ξ3(t) ∈ L1 can be satisfied, the
statesη2(t), η3(t) , η4(t), η5(t), (i.e., z1(t) − z2(t), z2(t) −
z3(t), z3(t) − z4(t), ż4(t)) of the zero dynamics (37) can be
bounded andη1(t) = z1(t) has the position performance.2

D. Simulation Verification

We have studied and established the key condition for
the zero dynamic system to be Lyapunov stable and partial
bounded-input-bounded-state stable (see Lemmas 1 and 2, and
Corollary 1). Now, we will use a real CRH5 high-speed train
model from [29] to illustrate the effectiveness of the proposed
stabilization condition, where the general resistance andin-
train force curves are shown in Fig. 3.

TABLE I: CRH5 train parameters

Symbol Description Unit Value
M1 1st car mass ton 50
M2 2nd car mass ton 48
M3 3rd car mass ton 51
M4 4th car mass ton 53

a1, a4
mechanical resistance
coefficients Ns/ton 6.63

a2, a3
mechanical resistance
coefficients Ns/ton 5.43

b1, b4
mechanical resistance
coefficients N s/(m ton) 0.06382

b2, b3
mechanical resistance
coefficients N s/(m ton) 0.07041

c
aerodynamic resistance
coefficient N s2/(m2 ton) 0.00107

k1, k3 spring coefficients N/m 500× 106

k2 spring coefficient N/m 650× 106

d1, d3 damper coefficients Ns/m 2× 104

d2 damper coefficient Ns/m 2.2× 104

The parameters in the simulation are as table I. Here, we
consider the two stabilization conditions: (i) ideal case is the
speeds of the 1st and 3rd cars are synchronous, i.e.,ż1(t) =
ż3(t) (ξ1(t) = ξ3(t)); and (ii) relaxed case is the speeds of 1st
and 3rd cars satisfyL1 performance, i.e.,̇z1(t) − ż3(t) ∈ L1
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(ξ1(t)−ξ3(t) ∈ L1). To makeż1(t)−ż3(t) ∈ L1, an additional
signal0.005exp(−0.2t) is applied onż1(t) as ż1(t) = ż3(t)+
0.005exp(−0.2t), which makesż1(t)− ż3(t) ∈ L1. Then, the
simulation results are shown in figs. 4-7.

Figs. 4 and 6 show the simulation results of the speeds for
the 2nd and 4th cars including the plant speed (solid) and
referred speed of 3rd car (dashed) under the ideal condition
ξ1(t) = ξ3(t) and the relaxed conditionξ1(t) − ξ3(t) ∈ L1,
respectively, in which the initial values of the 2nd and 4th
cars’ speeds are 0.01m/s. From figs. 4 and 6, it can be seen
that the speeds of the 2nd and 4th cars are bounded.
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(a) Aerodynamic and mechanical components of resis-
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Fig. 3: General resistance and in-train forces
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Fig. 4: Speeds of the 2nd and 4th cars underξ1(t) = ξ3(t)
(ż1(t) = ż3(t))

Figs. 5 and 7 show the position of the 1st car and the
relative positions between the 1st and 2nd carsz1(t)− z2(t),
the 2nd and 3rd carsz2(t) − z3(t), and the 3rd and 4th cars
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Fig. 5: Positions of cars underξ1(t) = ξ3(t) (ż1(t) = ż3(t))
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Fig. 7: Positions of cars underξ1(t)− ξ3(t) ∈ L1

(ż1(t)− ż4(t) ∈ L1)

z3(t)− z4(t), under the ideal conditionξ1(t) = ξ3(t) and the
relaxed conditionξ1(t)−ξ3(t) ∈ L1, respectively. The relative
positions become constants under the stabilization conditions,
while the position of the 1st car would go infinity when the
speed of the 1st does not go to zero, which is in consistence
with the real case.

The simulation results show that the proposed stabilization
conditions can achieve the boundedness of the speeds and the
relative positions, and the position of the 1st car satisfy the
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performance. Then, in the next section, we will design a nom-
inal control scheme to ensure thatlimt→∞(ξ1(t) − ξ3(t)) =
0 exponentially, and an adaptive control scheme to ensure
ξ1(t) − ξ3(t) ∈ L1, so that the closed-loop control system
is stable and asymptotic output speed tracking is achieved.

