University of

"1l Kent Academic Repository

Liza, Farhana Ferdousi (2019) Improving Training of Deep Neural Network
Sequence Models. Doctor of Philosophy (PhD) thesis, University of Kent,.

Downloaded from
https://kar.kent.ac.uk/81637/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/81637/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Thesis Title

Improving Training of Deep Neural Network Sequence Models

Farhana Ferdousi Liza

A thesis presented for the degree of
Doctor of Philosophy

School of Computing
University of Kent
United Kingdom
August 2019

Abstract

Sequence models, in particular, language models are fundamental building blocks
of downstream applications including speech recognition, speech synthesis, informa-
tion retrieval, machine translation, and question answering systems. Neural network
language models are effective in generalising (i.e. perform efficiently with the data
sparsity problem) compared to traditional N-grams models. However, neural net-
work language models have several fundamental problems — the training of neural
network language models is computationally inefficient and analysing the trained
models is difficult. In this thesis, improvement techniques to reduce the computa-
tional complexity and an extensive analysis of the learned models are presented.

To reduce the computational complexity we have focused on the main com-
putational bottleneck of neural training which is the softmax operation. Among
different softmax approximation techniques, Noise Contrastive Estimation (NCE) is
seen as a method that often does not work well with deep neural models for lan-
guage modelling. A thorough investigation was done to find out the appropriate
and novel integration mechanism of NCE with deep neural networks. We have also
explained why the proposed specific hyperparameter settings could have an impact
on the integration.

Existing analysis techniques are not sufficient to explain the training and
learned models. Established wisdom on learning theory cannot explain the gener-
alisation of over-parametrised deep neural networks. Therefore, we have proposed
methods and analysis techniques to understand the generalisation and explain the
regularisation. Furthermore, we have explained the impact of the stacked layers in
deep neural networks.

The presented techniques have made the neural language models more ac-
curate and computationally efficient. The empirical analysis techniques have helped
us understand the model learning and improved our understanding of the generalisa-

ii

tion and regularisation. The conducted experiments were based on publicly available
benchmark datasets and standard evaluation frameworks.

Acknowledgements

I would like to thank my supervisors, Dr. Marek Grzes and Professor Alex Alves Fre-
itas, for the patient guidance, encouragement and advice they have provided during
my PhD study. I have worked more closely with Marek and I have been extremely
lucky to have a supervisor who cared so much about my work, my well-being and
who responded to my questions and queries so promptly. His knowledge, diligence,
commitment, dedication and attention for details have always impressed and inspired
me. I want to thank the thesis examiners Professor Howard Bowman and Dr. Dimitar
Kazakov. Their constructive feedbacks have made this thesis a better piece of work.

I must express my gratitude to Md Shoaib Ahmed, my husband, for his
continued support and encouragement. I was continually amazed by his willingness
to proofread countless pages, and by his patience when I experienced all of the ups
and downs of my research. I also would like to thank my father, mother and siblings
who have always encouraged me to pursue my PhD and told me to give the PhD the
up-most priority.

I thank Professor Sally Fincher for asking all those general but difficult ques-
tions that chase me whole PhD study and helped to structure my thinking process.
I thank Professor Peter Rodger for approving my fund application for travels and
summer school, and I must admit, his prompt response has always helped me to be
less stressed and more productive. I thank the selection committee of the School of
computing who have sponsored my PhD study through the ‘School of Computing
JILP Endowment Scholarship’, without which this research would be impossible.

During my PhD study, I have received great support from the information
services, school of computing’s administrative staff members and IT technical sup-
port. I want to thank Angela Doe (ret.), Amanda Ollier, Sonnary Dearden, Julie
Teulings and Angie Allen for their great administrative support. I want to thank
the Graduate School for providing the skill trainings, those were really useful. I

iii

iv

would like to thank other PhD students, especially Fabio Fabris and Caroline Rizzi
Raymundo for their friendly interaction, which made the PhD study less isolated. I
would also like to thank Lee Harris for his proofread of my papers.

The PhD thesis has improved in quality by the critical reviews from the
anonymous reviewers and I would like to thank them all, I also thank SPiCe compe-
tition organiser for setting the challenging datasets and organising such a research-
oriented competition. I must also thank the members of my supervisory panel: Pro-
fessor Sally Fincher and Dr. Colin Johnson, who have also contributed to my research
with insightful comments.

Contents

1 INTRODUCTION 1
1.1 The Focus of This Research 4

1.2 Original Contribution 5

1.3 Structure of the Thesis, 6

1.4 The Publications Derived From This Research 7

2 BACKGROUND 9
2.1 Languagemodelling 0 o L 9
2.1.1 Literature Review on Language Modelling 10

2.2 Evaluation of Language modelling 13
2.2.1 Intrinsic Evaluation: Perplexity 13

2.3 Classic Language Modelling Techniques 15
2.3.1 Statistical N-gramso L oL 15

2.3.2 Weighted Finite-state Automata 17

2.4 NeuralModels. 20
2.4.1 Neural Network Language Modelling 32

2.4.2 The Problem of Very Slow Training Time 33

CONTENTS vi

2.4.3 Limited Effective Context Size 36

2.5 Generalisation and Regularisation 36
2.5.1 Bias-Variance Tradeoff 38

2.5.2 Generalisation in Deep Neural Networks 39

2.6 Problem Analysis 43
3 A COMPARISON OF SEQUENCE PREDICTION METHODS 46
3.1 Data Description 0 . 48
3.2 Problem Statement and Evaluation Criteria 50
3.3 Related Works 51
3.4 Method Used For thedataset 52
3.4.1 N-gram with smoothing 52

3.42 WEFA 53

3.4.3 Neural Network 57

3.5 Experimental Settings 59
3.6 Results and General Analysis 59
3.7 Specific Analysis: The Impact of Multiple Layersin NN 65

4 NEURAL LANGUAGE MODELS WITH APPROXIMATE NORMALISA-

TION 73
4.1 Introduction 73
42 Background L 76
43 OurApproach 8o

4.3.1 Learningrate 82

4.3.2 Weight Initialisation 84

CONTENTS vii

44

45

4.6

4.3.3 Sampling Techniques 86
Experimental Methodology and Implementation 86
Results and discussion L 90
4.5.1 Gradient Analysis L. 95
4.5.2 Consistency Analysis 96
Conclusion L 96

5 GENERALISATION IN DEEP NEURAL LANGUAGE MODEL THROUGH

SELF-NORMALISATION 98
51 Background L 102
5.1.1 Regularisation and Generalisation 106
5.2 Methods and Objectives 106
5.2.1 NCE in Recurrent Highway Networks 106
52.2 NCEasaRegulariser 108
5.2.3 Understanding and Explaining Generalisation 111
5.3 Experimental Setup oo o L 114
5.4 Resultsand Discussion 116
5.4.1 Improving Generalisationof RHNs 118
54.2 NCEAs ARegulariser 120
5.4.3 Low Rank Analysis / Regularisation 120
5.4.4 Explaining Generalisation: Generalised Variance 125
5.4.5 Reducing Co-adaptation and Inducing Sparsity 127
5.4.6 Reduced Parametrisation 128

5.4.7 Gradient Analysis 131

CONTENTS viii

55 Conclusion 132
6 CONCLUSION AND FUTURE WORKS 134
Appendices 138

A Appendix: A 139

List of Figures

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Example of a weighted automaton A = (o;, X0, {As}) Over L = a,b
with 2 states (graph representation)

ANeuronCell
Network graph for a (L + 1)-layer perceptron.

An approximate high-level taxonomy of machine learning methods
(Boning et al. 2019). The research in this thesis is mostly under the cate-
gory of discriminative supervised learning with deep recurrent neural
networks.

Recurrent Neural Network
Parameters in a Neural Network (source: wikipedia)

The structure of the Long Short-Term Memory (LSTM) cell. The figure
is taken from Le et al. (2019). The network takes three inputs. X is the
input of the current time step. h¢_; is the output from the previous
LSTM unit and C¢_, is the “memory” of the previous unit, which is the
most important input for sequential modelling. As for the outputs, h¢
is the output of the current network. C; is the memory of the current

Learning curve: bias and variance contributing to total error (Neal et al.
2018). v e e e e e e e e e e e e e e e e

ix

37

LIST OF FIGURES

2.9

3-3

3.4

43

44

Typical relationship between model complexity (capacity) and error.
Training and test error behave differently. At the left end of the graph,
training error and test error are both high. This is the underfitting
regime. As we increase capacity, training error decreases, but the gap
between training and test error increases. Eventually, the size of this
gap outweighs the decrease in training error, and we enter the over-
fitting regime, where capacity is too large, above the optimal capacity
(Goodfellow et al. 2016, Fig. 5.3).

The best neural architectures for the datasets in the literature
Spectral Learning parameter learning
Neural architectures forthedatasets

A bar chart with (standard) error bars (shown as black lines) of the
models NDCG scores in Tab. 3.3. The (standard) error bars was calcu-
lated using the standard error of the mean (SEM). SEM = \/LTS, where
o is the standard deviation of the NDCG scores. The height of the bar

represents the mean value of the NDCG scores.

Ilustration of the output layer: the computational graph to compute
the training loss of a stacked recurrent network that maps an input
sequence of values w to a corresponding sequence of output values o.
A loss L measures how far each o is from the corresponding training
target y. The loss L internally computes Eq. 4.3 or approximate it using
Eq. 4.6. The mini-batched stochastic gradient descent optimisation will
use Eq. 4.4 and Eq. 4.7 to find the parameters including the 6.

The unfolded stacked LSTM network: the thick line shows a typical
path of information flow in the LSTM. The information is affected by
dropout L + 1 times, where L is the depth of the network. The dashed
arrows indicate connections where dropout is applied, and the solid
lines indicate connections where dropout is not applied. The figure is
adapted from (Zaremba et al. 2014, Figure3).

Selection of the learning rate parameter v

Convergence phase in the largemodel

37

LIST OF FIGURES xi

4-5
4.6
4.7

4.8

4.9

53
5.4
5.5

5.6

5.7

5.8

Convergence phase in the medium model 93
Convergence phase in the largemodel 93
Validation perplexity of the medium model during all epochs of learning 94

High learning rate (LR) to increase the initial softmax perplexity (a).
NCE and softmax initial perplexities in the first epoch; note that only
training perplexity is available within one epoch (b). 95

The gradientrange 95

Illustration of the output layer with RHN: the computational graph to
compute the training loss of a recurrent highway network that maps
an input sequence of w values to a corresponding sequence of output
o values. A loss function d measures how far each o is from the cor-
responding training target y. The loss function d internally computes
Eq. 4.3 or approximate it using Eq. 4.6. The mini-batched stochastic
gradient descent optimisation will use Eq. 4.4 and Eq. 4.7 to find the
parameters including the 6. 0 0oL 103

Ilustration of the recurrence depth of one time step in Fig. 5.1: com-
parison of (a) RHN of recurrence depth d and (b) stacked RNN with
depth d, both operating on a sequence of T time steps. The longest
learning path between hidden states T time steps is d x T for RHN and

d—T+1stacked RNN. 104
NCEonPTB 108
Selection of the learning rate parameter T for the PTB dataset 115
NCE asaregulariser 120

Parameters of the output layer (i.e., matrix 0) learned for the PTB and
the WikiText-2 datasets 122

Cumulative variance analysis of the output layer (i.e., matrix 0), on
Stacked LSTMand RHN 123

Cumulative variance analysis of the output layer (i.e.,, matrix 0), on
PTBand Wiki-Text2 o o o 123

LIST OF FIGURES xii

59

5.10

5.11
5.12
5-13

5.14

5-15

5.16

5.17

5.18

Reconstruction error of the output layer (i.e., matrix 0) Stacked LSTM

Reconstruction error of the output layer (i.e., matrix 6), on PTB and

Wiki-Text2 oo e 124
Weight Variance (Stacked LSTM) 125
Weight Variance (RHN and PTB dataset) 126
Weight Variance (RHN and Wiki-text2 dataset) 126

Cumulative variance analysis of the output layer (i.e., matrix 6), on
PTB and Wiki-Text2 with weight tying (WT) 128

Reconstruction error of the output layer (i.e., matrix 6), on PTB and

Wiki-Text2 with weight tying (WT) 129
Weight Variance (RHN and PTB dataset) 129
Weight Variance (RHN and Wiki-text2 dataset) 130

Gradients with respect to microsteps h, and h, versus asymptotic con-
vergence of NCE and softmax. Fig. 5.18a and Fig. 5.18b show the gra-
dients with respect to h; and hy for softmax and NCE respectively.
In Fig. 5.18c, NCE’s convergence improves when the gradient of h,
increases in Fig. 5.18b.o oo Lo oo 131

List of Tables

3.2

33
34
35

3.6

4.2

43

4.4

4.5

Dataset Descriptions — The column # gives a number to the dataset,
the column Sym gives the number of different symbols, Train and Test
provide respectively the number of elements in the training and test
sets, and Type details the source of thedata. 49

Comparison of Scores Between SPiCE Neural Models (Shibata & Heinz

2017, Tab. 2) 60
Comparing Three Methods on the Sequence Prediction Task 61
The hyperparameters for the WESA 62
Comparing Sequence Prediction Scores (Basic Architecture) 67

The hyperparameters of WFA, the scores of WFA and neural models (2
Layers (2L) and 1 Layer (1L)), and the score improvement by the best

neural model compared to WFA 68
Impact of noise sample distribution on medium models 89
Impact of noise sample size on medium models 89

Comparison with the state-of-the-art results of different models on the
PTBdataset e 90

Weight initialisation ranges for the uniform distribution (U) and the
corresponding test perplexity (PPL) 91

Comparison of softmaxand NCE 91

xiii

LIST OF TABLES xiv

5.1
5.2

53

54

55

5.6

Summary of datasets L 115
Comparing the running time of softmaxand NCE 117

Results on PTB using neural language models with variational dropout,
recurrence depth L = 10 in Recurrent Highway Networks, and hidden
SIZe 830 e 117

Results on WiKiText-2 using neural language models with variational
dropout, recurrence depth L = 10 in Recurrent Highway Networks,
and hiddensize830. L Lo 118

Generalised Variance and Generalisation Performance 125

Generalised Variance and Generalisation Performance (WT) 129

INTRODUCTION

The aim of this thesis is to advance the understanding and improve the performance
of neural network-based sequence models. As a way of illustrating some of the
key sequence models that are used for various natural language processing tasks, a
specific challenging sequence modelling task (i.e. language modelling) is used in this
thesis extensively.

Language Modelling (LM) is the attempt to characterise, capture and exploit
regularities in natural language. In Machine Learning (ML), the task of language
modelling is central to both Natural Language Processing (NLP) and Language Un-
derstanding (Rosenfeld 2000). Concretely, language models assign probabilities to
sequences of words or assign a probability to a word after seeing a given sequence
of words. As a language model places a probability distribution over a sequence
of words, language models capture the syntactic and semantic regularities of the
language and extract a fair amount of information about the knowledge in the cor-
pus (Mikolov, Yih & Zweig 2013, Mikolov, Sutskever, Chen, Corrado & Dean 2013,

Jozefowicz et al. 2016).

Moreover, language models are the fundamental building blocks for a large
range of ML and NLP models that process natural language with incomplete knowl-
edge. Overall, a model designed for a particular NLP task that requires language
understanding uses language models. Therefore, a language model is a crucial part
that determines the performance of other ML and NLP tasks, such as speech recog-
nition (Mikolov et al. 2010, Prabhavalkar et al. 2017), machine translation (Luong
et al. 2015, Gulcehre et al. 2017), text summarisation (Filippova et al. 2015, Gambhir
& Gupta 2017), question answering (Wang et al. 2017), semantic error detection (Rei
& Yannakoudakis 2017, Spithourakis, Augenstein & Riedel 2016), and fact-checking
(Rashkin et al. 2017). Language models have also been used to transfer learning from
one domain to another. Language models facilitate transfer learning, which is an ef-
ficient way to improve numerous ML systems (Erhan et al. 2010, Dai & Le 2015, Rad-
ford et al. 2018), as language models provide a systematic way to use unlabelled data
through the learned distributed representation for words (i.e. word embeddings). The
importance of a language model can be observed by removing the language model

CHAPTER 1. INTRODUCTION 2

from a downstream application. For example, Rosenfeld (2000) observed a drastic
effect by removing the language model from a speech recognition system. Language
models have also been used in clinical decision-making systems. For example, Fis-
cher & Bauckhage (2018) showed how to use language models to analyse radiological
reports, De Vine et al. (2014) showed how to extract clinical information using lan-
guage modelling, and Spithourakis, Petersen & Riedel (2016) showed how to use
language modelling for clinical text prediction. As language models improve many
ML and NLP systems that have both economic and societal impact, in this thesis we
investigate the research gaps and attempt to provide solutions that improve language
modelling.

The complexity of language modelling or NLP tasks in general, might not
be obvious. For example, in 1954, the Georgetown experiment involved fully auto-
matic translation of more than sixty Russian sentences into English (Edwards 2016).
The researchers in that experiment estimated that within three or five years, machine
translation would be a solved problem (Hutchins 1995). However, real progress was
much slower. In fact, in 1966 the Automatic Language Processing Advisory Commit-
tee (ALPAC) reported that ten-year-long research had failed to fulfil the expectations
(Pierce & Carroll 1966). Consequently, funding for machine translation was dramat-
ically reduced. Little further research in machine translation was conducted until
the development of the first Statistical Machine Translation (SMT) system in the late
1980s. The basic idea of an SMT is to search for the most probable translation T for
a given source sentence S using the Bayes theorem and decompose the SMT into two
sub-problems consisting of translation modelling (TM) and language modelling (LM)
as follows:

T = argmaxtP(T|S)
T = argmax PSITIPT)
= arg T P(S)
T = argmaxt P(S|T) P(T)
S~
™ LM

Although machine translation has improved since, it is still an active research area
and language models help to improve the performance of machine translation sys-
tems (Brants et al. 2007, Luong et al. 2015).

In addition to the benefit that language modelling brings to a practical NLP
task, language models play a role in facilitating natural language understanding by

An anecdote.

CHAPTER 1. INTRODUCTION 3

a machine (i.e. model) (Dong et al. 2019). Natural language understanding is impor-
tant for developing intelligent machine learning models. In 1950, Alan Turing (Turing
1950) proposed the Turing test as a criterion of intelligence. His works also show that
any computable problem can be computed by a Universal Turing Machine, which
means that if human intelligence can be defined and represented (e.g. learning repre-
sentation) by some algorithm, a Turing Machine is powerful enough to compute it. In
fact, the success of machine learning algorithms generally depends on a model’s ca-
pacity on learning representation (Bengio et al. 2013) and language modelling helps
in learning data representation. Computers today are Turing-complete, i.e., can com-
pute any computable algorithm. Thus, the main problem is to find the configuration
of a machine so that it would produce the desired behaviours that humans consider
intelligent. These configurations are discovered by the hyperparameter tuning of
models.

An immediate attempt to make a machine (e.g. NLP model) intelligent is
very difficult, however, we can think of several ways that would lead us towards intel-
ligent machines. For NLP models, a reasonable way would be to mimic the learning
processes of humans. Natural language is an immensely complicated phenomenon.
It is a great mystery about how children learn their first language without learning
any specific grammatical rules. In general, a language is learned by observing the
real world, recognising its regularities, and mapping acoustic and visual signals to
higher-level representations in the brain.

To make a model intelligent, we might need to mimic the whole human
learning process which is difficult to define and represent at the moment. The main
difficulty in defining and representing the human learning process is that we do not
know how real-life learning happens. The learning problem is complex and many
open questions still need to be answered. For example, we need to have a better
understanding of human learning and then get the best formal representation of a
language. Whereas formal language is a set of strings of symbols together with a
set of rules that are specific to it, such as regular grammar or context-free grammar
or programming languages, natural language does not have such well-defined rules.
Natural languages have emerged and therefore no specific rules can describe or spec-
ify them fully. This difficulty makes learning complex as we cannot use a formal
language to define a natural language. Another question, to mimic the real-world
situation, how to learn language jointly with other modalities, such as acoustic, im-
age, and video. Moreover, when taking a data-driven approach to training a model,
we do not have a precise understanding of the data requirement that must be pro-
cessed during the learning of a model, and this also raises several questions about

CHAPTER 1. INTRODUCTION 4

the model size.

A current approach to language modelling is to use as much data as possible
to beat the state-of-the-art results. However, when we have a limited dataset, this
approach fails. Furthermore, the size of a dataset can be small, medium or large
depending on the model type. The same dataset can be medium-sized for one model
type but can be large-sized for another model type.

Model training time and model interpretability raise challenging research
questions. While some models are fast to train, other models can take much longer
time to train. Improving the training time is thus essential for slower models to be
practically usable. While some models are interpretable, others are essentially black-
box models. To make a model intelligent, we often want all good qualities from a
single model, which is itself a challenging research direction.

It might be too ambitious to attempt to solve all these research problems
together and to expect too much from models or techniques that even do not allow
the existence of a solution (an example might be the well-known limitations of finite
state machines to represent efficiently large patterns or neural network models to
be interpretable). While it is likely that attempts to build language models that can
understand text in the same way as humans do just by reading huge quantities of text
data is unrealistically hard (as humans would probably fail in such task themselves),
language models estimated from huge amounts of data are very interesting due to
their practical usage in a wide variety of successful applications which have economic
and societal impact.

1.1 The Focus of This Research

In this PhD study, we are concentrating on the fundamental problems of language
modelling. A Statistical Language Model (SLM) is the state-of-the-art language model
for downstream applications. The main reason for Statistical Language Models (SLMs)
being the state-of-the-art language models for downstream applications is that these
models are easy to train (e.g. only one hyperparameter), interpretable and fast in
training. However, SLMs work in discrete word indices space (Schwenk & Gauvain
2002) and have a sparsity problem (Allison et al. 2006) that makes them inefficient
in learning representation and generalising as there is no obvious relation between
the word indices. Moreover, SLMs are based on the maximum likelihood estima-
tion (MLE) and the assumption is that anything unseen in a training corpus cannot

CHAPTER 1. INTRODUCTION 5

happen in the corresponding test corpus. This assumption is often wrong with a
limited training corpus (i.e. incomplete knowledge) and gives rise to a sparsity prob-
lem. A Neural Language Model (NLM) uses a distributed continuous representation
and is less prone to the data sparsity problem compared to a SLM (Kim et al. 2016).
Words are represented as vectors (i.e. word embeddings) and are fed as inputs to
a NLM to enhance the learning representation. However, a NLM has training and
interpretability problems. The well-known vanishing gradient problem makes the
training of neural models inefficient. In this thesis, our goal is thus to use models that
have a superior capacity for learning representation and restricting the vanishing gra-
dient problem. Contrary to the statistical models, neural models are complex (e.g. a
large hyperparameter set), not interpretable and their training is slower compared
to SLMs. In this thesis, our goal is thus to improve the training and understanding
of neural language models. To improve the training, our objective is to reduce the
training time and improve the generalisation performance on test data. To improve
the understanding of neural models, we will use the spectral weighted automata
as a probing tool. To understand why a component makes neural models perform
superiorly, we will focus on the understanding of the regularisation of deep neural
networks.

The research is motivated by the fact that neural network models demon-
strate superior representation capacity, but are inefficient in terms of slow training
and difficulty in explaining the learning (i.e. explaining why better or worse perfor-
mance resulted from a specific learning algorithm) as trained models are essentially
uninterpretable. The focus of this research is thus on improving the training speed
and the generalisation ability of neural models, as well as improving the understand-
ing of the learning of neural network language modelling.

1.2 Original Contribution

Our research has been carried out to fulfil the focus and objectives described above,
and we have made the following contributions:

1. To identify a machine learning algorithm that is best suited for language mod-
elling, comparative analysis of different algorithms is essential. Comparative
analysis of the machine learning algorithms of interest (i.e. statistical language
models, spectral weighted finite-state automata and neural network models) on
diverse datasets was not available in the literature. We unravel the characteris-

CHAPTER 1. INTRODUCTION 6

tics and enhance the understanding of different models and datasets by apply-
ing three types of machine learning algorithms on fifteen benchmark datasets.
Moreover, we carefully choose the models so that we can use the understanding
of an interpretable model to enhance the understanding of a black-box model.

2. Among different softmax approximation techniques, Noise Contrastive Esti-
mation (NCE) is seen as a method that does not work well with deep neural
models for language modelling. The deep neural models are essentially black
boxes in terms of understanding, and it is difficult to explain why a certain hy-
perparameter setting works and why other settings do not work. A thorough
investigation was done to find out the appropriate and novel integration mech-
anism of NCE with deep neural networks. We have also attempted to explain
why the specific hyperparameter setting could have an impact on the integra-
tion. We were able to push the state-of-the-art of a language modelling task to
new limits in a given class of method.

3. The established wisdom on learning theory could not explain the generalisation
of deep neural networks. We have proposed methods and analysis techniques
to understand the generalisation and explain the regularisation of deep neural
language models.

1.3 Structure of the Thesis

The thesis contains a total of six chapters. Two chapters (i.e. chapters 3 and 4) are
based on peer-reviewed published works. A journal paper is under preparation based
on chapter 5. The remaining chapters consist of the introduction, background, liter-
ature review, and conclusions along with the future research directions. Concretely,
the chapter organisation is as follows:

Chapter 1 contains a general introduction of this thesis outlining the main objec-
tives, key contributions and research output.

Chapter 2 has a non-exhaustive literature review on language modelling methods.
Concretely, we have highlighted the strengths and weaknesses of different language
modelling methods, their learning procedure and learning complexity. We have also
reviewed the generalisation properties of machine learning models.

CHAPTER 1. INTRODUCTION 7

Chapter 3 has a comparison of the performance of sequence prediction methods
including the methods for language modelling reviewed in chapter 2. This chapter
uses the benchmark datasets from the SPiCe sequence prediction challenge. The
datasets are interesting as they are from different domains including the language
modelling benchmark dataset PennTree Bank. We have also related neural models
with weighted finite-state automata trained using a spectral algorithm to improve
the understanding of neural models. This chapter is based on three of our published
works (Liza & Grzes 2016, 2017, Liza & Grzes 2019).

Chapter 4 Based on the comparison in chapter 3, we have seen that neural network
models have enhanced capacity in language modelling. Neural language models
take longer to train and do not scale well when the vocabulary is large. NCE is
an approximation approach developed to reduce the computational complexity of
partition functions. However, it was shown in the literature that it does not work
well with deep neural language models. We introduced the ‘search-then-converge’
learning rate schedule and other important hyperparameters for NCE and designed
a heuristic that specifies how to appropriately use the hyperparameters of neural
network to make NCE successfully integrated with deep neural language models.
This chapter is based on our publication (Liza & Grzes 2018).

Chapter5 Although the main goal of the NCE investigation was to incorporate NCE
into a deep neural network, we have found that NCE improves the generalisation
performance. In this chapter, we show that the improved generalisation is due to
the fact that NCE can be seen as a regulariser because it leads to output layers that
have an approximately lower rank than softmax. Our analysis is also supported by
spectral analysis.

Chapter 6 concludes the thesis outlining the detailed contributions and limitations.
This chapter has research questions for future work that can deepen our findings.

1.4 The Publications Derived From This Research

A Liza, F. and Grzes, M. (2016). Estimating the Accuracy of Spectral Learning
for HMMs. in: Proceedings of the 17th International Conference on Artificial
Intelligence: Methodology, Systems, Applications (AIMSA). Springer, pp. 46-
56.

CHAPTER 1. INTRODUCTION 8

B

D

Liza, F. and Grzes, M. (2016). A Spectral Method that Worked Well in the
SPiCe’16 Competition. in: Verwer, S., van Zaanen, M. and Smetsers, R. eds.
Proceedings of the 13th International Conference on Grammatical Inference.
Journal of Machine Learning Research, pp. 143-148.

Liza, F. and Grzes, M. (2016). An Improved Crowdsourcing Based Evaluation
Technique for Word Embedding Methods. in: Proceeding of the First Workshop
on Evaluating Vector Space Representations for NLP (RepEval at ACL). USA:
The Association for Computational Linguistics, pp. 55-61.

Liza, F. and Grzes, M. (2018). Improving Language Modelling with Noise Con-
trastive Estimation. in: Proceeding of the Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI-18). Palo Alto, California, USA: AAAI Press, pp.

5277-5284.
Liza, F. and Grzes, M. (2019). Relating RNN layers with the spectral WFA
ranks in sequence modelling. in: Proceedings of the ACL Workshop on Deep

Learning and Formal Languages: Building Bridges. Florence, Association for
Computational Linguistics, pp. 24-33.

BACKGROUND

This chapter provides the background material and a literature review for language
modelling. In this chapter we will describe three powerful modelling techniques, the
traditional N-gram models, mathematical (formal method based) Weighted Finite-
state Automata models and the recent advances of neural models. In the next chapter,
we will compare these three methods with publicly available benchmark datasets.

In this thesis, we will concentrate mainly on the improvement, understand-
ing and the analysis of the neural models. Neural networks are related to conven-
tional statistical models (Warner & Misra 1996, Ciampi & Lechevallier 2007). These
models are powerful sequence predictors and are able to learn an intricate computa-
tion, for example, their ability to sort N N-bit numbers using only 2 hidden layers of
quadratic size (Razborov 1992).

This chapter is organised as follows: section 2.1 briefly reviews language
modelling in general. Section 2.2 covers the intrinsic evaluation technique of the
language models. Section 2.3 covers the classical techniques of language modelling.
We can call them a Markov model as they are based on the Markov assumption on
limited history or context. Section 2.4 defines neural network frameworks for lan-
guage modelling. Contrary to the models in section 2.3, theoretically, a specific type
(designed for temporal sequence) of neural models can capture unlimited history,
thus they are not based on the Markov assumption. In section 2.4, we describe the
different classes of neural models for language modelling and the factors that impact
on the performance of neural language modelling. In section. 2.5, we will discuss the
generalisation and regularisation techniques for different models.

2.1 Language modelling

Language modelling (LM) is the attempt to capture regularities of natural language
for the purpose of improving the performance of various natural language appli-
cations. Generally, sequence prediction is a problem that involves using historical

CHAPTER 2. BACKGROUND 10

sequence information to predict the next value or values in the sequence. For lan-
guage modelling, the values in the sequence are linguistic units (character, subword,
word, sentence, document). Language modelling is the task to model the probability
that a given linguistic unit appears next after a given sequence of the same linguistic
units. The historical sequence information is called the context. Specifically, when
we study word language modelling with text data where given a sequence of ob-
servations O = (0o, 04,0,,...,07) over the vocabulary V, the sequence probability

is

T T

p(0) = [[ploiloo,...,0i-1) = [[ploiles). (2.1)

1=1 i=1

Here, for a given word o, ¢{ =< 00, 04,...,0i—; > represents its full, non-truncated
context. For the case of just one observation in the sequence, there is no context.
Language modelling can be formulated as a classification task: each word can be
thought of as a class, and predicting the next word is classifying the context into a
class for each next word.

2.1.1 Literature Review on Language Modelling

Word language modelling is challenging for various reasons. Linguistically, the task
is ill-defined since the term ‘'word’ has no unique meaning (Manning et al. 1999).
This leads to many other challenges like data sparsity. As the same concept can
be expressed in many different ways, many possible valid word sequences are not
observed in a given corpus. Despite this difficulty, the researchers have developed
practical models to deal with language. N-gram models are one of the earliest statis-
tical techniques (Bahl et al. 1983, Church 1989, Jelinek 1997) for language modelling.
There are smoothing techniques applied to the N-gram model to deal with the spar-
sity problem. We will describe N-gram modelling approaches in section 2.3.1. The
basic idea is to consider the structure of a text, corpus, or language as the probability
of different words occurring alone (unigram) or occurring in sequence (bigram, tri-
gram etc). Some typical extensions to a traditional N-gram model are a Class-based
N-gram model (Brown et al. 1992) and a Grammatical Trigrams (Lafferty et al. 1992).
These approaches are proposed to solve the large vocabulary problem and incorpo-
rate grammatical features.

