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1 INTRODUCTION

ABSTRACT

The statistical shape analysis method developed for probing the link between physical param-
eters and morphologies of Galactic HII regions is applied here to a set of synthetic observa-
tions (SOs) of a numerically modelled HII region. The systematic extraction of HII region
shape, presented in the first paper of this series, allows for a quantifiable confirmation of the
accuracy of the numerical simulation, with respect to the real observational counterparts of
the resulting SOs. A further aim of this investigation is to determine whether such SOs can
be used for direct interpretation of the observational data, in a future supervised classification
scheme based upon HII region shape. The numerical HII region data was the result of pho-
toionisation and radiation pressure feedback of a 34 Mg, star, in a 1000 Mg, cloud. The SOs
analysed herein comprised four evolutionary snapshots (0.1, 0.2, 0.4 and 0.6 Myr), and multi-
ple viewing projection angles. The shape analysis results provided conclusive evidence of the
efficacy of the numerical simulations. When comparing the shapes of the synthetic regions to
their observational counterparts, the SOs were grouped in amongst the Galactic HII regions
by the hierarchical clustering procedure. There was also an association between the evolution-
ary distribution of regions and the respective groups. This suggested that the shape analysis
method could be further developed for morphological classification of HII regions by using a
synthetic data training set, with differing initial conditions of well-defined parameters.

Key words: HII regions — methods: statistical, data analysis — radio continuum: ISM — hy-
drodynamics — radiative transfer

Quantifiable results can be obtained directly from numerical
simulations and compared with observational results, such as the

Since the advance in high performance computing in the latter
part of the 20th century, astrophysicists have utilised these tools
to perform numerical simulations of all aspects of the Universe.
From modelling cloud collapse, star formation (SF) and feed-
back (e.g. Robitaille 2011; Bethell et al. 2007; Steinacker et al.
2005), to galaxy formation and evolution (e.g. Williams et al.
2019; Baes et al. 2011), to entire cosmological models that re-
flect the largest scale structure astronomers have ever observed (e.g.
Springel 2005). Radiation plays an important role in astrophysics.
The transport of radiation through the interstellar medium (ISM) is
therefore one of the most fundamental processes to be considered
when modelling stellar objects and galactic structures. Analysing
the radiation from an object not only tells us about the nature of the
radiation source, but also the medium through which it has trav-
elled to reach us. Interstellar dust therefore also plays an important
role in the study of radiation, since it scatters and re-radiates UV
through to IR photons (Weingartner & Draine 2001).
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stellar initial mass function (Padoan et al. 1997). However, there
exists many important reasons why the production of synthetic ob-
servations (SOs) from the numerical models are necessary (see the
extensive review by Haworth et al. 2018). In the last decade, a num-
ber of radiative transfer (RT) models have been used to generate
synthetic observations (SOs) of the numerical simulation they re-
late to (Steinacker et al. 2013). The RT codes work by sampling the
simulation at every grid point, for the given dimensionality of the
simulations. Given some density and temperature, the emissivity
can be computed, which is then integrated to obtain the flux. Flux
images can be generated from any viewing angle the user specifies.
Such SOs are referred to as ‘ideal synthetic observations’ (Koepferl
& Robitaille 2017), which must then be further processed in order
to account for observational effects when detecting and process-
ing astronomical radiation. Such resultant ‘realistic’ SOs are then
directly comparable to their real observational counterparts. This
allows us to test observational diagnostics that are well defined in
the simulations, and hence produce bespoke models for direct inter-
pretation of the observational data. In this work, we use the statisti-
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cal shape analysis method of HiI regions, developed in Campbell-
White et al. (2018) to directly compare realistic SOs of an HII re-
gion produced by the numerical simulations in Ali et al. (2018) to
radio continuum observational data.

Hir regions are the result of photoionisation from massive
stars (> 8 Mg). Due to their significant role in providing feed-
back to the giant molecular clouds (GMCs), in which these stars
are born, they have been extensively modelled in order to probe the
varying physical processes and mechanisms associated with such
feedback; such as their role in altering gas dynamics and star forma-
tion. HII regions have been shown to be fundamental in calculations
of the observed Galactic star formation efficiency (SFE) (Krumholz
2015). Photoionisation feedback from HII regions can have both
negative and positive effects in terms of the local SFE of GMCs.
Dale et al. (2007a,b) showed via numerical models of GMCs irradi-
ated by ionising stars, both internally and externally, that some stars
formed earlier, compared to the control runs without photoionisa-
tion feedback. Furthermore, evidence for triggered star formation
was noted, such that the overall SFE of the cloud was increased.
Conversely, simulations by Walch et al. (2013) found that although
triggering was effective on small timescales, larger timescales re-
sulted in a reduced SFE due to the dispersal of the gas, a further
feedback mechanism of HII region evolution. More recently, the
ionising radiation models of Geen et al. (2017) displayed a low
SFE that was consistent with the Galactic observations (of the or-
der a few percent, Lada & Lada 2003).

In Campbell-White et al. (2018, hereafter, Paper I) we suc-
cessfully applied our shape analysis methodology to a selection of
1.4 Ghz radio continuum images of HII regions from the MAG-
PIS survey (Helfand et al. 2006). The mathematical description of
the shape of each HII region was systematically extracted from the
contoured radio continuum images. By determining the local curva-
ture values along each HII region boundary, curvature distributions
were obtained and compared pairwise using the Anderson-Darling
non-parametric test statistic. The resulting test statistic distance ma-
trix was then the subject of hierarchical clustering, allowing for the
identification of groups of HII regions that share a common mor-
phology. From investigation of potential associations between as-
signed group and physical parameters, the results showed evidence
for HiI regions of a given shape to have similar dynamical ages.
We also found indication of ionising cluster mass to be associated
to the shape groupings. We suggested that the application of this
shape analysis method to SOs of HII regions would not only give
a direct quantifiable test of the efficacy of the SOs, but also allow
us to further refine the methodology and reduce errors with a well
defined sample set. SOs from differing initial conditions could then
be used as a training set in a machine learning supervised classifi-
cation scheme of HII regions, via this shape analysis method.

This work is organised as follows: The numerical simulation
of the HII region, and corresponding SOs that are analysed in this
investigation, from Ali et al. (2018) are detailed in section 2. In
section 3, we cover the shape extraction from the SOs and compare
the shapes of these synthetic HII regions to those of the MAGPIS
observational sample from Paper I. In section 4 we investigate how
different parameters such as noise and projection angle influence
the identified shape of the HiI regions and their resultant groupings.
We also discern whether such SOs can be used as a training set in
a supervised morphological classification scheme of HII regions
and discuss further potential applications of the methodology. Our
summaries and conclusions are given in section 5.

Table 1. Table 2 from AHD18: Initial parameters of the massive star in the
numerical simulation.

Parameter Value
Mass 33.7 Mg
Luminosity 1.49 x 10° Lg
Radius 7.59 Rp

41189 K
7.36 x 104851

Effective temperature
Ionizing flux (hv > 13.6eV)

column density (g cm™)
102 10° 10

(|0SIN) SSew Je||21s

X (pc)

Figure 1. Figure 1 from AHD18: Positions of stars at the onset of feedback,
with stellar mass in colour scale, overlaid on column density in greyscale
(both are logarithmic). The most massive star is 33.7 Mg in red. The
second highest is 11.3 M. The third is 5.7 M. The least massive is
0.82 Mg.

2 THE SYNTHETIC OBSERVATION DATA SAMPLE

The synthetic observations of HII regions used in this work are
from the numerical simulations of Ali et al. (2018, hereafter,
AHD18), specifically the model including both photoionisation and
radiation pressure. This simulation was performed using the Monte
Carlo radiative transfer (MCRT) and hydrodynamics (HD) code
TORUS (Harries et al. 2019). The comprehensive level of detail in
the radiative transfer means the resulting HiI region has accurate
temperatures, ion fractions, and size.

For each hydrodynamical time step, an MCRT calculation was
carried out in order to compute photoionisation balance (giving ion
fractions and electron densities), thermal balance (giving gas and
dust temperatures), and radiation pressure. Photon wavelengths lie
in the range 100 to 107 A and include the stellar radiation field as
well as the diffuse field from gas/dust. The gas heating rates are
from photoionisation heating of H and He, while the gas cooling
rates involve recombination lines of H and He, collisionally excited
metal forbidden lines, and free—free emission. Dust is heated by
photon absorption and cooled by blackbody emission. Gas and dust
temperatures are linked by a term accounting for collisional heating
between the two. The included atomic species are H 1-11, He I-111,
CI1-1v, N1-111, O I-111, Ne I-111, and S I-1V (the total abundance of
each element remains constant throughout). The model also con-
tains silicate dust grains with a median size of 0.12 pum — dust can
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Figure 2. Overview of the 20 cm, 1.4 GHz synthetic observations from the numerical simulation in Ali et al. (2018). Three snapshots of ¢ = p = 0,
0 =t = 30, 60 and 90deg projection angle are shown for the four evolutionary time-steps of 0.1, 0.2, 0.4 and 0.6 Myr. Coordinates are shown in pc scale.

attenuate ionising photons, reducing the size of HII regions com-
pared to models without dust (Haworth et al. 2015).