V. SPEEDTRACKING CONTROL SCHEMES

Considering the speed tracking task for the train, we choose
the desired speed trajectoryvm(t). Besides the stabilization
condition proposed in Corollary 1, the controller should be
designed such that the statesξ1(t), ξ2(t) and ξ3(t) are
bounded, and the speed tracking performance is achieved, i.e.,
limt→∞(ξ1(t)− vm(t)) = 0 andlimt→∞(ξ3(t)− vm(t)) = 0.

Moreover, if limt→∞(ξ1(t) − vm(t)) = 0 exponential-
ly and limt→∞(ξ3(t) − vm(t)) = 0 exponentially, then
limt→∞(ξ1(t) − ξ3(t)) = 0 exponentially; and ifξ1(t) −
vm(t) ∈ L1 andξ3(t)− vm(t) ∈ L1, thenξ1(t)− ξ3(t) ∈ L1.
The stabilization condition proposed in Corollary 1 can be
equivalent to the new one thatlimt→∞(ξ1(t) − vm(t)) = 0
exponentially andlimt→∞(ξ3(t) − vm(t)) = 0 exponentially,
or ξ1(t)− vm(t) ∈ L1 andξ3(t)− vm(t) ∈ L1.

In this section, the nominal controller will be presented
to make limt→∞(ξ1(t) − vm(t)) = 0 exponentially and
limt→∞(ξ3(t) − vm(t)) = 0 exponentially, and the adaptive
controller will be proposed to ensureξ1(t) − vm(t) ∈ L1,
ξ3(t) − vm(t) ∈ L1, limt→∞(ξ1(t) − vm(t)) = 0 and
limt→∞(ξ3(t)− vm(t)) = 0, in the presence of the unknown
system parametersdpq, kpq, mp and ap for p, q = 1, 2, 3, 4.
Then, from the nominal and adaptive closed-loop control
systems, the overall system stability analysis will be derived.

A. Nominal Control Schemes

If the parametersdpq, kpq, mp and ap for p, q = 1, 2, 3, 4
in the dynamics (15)-(16) are known, the linearizing control
laws (17) and (18) can be used directly with the coordi-
nates (21)-(25) to obtain the linearized system (29)-(36).
Then, for the nominal controllers (17) and (18), the main
task is to design the control signalsν2(t) and ν3(t) to
achieve thatlimt→∞(ξ1(t) − vm(t)) = 0 exponentially and
limt→∞(ξ3(t)− vm(t)) = 0 exponentially.

Output tracking control ν2(t) design. According to the
coordinate transformations (21)-(23), it hasξ1(t) = x2(t) and
ξ3(t) = x6(t). Then, the controller design for the dynamics
ξ1(t) and ξ3(t) is equivalent to that for the dynamicsx1(t)
andx6(t).

The dynamics system (29)-(30) can be rewritten as

ξ̈1(t)= ẍ2(t) = ν2(t), (50)

wherex2(t) = ż1(t) is the speed of the 1st car, the control
signalν2(t) is proposed as

ν2(t)= v̈m(t)− α1(ẋ2(t)− v̇m(t))

−α2(x2(t)− vm(t)), (51)

with α1 > 0 andα2 > 0 being design parameters such that
s2 + α1s + α2 is a Hurwitz polynomial. It should be noted

that the desired speedvm(t), the acceleratioṅvm(t) and its
derivativev̈m(t) are bounded.

Submittingν2(t) into the system (50), it has

ẍ2(t)− v̈m(t) = −α1(ẋ2(t)− v̇m(t))

−α2(x2(t)− vm(t)). (52)

With the tracking errore2(t) = x2(t) − vm(t) = ξ1(t) −
vm(t), (52) leads to

ë2(t)+α1ė2(t) + α2e2(t) = 0, (53)

which implies that limt→∞ e2(t) = limt→∞ ė2(t) = 0
exponentially.

Output tracking control ν3(t) design. The design proce-
dure for the control signalν3(t), similar to that ofν2(t), will
be given. The dynamics of stateξ3(t) can be written as:

ξ̇3(t)= ẋ6(t) = ν3(t), (54)

wherex6(t) = ż3(t) is the speed of the 3rd car, the control
signalν3(t) is designed as:

ν3(t)= v̇m(t)− α3(x6(t)− vm(t)), (55)

with α3 > 0 a design constant.
For (54), the signal (55) leads to that the tracking error

e6(t) = x6(t)− vm(t) = ξ3(t)− vm(t) satisfies:

ė6(t)+α3e6(t) = 0, (56)

which implies thatlimt→∞ e6(t) = 0 exponentially.