Other statistical language models were developed based on decision trees
(Potamianos & Jelinek 1998, Heeman 1999) and maximum entropy-based techniques

CHAPTER 2. BACKGROUND 11

(Rosenfeld 1994, Peters & Klakow 1999, Wang et al. 2005). These models allowed
the incorporation of various manual (hand-engineered) features (e.g., part of speech
(POS) tags, syntactic structure) into the language models, rather than having to rely

on the words alone.

Weighted Finite-state Automata (WFAs) provide a general framework for
the representation of functions for mapping strings to real numbers. They include as
special instances Deterministic Finite-state Automata (DFAs), Hidden Markov Mod-
els (HMMs), and Predictive States Representations (PSRs). Learning Finite-state Au-
tomata is a fundamental task in grammatical inference. Grammatical inference is
about learning a grammar given information about a language. The mathematical
theory behind WFAs has been extensively studied in the past (Filenberg 1974, Salo-
maa & Soittola 1978) and recently in a dedicated handbook (Droste & Kuich 2009). In
NLP, WFA has been applied in parsing (Mohri & Pereira 1998), sequence modelling
and prediction (Cortes et al. 2004), and language modelling (Lothaire 2005, Mohri

19974,b).

A probabilistic WFA (PFA) is a WFA satisfying some constraints that com-
putes a probability distribution over strings; PFA are expressively equivalent to Hid-
den Markov Models (HMM) (Dupont et al. 2005). The main problem with the WFA-
based approach is the computational complexity (Mohri 2004). Gold (1978) and An-
gluin (1978) showed that the problem of finding a consistent Deterministic Finite-
state Automaton (DFA) of minimum size is NP-hard. Pitt & Warmuth (1993) further
strengthened these results by showing that even an approximation within a polyno-
mial function of the size of the smallest consistent automaton is NP-hard. The survey
paper by Balle & Mohri (2015) reports the general approaches for learning WFA.

In recent years, there has been a renewed interest in weighted automata in
machine learning due to the development of efficient and provably correct spectral al-
gorithms for learning weighted automata. Spectral learning has been proposed as an
alternative to Expectation Maximisation (EM) based algorithms to learn HMMs (Hsu
et al. 2012), WFAs (Balle & Mohri 2012, Balle et al. 2014), predictive state representa-
tions (Boots et al. 2013), and other related models. Compared to EM-based methods,
the spectral method has the benefits of providing consistent estimators and reduc-
ing computational complexity. These models offer polynomial information-theoretic
complexity in the PAC learning model (Angluin 1988, Guedj 2019). In section 2.3.2,
we will describe the spectral approach for the WFA for language modelling.

The connectionist approach of language modelling gained popularity due
to the highly cited artificial neural networks based language model by Bengio et al.

CHAPTER 2. BACKGROUND 12

(2003). Bengio et al. (2003) applied a feedforward neural network (FFNN) to a train-
ing set consisting of a sequence of words, showing how the neural model could
simultaneously learn the language modelling probability that a certain word appears
next after a given sequence of words and at the same time learn a real-valued vector
representation for every word in a predefined vocabulary. Later, Mikolov, Sutskever,
Chen, Corrado & Dean (2013), Mikolov, Yih & Zweig (2013) showed that the word
representation learned by the neural models captures linguistic regularities and word
compositionality. Thus the neural model learned an appropriate set of linguistic fea-
tures. This is in contrast to the decision tree and maximum entropy language models,
which typically required the features to be manually engineered before any model
could be trained (Heeman 1999, Peters & Klakow 1999). More specifically, neural lan-
guage models learn their features jointly with other parameters, while maximum en-
tropy models use fixed hand-engineered features designed by the domain experts and
only learn the parameters for those features. Designing features is time-consuming

and requires many years of experience.

The main limitation of the FFNNSs of (Bengio et al. 2003) is that only a fixed
number of previous words (limited fixed context) can be taken into account to predict
the next word. The limitation is structural as the FFNN does not have so-called
‘memory’ represented by dedicated processing units for temporal sequence. The
‘memory’ is related to the ability to capture a non-fixed context. In the FENN, the
words that are presented via the fixed number of processing units can be used to
predict the next word and all words that were presented during earlier iterations
are disregarded, although these words can be essential to determine the context and
thus to determine a suitable next word. The shortcoming of lack of ‘memory” was
attempted to address by Jordan (1986) (using Jordan networks) and Elman (1990)
(using Elman networks) by adding extra processing units. These extra processing
units are context processing units known as context neurons and hold the contents of
the previous context. The context length was extended to indefinite, one could even
say infinite, size by using a recurrent version of neural networks mostly inspired by
the Elman network and conveniently called recurrent neural networks (RNN), which
can handle arbitrary context lengths. The term 'recurrent” applies as they perform
the same task over each instance of the context such that the output is dependent on
the previous computations and results (Young et al. 2018).

The RNN based statistical language model (Mikolov et al. 2010) was shown
to be very slow in training, although it performed superiorly to an N-gram model
(with Modified Kneser-Ney Smoothing and N = 5). The initial enthusiasm about
RNN as statistical language models was mainly driven by their abilities to learn vec-

Feature
learning

CHAPTER 2. BACKGROUND 13

tor representations for words (as in FFNN) and to handle arbitrarily long contexts.
In addition, they are universal approximators (Schéfer & Zimmermann 2006). How-
ever, the enthusiasm was quickly counterbalanced by their extremely slow learning
and by the empirical observation that the theoretical incorporation of arbitrarily long
context lengths does not occur in practice. To reduce the training time and capture
larger context (if not infinite), many approached have been proposed (Mikolov, Deo-
ras, Povey, Burget & Cernock}‘/ 2011, Mikolov & Zweig 2012, Chen et al. 2015, Wang &
Cho 2016). In this thesis, we explore a similar direction to contribute to deep learning
research.

2.2 Evaluation of Language modelling

2.2.1 Intrinsic Evaluation: Perplexity

Perplexity is a well established intrinsic evaluation metric for language modelling.
Intrinsic evaluation metrics allow measuring the quality of a model independent of
a particular application (Jurafsky 2000, Goodman 2001, Mikolov 2012). Perplexity
measures how well a probability distribution predicts a sample. Higher probability
means a model better predicts the future. There is a limit to how well you can predict
a random future, and the limit depends on "how random’ the dataset is. For example,
it is easier to predict the weather than the news headlines.

Thus perplexity is related to Shannon’s Entropy (Shannon 1948) and more
specifically cross-entropy between the model and the dataset when we do not know
the true distribution of the model that is generating the sequence. The upper bound
of the cross-entropy is the entropy of the true distribution. If the predicted model is
the same as the true model then the cross-entropy is the same as the entropy of the
model. Thus the more accurate the predicted model is, the closer cross-entropy will
be to the true entropy. Therefore, between two models the better model is one that has
lower cross-entropy. The relation between the cross-entropy and the perplexity is that
the lower the cross-entropy (uncertainty), the lower the perplexity. Therefore, between
two models, the better model is the one that has lower perplexity. The perplexity metric in
NLP is a way to capture the degree of "uncertainty” that a model has in predicting
(assigning probabilities to) some text. Formally, the relation between cross-entropy
and perplexity for language modelling is explained below.

The Perplexity (PPL) of a language model on a sample data w = w,, ..., wy

CHAPTER 2. BACKGROUND 14

is the inverse probability of w, normalized by the number of words (Jurafsky 2000):

=

PPL(w) =p(wy,...,wr)
1
p(Wy,..., wi) (2.2)
1

= L
L
[Tis,pwilwy ..., wiyg)

— L

The cross entropy of the language model on generating the sample dataw = wy, ..., wi

is given by (Jurafsky 2000):

H(w) =— T log, p(ws, .., wi)

L
1
=—1 log, H PWilwy, ..., wi_q) (2.3)

i=1

From equation 2.2 and A.1, the relation between the perplexity and the cross entropy

is as follows:

SHW) _,—tlog, p(wy,...,wi)

=

—5108, P(Wy W)™

=

=p(wy,..., wi)

:Vp(wlf .. -/WL)_I

1

“Votwe . ow) (2.4)
p(wlr e /WI_)
1
=L T
[T, pwilwy, .o, wiy)
=PPL(w)

PPL(w) = 2" (™)

A more detailed description of the relationship between cross-entropy and perplexity

can be found in Appendix A.

CHAPTER 2. BACKGROUND 15

2.3 Classic Language Modelling Techniques

In this section, we will explore N-gram and Weighted Finite-state Automata (WFA)
based language modelling approaches and their learning procedure.

2.3.1 Statistical N-grams

An N-gram is a sequence of N-items — if the items are words then a 2-gram (or
bigram) is a two-word sequence of words, such as "Another thesis’, "thesis has’, or
'has been’, and a 3-gram (or trigram) is a three-word sequence of words, such as
"Another thesis has’, or 'thesis has been’.

In N-gram language modelling, the previous N — 1 words are used to pre-
dict the current (N*") word. N-gram models are used to estimate the probability
of the last word of an N-gram given the previous N — 1 words, and also to assign
probabilities to entire sequences. For sentence level modelling, a model provides an
estimation of a probability distribution over words that attempts to reflect how fre-
quently the sequence of words occurs as a sentence. Without loss of generality, we
can express the probability p(O) of strings O = (0o, 01, 0,, ..., 07) as follows (utilising
the chain rule and the Markov assumption),

P(O) =p(00)p(01/06)p(02l00,04) ... P(0OT[00, 01, ..., 0T—1)

il il (2.5)
= HP(OJOO,---,OFJ ~ HP(OHOF(Nﬂ),---,Oiﬂ)

i=1 i=1

Here, based on the N*"* order Markov property, it is assumed that the probability of
observing the (i)th observation, o;, with respect to the whole context history of the
preceding i — 1 observations can be approximated by the probability of observing it
in the shortened context history of the preceding N — 1 observations for a particular
N-gram model.

Word co-occurrence statistics are used to train N-gram models. The co-
occurrence statistics are based on N-gram context statistics. For example, if the length
of the context history is two (trigram model), then the maximum likelihood estimate
(MLE) can be used to train the model. The probability of a word o; in the sequence
O with respect to the two-word history context can be calculated by dividing the
total number of three words sequences with o; as the last in the sequence by the

CHAPTER 2. BACKGROUND 16

total number of the two words context history in the corpus. If there is no context
considered in the model training then the word frequency in isolation leads to a

unigram model.

For N = 3, the trigram model prediction is

c(0i—5,0i—1,04)
Zw C(Oile Oiflrw)

PMLE(0il0i—5,0i—1) =

For N = 1, the unigram model prediction is

pmee(0i) = oy
T Xwew)
here c is the count of the occurrence of word patterns in the training corpus. Here, w
denotes the words in the corpus. For N = 3, w correspond to the words in the corpus
that have the specific context 0;_,, 0.

The advantage of this model is simplicity and fast computation. The statis-
tics and the probabilities of the N-grams can be computed beforehand thus fast com-
putation is the advantage of using N-gram models. However, the number of possible
N-grams increases exponentially with the length of the context. Even with large train-
ing texts, some N-grams will not appear or will occur too infrequently to provide
a statistically meaningful probability. Therefore, although the N-grams calculate the
probabilities efficiently, capturing the long term dependency is difficult due to un-
availability of a large enough dataset that will contain all the larger context patterns.
Thus, preventing these models from effectively capturing the long term dependency
through the longer context patterns. Another problem with this model is the sparsity
in context history. If one word in a sentence is less frequent or does not appear in
a certain context in the corpus then the probability of the sentence will be zero for
that word and that would make the probability of that sentence very low or zero.
To solve this problem, different smoothing techniques have been proposed (Chen
& Goodman 1996). Smoothing is solving the problem with the MLE learning that
arises when the N-gram probability estimation is based on the unseen context (cases
where the MLE will simply assign a probability of zero to the sequences). This is
an inevitable problem for language modelling tasks because no matter how large
the corpus is, it is very difficult for a dataset to contain all possibilities of N-grams
from the language. The basic principle of smoothing is transferring some probability
mass from some more frequent events (N-grams) to the less frequent or not occurring
events (N-grams). The most prominent smoothing techniques are Laplace smooth-
ing, Add-k smoothing, Good-Turing backoff, Kneser-Ney Smoothing and Modified
Kneser-Ney Smoothing. It is confirmed in previous experiments (Goodman 2001) that

Unigram
model

Requirement
of a very
large
training
dataset

CHAPTER 2. BACKGROUND 17

among different smoothing techniques, the modified Kneser-Ney smoothing (Kneser
& Ney 1995) (MKN) provides consistently the best results among smoothing tech-
niques, specifically for the word language modelling task. The quality of the N-gram
model thus highly depends on the choice of the order (the value of N), consequently
on the quality and amount of data (Lesher et al. 1999) for meaningful statistics and

the choice of smoothing techniques.

We noted that the number of possible N-grams increases exponentially with
the length of the context (value of N — 1). Here we will calculate a number of pa-
rameters for an N-gram model to explain this phenomenon. The number of pa-
rameters for an N-gram model can be expressed as [V|N, where N is the length
of the sequences and V is the number of observations (vocabulary size). So, for a
3-gram model with vocabulary size 20000, the number of parameters is 200003 =
8000000000000 = 8 x 10"2.

2.3.2 Weighted Finite-state Automata

WFA represent functions for mapping strings to real numbers. WFA include as spe-
cial instances Deterministic Finite-state Automata (DFAs), Hidden Markov Models
(HMMs), and Predictive State Representations (PSRs). Let £* denote the set of strings
over a finite alphabet X and let A be the empty string. A WFA with n states is a tu-
ple A = (a4, %o, {As}) Where &, ¢ € R™ are the initial and final weight vectors
respectively, and A € n x n is the transition matrix for each symbol o € . A WFA
computes a function fo : £* — R defined for each string x = x;x,...xx € £* by
fa(x) = 01 Ax,Ax, ... Ax, Go. Figure 2.1 shows an example of graph representation
with 2 states and alphabet X = a,b. The corresponding algebraic representation of a
weighted automaton over L = a, b with 2 states in Fig. 2.1 is presented in Eq. 2.6 .

x| = [1/2 1/2] xl = {1 —1} Aqg =

3/4 o] Ay [6/5 2/3] 26)
o 1/3 3/4 1

As described earlier in section 2.1.1, approximating distributions over strings
is a hard learning problem. Learning WFA has exponential computational complexity
(Mohri 2004). The recent advancement in learning WFA is based on spectral learning,
which reduces the computation complexity of learning WFA (Balle et al. 2014).

Spectral algorithms for Weighted Finite-state Automata (WFA) use the in-

formation contained in the eigenvectors of a data affinity (i.e. item-item similarity)

CHAPTER 2. BACKGROUND 18

N
N|—

a, 07 b7

wIN

L
N[V
IS
o
L
=
S
p—t

3
a’707b7 4

Figure 2.1: Example of a weighted automaton A = (&t;, X, {As}) Over £ = a,b with
2 states (graph representation)

matrix to detect low dimensional structure. Spectral algorithms use singular value
decomposition (SVD) to retrieve the structure in the low dimensional space and use
Method of Moments (MoM) based simple estimation techniques to compute the pa-
rameters in that low dimensional space. Although all the spectral algorithms use
SVD as the basic operation, there is no unified learning method (e.g. MLE, EM, back-
propagation) that works for many related models. Therefore, each learning problem
has to be formulated independently as a matrix (or tensor) decompositions.

In recent literature, there are several approaches (different choice of prefixes
and suffixes) for estimating WFAs have been proposed that are based on represent-
ing the function computed by a WFA using a Hankel matrix (Balle et al. 2014). A
sequence labelled by the integers (instead of just the natural numbers) is called a
bi-infinite sequence as it has infinitely many entries in both the positive and negative
directions. The Hankel Matrix of a function is a bi-infinite matrix. A bi-infinite ma-
trix refers to a representation of an operator that maps between two vector spaces of
bi-infinite sequences. Given a sequence of output data, Hankel matrices are formed
to retrieve a realisation of an underlying state-space (e.g. hidden Markov model). The
singular value decomposition of the Hankel matrix provides a means of computing
the matrices which define the state-space realisation.

The spectral-based parameter estimation follows from a duality result be-
tween minimal Weighted Finite-state Automata (WFA) and factorisation of Hankel
matrices (Hf). A function f: Z* — R is recognisable if it can be computed by a WFA.
In this case, the rank of f is the number of states of a minimal WFA computing f. If f

is not recognisable, we let rank(f) = oco.

A Hankel-based method works as follows: given a set of pairs (O, f(O)),

CHAPTER 2. BACKGROUND 19

where O is a sequence of observations in the support of some target function f over
L*, the goal is to learn an approximation of f. A Hankel based method provides a
spectral solution to this problem. The method starts by choosing a set of prefixes P
and suffixes S for selecting the basis. In the second step, the basis will be used to
generate the Hankel matrix Hy € RIPIXISI The entries of the H¢(p,s) for p € P and
s € S is the target function on the sequence obtained by concatenating prefix p with
suffix s. For example, Eq. 2.7 defines a Hankel matrix Hs(p,s) = fs(ps), when
{aa,b,bab,a,b,a,ab,aaq, ba,b,aaq,a,aa,bab,b,aa}l is a sample of N iid strings.
Hankel matrix has rows correspond to the set P = {A, a,b, ba} which is the prefix
and has columns correspond to the set S = a, b, which is the suffix. The entries in
the Hankel matrix is frequency of strings (generated by concatenating the prefix and
suffix) in the sample. The set P and S are called basis.

a b
0.19 0.25
Hs=|a o031 0.06 (2.7)
b 0.06 0.00

ba 0.00 0.13]

Then SVD will be applied on the H¢ matrix to factorise it into three matrics (U, L, V).
The factorisation F = UL, B = VT and Hy are used to recover the parameters of the
minimal WFA.

The method by Balle et al. (2014) provides an efficient algorithm that imple-
ments the ideas of the Lemma provided by Balle et al. (2014, Lemma 2) to find a rank
factorisation of a complete sub-block H of H¢ and obtains from it a minimal WFA for
a function f which maps strings to real numbers. Balle et al. (2014) observed that a
WFA A = (&4, @0, {As}) for f with n states induces a factorisation of Hankel matrix
H¢. They argued that similar phenomena can be observed for sub-blocks of Hy. Let
H be a complete sub-block of H¢ defined by an arbitrary basis B = (P, 8).

In practice, with limited amount of real datasets, the H and H are not
known exactly. However, it is possible to apply the algorithm on approximate H.
Here, approximation means the M can be calculated from a number of strings in
W = {A, L} rather than from all strings of W = {A, Z}.

The hyperparameters of the learning algorithm (Balle et al. 2014) for retriev-
ing the parameters of the minimum WEFA are the number of states n of the target
WFA and the basis (i.e. sets of P and 8). This n is also a rank of the n-dimensional

Hankel
based
spectral
method in
general.

CHAPTER 2. BACKGROUND 20

reconstruction of the Hankel matrix when the best n dimensions of its SVD are used.

A basis that contains most frequent elements (substrings) observed in the
sample can be chosen based on the work by Balle et al. (2012) as this approach was
found computationally efficient. In that case, the rows and columns of the Hankel
matrix correspond to the substrings, and the cells of the Hankel matrix contain the
frequencies of the corresponding substrings. In this approach, the length of these
substrings along rows (nR) and along column (nC) are also the hyperparameters of
the spectral learning algorithm for WFA (Balle et al. 2014).

To summarise, the purpose of the spectral algorithm is to compute a min-
imal WFA for a function (f) defined on strings f : ¥* — R with finite rank n. The
algorithm assumes that B = (P,8) is an arbitrary basis for f, and given that basis
along with values of f on a set of strings or frequencies of substrings W, where
W = {A, L}, as input, the algorithm does a rank factorisation of a complete sub-block
of the Hankel matrix to be able to apply the formulas given in Balle et al. (2014,
Lemma 2). Using the formulas in Balle et al. (2014, Lemma 2), the probabilities of
sequences can be determined as follows: P(O,.7) = (ocl)T/l\o1 e Aoy Koo

Spectral methods are appealing because they offer consistent estimators
(and PAC-style guarantees of sample complexity) for several important models (WFA,
HMM, etc). This is in contrast to the EM algorithm, which is an extremely success-
ful approach, but which only has guarantees of reaching a local maximum of the
likelihood function, it is slow to converge, and difficult to analyse.

Although spectral algorithms for WFA offer many desirable properties, there
are some issues with the matrix decomposition. When the Hankel matrix-based spec-
tral method is used to capture long-range dependencies, very large Hankel matrices
have to be considered (Quattoni et al. 2017). Thus the computation of the SVD be-
comes a critical bottleneck (Gillis & Glineur 2011, Hillar & Lim 2013). Moreover, the
spectral methods have convergence problems (estimated parameters go outside the
parameter space) even for the two-dimensional matrix decomposition case (Liza &
Grzes 2016) with limited training data.

2.4 Neural Models

In this section, we will explore neural network based language modelling approaches
and their learning procedure. Before we do that, we will explain some of the basic

CHAPTER 2. BACKGROUND 21

material related to Artificial Neural Networks (ANNs). ANNs were expected to repli-
cate the architecture of the human brain, however until recently the only common fea-
ture between ANN and our brain was the similarity of their entities (e.g. neurons).
The average human brain has about 100 billion neurons (or nerve cells) (Herculano-
Houzel 2009). To replicate the biological neuron, classical neural network models
approximate neurons as devices that sum their inputs and generate a non-zero out-
put if the sum exceeds a threshold (e.g. activation function). For example, Figure 2.2
shows an artificial neuron. There are i input nodes connected to the j*" output node
and the activation function ¢(.) will implement the threshold to show a particular
predicted output. Based on the prediction Nj, an error e; will be calculated and error
back-propagation will be used to update the weights wji. This computation can be
generalised for a larger neural network where many layers and many nodes are avail-
able as shown in the Fig. 2.3. From our current state of knowledge in neurobiology,
it is easy to criticise these models as over-simplified (y Arcas et al. 2001). A neural
network is thus a simplified model of the way the human brain processes informa-
tion. It works by simulating a large number of interconnected processing units that
resemble abstract versions of neurons.

No wio d;

w1 \
55 =2 w;Ni | Nj = ¢(s;) # ej =d; — N;

Figure 2.2: A Neuron Cell

The processing units are arranged in layers (e.g. Fig. 2.3). There are typ-
ically three parts in a neural network: an input layer, with units representing the
input data; one or more hidden layers; and an output layer, with a unit or units rep-
resenting the target data. The units are connected with varying connection strengths
(or weights). Input data are presented to the first layer, and values are propagated
or distributed from each neuron to every neuron in the next layer. Eventually, a re-
sult is delivered from the output layer. The network learns by examining individual
instance/records, generating a prediction for each record, and making adjustments
to the weights whenever it makes an incorrect prediction. This process is repeated
many times, and the network continues to improve its predictions until one or more
of the stopping criteria (i.e. convergence criteria) have been met.

A neural network learns using one of the three basic machine learning

CHAPTER 2. BACKGROUND 22

15¢ hidden layer L™ hidden layer

input layer output layer

/
(@

Figure 2.3: Network graph of a (L + 1)-layer perceptron with D input units and C
output units. The 1" hidden layer contains m(") hidden units, source

a

https://github.com/davidstutz/latex-resources/blob/master/tikz-multilayer-
perceptron/multilayer-perceptron.tex

paradigms: Supervised, Unsupervised and Semi-supervised. The majority of prac-
tical machine learning uses supervised learning. Supervised learning is where one
has input variables x to process input data and an output variable Y to process target
data, and an algorithm is used to learn the mapping function f(.) from the input to the
output: Y = f(X). The goal is to approximate the mapping function so well that when
unseen input data example is presented at input X, the function should predict the
output Y for that data example. It is called supervised learning because the process of
an algorithm learning from the training dataset can be thought of as a teacher super-
vising the learning process. We know the correct answers, the algorithm iteratively
makes predictions on the training data and is corrected by the teacher. Learning
stops when the algorithm achieves an acceptable level of performance (i.e. using a
stopping criteria).

For training a neural network using the supervised machine learning paradigm,
all weights needs to initialised randomly, and the answers that come out of the ran-
domly initialised network are probably nonsensical, but the initialisation has impor-
tant impact on the overall training. For example, if we initialise all weights with zero,
the learning might not converge at all no matter how much data is available. Af-
ter initialisation, labelled instances are repeatedly presented to the network, and the
predictions it gives are compared to the known true target data. Information from
this comparison is passed back through the network, gradually changing the weights
using relevant optimisation techniques. As training progresses, the network becomes
increasingly accurate in replicating the known outcomes. Once trained, the network

CHAPTER 2. BACKGROUND 23

Learning kernel methods

clustering — k-means
. dimensionality reduction — PCA
Unsupervised
density estimation

reinforcement learning Optimization
online learning

transfer learning

adversarial learning

logistic OLS, MARS, ...

cla55|flgat|0n 4 SVM /" PCR, ridge regression,

regression (parametric) discriminant analysis, ...
Supervised instance-based (nonparametric) iGaussian process
Learning

sampling Genetic
. . search and optimization Algorithm
Semisupervised . . .
Learning active learning Bayesian

trees, random forest

dimensionality latent variable .
reduction sparse coding — polynomial chaos

matrix completion
generative Bayesian
(density estimation) < MCMC
discriminative deep)

T~ NN < convolutional
recurrent

Figure 2.4: An approximate high-level taxonomy of machine learning methods (Bon-
ing et al. 2019). The research in this thesis is mostly under the category of discrimi-
native supervised learning with deep recurrent neural networks.

CHAPTER 2. BACKGROUND 24

can be applied to future cases where the true label is unknown.

Classification is considered an instance of supervised learning. The softmax
function is often used in the final layer of a neural network-based classifier. Such
networks are commonly trained under a cross-entropy regime, giving a non-linear
variant of multinomial logistic regression. Multinomial logistic regression is a classi-
fication method that generalises logistic regression to multiclass problems, i.e. with
more than two possible discrete target data. In mathematics, the softmax function
is a function that takes as input a vector of real numbers, and normalises it into a
probability distribution consisting of probabilities proportional to the exponentials
of the input numbers.

Contrary to the supervised learning, unsupervised learning is where only
input data x are available and there are no corresponding target variables. The goal
for unsupervised learning is to model the underlying structure or distribution in
the data in order to learn more about the data or structure them meaningfully for a
supervised task. These are called unsupervised learning because unlike supervised
learning above there is no correct answers or target data, so there is no teacher su-
pervision. Algorithms are designed to discover and present the interesting structure
in the data without any supervision or target data.

Semi-supervised learning (SSL) is halfway between supervised and unsu-
pervised learning. In addition to unlabelled data, the algorithm is provided with
some supervision information through labelled data but not for all instances. The
goal of SSL is to understand how combining labelled and unlabelled data may change
the learning behaviour, and design algorithms that take advantage of such a combi-
nation. Semi-supervised learning is of great interest in machine learning and data
mining because it can use readily available unlabelled data to improve supervised
learning tasks when the labelled data are scarce or expensive. There are popular SSL
models, including self-training, mixture models, co-training and multi-view learning,
graph-based methods, and semi-supervised support vector machines. More detailed
descriptions of these models can be found in (Zhu & Goldberg 2009).

There are different types of neural networks. Perceptron, the simplest and
oldest model of neuron. These models take some weighted inputs, sum them up,
apply activation function and pass them to the output layer. A neuron represents
a linear model if we take the sum of weighted inputs and use that as an output of
the neural model (Rosenblatt 1958). Perceptron can not learn a non-linear function.
Multilayer perceptron (MLP) composed of several perceptron-like units arranged in
multiple layers consists of an input layer, one or more hidden layers, and an output

Softmax
Function

CHAPTER 2. BACKGROUND 25

layer. MLP can compute the non-linear function by computing a nonlinear trans-
formation of the inputs utilising the nodes in the hidden layers. If a MLP does not
have loops (i.e. no backward connections between layers), then MLP becomes a feed-
forward neural network (FFNN) (e.g. Fig. 2.3). A feedforward neural network with a
special structure is called Convolutional Neural Network (CNN) (LeCun et al. 1999).
The special structure is imposed by a sparse ‘local” connectivity between layers (ex-
cept the last output layer) and by shared weights (like a “global’ filter). The objective
of these networks is to reduce the number of parameters to be learned. The global
filters help capture the local properties of the input data.

For sequence modelling, Recurrent Neural Networks (RNNs) introduce re-
current connections between sequential input data at different time steps. The lim-
itation of feedforward neural networks (FFNN) for sequence modelling is that they
do not share features across different positions of the network. In other words, these
models assume that all inputs (and outputs) are independent of each other. FFNN
model would not work efficiently in sequence modelling since the previous inputs
are inherently important in modelling the sequential data.

Compared to the N-gram and WFA models, the neural models have en-
hanced ability to generalise (Goldberg 2017, p109) for long and unobserved sequences.
An example of enhanced generalisation with an unobserved sequence was provided
by Goldberg (2017): ”by observing that the words blue, green, red, black, etc. ap-
pear in similar contexts, the model will be able to assign a reasonable score to the
event green car even though it never observed this combination in training, because
it did observe blue car and red car.”. Moreover, diverse neural model architectures
can be trained using standard learning algorithms (back-propagation) and various
optimisation techniques. As a result, neural networks can be seen as differentiable
function approximators. More generally, the neural models are shown as universal
function approximators. It is a well known and important result that neural networks
are universal in the sense that any function can be approximated to arbitrary accu-
racy, as shown by Tikhomirov (1991), Hecht-Nielsen (1992), Hornik et al. (1990). The
enhanced capability of learning representation and universal approximation make
these models attractive for various research areas.

Memoryless neural models for sequences like autoregressive models predict
the next term in a sequence from a fixed number of previous terms. Autoregres-
sive models use shift registers of delays (delay taps) to retain successive values of
the sequences. Feed-forward neural nets generalise autoregressive models by using
one or more layers of non-linear hidden units. These models are not as effective as
memory-based neural models (e.g. RNN) for sequence modelling. The memory-

CHAPTER 2. BACKGROUND 26

5588 &
56 6.8

Figure 2.5: Recurrent Neural Network

based models have a distributed hidden state and recurrent connection that allows
them to store past information efficiently. The memory-based models (e.g. RNN)
are fundamentally different from feed-forward architectures in the sense that they
operate on not only an input and output space (vertical arrows in Fig. 2.5) but also
an internal state space (using recurrent connections, horizontal arrows in Fig. 2.5),
and the internal state space enables the representation of longer sequential data. The
RNN models with different cell types (e.g. Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU)) can store and retrieve information in a hidden state to solve
computational issues. Many modifications of the conventional architecture have been
proposed to make memory-based models more efficient for several tasks.

Learning in neural networks

The exact function that a neural network learns is determined by its architecture and
a set of adaptable parameters, known as weights in parameter space. For example, in
the network in Fig. 2.6, the total number of adaptable weights is 26. The calculation is
as follows: there are 4+ 2 = 6 neurons (not counting inputs), therefore, [3x4] + [4x2] =
20 weights and 4 + 2 = 6 biases making a total 26 trainable parameters.

The architecture and the training are determined by the hyperparameters
(e.g. number of hidden nodes, the learning rate, etc). Hyperparameters are set be-
fore optimising the adaptable parameters. The adaptable parameters, for example a
weight matrix 0 in the parameter space © (i.e. 0 € ©), for a given neural architecture
learns the function using back-propagation and optimisation.

The neural network model is applied to some input x (training data) to
produce some output of y (predicted value). More formally, f: ©® x X — Y, where the
domain of the function consists of the parameter space ® and the input space X, and
the co-domain is the output space Y.