The initial condition is a spherical cloud with a uniform den-
sity inner core extending to half the sphere radius, with the density
in the outer half going as r~!-5. The density outside the sphere
is 1% of the density at the edge of the sphere. The sphere has a
total mass M = 1000 Mg, radius R = 2.66 pc, and mean sur-
face density ¥ = 0.01 gcm™2. The 3D grid is Cartesian, uniform,
and fixed with 256 cells. The physical size of the grid is 15.5pc
in each axis, yielding a resolution of 0.06 pc per cell. The cloud
evolves without stars under a seeded turbulent velocity field and
self-gravity for 75% of the mean free fall time of the initial sphere.
This is the time at which Krumholz et al. (2011) found the SFE
to be 10%. At this time, stars are added from a random sampling
of the Salpeter (1955) IMF, such that the cumulative stellar mass
is 10% of the cloud mass (100 Mg ), and at least one massive star
is present. This results in a massive star of mass 33.7 M, which
is placed at the cloud’s most massive clump, with 28 other stars
placed according to a probability density function proportional to
p*-°. The distribution of stars at this stage is shown in Fig. 1, over-
laid on column density. The radiation field is then switched on and
the simulation evolves until all of the mass leaves the grid. The
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stars evolve using Schaller et al. (1992) tracks, with stellar spectra
interpolated from atmospheric models by Lanz & Hubeny (2003)
and Kurucz (1991). The initial mass, luminosity, radius, effective
temperature and ionising photon rate of the massive star are listed
in Tab. 1.

The ionising photon rate of the massive star is slightly larger
than the mean of the normally distributed values of MAGPIS
HiI regions considered in Paper I (log N;, of 48.87 and 48.40,
respectively), but is well within the maximum observed log Ni,
value of 49.77. We also stated in Paper I that our estimates of the
ionising photon rate are lower limits, due to only considering the
mass within the HII region shape boundary considered for analy-
sis. In terms of ionising flux and mass, the numerically modelled
Hii region from AHD18 is therefore representative of an example
HiI region from the MAGPIS sample considered for comparison
in this work. Furthermore, the turbulence in the simulation results
in a inhomogeneous density distribution and an off-centre massive
star, meaning there could be differences in the shape of the ionised
region when viewed from different projections, which will be in-
vestigated in detail in this work.

We note from Fig.3 in AHDI18 that from the onset of feed-
back (t = 0) to 0.6 Myr, there is a steady mass flow, with mass
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beginning to leave the simulation grid at ~0.4 Myr. After 0.6 Myr,
the overall mass flux begins to decrease. Spikes in the distribution
correspond to removal of the clumps. The size of the spikes grows
with time, as the densest clumps are the last to leave the grid. By
~1.6 Myr, or 0.74 (t), all the mass has left the 15.5pc® grid. The
peak value of ionised mass is 440 Mg at 0.5 Myr. The peak ionised
mass fraction, which is just under 40% of the total mass, is reached
at 0.6 Myr. At this time, the fraction of volume ionised is ~80%,
showing that the majority of the neutral gas remains in the small,
dense clumps, which resist the ionisation.

For the synthetic observations in this paper, we use TORUS
to produce free—free continuum images using the previously cal-
culated temperature and density as inputs. The free—free emission
coefficient in the radio regime is

jo = 5.4 x 107207 /2p2g, ¢))

(Rybicki & Lightman 1979) for gas temperature 7" and electron
density n., where the Gaunt factor g, is approximately

3/2
gy = é {ln <TV ) + 17.7] 2)

s

(Osterbrock & Ferland 2006). We use v =1.4 GHz (A =20cm).

Snapshots can be taken at given simulation ages and from any
¢ and 6@ spherical viewing angles. We chose to consider simula-
tion ages of 0.1, 0.2, 0.4 and 0.6 Myr. For each of these respective
ages, 18, 22, 19 and 18 projections were included, resulting in 77
synthetic observations of the numerically modelled Hi region. The
lower limit of the simulation ages was selected in order to produce
a SO of a diffuse observed HII region, rather than a compact or
ultra-compact HiI region, which would be observed at earlier ages.
We chose to include the 0.4 and 0.6 Myr ages since they take place
at key stages in the mass flow of the simulation grid, hence repre-
senting more evolved, late stage HII regions.

Figure 2 shows 12 example SOs of the 20 cm radio continuum
emission produced by the simulations. Three example projections
are shown for each of the evolutionary stages (ages given in Myr).
In this example, the ¢ angle is kept fixed (labelled p in the figure
headings) and the 6 angle is 30, 60 and 90 deg (labelled ¢ in the
figure headings). The axes for each image are in parsecs. In the fol-
lowing section we detail how the shapes were extracted in a manner
complementary to that carried out for the MAGPIS observational
data in Paper I.

3 SHAPE EXTRACTION

The purpose of investigating the SOs in this work is to test the effi-
cacy of the simulations by comparing them to the MAGPIS obser-
vations (from Paper I) and then see how different parameters may
influence the shape. The extraction of the shape of the HiI regions
hence needed to be performed in the same manner as it was for the
MAGPIS observations. We therefore needed to process the ‘ideal’
SOs into realistic SOs, with properties matching the observational
MAGPIS sample. To achieve this, we converted the intensity units
of the SOs from MJy/sr to those used in the MAGPIS observations,
Jy/beam, whilst accounting for the different pixel scales. This was
so that artificial noise could be added to the SOs in order to perform
the contouring procedure to identify the ‘edge’ of the HII regions,
exactly as was carried out in Paper 1.

3.1 Gaussian Noise Profiles

For the MAGPIS data, the shape of each HII region was extracted
using an image contouring procedure. After applying sigma clip-
ping to all of the pixel values, which removed the signal from the
ionised emission, the mean and standard deviation were taken from
the remaining clipped values. This provided the contour value to
apply to the original images to systematically define the HiI region
boundaries. In order to carry out this procedure on the SOs, arti-
ficial noise was introduced to the SOs by taking a random value
from a Gaussian distribution with mean, p, and standard deviation,
o, from one of the MAGPIS tiles, after sigma clipping. The stan-
dard probability density function for the Gaussian distribution was
used:

1 7(17;14)2/202
Plg) = —
(z) Vet e 3)

Figure 3 shows an example of one of the 0.2 Myr SOs. The
left panel shows the original SO, the middle and right panels show
the same SO with the random Gaussian noise added to each pixel.
The middle panel has its Gaussian profile taken from the MAGPIS
tile centred at [ = 12.43°, b = -0.04°, with p = 0.959 mJy/beam
and o = 0.389 mJy/beam. The right panel’s Gaussian noise profile
follows the MAGPIS tile centred at [ = 30.25°, b = 0.24°, with
= 0.830 mJy/beam and o = 0.345 mJy/beam. The contours for the
two SOs with Gaussian noise are determined by taking the clipped
mean plus 1o, the same way in which each contour was calculated
for each of the HII regions in Paper I. The level for the contour of
the original SO in the left panel is the same as the middle panel,
since the pixel vales of the SO had already been converted to match
that of the MAGPIS data. There is not much visual difference be-
tween the three contours. The original SO has a much smoother
contour as expected. Small perturbations along the boundaries of
each of the Gaussian profile SOs are noted, they are approximately
the same size. Whilst some extrusions along the boundary appear
in the SOs with the Gaussian profiles, the intrusion on the original
SO on the upper right side is smoothed out by the Gaussian noise.