Remark 3: For the relative degree 2 subsystem (50), the
accelerationẋ2(t) (z̈1(t)) of the 1st car is used in the output
tracking controllerν2(t) design. In practice, the accelerations
of these cars are usually measurable. So, the proposed nominal
controllersF2(t) and F3(t) can be implemented for a real
train, when the system parameters are known. 2

B. Adaptive Control Design forF2(t)

As the system parametersd11,m2, d12, k11, b1, c1, k12, d22,
b2, andk22 are unknown, an adaptive controllerF̂2(t) instead
of the nominal controllerF2(t) should be designed, such that
ξ1(t)− vm(t) ∈ L1 and limt→∞(ξ1(t)− vm(t)) = 0.

Adaptive controller structure . Since there is no unknown
parameter in the linearized system (50) or (29)-(30), the output
tracking controlν2(t) in (51) can be used directly in the
adaptive controller design. To design the adaptive controller
F̂2(t), the parameters of the nominal controllerF2(t) in (17)
are defined:

θ11=
1

d11m2
, θ12 = d11d12 − k11, θ13 = d11 + b1, (57)

θ14= c1, θ15 = d11k12, θ17 = d11k22, θ18 = d11d22,

θ16=d11d12 + d11d22 + d11b2 − k11, θ19 = d11a2, (58)

which lead to the nominal controllerF2(t) being written as

F2(t)=−θ11

(

θ12x2(t)− θ13ẋ2(t)− 2θ14x2(t)ẋ2(t)

+θ15x3(t)− θ16x4(t)− θ17x5(t) + θ18x6(t)

+θ19 − ν2(t)

)

. (59)
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Design the adaptive controller̂F2(t) as

F̂2(t)=−θ̂11(t)

(

θ̂12(t)x2(t)− θ̂13(t)ẋ2(t)

−2θ̂14(t)x2(t)ẋ2(t) + θ̂15(t)x3(t)− θ̂16(t)x4(t)

−θ̂17(t)x5(t) + θ̂18(t)x6(t) + θ̂19(t)− ν2(t)

)

+ν̄2(t), (60)

where θ̂1̺(t) are the estimations ofθ1̺, for ̺ = 1, 2, . . . , 9,
ν2(t) is given in (51), and̄ν2(t) is a designed signal.

Closed-loop adaptive control system. To design the adap-
tive laws for θ̂1̺(t), with ̺ = 1, 2, . . . , 9, we define the
parameter errors̃θ1̺(t) = θ̂1̺(t) − θ1̺ and use the control
law (60) and the system (15) under the definition (57)-(58), to
obtain

ẍ2(t)= z̈m(t)− α1(ẋ2(t)− v̇m(t))− α2(x2(t)− vm(t))

+θ̃11(t)F̂2(t)− θ̃12(t)x2(t) + θ̃13(t)ẋ2(t)

+2θ̃14(t)x2(t)ẋ2(t)− θ̃15(t)x3(t) + θ̃16(t)x4(t)

+θ̃17(t)x5(t)− θ̃18(t)x6(t)− θ̃19(t) + d11m2ν̄2(t),

which can be rewritten as

ë2(t) + α1ė2(t) + α2e2(t)

= Θ̃T
1 (t)W1(t) + d11m2ν̄2(t), (61)

with e2(t) = x2(t) − vm(t), x2(t) = ξ1(t), Θ̃1(t) =
[θ̃11(t), θ̃12(t), . . . , θ̃19(t)]

T and W1(t) = [F̂2(t),−x2(t),
ẋ2(t), x2(t)ẋ2(t),−x3(t), x4(t), x5(t), −x6(t),−1]T .