CHAPTER 2. BACKGROUND 27
”i}_]c_lyll

Input .

. Output

Figure 2.6: Parameters in a Neural Network (source: wikipedia)

The architecture of a neural network is typically designed by an expert,
while the parameters © are algorithmically determined using continuous optimisa-
tion techniques (Nocedal & Wright 2006). Learning in machine learning, in general, Classical
is not just optimisation based on the given data, it is more about generalisation on the 0ptinisation

unseen data. Optimisation in a mathematical setting is a little different in machine “° machine

learning in the sense that a mathematician assumes that an infinite amount of data if;rrzgtion
is available, whereas in machine learning researchers assume that a finite segment
of the data is available. This finite segment of data is known as training data and
the objective of the machine learning algorithm is to optimise with respect to unseen
data given the limited finite training data. Optimisation algorithms used for train-
ing deep models thus differ from traditional optimisation algorithms in several ways
(Goodfellow et al. 2016, chapater 8). Machine learning usually acts indirectly com-
pared to the traditional optimisation algorithm. In most machine learning scenarios,
emphasis is given to some performance measure P, that is defined with respect to
the test set (unseen examples) and may also be intractable. Thus optimisation of P is
only done indirectly. A different cost function J(.) which is based on the seen exam-
ples is reduced in the hope that doing so will improve P. This is in contrast to pure
optimisation, where minimising | is the main goal. One aspect of machine learn-
ing algorithms that further separates them from traditional optimisation algorithms
is that the cost function usually decomposes as a sum over the training examples.

CHAPTER 2. BACKGROUND 28

Optimisation algorithms for machine learning typically compute each update to the
parameters based on an expected value of the cost function estimated using only a
subset of the terms of the full cost function.

For machine learning in general and for deep learning in particular, stochas-
tic gradient descent (SGD) and its variants (Ruder 2016) are probably the most used
optimisation algorithms. SGD is the incremental gradient descent based on the sin-
gle sample or sub-sampled batch (mini-batch) instead of the whole batch in the batch
gradient descent. This optimisation technique uses the gradient of the loss function
to find the local minimum (if the objective is to minimise the loss function) by taking
one step at a time toward the negative of the gradient. The size of the step in opti-
misation is known as the learning rate. Learning rate is the crucial parameter for the
SGD algorithm. Learning rate is a hyper-parameter that controls how much the pa-
rameters © of the neural network to be adjusted with respect the gradient of the cost
function. The lower the value, the slower training move along the downward slope
of the cost function. While using a low learning rate might be a good idea so that no
local minima be missed during the training, it could also mean that it will take a long
time to converge — especially if training get stuck on a saddle point (Adolphs 2018).

If the true labels (z € Z) are available (i.e. supervised learning), we can
formulate the desired behaviour of a function as a scalar loss function with1: Y x Z —
R. For example, a widely used loss measure for supervised regression is the the sum
of squares of the prediction errors or Mean Squared Error (MSE) (Gavish & Donoho
2017). The MSE can be written as 1(y, z) = ||z — yl|?>, where ||.||* denotes the Frobenius

norm of a vector.

The composition (o) of f and 1 are used to define a complete loss function
L=1lofwith£:0xXxZ — R. If both, f and 1 are differentiable, the backpropa-
gation algorithm and the gradient-based optimisation techniques can be used to find
good parameters © after an application of the chain rule:

oL _acof
00 0of 00

This makes neural networks a adaptable tool for diverse tasks, since we can
define the desired characteristics of a function in terms of some input observations
without designing features for each input domain.

Training a neural network is inherently very difficult, specifically, it is prone

Complete
loss L is
dependent
on land f,
thus PPL is
also
dependent
on land f.

CHAPTER 2. BACKGROUND 29

to fit the training data very well, it can even fit outliers (noise) due to co-adaptations
and fail to generalise to new examples (test data). There are different mechanisms
to avoid over-fitting. Specifically, dropout (Srivastava et al. 2014) was proposed to
remove the co-adaptation. Dropout randomly drops units (along with their connec-
tions) during training and each unit is retained with fixed probability p, indepen-
dent of other units. The hyper-parameter p is selected based on the dataset. When
dropout is applied to a recurrent neural network, (Zaremba et al. 2014) proposed
that dropout should not be applied to the recurrence layer. Later, (Gal & Ghahra-
mani 2016b) showed how to apply dropout in the recurrence layer and theoreti-
cally proved dropout as a Bayesian-approximation to reason about model uncertainty
(Gal & Ghahramani 2016a). The proposed dropout technique of Gal & Ghahramani
(2016D) is called variational dropout.

Other regularisation techniques have been applied to deep learning that
are more common in the machine learning paradigm in general. Such mechanisms
include adding regularisation term that penalises big weights. For example, the reg-
ularisation term added to the objective function that penalises big weights, weight
decay coefficient determines the dominance of the regularisation during gradient
computation and big weight decay coefficient are set for to impose big penalty for
relatively large weights. There is another regularisation technique used in the deep
learning paradigm is early stopping. This technique uses validation error (i.e. error
calculated on some heldout data that has not been used in model training) to decide
when to stop training. Training will be ceased once monitored validation error has
not improved after several subsequent epochs.

Types and architectures of neural networks

As described earlier in this section, there are several types of neural network includ-
ing perceptron, feed-forward neural network, recurrent neural network with sev-
eral extensions in cell type including long short-term memory, gated recurrent unit,
deep convolutional neural network, generative adversarial network, deep residual
network, recurrent highway network. They differ in many ways including the cell
types and the hidden layer connections. For language modelling, recurrent neural
networks offer extensive modelling power through recurrent connections.

In this thesis, we will be mainly working on the RNN type of neural network
with an LSTM cell and its particular generalisation Recurrent Highway Network
(RHN). There are several proposed variants to the standard LSTM cell (see Fig. 2.7)
including Peephole LSTM (Gers et al. 2002) and Gated Recurrent Unit (GRU) (Cho
et al. 2014). However, the neural network based on the LSTM for sequence modelling

Dropout and
variational
dropout

Why
classical
LSTM, not a
modification
to enhance
perfor-

mance?

CHAPTER 2. BACKGROUND 30

ht Output
Ces f X + G
t }
Cell state X Sl Next cell state
t }
(e) (e) tanh O — X
t t t t
+ + + +
t t t t
\ b b b b
hq : h
Hidden state Next hidden state
X; Input
Inputs: Outputs: Nonlinearities: Vector operations:
; New updated ; ; Scaling of
X Current input C memorl; O Sigmoid layer X information
Memory from Adding
Ct‘l last LSTM unit ht Cureafouipul, S THlieyes + information
Output of last Bias
ht 1 LSTM unit b

Figure 2.7: The structure of the Long Short-Term Memory (LSTM) cell. The figure
is taken from Le et al. (2019). The network takes three inputs. X; is the input of
the current time step. h¢_, is the output from the previous LSTM unit and C¢_, is
the “memory” of the previous unit, which is the most important input for sequential
modelling. As for the outputs, h; is the output of the current network. C; is the

memory of the current unit.

CHAPTER 2. BACKGROUND 31

(specifically language modelling) has been found to be a superior architecture to
other proposed modifications. Zaremba (2015) reported that an LSTM is better than
one of its prominent alternative architectures, GRU, in a language modelling task.
The experiments were based on ten thousand different RNN architectures. Britz et al.
(2017) found that an LSTM is better than GRU for a machine translation task based
on the variance values for several hundred experimental runs, corresponding to over
250,000 GPU hours on a standard English to German translation benchmark task held
at a “Workshop on statistical machine translation (WMT)’. Thus, conclusions of the
language modelling task can be generalised to the other NLP tasks (machine transla-
tion), which have language modelling as the base component. Moreover, Greff et al.
(2015) showed that none of the eight variants of LSTM neural cells on three repre-
sentative tasks namely speech recognition, handwriting recognition, and polyphonic
music modelling, can improve upon the standard LSTM with forget gate architec-
ture significantly, and demonstrated that the forget gate (of an LSTM) and the output
activation function are its most critical components, not the modification of the ar-
chitectures. Their result is based on 5400 experimental runs (~ 15 years of CPU
time '). These proposed novel architectures were developed to achieve improved
performance that beat the state-of-the-art results. These extensions were shown as
mandatory to achieve enhanced performance. However, in practice, an existing ar-
chitecture with different hyperparameter settings could achieve or outperform the
performance of the proposed new architecture.

RNNSs give the ability of universal computation (Turing completeness, shown
by Siegelmann & Sontag (1991)) to neural networks, in contrast to that of universal
approximation (Hornik et al. 1989, Cybenko 1989) for feed-forward neural networks
(FFNN). Turing completeness means that for any computable function, there exists
a finite recurrent neural network (RNN) that can compute it. There are several ex-
tensions to the simple RNN models, such as Bidirectional recurrent neural networks
(BI-RNN), etc, mainly to enhance the performance of a downstream application with
limited data.

Although the RNN is Turing Complete and can approximate any process
(algorithm), training an RNN model is challenging (Hochreiter 1991, Bengio et al.
1994). It was shown by Hochreiter (1998), Bengio et al. (1994) that the main reason
for the training difficulty comes from the exploding and vanishing gradients. There
are approaches (Pascanu, Mikolov & Bengio 2013) applied to reduce the severity of

TAccording to Greff et al. (2015, page 5) each of the 5400 experiments was run on one of 128 AMD
Opteron CPUs at 2.5 GHz and took 24.3 h on average to complete. This sums up to a total single-CPU
computation time of just below 15 years.

CHAPTER 2. BACKGROUND 32

this problem. One of the most prominent is the LSTM (Hochreiter & Schmidhuber
1997)-

Theoretically, a single layer RNN network should be able to approximate
any computable function. However, it was observed empirically that deep RNNs work
better than shallower ones in some tasks, specifically for natural language processing
tasks. In particular, Sutskever et al. (2014) used a 4-layer deep architecture that was
crucial in achieving good machine-translation performance in an encoder-decoder
framework. To combat the computational challenges, a C++ implementation of deep
LSTM was developed utilising 8 GPUs. Irsoy & Cardie (2014) also achieved improved
results moving from a one-layer BI-RNN to an architecture with several layers. Many
other works reports result using stacked layered RNN architectures, but most of
them do not explicitly compare the improvement with a gradual increase in layers.
In the next chapter, we will compare a single layer and two-layer neural models using
publicly available datasets.

2.4.1 Neural Network Language Modelling

RNN based language modelling was pioneered by Mikolov et al. (2010), where re-
current neural networks were first introduced for language modelling. Since then, a
number of improvements have been proposed. Zaremba et al. (2014) used a stack of
Long Short-Term Memory (LSTM) layers trained with dropout applied on the outputs
of every layer (except the recurrence layer), while Gal & Ghahramani (20160) and Inan
et al. (2017) further improved the perplexity score using variational dropout. Varia-
tional dropout applies to all layers, unlike the standard dropout. The RNN language
model (Zaremba et al. 2014) is used by numerous other models including Press &
Wolf (2016), Gal & Ghahramani (2016b). The model by Zaremba et al. (2014) was
also used as a baseline in the very comprehensive (over ten thousand different RNN
architectures) architecture search by Jozefowicz et al. (2015) in pursuit of a better ar-
chitecture, and they failed to find architectures that were significantly better from the
baselines.

The baseline architecture by Zaremba et al. (2014) is a two-layer stacked
recurrent neural network. Stacking RNN layers (in space) inspired by the multilayer
perceptron (MLP) allows for greater complexity by incorporating a complex feature
representation of each layer (except the recurrent layer). There are approaches to
increase the depth (in time) of the recurrence layer (Pascanu et al. 2014) contrary to
the space extension like the stacked approach. RHN (Zilly et al. 2017) cells are one

CHAPTER 2. BACKGROUND 33

such approach to increase modelling power utilising the recurrence layer and can be
seen as a specific generalisation of LSTM. We will study RHNs in chapter 5.

2.4.2 The Problem of Very Slow Training Time

As mentioned in section 2.1.1, the two main problems with the RNN are long training
time and limited capacity for effective long-term context capture. We will discuss the
training time more elaborately here. Training an RNN is known to be very slow.
For example, Mikolov et al. (2010) took several weeks to train the RNN model for
language modelling, although the authors considered only about 17% of the New
York Times (NYT) section of English Gigaword for training. The total training time is
proportional to 2 x P x nH x (nH + [V]) given a complexity of order P x nH x (nH +
[V]), where nH is the number of hidden units, P denotes the number of epochs needed
to reach convergence and |V| denotes the size of the vocabulary. Usually, it takes
about 10-50 training epochs to achieve convergence (Mikolov, Kombrink, Burget,
Cernocky & Khudanpur 2011, Mikolov, Deoras, Povey, Burget & Cernockﬁz 2011),
although cases have been reported where even thousands of epochs were needed (Xu
& Rudnicky 2000). Besides, the size of the vocabulary (i.e. |V|), which is usually very
large for many languages, plays a crucial role in the real complexity of the training.
With the use of GPUs, the training time has been considerably reduced from weeks
to days and sometimes to hours. However, this reduction is still not sufficient for

practical applications.

The main bottleneck for neural network training of the language modelling
is the very long training time due to softmax normalisation at the output layer. The
softmax function takes an vocabulary (V) sized dimensional vector of scores and limit
the values into the range [o, 1] as defined by the function:

exp(zw)
wiev exp(zw)

pw) = 5

where z,, is the logit corresponding to a word w. The logit is generally computed as
an inner product z,, = h'e,, where h is a context vector generated by an deep neural
network and e,, is a vector representation for w in the large parameter matrix in the
output layer. The denominator of the softmax function is dependent on every element
in the scores vector, and thus the time complexity of using the softmax function is
O(|V]). When using datasets with very large output spaces like language modelling
where output space is equal to the size of the vocabulary(V), this can quickly become

CHAPTER 2. BACKGROUND 34

a computational bottleneck during training time.

There are approaches to improve the training time by optimising the output
layer including tree-based approaches such as hierarchical softmax (Morin & Ben-
gio 2005), differentiated softmax (Chen et al. 2015), adaptive softmax (Grave, Joulin,
Cissé, Jégou et al. 2017); sampling-based approaches such as importance sampling
(Bengio & Sénécal 2003), adaptive importance sampling (Bengio & Senécal 2008), tar-
get sampling (Jean et al. 20144), and self-normalising approaches such as noise con-
trastive estimation (Gutmann & Hyvirinen 2012), and self-normalisation (Andreas &
Klein 20151). Next, we will discuss the advantages and disadvantages of different
approaches.

The tree-based approach, hierarchical softmax, is quite expensive during
testing, requiring even more effort than softmax for computing the most likely next
word (Chen et al. 2015), and requires a manual design for the intermediate latent
nodes in the tree. Experimentally, more than two layers of a tree are computation-
ally very expensive and do not computationally outperform softmax. Tree-based
approaches are also very unfriendly to GPUs/mini-batching, every word in the batch
has a different path and that makes GPU programming difficult. To address this
problem, adaptive softmax (Grave, Joulin, Cissé, Jégou et al. 2017) has been pro-
posed where word clusters are generated by utilising the unbalanced word distri-
bution. This approach explicitly minimises computation complexity and makes the
tree-based approaches more GPU friendly. This approach is based on clustering and
the original paper uses between 2 and 5 clusters without specifying the impact of the
number of clusters on the performance. For small numbers of clusters (between 2
and 5 in the original paper), significant degradation in performance compared to the
full softmax was not observed. These approaches do not outperform softmax.

Differentiated Softmax (Chen et al. 2015) assigns a variable number of pa-
rameters to each word in the output layer. More parameters are assigned to frequent
words compared to rare words, since more training occurrences allow for fitting
more parameters. The vocabulary is partitioned according to word frequency and
the words in each partition share the same embedding size, resulting in a sparse out-
put layer (final weight matrix) which arranges the embeddings of the output words in
blocks, each block corresponding to a separate partition. This method improves the
train and test time complexities. The problem with this method is that by assigning
fewer parameters to rare words the model does not model well the rare words and
has the worst performance in modelling rare words.

The sampling-based approaches like importance sampling have stability and

CHAPTER 2. BACKGROUND 35

consistency problems in practical applications. This approach is simple and theoret-
ically related to Monte Carlo methods. Monte Carlo methods are computational
algorithms that rely on repeated random sampling to obtain numerical results. A
Monte Carlo method samples from a known distribution (proposal distribution) and
corrects expectation of the actual distribution (true distribution) from the fact that
the samples are from a wrong distribution (proposal distribution). However, the ap-
proach is non-trivial to use in practice because the high variance of the sampling
estimates can make learning unstable (Mnih & Teh 2012). The variance tends to grow
as learning progresses because the model (predicted) distribution moves away from
the proposal distribution. When using neural language modelling and N-gram is
chosen as a proposal distribution, Bengio & Senécal (2008) argue that the instability
happens as neural language models and N-gram models learn very different distri-
butions. Despite these difficulties, importance sampling-based approaches have been
successfully applied in different domains, such as language modeling (J6zefowicz
et al. 2016), machine translation (Jean et al. 20140) and computer vision (Joulin et al.
2016). None of these papers mentioned how the instability was handled to make
the importance sampling method work well. Another sampling-based approach, tar-
get sampling, is faster and performs more iterations than softmax in a given time.
However, its perplexity reduction per iteration is less than softmax (Chen et al. 2015).
Thus, it takes longer than softmax to converge.

Self-normalised approaches aim at learning a naturally normalised classi-
fier, to avoid computing the softmax normalisation. Popular methods are Noise Con-
trastive Estimation (Gutmann & Hyvirinen 2010, 2012), or a penalisation on the nor-
malisation function (Andreas & Klein 20150, Devlin et al. 2014). Noise Contrastive
Estimation (Gutmann & Hyvérinen 2010) replaces the softmax by a binary classifier
distinguishing the original (data) distribution form a noise distribution. While the
original formulation still requires to compute the softmax normalisation, Mnih &
Teh (2012), Vaswani et al. (2013), Zoph et al. (2016) showed that good performance
can be achieved without this expensive computation and by setting the normalisation
term to a predefined constant.

A common problem with sampling-based and self-normalising approaches
is that they still require to evaluate the full softmax to be evaluated at test time.
The main complexity of the neural language models, however, comes from training.
Among many approaches, the Noise Contrastive Estimation (NCE) was shown not
to be working with deep recurrent neural network in Chen et al. (2015). Theoreti-
cally, NCE (Gutmann & Hyvérinen 2010, 2012) is a consistent (convergent) estimator
and it has better learning stability (the weights are always between o and 1) than

CHAPTER 2. BACKGROUND 36

other sampling-based approaches including importance sampling. We will study the
integration of NCE with deep neural models in chapter 4 and 5.

2.4.3 Limited Effective Context Size

We mentioned in section 2.1.1 that the two main problems with the RNN are longer
training time and limited effective context capture. Now we will discuss the context
capture capability of the neural models. To improve the context capture capability,
many approaches have been proposed (Oualil et al. 2016, Wang & Cho 2016, Khandel-
wal et al. 2018, Peters et al. 2018). Specialised, multi-context integrated deep neural
networks (Liao et al. 2018) were proposed when language modelling is used for loca-
tion prediction. Theoretically, the basic RNN should capture all the previous context,
but due to learning difficulty (the vanishing gradient problem), the RNN captures
only a limited amount of context. Improving the learning process should enhance
the model’s capacity for capturing improved context information. We will study the
context in chapter 4.

2.5 Generalisation and Regularisation

As we have described previously, optimisation in a mathematical setting is differ-
ent from machine learning (ML). ML algorithms must perform well on new, previ-
ously unseen inputs, not just those on which our model was trained. The ability to
perform well on previously unobserved inputs is called generalisation (Goodfellow
et al. 2016). To measure the generalisation performance, we need both training and
test performance measures usually through an error or accuracy metric. Concretely,
when training a machine learning model, we have access to a training dataset; we
can compute an error measure on the training set, called the training error; and we
reduce this training error through optimisation. Until now, these steps are equiva-
lent to a mathematical optimisation problem. What separates machine learning from
a mathematical optimisation is that we want the test error (generalisation error) to
be low as well. The generalisation error is a combination of two factors: bias and
variance (Moody 1994, Girosi et al. 1995, Wahba et al. 1999).

The bias and variance of the ML models are related to model underfitting
and overfitting. Underfitting corresponds to the fact that the model is not being
able to obtain a sufficiently low training error and overfitting correspond to the large
gap between the training error and test error (generalisation gap in Fig. 2.9). Models

CHAPTER 2. BACKGROUND 37

Total Error

Variance

Optimurm Model Complexily

Error

Bias2

&

Y

Model Complexity

Figure 2.8: Learning curve: bias and variance contributing to total error (Neal et al.

2018).

1 1l
—— Training Error
—— Test Error

Error

Generalisation Gap

Underfitting Zone | Overfitting Zone

Model Capacity

Figure 2.9: Typical relationship between model complexity (capacity) and error.
Training and test error behave differently. At the left end of the graph, training
error and test error are both high. This is the underfitting regime. As we increase ca-
pacity, training error decreases, but the gap between training and test error increases.
Eventually, the size of this gap outweighs the decrease in training error, and we en-
ter the overfitting regime, where capacity is too large, above the optimal capacity

(Goodfellow et al. 2016, Fig. 5.3).

CHAPTER 2. BACKGROUND 38

underfit when there exists high bias and overfit when there is high variance. Regular-
isation techniques ‘regulate” complexity (i.e. discourage learning more complex than
necessary) to avoid the risk of overfitting. Thus regularisation becoming to a process
of modifying a learning algorithm to prevent overfitting. This generally involves im-
posing some sort of smoothness constraint on the learned model (Girosi et al. 1995).
This constraint may be enforced explicitly, by fixing the number of parameters in
the model, or by augmenting the cost function as in Tikhonov regularisation (also
known as ridge regression (Hoerl & Kennard 1970), weight decay (Krogh & Hertz
1992)). Tikhonov regularisation along with many other regularisation schemes, fall
under the umbrella of spectral regularisation (Engl et al. 1996). Early stopping (Mor-
gan & Bourlard 1990, Finnoff et al. 1993) also belongs to this class of methods.

To explain underfitting, overfitting and regularisation with an example: let’s
consider that we are interested in developing functions to model data with quadratic
form. If the data has quadratic form and we use a linear model then the model will
underfit and have a high bias. For the same data, if we use a 50-degree polyno-
mial model then the model will overfit and have high variance. For the later cases,
the purpose of the regularisation techniques is to impose constraints to reduce the
complexity of the 50-degree polynomial model to a simpler (smaller than 50-degree
polynomial) one. We can test if models have high bias or variance through the use of
learning curves (see Fig. 2.8, 2.9). We have utilised such learning curves in chapter 4

in our analysis.

2.5.1 Bias-Variance Tradeoff

The traditional view in machine learning is that increasingly complex models achieve
lower bias at the expense of higher variance. This balance between underfitting (high
bias) and overfitting (high variance) is commonly known as the bias-variance tradeoff
(Moody 1994, Girosi et al. 1995, Wahba et al. 1999).

The bias-variance tradeoff of N-gram models is dependent on the choice of
N. To choose a value for N in an N-gram model, it is necessary to find the right trade-
off between the stability of the estimate against its appropriateness (bias-variance
trade-off). A small N leads to a simpler (weaker) model, therefore causing more er-
ror due to bias. A larger N leads to a higher-order complex model causing an error
due to variance. As a rule of thumb, a trigram is a common choice with large train-
ing corpora (e.g. millions of words in a language model training corpus), whereas a

bigram is often used with smaller corpora.

CHAPTER 2. BACKGROUND 39

Spectral learning for WFA is based on the law of large numbers” assump-
tion. The parameters are often outside the parameter space resulting in negative
probabilities. These models are theoretical and mathematical, and assume that an
infinite dataset is available. However, in practical applications, this assumption does
not hold. By infinite dataset, we mean the assumption of the optimisation in a math-
ematical setting that an infinite amount of data is available to learn the model param-
eters.

The bias-variance tradeoff for neural networks is discussed by Geman et al.
(1992). The authors suggested that larger neural networks suffer from higher vari-
ance. This provided a intuition for how we think about the generalisation capabilities
of large models and the intuition is supported by the learning theory. The learning
theory-based study by Brutzkus et al. (2017) showed that the most classical and cur-
rent bounds on generalisation error grow with the size of the networks. However,
there is a growing amount of evidence that larger networks generalise better than
their smaller counterparts in practice (Neyshabur et al. 20152, Novak et al. 2018,
Zhang, Bengio, Hardt, Recht & Vinyals 2017). This apparent mismatch between the-
ory and practice is probably due to the use of worst-case analysis that depends only
on the model class, is completely agnostic to data distribution (without knowledge of
the data) and without taking optimisation (including the regularisation) into account.
In practice, for domain-specific modelling, we know the data, and we also have ac-
cess to the regularisation techniques which allows the larger models to generalise
better. The larger models with regularisation can effectively be simpler models and
this would align with the theory.

2.5.2 Generalisation in Deep Neural Networks

Deep artificial neural networks often have far more trainable model parameters than
the number of samples they are trained on. Despite this fact, successful deep neu-
ral networks with this over-parametrisation can exhibit a remarkably small differ-
ence between training and test performance, thus demonstrating good generalisa-
tion. Nonetheless, some of the neural models demonstrate small generalisation error,
whereas, at the same time, it is certainly easy to come up with natural model architec-
tures that generalise poorly. It is not clear what makes some neural networks gener-
alise better than others. Neural network generalisation has been extensively studied
both in theory and in empirical research. The theoretical approaches to generalisa-
tion include classical notion such as Vapnik—Chervonenkis (VC) dimension (Baum
& Haussler 1989, Harvey et al. 2017), Rademacher complexity (Sun et al. 2016), and

CHAPTER 2. BACKGROUND 40

modern concepts such as stability (Hardt et al. 2016), robustness (Xu & Mannor 2012),
compression (Arora et al. 2018a).

Existing studies found that optimisation and learning theory is unable to
explain and predict the generalisation properties of deep neural networks (DNN).
For example, from the earliest days of DNNSs, it was suspected that VC theory does
not apply to these systems (Vapnik et al. 1994). Vapnik et al. (1994) assumed that
local minima in the loss surface were responsible for the inability of VC theory to
describe neural networks, and the reason was justified by the fact that neural network
training can get stuck to the local minima and that limits the number of possible
functions realisable by the network. However, it was later realised that the presence
of local minima in the loss function was not a problem in practice (LeCun et al. 1998,
Duda et al. 2012). There is still no theoretically grounded approach to explain the
generalisation of the deep neural network (Martin & Mahoney 2019). Overall, the
generalisation of deep neural models is not completely understood in the literature.

2.5.2.1 Generalisation and Optimisation

There are studies on the relation between generalisation and properties of stochastic
gradient descent (SGD) (Robbins & Monro 1951, Kiefer et al. 1952) algorithms (Zhang,
Liao, Rakhlin, Sridharan, Miranda, Golowich & Poggio 2017, Soudry et al. 2018, Ad-
vani & Saxe 2017). Empirical studies (Zhang, Bengio, Hardt, Recht & Vinyals 2017)
have shown that while deep neural networks are expressive enough to fit randomly
labelled data, they can still generalise for data with structure. Smith & Le (2018)
showed that the same phenomenon occurs in small linear models. Inspired by the
results of Zhang, Bengio, Hardt, Recht & Vinyals (2017), Arpit et al. (2017) proposed
that the data dependence of generalisation in neural networks can be explained be-
cause they tend to prioritise learning simple patterns first. The authors showed some
empirical evidence supporting the statement (i.e. prioritise learning simple patterns
first), and suggested that SGD might be the origin of this implicit regularisation. It
was also shown that implicit regularisation induced by the optimisation method is
playing a key role in generalisation of deep learning models (Neyshabur 2017).

The stochastic gradient descent (SGD) demonstrated significantly better gen-
eralisation (i.e. maximises the test data accuracy) than batch methods (Bousquet &
Bottou 2008). It was also shown by Wilson et al. (2017) that SGD generalises better
than the adaptive optimisers (e.g. Adam (Kingma & Ba 2015), AdaGrad (Duchi et al.
2011)). The noise plays an important role in SGD convergence and generalisation of

Implicit
Regularisa-
tion.

CHAPTER 2. BACKGROUND 41

neural network learning (Jim et al. 1995). It was also observed that noise introduced
by the mini-batch helps SGD to generalise better given that optimum batch size is
utilised (Smith & Le 2018). In chapter 4, we have empirically shown that correct
utilisation of the ‘search-then-converge’ learning rate schedule in the SGD can result
in improved generalisation when the output (linear + softmax) layer of the neural
language model is approximated using NCE. The improved generalisation can be
explained by the sampling noise induced by the NCE approximation.

2.5.2.2 Understanding Regularisation in Deep Neural Networks

Historical regularisation techniques usually reduce the effective number of
degrees of freedom that are being fitted by the models resulting in effectively sim-
pler models. For example, L1 regularisation aka LASSO (Least Absolute Shrinkage
and Selection Operator) (Tibshirani 1996) can force some parameters/weights to be
near zero and sparse PCA (Zou et al. 2006) applies LASSO, for example, to learn Lomrmk

principal components (PCs) with sparse weights. LASSO is also used in low-rank regularisa-

regularisation (Hu et al. 2018, Tai et al. 2015) that forces the smallest singular values .
of the parameter matrix (or equivalently eigenvalues of its covariance matrix) to be
near zero. When the eigenvalues become zero, the rank of the parameter matrix is
reduced. When the smallest eigenvalues are not exactly zero but are sufficiently close
to zero, approximate low rank is used to compare the regularisation effect of machine
learning techniques. Another regularisation technique, L,, pushes the parameters of
the machine learning models towards a prior value, which is usually zero, to regu-

larise them (Bengio 2012).

The idea of having a bias towards simpler models and simpler patterns has
a long history. For instance, the concepts of minimum description length (MDL) Probably
(Rissanen 1978), Blumer algorithms (Blumer et al. 1987, Wolpert 2018), and universal Approxi-

induction (Li & Vitanyi 2013), are all based on a bias towards simple hypotheses. ™ately
Correct

(PAC)
learning
framework.

Very recent work of Pérez et al. (2019) has used a PAC-Bayes approach to explain
the generalisation of deep neural networks on real-world problems by arguing that
parameter-function map in a deep neural network is biased towards simple functions.

Bengio (2012) argued that it is sufficient to regularise only the output layer
(i.e. linear+softmax layer) weights to constrain capacity to simpler models. In general,
adding a penalty term to the training criterion to regularise deep learning is common
in the literature, specifically to the hidden nodes (Krogh & Hertz 1992). These penalty
terms encourage the hidden units to be sparse, i.e. with values at or near o. There

CHAPTER 2. BACKGROUND 42

are many benefits of having a sparse representation in a deep neural network includ-
ing disentangling the underlying factors of representation and regularise the overall
network (Tibshirani 1996, Schmidhuber 2015). Thus increased sparsity can be com-
pensated by a large number of hidden nodes (i.e. large neural models) resulting in
an effectively simpler model. Increasing sparsity at the output layer can also result
in overall simpler models and help regularise the whole network.

One of the reasons why deep learning methods work well, without explicit
regularisation even in the strongly over-parametrised regime where classical learn-
ing theory would instead predict that they would severely overfit, maybe the fact
that they allow for large numbers of parameters (through deep networks), but at
the same time their implicit regularisation techniques (e.g. SGD (Lei et al. 2018),
Dropout (Gal et al. 2017)) can exert certain simplicity constraints (through sparsity or
other mechanisms) on the parameter space. For example, dropout (Srivastava et al.
2014) discourages co-adaptation of the neurons, which also leads to sparse activations
(Srivastava et al. 2014); sparse activations also exist in sparse coding (Olshausen &
Field 1996). In chapter 5, we have shown that NCE primarily works on output layers
and can be seen as a regulariser for the deep neural language model.