The conversion of MJy/sr to Jy/beam was suitable for the 0.1
and 0.2 Myr SOs. However, for the 0.4 and 0.6 Myr SOs, using the
actual conversion factor resulted in the emission from the SOs be-
ing drowned out by the introduction of the Gaussian noise from
the MAGPIS data distributions. This is explained by referring back
to the bulk properties and the volume-average electron density of
the simulations (Figures. 3 & 9, respectively AHD18), which shows
that after 0.4 Myr, mass starts to leave the grid of the simulation and
the electron density decreases. Therefore, the integrated radio con-
tinuum intensity at 20 cm obtained from the radiative transfer code,
which is used to produce the SO, is less than should be expected.
The intensity of these older SOs in Jy/beam was hence artificially
boosted by a factor of ~ 4 for the 0.4 Myr SOs and ~ 70 for the
0.6 Myr SOs. These values were determined such that a single con-
toured central region, representative of the original SO before the
noise was introduced, was obtained by the automated contouring
procedure. These were minimum values for the single central re-
gion to be obtained and for the shape to not substantially change
with further increase. Since the contour level is determined from
the image tile, as the intensity boosting increases, the distribution
of pixel values changes, therefore the final contour achieved is still
consistent with further intensity boosting. We tested this for the
0.6 Myr regions using a factor of ~ 95 and ~ 135, with the result-

MNRAS 000, 1-23 (2020)
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Figure 3. Comparison images of example SO projection at 0.2 Myr. Left: Original SO. Middle: Same SO with random Gaussian noise added to each pixel
value. Right: As middle but with a different Gaussian distribution used. t and p are the 6 and ¢ projection angles of the SO, respectively. The blue contours
(for the Gaussian noise tiles) are the ‘edge’ identified from the clipped mean pixel values plus 1o. The contour in the original SO tile uses the threshold level
from the middle tile.
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Figure 4. Overview of the addition of random Gaussian noise to the same SOs shown in Fig. 2. Contours are shown at a constant level of 1o plus the clipped
mean of the values from the Gaussian distribution introduced. Coordinates are shown in pc scale.
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Figure 5. Boundaries of an example synthetic observation HII region for each of the four ages in the sample (those in the second row of Fig. 4). Points signify
the approximately equally spaced interpolation spline knots, where the curvature was calculated.

ing amount of variation along the boundaries being well within the
spatial sampling resolution of the shape analysis (c.f. Sec. 3.2).

Figure 4 shows a summary of the addition of a Gaussian noise
profile to the same 12 example SOs shown in Fig.2. The images
for all 77 SOs with this Gaussian noise profile are shown in Ap-
pendix C'. The noise profile used was that of the middle panel in
Fig. 3, with the two younger SOs having the actual intensity con-
version factor used and the older two have their emission boosted
as described above. It is clear from this summary that there is a
higher amount of perturbation along the HII region boundaries as
the age of the SOs increases. It appears that the contoured shape
changes more with each projection for the 0.4 and 0.6 Myr regions
than for the 0.1 and 0.2 Myr regions (however, larger perturbations
are noted for some of the different projections for the earlier ages
in the full overview in Appendix C). The axes of the plots are given
in spatial parsec scale, hence the effective radius of each HII region
boundary also increases with the age of the SO. For the remainder
of this study, only one Gaussian noise profile was used for all of the
77 SOs. This was because the HII region shape did not change by
a substantial amount with the introduction of Gaussian noise pro-
files with different distributions from the MAGPIS data. This was
numerically assessed with the shape comparison method utilised in
this work and Paper I, resulting in lower pairwise test scores than
for any other comparison thus far. Having the same noise profile
also meant that the contour level applied to each SO was consis-
tent, since this is calculated from the noise itself - distinguishing
the signal of the HiI region from the background noise.

3.2 Shape comparison: Gaussian SO & MAGPIS

The first test of the SOs was to directly compare them to the MAG-
PIS observational sample from Paper 1. The further steps to extract
and compare the shapes of the regions were carried out in the same
manner as before. To summarise: interpolation splines were fitted
to the region boundaries identified from the contouring procedure,
with interpolation knot intervals of ~ 0.54 pc (see Fig. 5); then the
local curvature values were calculated at each knot. The empirical
distribution functions (EDFs) of curvature values were then statis-
tically compared pairwise, using the two-sided Anderson-Darling
(A-D) test statistic (Anderson & Darling 1952; Pettitt 1976). The
A-D test returns a dissimilarity measure between the pair of sam-
ples, whereby the null hypothesis that the samples are drawn from

1 Available in the online version of this paper.

the same parent population is rejected for large test result scores.
After applying a Euclidean distance transformation to the A-D
test scores, hierarchical clustering was performed on the distance
matrix of HII region shape distances using Ward’s agglomerative
method (Ward & Joe 1963; Murtagh & Legendre 2014). The re-
sulting hierarchical structure was then investigated using the den-
drogram graphical representation.

In this primary investigation of how the shapes of the SO
HII regions compare to those of the MAGPIS HII regions, the 12
example SOs from Fig. 4 were considered, along with the 76 MAG-
PIS HiI regions from the Paper I. Figure 6 shows the resulting den-
drogram from the hierarchical clustering. The branches of the SOs
are highlighted by colours that correspond to the age of the SO:
0.1 Myr in red, 0.2 Myr in pink, 0.4 Myr in blue and 0.6 Myr in
green. The first clear result is that the shapes of the SO HII regions
are grouped in amongst the MAGPIS HII regions, with none ap-
pearing as outliers. This result confirms that these numerical simu-
lations are producing HII regions that are representative of what we
observe in our Galaxy; since we ensured that the shape of the SO
HII regions was extracted and quantified in the exact same way as
the MAGPIS sample.

The next point to note from Fig. 6 is that the three different
projections considered for each SO age are not all grouped together
in the dendrogram. The 0.1 Myr projections are close to each other
on the dendrogram, however, one of them belongs to a different
parent group than the other two. Similarly, for the 0.2 and 0.4 Myr
projections, two each belong to the same parent group, with the
third positioned a few groups away, respectively. The most spread
in group allocation is seen for the 0.6 Myr projections. These re-
sults show that for each of the SO projections, there is a MAGPIS
HII region that shares the most similar shape, such that the projec-
tions are having a significant influence on the identified shape of the
region. This will be further investigated and discussed in section 4.

Since the dendrogram represents the results of the hierarchi-
cal procedure, which is a bottom-up approach to forming groups,
excluding part of the sample does not change the resulting group-
ings. This was tested by excluding the 0.4 and 0.6 Myr regions in
Fig. 6 and rerunning the clustering procedure, the resulting struc-
ture and groups match those presented here. The group structure
that would be obtained from cutting the dendrogram at a height
that intersects seven branches (i.e., seven groups) is 95% concur-
rent with the groupings identified in Paper I, with a notable excep-
tion being the outlier HII region labelled ‘12.432’ being joined to a
different group here.

MNRAS 000, 1-23 (2020)
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Figure 6. Dendrogram of the MAGPIS sample of HiI regions from Paper
I with the 12 example SOs with added Gaussian noise (those shown in
Fig.4). The dendrogram represents the results from applying hierarchical
clustering of the shape data of each HiI region. The branches of the HII Re-
gions are labelled by their Galactic longitude (for the MAGPIS sample) or
an ID number (for the SO sample). by The branches of the SOs are coloured
by their age: 0.1 Myr in red, 0.2 Myr in pink, 0.4 Myr in blue and 0.6 Myr
in . The horizontal axis represents the height computed from the ag-

glomerative clustering method.
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Figure 7. Example MAGPIS image tile and HII region G030.252-+00.053
(lower-left). One of the 0.2 Myr SOs has been inserted to the tile (top-right).
Contours shown are that obtained from the image tile using the clipped
mean plus one sigma.

3.3 MAGTPIS Noise Profiles

Whilst the results of the previous subsection show that the numer-
ical simulations are producing well representative SOs, the intro-
duction of noise to the SOs in order to extract the shape can be
developed further. The distribution of noise from radio interferom-
etry images does follow a Gaussian distribution, however, it is not
completely homogeneous across the image tiles. Artefacts from the
reduction process and emission from fore- and background sources
each contribute to the non-homogeneity of the noise distributions.
We stated earlier in this section that small changes to the Gaussian
mean and standard deviation of the noise profile had minimal influ-
ence on the shape of the SO HII region, however, we did propose in
Paper I that observational noise may be a significant contribution
to the observed and extracted shape we obtain using our methods.

In order to see how much of an effect the observational noise
distributions from observations have on the shape of the SOs,
we inserted the SO data directly into the MAGPIS tiles used in
Paper 1. The intensity converted SO pixel values were added to
those in an area of the image tile deemed to contain only image
noise and away from the signal of the HII region. An example
of this is shown in Fig.7, where one of the 0.2 Myr projections
(upper-right) is inserted to the MAGPIS tile containing HII region
G030.252+00.053 (lower-left). The non-homogeneity of the image
noise can be seen clearly by the gradient of noise distribution across
the tile. G030.252+00.053 is at a distance of 4.5 kpc, has an effec-
tive spatial radius of 0.8 pc and a dynamical age of 0.1 Myr (An-
derson et al. 2014; Campbell-White et al. 2018). The spatial pixel
scale of the SOs is 0.06 pc per pixel. If we assume that the HII re-
gion in the SO is at a distance of 6.2 kpc, then this corresponds to an
angular pixel scale of 2" per pixel, the same as the MAGPIS tiles.
This meant that the smoothing factor applied to the contours was
uniform for both the MAGPIS and the SO HiI regions. As before,
the contours shown are calculated from the clipped mean plus one
standard deviation of the entire tile, which identifies both HII re-
gions well.

