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METHODS                

Deforestation and boundaries of analysis

We defined deforestation as the annual loss of primary forest (Margono et al. 2014), including 

mangrove forest as delineated in by (Giri et al. 2011). Primary forest was defined as mature natural 

forest with an extent >5 ha, with a natural composition and structure that had not been cleared in 

recent history. This definition includes both intact and degraded types of primary forest in the year 

2000. Yearly forest loss between 2001 and 2018 was downloaded from the Global Forest Change 

repository of University of Maryland (Hansen et al. 2013) and cover for each year calculated by 

subtracting loss from primary forest in 2000, including mangroves. 

Forest loss for Wallacea was analyzed in nine regions, based on provincial and subregional 

boundaries during and prior to the study period. We thus divided Wallacea in North Sulawesi and 

Gorontalo (formerly North Sulawesi; split in 2000), West and South Sulawesi (formerly South 

Sulawesi, split since 2004), Central Sulawesi, Southeast Sulawesi, East Nusa Tenggara, and West 

Nusa Tenggara. Although the Mollucan archipelago were formally administered as a single region, 

and are now two, the dispersed nature of the islands means they can geographically be considered 

as three regions: North (including Halmahera, Sula and Obi island groups) South (including 

Tanimbar, Aru and Kai) and Central (Seram, Ambon, and Buru). Borders were downloaded from the

Global Administrative Areas database (Global Administrative Areas 2012). All islands below a size 

of 5 km2 where excluded.       
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Identifying deforestation drivers 

Deforestation in tropical forests is influenced by multiple drivers, such as physical feature, 

accessibility characteristics, anthropogenic pressures, and land-use (Gaveau et al. 2014, 2018; 

Austin et al. 2019(Rosa et al. 2013; Struebig et al. 2015; Austin et al. 2019)). Our selection of 

potential deforestation covariates was based on those known to be important in driving 

deforestation in Indonesia (Table S1): slope, yearly average of fire incidence, potential accessibility 

from a human population centre, human population pressure (including human population density), 

transmigration, primary livelihood sector (subsistence farming, plantation, non-agriculture 

occupations or fisheries, as defined in the national census), as well as presence of mining 

concessions (those under exploration and exploitation) and the official land-use designation from 

Government of Indonesia (Table S1). Here, land is categorized for production (can be converted 

into timber plantations), limited production (in which forests can be used for logging), protection 

(as national parks, wildlife reserves or watershed protection forest), or non-forest (i.e. land 

converted or allocated for conversion into non-timber plantations such as oil palm, or for other 

uses). Land-use classes and mining concessions describe the official designation and not the cover, 

and thus can include forests that were not yet converted or logged. The predictors were selected 

based on literature describing important drivers of deforestation in the tropics (Rosa et al. 2013; 

Struebig et al. 2015; Austin et al. 2019), as well as the availability of such data across the 

archipelago for the relevant time period (Table S1).

All layers were converted to the Asia South Albers Equal Area Conic projection and resampled to 

the same extent and origin at 180 x 180 m cell size using bilinear for continuous and nearest 

neighbor resampling for categorical predictors. All spatial manipulations were performed in Python 

(Python 2016), and aggregated, analyzed and visualized in Python, R (R Core Team 2017) and 

ArcGIS (ESRI 2014) (Supporting Information for processing details).        
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Deforestation model framework                                                                                   

We used a dynamic and spatially-explicit model developed by Rosa et al. (2013) to project the 

probability of deforestation for nine administrative regions within Wallacea. We produced multiple 

localised models to better capture regional deforestation patterns within the archipelago (i.e. among 

islands with a shared geopolitical history), and to allow projections at a higher resolution. 

The model accounts for stochasticity of deforestation events, and region-wide forest loss rates 

emerge as the sum of local scale deforestation, resulting from the influence of drivers operating in 

each particular region. Inherently in the model, deforestation events are more likely to occur in the 

vicinity of patches surrounding a location of recent forest loss. The model is based on the 

probability that trees in a cell are lost in a certain time interval. For each region, we checked 

predictors for collinearity and excluded predictors with a Pearson correlation coefficient > 0.7 and 

variance inflation factor >3. Combinations of the remaining predictors were fitted to the observed 

forest loss data from 2014–2018 as a calibration period, with each model defined by the best 

predictors specific to the region (Appendix Table S2). To find the best candidate performing models