Overall, from the discussion in this section, we can conclude that we do
not completely understand (i.e. there are uses of the ‘maybe’ and ‘can be’ words
in many sentences) the generalisation behaviours of the deep neural network. In
an attempt to explain the generalisation behaviour observed in practice, several ap-
proaches have been proposed. For example, Neyshabur et al. (2015b0), Keskar et al.
(2016), Neyshabur, Bhojanapalli, McAllester & Srebro (2017), Bartlett et al. (2017),
Neyshabur, Bhojanapalli & Srebro (2017), Golowich et al. (2017), Arora et al. (2018b)
suggested different norm, margin and sharpness based measures. Dziugaite & Roy
(2017) numerically evaluated a generalisation bound based on PAC-Bayes. As argued
by (Neyshabur, Bhojanapalli, McAllester & Srebro 2017), complexity measures and
generalisation bounds provided by Bartlett et al. (2017), Dziugaite & Roy (2017) in-
crease with the increasing network size, thus fail to explain why over-parametrisation
helps. Overall, existing complexity measures increase with the size of the network
depending on the number of hidden units either explicitly, or the norms in their
measures implicitly depend on the number of hidden units for the networks used in
practice (Neyshabur, Bhojanapalli, McAllester & Srebro 2017). Generally, the existing
literature cannot measure and explain the generalisation of deep neural networks.
To be able to successfully explain the generalisation, we believe that we have to first
understand the generalisation. In chapter 5, we have taken an empirical approach to
understand the generalisation behaviour and propose a variance-based approach to

CHAPTER 2. BACKGROUND 43

explain the regularisation.

2.6 Problem Analysis

Based on the discussion in this chapter so far, there are different research questions
for which we do not know the answer yet. The first question that we ask is what is
the best model for sequence modelling and specifically for language modelling. To
achieve the goal of addressing this question, we will explore three methods (i.e. N-
gram, WFA and Neural Networks) on 15 publicly available SPiCe sequence prediction
competition datasets (Balle et al. 2017). As they are competition datasets, different
methods have already been applied independently to discuss the best models. For
example, one competition team has only experimented with neural network models
and N-grams, whereas other team has used only WFAs. However, there was no study
where these three methods were applied under a controlled experiment that would
fulfil our goal of analysing the model and dataset characteristics. For example, there
is no team that has applied these three methods on 15 datasets and reported the total
45 scores so that we could use the results to analyse the characteristics of the datasets
and models. To analyse models and datasets, in chapter 3, we will compare three
different families of models on 15 datasets. In chapter 3, we will also discuss the
reasons for choosing these three particular families of models.

Based on the discussion in this chapter, we can conclude that deep neural
networks require expressive power for sequence modelling specifically for language
modelling where the observation space is large and regularities are complex. Histor-
ically, the main problem with deep neural models has been training difficulty. One of
the reasons that make the training process inefficient is that it is very difficult to un-
derstand the overall training in the presence of many hyperparameters. There is no
standard way of justifying the impact of a particular component in a neural network.
It is also difficult to understand or analyse neural models as a whole due to the black
box nature of the neural network-based modelling. To improve the training of deep
neural language models, enhancing the understanding of neural models is crucial. To
increase understanding of the neural models and potentially reduce the number of
parameters of neural models, we need to explore the impact of different components
in neural networks. There are many components in neural networks and it would be
too ambitious to explore all the components in the PhD study. The neural network
theoretical results show that one layer of the recurrent neural network is very power-
ful. However, it was also shown in the literature that multiple layers bring benefits in

CHAPTER 2. BACKGROUND 44

RNN training for the sequence modelling task like language modelling. In chapter 3,
we will explore the impact of multiple layers in neural networks that has been found
in the literature as a key to success for many applications.

Even with the single layer RNN network, the main computational bottleneck
of the neural training is the softmax function, and there exist different approaches to
approximate the softmax operation. Among different approximation techniques, a
common problem with sampling-based and self-normalising approaches is that they
still require to evaluate the full softmax at test time. The main complexity of the
neural language models, however, comes from training. Among many approaches,
the Noise Contrastive Estimation (NCE) was shown to be not working with deep
recurrent neural networks in Chen et al. (2015). It was also argued to be an infe-
rior technique for neural language modelling because it optimises a binary rather
than a multitask classification task (Jozefowicz et al. 2016) and importance sampling
was found to be a more appropriate for neural language modelling. Theoretically,
NCE (Gutmann & Hyvérinen 2010, 2012) is a consistent (convergent) estimator and
it has better learning stability (the weights are always between o and 1) than other
sampling-based approaches including importance sampling. We will study the inte-
gration of NCE with deep neural models in chapters 4 and 5. Our objective is to anal-
yse the neural language modelling learning to explore how a component (i.e. NCE)
can be integrated into deep neural language models and explore the potential of the
component for neural language modelling. Another important factor that we want
to establish is that it is essential to work on the method which has good theoretical
properties, but was found to be inefficient when integrated with deep neural net-
work. In most fields, publication with negative results for a method get discouraged
by the researchers to work on any further. In NLP this problem is exacerbated by the
near-universal focus on improvements in benchmarks. A negative result is when the
outcome of an experiment or a model is not what is expected or when a hypothesis
does not hold. Despite being often overlooked in the scientific community, negative
results are still results and they carry value. While this topic has been extensively
discussed in other fields such as social sciences and biosciences, less attention has
been paid to it in the deep learning community. Considering a negative result known
in the literature we can formulate a research question to answer. We can ask how to
make NCE work efficiently when it has been found inferior in the existing literature.
Our investigation implies that before inventing a new method, it would be a good
idea to check existing inefficient methods with rigorous analysis.

Much of the misunderstanding and contradictory results in the deep learn-
ing literature is due to the fact that we do not have tools to understand the neural

CHAPTER 2. BACKGROUND 45

network training processes or learned models. We have seen in this chapter (see sec-
tion 2.5.2) that generalisation in deep learning has not been understood completely
and classical approaches to explain regularisation do not quite fit with the over-
parametrised deep learning paradigm. We need to explore the overall impact of a
component (e.g. NCE). Given the performance of a component on the improved gen-
eralisation capacity of the neural models, we need techniques to understand implicit
regularisation. We believe that it is essential to design such analytical techniques for
deep neural networks, and we will introduce novel techniques to improve the under-
standing of the neural models in chapter 5. As the proposed method will work on
learned models, other methods in deep neural network that work as a implicit regu-
larisation technique can be benefited from the proposed approaches in the chapter 5.

Conclusion

In this chapter, we have discussed the background and the relevant literature review
for language modelling, deep learning and the fundamental concepts in machine
learning that are exploited in this research. In the next chapter, we will compare
language modelling methods on 15 different datasets.

A COMPARISON OF SEQUENCE PREDICTION METHODS

The previous chapter reviewed different methods for language modelling. Language
modelling is a special and challenging case of a sequence prediction task where the
observable symbols are linguistic units include characters, words, sentences, and
whole documents (Rosenfeld 2000). In this chapter, we will compare the perfor-
mance of sequence prediction methods including the language modelling methods
described in the previous chapter.

Comparing different sequence prediction methods specifically for the lan-
guage modelling task is very difficult, if not impossible, just by comparing their
theoretical description. Each language modelling technique is well motivated and
some of them have theoretical guarantees on their optimality under certain assump-
tions. The main problem with such methods is that the assumptions are not usually
satisfied with real datasets (Quattoni et al. 2017, section 1.1).

The sequence prediction task is more general than language modelling in
the sense that the observable symbols can be from any domain and the regularities
involved in the process can be diverse. The different regularities help us understand
the different requirements for a dataset to make accurate predictions. For example,
Natural Language Processing (NLP) datasets have long term dependency for predic-
tion, whereas Software Engineering datasets (e.g. datasets to evaluate the effective-
ness of various verification and validation approaches on reactive systems) do not
have a similar requirement. Moreover, when we do not use the domain knowledge
associated with the data, we cannot facilitate the process of learning by utilising prior
knowledge (Yu et al. 2010). Although incorporating domain knowledge is challeng-
ing, successful incorporation of prior knowledge improves both the quality of the re-
sult produced by the learning process and the efficiency of the learning process itself.
When comparing methods for different domains, to incorporate prior knowledge is
very challenging. It takes many years of experience to become a domain expert and
multiple domain expertise is a rare calibre. Thus, it is difficult to be fair for all do-
mains when incorporating prior knowledge by a person who has more expertise in
one domain than another. Using diverse domain synthetic and real datasets without

46

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 47

incorporating prior knowledge we thus evaluate methods based on the data-driven
approach, revealing the inherent strength and weakness of the methods. Applying
multiple methods on the same dataset also helps us understand one method with
the interpretability of another method. For example, neural networks are difficult to
analyse but Weighted Finite-state Automata (WFA) and N-grams are easier to anal-
yse, and applying these methods on the same dataset help us understand different
aspects of the neural network models and the learning process.

Therefore, in this chapter, we will use publicly available competition data
from different domains, including NLP, Biology and Software Engineering, to eval-
uate methods. We will compare results from models generated using three meth-
ods (N-gram, WFA and neural networks) on sequence prediction tasks of the SPiCe
sequence prediction competition (Balle et al. 2017) using the 15 publicly available
datasets that include five NLP datasets. Based on the discussion in the previous
chapter, we will use N-grams with smoothing, a spectral algorithm for WFA, and
LSTM (see section 2.4) in the neural models. The competition data were prepro-
cessed to hide the domain-related information by the competition organisers (Balle
et al. 2017) and observable symbols were replaced with unidentifiable common sym-
bols (e.g. integer values). The goal is to identify the best model that works for differ-
ent datasets from different domains without using domain knowledge. To the best
of our knowledge, there is no previous work where diverse datasets were explored
(and analysed) with these methods (N-gram, WFA and Neural Network) through a
controlled experiment.

The description of these 15 datasets is given in section 3.1. The task of
the competition and its evaluation criteria are described in section 3.2. The related
methods used in the competition are described in section 3.3 and all the models were
evaluated using unseen test data and according to the SPiCe evaluation metrics. Our
approach to the task is described in section 3.4, the experimental setting is described
in section 3.5 and the result and analysis in section 3.6.

The main contributions of this chapter are filling the knowledge gap by :

1. a comprehensive evaluation of the spectral WFA method on real datasets and a
comparison with N-gram and two variations of recurrent neural network mod-
els (RNN). There is no previous comprehensive evaluation available (including
hyperparameter search) of spectral WFA on synthetic and real datasets. More-
over, we present the results using both single-layer and two-layer RNN neural
networks. An empirical investigation of the diverse domain datasets with the
recurrent neural models (emphasising the impact of the number of layers in the

Data driven
approach

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 48

results) has not been done in the past.

2. exploring spectral based WFA algorithms in a combination of a real and syn-
thetic context to understand the hidden state relationship with multiple layers
in recurrent neural networks. In the existing literature, multiple layers are cho-
sen for getting improved accuracy without explaining the reason behind such a
choice. Our experiments and analysis show that the hidden states of a process
can be modelled efficiently using multiple layers in recurrent neural models.

3.1 Data Description

In this section, we introduce the 15 datasets used in the Sequence PredIction
ChallengE (SPiCe) in 2016. The datasets consist of 8 (fully or partially) synthetic and
7 real-world datasets. Among the synthetic datasets, four are generated artificially
and four are partially synthetic based on real data. These datasets are publicly avail-
able’ and their descriptions can be found in (Balle et al. 2017). The synthetic datasets
1, 2, and 3 were artificially generated based on a Hidden Markov Model (HMM)
(Balle et al. 2017). HMM sequences were generated with n states and non-stationary
transition probabilities were obtained by partitioning the unit interval [o,1) into n
equal length sub-intervals and letting the states evolve as hy; = hy + ® mod 1, for
some irrational number @. > The emission probabilities were sampled from a Dirich-
let distribution. Another synthetic dataset, 12, consists of synthetic data generated
using the PAutomaC data generator (Verwer, Eyraud & dela Higuera 2014). Partially
synthetic datasets 6 and g are based on software engineering and come from the chal-
lenge RERS 2013 (Howar et al. 2014). Partially synthetic datasets 14 and 15 contain
synthetic data generated from two Deterministic Finite-state Automata learned using
the ALERGIA algorithm (Carrasco & Oncina 1994) based on the NLP datasets 4 and
5, respectively.

Real datasets 4 (English Verbs from Penn Treebank), 5 (Character Language
Modelling benchmark from Penn Treebank), and 8 (POS from Ancora) all correspond
to NLP problems from Penn Treebank (Marcus et al. 19931) and the Spanish Ancora
corpus (Taulé et al. 2008). Dataset 11 (lemmatisation) was created from a lemmatised
version of the Flickr-8k dataset (Hodosh et al. 2013). Real dataset 13 (spelling correc-
tion) was derived from a Twitter spelling correction corpus (TYPO CORPLUS 2010).
Real datasets 7 and 10 are protein family sequences taken from the Pfam database

Thttp:/ /spice.lif.univ-mrs.fr/data.php
*Multiples of an irrational number modulo 1 cover the unit interval uniformly (Katz 2004).

Synthetic

and partly
synthetic

datasets

Real dataset

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 49

Table 3.1: Dataset Descriptions — The column # gives a number to the dataset, the
column Sym gives the number of different symbols, Train and Test provide respec-
tively the number of elements in the training and test sets, and Type details the source
of the data.

Sym Train Test Type

synthetic
1 20 20000 5000 , .
(non-stationary HMM with 2 states)

synthetic
2 10 20000 5000 i .
(non-stationary HMM with 2 states)

synthetic
3 10 20000 5000) Y)
(non-stationary HMM with 4 states)

NLP

8
4 3 29°7 749 (English verbs, character level, Penn Treebank)

NLP

6 20
5 49 33054 4207 (character level language modeling, Penn Treebank)

6 6o 5000 5000 partly synthetic, software engineering
(RERS 2013 problem 34)

biology
7 20 65438 5000 . .
(protein family PF13855, full set, Pfam)

NLP

8 8 1390 1738
4 3903 73 (Spanish simplified POS sentences, Ancora)

partly synthetic, software engineering
9 11 5000 5000
(RERS 2013 problem 42)

biology

10 20 2 4848
54932 4%4 (protein family PFoo400, RP15 subset, Pfam)

NLP

11 6722 238 048
7 32354 404 (English lemmas from Flickr-8o00)

synthetic
12 21 200000 3000
(PAutomaCgenerator)

NLP
13 702 26544 3318 , , . :
(English spelling correction from Twitter Typos Corpus)

partly synthetic

14 27 10000 5000
(ALERGIA, DFA based on problem 4)

partly synthetic

15 32 50000 5000
(ALERGIA, DFA based on problem 5)

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 50

(Finn et al. 2015).

3.2 Problem Statement and Evaluation Criteria

The Sequence Predictlction ChallengE (SPiCe) (Balle et al. 2017) was an on-line com-
petition to predict the next element of a sequence. The competition scored meth-
ods on their performance on both real and synthetic data (see section 3.1). Training
datasets consist of whole sequences and the aim is to learn a model that allows the
ranking of potential next symbols for a given test sequence (prefix or context), that
is, the most likely options for a single next symbol. Once rankings for all prefixes
were submitted by the participants, the score (normalised discounted cumulative gain
NDCG;, explained below) of the submission was computed. The score is a ranking
metric based on normalised discounted cumulative gain computed from the ranking
of 5 potential next symbols starting from the most probable one. Suppose the test
set is made of prefixes y;,...,ym and the distinct next symbols ranking submitted
for y; is (d},..., ﬁé) sorted from more likely to least likely. The target probability
distribution of possible next symbols given the prefix yi, p(.lyi), was known to the
organisers. Thus, the exact measure for prefix y; could be computed using the fol-
lowing equation: '

5 plalyd)

k=1 log,(k+1)

NDCGs(dl, ..., a})

— 55 p

Zk:1 1092(1]2_'_1)
where p; > p, > - -+ > p5 are the top 5 values in the distribution p(.ly;). More details
on this evaluation can be found in (Balle et al. 2017).

The competition was open for all methods, and that requires a generalised
evaluation metric. In the previous chapter, we have seen that perplexity is an eval-
uation metric for language modelling. However, the spectral based solutions do not
necessarily assign a non-negative number to each sequence, much less adds up to
one when summed overall sequence, although both properties are satisfied in the
limit (Balle et al. 2014). In practice, this is a problem when trying to evaluate these
methods using perplexity as an accuracy measure. Therefore, the above-mentioned

evaluation criterion was used in the competition.

Why a new
evaluation
metric?

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS

@

I

D)

51

Full Con. + ReLLU
I \ Embedding Full Con. + ReLU
y Layer
P — LSTM — 5 (Full Con () LSTM| 9
St—1 La&'el‘ 2 Ot+1 . R L) . Si-1 Layer P) S,H\
e
] LSTM
(1 D
T e I T
Sp1 Laver 1 Si41 Encoding St Laver 1| 541 Layer 1]
] of SP2 : —
{] Embedding mbedding
Embedding Em]h:}edrmg Logor Layer
Layer = i]]
@) by(t— 1)

(a) SP2 model (b) Bigram model

Figure 3.1: The best neural architectures for the datasets in the literature

3.3 Related Works

To find the most efficient methods for the 15 datasets, the total of 26 teams imple-
mented a wide range of methods including different types of neural network models,
boosting, spectral and classical state-merging algorithms for learning weighted au-
tomata, and ensemble methods that combined several techniques. Among them, the
top six teams presented their work as a report. The top score was achieved by Shi-
bata & Heinz (2017). This score was achieved by using a combination of novel RNN
models where the state vector is augmented with an indicator vector representing
the previous N-gram in history. Specifically, they have used three models, the basic
model was a stacked LSTM followed by an all-connected layer. The second and third
models used the combined representation learnt by stacked LSTM and input vectors
corresponding to the states of particular deterministic finite-state automata (DFA).
The second model, SP2 model (see Fig. 3.1a), used a vector embedded with the cur-
rent state of a Strictly 2-Piecewise DFA (Heinz & Rogers 2010) and the third model,
bigram model (see Fig. 3.1b), used a vector embedding the state of a Strictly 2-Local
DFA (bigram model) (McNaughton & Papert 1971). The third model, basic model
(see Fig. 3.3a), is a two-layer stacked LSTM network.

The second-best team used an ensemble of Multilayer Perceptron, Convolu-
tional Neural Network, LSTM and N-gram models (Zhao et al. 2017). The third team
also used an ensemble method of N-gram, spectral, RNN and tree boosting (Sato et al.

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 52

2017). The fourth team (Liza & Grzes 2017) used a combination of a spectral model
with N-gram models. The fifth team (Xi & Zhuang 2017) used model compression
techniques. Team seven (Hammerschmidt et al. 2016) has used (non-)probabilistic
deterministic finite-state automata for the given datasets. In this chapter, we will
compare our proposed methods with the top-scoring method proposed by Shibata &
Heinz (2017).

3.4 Method Used For the dataset

In the previous section, we have seen that numerous approaches have been applied to
the sequence prediction task. In this section, we will describe the specific approaches
for the three methods and their learning approach that were applied to the datasets.

3.4.1 N-gram with smoothing

We have described N-gram models and smoothing (Chen & Goodman 1996) tech-
niques in the previous chapter (section 2.3.1). Based on that discussion, for the
datasets in section 3.1, we have used the N-gram with modified Kneser-Ney (MKN)
smoothing (Kneser & Ney 1995). The MKN smoothing is a recursive interpolation
with lower order models, making use of different discount values for more or less
frequently observed events.

3.4.1.1 Relevant parameters

The main hyperparameter for the N-gram model is the value of N, defining the length
of the sequences to consider in estimating the probability. In the previous chapter,
we have seen that for N-gram models, the number of parameters to be estimated
increases exponentially with the hyperparameter N. We have also discussed that the
impact of the choice of N is related to the bias-variance trade-off. The performance
dependency relative to N is dependent on the training data available for the predic-
tion. The additional hyperparameters for the MKN smoothing are, D,, D, and D5,
defining the discount parameters for N-gram with one, two and greater than three
counts respectively. These discount parameters are used in linear interpolation of
higher and lower order N-gram probabilities to preserve probability mass.

Our approach to parameter tuning

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 53

We have increased the values of N gradually, starting from the unigram and used
best found value for N when the performance on the public testing dataset (i.e. val-
idation dataset) stopped improving. The final score was based on a separate private
test datasets only available to the competition organiser. The values of the smooth-
ing parameters D;, D, and D;, can be set efficiently using the following approach
(Koehn 2010, chap 7):

N,
VEN SN,
D1:1—2YE:
N;
D2:2—3YN—2
D, =3— Y&
3+ =3—4 N,

Here, N, are the counts of N-gram with exactly ¢ count in training dataset. We have
used this approach to set the values of these hyperparameters.

3.4.2 WFA

In the previous chapter, we described WFA as a good approximator for sequence
prediction. Approximating distributions over strings is a hard learning problem and
in the previous chapter, we have discussed the learning difficulty of WFA. The recent
advancement in learning for WFA is based on spectral learning which reduces the
computation complexity. In the previous chapter we have seen the spectral algorithm
(section 2.3.2) for WFA (Balle et al. 2014). Next, we will briefly describe the steps of
the Hankel matrix-based spectral algorithm for WFA:

S1. Basis Selection: Choose a set of prefixes P and suffixes S

S2. Build a Hankel matrix: The Hankel matrix (Hf € R¥ *%") associated with a
function f : £* — R is a bi-infinite matrix. In practice, one deals with finite
sub-blocks of the Hankel matrix based on the chosen basis in step S1, thus
B = (P,S) C £* x L*. The corresponding sub-block of the Hankel matrix is
denoted by H ¢ RIPIXISI The entry H(p,s) is the value of the target function
on the sequence obtained by concatenating prefix p with suffix s. Among all
possible basis, we are particularly interested in the ones with the same rank as
f. We say that a basis is complete if rank(H) = rank(f) = rank(Hs).

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 54

S3. Perform SVD on H = uov'.

S4. Use the factorization F = uo, B = v' and H to recover the parameters of the
minimal WFA, following (Hsu et al. 2012, see section 2.3) and the description
of the previous chapter (see section 2.3.2).

3.4.2.1 Relevant Parameters

The algorithm receives as input the number of states n of the target WFA. This n is a
hyperparameter for this algorithm and defines the rank of the Hankel matrix which
defines the number of hidden (latent) states in the low dimensional state space. If
we relate the literature of subspace identification methods for linear systems with
the spectral methods, then we are trying to find a basis for the state space such that
operators in the new basis are related to observable quantities.

The noise and the insufficient (not sufficiently informative) data can make
the rank of H different from the true rank of H¢. When the value of n is selected
through the cross-validation procedure, a truncated SVD of H up to dimension n
is used to get the factorisation. By truncating some small singular values of H are
ignored. The algorithm has to ignore some small singular values of H, which corre-
spond to zeros in the original matrix, as the zeros in the original matrix do not have
much impact on the final result. Bailly (2011) has shown that when empirical Hankel
matrices are sufficiently accurate, singular values of H can yield accurate estimates
of the number of states n in the target.

The other important parameter to choose when using the algorithm is the
basis. In practice, choosing a basis can be done in the form P = S = £S¥ for some
k > o (Hsu et al. 2012, Siddiqgi et al. 2009). Another approach is to choose a basis
that contains the most frequent elements observed in the sample, which can be ei-
ther strings, prefixes, suffixes, or substrings (Balle et al. 2012). We used the second
approach in our method with substrings. Note that the basis vector can be chosen
from a subblock of the Hankel matrix where the rows and columns of the Hankel
matrix correspond to the substrings and the cells of the Hankel matrix contain the
frequencies of the corresponding substrings. In the algorithm, we also choose the
length of these substrings. Instead of using substrings, it is also possible to use the
prefixes as a row and suffixes as a column. In such a case, the cell of the Hankel
matrix can be calculated as the frequencies of the corresponding strings. If the data
is informative enough and the frequencies are high enough, the Hankel matrix gives
a complete basis without the costly need to look at all possible rows and columns.

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 55

No of states vs Score (Small number of states)

—Dataset 1
0.9 —Dataset 2
—Dataset 9
8 0.8 —Dataset 3
@) Dataset 12
Z 0.7
0.6
0.5 : : : :
0 50 100 150 200

No of States

(a) Impact of basis on score

Substring length vs Score

0.951
ool ﬁﬁ
Q ——Dataset 9 (Rank = 44)
Q085¢ “|—Dataset 9 (Rank = 44)
z —Dataset 6 (Rank = 250)
0.8 / —
0.75 : : : :
2 4 6 8 10

nC=nR
(c) Impact of basis on score

spectral vs n-gram

0.6
o 0.5
@)
[a)
zZ
0.4
—Spectral
—3-gram with KN smoothing
0.3 : : ‘
4 6 8 10

Problem no

(e) SM vs n-gram

No of states vs Score

0.6

0.5
) —Dataset 4
8 0.4 —Dataset5 -
=z —Dataset 7
—Dataset 8
0.3 ~
—Dataset 10
—Dataset 13
0.2 : :
0 500 1000
No of States
(b) Low Score (SM)
No of states vs Score
0.8
O] 0.6 ——Dataset 6 (higher rank works)
(@) — Dataset 11(higher rank intractable)
o —— Dataset 14 (higher rank does not work)
z —— Dataset 15 (higher rank does not work)
0.4
0.2 : : :
0 200 400 600
No of States
(d) No of states vs Score
Constant nR and Variable nC vs Score
0.837
S
R 0.825¢
P

—e—Dataset 3 (Rank=5, nR=nC)
—e—Dataset 3 (Rank=5,nR=10,nC=Variable)
0.82] ‘ : ‘ :
4 6 8 10

nC
(f) Same and different nR, nC

Figure 3.2: Spectral Learning parameter learning

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 56

Our Approach to Parameter Tuning

Our main task now is to find the best hyperparameters of the spectral algorithm
of WFA. Specifically, we had to select values for three parameters: the number of
states, n, the maximum length of the substring considered in the row of the Hankel
matrix, nR, and the maximum length of the substring considered in the column of the
Hankel matrix, nC. The objective is to maximise the score "Normalised Discounted
Cumulative Gain” (NDCG5) on the datasets (section 3.1).

For the hyperparameter search, we did not apply any of the more sophisti-
cated methods for hyperparameter tuning—such as random search (Bergstra & Ben-
gio 2012), Bayesian optimisation (Bergstra et al. 2011) or grid-based search (Larochelle
et al. 2007)—because the method quickly becomes infeasible when the rank, i.e. the
number of states or the length of the substrings is too high, and we had to stop many
experiments manually. Similar to Larochelle et al. (2007), our method included a
combination of multi-resolution search, coordinate ascent, and manual search, with

a significant utilisation of the last method on public test data (i.e. validation dataset).

On all problems, our method first initialises nR and nC to 4 and n to 5.
Note that the number of rows (columns) in the Hankel matrix is much larger than
nR (nC). In the second step, the algorithm starts the process of tuning the number
of states n because this was the most important hyperparameter in our preliminary
experiments. A random walk is used to select new values of n with the step size
being dependent on the size of the domain, i.e. the number of observations and the
number of sequences. Thus, when nR and nC were kept constant, the value of n
was increased or decreased randomly based on the NDCGj; score (see Figure 3.2b),
i.e. a form of coordinate ascent was performed on n. After the highest score was
achieved by tuning n, n was frozen, and the algorithm used the same randomised
procedure to tune nR (see Figure 3.2c). Finally, the same procedure was executed to
tune the parameter nC (see Figure 3.2f). After tuning nR, and nC, we did not tune
n again because, for a given n, a very small improvement was usually observed after
tuning nR and nC. On some problems, increasing the values of n, nR and nC to a
large number was not possible as the algorithm was becoming intractable. All these
hyperparameter tuning were done on public test data (i.e. validation dataset). The
final scores in the result section are based on the organisers” private test data which

was not available to contestants during hyperparameter tuning stage.

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 57

O

Softmax @
Full Con. + ReLU
@) LSTM (@) (@) LSTM (@)
St—1 Layer 2 St41 Si-1 Layer 2 St41
LSTM LSTM LSTM
1 1 1 1 1 1
557)1 Layer 1 Si+)1 sf(,—)l Layer 1 qf(+)1 sf(,—)l Layer 1 qf(+)1
Embedding Embedding Embedding
Layer Layer Layer

O, O,

(a) Basic SPiCe (b) Basic 2-layer (c) Basic 1-layer

Figure 3.3: Neural architectures for the datasets
3.4.3 Neural Network

In the SPiCe competition, there were three neural models (SP2 model, bigram model
and basic model) explored by Shibata & Heinz (2017) that achieved the winning ac-
curacy. Among those models, the basic model is a two-layer stacked LSTM network.
There is an all-connected non-linear layer with a Rectified Linear Unit (ReLU) activa-
tion function used on top of a stacked LSTM (Fig. 3.3a). The two-layer LSTM stack
was placed on top of the embedding layer that is used to embed each symbol x; of the
sequence at position t. The output layer consists of the softmax layer implementing
the softmax activation, which outputs the network’s prediction of the next symbol of
the sequence y¢ = X¢4+.

In this chapter, we have simplified the basic architecture in two ways. First,
we removed the fully-connected non-linear layer and introduced dropout at all non-
recurrent layers (Fig. 3.3b). Second, we further simplified the model by using just
a single layer (Fig. 3.3¢) with dropout at non-recurrent layer. The motivation for re-
moving the all-connected layer is to reduce the number of parameters and the state-
of-the-art sequence prediction models (Zaremba et al. 2014) do not usually have an
all-connected non-linear layer on top of the stacked LSTM. Stacked LSTMs are expres-

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 58

sive enough to capture most of the regularities without an additional all-connected
non-linear layer. The motivation for applying the dropout at all non-recurrent layers
is to regularise the whole networks (Zaremba et al. 2014) instead of regularising based
on some particular layers (Shibata & Heinz 2017). We compare against a single-layer
LSTM in the results section.

Following Shibata & Heinz (2017) a “start’ symbol and an ‘end” symbol were
added to both sides of each training sentence. Symbols are fed into the model from
the “start” symbol.

3.4.3.1 Relevant Parameters

Neural models have more hyperparameters than the other models (e.g. N-gram,
WFA). Setting the values of hyperparameters can be seen as model selection, i.e. choos-
ing which model to use from the hypothesised set of possible models. Hyperparam-
eters are often set by hand, selected by some search algorithm as described in the
previous section (section 3.4.2.1), or optimised by utilising a hyper-learner or meta-
learning approach. For the deep learning models, there are mainly three types of
hyperparameters. First, model design hyperparameters: these parameters specify
the building blocks of the model including the number of layers, types of activa-
tions, types of optimisation techniques. Second, the learning and regularising hy-
perparameters: these parameters include the learning rate, dropout rate. Third, the
model hyperparameters: these hyperparameters help to learn the model parameters
(weights of the network learned from the data) with stability including the weight
initialisation scheme, gradient thresholding (gradient norm).

Our Approach to Parameter Tuning

In this chapter, we will experiment with model design hyperparameters and
the learning and regularising hyperparameters. We will use one layer and two layer
networks to see the impact of increased modelling power on the performance. We
will also experiment with dropout at different layers. The rest of the hyperparameters
are used on the previous study by Shibata & Heinz (2017). Our work in this chapter
can be extended by experimenting with the other hyperparameters, however, our
goal has been served by the tuning of the above-mentioned hyperparameters.