Figure 8 shows an overview of an example SO projection for
each of the four ages that has been inserted into six different MAG-
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Figure 8. SOs inserted into six different MAGPIS tiles to show how different noise profiles influences extracted shape. For each age, the same projection is
shown, along with the 1o plus clipped mean contours. Axes are in pc, with a pixel scale of 0.06 pc/pixel. The corresponding angular size of the cutouts for
increasing SO are are 2.8,3.9’, 6.7 & 7.8/, respectively. Linear intensity scaling with 95% maximum is used for each tile, to highlight the differences in noise

structure.

Table 2. Summary of the different MAGPIS Noise Profile (NP) properties
that the SOs were inserted into.

NP [[°1T  b[°] p[mly/beam] o [mJy/beam]
1 20.99 0.09 0.120 0.242
2 1243 -0.04 0.945 0.367
3 4376 0.06 0.105 0.263
4 20.22 0.11 0.329 0.222
5 3025 0.24 0.829 0.343
6 4193 0.04 0.144 0.265

PIS tiles. The example SOs used for each age are those in the sec-
ond row of Fig.2 (the same ones used in Fig5 to exemplify the
interpolation spline fitting to the boundary contours). The MAG-
PIS tiles that the SO were inserted into will be referred to as the
noise profile (NP). Details of which MAGPIS tile each NP repre-
sents is given in Tab.2. The means and standard deviations were
calculated from the sigma clipped MAGPIS tiles, with the contour
level applied in each of the images then taken as the mean plus
one standard deviation, as before. The example NPs are each from
MAGPIS HII region tiles that were sorted into different groups by
the shape analysis clustering in Paper I. We surmised there that the
observational noise may be influencing the shape obtained, hence
the reasoning for selecting tiles from different resulting groups.

From the 76 HII region tiles in our preceding study, the range of
mean intensity values were 0.1 — 0.945mlJy. The range of stan-
dard deviations in the tiles were 0.2 — 0.4 mJy, which concurs with
the variation in the RMS noise of the overall MAGPIS survey of
~0.25 mlJy (Helfand et al. 2006). The example NPs selected here
therefore cover the range of Gaussian noise distributions of the ob-
servational data we are considering for comparison.

In the example images shown in Fig.8, for NPs 1,2,4 & 5
at 0.4 and 0.6 Myr, part of the MAGPIS HII region can be seen in
the bottom right corner. Also, as with the Gaussian noise examples
shown previously, the 0.4 and 0.6 Myr SOs have had their emission
boosted by the same amount as before (factor of ~4 and ~70, re-
spectively). As previously explained, this enabled the central part
of the HII region to be contoured appropriately, accounting for the
lower mass and electron density remaining in the simulation grid.

The change in the noise structure and intensity is apparent
from Fig. 8, where the image tiles are each linearly scaled with a
maximum intensity limited to 95%, to visually highlight the differ-
ences between the NPs. NPs 3 and 6 appear to have the most ‘salt
and pepper’ like noise, similar to that seen in the random Gaussian
distributions used previously. The examples shown for the 0.6 Myr
SOs appear to have the least dissimilarities by NP, although this
may be because the regions themselves are larger and it is harder
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to visually discern the differences along the boundaries. It is worth
remembering here that whilst these contours represent the system-
atically defined region boundaries, the shapes that are compared in
the subsequent analyses are quantified from the shape landmarks,
which are given by the interpolation spline fitting (see Fig. 5). Since
we are still interested in the direct comparison of these SOs to the
MAGPIS HII regions, the spline sampling remained at ~ 0.54 pc.
Therefore, each of the boundaries shown here were under-sampled,
with small perturbations along the contour smoothed out by the
splines, with the level of smoothing proportional to the spatial size
of the regions. Nevertheless, the differences in the contoured HII re-
gion shapes seen here, resulting from the different NPs, will enable
us to investigate how such changes in NP effect the final compari-
son of the shape that we perform in the analysis. This will be dis-
cussed in detail in Sec. 4.

For the first three ages, NP 5 results in a spurious extrusion on
the left side of the HII region. This is an example of where there
may be underlying signal in what was thought to be only back-
ground noise, and thus it is having a clear effect on the identified
shape. We are only able to identify this since we have prior knowl-
edge of the original SO data, along with the other NPs for com-
parison. If this were a real observation it would be systematically
included as is, with a larger image tile used to ensure the contour
is closed. For the rest of this analysis and the purposes of testing,
however, we chose to exclude NP 5 and consider the remaining five
profiles as our representative observational noise.

Figure 9 shows the resulting dendrogram from applying the
clustering algorithm to the 76 MAGPIS HII regions, along with
the 20 example SO HiI regions (from Fig. 8), whose shapes were
extracted from the five NPs detailed here. As with the previous den-
drogram of the Gaussian noise profiles, the branches of the SO
HiI regions are coloured by their age: 0.1 Myr in red, 0.2 Myr in
pink, 0.4 Myr in blue and 0.6 Myr in green. Figure 9 shows that all
of the 0.4 Myr SO HiI regions belong to the same parent branch,
along with three of the five 0.6 Myr SO regions. The other two
0.6 Myr regions are paired together in a separate group. There are
only a few examples of where SOs of the same age are paired to-
gether in this manner. As with the Gaussian noise profiles, most
of the SO HII regions are being paired with one of the MAG-
PIS HiI regions. There is also a 97% concurrence between the
groups identified from this dendrogram and those identified from
the MAGPIS sample in Paper I. This further confirms the efficacy
of the simulations for producing representative SOs.

4 DISCUSSION

Having shown that the insertion of the SOs into different NPs from
the MAGPIS data leads to HiI region shapes that are mathemati-
cally similar to what we observe in the MAGPIS sample, we can
now further investigate the properties of the SOs and how they may
influence the obtained shapes. Whilst we are only considering SOs
from one set of initial conditions, i.e., star cluster mass, ambient
density, etc., introduction of the MAGPIS NPs essentially expands
our number of observations at each simulation time-step. For the
77 projections, across the four ages, with five NPs, we arrive at a
sample of 385 individual HiI regions. These variables are hence the
parameters that we will discuss further in this section. In addition
to showing that shape analysis can be used as a tool to confirm the
reliability of synthetic data, a further aim of this investigation is to
see whether the SOs could be used as a training set for supervised
classification of HII regions via their shapes. We therefore need to
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Figure 9. Dendrogram of the MAGPIS sample of HII regions from Paper
I with the 20 example SOs that were inserted into the MAGPIS NPs (shown
in Fig. 8, excluding NP 5). The dendrogram represents the results from ap-
plying hierarchical clustering of the shape data of each HIiI region. The
branches of the 20 SOs are coloured by their age: 0.1 Myr in red, 0.2 Myr
in pink, 0.4 Myr in blue and 0.6 Myr in
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Figure 10. Dendrogram resulting from applying hierarchical clustering to the shape data of the sample of 385 SO HII regions inserted into MAGPIS NPs. As
with the previous dendrograms, the branches are coloured by their age: 0.1 Myr in red, 0.2 Myr in pink, 0.4 Myr in blue and 0.6 Myr in green. The three groups
displayed in Fig. 11 are indicated by the respective group numbers at the first split into three. Six groups are delineated by the dashed red boxes and labelled 1
through 6. 20 further groups as seen in Fig. 12 are delineated by the green boxes with the first and last labelled 1 and 20, respectively.

understand how each of these parameters is affecting the obtained
shapes and defining the groups.