(i.e. comprise predictors with evident predictive ability), we used cross-validation. After 

successively adding the variables that resulted in the highest likelihood model, the overall best 

model was selected for each region (Appendix Table S2).                                                                    

Simulations

We used the model with the maximum test likelihood to project the probability of deforestation for

the five-year calibration period (2014–2018) and the following seven 5-year periods until 2053 for 

each region. We selected a calibration interval of five years by considering the trade-off between 

short intervals, potentially reflecting exceptional years, or long intervals, potentially including 

outdated trends. The calibration interval also defines the time-steps in which projections can be 

done into the future. After estimating probability, we evaluated whether or not the respective pixel 

was lost by drawing a random number from a uniform distribution between 0 and 1. The pixel was 

3



then classified as deforested if the number was less than the probability of deforestation. This 

procedure was performed for all eight time-steps and run 100 times to gauge the uncertainty in 

model predictions. The different iterations were aggregated into the summed probability of 

deforestation and represented as the fraction of simulation runs in which the forest in a pixel was 

lost; i.e. if a pixel was selected to be deforested in 50 of 100 iterations in a given time period then it 

had a 50% probability of deforestation. 

Validation and analysis

We validated the models against observed data for the calibration time-period, by calculating the 

area under the Receiver Operating Characteristic (ROC) curve (AUC value) for the 100 iterations. 

We also calculated the proportion of match between observed and cumulative forest loss within 

certain distances (0, 1, 2 and 10 pixels) surrounding the pixel following Rosa et al. (2013).               

RESULTS                                                                                                          

Deforestation model for Wallacea

After testing the predictor combinations for each region, the model with the highest test likelihood 

was used to simulate forest loss for the calibration period and then in 5-year increments from 2019 

to 2053. In all nine regions the best performing models included past deforestation, slope, distance 

to villages with subsistence and non-agricultural livelihoods, and the land-use designation as 

important predictors (Table S2). 
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Figure 1: Influence of predictors on deforestation between 2000 and 2019 in nine regions of 
Wallacea. Predictor values were drawn from a Gaussian distribution, using the estimated mean and 
standard deviation for each. Values across regions are summarized in a boxplot showing the median 
and the 25th and 75th quartiles as hinges. Predictors with an effect size smaller than zero (dashed 
line) were related to lower forest loss, while predictors with an effect size larger than zero to higher 
forest loss. The effect of mining concessions (exploration and production) is relative to the effect of 
no mining concessions and the effect of non-forest, production forest and limited production forest 
is relative to the effect of protected forest (*). Predictors in best model differ across regions (Table 
S2). Predictors with coefficients close to zero ( mean coefficient smaller than 0.05 and a spread 
smaller than 0.05) and the intercept were excluded from the figure.  The 95% confidence intervals 
around points are not shown, as they fall within the points. Values are standardized.                           

Mining and distance to villages with fisheries livelihood were in the best model in eight regions; 

distance to villages with plantation livelihood was include in six regions, while population pressure 

was included in four, occurrence of fire and distance to transmigrant settlement in three regions, and

accessibility in two. Probability of deforestation was highest in the vicinity of past forest loss (Figs. 

1 and 2) across all regions, with the effect being strongest in South Maluku and West Nusa 

Tenggara, and weakest in East Nusa Tenggara as well as North Sulawesi and Gorontalo. 
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Fire was associated with higher deforestation in Central Maluku, but lower deforestation in West 

Nusa Tenggara and North Sulawesi and Gorontalo. Although for most regions population pressure 

had a weak relationship with deforestation, it was associated with increased probability of 

deforestation in West Nusa Tenggara. Low distance to a village with subsistence livelihood 

decreased deforestation in the regions, with the exception of Central Maluku. Both types of mining 

concessions (exploration and production) had varying influence on deforestation (relative to the 

reference class of ‘no mining’): while the presence of exploration concessions was associated with 

low deforestation in Southeast Sulawesi and the Malukan regions, the reverse was true in West 

Sulawesi, Central Sulawesi and both East and West Nusa Tenggara. Forest areas gazetted for mining

production (in comparison to no concession), were related to higher probability of deforestation in 

most regions, with the exception of East and West Nusa Tenggara, where mining production was 

associated with a small reduction in deforestation. 