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 59

3.5 Experimental Settings

For the N-gram models, we have used the 3-gram model after experimenting with
uni-gram till 5-grams. The MKN3 smoothing was used and the relevant hyperparam-
eters (D, D,, D5) were set according to the unigram, bigram and trigram statistics
of the respective datasets. The hyperparameters (See Tab. 3.4) for the WFA were
tuned based on the grid search approach (described in the section 3.4.2.1) to find the
best results obtained in this chapter. The specific values can be found in the Tab. 3.4.

For the neural models, the weights were initialised with Gaussian samples,

each of which has zero mean and deviation \/E , Where in_size is the dimension
of input vectors. The LSTM has 600 hidden nodes, the size of embedding vectors was
set to 100, and when a non-linear layer was used in between the LSTM and Softmax
layer (for the baseline replication), the output dimension was set to 300. These values

were set based on the baseline study.

We have used two-layer and one layer LSTM networks for the dataset. The
dropout rate was set to 0.5 for all non-recurrent layers, which is known to be close to
optimal for a wide range of networks and tasks (Srivastava et al. 2014).

Following baseline study, for optimisation, we used the momentum stochas-
tic gradient descent (SGD) with the momentum 0.9. The learning rate decreased grad-
ually from 0.1 to 0.001, where the number of iterations was 45 and the mini-batch size
was 128.

3.6 Results and General Analysis

In this section, we will report the experimental results which are based on the evalu-
ation score described in section 3.2 and analyse the results. Tab. 3.3 reports the scores
of the three methods.

In this chapter, for the neural models (in Tab. 3.3 and Tab. 3.5), we report av-
erage accuracy (mean statistics) and standard deviation (SD) (Garg & Mohanty 2013)
in the ‘Mean (SD)’ format. Each experiment was repeated 10 times with different
random seeds and the results were averaged. Tab. 3.2 reports the results of the three
neural models (Fig. 3.1a, 3.1b, 3.3a) proposed by Shibata & Heinz (2017). From the
scores, we can see that the performance of the basic model is quite competitive with
the sp2 and bigram models. The sp2 model scored better than the basic model in

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS

60

Table 3.2: Comparison of Scores Between SPiCE Neural Models (Shibata & Heinz

2017, Tab. 2)

Dataset | basic(600) sp2(600) bigram(600)
1 0.909(0.002) | 0.915(0.000) | 0.769(0.003)
2 0.920(0.000) | 0.920(0.000) | 0.838(0.004)
3 0.888(0.001) | 0.886(0.001) | 0.831(0.001)
4 0.619(0.002)7 | 0.616(0.002) | 0.634(0.001)
6 0.863(0.001) | 0.867(0.001) | 0.828(0.002)
7 0.736(0.000) | 0.736(0.001) | 0.747(0.001)
8 0.645(0.001) | 0.644(0.001) | 0.614(0.001)
9 0.962(0.000) | 0.962(0.000) | 0.959(0.000)

10 0.574(0.001) | 0.573(0.001) | 0.570(0.002)
11 0.520(0.001) | 0.519(0.001) -

12 0.799(0.002) | 0.807(0.001) | 0.713(0.001)
13 0.592(0.001) | 0.590(0.001) | 0.581(0.000)
14 0.350(0.002) | 0.351(0.002) | 0.333(0.002)
15 0.263(0.001) | 0.263(0.001) | 0.258(0.001)

datasets 1,6,12,14 in small-scale (i.e. accuracy improvement is < 0.008). Similarly,
the bigram model scored better than the basic model in datasets 4,7 in small scale
(i.e. accuracy improvement is < 0.015). From these results, we can see that the in-
creased model complexity (additional parameters) have little impact on the resulting
accuracy. We will compare the SPiCe basic model with the proposed basic models in

Tab. 3.5.

In Tab 3.3, the scores of the datasets (14, 15) are low for all used methods,
specifically, none of the methods could score at least 0.5. In fact, in the literature,
there are no known methods for these two datasets that have scored at least o.5.
Therefore, we are excluding the analysis of the result for those datasets. We assume
that the datasets are too complex or not informative enough or the given datasets are
just too small for any methods to predict meaningfully.

As described in the previous chapter (chapter 2), the N-gram models are still
the baseline for the sequence prediction task, specifically for the language modelling
task. Therefore, WFA and the neural models will be compared with N-gram models.
We will compare and analyse the results of these three methods in the following

paragraphs.

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 61

Table 3.3: Comparing Three Methods on the Sequence Prediction Task

Dataset | N-gram | WFA Two Layers NN
Mean (SD)
1 0.8424 | 0.8789 | 0.9179 (0.0004)
2 0.8204 | 0.8731 | 0.9208 (0.0001)
3 0.7719 | 0.8248 | 0.8937 (0.0006)
4 0.5540 | 0.5272 | 0.6103 (0.0019)
5 0.6142 | 0.5688 | 0.8116 (0.0007)
6 0.7003 | 0.8096 | 0.8709 (0.0016)
7 0.5020 | 0.4474 | 0.7303 (0.0020)
8 0.6233 | 0.5426 | 0.6616 (0.0017)
9 0.8662 | 0.9324 | 0.9666 (0.0004)
10 0.3965 | 0.3623 | 0.5523 (0.0027)
11 0.4092 | 0.4147 | 0.5525 (0.0019)
12 0.6992 | 0.8113 | 0.8512 (0.0013)
13 0.4737 | 0.4990 | 0.6014 (0.0013)
14 0.3552 | 0.4649 | 0.3549 (0.0038)
15 0.2524 | 0.2978 | 0.2659 (0.0011)

Comparing N-grams and Neural models: When comparing between the
neural models and the N-gram models (see Tab. 3.3), neural models have outper-
formed the N-gram models in all datasets. It is expected, as we have described in the
previous chapter that N-gram models require much more data than neural models

to achieve the same performance.

Comparing N-grams and WFA models: From the experimental results in
Tab. 3.3, the WFA model performed worse than the N-gram models in five datasets
(4,5,7,8 and 10) and better than the N-gram models in the eight datasets (1,2,3,6,9,11,12,
and 13).

We will analyse the results of these three methods (N-gram, WFA and neural

network) in the following paragraphs.

Datasets where N-gram models are better than WFA models: We will
first discuss the results where N-gram models did better than WFA models. When
compared with the WFA models in Tab 3.3, for datasets 4,5,7,8 and 10, the N-gram
models perform better than the WFA models. Three of these datasets are from the
NLP domain (4, 5 and 8) and two from biology (7, 10). These domains are known

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 62

Table 3.4: The hyperparameters for the WFSA

Dataset | Rank (n) | lrows (nR) | lcolumns (nC) Score
1 4 5 5 0.8789916635
2 6 5 5 0.8731489778
3 5 10 3 0.8248148561
4 500 5 5 0.5272911191
5 450 5 5 0.5688513217
6 90 6 7 0.8096061349
7 500 4 4 0.4474728703
8 60 5 5 0.5426079151
9 57 8 7 0.9324635267
10 200 5 5 0.362334120
11 100 5 5 0.4147772193
12 95 4 4 0.8113699555
13 500 5 5 0.4990697801
14 2 10 10 0.4649848044
15 3 6 6 0.2899561226

to have long-distance dependencies on context or history for sequence prediction.
Although an N-gram performs better than a WFA, we have described previously that
the N-gram models scored low compared to the neural models. This is expected as
we have argued in the previous chapter that neural models can capture long term de-
pendency efficiently and learning N-gram and WFA models requires larger datasets

than neural models to converge.

WFA-based sequence modelling requires three hyperparameters (n, nC, nR).
Among them, n defines the rank or cardinality of the hidden space, whilst nC and
nR define how much history to consider. From Fig. 3.2b, it can be seen that for
the datasets 4,5,8,10, and 13, only increasing the number of hidden states (n) does
not show significant improvement in the score. For these datasets, the value for
the hidden state n has been increased until 1000 and no performance increment is
observed after 400.

Based on the other two hyperparameters (nC, nR), two types of observation
are made: the learning does not converge (low score) or the learning becomes in-
tractable. To elaborate on the above observation, we will now analyse the results. If
the datasets have a small number of training examples, increasing the length of the
substring does not improve the score. Dataset 4 (Sym =33, # of training examples =

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 63

5987) have this characteristic. For this dataset, the substring length of 5 gave the best
result (0.5272) with rank 500. Increasing the rank to 856 and the length up to 70 does
not improve the score. We assume, one of the reasons for such an observation can be related
to the size of the dataset. Dataset 4 is small and increasing the substring length will result
in a Hankel matrix with many zero entries. We need the Hankel matrix to be informative
(non-zero entries) enough to make meaningful predictions (learning convergence). In such
a case, as learning has not converged, we do not know if the data has a long term
dependency or not.

While small training examples impose the convergence problem, a large
dataset can make the method intractable (computationally infeasible), specifically,
if the dataset has a long-distance dependency on the context to make predictions.
Datasets 5, 7, 8, 10 have comparatively larger numbers of training examples than
dataset 4 but increasing the length of the substring makes the method intractable.
For dataset 5, using the number of states (n) [5, 55, 100,250, 300, 350, 450] gave the
evaluation scores of [0.313,0.421,0.485,0.544, 0.555,0.560,0.568] with nC and nR of
size 5. Increasing the number of hidden states, the score improves slightly. However,
increasing the string length to 6 with a gradual increase in the number of hidden
states to 350 makes the method intractable. Similarly, for dataset 7 (Sym =20, # of
training examples = 65438), the best score achieved by WFA is 0.4474 with rank 500
and string length 4. Increasing the string length to 5 makes the learning process
computationally infeasible. For dataset 8 (Sym = 48, # of training examples = 13903),
the reported score was found with n = 6o and nC = 5, nR = 5, increasing the nC
and nR to 6 makes the method intractable. Note that with n =55 and nR=nC =6
the score was 0.485. Following a similar pattern, for dataset 10, the best-achieved
score is 0.3623 with rank 200 and string length 5. Increasing the length over 5 made
the method intractable. To summarise, for predictive modelling of these datasets, we
have to consider the use of a large string length in the Hankel matrix. Increasing the
values of the length increases the model complexity and makes the learning process
infeasible for WFA. Therefore, to model datasets with long term dependency, WFA
suffers from computational complexity. In the previous chapter, we have seen that
spectral learning of WFA has better computation complexity than the non-spectral
counterpart, however, for datasets with long term dependency, the learning process
is still intractable (computationally infeasible) with spectral algorithms.

Datasets where WFA models are better than N-gram models: We will
analyse the datasets where N-gram does worse than WFA. For datasets 1,2,3,6,9,11,12,
and 13 WFA performed better than N-gram models. Although WFA has done bet-
ter than N-gram in dataset 11 and 13, the scores of both methods are low (< 0.5)

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 64

and we are excluding our analysis for these datasets. Datasets 1, 2, 3, 6, 9, and
12 where the spectral algorithms for WFA led to good scores (see Tab. 3.4), have
common characteristics. All these datasets are generated synthetically (partially or
fully), the data are not from the NLP domain, have small numbers of hidden states
(can be expressed through low-rank approximation) and with short length substring,
the scores are competitive. From the above discussion, it can be concluded that for
synthetic datasets where the generating distribution is known or definable and pre-
diction is dependent less on the longer distance context, WFA is a good method for
sequence prediction.

NDCG

N-gram WFA NN

Figure 3.4: A bar chart with (standard) error bars (shown as black lines) of the models
NDCG scores in Tab. 3.3. The (standard) error bars was calculated using the standard
error of the mean (SEM). SEM = \%—5' where o is the standard deviation of the NDCG
scores. The height of the bar represents the mean value of the NDCG scores.

Overall, neural models did better than N-gram and WFA models: From
the above discussion, we have seen that neural models did better than N-gram and
WEFA in all datasets. To conclude, datasets where modelling requires longer-distance
context (i.e. datasets that have long term dependency) are difficult to model with
WFA and N-gram models. For such datasets, neural models are more appropriate.
Evidently, from Tab 3.3, we have seen that a two-layer neural model performed better
than WFA and the N-gram model in all datasets, including the ones which have long
term dependency in the prediction.

To check the statistical significance based on the 15 scores of three families of
models, we will use Tab. 3.3 which reports the scores of the three methods and Fig. 3.4

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 65

which shows the (standard) error bars. From the Tab. 3.3 and Fig. 3.4, we can say
that accuracy of neural networks over the other two methods has large magnitude.
The error bars in Fig. 3.4 indicate that the neural networks can be better than N-gram
with statistical significance, however, neural networks is probably not better than
WFA with statistical significance, but the increase in magnitude is not negligible.

3.7 Specific Analysis: The Impact of Multiple Layers in NN

In this section, we will do a specific analysis to understand the impact of multiple
layers in recurrent neural networks. In this chapter, we used two types of RNN
models (one is a single-layer and another is a two-layer stacked RNN network) and a
WEFA. Using the fifteen datasets and the results from the two types of neural model
and WFA models, we will attempt to answer the following question “what is the
impact of multiple RNN layers in sequence modelling?”. To answer this question, we
contrasted the impact of the LSTM layers in RNNs with the rank (i.e. the number of
hidden states) in the corresponding WFA models.

Why Deep Recurrent Neural Networks? In chapter 2 we have seen that multilayer
RNNSs are advantageous for efficient sequence modelling (Zaremba et al. 2014, Joze-
fowicz et al. 2015). However, it is hard to analyse such models theoretically. As a
result, in spite of competitive empirical results, it is not clear what kind of additional
modelling power is gained by a deep architecture (i.e. more than one hidden layer
in RNNs). Stacking RNN layers (in space) is inspired by the multilayer perceptron
(MLP) and can be motivated with respect to the hypothesis by Bengio et al. (2009) that
multiple layers allow the model to have greater complexity by incorporating complex
feature representations of each time step. For the non-recurrent networks, Bengio
et al. (2009) hypothesise that a deep, hierarchical model can be exponentially more
efficient at representing some functions than a shallow one. Theoretical (Le Roux &
Bengio 2010, Delalleau & Bengio 2011, Pascanu, Montufar & Bengio 2013) and em-
pirical (Goodfellow et al. 2013, Hinton et al. 2012) work on non-recurrent networks
agrees with the above hypothesis. Based on these results, Pascanu et al. (2014) as-
sumed that the MLP-based hypothesis proposed by Bengio et al. (2009) is also true
for recurrent neural networks. The earlier work attempted to capture large context
and reducing the training time by using multilayer RNNs. For example, El Hihi &
Bengio (1996) assumed that the layers increase the capacity of learning the context
by capturing the improved long-term history, whereas Schmidhuber (2008) argues

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 66

that the stacked RNN requires less computation per time-step and far fewer training
sequences than a single-layer RNN.

Depth of a Recurrent Neural Network Elman (1990) introduced the notion of
‘memory’ to capture non-fixed long-term contexts through the recurrent layer. When
stacking the RNNSs, the transition between the consecutive recurrent layers is still
shallow (Pascanu et al. 2014). Thus, stacking the RNNs does not extend the hypoth-
esis of (Bengio et al. 2009) to the recurrent layer that is dedicated to long-term con-
text capture. The empirical results of Zaremba et al. (2014), Jozefowicz et al. (2015)
suggested that multilayer RNNs improve sequence modelling. We show empirical
evidence that indicates that a multilayer RNN does capture better context as shown
by El Hihi & Bengio (1996), but that is achieved across stacked layers instead of the
time scale (i.e. instead of the recurrent layer). Better learning is dependent on both
capturing improved input representation at each time step and capturing improved
long-term dependency from the previous time-steps in a sequence. In this chapter,
we investigate RNN learning from the formal language perspective using WFA mod-
els, and we show that adding more layers may not be sufficient if the model has to
deal with long-term dependencies.

WFA and RNN Weighted Finite-state Automata (WFA) and Recurrent Neural Net-
works (RNNs) provide a general framework for the representation of functions that
map strings (i.e. sequential data) to real numbers. As we have mentioned earlier
WFA-based models are used for both theoretical studies and sequence prediction
tasks including language modelling (Buchsbaum et al. 1998). However, they are com-
putationally expensive to train. On the other hand, RNNs are remarkably expressive
models but their theoretical analysis is difficult even for a single-layer RNN. Evaluat-
ing their performance on real and synthetic data can help us to understand the WFA
model’s hidden state relationship with the recurrent neural network layers. In the
existing literature, multiple layers are used in RNNs to obtain improved accuracy on
sequence prediction tasks, but this is done without deeply-justified reasons for such
a choice. Our experiments and analysis show that the hidden states of a process can
be modelled efficiently using multiple layers.

The main goal of our empirical investigation is to show that correlating the
impact of multiple layers in RNN-based neural models with the number of hidden
states (quantified using a rank of the SVD) of finite-state automata, we can increase
the understanding of deep neural networks. This way we aim to explain the role
of multiple RNN layers in sequence modelling. In this discussion, we will refer

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 67

to Tab. 3.5 that reports the scores of the three neural network models described in
section 3.4.3 and to Tab. 3.4 that reports the scores of the WFA models described in
section 3.4.2.

Table 3.5: Comparing Sequence Prediction Scores (Basic Architecture)

Dataset | 2 Layers (SPiCe) | Two Layers One Layer

Mean (SD) Mean (SD) Mean (SD)
1 0.909 (0.002) 0.9179 (0.0004) | 0.8524 (0.0022)
2 0.920 (0.000) 0.9208 (0.0001) | 0.9183 (0.0008)
3 0.888 (0.001) 0.8937 (0.0006) | 0.8821 (0.0018)
4 0.619 (0.002) 0.6103 (0.0019) | 0.6142 (0.0041)
5 0.8100 (0.001) | 0.8116 (0.0007) | 0.7972 (0.0013)
6 0.863 (0.001) 0.8709 (0.0016) | 0.7806 (0.0023)
7 0.736 (0.000) 0.7303 (0.0020) | 0.7113 (0.0015)
8 0.645 (0.001) 0.6616 (0.0017) | 0.6506 (0.0017)
9 0.962 (0.000) 0.9666 (0.0004) | 0.9538 (0.0009)
10 0.574 (0.001) 0.5523 (0.0027) | 0.5615 (0.0025)
11 0.520 (0.001) 0.5525 (0.0019) | 0.5413 (0.0006)
12 0.799 (0.002) 0.8512 (0.0013) | 0.7127 (0.0010)
13 0.592 (0.001) 0.6014 (0.0013) | 0.5384 (0.0017)
14 0.350 (0.002) 0.3549 (0.0038) | 0.3594 (0.0036)
15 0.263 (0.001) 0.2659 (0.0011) | 0.2661 (0.0014)

Table 3.6 shows that the proposed one-layer neural network model has
achieved competitive results compared with the two-layer stacked network on many
of the SPiCe datasets. The additional layer in a two-layer model improved the score
most significantly on dataset 12, where the score improved from o.711 to 0.851 (0.14
units). Another dataset where improvement was observed was dataset 6, where the
score improved by 0.088 units. On datasets 1 and 13, the improvements were 0.065
and 0.065 units. In addition to those bigger improvements, a two-layer stacked RNN
achieved slight improvement in the score (< 0.02) on datasets 2, 3, 5, 7, 8, 9, 10, and
11. Still, a one-layer network did better than at least one of the two-layer networks
(i.e. SPiCe and the one proposed in this chapter) on datasets 4, 8, 10, and 11. Overall,
we can see that a one-layer RNN would be a better choice for some of our datasets,
although using multiple layers leads to better predictions on other datasets. This
means that to gain deeper insight into the behaviour of the methods, it is useful to
investigate individual datasets in detail and include WFA in our analysis. For this
reason, to shed some light on the impact of multiple layers in RNNs, we will analyse

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 68

Table 3.6: The hyperparameters of WFA, the scores of WFA and neural models (2
Layers (2L) and 1 Layer (1L)), and the score improvement by the best neural model
compared to WFA

’ Data I WFA ‘ Neural Models (NN) ‘ RNN Improv. ‘
n mR mnC WFA | SPiCe NN RNN (2L) RNN (1L) | Gain in score
1 4 5 5 0.8789 0.909 0.9180 0.8521 0.0391
2 6 5 5 0.8731 0.920 0.9210 0.9183 0.0479
3 5 10 3 0.8248 0.888 0.8938 0.8819 0.0690
4 500 5 5 0.5272 0.619 0.6131 0.6142 0.0918
5 450 5 5 0.5688 0.8100 0.8107 0.7988 0.2419
6 90 6 7 0.8096 0.863 0.8690 0.7815 0.0594
7 500 4 4 0.4474 0.736 0.7258 0.7176 0.2886
8 60 5 5 0.5426 0.645 0.6614 0.6521 0.1188
9 57 8 7 0.9324 0.962 0.9674 0.9546 0.0350
10 | 200 5 5 0.3623 0.574 0.5526 0.5604 0.2117
11 | 100 5 5 0.4147 0.520 0.5535 0.5412 0.1388
12 95 4 4 0.8113 0.799 0.8508 0.7116 0.0395
13 | 500 5 5 0.4990 0.592 0.6007 0.5357 0.1017
14 2 10 10 0.4649 0.350 0.3496 0.3616 -

15 3 6 6 0.2899 0.263 0.2655 0.2651 -

datasets 12 and 5 in the subsequent paragraphs. The reason for this choice is that on
dataset 12, the score improved significantly using two layers, whereas on dataset 5 a

similar improvement was not observed.

Dataset 12 and High Rank The synthetic dataset 12 was the biggest and arguably
the most challenging problem in SPiCe 2016. It was initially generated for another
competition (PAutomaC) using the PAutomaC data generator (Verwer, Eyraud &
De La Higuera 2014). The best performing WFA scored 0.8113 on this dataset with
n = 95 and nR = nC = 4. Although, WFA is a Markov model® (i.e. a model that
may require l-th order representation, which makes predictions based on 1 the most
recent observations, to learn long-range dependencies (Bengio & Frasconi 19950, Hin-
ton et al. 2001, Kakade et al. 2016)), on dataset 12, WFA was as good as the RNN
models. Our one-layer neural model scored 0.7116 and the two-layer neural model

3Note that WFA is a generalisation of a Markov model where the next state depends only on the
current state (Penagarikano & Bordel 2004); every Markov model can be represented as a WFA.

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 69

improved the result to 0.8508. So, we can see that on this large dataset, two layers im-
prove the results. We argue that we can use WFA results to explain the improvement
of our two-layer neural model. For that, we will focus on the rank of WFA (i.e. pa-
rameter n) and the maximum length of substrings in its basis (i.e. nR and nC). To
score high on dataset 12, WFA had to use 95 hidden states, which is a large number
of hidden states for a traditional Baum-Welch algorithm (Siddiqi et al. 2007). This
means that to solve this problem, a Markov model requires a relatively large num-
ber of states. This fact can explain why our two-layer neural model outperformed a
single-layer model because the second LSTM layer increased the number of hidden
states in the neural model. Moreover, the obtained WFA’s score is based on short sub-
strings (i.e. MR = nC = 4) in its basis. Therefore, it is fair to expect that dataset 12
does not have long-term dependencies since short substring statistics are sufficient to
capture the data-generating distribution in this model. We believe that we can make
this claim because our WFA with short substrings works very well on this data. All
this means that dataset 12 requires a relatively large number of hidden states, but it
does not have long-term dependencies. Our two-layer neural model is sufficient for
such problems because two layers increase the number of hidden states, whereas the
long-term dependencies are not an issue.

To support our discussion above, we should add that in (Rabusseau et al.
2018), the hidden units of the second-order RNN were shown to be related to the rank
or the hidden states of WFA. Note that second-order and higher-order RNNs have
their recurrence depth increased by explicit, higher-order multiplicative interactions
between the hidden states at previous time steps and input at the current time step.
It was shown that any function that can be computed by a linear second-order RNN
(Giles et al. 1992) with n hidden units on sequences of one-hot vectors (i.e. canonical
basis vectors) can be computed by a WFA with n states. A higher-order RNN has
additional connections from multiple previous time steps, whereas the classic RNN
has connections from one previous time step only. Higher-order RNNss allow a direct
mapping to a finite-state machine (Giles et al. 1992, Omlin & Giles 1996). However, a
similar connection is not available for classic RNNs and WFA, and more importantly
for multilayer RNNs and WFA. Based on these theoretical results and our empirical
investigation, we can conjecture that the improved score on dataset 12 by using two
LSTM layers indicates that the multiple layers helped to model the hidden states
more efficiently.

Low Rank To support our arguments about the rank (i.e. the number of hidden
states) in our discussion about dataset 12, we can identify a complementary relation-

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 70

ship in other results. In particular, when we consider all datasets on which WFA did
well having a small rank (this is in contrast to dataset 12 which required a high rank
for WFA), a two-layer network does not lead to significant improvement. This pattern
can be seen on datasets 1, 2, and 3, and this complements our previous arguments

about dataset 12.

Dataset 5 and Long Context Dataset 5 is a real dataset on which the best performing
WFA model scored 0.568 with rank n = 450 and substring lengths nR = nC = 5.
This dataset is large for spectral learning and increasing nR and nC above 5 made
the method intractable. Our one-layer neural model scored 0.7988 and a two-layer
model showed a small improvement scoring 0.8107. This means that on this dataset
adding more layers did not change the score significantly. We will attempt to explain
the lack of a big improvement of a two-layer neural model using our WFA results.

Dataset 5 corresponds to the NLP character language modelling benchmark
from Penn Treebank (Marcus et al. 19930). The other NLP datasets are 4, 8, 11,
and 13. Similar to dataset 5, increasing the number of RNN layers did not signif-
icantly improve the score on those datasets. Most NLP data (including dataset 5)
have long-term dependencies because there are many training examples of word
agreements (with different long-range regularities) which span a large portion of a
sentence (Brown & Hinton 2001). WFA with discrete states has limited memory ca-
pacity which gets consumed by having to deal with all the intervening regularities in
the sequence. We can see this in our results, because, in our experiments on WFA, we
have many hidden states (n = 450). We can see that a large number of hidden states
was not sufficient to solve this problem using WFA when nR = nC = 5, i.e. when
substrings are short. To capture long-term dependencies, our WFA would need to
be trained on longer substrings (higher nR and nC), but this is infeasible to do on
this large dataset because the method becomes intractable. This problem requires the
learning algorithm to take care of the long-term context.

We can provide a theoretical justification as to why long substrings (i.e. pre-
fixes and suffixes that define the basis of a Hankel matrix) can lead to a better model
given a particular number of hidden states, n. Note that the number of hidden
states n corresponds to the number of dimensions that are kept after the SVD of the
Henkel matrix. This means that n most informative latent dimensions (i.e. those that
carry the most variance) are used as hidden states. If, given a particular value of n,
one model has better performance than another model, it means that it’s best n di-
mensions capture more variance than the best n latent dimensions of the alternative
model. This argument explains why one basis of a Hankel matrix can lead to a better

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 71

model than another basis. Intuitively, it is also natural to expect that long substrings
can lead to a better set of hidden states because they can capture longer interactions
between input symbols, which should naturally lead to more informative hidden
states. If it was computationally feasible to evaluate dataset 5 with larger substring
lengths, we could investigate the spectral norm of the empirical Hankel matrix with
the increasing length of substrings (i.e. nR,nC). This would shed some light on the
quality of the first hidden state in compared models.

Theoretically, a one-layer RNN model can capture infinite context (Siegel-
mann & Sontag 1991), but due to training difficulties (e.g. the vanishing gradient
problem), the context capture capacity of RNNs is limited. Despite this difficulty,
it was shown in the literature that RNNs can capture the previous context of up to
200 tokens (Khandelwal et al. 2018). However, other researchers (Pascanu et al. 2014)
argue that stacking RNN layers (like in our two-layer model) does not increase the ca-
pacity of the model to capture longer contexts. This means that our two-layer model
cannot deal with long contexts even when we add more layers. Since WFA did not
perform well on dataset 5 having short context and a large number of hidden states,
we conjecture that this dataset requires a long context and for this reason, two-layers
in a neural model do not help. Our results are consistent with other results where
long-term contexts are captured by the recurrent layer (Bengio & Frasconi 1995a).
According to the distributed hypothesis (Bengio et al. 2009) stacking multiple lay-
ers allows for learning distributed features but not for capturing long-term contexts.
Consequently, we assume that the long-term contexts are more important for dataset
5 to make efficient prediction than the pure increase in the number of hidden states

acCross space.

Theoretical Considerations The relationship between the number of types of hid-
den states (discrete, or distributed), long-term dependency and the sequence pre-
diction has been explored by Hinton et al. (2001), Bengio & Frasconi (1995b). For
example, the hidden state of a single HMM (a specific version of WFA) can only con-
vey log, K bits of information about the recent history. Instead, if a generative model
had a distributed hidden state representation (Williams & Hinton 1991) consisting of
M variables each with K alternative states, it could convey M log, K bits of informa-
tion. This means that the information bottleneck scales linearly with the number of
variables and only logarithmically with the number of alternative states of each vari-
able (Hinton et al. 2001). However, the link between the hidden state modelling and
the number of recurrent neural network layers had not been explored before. From
this theoretical analysis, we can see that if we have access to a large dataset then

CHAPTER 3. A COMPARISON OF SEQUENCE PREDICTION METHODS 72

increasing the number of layers helps in modelling the hidden states more accurately
(as seen in dataset 12), but it does not have to help to capture long-term contexts
(dataset 5). In the latter case, one has to use models with high recurrence depth
(Zilly et al. 2017, Pascanu, Montufar & Bengio 2013), but we leave their exploration
for future work since in this chapter we wanted to focus on traditional LSTM layers.

To conclude this section, Recurrent Neural Networks (RNNs) are a powerful
tool for sequence modelling. However, RNNs are non-linear models, which makes
them difficult to analyse theoretically. In this chapter, we empirically analysed two
RNN models (single-layer and two-layer RNNSs) to understand the impact of the ad-
ditional LSTM layers. We used Weighted Finite-state Automata (WFA) trained using
the Hankel-based spectral learning algorithm. Based on fifteen benchmark datasets
from the SPiCe 2016 competition, our empirical analyses indicate that multiple lay-
ers in RNNs help learning distributed hidden states through improved hidden space
modelling but have a lesser impact on the ability to learn long-term dependencies.

Conclusion

In this chapter, we have used three different methods to model 15 datasets. We have
shown that for the NLP data where prediction given context (language modelling)
has long distanced context-dependency, RNN (with LSTM cell) based neural models
perform better than N-gram and WFA. We have also analysed the impact of the
multiple neural layers on the modelling. Although neural models perform better in
modelling sequence prediction, training neural models is computationally expensive
compared with N-gram models. In the next chapter, we will propose methods to
improve the predictive accuracy of the neural models while improving the training
time.

NEURAL LANGUAGE MODELS WITH APPROXIMATE NOR-
MALISATION

In chapter 3, we have seen that compared to other models neural network models
have enhanced capacity in incorporating longer distance context information in pre-
diction. The N-gram models are fast and scalable, considered as the state-of-the-art
models for language modelling, however when long term dependency is required,
the performance gain of N-gram diminishes (Williams et al. 2015). We have seen in
chapter 2 that neural language models do not scale well when the vocabulary is large
and we have discussed different approaches to scale the neural network language
models. Among them, one of the approaches is Noise Contrastive Estimation (NCE).
NCE is a sampling-based method that allows for fast learning with large vocabular-
ies. Although NCE has shown promising performance in neural machine translation,
its full potential has not been demonstrated in the neural language modelling lit-
erature. A sufficient investigation of the hyperparameters in the NCE-based neural
language models was also missing. In section 3.4.3.1, we have described the relevent
hyperparameters for training a neural network model. In this chapter, we show that
NCE can be a very successful approach in neural language modelling when the hy-
perparameters of a neural network are used appropriately. We introduce the ‘search-
then-converge’ learning rate schedule for NCE and design a heuristic that specifies
how to use this schedule. The impact of the other important hyperparameters, such
as the dropout rate and the weight initialisation range, is also demonstrated. Using
a popular benchmark, we show that appropriate tuning of NCE in neural language
models outperforms the state-of-the-art single-model methods based on the standard
LSTM recurrent neural networks.