Let ē2(t) = [e2(t) ė2(t)]
T . Then error dynamics (61) can

be recast as

˙̄e2(t)=

[

0 1
−α2 −α1

]

ē2(t)

+

[

0

Θ̃T
1 (t)W1(t) + d11m2ν̄2(t)

]

. (62)

Due to the Hurwitz polynomials2 + α1s + α2, there exist

positive definite matricesP = PT =

[

p11 p12
p12 p22

]

> 0 and

Q = QT > 0 to satisfy
[

0 1
−α2 −α1

]T

P + P

[

0 1
−α2 −α1

]

= −Q. (63)

Adaptive laws. The adaptive law for Θ̂1(t) =
[θ̂11, θ̂12, . . . , θ̂19]

T and signal̄ν2(t) are designed as

˙̂
Θ1(t)=−Γ1W1(t)(p12e2(t) + p22ė2(t)), (64)

ν̄2(t)=−β1sign(p12e2(t) + p22ė2(t)), (65)

whereΓ1 = diag{γ11, γ12, . . . , γ19} > 0, γ1q, q = 1, 2, . . . , 9,
are adaptation gains,p12 and p22 are the elements in matrix
P , β1 > 0 is a design parameter related to the convergence
rate ofx2(t)− vm(t).

Subsystem analysis. Consider the Lyapunov function

V1(ē2(t), Θ̃1(t))=
1

2
ēT2 (t)P ē2(t) +

1

2
Θ̃T

1 (t)Γ
−1
1 Θ̃1(t).(66)

Then, from (62)-(65), the time derivative ofV1(ē2, Θ̃1) is

V̇1(ē2, Θ̃1)

=
1

2
˙̄eT2 (t)P ē2(t) +

1

2
ēT2 (t)P ˙̄e2(t) + Θ̃T

1 (t)Γ
−1
1

˙̃Θ1(t)

=−ēT2 (t)Qē2(t) + ēT2 (t)P

[

0
1

]

d11m2ν̄2(t)

=−ēT2 (t)Qē2(t) + (p12e2(t) + p22ė2(t))d11m2ν̄2(t)

=−ēT2 (t)Qē2(t)− d11m2β1|p12e2(t) + p22ė2(t)|, (67)

whereQ = QT > 0 andd11m2β1 > 0. (67) indicates that the
closed-loop system consisting of (61), (64) and (65) is stable
and its solutions are bounded, that is, all the variablesē2(t)
and Θ̃1(t) are bounded. (67) also implies̄e2(t) ∈ L2 and
(p12e2(t) + p22ė2(t)) ∈ L1. The boundedness of the signal
W1(t) will be analyzed in the following Subsection D.

Remark 4: It should be noted that due to the unknown
boundedness of signalW1(t), the adaptive controller design
method in [33] for relative degree 2 case, cannot be used to the
controller design for system (61). The new adaptive controller
(60) with adaptive law (64) and signal (65) is proposed to deal
with this case, where the signal (65) is introduced to make
(p12e2(t)+ p22ė2(t)) ∈ L1, to ensure the needed stabilization
condition for the zero dynamic subsystem. 2

C. Adaptive Control Design forF3(t)

It should be noted that the relative degrees fory1(t) and
y2(t) are different (2 and 1, respectively). Then, the design
procedure of the adaptive controller̂F3(t) for the dynamics
ξ3(t) with relative degree 1 is a bit different from that of
F̂2(t) for the dynamicξ1(t) with relative degree 2.

Adaptive controller structure . According to the linearized
system (54) or (30), the output tracking controlν3(t) in (55)
can be used directly in the adaptive controller design. To
design the adaptive controller, the parameters of the nominal
controllerF3(t) in (18) are defined as

θ21=
1

m3
, θ22 = d23, θ23 = k23, θ25 = k33, (68)

θ24=d23 + d33 + b3, θ26 = d33, θ27 = a4, (69)

which lead to the nominal controllerF3(t) being written as

F3(t)=−θ21

(

θ22x4(t) + θ23x5(t)− θ24x6(t)− θ25x7(t)

+θ26x8(t) + θ27 − ν3(t)

)

. (70)

The adaptive controller̂F3(t) is designed as

F̂3(t)=−θ̂21(t)

(

θ̂22(t)x4(t) + θ̂23(t)x5(t)− θ̂24(t)x6(t)

−θ̂25(t)x7(t) + θ̂26(t)x8(t) + θ̂27(t)− ν3(t)

)