In general, the production, limited production and conversion land-use categories were linked to 

higher deforestation probabilities compared to the protected forest reference class. Non-forest areas 

that still had forest but could be converted into non-forest uses such as oil palm plantations were 

related to highest levels of probability of deforestation, with the exception of West Nusa Tengarra, 

with low, negative effects. Production forest, i.e. areas in which forest can be converted into timber 

plantations, were also related to increased deforestation (with the exception of West South Sulawesi,

which had a low negative relationship). Limited production forests, which cannot be converted but 

are used for logging, were related to lower levels of probability of deforestation in West-South 

Sulawesi and East Nusa Tenggara, and higher levels in all other regions. 

Accessibility, distance to villages with plantation, non-agriculture and fisheries livelihood and 

distance to transmigrant settlements had estimated model effect sizes close to zero.
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Validation                                                                                                  

The model selection process in which parameter combinations were screened for each region, 

yielded models with good discriminatory power via a mean AUC value ranging from 0.97 (Central 

Sulawesi) to 1 (South Maluku). When comparing the spatial match in the calibration period, across 

Wallacea a median of 12% of all pixels that were projected to be lost were in the exact location of 

pixels with observed loss (Interquartile range (IQR)=6%, Fig S1). However, 46% (IQR=26%) of the

pixels were in the direct neighborhood (within 180 m), 70% within 360 m (IQR= 30%), and 99% 

within 1.8 km (IQR=7%) of a pixel with observed forest loss, indicating strong spatial concordance.

Spatio-temporal deforestation projections

Throughout Wallacea 32,566.99 km2 (95% confidence interval [CI] 32,452.63 – 32,680.41 km2) of 

forest was projected to be lost between 2018 and 2033 and 37,356.26 km2 (CI: 37,186.64-37,492.46

km2) until 2053. This amounted to 48.0 % (CI: 47.9-48.1% ) loss of forest relative to forest cover in 

2018. The projections reflected a spread of deforestation in the vicinity of past deforestation (Fig 2).

By 2053 large, continuous areas were projected to be deforested in North Maluku, Central 

Maluku, in the eastern part of Central Sulawesi and the border region between Central, West and 

South and Southeast Sulawesi. Forest within protected areas mostly had lower levels of projected 

deforestation (e.g. in Halmahera or Nusa Tenggara, where the majority of remaining forest was 

protected). However, protected status was also related to high projected levels of deforestation 

probability, most notably in the border region between Central, West and South and Southeast 

Sulawesi, where mining concessions were concentrated. Forests gazetted for conversion were 

related to higher levels of deforestation (Fig 1 and 2), especially in North Maluku. Across Wallacea,

the center of islands were projected to be less threatened than outlying margins of forest.         
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Figure 2: Projected probability of deforestation across Wallacea by 2053
Probability of deforestation was projected for each region using predictors describing slope, 
accessibility, human pressure and land-use. Probability of deforestation is summed over 100 
iteration and accumulated from 2019 until 2053. Modeling regions in overview map as dashed lines 
and grey name. Location of Wallacea in Southeast Asia (green) in upper right hand corner. 
Observed deforestation (2000-2018) and projected deforestation probability (2019-33, 2034-53) for 
West Nusa Tenggara, Seram, Central Sulawesi and Halmahera shown in panels for each time 
period.                                                       

Total forest area at the end of the observation period (2018) varied across regions (Fig. 3 and Table 

S3) with Central Sulawesi having the largest forest area (37,523.41 km2) in 2018, representing 

61.36% of the total area of the region, and East Nusa Tenggara having the smallest forest area 
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(1,734.40 km2, 3.73% of the islands’ area). In all regions natural forest decreased in extent between 

the start of the observation period in 2000 and 2018, and was projected to decrease further until 

2033 and 2053. Forest loss from 2018 ranged from 1.49% (CI: 1.38-1.63%) in 2033 and 3.33% in 

2053 in East Nusa Tenggara, to 28.53% in 2033 (CI: 28.25-28.84%) and 67.89% (CI: 67.61-68.26 

%) in North Maluku, as the lowest and highest increase respectively.                                                  

Figure 3: Observed and projected forest area and loss over Wallacea from 2000 to 2053.

a) Total forest in the first and last year of the observation period (2000–2018) and the median 
forest in the projected five-year periods 2029–2033 and 2049–2053 for each region [95% CI as 
error bars]. b) Aggregated average percent forest loss before simulation (2001–2013) and in the 
calibration period (2014–2018) was used for model fitting. The annual observed deforestation 
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shows inter-annual variability of forest loss in the regions. Deforestation was simulated for 7 five-
year periods from 2014–2053 (n = 100, error bars represent CI). The calibration period from 2014–
2018 can be compared to the projection of forest loss in the same time interval. All values in b) 
given in annual percent deforestation in comparison to forest area in 2000, by aggregating over the 
time-period over which the bar extends and dividing by number of years in interval.