4.1 Introduction

Neural network language models that apply various neural architectures (Bengio
et al. 2003, Mikolov et al. 2010, J6zefowicz et al. 2016) have recently demonstrated
significant achievements. As we have discussed in section 2.4, the large vocabulary

73

CHAPTER 4. APPROXIMATE NORMALISATION 74

is one of the main training bottlenecks for neural network language models. In real
applications, the vocabulary size is large and the language models have to estimate
a probability distribution over many words. The need for a normalised probability
distribution becomes a computational bottleneck because the normalisation constant

(i.e. the partition function) has to be computed for the output layer.

We have seen in section 2.4 that many solutions have been proposed to
address the computational complexity of the partition function to resolve the softmax
bottleneck. In this chapter, we investigate noise contrastive estimation (NCE) because
of its statistical consistency, and the fact that its potential has not been sufficiently
explored in the literature on neural language models (LMs). NCE has also achieved
promising results in machine translation (Vaswani et al. 2013, Baltescu & Blunsom
2015), which indicates that its performance on language models could be better than

what is known in current research.

NCE was first proposed in (Gutmann & Hyvérinen 2010) as an estimation
principle for unnormalised statistical models (self-normalising approach without a
guarantee to be normalised). It is also proposed as a self-normalising discrimina-
tive model (Goldberger & Melamud 2018). Unnormalised statistical models compute
values which, in contrast to formal probabilities, do not add up to one. In order to
normalise those values so that they become valid probabilities, they can be divided
by the partition function (i.e. a normalising constant). However, the partition func-
tion is computationally expensive to compute when the number of outcomes is large.
Therefore, instead of calculating the partition function, NCE converts the original
estimation problem into a nonlinear logistic regression problem which discriminates
between the noise samples generated from a known (noise) distribution and the orig-
inal data samples. NCE is statistically consistent and more stable than other Monte
Carlo methods such as importance sampling (Mnih & Teh 2012). In (Gutmann &
Hyvarinen 2010), NCE achieved the best trade-off between computational and statis-
tical efficiency when compared against importance sampling, contrastive divergence
(Hinton 2002), and score matching (Hyvérinen 2005). This method has also been
applied in language modelling and machine translation (Mnih & Teh 2012, Vaswani
et al. 2013, Baltescu & Blunsom 2015, Zoph et al. 2016).

Many features of NCE are not understood, especially the hyperparameters
in deep learning when NCE is used at the output layer. Also, comparisons against
standard LSTM-based single-model softmax have never shown that NCE can compete
with softmax on those tasks on which softmax is feasible. Our results are surprising
in the face of the existing literature which generally indicates that NCE is an inferior
method. For example, studying language modelling in (Jozefowicz et al. 2016), the

CHAPTER 4. APPROXIMATE NORMALISATION 75

authors argued that importance sampling (IS) may be better than NCE as IS optimises
a multiclass classification task whereas NCE is solving a binary task. In (Jozefowicz
et al. 2016), the authors managed to improve the results on language modelling using
IS, whereas similar improvements for NCE were not found. Overall, the current lit-
erature does not have substantial, empirical evidence that NCE is a powerful method
for neural network language modelling.

Another example that demonstrates the weak performance of NCE on lan-
guage modelling is the research by Chen et al. (2015). The authors explain that a
limited number (50) of noise samples in NCE does not allow for frequent sampling
of every word in a large vocabulary. Note that the number of noise samples has to be
relatively small to make the method feasible. In their experiments, NCE performed
better than softmax only on billionW, a dataset on which softmax is very slow due to
a very large vocabulary. So, NCE was better only because softmax was not feasible
on a large vocabulary. In this chapter, we show for the first time that NCE can out-
perform softmax in a situation when softmax is feasible and it is known to perform
very well. To demonstrate that, we used the Penn Treebank (PTB) dataset’ (Marcus
et al. 1993b), which is a popular language modelling benchmark with a vocabulary
size of 10K words. Softmax is known for competitive performance on this data, and
it is feasible to apply it to this data using graphic processing units (GPUs).

There exist papers in which the researchers tried to create conditions which
make softmax feasible to be executed on large datasets. For example, the experi-
ments in (Baltescu & Blunsom 2015) are based on a few billions of training examples
and vocabulary with over 100k tokens. To manage the softmax computation, the au-
thors partitioned the vocabulary into K classes. Under those conditions, the authors
showed that NCE performed almost as well as softmax. Softmax in their compar-
isons was approximate, however, due to partitioning. In this chapter, the goal is
to compete with the original softmax without any approximations. Our aims are
justified by the following reasoning. In theory, NCE, being a statistically consistent
method, converges to the maximum likelihood estimation method when the number
of noise samples is increased. However, the fact that NCE solves a different optimisa-
tion problem means that stochastic gradient descent applied to neural networks with
NCE may find a different, better local optimum than when it is applied to networks
with softmax. Therefore, when the objective function is highly non-convex, NCE can
beat softmax even though it is only an approximation to softmax.

Tuning hyperparameters has been an important element of neural networks

Thttp:/ /www.fit.vutbr.cz/ imikolov/rnnlm/simple-examples.tgz

CHAPTER 4. APPROXIMATE NORMALISATION 76

research (Bengio 2012). The main contribution of this chapter is based on a care-
fully designed hyperparameter tuning strategy for NCE. The separate ‘search-and-
convergence’ phases proposed by Darken & Moody (1991) for controlling the learning
rate have never been applied to NCE-based neural networks. Also, the importance of
the search phase and better convergence thanks to the randomness attributed to NCE
was never observed in the literature. They appeared to be the key components in this
research, and they allowed NCE to outperform softmax on a problem on which soft-

max is known to have competitive performance and to be computationally feasible.

Some researchers, e.g., Chen et al. (2015), concluded that NCE ‘is not among
the best techniques for minimising perplexity’, and this was probably the reason why
more sophisticated mechanisms, such as the ‘search-and-convergence’ phases for
controlling the learning rate, were not used with NCE. This seems to be a com-
mon pattern in deep learning research. For example, in 2006, the community used
unsupervised learning to initialise supervised learning for neural networks, whereas
today, the appropriate resources and engineering practices allow feedforward net-
works to perform very well without unsupervised initialisation (Goodfellow et al.
2016, Ch. 6). Analogously, this chapter shows that appropriate techniques exist to
turn NCE into a very successful method for neural network language modelling.

The chapter is organised as follows: section 4.2 introduces the NCE model
with a deep neural architecture, and section 4.3 describes our approach to NCE-based
neural language modelling (NCENLM). Sections 4.4 and 4.5 describe the experimen-
tal design and the results showing that the proposed method improves the state-of-
the-art results on the Penn Treebank dataset using language modelling based on a
standard LSTM (Hochreiter & Schmidhuber 1997, Gers 2001).

4.2 Background

We study language models where given a sequence of words W = (wo, Wy, W, ..., WT)
over the vocabulary V, we model sequence probability

T—1 T—1
pW) =[] pwisatwo, ..., wi) = [[pwisaler). (4-1)
i=o0 i=o0

Here, for a given word wi 4, ¢ =< W,, Wy, ..., Wi > represents its full, non-truncated
context. In many applications, one is interested in p(wii4[ci). Recurrent neural
networks try to model such probabilities that depend on a sequence of words c;.

The recurrent connections introduce a notion of ‘memory’, which can remember a

CHAPTER 4. APPROXIMATE NORMALISATION 77

substantial part of word’s context c;. However, due to the gradient vanishing and
exploding problems (Pascanu, Mikolov & Bengio 2013), it is challenging to optimise
standard recurrent neural networks even though their expressive power is sufficient
in many situations. For this reason, long short term memory (LSTM) was introduced
to improve learning with a long context, c; (Hochreiter & Schmidhuber 1997, Gers
2001). LSTM introduces the concept of memory cells that are used to create layers.
Several layers can be stacked into larger blocks (similar to layers of neurons in the
multilayer perceptron). The blocks of those layers are then unrolled for several time
steps during learning.

When n is the last hidden layer, and i is the last unrolled time step, vi*
(see Figure. 4.1) is the activation vector that results after the sequence of words c;
has been presented to the network. Then, the final output layer has one vector 0;
for every word wj in the vocabulary, and the probability of the next word can be
computed using the softmax function:

ex vt _ex vt
PgOFT(Wi+1|Ci) — |Vp(i+171) _ p(2—0—1 i)) (42)
> i, exp (GT >

Here, P3OFT(

Wi4t4lci) is the probability of word wi, given context ci, 0i1, is the
weight vector corresponding to the word w;i,, at the output layer, 0; is the weight
vector for the word wj in the vocabulary, and |V/| is the vocabulary size. The normal-
ising term Z is known as the partition function. Note that unnormalised products

0., ,vI* are not sufficient to evaluate the words.

The softmax-based training of recurrent neural networks that uses stochas-
tic gradient descent (SGD) and backpropagation (BP) maximises the loglikelihood
or equivalently minimises the cross-entropy of the training sequence containing N
words. This objective can be formally expressed as

N
1
Jsorr(8) :_NZIHPSOFT(W1+1|C1)- (4-3)

i=1
The gradient used for updating the parameters 0 is

N M T
aISOFT _ Z { 91T+1 Vi) ZPSOFT (wles) a(ei v‘;)} (4.4)
00 ’ '

Gradient computation is usually time-consuming because when the vocabulary is

SOFT
PG

large, the partition function in creates the performance bottleneck for the

training and testing phases. It is advantageous to avoid this expensive normalisation

CHAPTER 4. APPROXIMATE NORMALISATION 78

term. Noise contrastive estimation (NCE) bypasses this calculation by converting the
original optimisation problem to a binary classification task.

In NCE, we see the corpus as a new dataset of n words of the following
format:

((c1,W2),Dy)), ..., ((cn, Wn41),Dn)

where c; represents the context, wi, represents the next word after c;, and a random
variable D is set to one when w;_, is from the training corpus (true data distribution)
and D is set to zero when wj,; is from a known chosen noise distribution, P,.
For a given context ci, the NCE-based neural language model (NCENLM) models
data samples (from the corpus) as if they were generated from a mixture of two
distributions (PeNCE and Py). The mixture is normalised; hence, the requirement for
the normalisation term is satisfied implicitly as shown in Eq. (4.5).

The posterior probability of a sample word w;, generated from the mixture
of the PeN CE and the noise distribution P, are as follows:

PO CE (wisqlei)
Wit4lci) + kPn(Witqlcy)
kPn(ml‘Ci)

Py CE(Wialer) + kPr(Witslei)

P(D = 1‘Wi+1r Ci) = PNCE(
° (4.5)

P(D = O‘VG;J:I/ Ci) =

where wi; is a word sampled from a known noise distribution Py, (e.g., a uniform
distribution) and k is the ratio of the number of noise samples to the number of the
data samples. A general assumption is that noise samples are k times more frequent
than data samples. Based on this posterior distribution, NCE minimises the following
objective function:

N k
TncE(8) = f% > [InP(D = 1hwi 1y, i) + 2~ InP(D = oiwisy,cq)]. (4.6)

i=1 j=1
which is the same objective function that is minimised by the traditional logistic
regression. Here, for every word wi,, that comes from a true data distribution,
k noise samples wi;,; are generated from a known noise distribution, P. Mnih
& Teh (2012) showed that for large k NCE-based parameter estimation is a close

approximation of the maximum likelihood estimation.

CHAPTER 4. APPROXIMATE NORMALISATION 79

i
i

) S
©
©

T
@,
1
@

A 1
@ - <uu> @ -

N
Onx|v| Onx|v]
LSTM Layer 2 LSTM Layer 2
5)527)1 —>| hidden layer size = h |— bgr)l 5@1 —>| hidden layer size = h |— Sgi)l
activation vector = v?2 activation vector = v2
B e
} LSTM e 1 } LSTM e
5t)1 Layer 1 Siﬁl ‘Sijl Layer 1 ‘si*)l
N N
Embedding Embedding
Layer Layer

| |
©

(a) [llustration of the softmax output layer. (b) Illustration of the NCE output layer.

Figure 4.1: Illustration of the output layer: the computational graph to compute
the training loss of a stacked recurrent network that maps an input sequence of
values w to a corresponding sequence of output values o. A loss L measures how far
each o is from the corresponding training target y. The loss L internally computes
Eq. 4.3 or approximate it using Eq. 4.6. The mini-batched stochastic gradient descent
optimisation will use Eq. 4.4 and Eq. 4.7 to find the parameters including the 0.

CHAPTER 4. APPROXIMATE NORMALISATION 8o

The gradient of the objective function is as follows:

N

aJNCE(e) 1 kPn(Wi+1|Ci) 3 et
w0 N X —InP .
00 N ; PNCE(wiiqlei) + kPr(wigqci) 06 nPgy " (Wiyqlci)
gradient
P1
k —_——
PeNCE(Wi+1j|Ci) 0 NCE, ——
).ZI PBN CE(W1+1,)'|C1',) +kPn(Wi+1,j|Ci) 00 nrg (W1+1,]| 1)
gradient
P2
(4.7)
where,
exp(e.T v.”)
0 (W1+1|C1) 7
exp (e%n) (4.8)
NCE(7™ |~.) _ #
Po (W1+1,]|C1) = 7 .

In the softmax gradient in Eq. 4.4, the normalisation term Z is required to compute
PSOFT, which is a problem during training because Z has to be computed for every
gradient calculation. Studying the NCE gradient in Eq. 4.7, one can see a subtraction
of two products (see P1 and P2 in Eq. 4.7). The first terms of those products are
normalised implicitly regardless of whether P)YCE is normalised or not. Thus, the
only terms in which normalisation can matter are the gradients in Eq. 4.7. It has been
argued in the literature, however, that as far as the gradient is concerned, Z can be
learnt as a parameter (Gutmann & Hyvérinen 2010, Labeau & Allauzen 2018) or it
can be seen as a constant. In literature, the normalisation constant was set to one
for all contexts in (Mnih & Teh 2012, Vaswani et al. 2013, Zoph et al. 2016). This
is the precise reason why the partition function Z does not have to be computed
in every iteration in NN training when the softmax is approximated by NCE. In our
implementation, Z was learnt as a parameter following (Gutmann & Hyvérinen 2010,
Labeau & Allauzen 2018). In the future, we plan to investigate the effect of different
values of Z when NCE is used for a downstream application.

4.3 Our Approach

In this section, we present our training procedure with special hyperparameter tun-
ing for NCE-based neural language models (NCENLM). Stochastic gradient descent
(SGD) (Robbins & Monro 1951, Kiefer et al. 1952) along with the Backpropagation
algorithm is the common training algorithm for neural networks (Goodfellow et al.

CHAPTER 4. APPROXIMATE NORMALISATION 81

2016). Given a neural network with parameter 0, the gradient descent optimisation
finds the value of 6 that minimises the loss function J(0) using the repeated update

of the following expression until convergence:

0J(6)

9]' <—9j—n aej

Here, 7 is the learning rate, which represents the size of the step taken at each iter-
ation by stochastic gradient descent, j ranges from o to the number of parameters in
the neural model.

Stochastic gradient descent requires only first order partial derivatives (gra-
dient) of the loss function, where the derivative is efficiently calculated by Backprop-
agation, and it is simple and efficient compared to other first order and second order
optimisation algorithms including Quasi-Newton methods and Newton’s method.
For SGD, the learning rate plays an important role in learning, whereas the second
order methods and some other first order methods (e.g. Broyden-Fletcher-Goldfarb-
Shanno (BFGS) (Broyden 1970, Fletcher 1970, Goldfarb 1970, Shanno 1970)) do not
need the learning rate. Although these methods do not need the learning rate, they
are computationally expensive and memory inefficient. The second-order optimisa-
tion algorithms require the partial derivative or a Hessian matrix. Although the algo-
rithm makes efficient updates, we have to calculate the second order partial deriva-
tives matrix for every parameter with respect to every other parameter, which makes
it computationally costly and highly ineffective in terms of memory. Quasi-Newton
methods like BFGS replaces that Hessian in Newton’s method with an approximate
Hessian but requires storing the approximate Hessian (allocating space to store it).
For very large scale problems, with millions of parameters, these methods are difficult
to implement. These criteria make SGD a favourable optimisation method for deep
neural networks, which usually have a large number of parameters. We have seen in
section 2.5.2 that for training a model, SGD is used because SGD yields significantly
better generalisation than the batch gradient descent (Bousquet & Bottou 2008) and
other adaptive optimisers (e.g. Adam (Kingma & Ba 2015), AdaGrad (Duchi et al.
2011)).

The SGD optimisation requires a learning rate, which is a hyperparameter
and has an important impact on the learning process (Bengio 2012). In this chapter,
we will show that an appropriate learning rate schedule is important for faster con-
vergence and better generalisation in NCE-based neural language models. Overall,
the following hyperparameters were found to be important for the NCENLM: the

Why care
about
methods that
need the
learning
rate?

CHAPTER 4. APPROXIMATE NORMALISATION 82

learning rate schedule, the weight (parameter) initialisation strategy, and sampling
techniques.

4.3.1 Learning rate

The learning rate is one of the most prominent hyperparameters in deep network
training (Bengio 2012). The ‘search-then-converge’ learning rate schedule for SGD
usually has the form of n(t) = no(1 + %)*1 (Darken & Moody 1991), where t is the
epoch number, 1, is the initial learning rate, T is a parameter, and 1(t) is the learning
rate for epoch t. This allows the learning rate to stay high during the ‘search period’

t < 1. It is expected that during this period the parameters will hover around a good

1

minimum. Then, for t > T, the learning rate decreases as 1 and the parameters

converge to a local minima (Robbins & Monro 1951).

In our implementation, we used the ‘search-then-converge’ learning rate

schedule of the form:
1)max(t+1f”c,o.o)

nt) =no x (

which previously appeared in other studies that involve neural networks (Zaremba

, (4-9)

et al. 2014). The hyperparameter 1 is kept constant in our experiments and its value
was set according to (Zaremba et al. 2014). During the search period (t < T epochs),
the learning rate is constant and equal to 1,, and during the convergence period the
learning rate is decreased by a factor of . The initial learning rate 7, is one in
(Zaremba et al. 2014), and we use the same value in our experiments.

Our investigation has shown that learning with NCE is more sensitive to the length
of the search period (t < T) when comparing with softmax. Choosing appropriate T is,
therefore, crucial for convergence of NCE-based learning with SGD. Our research suggests
that, when NCE is used, T should be between 1 and two-thirds of the total number of training
epochs. For instance, if we need 4o training epochs then T could be between 1 and 26. This

was one of the most important insights that allowed us to improve the performance of NCE.

Our intuition behind the investigation is based on the two facts. First, learn-
ing the normalising constant in NCE is a part of the overall training of the neural
models. This normalisation constant learning is more dependent on the search phase
of the optimisation and longer search phase would facilitate this learning. Second,
the convergence rate of the stochastic gradient descent on smooth convex function
is given by O(L/T + o/ VT) (Sutskever et al. 2013), where o is the variance in the
gradient estimates, T is the number of iterations and L is the Lipschitz coefficient of

CHAPTER 4. APPROXIMATE NORMALISATION 83

V]J. For convex objectives, the search phase of the SGD optimisation is dominated
by the term L (Sutskever et al. 2013). In our investigation, the search phase epochs
showed training error higher than the corresponding softmax training (see Fig. 4.8)
and the NCE gradient range is larger than the softmax gradient range (see Fig. 4.9).
To understand the range of the large gradients, we use the concept of the gradient
with respect to the Lipschitz coefficient for a differentiable function.

The Lipschitz coefficient can be understood using a simple observation. The
slope m of the linear function f(w) = mw + ¢ determines how much the function
values change as the input values w change. The larger |m| is, the steeper the line is,
and the more the function values change for a given change in input w. The concept
of Lipschitz continuity is designed to measure the change of function values versus
change in the independent variable for a general function f : I — Q, where I is a set of
rational numbers. If w, and w, are two numbers in I, then [w, —w,| is the change in
the input and [f(w,) — f(w;)| is the corresponding change in the output. We say that
f is Lipschitz continuous with Lipschitz constant L on I if there is a (non-negative)
constant L such that

If(w,) — f(wq)] < Liw, —wyl, Ywy, w, € L. (4.10)

A differentiable function f(.) is L-smooth or L-gradient Lipschitz (Jin et al. 2017) if

IVE(w,) — Vf(w,)| < Liw, —wy |, Vwy,w, € L. (4.11)

If L is small, then Vf(w) may change only a little with a small change of w, while if
L is large, then Vf(w) may change a lot on only a small change of w. To summarise,
L may vary from small to large depending on the function f.

We have used the above theory to understand the observation that the NCE
gradient range is larger than the softmax gradient range and we assume that the
NCE objective function has a larger value for L compared to the softmax objective
function. Based on this understanding, we assume that to converge to the softmax
range (which presumably has smaller L), NCE-based training needs more iterations

(i.e. Tin L) in search phase where the learning rate is constant compared to softmax.

In the ‘convergence phase’, NCE takes fewer epochs to get similar results as
softmax. However, in this phase o/ VT is the dominant term (i.e., when the optimi-
sation problem resembles estimation problem) (Sutskever et al. 2013). In our inves-

CHAPTER 4. APPROXIMATE NORMALISATION 84

tigation, in the convergence phase, the range of the gradient estimate is smaller (i.e.
smaller variance) than the softmax. Perhaps this is the reason that NCE takes fewer
iterations to converge. Moreover, the NCE formulation reduces the softmax (multi-
class classification) objective function into a binary classification objective function.

Thus, perhaps induced convexity helps in faster convergence.

It is also interesting to observe that the Eq. 4.11 is referring to the change
of the change of the first derivative, which is essentially the second derivative. The
second derivative tells us how the first derivative will change as we vary the input.
This is important because it tells us whether a gradient step will cause as much of
an improvement as we would expect based on the gradient alone. We can think of
the second derivative as characterisation of the curvature. If a function has a second
derivative of zero, then there is no curvature. It is a perfectly flat line, and its value
can be predicted using only the gradient. If the gradient is 1, then we can make a
step of size 1 along the negative gradient, and the cost function will decrease by n. If
the second derivative is negative, the function curves downward, so the cost function
will actually decrease by more than 1. Finally, if the second derivative is positive,
the function curves upward, so the cost function can decrease by less than n. If L is
small, the function has flat curvature and L defines more upward curvature. In the
future, we are planning to investigate and understand the behaviour of the NCE in
terms of the second derivative.

4.3.2 Weight Initialisation

In neural networks, the initial weights are usually drawn from a uniform distribution
(Glorot & Bengio 2010), unit Gaussian (Sutskever et al. 2013) or a general Gaussian
distribution (He et al. 2015). For our NCE training, we used a uniform distribution
for the weight initialisation. All three distributions described above were compared,
but the uniform distribution led to slightly better results. However, regardless of which
distribution is used, we found that NCE works better when the initial weights are within a
smaller range, i.e. when the variance of the initial weights is smaller than what is suggested
in (Glorot & Bengio 2010). This was another insight that led to significant improvements in
NCE performance.

The commonly used heuristic (Glorot & Bengio 2010) for initialising the

weights 0i; at each layer is:

CHAPTER 4. APPROXIMATE NORMALISATION 85

1 1
Weight ~U | —, —
g~ |- 7o,
where U[—a, a] is the uniform distribution in the interval (—a, a) and n is the size of

the previous layer.

Glorot & Bengio (2010) observed that the variance of the gradient on the
weights is the same for all layers in feedforward neural networks, but the variance of
the back-propagated gradient might still vanish or explode in the deeper networks.
A similar phenomenon was observed by Bengio et al. (1994) when studying recurrent
neural networks.

Glorot & Bengio (2010) argued that the standard initialisation gives rise
to variance and causes the variance of the back-propagated gradient to be depen-
dent on the layer (and decreasing). They assumed that the normalisation factor may;,
therefore, be important when initialising deep networks because of the multiplicative
effect through layers, and they suggested the following initialisation procedure to
approximately satisfy their objectives of maintaining activation variances and back-
propagated gradients variance as one moves up or down the network.

Weight ~ U (— V6 Ve >

Vi F iy iy

In our investigation, we found that NCE has a larger gradient range than
the softmax (see Fig. 4.9). This indicates that we need a mechanism to reduce the
gradient range. The larger gradient range is probably due to the fact that in NCE the
entire weight matrix of the output layer does not change during the backward pass of
the back-propagation algorithm. Only the part of the weight matrix corresponding
to the sampled noise data gets updated in each iteration. Thus the weights of the
output layer are less influenced by the co-adaptation compared to softmax. The
following smaller initialisation (with some manual choices for ranges in Table 4.4)
satisfies our objectives of maintaining the variance of the back-propagated gradient
for the NCELM.

V6 V6
Weight ~ul- VTuitTnigr /it

4 1 4

CHAPTER 4. APPROXIMATE NORMALISATION 86

4.3.3 Sampling Techniques

For NCE, the noise distribution (i.e., P, in Eq. 4.5) plays an important role. The pro-
posed NCE method (Gutmann & Hyvérinen 2010) is dependant on the noise sample
generated from the distribution to contrast the original data generating distribution.
For efficient training, the noise distribution should be close to the data distribution
(Gutmann & Hyvérinen 2010). In practice, we do not know the data generating distri-
bution, therefore it is very difficult to design a noise distribution that is a good match
with the data distribution. For language modelling, one can assume that sampling
noise from an N-gram model, particularly an N-gram model with N > 5, would
give a good representation of the noise distribution. However, according to Bengio
& Senécal (2008), neural language models and N-gram models learn very different
distributions.

For efficient noise distribution, we have come up with a noise distribution
that efficiently describes characteristic of the word distribution (if not language model
distribution). As word distributions follows Zipf’s law (Piantadosi 2014), we have
used noise samples from a power law distribution (i.e., Zipfian (log-uniform) distri-
bution) (Tullo & Hurford 2003, Chierichetti et al. 2017). To be able to use samples from
that distribution, the words in the vocabulary have to be sorted in the descending or-
der of the frequency. The unigram distribution can be another good representative
for the noise distribution. Sampling the noise samples from the unigram distribu-
tion when the words in the vocabulary are sorted in an ascending or a descending
order gave competitive empirical results compared to sampling from the power-law
distribution. We have also used a uniform distribution for comparisons in section 4.4.

4.4 Experimental Methodology and Implementation

We aim at showing that NCE can outperform alternative methods for language mod-
elling. In particular, we investigate its performance in the context of softmax because
NCE approximates softmax being consistent with softmax in the limit. Our imple-
mentation of NCE follows our approach presented in section 4.3.

In our experiments, we focus on the popular perplexity measure (PPL) using
the Penn Treebank (PTB) dataset. It is feasible to run ‘exact’ softmax on this dataset,
and the large literature that uses it allows for comparisons with other approaches
(see Tab. 4.3).

CHAPTER 4. APPROXIMATE NORMALISATION 87

Yt—2 Yt—1 U‘t U‘t+1 Yt42

oot

Figure 4.2: The unfolded stacked LSTM network: the thick line shows a typical path
of information flow in the LSTM. The information is affected by dropout L + 1 times,
where L is the depth of the network. The dashed arrows indicate connections where
dropout is applied, and the solid lines indicate connections where dropout is not
applied. The figure is adapted from (Zaremba et al. 2014, Figure 3).

The PTB dataset consists of 929k training words, 73k validation words, and
82k test words. The vocabulary size is 10k. Softmax usually becomes inefficient when
the vocabulary size exceeds 10k words.

All models were implemented in Tensorflow? and executed on NVIDIA K80
GPUs. The standard components of our models follow (Zaremba et al. 2014), where
excellent results on this dataset were reported. The words were represented with
dense vectors trained using the skip-gram model with negative sampling (Mikolov,
Sutskever, Chen, Corrado & Dean 2013) on the Wikipedia corpus downloaded on
December 2016. This word representation was used across all our experiments.

To perform more experiments, we designed models of three sizes: small (S),
medium (M) and large (L). The small model is non-regularised whereas the medium
and large models are dropout regularised with 50% and 60% dropout rate on the
non-recurrent connections (See Fig. 4.2) in the medium and larger models corre-
spondingly. This led to the best empirical results after investigating different dropout
rates in the suggested ranges (Srivastava et al. 2014). All the models have two LSTM
layers with the hidden layer size of 200 (S), 650 (M), and 1500 (L). The LSTM was

2https://www.tensorflow.org/

https://www.tensorflow.org/

CHAPTER 4. APPROXIMATE NORMALISATION 88

unrolled for 20-time steps for the small model and 35-time steps for the medium and
large models. We used mini-batch SGD for training where the mini batch size was

20.

— ——Small| |

100 ‘
4 5

Validation
Perplexity
> o
(&) o

N9 o ¢
<
[00)

100

[edun]

5 10 15 20 25 30

Validation
Perplexity
D (0]
o o

~
(6]

Validation
Perplexity
\,
o
/ H
L
Q
(0]

Figure 4.3: Selection of the learning rate parameter ©

For sampling the initial weights, a smaller range than the one suggested
in (Glorot & Bengio 2010) turned out to be beneficial for NCE. We tested several
initialisation heuristics which are described in the corresponding column in Tab. 4.4.
Row number 1 shows the formula suggested in (Glorot & Bengio 2010). Note that
U denotes a uniform distribution with its minimum and maximum values, and n;
denotes the number of hidden nodes in layer i. Row number 2 shows our updated
formula that reduces the first range by a factor of 4, and row number 3 shows the
range values that led to the best results in our experiments.

The learning rate was scheduled using Eq. 5.3. The search time limit T was
chosen empirically using Fig. 5.4. As a result, T was set to 7, 25 and 12 for the small,
medium and larger models correspondingly. During the convergence period, the
parameter \ was set to 2, 1.2 and 1.15 for the small, medium and larger models as
suggested by (Zaremba et al. 2014). We trained the models for 20, 39 and 55 epochs

respectively.

The norm of the gradients (which was normalised by the mini batch size)
was clipped at 5 and 10 for the medium and large models correspondingly. To com-

CHAPTER 4. APPROXIMATE NORMALISATION 89

pute validation and testing perplexity, we used softmax to guarantee the accuracy of
our comparisons.

Table 4.1: Impact of noise sample distribution on medium models

Noise Distribution Type ‘ Test PPL ‘

Uniform 96.046
Unigram 76.621
Power law 75.286

Table 4.2: Impact of noise sample size on medium models

Sample Size Time ‘ Test PPL ‘

50 1 hrsomin | 79.383
100 1hr56 min | 77.539
150 1 hr 56 min | 77.207
300 1 hr 57 min | 76.090
600 1 hr 57 min | 75.286
800 2 hr 2 min 75.822
1200 2 hr 8 min 75.397

In NCE, we used 600 noise samples. The noise samples were generated from
the power law distribution. Table 4.1 reports the Test Perplexity of three noise distri-
butions for medium model and power-law distribution resulted efficiently compared
to unigram and uniform distribution. We evaluated different noise sample sizes (50,
100, 150, 300, 600, 800 and 1200), and 600 had the best trade-off between quality
and processing time (see Tab. 4.2). We observed that when a GPU implementation
is used, it is possible to increase the sample size within a reasonable range without
dramatically increasing the computational complexity. Our softmax-based language
model was implemented and parametrised according to (Zaremba et al. 2014), which
achieved state-of-the-art results using the standard LSTM network.

The two models that we implemented, i.e. softmax- and NCE-based lan-
guage models, used a standard LSTM network (Hochreiter & Schmidhuber 1997,
Gers 2001). Many extensions to the LSTM architecture exist, e.g., Recurrent High-
way Networks (RHN) (Zilly et al. 2017), that may improve LSTM’s capabilities in
capturing long term dependencies. In this chapter, we aimed at comparing NCE
and softmax on standard LSTM networks, but our results could generalise to other,
potentially more advanced types of LSTM cells. We have shown in chapter 5 such
generalisation with RHN, but other architectures should show similar outcomes in

CHAPTER 4. APPROXIMATE NORMALISATION 90

terms of performance. It should be noted, however, that our NCE implementation
with standard LSTM outperforms some language models which use more advanced

versions of LSTM as shown in Tab. 4.3.