A potential variable that we are deferring to future work is dis-
tance. In this investigation, all SO HII regions are assumed to be at
the same distance from the observer, ensuring that the shape could
be extracted in exactly the same manner as the MAGPIS HII re-
gions from Paper I; with the corresponding pixel scales matching
those used for the contouring parameters. We found in Paper I that
using an angular sampling scale for the shape analysis resulted in
biased results, with nearby regions that possess higher angular res-

olution data being grouped together by the procedure. Furthermore,
we discussed there how variations in the determined distance (due
to the many errors associated with kinematic distance estimations)
is directly related to variations in the spatial sampling scale used for
the shape extraction. We are planning a detailed investigation in to
how distance influences the shape analysis methodology and feasi-
bility for future applications. Brief details of this and other planned
future work is discussed at the end of this section.
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gram at a height of e.g. 400. In this situation, group 1 contains
mostly early-type regions with some late-type regions. Group 3
hosts exclusively early-type regions and group 2 hosts mainly late-
type regions with some 0.2 Myr regions being included. In terms of
grouping the synthetic HII regions purely by age, the dendrogram
in Fig. 10 shows that only a few of the smaller groups are all the
same colour, that is, regions of the same age. A cut on the dendro-
gram, resulting in six groups is shown by the dashed red boxes. This
is the maximum height (i.e., fewest number of groups) required to
produce groups that each contain either entirely late- or entirely
early-type regions, with only a few exceptions of mixing. If the cut
were slightly higher, groups 1 and 2 would be the first to merge.
We can investigate the division of ages between groups further by
taking a lower cut with more resulting groups, this is represented
on Fig 10 by the green boxes.

Figure 12 shows the ages and effective radii of the SO HII re-
gions across 20 groups from the dendrogram. Here, the mean num-
ber of region per group is ~20. It is clear that even with this many
groups, it is still most common for there to be a mix of both early-
type regions and both late-type regions belonging to each group.
The few exceptions are group 8, with mostly 0.2 Myr regions and
one 0.6 Myr region; group 14 has only 0.4 Myr regions; and groups
6 and 11 contain only 0.6 Myr regions. Increasing the number of
groups further (to e.g. 40 groups), results in the same pattern of the
grouping of early- and late-type regions, with a few more instances
of exclusively differentiating the respective individual ages. This
result shows that there is a lot of similarity between the shapes of
the early-type and late-type SO HII regions, an observation we can
also make from considering the interpolation splines which define
the shape in Fig. 5.

A noteworthy point here is that the late-type regions are those
which had their emission artificially boosted before being inserted
to the MAGPIS tiles, to account for the loss of mass and lower
density within the simulation grid. Whilst this could be the defin-
ing factor for the differentiation between these regions shapes, we
do still see associations between some of the early-type regions
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Figure 12. Distribution of SO effective radii and age for 20 groups from the
hierarchical clustering of the shape data.

and these late-type regions. Referring to the overview of HIlI region
shapes from the purely Gaussian distributions in Appendix C, we
see that even with the more uniform noise, certain projections from
the 0.2 Myr SOs feature boundaries with more perturbations. Such
examples are those likely to be grouped with the late-type regions,
based upon what we already know from how the grouping proce-
dure works (Paper I). Furthermore, we do still see from Fig. 12,
both the cross over and distinction in the obtained groups between
the 0.4 and 0.6 Myr shapes. For the purpose of further investiga-
tions, we will maintain that the late-type regions are thus represen-
tative of their Galactic counterparts. We will, however, return to this
in future work when considering simulations from a larger grid.

Figure 12 also shows that there is not a clear distinction in
region radii by group, apart from that seen in the main split in
early and late type regions (possessing small and large radii, re-
spectively). In fact, some of the groups that host both early- and
late-type regions display a large spread in region radii. The results
from the MAGPIS data in Paper I showed that one of the identi-
fied groups was exclusively small regions. The fact that this result
is not seen here could reaffirm the notion that those regions from
the previous work had similar shapes because of their young ages,
and not purely their small sizes.

The remaining parameters to investigate if and how they in-
fluence the HII region shapes are the noise profile and projection.
Figure 13 shows the distribution of NPs across the six groups iden-
tified by the red boxes on the dendrogram. It appears that there is no
clear preference for regions belonging to a given NP to be placed
in a particular group. Group 1 has slightly more regions from NP 1
than the other NPs. Group 4 has fewer regions from NP 4 than any
of the other NPs, whilst group 5 shows the opposite result. Con-
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Figure 13. Bar chart showing the distribution of MAGPIS noise profiles
hosting the 385 SOs, for the six groups delineated in Fig. 10.

sidering the ages along with the NPs, the regions from NP 6 that
appear in group 1 are only 0.2 Myr old, and all but one of the re-
gions from NP 1 in group 2 are 0.6 Myr old. The majority of NPs
in each group, however, are associated with at least two of the ages,
again, split by early- and late-type ages. Similar results to these
are obtained by considering each of the € and ¢ projection angles.
There is no clear preference for a given observation angle to result
in regions being assigned to the same group.

Another way to discern whether the NP or the projection angle
has more of an influence on the shapes and obtained groups, is to
consider for a given NP, how many projections of each snapshot age
are grouped together. Conversely, for a given projection angle, how
many of the five NPs for each age are grouped together. These re-
sults are shown in Fig. 14. For the six groups described previously,
the top panel shows for a given projection angle and age, what frac-
tion of the five NPs are placed in a given group. The bottom panel
shows for a given NP and age, what fraction of the 18-22 different
projection angle SOs are grouped together. The respective x-axes
have not been labelled since it is only the relative distributions we
are interested in. Mean values for each group are indicated by the
dashed black line.

The top panel of Fig. 14 shows that it is most likely for two
of the NPs for a given age and projection to be grouped together,
suggesting that the NP is having a large influence on the extracted
shape of the Hil region. For the examples where three or four of the
NPs are grouped together, there is no preference for this to occur
in a given group. There is only one situation where all five of the
NPs are grouped together, that is for one of the 0.6 Myr projections
in group 4. The bottom panel shows some slight differences for
the fraction of projections for a given NP and age that are grouped
together. Group 1 has on average, 33.5% of the total number of pro-
jections for a given NP grouped together, with a slight preference
for up to half of the 0.2 Myr projections to be grouped together. In
group 6, the average is again 33.5% projections, however, NP 6 for
the 0.1 Myr regions includes 70% of the different projections. For
the late-type regions, group 4 shows the highest average number of
projections per NP, followed by the 0.4 Myr regions in group 1 and
the 0.6 Myr regions in group 2. The average number of given pro-
jections per group is only slightly higher for the early-type regions.
This is an interesting result since the early-type regions are much
more spherically symmetric and less perturbed than the late-type
regions. This again shows that the curvature method for represent-
ing the region shapes is robustly quantifying the regions based on
their boundaries.

The result that, in some groups, ~ 50% of the different pro-
jections of a given age and NP are grouped together shows that
changes in the viewing angle may not influence the shape of the
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Figure 14. Bar charts showing the respective influence of changing the NP
or the projection angle of the SO on resulting group. Ages are as with pre-
vious plots: 0.1 Myr in red, 0.2 Myr in pink, 0.4 Myr in blue and 0.6 Myr
in green. Top: Distribution of different NPs for a fixed age and projection.
Each bar represents a given SO projection angle and age, with the fraction
of NPs belonging to the respective group shown. Bottom: Distribution of
different projection angles for a fixed age and NP. Each bar represents a
given SO age and NP, with the fraction of projection angles belonging to
the respective group shown. Mean values in each group are shown by the
dashed black lines.

HIl region substantially. Whilst this may be due to the initial condi-
tion of spherical symmetry throughout the numerical simulations,
this is still a result that can only be achieved via study of the SOs.
These are also likely the regions that remain the most spherically
symmetric across the different projection angles, i.e., those that do
not possess and intruding or protruding features. Previous inves-
tigations of inferring the projection angle of HII regions relative
to the observer has focused on such ‘cometary’ and ‘champagne
flow’ features, to see whether environmental properties that influ-
ence these inhomogeneities can be determined from the HII regions
themselves (e.g. Yorke et al. 1983; Steggles et al. 2017). Since we
do only have the one vantage point for our observational data, the
requirement for classification is still to be able to carry this out in
conjunction with the information we can collect. Therefore, in the
present work, having the different projection angles of the SOs es-
sentially gives us different observations of Hil regions that share the
same initial conditions but can be thought of as evolving differently
due to differences in ambient density or ISM structure along our
line of sight. However, investigating further how the noise structure
of our observations influences the shape we observe is an important
aspect towards refining an observational morphological classifier.
The manner by which the HII region shapes were extracted
from both the MAGPIS tiles and the SOs was by analysing the
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background noise from the radio continuum images. By removing
the radio signal and setting a threshold level that was above the re-
maining noise profile, this enabled the boundary of each region to
be defined by the contouring procedure. This led to a systematically
defined data sample, whereby the HII regions were each extracted,
such that their signal levels should be consistent across the Galac-
tic Plane. Nevertheless, one could argue that if you took one of the
HII regions and placed it in a different area of the Galaxy, defining
the boundary from the background radio noise in the vicinity could
lead to the shape being different. This was thus what the SOs al-
lowed us to test by doing exactly that. We have seen here that these
different NPs, defined from the MAGPIS tiles, are influencing the
shape. The results also show, however, that this is not a system-
atic influence, and SO HII region shapes from given noise profiles
are not concurrently being paired together by the hierarchical clus-
tering. We carried out some further investigation into a systematic
influence by the different NPs using the ordinance visualisation
of multi-dimensional scaling (MDS, detailed in Appendix A), but
reach the same conclusions as we do in this subsection; that the in-
fluence is not systematic. This is discussed further in Appendix A
and Sec. 4.3, where we suggest how we may overcome issues with
noise in our future work.