Observed annual deforestation (2000-2018) ranged between 0.03% (South Maluku) and 1.3% 

(Central Sulawesi), relative to the forest at the beginning of the observation period (2000), with 

high inter-annual fluctuations (Fig. 3b). On average, the rate increased from the first (i.e., 

deforestation before the calibration period) 12 years to the 5-year calibration period in all regions, 

with the exception of East Nusa Tenggara where the deforestation rates were relatively low and 

decreased slightly (1.00 km2 or 0.06 percent point difference).

Over the projection period, the increase in projected median forest loss increased and then 

decreased in all regions with the exception of South Maluku And East Nusa Tenggara. Future 

projected median annual deforestation rates for regions ranged between 0.08% in East Nusa 

Tenggara and 2.34% in North Maluku (lowest and highest). In South Maluku the deforestation rate 

was at a low level in the beginning of the observation period but then continued to increase until the

last step. In East Nusa Tenggara projected deforestation rates stayed low over the entire projection 

period (median percent change over projected years 0.08%). The increase was steepest in North 

Maluku, with highest levels in the period 2034 to 2039. 

In the calibration interval the projected loss over 5 years was slightly larger than the observed rate, 

with a deviation between 0% (East Nusa Tenggara) to 0.19% (West and South Sulawesi). However, 

in all regions the projected deforestation rate was within the range of the observed rates, indicating 

a good fit of projections.  

10



References

Austin KG, Schwantes A, Gu Y, Kasibhatla PS. 2019. What causes deforestation in Indonesia? 
Environmental Research Letters 14:024007.

Bright EA, Coleman PR, Rose AN, Urban ML. 2012. LandScan 2011. Oak Ridge National 
Laboratory. Available from http://www.ornl.gov/landscan/.

Deere NJ et al. 2020. Implications of zero-deforestation commitments: Forest quality and hunting 
pressure limit mammal persistence in fragmented tropical landscapes. Conservation Letters 
n/a:e12701.

ESRI. 2014. ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands, 
CA.

Farr TG et al. 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics 45. Available 
from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005RG000183 (accessed 
May 29, 2020).

Gaveau DLA et al. 2014. Four Decades of Forest Persistence, Clearance and Logging on Borneo. 
PLoS ONE 9:e101654.

Gaveau DLA, Locatelli B, Salim MA, Yaen H, Pacheco P, Sheil D. 2018. Rise and fall of forest loss
and industrial plantations in Borneo (2000–2017). Conservation Letters:e12622.

Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N. 2011. Status and 
distribution of mangrove forests of the world using earth observation satellite data (version 
1.3, updated by UNEP-WCMC). Global Ecology and Biogeography 20:154–159.

Global Administrative Areas. 2012. GADM database of Global Administrative Areas, version 2.0. 
Available from www.gadm.org.

Hansen MC et al. 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. 
Science 342:850–853.

Margono BA, Potapov PV, Turubanova S, Stolle F, Hansen MC. 2014. Primary forest cover loss in 
Indonesia over 2000-2012. Nature Climate Change 4:730–735.

MODIS Collection 6 NRT. 2018. MODIS Collection 6 NRT Hotspot / Active Fire Detections 
MCD14DL. Available from https://earthdata.nasa.gov/firms.

Python. 2016. Python Language Reference. Python Software Foundation. Available from 
http://www.python.org.

R Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for 
Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/.

Rosa IMD, Purves D, Jr CS, Ewers RM. 2013. Predictive Modelling of Contagious Deforestation in
the Brazilian Amazon. PLOS ONE 8:e77231.

Struebig MJ, Fischer M, Gaveau DLA, Meijaard E, Wich SA, Gonner C, Sykes R, Wilting A, 
Kramer-Schadt S. 2015. Anticipated climate and land-cover changes reveal refuge areas for 
Borneo’s orang-utans. Global Change Biology 21:2891–2904.

VIIRS 375m NRT. 2018. NRT VIIRS 375 m Active Fire product VNP14IMGT. Available from 
https://earthdata.nasa.gov/firms.

Weiss DJ et al. 2018. A global map of travel time to cities to assess inequalities in accessibility in 
2015. Nature 553:333–336.