−β2sgn(x6(t)− vm(t)), (71)

where θ̂2̺(t) are the estimations ofθ2̺, for ̺ = 1, 2, . . . , 7,
ν3(t) is given in (55),β2 > 0 is a design parameter related to
the convergence rate ofx6(t)− vm(t).
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Closed-loop adaptive control system. To design the adap-
tive laws for θ̂2̺(t), with ̺ = 1, 2, . . . , 7, we define the
parameter errors̃θ2̺(t) = θ̂2̺(t)− θ2̺. Using the control law
(71), the system (16) under the definition (68)-(69) follows

ẋ6(t)= żm(t)− α3(x6(t)− vm(t)) + θ̃21(t)F̂3(t)

+

(

− θ̃22(t)x4(t) + θ̃23(t)x5(t) + θ̃24(t)x6(t)

+θ̃25(t)x7(t)− θ̃26(t)x8(t)− θ̃27(t)

)

−m3β2sign(x6(t)− vm(t)), (72)

which leads to

ė6(t)+α3e6(t) = Θ̃T
2 (t)W2(t)−m3β2sgn(e6), (73)

with e6(t) = x6(t) − vm(t), x6(t) = ξ3(t), Θ̃2(t) =
[θ̃21(t), θ̃22(t), . . . , θ̃27(t)]

T and W2(t) = [F̂3(t),−x4(t),
x5(t), x6(t), x7(t),−x8(t),−1]T .

Adaptive laws. The update laws for Θ̂2(t) =
[θ̂21, θ̂22, . . . , θ̂27]

T are chosen as

˙̂
Θ2(t)=−Γ2W2(t)e6(t), (74)

whereΓ2 = diag{γ21, γ22, . . . , γ27} > 0, γ2q, q = 1, 2, . . . , 7,
are adaptation gains.

Subsystem analysis. For the system (73), consider the
Lyapunov function

V2(e6(t), Θ̃2(t))=
1

2
e6(t) +

1

2
Θ̃T

2 (t)Γ
−1
2 Θ̃2(t). (75)

Then, the time derivative ofV2(e6, Θ̃2) is

V̇2(e6(t), Θ̃2(t))

= e6(t)ė6(t) + Θ̃T
2 (t)Γ

−1
2

˙̃Θ2(t)

=−α3e
2
6(t)−m3β2|e6(t)|, α3 > 0, m3β2 > 0,(76)

which indicates that the closed-loop system consisting of (73)
and (74) is stable and its solutions are bounded, that is, all
the variablese6(t) and Θ̃2(t) are bounded. (76) also implies
e6(t) ∈ L2 ∩ L1. The boundedness of the signalW2(t) will
also be analyzed in the following Subsection D.

D. Overall System Stability Analysis

In this subsection, the stability performance of the nominal
and adaptive control system will be given, respectively.

Nominal control system performance. It can be seen that
the nominal controllers (17) and (18) with the signalsν2(t) and
ν3(t) designed in (51) and (55) can achieve the tracking errors
e2(t) and e6(t) of the control dynamics subsystem (29)-(31)
satisfying limt→∞ e2(t) = limt→∞ ė2(t) = 0 exponentially
and limt→∞ e6(t) = 0 exponentially. Further, with Lemma 2,
we can have the following result:

Theorem 1: The nominal controllers (17) and (18), with
the signal (51) and (55), applied to the system (7), guar-
antee that the corresponding closed-loop state signalsż1(t),
z1(t) − z2(t), ż2(t), z2(t) − z3(t), ż3(t), z3(t) − z4(t),
ż4(t) are bounded, and the speed tracking errors satisfy

limt→∞(ż1(t) − vm(t)) = 0, limt→∞(ż3(t) − vm(t)) = 0
exponentially.

Proof: See Appendix A.

Adaptive control system performance. When the system
parameters are unknown, the proposed adaptive controllers
(60) and (71) are used to replace the nominal controllers
(17) and (18), and the stability performance is analyzed from
the time derivative of the Lyapunov functionsV1(ē2, Θ̃1) and
V2(e6, Θ̃2) in (67) and (76). With Corollary 1, we have the
following result:

Theorem 2: The adaptive controllers (60) and (71), with
the signals (51), (55) and (65), adaptive laws (64) and (74),
and p12 > 0, applied to the system (7), guarantee that the
corresponding closed-loop state signalsż1(t), z1(t) − z2(t),
ż2(t), z2(t)−z3(t), ż3(t), z3(t)−z4(t), ż4(t) are bounded, and
the speed tracking errors satisfylimt→∞(ż1(t)− vm(t)) = 0,
limt→∞(ż3(t)− vm(t)) = 0.