4.5 Results and discussion

Table 4.3: Comparison with the state-of-the-art results of different models on the PTB

dataset
Classic RNN and LSTM
Model Description Valid. PPL | Test PPL
Deep RNN (Pascanu et al. 2014) - 107.5
Sum-Prod Net (Cheng et al. 2014) - 100.0
RNN-LDA + KN-5 + cache (Mikolov & Zweig 2012) - 92.0
Conv.+Highway+ regularized LSTM (Kim et al. 2016) - 78.9
Non regularised LSTM with Softmax (Zaremba et al. 2014) 120.7 114.5
Medium regularised LSTM with Softmax (Zaremba et al. 2014) 86.2 82.7
Large regularised LSTM with Softmax (Zaremba et al. 2014) 82.2 78.4
Non regularised LSTM with NCE (our method) 106.196 102.245
Medium regularised LSTM with NCE (our method) 78.762 75.286
Large regularised LSTM with NCE (our method) 72.726 69.995
Extended or Improved LSTM
Variational LSTM (Gal & Ghahramani 2016b) 77.3 75.0
Variational LSTM + Weight Tying(Press & Wolf 2016) 75.8 73.2
Pointer Sentinel LSTM (Merity et al. 2016) 72.4 70.9
Variational LSTM + Weight Tying + augmented loss
(Inan et al. 2017) 7t 685
Variational RHN (Zilly et al. 2017) 71.2 68.5
Variational RHN + Weight Tying (Zilly et al. 2017) 67.9 65.4
Neural Architecture Search with base 8 and shared embeddings - 62.4
Model Averaging/ Ensembles
38 large regularized LSTMs (Zaremba et al. 2014) 71.9 68.7
Model averaging with dynamic RNNs
and n-gram models (Mikolov & Zweig 2012)) 729

The results in Tab. 4.3 compare our best NCE-based result with other state-
of-the-art methods. Our result is the best in the class of single-model methods that
use a standard LSTM; the large model achieved the perplexity of 69.995 after 55

CHAPTER 4. APPROXIMATE NORMALISATION

91

Table 4.4: Weight initialisation ranges for the uniform distribution (U) and the corre-

sponding test perplexity (PPL)

No. Initialisation Heuristic Small Model Medium Model Large Model
1 u (— m\fniﬂ , \/ni\ﬁli+1> U(-0.1225, 0.1225) U(-0.0679, 0.0679) U(-0.04472, 0.04472)
PPL = 104.449 PPL = 75.960 PPL = 71.184
V6 V6
2 u <— \/‘”Z“”’ , \/"izn”’) U(-0.031, 0.031) U(-0.0169, 0.0169) U(-0.011180, 0.011180)
PPL = 102.245 PPL = 75.959 PPL = 70.444
3 Empirically Tuned Ranges U(-0.0153, 0.0153) | U(—0.00849,0.00849) U(-0.00625, 0.00625)
PPL = 102.237 PPL = 75.286 PPL = 69.995

Table 4.5: Comparison of softmax and NCE

Large Model H Time | Valid. PPL \ Test PPL ‘
Softmax (55 epochs) || 9 h 11 min 82.588 78.196
Softmax (20 epochs) || 3 h 40 min 79.798 76.935

NCE (55 epochs) 7 h 34 min 72.726 69.995
NCE (20 epochs) 2 h 36 min 76.268 74.129

training epochs. This result outperforms all known single-model algorithms that use
the same kinds of LSTM cells. The total time for training, validating and testing our
large NCE-based model was 7 hours 34 minutes (see Tab. 4.5). The 55 epochs of
softmax took ¢ hours 11 minutes, and the testing perplexity was 78.826. Note that, all
the experiments were run on the same machine. Early stopping, which is a common
regularisation method (Goodfellow et al. 2016), allowed softmax to achieve a testing
perplexity of 76.935. So, softmax was overfitted after 55 epochs. The same overfitting
was not observed in NCE as can be seen in Tab. 4.5 and Fig. 4.4.

Below, we present additional results that explain the good performance
achieved by NCE and provide further insights into its properties.

Figure 4.4 presents the validation perplexity (Y axis) of a large model for
different dropout rates as a function of an epoch number (X axis) at the convergence
stage of learning. One can see that softmax with a dropout rate of 60% overfitted
since the 21st epoch. Increasing the dropout rate to 70% allowed softmax to avoid
overfitting, but the asymptotic performance was not as good as in NCE. The asymp-
totic convergence of NCE was superior across a range of dropout rates. In NCE, the
gradients (Eq. 4.7) are different and more noisy than in softmax (Eq. 4.4). We know
that SGD leads to better generalisation than batch gradient descent because of the in-

CHAPTER 4. APPROXIMATE NORMALISATION 92

——NCE(Dropout=60%)
105 —o—NCE(Dropout=65%)
—— Softmax(Dropout=60%)
100 —o— Softmax(Dropout=65%)
2> —— Softmax(Dropout=70%)
< 95
Q@
e
[0}
o
ke
©
>

15 20 25 30 35 40 45 50 55
Epoch Number

Figure 4.4: Convergence phase in the large model

duced noise by updating the parameters from a single example (Bousquet & Bottou
2008). A similar property of NCE could justify its robust generalisation in Fig. 4.4.

Figures 4.5 and 4.6 show the validation perplexity (Y axis) for selected values
of T as a function of an epoch number (X axis) at the convergence stage of learning.
These figures demonstrate the critical impact of the learning rate schedule on NCE.
Figure 4.5 shows that NCE requires a long search period (large T = 25) to achieve
competitive asymptotic convergence on the medium model. Figure 4.6 for the large
model has additional evidence that a long search period is required because larger
T = 12, in addition to having better asymptotic convergence, has poor (i.e. high)
perplexity in the initial phase. This poor perplexity indicates that the algorithm
explores widely at this stage, but by doing that it can avoid converging to the nearest
local optima. High initial perplexity is even more pronounced in Fig. 4.7 which is
for all epochs of the medium model (note that perplexity is on a log scale here).
Although difficult to see in the figure, the asymptotic validation perplexity is the best
for NCE at T = 25. There was also a difference in test performance between NCE
and softmax: NCE with Tt = 25 scored 75.959, NCE with T = 6 scored 83.858, softmax
with T = 25 scored 79.906, and softmax with T = 6 achieved 78.567. NCE with high t
was the best; and increasing T from 6 to 25 reduced perplexity from 83.858 to 75.959,
which confirms the significance of our arguments in section 4.3. Thanks to the noise
samples, NCE can explore better than softmax when the exploration phase is long

CHAPTER 4. APPROXIMATE NORMALISATION

0 (a) convergence phase after large search phase

_ —— NCE(r = 25)
& 85 —v— Softmax(r = 25)

. —— V% 4 v 4 2 7
e
=80+ —
> —

75 Il Il Il Il Il Il Il Il Il Il Il Il Il I}
26 27 28 29 30 31 32 33 34 35 36 37 38 39
Epoch Number
200 (b) convergence phase after small search phase

——NCE(r = 6)

1
o 150 —v— Softmax(r = 6)
o

w100 e
g . -

M0 40 40 20 40 2 2 20 20 20 20 20 A0 40 4n an 4n 4n An n An An An An An AnAn An

50 Il Il Il Il Il Il Il
7 12 17 22 27 33 39

Epoch Number

Figure 4.5: Convergence phase in the medium model

20

120 1
| ——NCE(r=12)
—v—NCE(r=4)
110 1 —— Softmax(r=14)
—e—Softmax(=4)
>
=
2100
o
[
o
T 90
(_U A
>
804
70 1 1 1 |
12 14 16 18

Epoch Number

Figure 4.6: Convergence phase in the large model

CHAPTER 4. APPROXIMATE NORMALISATION 94

enough; which is confirmed through high perplexity in the initial stage of learning.
This means that NCE can find a better solution potentially for the same reasons which
make stochastic gradient descent better than batch gradient descent (Bottou 2010).

5000 : ,
NCE(t=25)
NCE(t=6) —=—
Softmax(t=25)
Softmax(t=6) ——
=
=
@
o
o
o
je!
©
>
>
S
100\»

0 5 10 15 20 25 30 35 40
Epoch Number

Figure 4.7: Validation perplexity of the medium model during all epochs of learning

Our results in Fig. 4.6 and 4.7 indicated that good NCE results could be
attributed to its high error, i.e., high perplexity, in the early stages of learning, which
may allow for broad exploration. We tried to enforce similar behaviour in softmax
using a large learning rate in the search period. Figure 4.8(a) presents the validation
perplexity in the log scale for a large model with softmax (Y-axis) as a function of
a training epoch (X-axis) and the learning rate (LR) which was increased to 1, 2,
and 3 during search time. This arrangement increased the validation perplexity for
the first few epochs, but the asymptotic convergence of softmax was not improved.
When, in Fig. 4.8(b), we compare the increased initial softmax perplexity with NCE
perplexity during the progression of the first epoch, we can see that NCE has much
larger perplexity at this stage, even though its learning rate is not larger than one. It
might be a distinct characteristic of the NCE that helps to converge to a better local
optimum due to the initial high training error.

The numerical entries in Tab. 4.4, i.e., in all cells in the bottom right part
of the table, contain both the intervals U used to sample initial weights and the
resulting perplexity (PPL) on a corresponding model. The results on the large model
show that weight initialisation with lower variance led to better results, where the
best perplexity of 69.995 was the best result that NCE achieved in our experiments.

CHAPTER 4. APPROXIMATE NORMALISATION 95

(a) (b)

10000 ————— 1x10'20 ‘ ‘
L Softmax(LR=1) 1 NCE
I Softmax(LR=2) —«— |] Softmax(LR=1) —«— |]
Softmax(LR=3) —— 100 Softmax(LR=3) —«— ||
1x10 i]
= z]
£ = 80 [i
3 2 1x10 :
o =]
o 1000 | L 1
o — o 1x10% | ’
ko] £]
< s |
= = 40]
S = 1x10™]
o (@]]
- o
20 |
100 | 1x10
L | | | | | | | | 1 ;
0 5 10 1520 25 30 35 40 03 05 07 09
Epoch Number Progression in the First Epoch

Figure 4.8: High learning rate (LR) to increase the initial softmax perplexity (a). NCE
and softmax initial perplexities in the first epoch; note that only training perplexity
is available within one epoch (b).

4.5.1 Gradient Analysis

9

=Y

o

Z 0.6

x —— SM(T =6, 0%)

€ 0.4 —e— SM(T=6, 100%)

r‘éo —— NCE(T=6, 0%)

S 0.2 —e— NCE(T=6, 100%)

S o.0. —— NCE(T =25, 0%)

é) —e— NCE(T =25, 100%)
. -0.2

(7))

(0]

>

= —0.4

>

=

@ 0 10 20 30

}3 Epoch No

O

Figure 4.9: The gradient range

CHAPTER 4. APPROXIMATE NORMALISATION 96

Figure 4.9 reports the gradient range (Y-axis) of medium models for different T as a
function of an epoch number (X-axis) for both the search phase and the convergence
phase. For example, when T = 6 for softmax (SM) or noise contrastive estimation
(NCE) then the search phase ends at epoch 6 and the convergence phase starts from
epoch 7 and ends at epochs 39. Here 0% and 100% respectively define the lower and
upper limit of the gradient values for an epoch. Concretely, there are no (0%) gradient
values observed below the 0% line plot and all (100%) gradient values observed below
the 100% line plot. In Figure 4.9, we can see that in the initial epochs (i.e. the search
phase) of NCE, the gradients of the loss function with respect to the output layer
(linear layer with parameter matrix 0) parameters have larger values than softmax,
but at the later epochs (i.e. the convergence phase) have smaller values than softmax.
We have used this observation during our investigation and designed the method
described in section 4.3.

4.5.2 Consistency Analysis

The exact results in this chapter may vary depending on the random weight initiali-
sation (in NCE and softmax) and sampling noise (in NCE). To check the consistency,
we repeated our training multiple times (independently) and the results are consis-
tent. For example, when NCE was executed four times using the large model, we
obtained the following testing perplexities [70.082, 70.064, 69.975, 69.995]. The stan-
dard deviation is 0.045. Similarly, with softmax we obtained [78.394, 78.288, 78.196,
78.226]. The standard deviation is 0.075. Overall, these values show that our results
are consistent. Also, the results reported in the Figures were compared across the
four runs, and the trends that we observed were consistent. Most papers that we
cite in this chapter present one value for every experiment and repeated runs are not
mentioned, except (Gal 2016) where the experiments were repeated for three times.

4.6 Conclusion

Language modelling techniques can use Noise Contrastive Estimation (NCE) to deal
with the partition function problem during learning. Although it was known that
NCE can outperform softmax (which computes the exact partition function) on large
problems which are too big for softmax, its performance has never been shown to
outperform softmax or other methods on tasks on which softmax is feasible and
works well. In this chapter, we showed that NCE can beat all the previous best

CHAPTER 4. APPROXIMATE NORMALISATION 97

results in the class of single-model methods based on a standard LSTM achieving
perplexity of 69.995. Our result establishes a new standard on the Penn Treebank
dataset reducing the perplexity of the best existing method in this class by 8.405.

GENERALISATION IN DEEP NEURAL LANGUAGE MODEL
THROUGH SELF-NORMALISATION

We have seen in chapters 2 and 4 that to deal with large vocabularies (e.g. over 10K
words), researchers have developed various approximations that make learning com-
putationally feasible. These approximations (e.g. NCE by Gutmann & Hyvérinen)
usually modify the final layer of the neural network. Note that the changes to the
final layer have a profound impact on the lower layers during learning because the
gradients from the final layer are backpropagated to all previous layers. As a re-
sult, the model that deals with large vocabularies using approximations in the final
layer (i.e. output layer) can improve the quality of the entire, deep model. Thus two
benefits can be achieved through the approximated output layer: training time can
be reduced and better performance on test data (i.e. improved generalisation) can
be achieved by the approximation method compared to the exact method. Such re-
sults were shown in chapter 4 where noise contrastive estimation (NCE) (Gutmann &
Hyvérinen 2010) is used as an approximation method, and the model was efficiently
trained with less time and outperformed ‘less approximate” approaches.

In chapter 4, we have seen an integration of noise contrastive estimation
(NCE) (Gutmann & Hyvérinen 2010) with stacked RNN neural networks, and NCE
based model outperformed (faster training and improved generalisation) ‘less ap-
proximate” softmax models. Improved generalisation means that NCE models were
more accurate in terms of the perplexity metric compared to the Softmax model on
unseen (i.e. test) data.

To provide tangible evidence that the potential of NCE is more general and
NCE can improve performance regardless of the lower layers in the neural networks
(representation layer), we provide a detailed analysis that explains the positive im-
pact of NCE on language models based on neural networks. Deep neural networks
are over-parametrised (i.e. high capacity) models (Arora et al. 20184, Pérez et al.
2019). We have seen in section 2.5.2 that it is sufficient to regularise only the output
layer (i.e. the all connected linear + softmax activation) weights in order to constrain
capacity (Bengio 2012). Moreover, Bengio et al. (2012) argued that large capacity in

98

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 99

the output layer does not help when training a very large neural network. So, limiting
the output layer can help training the whole network efficiently. As approximating
the output layer using NCE reduces generalisation error, the question is, can we see
NCE as a regulariser? In the most basic context of deep supervised learning, gener-
alisation error is the gap between the error on the training and test sets drawn from
the same distribution. According to Goodfellow et al. (2016, ch. 7) regularisation can
be defined as any modification we make to a learning algorithm that is intended to
reduce its generalisation error but not its training error. According to Neyshabur
(2017), generalisation can be explained by the test error being close to the training
error, even when minimising the training error. According to the state-of-the-art def-
initions, to qualify NCE as a regulariser, we have to look into both training error and
test error; and investigate the gap between these two errors. Experimental results in
the last chapter show that NCE demonstrated lower test error than Softmax. In this
chapter, we perform experiments to verify that NCE is a regulariser based on these
definitions. We find that NCE is indeed a regulariser. Seeing NCE as a regulariser
as per these definitions raises some more research questions. First, why is it that
NCE induces regularisation even though the number of parameters is unchanged
compared to Softmax. Usually, a regulariser reduces the number of parameters (i.e.
capacity) of the model. Second, can we define regularisation and resulting generali-
sation more robustly because seeing the regularisation in terms of the error gap does
not tell us much about the trained model. Understanding regularisation in terms
of a trained model would help us designing robust, domain-specific regularisation
techniques, and importantly, better understand overall neural learning. Therefore,
we will attempt to answer these research questions in this chapter. To answer these
questions, we have to understand generalisation from the deep neural networks per-
spective.

Generally, deep networks generalise well in supervised learning tasks even
with over-parametrised (i.e. high capacity) models (Arora et al. 20184, Pérez et al.
2019). In spite of recent research efforts in deep learning, the problem of under-
standing generalisation remains far from solved. With an over-parametrised model
(e.g. deep neural network), to generalise well on unseen data, we need a mechanism
to reduce overfitting, and regularisation techniques are used to get the model from
the overfitting regime to fitted regime (see section 2.5.2). However, it is not clear
how or why a particular regularisation technique does that in a large neural model.
Current research challenges include understanding the data-dependency of the gap
(i.e. the gap between train and test error), the role of increasing network depth (in
space; e.g. stacked network and in time; e.g. large recurrent depth), and the role of
implicit (e.g. implicit self-regularisation by Martin & Mahoney (2018)) and explicit

Why
reqularise
the output
layer?

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 100

regularisation. Overall, as we discussed in section 2.5.2, there is no established and
theoretical formulation or measurement of generalisation for deep neural networks.
Therefore, in this chapter, answering the research questions would help fill the gap
in knowledge.

The results in chapter 4 are limited to classic, stacked LSTM networks with
standard dropout. Training stacked LSTM networks requires the learning algorithm
to calculate the error contribution across both space and time, which is difficult in
practice. For this reason, many models are usually restricted to only two or three
layers (Graves 2013, Zaremba et al. 2014). Stacking layers in LSTM shows perfor-
mance improvement on real datasets (Graves 2016, Godin et al. 2017, Merity et al.
2017) at the expense of increased computational complexity. Moreover, in chapter 3
we have seen that for NLP tasks where long term dependency has more impact on
the performance than modelling of the hidden space, increasing the recurrence depth
is beneficial for long term dependency modelling.

Stacked LSTM networks have limited modelling power due to the vanishing
gradient problem (Srivastava et al. 2015, Zilly et al. 2017). Recurrent Highway Net-
works (RHNSs) (Zilly et al. 2017) and other models that use large recurrence depth
(Pascanu et al. 2014) were proposed to address the modelling challenge imposed by
the stacked LSTM network. In this chapter, we show that NCE leads to significant
gains in performance in one of such RNN models that have large recurrence depth
(Pascanu et al. 2014). We focus on RHNs (Zilly et al. 2017) because they are a specific
generalisation of the classic LSTM and have long credit assignment paths which are
not just in time but also in space (per time step). The credit assignment paths are the
chain of transformations from input to output of a given network. Large credit as-
signment paths enable improved modelling power for a neural model, however, this
requires appropriate handling of the vanishing gradient problem. RHN uses the key
mechanisms of the LSTM to deal with the vanishing gradient problem (Zilly et al.
2017, see section 4). There is no similar mechanism available for stacked networks.

The main goal of this chapter is not to argue whether RHNSs or stacked
LSTMs are better. Showing that NCE works for a particular generalised LSTM net-
work (i.e. RHN) is appealing as other models that were derived from LSTM could
have a similar benefit. Since NCE explicitly modifies learning in the output layer
only, our findings could apply to other recurrent neural models, for example, (Melis
et al. 2017).

We have seen in chapter 4 that the existing literature lacks sufficient under-
standing of NCE in conjunction with deep neural networks, which leaves NCE in a

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 101

less favourable position where its potential is hidden. We aim for a more detailed
analysis of NCE in the context of RNNs with large recurrence depth as this is ben-
eficial for long-term dependency modelling. Most of the existing analyses of NCE
(Chen et al. 2015, Botev et al. 2017) are based on architectures that do not use deep
RNN models (large recurrence depth) or do not demonstrate sufficient potential of
NCE (J6zefowicz et al. 2016). Ultimately, the existing literature does not see NCE as
a regulariser. It has been mainly seen as an approximation to softmax in language
modelling.

To summarise, in this chapter, we study NCE for a model that has a large
recurrence depth (i.e. RHNs) to analyse the impact of NCE on deep neural networks.
Specifically, we show that NCE acts as a reguraliser for the neural model because it
learns an output layer of approximately lower rank (Hu et al. 2018, Tai et al. 2015)
than softmax. We use spectral, sparsity, gradient, and generalised variance analysis
to understand the generalisation properties. Understanding the generalisation prop-
erties is challenging in deep neural networks because of the non-linear activation and
SGD optimisation. As a result, it is difficult to analyse the learned weight matrix. We
propose ways to analyse the learned models that can be used to measure sparsity
and low rankness which can lead us to understand the generalisation properties. To
explain generalisation based on the learned model (i.e. the weight matrix) in the con-
text of deep neural language models, we use generalised variance for the first time
and provide justification in terms of classical learning theory. In our justification, we
use a quantitative method based on the variance of the learned weights in the out-
put layer of the deep neural language model. Utilising variance is appealing as this
can enhance our knowledge of neural learning in terms of classical learning theory
(e.g. bias-variance tradeoff). In chapter 4, the search phase of the optimisation has
an impact on learning, and our analysis suggested that improved optimisation is due
to the NCE induced noise in the search phase, and in this chapter, we argue that it
improves generalisation by inducing low-rank regularisation through sparse learning
that reduced the variance. Our results and analysis are based on the models trained
in chapter 4 and RHNSs trained in this chapter.

In this chapter, our contributions are as follows:

e We show that NCE can be seen as a regulariser because it leads to output
layers that have an approximately lower rank than softmax, our analysis is also
supported by spectral analysis.

e We show that generalised variance can be used to explain the reasoning behind
the generalisation for a deep neural model.

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 102

e In the previous chapter, we argued that noise-induced by NCE accelerates the
convergence in deep neural language models. In this chapter, we use varia-
tional dropout which adds more noise by dropping from the recurrent layers.
Moreover, NCE uses a noise distribution and its learning of the output layer is
randomised. We show that even if more randomisation in the recurrent layer is
added through variational dropout, NCE still provides improvements because
its randomisation in the output layer is informed by the data.

e Our analysis of gradients of the loss function in NCE and softmax indicates that
NCE makes RHNs more resistant to the vanishing gradient problem (Bengio
et al. 2012). As a result, it provides better regularisation for the overall network.
This is confirmed through a clear correlation between the gradients in RHNs
and the generalisation error.

e We show that NCE in conjunction with Recurrent Highway Networks (RHNs)
(Zilly et al. 2017) leads to better generalisation than softmax. This means that
NCE improves not only the standard LSTM as shown in the previous chapter,
but also its specific generalisation, RHN.

5.1 Background

The fundamental architecture of LSTM was extended and improved in various ways.
In this chapter, we study Recurrent Highway Networks (RHNs) (Zilly et al. 2017)
because they are an explicit generalisation of LSTM, and our goal is to verify whether
NCE can improve more general LSTM-based models.

In a standard LSTM, every time step is atomic. RHNSs generalise LSTM
allowing every time step to be additionally divided into d microsteps, where d is a
parameter. This means that the RHN model gains parameters along the dimension
that corresponds to time, which increases its recurrence depth. Conceptually, when
d = 1, an RHN reduces to one LSTM layer.

Microsteps enhance modelling power, but they also make learning challeng-
ing. For this reason, RHNs use the gating mechanism (i.e. the transform and carry
gates) similar to LSTM.

In the last chapter, we have seen that two classic LSTM layers can be stacked
into large blocks (similar to layers of neurons in the multilayer perceptron). The
blocks of those layers are then unrolled for several time steps during learning.

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 103

RHN Layer 1 RHN Layer 1
Sgl)l 2 hid(.icn .laycr size = h Xufl — qt@l 591 hid(.icn .layer size = h X”S]. — s
activation vector = v’ activation vector = v

N N

|

Embedding Embedding
Layer Layer

| |
© ©

(a) [llustration of the softmax output layer. (b) Illustration of the NCE output layer.

Figure 5.1: Illustration of the output layer with RHN: the computational graph to
compute the training loss of a recurrent highway network that maps an input se-
quence of w values to a corresponding sequence of output o values. A loss function
d measures how far each o is from the corresponding training target y. The loss
function d internally computes Eq. 4.3 or approximate it using Eq. 4.6. The mini-
batched stochastic gradient descent optimisation will use Eq. 4.4 and Eq. 4.7 to find
the parameters including the 0.

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 104

-C dxT >

t=0

(a) Increasing recurrence depth along the time steps (Zilly et al. 2017, Fig. 1(b))

— d+T-1 >‘

t=0 t=1 t=T
(b) Increasing recurrence depth along the
space and the time steps (Zilly et al. 2017,

Fig. 1(a))

Figure 5.2: Illustration of the recurrence depth of one time step in Fig. 5.1: comparison
of (a) RHN of recurrence depth d and (b) stacked RNN with depth d, both operating
on a sequence of T time steps. The longest learning path between hidden states T
time steps is d x T for RHN and d — T + 1 stacked RNN .

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 105

In the existing implementations of RHNSs, there is usually only one hidden
layer, i.e. there is no stacking of hidden layers, but stacking is possible too.

Similar to stacked LSTM networks, RHNs are unrolled for several time steps
during learning. When every physical time step in an RHN is split into d microsteps,
the last d*"* microstep is the one that defines the output of the time step. When i is
the last unrolled time step, v{ith is the activation vector that results after the context
ci has been presented to the recurrent network. Then, the final output layer (that
uses either NCE or softmax) has one vector 0; of parameters for every word o; in the
vocabulary. We denote the matrix that consists of all the vectors 0; stacked as rows
by 0. The matrix 0 of the parameter vectors 0; will be investigated in our results
section.

We can recall that when we study language models where given a sequence
of words O = (0o, 04,0,,...,07) over the vocabulary V, the sequence probability is

T—1 T—1
p(0) = [[ploirsloo, 01, 01) = [[ploirales). (5.1)

Here, for a given word 0i44, ¢i =< 0,,04,...,0; > represents its full, non-
truncated context. The probability of the next word o;,, can be computed using the
softmax function for the RHN:

th th
) exp (GLIV?) exp (6111\){1) (5 2)
O0i1lCi) = = . .
IV exp (6 vi"™) z

(0i41lci) is the probability of word oi,, given context ci. i1, is the

PgOFT(

Here, P3OTT
weight vector corresponding to the word oi4, in the output layer, 0; is the weight
vector for the word oj in vocabulary, and |V| is the vocabulary size. The normalising
T 4t
LV

term Z is known as the partition function. Note that unnormalised products 6, Vi

are not sufficient to evaluate the words.

If we compare Eq. 4.2 and Eq. 5.2, the difference is vi* and v{ith (the outputs
of the representation layer). The objective and gradient formulation for softmax and
NCE are similar (see section 4.2 for details) for both representations (i.e. stacked
LSTM and RHN).

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 106

5.1.1 Regularisation and Generalisation

In section 2.5.2, we have seen that explaining theoretically the generalisation of a
deep neural network is difficult. Several approaches have been proposed to explain
the generalisation of the deep neural network (see section 2.5.2).

Both NCE and softmax learn the matrix 0 in the output layer of the model.
The size of the matrix is identical in NCE and softmax when they are applied to
the same model and data. This means that NCE does not reduce the number of pa-
rameters in a specific comparison; the initial modelling power of NCE and softmax is
identical. Using the concept of approximate low rank (Hu et al. 2018) and generalised
variance, we show that NCE leads to better regularisation of the parameter matrix 6
than softmax and leads to better generalisation performance.

5.2 Methods and Objectives

To determine that NCE acts as a regulariser and show that generalised variance can
explain the generalisation of the deep neural model, we tested Recurrent Highway
Networks (RHNs) with softmax and NCE. The parameter (weight) matrix 6 learned
by the algorithms (see sections 5.1, 4.2) and the learning processes were analysed. In
this section, we introduce the algorithmic design used to incorporate NCE into RHN,
the analysis techniques to verify that NCE is a regulariser, and an understanding
technique for generalisation.

5.2.1 NCE in Recurrent Highway Networks

In this section, we have mostly used the learning approach described in chapter 4.
Following section 4.3, we controlled the learning rate, n(t), using the ‘search-then-
converge’ procedure of the form:

1 >max(t+1f"c,040)

nt) =nox (g

The hyperparameter 1 is kept constant in our experiments, and its value was set

(5.3)

according to (Zilly et al. 2017). The equation defines two stages of learning: the
search period for t < T, and the convergence period for t > t. We used a long search
period (i.e. large 1) following (Liza & Grzes 2018). The learning rate, n(t), is constant
and equal to n, during the search period.

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 107

Weights were initialised according to the heuristics suggested by Glorot &
Bengio (2010) with a smaller range as discussed in the last chapter (see. 4.3). Precisely,
the initial weights were sampled from the following distribution:

V6 V6
ul — \/niZnH»l , \/Tli;niﬂ (5_4)

where U is a uniform distribution and n; is the number of nodes in the layer i.

We sampled noise from the power-law distribution based on the analysis in
section 4.3.3.

In chapter 4, we have seen that noise helps in improving generalisation. We
used standard dropout (Hinton et al. 2012) in that chapter. The standard dropout
can be interpreted as a way of regularising a neural network by adding noise to its
hidden units (Srivastava et al. 2014). They showed that adding noise is not only use-
ful for unsupervised feature learning as shown in Vincent et al. (2008, 2010), but can
also be extended to supervised learning problems. The variational dropout (Gal &
Ghahramani 2016b) is an extension of the standard dropout which has a theoretical
grounding in the application and requires the dropout to be applied in all layers in
RNN (including recurrent layer). Following Zaremba et al. (2014), in the last chapter,
we did not apply dropout in the recurrent layer. In this chapter, in all our experi-
ments, we used RHNSs with variational dropout (Gal & Ghahramani 2016b) because
we expect that this will improve performance of both models (i.e. models trained
using softmax and NCE) due to the enhanced incorporation of noise. The enhanced
noise is due to the fact that hidden nodes in the recurrent layer will be dropped ran-
domly and the resulting randomisation will induce noise in the recurrent layer. We
also expect that this will be more beneficial for softmax as it has less provision for
inducing noise compared to NCE.

Adding more
noise using
variational
dropout

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 108

5.2.2 NCE as a Regulariser

1.5

1.0
LS
0.0
-0.5

-1.0

w ¢

~J

Word identifier x103
k{:.l LN

0 250 500 750
Hidden node weights

Figure 5.3: NCE on PTB

Our intuition about NCE as a regulariser has come from the visual analysis of the pa-
rameter matrix (see Fig. 5.3). The structured pattern in the parameter matrix indicates
that appropriate integration of NCE with neural models perhaps fosters sparse and
low-rank structures (Sanyal et al. 2018, Langeberg et al. 2019) in the parameter ma-
trix. In practice, these structures are observed after applying the regularisation that
promotes sparsity and low-rankness (Langeberg et al. 2019, Figure 1). The observed
better generalisation by NCE can potentially be related to the structured sparsity reg-
ularisation and the low-rank regularisation induced by NCE in the neural training.