11



Supplementary information:

Table S1: Predictor layers used to calibrate the model

Name Description Source Year

Forest loss
            

Forest loss previous to calibration 
period (2001-2013) and in calibration 
period (2014-2018)1

Giri et al. (2011), Hansen et al. 
(2013), Margono et al. (2014)

2001-2013,  
2014-2018

Slope
Slope in 2000 derived from digital 
elevation model (30m)

Farr et al. (2007)
                        

2000

Average fire per 
year

Average number of active fires per year
(MODIS and VIIRS)

MODIS Collection 6 NRT (2018), 
VIIRS 375m NRT 
(2018)                                   

2000/2012-
2018

Accessibility
Accessibility from settlements, 
considering roads, slope and landcover 

(Weiss et al. 2018; Deere et al. 
2020)
https://landscan.ornl.gov/
downloads/2017

1990-2017

Human 
population 
pressure

Local population pressure (Σ = 1) 
(Deere et al. 2020)

Accessibility, Bright et al. 
(2012)

2017 
(population 
density)

Livelihood

Distance to a village (desa) which 
derives their primary livelihood from 
subsistence, plantation, fisheries or 
non-agriculture occupation 

• https://mikrodata.bps.go.id/
mikrodata/index.php/catalog/
PODES

2014/2018

Transmigrant 
settlements

Distance to transmigrant settlements

• https://mikrodata.bps.go.id/
mikrodata/index.php/catalog/
PODES
• http://webgis.menlhk.go.id:8080/
pl/pl.htm

1990 - 2013 
2008/2011 
(PODES)

Mining
Exploration and production mining 
concessions (no mining concessions as 
reference).2 

WRI -

Land-use

Including non-forest areas (APL), 
production forest (HP, HPK), limited 
production forest (HPT) and protected 
forests (CA, HSAW, KSPA, SM, TN, 
TAHURA, TNL, TWA, TWA/HW, 
TWAL, TB) as reference areas.3

http://data.globalforestwatch.org/
datasets/indonesia-legal-
classification

2020
                

1Forest loss previous to calibration period was used to inform the projection for the calibration period, while 
forest loss in the calibration period was used to inform projections in the future. 

2 Mining was extracted from a layer from the World Resources Insititute. We classified the shapes according 
to activities, which fall either into being under a form of pre-mining concession, either exploration 
(Exploration (Eksplorasi), during feasibility study (Studi Kelayakan), Country Reserves area (Wilayah 
Pencadangan Negara, WPN), Special Mining Efforts Area License (Wilayah Izin Usaha Pertambangan 
Khusus, WIUPK), or are an operating mine (konstruksi, eksploitasi, operasi produksi)         

3Indonesian landuse classification distinguishes between non-forestland (APL), which comprises 
areas designated for other uses (such as agriculture or settlements), and forest-land. Forest-land can 
be further classified as conservation (HK), protection (HL) and production forest. Conservation and 
protection forests were designed to preserve biodiversity and protect ecosystem services 
respectively and were lumped into a protection category for the deforestation model. Production 
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forest can be differentiated into limited production forest (HPT), in which low intensity logging is 
allowed, but no stand replacement. In regular (HP) selective logging is allowed but also clear 
cutting for silvicultural plantations. In convertible production forest (HPK) logging is also allowed, 
but so is the conversion to agriculture estates and others uses. HPT was kept as “limited production 
forest”, while HP and HPK were lumped into one “production forest” category. Protected forests were
used as a reference category and coded as 0.      

Table S2: Model coefficients for regions in Wallacea 

Region name1/ 
Predictor name

N SLW
Goront

alo

WS
SLW

C SLW
SE

SLW
C MLK S MLK N MLK E NT W NT

in
model

in best
model

intercept -0.7995 -3.1626 -3.6868 -2.6923 -2.3736 -5.3676 -4.0426 -5.6488 -5.1037 9 9

past 
deforestation

4.1161 7.217 5.1835 5.0109 5.9212 9.7533 7.9787 4.0345 9.8418 9 9

slope -0.0202 -0.0334 -0.0006 -0.0086 -0.0206 -0.0385 -0.0295 -0.0126 -0.0615 9 9

fire (yearly 
average)