Proof: See Appendix B.

Discussion of p12. To guarantee the effectiveness of the
proposed adaptive controller, it is required that the element
p12 in the definite positive matrixP is positive. If the
definite positive matrixQ is chosen as a diagonal matrix,
Q = diag{q1, q2} with q1 > 0 andq2 > 0, it can be calculated
p12 = q1

2α2

> 0 from (63). Then, the following corollary can
be obtained.

Corollary 2: For a diagonal definite positive matrixQ =
diag{q1, q2}, the adaptive controllers (60) and (71), with the
signals (51), (55) and (65), adaptive laws (64) and (74),
applied to the system (7), guarantee that the corresponding
closed-loop stateṡz1(t), z1(t) − z2(t), ż2(t), z2(t) − z3(t),
ż3(t), z3(t)−z4(t), ż4(t) are bounded, and the speed tracking
errors satisfylimt→∞(ż1(t) − vm(t)) = 0, limt→∞(ż3(t) −
vm(t)) = 0.

For the 4-car train system (7) with two control inputs acting
on the 2nd and 3rd cars, the proposed nominal controller (17)
and (18) and adaptive controllers (60) and (71), can guarantee
partial input-to-state stability and the Lyapunov stability of the
zero dynamics subsystem, desired tracking performance of the
control dynamics subsystem, and the speed error having the
exponential convergence under the nominal controller, andL1

performance under the adaptive controller.

Remark 5: It should be noted that the adaptive con-
trollers (60) and (71) are different from the corresponding
nominal controllers (17) and (18), due toβ1sign(p12e2(t) +
p22ė2(t)) and m3β2sign(e6). As the system parameters are
unknown, the adaptive controllers (60) and (71) without the
termsβ1sign(p12e2(t)+p22ė2(t)) andm3β2sign(e6) can only
achieve theL2 convergence ofξ1(t) − ξ3(t). The proposed
adaptive controllers (60) and (71) can result in theL1 conver-
gence ofξ1(t)−ξ3(t), which satisfies the desired convergence
property of ξ1(t) − ξ3(t), needed for ensuring the internal
stability (of the zero dynamic). 2

Remark 6: The proposed adaptive controller design method
could be extend to the case of disturbances or uncertainties.
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For the disturbances or uncertainties in the sensors which
means the measurements used to construct the adaptive con-
troller contain the noises, the filters, such as the strong tracking
filter [34], or nonlinear robust filter [35], can be used to
make the needed signals having the satisfied accuracy. For the
modelling uncertainties, the robust adaptive technique (see e.g.
[27] and [36]) can be employed. 2

Remark 7: So far, we have discussed adaptive controller
design problems for the 4-car train model (7) with input acting
on the 2nd and 3rd cars. For the high-speed trains in China,
there are some other units as mentioned in Remark 1. For any
unit systems, we can use the feedback linearization method
to decouple the original system into a control dynamics sub-
system and a zero dynamics subsystem, based on the relative
degrees. For the zero dynamics subsystem, the Lyapunov and
partial input-to-state stability can be obtained under certain
conditions. The nominal controller and the corresponding
adaptive controller can be developed to make the speeds of
the control dynamics subsystem to track the desired trajectory
and satisfy the needed tracking performance (exponential or
L1), which guarantees the stabilization condition of the zero
dynamics subsystem. The proposed adaptive controller design
scheme with the stabilization condition can make the partial
states of the closed-loop system bounded, the speeds track
the desired trajectories, and the closed-loop system satisfies
the desired displacement performance, in the present of the
unknown system parameters. 2

VI. SIMULATION STUDY

To verify the proposed controller design method, simulation
study on a real train model from [29] is presented in this
section. 4 cars with two inputs acting on the 2nd and 3rd cars
are considered, in which the general resistance and in-train
forces are similar to those in Fig. 3. The parameters of the
simulation are shown in Table II.