4.2 Using the SO Sample as a Training Set

Although we may not be able to fully quantify a systematic effect
that the different noise profiles or projections are having on the SO
HiI region shapes, the SOs still have much better constraints than
the Galactic observations in terms of initial conditions and prop-
erties. We have also shown here, via the shape analysis method,
that they are explicitly representative of the Galactic HII regions.
Considering the sample of 385 SOs, we can say with certainty,
which evolutionary stage each SO is at. The different projections
and noise profiles essentially give us many more observations of
the given age. This is similar to what we observe along the Galactic
plane, with no preference for HII regions of a given age to be at a
given place along the Plane (Anderson et al. 2014). Ultimately, for
a training set of SOs, we would also require SOs of differing initial
conditions. Using the data we have analysed in this work, however,
we can test whether the SO data sample can be used to infer the
ages of the MAGPIS observational sample.

The initial conditions of the numerical simulations, which pro-
duce the SOs analysed here, involve ionisation and radiation pres-
sure feedback from a star of mass 33.7 M, with an ionising pho-
ton rate of Nj, = 7.36 x10*® s™*, or log Ny, = 48.86 (AHDI8).
Since the observational sample we considered in the Paper I cover
a range of masses (~ 17 - 45 M), we have selected a mass lim-
ited sample from the MAGPIS HII regions to use in the following
test. The limit used was 48.3 < log Ny, < 48.8. This corresponds
to a mass range between 23 and 34 My (Weidner & Vink 2010),
and was around the mean of the normally distributed values for the
MAGPIS sample (Fig. 8, Paper I). The lower limit was taken to ac-
count for photon leakage out of the system, along with the mass
leaving the simulation grid and decreasing density. The resulting
SOs may hence be representative of regions of lower masses. This
resulted in a subsample of 26 MAGPIS regions, with ages ranging
between 0.1 Myr and 1.9 Myr. Whilst this age range of the MAG-
PIS subsample covers a considerably larger range than the SOs con-
sidered in this work, there is not a one to one correspondence be-
tween the two ages used. The ages from the SO snapshots begin
with ¢ = 0 when feedback starts in the simulation. Whereas, the
ages calculated for the MAGPIS sample are only an estimation of
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Figure 15. Dendrogram resulting from applying hierarchical clustering to
the shape data of the sample of 385 SO HII regions along with 26 of the
MAGPIS HII regions. The branches are coloured by their age for the SO
data: 0.1 Myr in red, 0.2 Myr in pink, 0.4 Myr in blue and 0.6 Myr in

and the MAGPIS HII regions are in cyan.
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Figure 16. HiI Region ages for six groups identified from Fig. 15. Groups
are numbered 1 through 6 corresponding to top down on the dendrogram,
as with previous figures. Number of SO HII regions in each group is shown
by the orange bars. For comparison, the fraction of MAGPIS HII regions
per group is shown by the cyan bars.

the dynamical ages. These estimates involve assumptions regard-
ing the surrounding ISM and require accurate distances to the re-
gions. The dynamical age then considers the observed expansion
with respect to the theoretical Stromgren radius. Therefore, for the
purpose of this test, we can consider the respective age ranges and
distributions of both the SOs and MAGPIS sample, to see how they
compare.

Using the data set of 385 SOs described in Sec. 4.1, we in-
serted the 26 mass limited MAGPIS HII region shapes to the SO
sample; and looked to see where the MAGPIS HiI regions would
be placed in relation to the SOs in the resulting group structure. Fig-
ure 15 shows the dendrogram resulting from the hierarchical clus-
tering procedure for the SO training data and the MAGPIS target
data. Branches are coloured as before - 0.1 Myr in red, 0.2 Myr in
pink, 0.4 Myr in blue and 0.6 Myr in green - with the addition of
the MAGPIS HII regions in cyan. The introduction of the MAGPIS
regions has changed the ordering of the six delineated groups, with
mostly late-type regions shown in the top two groups and mostly
early-type regions in the rest. The ordering of the final groups is
arbitrary. It is the resulting group associations and hierarchy that
matter. The MAGPIS HII regions appear slotted in to the SO HII re-
gions. The same result of good correspondence that was seen with
the data the other way around in Sec.3.2. There are two MAG-
PIS regions, paired together, joined to the bottom group, These two
may represent slight outliers since they join to the adjacent group
at a substantial height. We will discuss this is more detail later in
the section.

Figure 16 shows the respective ages of the SO and MAGPIS
Hii regions that are grouped into the six groups in Fig. 15. In order
to compare the respective age distributions of the data, the number
of SO Hi1 regions are shown in orange, with the fraction of MAG-
PIS HiI region per group shown in cyan. As seen previously with
the SO data, there is a clear division between early- and late-type

regions, with group 3 showing the most cross over between ages.
Following from the respective age discrepancies, mentioned pre-
viously, we can split the MAGPIS HII regions into early- and late-
types by considering those with age less than 1 Myr to be early-type
and those greater than 1 Myr to be late type.

Group 4 hosts exclusively early-type SOs with a mean age
of 0.14 Myr. 75% of the MAGPIS regions assigned to this group
are also early-type. Group 3 has the largest mix of early- and -
late type SOs, but with majority 0.2 Myr SOs and a mean age of
0.25 Myr. Two thirds of the MAGPIS regions in group 3 are also
early-type, with the remaining late type, showing a good agreement
in spread with the SO data. Group 5 has exclusively early-type re-
gions for both the SO and MAGPIS data. The same result is seen for
group 6. Group 2 hosts majority late-type SOs, with a mean age of
0.5 Myr. The two MAGPIS regions assigned to this group are also
late-type. 75% of the MAGPIS regions in group 1 are late-type, in
good agreement with the late-type assignment of the SOs. In terms
of this distribution of relative ages for each sample, these results
are promising for the prospect of using the SOs as a training set
for supervised classification. We see here that even with only one
parameter of investigation, the evolutionary stage of the regions,
we have good agreement between the SOs and MAGPIS observed
sample. We do not, however, suggest that one set of initial condi-
tions substantially represents the entirety of the age distribution of
the observational sample. The identified groups from Paper I were
shown to have a spread of mass ranges, which is why we used the
mass limited sample here.

In addition to these results, Appendix B shows an overview
of the mass-limited MAGPIS HII region sample images and shapes
that were assigned to each SO group. We can see from the figures
in Appendix B that the MAGPIS regions sorted into each of the
test groups appear to share similar morphological features. This
reaffirms the notion that the shape analysis and statistical meth-
ods employed here are performing as expected. Group 3 is the
largest group, showing the most visual differences between MAG-
PIS regions. This would be the first group to split if the cut was
made lower on the dendrogram in Fig. 15, which would separate
the more uniform regions from the more perturbed. The first two
MAGPIS regions shown in the images for group 6 are those lo-
cated at the edge of the dendrogram. They appear to each host at
least one tight point of inflection, which would result in a large
outlier in the curvature distributions. This is the likely cause for
why they are slightly apart from the rest of the data. The compar-
atively smooth sections along the rest of these region’s boundaries
are likely why they were grouped to the other MAGPIS region, and
the corresponding SO regions in group 6.

The notion of using the SOs as a training set in supervised
morphological classification of HII regions would require an input
sample with many varied initial conditions and known parameters.
We have shown throughout this investigation that the SOs produced
in AHD18 are well representative of their Galactic counterparts.
Furthermore, we can see here that the SOs of different ages can
be used to suggest whether a Galactic HII region is early- or late-
stage. With different initial masses and ambient densities, we could
further refine the parameters of each training set group, and repeat
this investigation with a correspondingly larger sample of Galactic
HiI regions.