-1.9734 nb nb nb -1.9834 nb nb nb -1.6947 9 3

access (hrs) nb2 nb nb -0.0001 nb nb nb 0.0273 nb 9 2

population 
pressure

0.0001 nb 0 nb nb -0.0001 nb nb 0.6592 9 4

subsistence 
livelihood

-0.1093 -0.0127 -0.0472 -0.0882 0.0101 -0.0102 -0.043 -0.2578 -0.0403 9 9

plantation 
livelihood

0.0003 0.0015 nb -0.0017 0.0011 nm 0.0004 nm3 0.0028 7 6

non-agricultural 
livelihood

-0.0044 0.0014 -0.0045 -0.0007 0.0029 0.0004 -0.0002 -0.005 0.0021 9 9

fisheries 
livelihood

-0.002 -0.0014 0.0043 -0.0023 -0.003 -0.0013 -0.0015 0.0039 nb 9 8

transmigrant 
population

nb -0.0009 0.0004 nm -0.0066 nb nb nm nm 6 3

mining 
(exploration)*

nb 0.5075 0.2451 -0.2679 -0.1616 -0.8436 -0.1454 1.4684 0.2272 9 8

mining 
(production)*

nb 0.7879 0.3181 0.2307 0.2708 0.1504 0.2557 -0.4747 -0.2956 9 8

non-forest* 0.8962 0.0322 0.6567 0.8415 1.8143 1.9437 1.0179 0.6083 -0.0299 9 9

production 
forest*

0.869 -0.0322 0.1912 0.2964 0.7573 0.6139 0.3798 0.5048 0.3686 9 9

limited 
production forest
*

0.3131 -0.0902 0.0296 0.1993 0.4617 0.3748 0.1407 -0.2759 0.168 9 9

1N SLW Gorontalo – North Sulawesi & Gorontalo; WS SLW – West and South Sulawesi; SE SLW 
– Southeast Sulawesi; C MLK – Central Maluku; S MLK – South Maluku; N MLK – North 
Maluku; E NT – East Nusa Tenggara; W NT – West Nusa Tenggara. 
2Predictor not included in the best model and thus not used for projection.                                          
3Predictor not included in model selection, as correlated with other predictors (Pearson correlation 
coefficient > 0.7)                                                                                                                                     
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Table S3: Region area, forest area and projected proportion of forest loss.

Year

Region name/ 
Predictor name

N SLW
Goront
alo

WS 
SLW

C SLW
SE 
SLW

C 
MLK

S MLK
N 
MLK

E NT W NT

- Region area1 26,549 62,045 36,633 61,154 28,010 10,203 31,510 46,445 19,669

2000 
Forest area 13,521 23,637 20,381 40,785 19,500  4,534 22,661  1,777  4,517

Forest cover (%) 50.93 38.1 55.64 66.69 69.62 44.43 71.92 3.83 22.97

2018
Forest area 12,579 21,904 18,582 37,523 18,632  4,448 21,258  1,734  4,420

Forest cover (%) 47.38 35.3 50.73 61.36 66.52 43.6 67.46 3.73 22.47

2033

Forest area2 area 10,275 17,929 15,220 29,399 15,496  4,289 15,193  1,708  4,193

lower CI 10,252 17,891 15,187 29,364 15,466  4,281 15,127  1,706  4,183

upper CI 10,299 17,971 15,241 29,439 15,525  4,297 15,252  1,710  4,205

Forest loss (%)

% 18.31 18.15 18.09 21.65 16.83 3.58 28.53 1.49 5.13

lower CI 18.12 17.95 17.98 21.54 16.68 3.4 28.25 1.38 4.87

upper CI 18.5 18.32 18.27 21.74 16.99 3.77 28.84 1.63 5.36

2053

Forest area

%  6,956 11,609 11,149 18,352 10,836  3,766  6,826  1,677  3,644

lower CI  6,930 11,538 11,116 18,288 10,783  3,732  6,748  1,674  3,627

upper CI  6,982 11,672 11,189 18,415 10,883  3,796  6,885  1,679  3,659

Forest loss (%)

% 44.7 47 40 51.09 41.84 15.34 67.89 3.33 17.55

lower CI 44.49 46.71 39.78 50.92 41.59 14.66 67.61 3.21 17.21

upper CI 44.91 47.33 40.18 51.27 42.13 16.1 68.26 3.5 17.94

1Area estimates in km2                                                           
2Median of projected estimates (n=100) given
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Figure S1: Proportion of match between observed and cumulative forest loss within the neighborhood of a pixel
for regions in Wallacea. Boxplots show the median across simulations (n=100).
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