TABLE II: CRH2 train parameters

Symbol Description Unit Value
M1 1st car mass ton 42.8
M2 2nd car mass ton 48
M3 3rd car mass ton 46.5
M4 4th car mass ton 42

a1, a4
mechanical resistance
coefficients Ns/ton 8.63

a2, a3
mechanical resistance
coefficients Ns/ton 9.03

b1, b4
mechanical resistance
coefficients N s/(m ton) 0.07295

b2, b3
mechanical resistance
coefficients N s/(m ton) 0.08015

c
aerodynamic resistance
coefficient N s2/(m2 ton) 0.00112

k1, k3 spring coefficients N/m 800 × 106

k2 spring coefficient N/m 600 × 106

d1, d3 damper coefficients Ns/m 8× 104

d2 damper coefficient Ns/m 6× 104

The initial conditions are chosen asx(0) =
[0.5 0.01 0 0.01 0 0.01 0 0.01]T , and the initial
parameter estimates as95% of their nominal values. The
adaptive controllers proposed in (60) and (71), with the

signals (51), (55) and (65) and adaptive laws (64) and (74)
are used. The gains of the adaptive laws in (64) and (74)
are chosen as2, and the parameters are chosen asp12 = 2,
p22 = 4.
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Fig. 8: Speeds of the 1st car

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

t (sec)
sp

ee
d 

(m
/s

)

 

 

speed of 3rd car
desired speed

Fig. 9: Speeds of the 3rd car
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Fig. 10: Speed tracking errors of the 1st car
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Fig. 11: Speed tracking errors of the 3rd car

Figs. 8 and 9 show the simulation results of the speeds
for the 1st and 3rd cars including the plant speed (solid) and
desired speed (dashed), in which the initial values of the 1st
and 3rd cars speeds are 0.01m/s. Figs. 10 and 11 show the
speed tracking errors for the 1st and 3rd cars. From Figs. 10
and 11, it can be seen that the tracking errors are close to 0.
There are transit responses due to the adaptive laws and zero
dynamics. Figs. 12-14 show the position of the 1st car and the
relative positions between the 1st and 2nd carsz1(t) − z2(t)
and between the 3rd and 4th carsz3(t)− z4(t). As the speeds
of the 1st and 3rd cars are synchronous, the error becomes
a constant in steady case, which is in consistence with the
real case. The simulation results show that the proposed stable
adaptive control framework can achieve the close-loop stability
even in the presence of unknown parameters.

It is visible from the simulation results that chattering
occurs at the initial stage in figs. 10-14. This is caused by
the discontinuous controllers (60) and (71) due to the sign
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function, which results in a discontinuous right hand side
in the dynamical equation (7). In real implementation, the
chattering can be reduced or even removed by using boundary
layer method in which the discontinuous sign function is
approximated by the continuous saturation function proposed
in [37], [38] and [39]. Furthermore, for high-speed trains,the
chattering with small amplitude usually can be accepted.

0 10 20 30 40 50 60 70 80 90 100
0

5000

t (sec)

po
si

tio
n 

(m
)

 

 

position of 1st car

Fig. 12: Position of 1st car
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Fig. 13: Relative position between 1st and 2nd cars
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Fig. 14: Relative position between 3rd and 4th cars

VII. C ONCLUSIONS

In this paper, the adaptive tracking controller design prob-
lem has been investigated for underactuated 4-car high-speed
train motion systems even if the parameters are unknown.
To design the adaptive tracking controller, the nonlinear 4-
car train system is decoupled into a control dynamics sub-
system and a zero dynamics subsystem using the feedback
linearization techniques. A new and detailed stability analysis
is presented to show that the zero dynamic system is the
Lyapunov stable and partially input-to-state stable underthe
developed stabilization condition. The system configuration
leads to a relative degree 1 subsystem and a relative degree
2 subsystem, for which the new adaptive controllers are
proposed to ensure the needed system stabilization condition,
and make the desired closed-loop system signal bounded and
asymptotic speed tracking. Simulation results further confirm
the obtained theoretical results.