4.3 Future Applications

The foremost proposed application of this work is to increase the
number of parameters investigated by using SOs from numerical
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simulations of differing initial masses, ambient densities, environ-
mental conditions and temperatures. If similar groupings that are
shown in this investigation are seen for the larger sample set, we
will be one step closer to a thorough morphological classification
scheme. For example, we might find that the groups from the hi-
erarchical procedure still differentiate between early- and late-type
HiI regions, but also by intermediate mass and high mass ionising
sources, a result that was indicated for the Galactic regions in Paper
1. Furthermore, with a different initial condition set-up, and a larger
simulation grid, we would not be required to boost the emission of
the regions in the SOs at later times, as we did in this investigation.
We plan to extend this work to the simulations of Ali & Harries
(2019), which features a 10* Mg, cloud. This could lead to regions
that are even more representative of the observed sample. We also
have further simulations currently in preparation that feature clouds
of different metallicity environments, together with differing ambi-
ent densities. Another factor to consider for future SOs used for
comparisons is the discretisation of parameters. A more continu-
ous sample of ages is well within reason and is only limited by the
simulation time-steps. Varying parameters such as initial mass or
electron density would be more computationally expensive, but as
the data becomes available, it will be useful to have a shape analysis
tool ready for the analysis and comparison.

In terms of the observational sample of HII regions, a further
application would be to compare samples from different radio con-
tinuum surveys. The work carried out here regarding a systematic
effect of the noise profiles on the HII regions was non-conclusive,
i.e., if there is a systematic effect, it as not revealed by our investi-
gation. However, comparing different observational data with dif-
ferent noise profiles may lead to progress in this area. Similar to
how we considered the same SO with a different noise profile, we
could consider the same Galactic HilI region from different surveys
in the same manner. A survey with complementary coverage to the
MAGPIS survey that could be used is The HI/OH/Recombination
line survey of the inner Milky Way (THOR) (Beuther et al. 2016).
In addition to this, whilst we have only considered radio contin-
uum images of HilI regions in this work, a full classification scheme
based on their morphologies should also consider data from further
wavelength ranges, such as MIR. This would be the first step to-
wards evolving this method into a multi-variate classifier.

The unsupervised clustering analysis utilised herein from Pa-
per I has potential to be adapted to a machine learning (ML) algo-
rithm. One requirement of ML is a large training set, so that the
algorithm can learn the classes. This work has shown good po-
tential for SOs of corresponding astrophysical data to be used as
the training set for future applications. If the hierarchical cluster-
ing procedure was able to decide whether to continue with certain
groups or reject them based upon predefined criteria, the result-
ing training set could be more accurate for investigating parame-
ters of the observed samples. For example, late-type regions being
assigned to known early-type groups could be excluded from the
procedure and reassessed. The ML process could also consider the
MDS investigation (Appendix A) of the different NPs on the fly,
rejecting any data with large ordination differences. The cluster-
ing procedure and future ML adaptations would also be useful for
comparing different methods of shape extraction and description.
With future clustering and classification methods, we could use the
observed properties of the HiI regions (such as ionised mass) to-
gether with quantised shape to build a multi-variate descriptor to
replace the shape-distance scores, which can then be compared and
clustered (we applied such methods as a multi-variate descriptor of
light-curve variations in Froebrich et al. 2018). This could be the
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natural evolution of this work, after the next steps of increasing the
sample size of both the SO and observational samples.

Only one shape descriptor is used in this work so far, the cur-
vature distributions obtained from the contoured boundaries of the
HII regions. Whilst we have shown the potential associations be-
tween morphology of HII regions and physical properties, there is
no clear one to one correspondence between the extracted shapes
and the properties considered thus far. Our original reasoning for
selecting the contouring/curvature descriptor was for automation
and bias reduction. However, given that we have seen here and in
our previous work, potential for shape to be used as an indicative
measure, future work should also further investigate the differences
between different shape descriptors. We should also consider how
to properly utilise angular resolution scales, when distances are un-
known. This avenue could have potential applications for reduc-
ing kinematic distance errors in observational data. Different im-
age analysis/quantisation techniques considered for future work in-
clude convolutional/artificial neural networks and self organising
maps. The comparison of such methods with the shape analysis
methods used so far would be useful for confirming the validity of
which method to adopt for future classification requirements, po-
tentially based on synthetic data as the training set.

There is also further potential for this shape analysis and clus-
tering method to be applied to other astronomical phenomena. We
have quantitatively shown here that modern SOs are producing well
representative HII regions; we could therefore begin to investigate
how different observations and simulations perform. For example,
Hii regions could be compared to supernovae remnants, which are
visually similar in the radio continuum images (e.g. Green 2009). It
would be interesting to discover whether our shape analysis method
could tell the two nebulae apart, and if so, how it compares to estab-
lished methods such as spectral energy distribution fitting. Looking
further ahead, as telescope and imaging techniques continue to im-
prove, alongside computational power, there will be even more high
resolution data to analyse and characterise. Statistical shape analy-
sis could prove to be a useful tool in the era of big data.

5 CONCLUSIONS

The synthetic observations of an HII region produced in the nu-
merical simulations of Ali et al. (2018) were analysed using the
shape analysis and statistical clustering methodology developed in
Campbell-White et al. (2018). The numerical HII region was the re-
sult of photoionisation and radiation pressure feedback of a 34 Mg
star, in a 1000 Mg cloud. 77 SOs were considered, comprising
four evolutionary snapshots (0.1, 0.2, 0.4 and 0.6 Myr), and multi-
ple viewing projection angles. After the addition of artificial Gaus-
sian noise, following the distribution of observational noise from
one of the MAGPIS tiles, the shapes of the SO HII regions were
extracted in the same manner as they were for the MAGPIS ob-
servational sample in Paper 1. The shape analysis results provided
confirmation of the efficacy of the numerical simulations, such that
they are quantifiably consistent, in terms of their shape, with the
real observational counterparts. When considering the 76 MAGPIS
Hi1 regions from Paper I and 12 representative SO HII regions,
across the four ages, the SO HII regions were placed in amongst
the MAGPIS HII regions, in the resulting dendrogram from the hi-
erarchical clustering procedure.

This result was also found when directly inserting the SO re-
gions to different MAGPIS tiles, to represent realistic noise for the
simulation images. By using five MAGPIS noise profiles for the 77
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SOs, we essentially had 385 distinct observations of the numerical
HII region, at the given age snapshots and projections. As with the
shapes of the HII regions using the artificial Gaussian noise distri-
bution, those from the MAGPIS NPs were grouped in amongst the
MAGPIS HI1I regions, with the majority of synthetic regions paired
with one of the MAGPIS regions. This suggested that the differ-
ent projection angles and noise profiles were having a significant
impact on the regions shapes. Such that the SO HII regions of the
same age were not exclusively grouped with each other in the hier-
archical clustering.

When considering the hierarchical clustering of the 385 SOs
that had been inserted into the MAGPIS tiles, the following results
were obtained:

e The determined hierarchy showed a clear divide between
early- (0.1 and 0.2 Myr) and late-type (0.4 and 0.6 Myr) regions.
This divide was not exclusive by age, with a low cut on the dendro-
gram (resulting in many groups) still producing groups that pos-
sessed a mix of both early- and late-type regions. Whilst this may
be due to how the late-type region’s emission had to be artificially
boosted to account for mass leaving the simulation grid, the re-
sults for the late-type regions still show the same cross over as the
early-type regions. Furthermore, these late-type regions were still
shown to be representative of the MAGPIS observational sample,
even with this boosting. However, this is a point to return to in fu-
ture work with simulations from a larger grid.

e There was no further association between the identified group-
ings and SO region radii, apart from the main split between the
early- (small radius) and late-type (large radius) regions. This sug-
gests that the result obtained in Paper I, pertaining to one group
hosting exclusively small regions could in fact be due to those re-
gions all being young HII regions.

e There was no strong preference for SO regions from a given
noise profile, nor given projection angle, to be assigned to specific
groups. In terms of which of these parameters has more of an effect
on the shape — for a given SO age and projection angle, on aver-
age two of the five NPs were grouped together in the hierarchical
clustering. For a given age and NP, on average ~ 30% of the dif-
ferent projections were grouped together. This result was consistent
for both the early- and late-type SO HII regions, even though the
early-type regions appeared to be more spherically symmetric.

e No systematic effect due to the different NPs was found by
the analysis. The hierarchical grouping of the pairwise shape dis-
tance measures revealed no preference for SOs from a given NP to
be grouped together. Further investigation using multidimensional
scaling ordinance also revealed no such systematic influence.

e The MDS did show systematic effects for how the shape of the
HiI regions is extracted. Different initial contour levels (for iden-
tifying the boundary of the HII regions) changed the ordination in
the MDS axes, but not the relative scores along the axes. Whilst dif-
ferent spatial shape resolutions changed the scores along the axes
but not the relative ordination positions. Higher resolutions corre-
sponded to a larger spread in MDS scores, showing that as more
detail is considered, the variances in shape as a result of the differ-
ent NPs is more profound.

The results in this work have shown that the realistic SOs consid-
ered here are conclusively morphologically representative of the
Galactic HII regions we observe in the MAGPIS radio continuum
survey. To determine whether the SOs could potentially be used to
construct a training set for supervised classification of HII regions,
via their shapes, a mass limited sample of the MAGPIS HII regions
were considered along with the 385 SOs. These results showed that

there was good correspondence between respective early- and late-
type HII regions from each sample. This suggests that there is a lot
of potential for the utilisation of the SOs to construct such a train-
ing set. For this SO sample, we only investigated whether there was
correspondence between the ages, since we only considered SOs
from one set of initial conditions. For a larger training set, of vary-
ing masses and ambient densities, across the different evolutionary
stages, the results shown here suggest that we should be able to
make predictions of the physical nature of the Galactic HII regions,
based upon how their shapes compare to those of the model simu-
lations.
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APPENDIX A: FURTHER DETAILS ON NOISE PROFILES
AND SELECTION CHOICES

In an attempt to determine whether we can quantify the influence
of the MAGPIS noise profiles on the shape of the SO HII reigons,
we return to the ordinance technique of multi-dimensional scaling
(MDS) that was used in Paper I to check that the hierarchical clus-
tering was properly defining groups based upon the regions shapes.
To recap: MDS reduces the dimensionality of an input distance ma-
trix to a number of orthogonal principal coordinates. The eigen-
vectors of which, give the ordination and the eigenvalues give the
relative importance of that axis for representing the data variation.
In Paper I, we saw that there was a correspondence between the
amount of high curvature points along the region boundaries and
the scores along axis 1 of the MDS ordination, and surmised that
the variation along axis 2 was also directly resulting from features
of the curvature distributions. We also showed that the ordinations
on the MDS plots corresponded well with the groups from the hier-
archical clustering. Here, we can apply MDS to the distance matrix
of HII region shapes for a given SO across the different NPs, to
both visually and quantitatively see how the resulting mathemati-
cal shapes compare.

Figure A1 shows the MDS ordinations for four of the SOs,
one at each age. The numbering of the HiI region shape’s points
on the graphs corresponds to the NP of the SO (from Sec.3.3),
with NP = 0 corresponding to the artificial Gaussian distribution
(from Sec. 3.1). In each of the MDS plots, only the six HII region
shapes shown were compared pairwise using the A-D test. These
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Figure Al. Multidimensional Scaling ordination plots for the shape dis-
tances of four example SO ages and projections. Labels signify NP, with
0 representing the shape obtained from the random Gaussian distribution.
Point colours correspond to which group the SO HII region shapes were
allocated to in the hierarchical clustering of the full dataset.

ordination results are hence only showing the differences the NPs
have on the shapes. In each of the four instances, for increasing
SO age, axis 1 of the MDS accounts for 64, 76, 73 and 80% of
the shape variability, respectively. Axis 2 accounts for 23, 18, 16
and 15%, respectively. Therefore, these two axes are sufficient for
investigating the shape differences accordingly.

In each of the four plots, the Gaussian noise profile 0 shape
is ordinated away from the other five NPs. For 0.1 Myr, all of the
shapes are spread over the ordination plot. For 0.2 Myr, NP 0 is or-
dinated away from the origin, at approximately an equal distance
from each of the other NPs. A similar looking distribution is seen
for the 0.4 Myr data, with a tighter association. For the 0.6 Myr
data, NPs 1, 4 and 6 are ordinated very close to one another, with
NPs 0, 2 and 3 ordinated away. In each case, the points are coloured
by which of the six groups the shape was sorted into from the
dendrogram in Sec. 4. As expected, those ordinated close together
are assigned to the same group in the larger data set. NP 3 in the
0.6 Myr data is the one example of that age assigned to a group
comprising otherwise only early-type regions. As we can see here,
it has the furthest distance from the other points. Another interest-
ing note is that, for the 0.1 Myr shapes, the shape from NP 2 is
ordinated close to the origin of the coordinate system. This means
that this shape represents the ‘average’ of the sample and the other
shapes are all differing with respect to this shape.

These plots were produced for a number of given projections
to determine whether the respective positions in the MDS space
for each NPs was systematic and reproducible. Unfortunately, the
effect the different NPs have on the underlying shape of the SO
Hi1 region is not a systematic across the ages. We do not see each
of the respective NPs by age behaving in the same manner in each
of the MDS plots; neither with respect to the other MAGPIS NPs,
nor the Gaussian noise only shapes. The example shown for the
0.1 Myr SO shows a large spread in the MDS ordination, yet this is
an example where four of the five NPs are put in the same of the
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six groups from the hierarchical clustering of the entire data-set. On
the other hand, NP 1 of the 0.4 Myr data is ordinated close to NPs
4 and 3 but is placed into the same group as NPs 2 and 6. We must
remember here, however, that the hierarchical groupings are for a
much larger sample, such that many of the other projections will be
influencing the groupings due to the agglomerative procedure.

An explanation for this non-systematic effect of the NPs is that
the noise from the radio continuum images is not exactly Gaussian,
i.e., it has inherent structures within, which was a motivation for
using them in the manner we have here. This means that the differ-
ent sizes of the SOs at each age will be influenced by the inherent
noise in the continuum observations by varying amounts. An exam-
ple can be seen in the results where NPs 3 and 4 are ordinated close
to one another in the 0.2 and 0.4 Myr plots, but not in the other two.
Whilst the MDS investigation is useful for visualising the spread
in the shape data, we do not gather any summary results from this
investigation for the data in its entirety. The MDS approach does,
however, show the specific influence of each NP when compared
to a reference or standardised version of the shape, which may be
useful in future machine learning approaches.

Another application of the MDS ordination we performed was
to further investigate how the different selection choices for defin-
ing the HII region shapes affect the resulting spread in the shape
data. That is, the initial sigma level used when extracting the bound-
aries and the spline knot spacings for controlling the spatial reso-
lution of the shape landmarks. So far, for all of the SO shape data,
we have only considered the 1 sigma contour level, along with the
0.54 pc spline knot spacing. This was for the purpose of directly
comparing the SOs to the previous results from the MAGPIS data.
However, we suggested in Paper I that the SOs could provide a
better test set for determining how these two selection variables in-
fluence the resulting shape. When rerunning the MDS of the shape
data using contours with 0.8 and 1.2 sigma above the mean value,
the positions of the ordinations changes, but the overall spread in
the data remains. This suggests that, as with the NPs, varying the
initial sigma level is not having a systematic effect on the shape
data. When rerunning the MDS with different spline resolutions,
decreasing the spline interval (hence increasing the spatial reso-
lution) results in a larger spread along the MDS axes. This was
expected as more features and points for comparison are captured
with a higher resolution. Furthermore, we have already shown that
the amount of high curvature points corresponds to the score along
axis 1 of the MDS. Increasing the interval (decreasing the resolu-
tion) results in a smaller spread in the MDS ordination. Whilst this
may seem like a favourable result, the level of smoothing along
the boundaries is significantly increased, resulting in fewer fea-
tures along the curves. Increasing this smoothing amount by too
much thus becomes redundant for the smaller diameter regions. As
found with the previous tests of this nature in Paper I, the 1 sigma,
0.54 pc interval seems to be a good intermediary between extremes.
The most important aspect here (and for future work of this nature)
is that the shape extraction and quantification remains consistent
for the sample.

APPENDIX B: MASS-LIMITED MAGPIS SAMPLE
IMAGES

The following figures show the images of MAGPIS Hil Region
assigned to each of the training groups in Fig. 15. Groups are num-
bered top down from the dendrogoram. Image tiles are in angular
degrees scale with Galactic longitude and latitudes shown. The con-

Figure B1. Group 3, note that region G045.204+00.744 is not shown

toured outlines are those obtained from the shape extraction pro-
cess, with the corresponding spline interpolation points used to ob-
tain the curvature distributions indicated by the open squares.
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Figure B2. Group 1 Figure B5. Group 4

Figure B3. Group 2

Figure B6. Group 5

Figure B4. Group 6
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APPENDIX C: EXTRACTED SHAPES FROM SYNTHETIC OBSERVATIONS WITH ARTIFICIAL GUASSIAN NOISE

Synthetic Observations (SOs) of the numerical simulation in (Ali et al. 2018). The 77 images are shown with coordinates in parsecs. Headings
identify the snapshot age and projection viewing angle (t = 6, p = ¢). In each image, random Gaussian noise has been added to each pixel
value, following the distribution from an example MAGPIS 1.4 GHz image tile. The boundary shown is that of the 1o above the mean noise
level contour.

ol

2 1 0o 1 2 2 1 0 1 2 > 1 0 1 2 > 1 0 1 2
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