APPENDIX A
PROOF OFTHEOREM 1

When the system parameters are known, for the nominal
controllers (17) and (18) with (51) and (55), it follows from
(53) and (56), thatlimt→∞ e2(t) = limt→∞ ė2(t) = 0
exponentially andlimt→∞ e6(t) = 0 exponentially, which im-
plies that nominal controllersF2(t) andF3(t) with ν2(t) and
ν3(t) can makelimt→∞(x2(t) − vm(t)) = limt→∞(ẋ2(t) −
v̇m(t)) = 0 exponentially, limt→∞(x6(t) − vm(t)) = 0

exponentially, andlimt→∞(x2(t)− x6(t)) = 0 exponentially,
i.e., limt→∞(ξ1(t)− ξ3(t)) = 0 exponentially.

Due to vm(t) and v̇m(t) being bounded,x2(t), ẋ2(t) and
x6(t) (i.e., ż1(t), z̈1(t) and ż3(t)) are bounded, which means
ξ1(t), ξ21(t), ξ2(t) and ξ3(t) are bounded. Considering the
dynamicsḠ1(s) andḠ2(s) in (44),limt→∞(ξ1(t)−ξ3(t)) = 0
exponentially results inη2(t), η3(t), η4(t), η5(t) (i.e., z1(t)−
z2(t), z2(t)−z3(t), z3(t)−z4(t), ż4(t)) are bounded. Recalling
the inverse coordinate transformationx4(t) (ż2(t)) in (27), and
with the bounded system parametersd11, b1, k11, c1, anda1,
x4(t) is also bounded. Then, with the control signalsν2(t) and
ν3(t) given in (51) and (55) and the structure of the nominal
controllers (59) and (70), the boundedness ofF2(t) andF3(t)
are ensured.

APPENDIX B
PROOF OFTHEOREM 2

L1 performance. For (67), letǫ(t) , p12e2(t) + p22ė2(t),
then e2(t) = 1

p22s+p12
[ǫ](t). According to [27], if p12

p22
> 0,

ǫ(t) ∈ L1 results ine2(t) ∈ L1, i.e.,ξ1(t)−vm(t) ∈ L1. With
e6(t) = ξ3(t)− vm(t) ∈ L1, it hasξ1(t)− ξ3(t) ∈ L1.

Tracking error e2(t) performance. Moreover, ē2(t) is
bounded, i.e.,e2(t) andė2(t) are bounded. Then,x2(t), ẋ2(t)
and Θ̂1(t) (i.e., θ̂11(t), θ̂12(t), θ̂13(t), θ̂14(t), θ̂15(t), θ̂16(t),
θ̂17(t), θ̂18(t), θ̂19(t)) are bounded. Withe2(t) ∈ L2 and
Barbǎlat Lemma,limt→∞ e2(t) = 0. Further, from (67), the
variablese6(t) andΘ̃2(t) are bounded. Thenx6(t) andΘ̂2(t)
(i.e., θ̂21(t), θ̂22(t), θ̂23(t), θ̂24(t), θ̂25(t), θ̂26(t), θ̂27(t)) are
bounded.

Zero dynamics subsystem performance. Due tovm(t) and
v̇m(t) being bounded and with boundede2(t), ė2(t) ande6(t),
it has thatx2(t), ẋ2(t) andx6(t) are bounded, i.e.,ξ1(t), ξ2(t)
and ξ3(t) are bounded. Then,ξ21(t) is bounded. Considering
the dynamicsḠ1(s) and Ḡ2(s) in (44), ξ1(t) − ξ3(t) ∈ L1

and boundedξ1(t), ξ21(t), ξ2(t) andξ3(t) result in thatη2(t),
η3(t), η4(t), and η5(t) are bounded, i.e.,x3(t), x5(t), x7(t)
andx8(t) are bounded.

Boundedness ofF̂2(t) and F̂3(t). Recalling the inverse
coordinate transformationx4(t) (ż2(t)) in (27), and with the
bounded system parametersd11, b1, k11, c1 anda1, x4(t) is
also bounded. Then, according to the structure of the adaptive
controllers (60) and (71), and with the bounded signalsν2(t),
ν3(t) and ν̄2(t) and the bounded controller parametersΘ̂1(t)
and Θ̂2(t), the boundedness of̂F2(t) and F̂3(t) are ensured.

Tracking error e6(t) performance. Further, it has that
W1(t) and W2(t) are bounded. From (62) and (73),˙̄e2(t)
and ė6(t) are bounded. Withe6(t) ∈ L2

⋂

L1 and Barbǎlat
Lemma,limt→∞ e6(t) = 0.
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