In general, structured sparsity regularisation extends and generalises the
variable selection problem that characterises sparsity regularisation (Yuan & Lin 2006,
Obozinski et al. 2011). Sparsity and low-rank regularisation are related and can co-
occur in a model. For example, simultaneous sparsity and low-rankness are observed
in linear models (Langeberg et al. 2019). Moreover, the effective sparsity of the vector
of singular values of a matrix is called the effective rank of such matrix (Langeberg
et al. 2019).

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 109

To increase sparsity, weights pruning and model pruning techniques have
been used in the literature (Han et al. 2015, Lebedev & Lempitsky 2016, Zhou et al.
2016, Li et al. 2017). Motivation for weight pruning is to make efficient the over-
parametrised neural network which has significant parameter redundancy (Denil
et al. 2013). For example, Han et al. (2015) proposed a three-step method that prunes
redundant connections. An interesting visual observation that they have presented
was a sparsity pattern that was revealed after applying pruning (Han et al. 2015, fig-
ure 4). With our visual analysis, we assume that we get the similar weight pruning
effect as a by-product of NCE approximation without applying any specific weight
pruning methods. It is perhaps worth investigating in the future how each of these
sparse sub-networks (i.e. corresponding to the dark band and light bands) could be
trained to learn a specific task (Golkar et al. 2019).

Now, the question is if the weight matrix is sparse and has low rank, why
don’t we just calculate the rank to verify the low-rankness. The problem is that when
SGD is used as an optimisation method for deep neural network, SGD does not yield
actual zeros for the parameters but values hovering around zeros (Bengio 2012). Thus
the classical verification of low rankness and thus sparsity measurement is difficult
to apply for deep neural network parameter matrices, as deep neural network pa-
rameter matrices are usually full ranked. Based on this understanding, we further
investigate the weight matrix and in this section, we are going to describe quanti-
tative methods (i.e. spectral analysis and gradient analysis) to measure sparsity and
low-rankness to justify our claim that NCE works as a regulariser for deep neural lan-
guage models and to enhance the understanding of the generalisation performance
based on learned models. To measure the generalisation performance based on the
existing measures (i.e. error gap (Goodfellow et al. 2016, Neyshabur 2017)), the per-
plexity of the model based on training and test data for each epoch are calculated and
the relevant results are described in section 5.4. The rest of the section is organised
as follows: approximately low rank is explained in the section 5.2.2.1. Subsequently,
we introduce the gradient analysis in section 5.2.2.2, which allowed us to see a clear
correlation between generalisation and the generated gradients values during train-
ing. As our objective is to see the generalisation in terms of learned models, the
gradient-based results provide more evidence that NCE can be seen as a regulariser
while providing an understanding of the change in the learning process that results
in improved regularisation.

Quantifying
sparsity is
challenging
in neural
networks

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 110

5.2.2.1 Low Rank Analysis

Sparsity and low-rank regularisation are important features of machine learning al-
gorithms because simpler models are less likely to overfit (Hinton et al. 2012, Hu et al.
2018). Algorithms that learn weight matrices of (at least approximately) lower rank
have more structured parameter spaces (Langeberg et al. 2019). In our analysis, we
focus on the parameter matrix 0 that has the same size in NCE and softmax, which
means that NCE does not reduce the number of parameters in any way, but we can
show that it learns © of approximately lower rank than softmax. In many applica-
tions, low-rank regularisation (Hu et al. 2018) uses L1-norm (aka LASSO) to reduce
the approximate rank of the parameter matrix. Similarly, nuclear norm regularisation
is used to promote low-rankness (Langeberg et al. 2019). In this chapter, we show
that everything else being equal, NCE-based learning without any explicit regularisa-
tion leads to approximately lower rank than softmax. This means that without using
LASSO or nuclear norm regularisation, NCE has the effect of low-rank regularisation
although the matrices are of full rank.

Our arguments presented in the results section use several techniques. First,
the visual analysis (see Fig. 5.6) of the matrices 6 shows that NCE’s matrices are less
random, which means that they have more structure and this becomes qualitative ev-
idence of (approximately) lower rank. Second, we perform a quantitative analysis us-
ing the results of the Singular Value Decomposition (SVD) of normalised 0 (where the
columns of 6 are normalised) or equivalently Principal Component Analysis (PCA)
of its correlation matrix. Having SVD/PCA results, we compute the cumulative vari-
ance carried by an increasing number of the strongest principal components. This
is a classic method (Jolliffe 2002) to argue that the model with faster growth of the
cumulative variance is more structured. Additional evidence is provided by the re-
construction error when the 0 matrices were reconstructed using the results of SVD
and a reduced number of dimensions. 0 that can be reconstructed with smaller er-
ror given the same number of principal components is of approximately lower rank
(Manning et al. 2008, section 18.3).

The approximate lower rank and structured sparsity improve training and
generalisation of the deep neural network (Wen et al. 2016, Zhu et al. 2018). To explain
the generalisation, we have used the generalised variance (Wilks 1960) in section 5.2.3,
which also provides evidence to support our argument about NCE regularisation.

Quantitative
approach is
more robust
compared to
qualitative
approach.

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 111

5.2.2.2 Gradient Analysis

To understand why NCE converges to a better solution, in this section, we analysed
the relationship between gradient propagation and generalisation. We investigated
the distribution of the gradient values in hidden cells at two microsteps (precisely,
the first, h;, and the last, hy, microsteps) of the RHN. This selection of microsteps is
motivated by the fact that the vanishing gradients will have the smallest impact on
hy and the largest impact on h; because they are the furthest (h;) and the closet (hy)
distance from the output layer. We use h, instead of h, when L = 10, because h, and
hy have the same activation (tanh) and the same numbers of units. Insightful conclu-
sions are drawn in our results section because the relationship between the gradient
in the selected microsteps and perplexity depends on the output layer of the entire
network, i.e., whether NCE or softmax is used. To the best of our knowledge, there
was no previous work where these two relationships were explored. This analysis
also shows that with NCE, the entire network receives better regularisation because
NCE has a positive impact on the gradients in the lower layers of the network.

5.2.3 Understanding and Explaining Generalisation

The theoretical formulation and measurement of generalisation in the context of deep
neural learning is still an open problem (Neyshabur et al. 2019, Martin & Mahoney
2019). Despite existing work on ensuring generalisation of neural networks in terms
of scale sensitive complexity measures, such as norms, margin and sharpness (see
section 2.5.2), these complexity measures do not offer an explanation of why neural
networks generalise better with over-parametrisation. For example, in our experi-
ments, the parameter matrices are the same for both Softmax and NCE, however,
NCE offers improved generalisation. We can ask ourselves why softmax overfits
compared to NCE having the same number of model parameters.

Our discussion in section 5.2.2 is to argue that NCE works as a regulariser
for deep neural language models and generalises better than softmax because NCE
learns the output layer weight matrix of approximately lower rank. In this section,
we will describe a fundamentally inspired empirical approach to understand gener-
alisation for deep networks, especially for comparing learned models. One can argue
that, when we have the training perplexity and test perplexity and we can see the
gap between these two metrics to measure the generalisation, then why do we need
a new technique. Although the existing approach indicates generalisation, it does
not say much about the generalisation in terms of the learned weights and thus does

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 112

not offer an understanding of the learned model. The existing approach requires us
to rely on the test dataset, we don’t know what is exactly happening in the training
model (i.e. weight matrix) that leads to better or worse generalisation.

Classical Learning Theory and Weight Values In section 2.5, we have discussed the
bias-variance tradeoff for neural networks. Geman et al. (1992) suggested that large
neural networks suffer from higher variance which results in poor generalisation.
Generally, neural networks learn a set of weights that best map inputs to outputs.
A network with large network weights can be a sign of an unstable network where
small changes in the input can lead to large changes in the output (Reed & Marksll
1999). This causes a large variance in models. If a model has large weights which
result in poor generalisation on test data, we refer to that model as having a large
variance and a small bias. That is, the model is sensitive to the specific examples,
the statistical noise, in the training dataset. This can be a sign that the network has
overfitted the training dataset (including the statistical noise) and will likely perform
poorly when making predictions on new data (i.e. test data). Thus the magnitude of
weight is related to the model variance and test performance (i.e. generalisation).

A model with large weights, hence is overly specialised (including the statis-
tical noise) to training data, is more complex (i.e. has higher capacity than needed to
model the task) than a simpler model with smaller weights. The regularisation meth-
ods reduce the variance by keeping the weights small and improve the generalisation
on test data by reducing the generalisation error (Goodfellow et al. 2016). Traditional
wisdom in learning suggests that using models with increasing capacity will result in
overfitting to the training data. Therefore, in the traditional approaches, the capacity
of the models is generally controlled either by limiting the size of the model (number
of parameters) or by adding an explicit regularisation, to prevent from overfitting
to the training data by keeping the weights smaller. Many traditional regularisation
approaches are based on limiting the complexity (i.e. capacity) of models by adding
a penalty to the objective function. For example, weight decay regularisation aims to
prevent overfitting by extending the objective function to include the goal of model
simplicity. This aim is fulfilled by penalising the size of weights by adding to the
objective function each of the weights squared, multiplied by some regularisation
parameter (Bishop 2006).

Controlling the complexity of the deep neural model is not a simple task,
because finding the model of the right size, with the right number of parameters is
difficult for neural network generalisation (Goodfellow et al. 2016). Moreover, deep

Black box
model.

Complex vs.
simple,
traditional
modelling vs
black box
modelling

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 113

models work better with an over-parametrised model. Therefore, the traditional un-
derstanding of generalisation is not sufficient and requires rethinking (Zhang, Bengio,
Hardt, Recht & Vinyals 2017). In practice, for deep learning, the best-fitted model (in
the sense of minimising generalisation error) is a large model (i.e. over-parametrised)
that has been regularised appropriately (Goodfellow et al. 2016). On the contrary to
the traditional regularisation approach that we have discussed in the last paragraph,
in the case of neural networks increasing the model size only helps in improving the
generalisation error, even when the networks are trained without any explicit regu-
larisation (e.g. weight decay or early stopping) (Lawrence et al. 1998, Srivastava et al.
2014, Neyshabur et al. 20151). This contradiction makes the theoretical analysis of
generalisation difficult for a neural model and there is no standard implicit regular-
isation measurement metric for over-parametrised large models. In this section, we
are proposing a new explanation technique of generalisation based on the generalised

variance.

Generalised Variance The generalised variance (GV) of a p-dimensional random
vector variable X is defined as the determinant of its variance-covariance matrix and
has several interesting interpretations (Sengupta 2004). The generalised variance can
be seen as a measure of overall multidimensional scatter. It can be seen as the ex-
pected volume in which data represented by a two-dimensional matrix (e.g. weight
matrix 0) is located. Smaller generalised variance means that the data is located in
a smaller volume. GV was introduced by Wilks (Wilks 1932) as a scalar measure
of overall multidimensional scatter. The determinant of the covariance matrix could
be considered a generalisation of the variance, in that it is analogous to the scalar

variance in the case of dimension one.

The intuition behind the generalised variance as a generalisation measure-
ment tool is related to the weight magnitude described in this section. From the
discussion in this section, we understand that having large weights is related to poor
generalisation and results in overfitted models (i.e. poor generalisation). Therefore,
we don’t want large weights, however, defining ‘large’ is subjective and specific to
the model in consideration. Generalised variance, on the other hand, gives an in-
dicative overall measure of the size of the weights in a parameter matrix. Intuitively,
the variance for one-dimensional weight variable defines how far each weight in the
weight vector is from the mean, the generalised variance will represent the distance
(size) of weights from the mean value of the weight matrix. Therefore, large gener-
alised variance indicates the presence of large weights in the weight matrix. Based

Regqularisa-
tion
meastre-
ment for
implicit reg-
ularisation.

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 114

on this understanding, we are proposing generalised variance of the weight matrix
to explain the generalisation.

Given two weight matrices, the one with smaller generalised variance is better reqularised and
expected to generalise better on unseen data.

We are proposing this method primarily to compare the regularisation of
models. For example, between two models, the model with a smaller generalised
variance will define better regularisation and will result in improved generalisation.

We have tested this claim in section 5.4.4.

5.3 Experimental Setup

To show the potential of NCE for language modelling, we investigate its performance
in comparison with softmax because NCE approximates softmax, being consistent
with softmax in the limit. Our implementation follows the configuration choices
presented in section 5.2.

Since we use softmax in our evaluation, it is necessary to have a dataset on
which it is feasible to run softmax without any approximations. Therefore we use a
popular benchmark, Penn Treebank (PTB), that was also used in the previous chapter.
WikiText-2 (WT2) is another benchmark that is known for long-term dependencies,
as the dataset is composed of full articles. It has less preprocessing than PTB as it
does not remove the original case, punctuation, and numerical tokens. We have not
done extensive hyperparameter tuning for the WT2 dataset, and we have used most
of the hyperparameters based on tuning on the PTB dataset. Hyperparameter tuning
on the WT2 dataset was left for future work. WT2 is over two times larger than PTB
and has a larger vocabulary. As shown in the Tab. 5.1, vocabulary sizes are 10,000
and 33,278 words in PTB and WT2 respectively. The training, validation, and testing
datasets contain 887521, 70390, and 78669 tokens in PTB and 2088628, 217646, and
245569 tokens in WT2 *.

All our models were implemented in Tensorflow> and executed on NVIDIA
P10oo GPUs. The standard components of our models follow (Zilly et al. 2017) where
excellent results on PTB were reported. In our experiments, the model has 1 hidden
RHN layer and every time step is divided into L = 10 microsteps. Every microstep
contains 830 hidden nodes. Variational dropout (Gal & Ghahramani 2016b) was used

Thttps:/ /einstein.ai/ research /the-wikitext-long-term-dependency-language-modeling-dataset
2https:/ /www.tensorflow.org/

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 115

Table 5.1: Summary of datasets

Penn Treebank (PTB) WikiText-2
Training | Validation | Testing | Training | Validation | Testing
Tokens 887,521 70,390 78,669 | 2,088,628 217,646 245,569
Vocabulary size 10,000 33,278

for regularisation. For robust training, it adds noise at every layer (input, hidden,
output) of the network, and it can be seen as an implementation of approximate
variational inference. Weight decay (with a value of 1e-7) and weight tying were
implemented following (Zilly et al. 2017, Inan et al. 2017, Press & Wolf 2016). We
have run the experiment without the weight decay and the result was similar to the
one with the weight decay. The impact of weight decay was not observed on the final

performance.

We used two sets of dropout rates for the input, output, embedding, and
hidden layers respectively: [0.65,0.65,0.20,0.20] for PTB, and [0.55, 0.55,0.20,0.20] for
WT2. The RHN was unrolled for 35 time steps. We used mini-batch stochastic
gradient descent for training where the mini-batch size was 20. The initial weights

were sampled using the uniform distribution shown in Eq. 5.4.

\l
o O N

~-—NCE

—~-SM

0 100 200 300
Epoch Number

Validation Perplexity
IS

D oo oo o N
(o))

N

Figure 5.4: Selection of the learning rate parameter 1 for the PTB dataset

The learning rate was scheduled using Eq. 5.3. The search time limit T was
chosen empirically using Fig. 5.4. As a result, T was set to 20 and 50 for softmax and
NCE respectively, which means that during the first T epochs, the learning rate was
equal to 1o, where 1, = 0.2. Afterwards, during the convergence period, the learning
rate was decreased by the factor of 1/ where 1\ was set to 1.02. We trained the

models for 500 epochs.

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 116

The norm of the gradients (which was normalised by the mini-batch size)
was clipped at 10. In NCE, we used 600 noise samples for PTB based on the experi-
ments in the last chapter and 1200 noise samples for WT2 as the vocabulary is larger
than PTB. The noise samples were generated from the power-law distribution.

When the model is learned using NCE, its output layer activations may not
represent a probability distribution that is normalised. For this, whenever we use
validation or testing data to compute perplexities for models learned using NCE, we
normalise those probabilities explicitly to make sure that our results are accurate.
Note that explicit normalisation is not used during NCE learning.

We have seen in section 5.2.3 that generalised variance can be calculated us-
ing the determinant of the covariance matrix. Due to the computational problems
with calculating determinants on covariance with a large matrix (Bai et al. 1996),
the direct calculation of determinant on covariance matrix is problematic. We have
calculated generalised variance using the eigenvalues of the covariance matrix. Con-
cretely, if C is an n x n covariance matrix of the weight matrix 0, then we know that
the product of the n eigenvalues of C is equal to the determinant of C. This is based
on the following theorem?:

Theorem 1 If A is a n x n matrix, then the sum of the n eigenvalues of A is the trace of A
and the product of the n eigenvalues is the determinant of A.

5.4 Results and Discussion

This section addresses our objectives stated in section 5.2. First, we will analyse the
results of the generalisation, second, we will analyse the impact of NCE regulari-
sation on the generalisation, and third, we will explain the generalisation using the
generalised variance.

3https:/ /www.adelaide.edu.au/mathslearning/play /seminars/evalue-magic-tricks-handout.pdf

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 117

Table 5.2: Comparing the running time of softmax and NCE

Dataset Model Time

’ PTB H softmax ‘ 1d 8h 58m 52s ‘

WikiText-2 || softmax | 4d 11h 29m 45s
PTB NCE 1d 5h 15m 19s

’ WikiText-2 H NCE ‘ 3d 8h gom 8s ‘

Table 5.3: Results on PTB using neural language models with variational dropout,
recurrence depth L = 10 in Recurrent Highway Networks, and hidden size 830

Internal memory based model T | Valid. PPL | Test PPL
Variational LSTM + Weight Tying (WT)
75.8 73.2
(Press & Wolf 2016)
Variational RHN with WT
i 20 67.9 65.4
(Zilly et al. 2017)
AWD-LSTM-3-layer LSTM (WT)
60.0 57.3

(Merity et al. 2017)

Variational RHN with softmax with WT | 20 63.686 61.982

(0.12) (0.06)
Variational RHN with NCE with WT 50 63.074 60.502
(0.09) (0.04)

69.558 67.
Variational RHN with softmax without WT | 50 9:55 7-154
(0.18) (0.08)

66.296 63.
Variational RHN with NCE without WT | 50 29 3.014
(0.10) (0.05)

External memor)i (Continuous Cache(CQ)) < | Valid. PPL | Test PPL
equipped model
AWD-LSTM-3-layer LSTM

with CC pointer (Merity et al. 2017)

53.9 52.8

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 118

Table 5.4: Results on WiKiText-2 using neural language models with variational
dropout, recurrence depth L = 10 in Recurrent Highway Networks, and hidden size
830

Internal memory based model T | Valid. PPL | Test PPL

Variational LSTM
(Merity et al. 2016)
Zoneout + Variational LSTM

101.7 96.3

. 108.7 100.9
(Merity et al. 2016)
AWD-LSTM - 3-1 LSTM (WT
. Taver WD) 68.6 65.8
(Merity et al. 2017)
.18)
Variational RHN with softmax with WT 20 74-102 71791
(0.17) (0.09)
L . . 70.647 68.054
Variational RHN with NCE with WT 50
(0.11) (0.05)
Variational RHN with softmax without WT | 20 79-712 77:753
(0.16) (0.10)

Variational RHN with NCE without WT 50 75643 73-080
(0.20) (0.09)

External memory equipped model
(Continuous Cache(CQ))
LSTM CC (size = 100)

T | Valid. PPL | Test PPL

. . - 81.6
(Grave, Joulin & Usunier 2017)
LSTM CC (size = 1000) 68
(Grave, Joulin & Usunier 2017) 9
AWD-LSTM - 3-layer LSTM with CC pointer
53.8 52.0

(Merity et al. 2017)

5.4.1 Improving Generalisation of RHNs

The results in Tab. 5.3 and 5.4 compare NCE with other state-of-the-art methods on
Penn TreeBank (PTB) and WikiText-2 (WT2) datasets. This chapter focuses on neu-
ral networks that do not use external memory, but we include the existing results
of such networks (Grave, Joulin & Usunier 2017, Merity et al. 2017) in our tables for
comparison. The results of this chapter could generalise to those models with exter-
nal memory, and NCE’s improvement could be found there as well. Each experiment
was repeated three times and the table reports the results in the mean (standard

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 119

deviation) format.

On PTB, NCE achieved perplexity of 60.502, which is better than the current
state-of-the-art solution with the Recurrent Highway Network model (Zilly et al.
2017) by 4.898. To achieve this result, NCE took 3 hours 43 minutes less time than
softmax. Thus, NCE is both faster and more accurate.

As described in section 5.3, we did not tune our methods extensively for the
WT2 dataset due to time constraints (the dataset is relatively large). However, we
can see in Tab. 5.4 that NCE performs better than softmax by 3.737 with weight tying
(WT) and by 4.673 without WT. WT regularisation reduces the difference by 0.936,
but it does not account for the improvement brought by NCE. So, NCE can improve
on top of other well-known regularisation techniques. NCE being an approximation
to softmax has better perplexity than softmax and took 1 day 2 hours and 50 minutes
less time than softmax. It is crucial to remember that as the vocabulary size becomes
larger (e.g. in WT2), the training time difference becomes larger, and the gap is ex-
pected to increase on larger vocabularies. Exact softmax becomes infeasible in those
cases. In our results, on PTB with the vocabulary size of 10K words, the time differ-
ence was 3 hours 43 minutes. In WT2 the vocabulary size was only 3.3 times larger,
but the time difference was over 6 times higher (see Tab. 5.2). The times in Tab. 5.2

are sums of training, validation, and testing times.

Observing the performance improvement compared to softmax, in the sub-
sequent sections, we analyse NCE’s impact on the learning process in more detail,
and we show that NCE can be seen as a regulariser for deep recurrent neural net-
works.

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 120

5.4.2 NCE As A Regulariser

800
—NCE(train)—NCE(test)— SM(train)—SM(test)
6007 o5 62.2
2 ~-NCE(train) Ao g
£ : B0 he™
20 SM(train
%400 () 618 -~ NCE(test)
o 15 ' " -—-SM(test)
o 61.6 e SRR gy fen
200
10 61.4
00 350 300 320 340 360
O 1 I I]
0 100 200 300 400

Epoch Number

Figure 5.5: NCE as a regulariser

As we have discussed before, according to Goodfellow et al. (2016), Neyshabur (2017),
a regulariser should reduce the generalisation error but not the training error. To see
the NCE’s impact on the whole deep neural network, in Fig. 5.5, we plotted the test
and train perplexities of NCE and softmax. In the figure, the x axis corresponds to the
epoch number and y axis corresponds to the perplexity of the model. We can see that
NCE’s training perplexity is higher than that of softmax whereas the testing (gener-
alisation) perplexity is lower using NCE. Thus, NCE decreases overfitting reducing
the gap between the training error and the testing error from 49 to 37.6 for the final
model, which is the evidence of regularisation (Goodfellow et al. 2016, Neyshabur
2017). The improved generalisation of NCE reported so far shows that NCE has a
regularisation effect. Subsequent sections investigate the reason for the regularisation
observed without the explicit parameter reduction in terms of low-rank approxima-

tion.

5.4.3 Low Rank Analysis / Regularisation

In section 5.1, we denoted the matrix of parameter values that are learned in the
output layer by 6. For a particular model and dataset, the size of the matrix, 6, is
the same regardless of NCE or softmax being used for learning. Therefore, having

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 121

all the other elements of the models equal, we can compare the matrices 0 learned
with NCE and softmax. Given that the numbers of parameters of the models are the
same, we are trying to answer the question of why NCE works as a regulariser. Our
intuition is that if we can show that NCE makes the weight matrix more structured
(or less random), then we can explain the regularisation in terms of low-rank approx-
imation. So, our goal is to investigate their approximate ranks because approximately lower
rank is a standard objective of low-rank reqularisation (Hu et al. 2018). Mathematically,
the weight matrix 0 is full rank for NCE and Softmax. Many applications of low-
rank approximation in machine learning problems are puzzling as the matrices are
in general full rank, although they can be computationally feasible or more efficient
if being approximated using lower rank (Udell & Townsend 2019). For the deep neu-
ral network weight matrix, this statement is true because SGD does not yield actual
zeros but values hovering around zeros (Bengio 2012). However, we see the low-rank
structures from the visual analysis perspective. As we have described before that in
practice these structures are observed after applying the regularisation that promote
the sparsity and low-rankness (Langeberg et al. 2019, Figure 1). Therefore we will
attempt to explain the low-rank regularisation empirically using visual and spectral
analysis.

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 122

S 15 9, 1.0
I 1.0 %X | 3'2
53 53 -
2 05 & 0.2
c 3 00 EO> 0.0
% ._ % -0.2
o 7] 05 57¢ 'gg
g 9 | i | o ', -1.0 g 9 , : | | _1:0
0 250 500 750 0 250 500 750
Hidden node weights Hidden node weights
(a) NCE on PTB (b) Softmax on PTB
m 1 : m 1 1.0
= | 1.0 S 0.8
g | 0.5 . 104 0.5
& 10 . S :
= i & 0.2
E 00 ¥ : :
@ 20 @ 20 -0.2
2 05 =2 -0.5
= ; ' e -0.8
o -1.0 o 5
=301 : =300 1.0
0 250 500 750 0 250 500 750
Hidden node weights Hidden node weights
(c) NCE on WikiText-2 (d) Softmax on WikiText-2

Figure 5.6: Parameters of the output layer (i.e., matrix 0) learned for the PTB and the
WikiText-2 datasets

The empirical analysis uses the matrices shown in Fig. 5.6. In the matrix
0, there is one column for every hidden unit in the output layer and one row for
every word in the vocabulary. Thus, in Fig. 5.6a, the matrix is 830 hidden nodes by
10K words. A qualitative visual analysis of Fig. 5.6a and 5.6b indicates that NCE
learns a more structured (i.e. less random) matrix of weights, 6. Individual columns
of the matrix are more pronounced in NCE, which indicates that a smaller number
of principal components would be sufficient to represent the information contained
in the entire matrix. The matrix learned by softmax is more random. NCE's better
structure is also noticeable in Fig. 5.6c and 5.6d that show the matrices, 6, learned for
WTa2.

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 123

()] — ()] N
e | 2 —
8ol T & 0007 T T
E 400+ T E) /://—
P 400+ el
< /.~ -=-- NCE < ---- NCE
2004 /7 — o /7 —-
g ,,/, Softmax g 200 ’7, Softmax
E | f E |/
> i S 1
O oL : : : : O L : : : :
0 50 100 150 200 0 50 100 150 200
Number of principal components Number of principal components
(a) PTB datase (Stacked LSTM), n = 650 (b) PTB dataset (RHN), n = 830

Figure 5.7: Cumulative variance analysis of the output layer (i.e., matrix 0), on
Stacked LSTM and RHN

()] (]
9 e 9
@ 600 e T © 6001 e T
E s ”:””‘ E /”’,;"”—
4001 7 4001 .7
.g //,'// T NCE .g I”/,, T NCE
r_ju 200 4// ---- Softmax g 2001 :',,'/ ---- Softmax
£ v = v
> I S 1
@] - : : : : O oL : : : :
0 50 100 150 200 0 50 100 150 200
Number of principal components Number of principal components
(a) PTB dataset (b) WikiText-2 dataset

Figure 5.8: Cumulative variance analysis of the output layer (i.e., matrix 6), on PTB
and Wiki-Text2

Besides the qualitative analysis, as shown in section 5.2.2, we can now com-
pute quantitative metrics to argue that NCE’s matrices 0 are of approximately lower
rank. The first measure is the cumulative variance that is carried out by a growing
number of principal components (PCs). The results presented in Fig. 5.14a and 5.14b
show that in NCE the same number of PCs carries more information than in soft-
max. This is one of the ways to show that NCE’s approximate rank is lower than in

softmax.

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 124

5 5
W 400 i 3001
C c
2 o
© — NCE 5200 —— NCE
£2001 —— Softmax = —— Softmax
2 L1004
o o
o o
o 0+ : : : : : x 01 : : ‘
0 125 250 375 500 625 0 250 500 750
Rank of Approximate Matrix Rank of Approximate Matrix
(a) PTB datase (Stacked LSTM), n = 650 (b) PTB dataset (RHN), n = 830

Figure 5.9: Reconstruction error of the output layer (i.e., matrix 0) Stacked LSTM vs
RHN

S S

5 300 i

[NN] i

p < 400

= =l

§ 2007 — NCE 5 — NCE

§ —— Softmax § 2001 —— Softmax

21001 &

o o

0 o

0+ : : : x 0L : : :
0 250 500 750 0 250 500 750
Rank of Approximate Matrix Rank of Approximate Matrix

(a) PTB dataset (b) WikiText-2 dataset

Figure 5.10: Reconstruction error of the output layer (i.e., matrix 0), on PTB and
Wiki-Text2

To support the validity of our spectral variance based low-rank arguments,
we will now describe the low-rank reconstructions error, the error between the orig-
inal matrices 0 and their low-rank reconstructions (Eckart & Young 1936). We use
reconstructions derived from the SVD of 0, and we investigate different ranks of the
reconstructed matrices (the horizontal axis in Fig. 5.9, 5.10, 5.15). The quality of the
reconstruction (the vertical axes in Fig. 5.9, 5.10, 5.15) is measured as the Frobenius
distance between the original and the reconstructed matrices. These figures clearly
show that for a specific rank (i.e. for a specific point on the horizontal axis) NCE's
matrices 0 are reconstructed with higher accuracy, which confirms that NCE’s matri-
ces 0 have approximately lower rank than softmax.

Our discussion above suggests that NCE acts as a low-rank regulariser. We
have described in section 5.2.3 that for deep neural networks, the classical methods

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 125
of understanding generalisation do not work and we describe a generalised variance-
based approach to understand the generalisation based on the trained models. In

the next section, we will describe generalisation due to the low-rank regularisation
induced by NCE.

5.4.4 Explaining Generalisation: Generalised Variance

Table 5.5: Generalised Variance and Generalisation Performance

Model Generalised Variance PPL
Stacked LSTM (NCE) on PTB 1.4 x 10 1265 69.9
Stacked LSTM (SM) on PTB 1.0 X 10~ 195° 78.4
RHN (NCE) on PTB 2.1 X 10° 29%? 63.0
RHN (SM) on PTB 4.4 x 10185 67.0
RHN (NCE) on WK2 6.9 x 1021 73.1
RHN (SM) on Wk2 2.5 X 10 194 77.8
0.10

NI

—— NCE
—— Softmax

Variance
o
(@]
(O]

0.00

0 200 400 600
Values of 6 in Hidden Node

Figure 5.11: Weight Variance (Stacked LSTM)

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 126

—— NCE
—— Softmax

Variance

0 200 400 600 800
Values of 6 in Hidden Node

Figure 5.12: Weight Variance (RHN and PTB dataset)

2 ||| | | (Y
.© —— NCE
‘>° 0.010 —— Softmax

0.005 II l '
0 200 400 600 800
Values of 8 in Hidden Node

Figure 5.13: Weight Variance (RHN and Wiki-text2 dataset)

We have discussed in section 5.2.3 that generalised variance can provide generali-
sation explanation that can improve our understanding of the learned model based
on classical learning theory (i.e. the bias-variance tradeoff). In this section, we will
report the results obtained from the experiments. Tab. 5.5 reports the generalised
variance of the 8 matrix for NCE and softmax models. On PTB, the generalised vari-
ance is 6.1 x 10 1%%4 for NCE and 4.3 x 10~ '5%° for softmax, which means that NCE’s
volume is 84 orders of magnitude smaller. On WT2, the values are 5.1 x 10~ '547
and 5.0 x 10~ "4 respectively. We have also calculated the generalised variance for
the stacked LSTM models from chapter 4. On, PTB, the values are 2.6 x 101263
and 1.3 x 10 "% respectively. Thus the total amount of multidimensional variance
is smaller in NCE and this gives a generalisation explanation of the trained model.
These results indicate that the low-rank regularisation that we have observed in the
last section can be explained with a metric (i.e. generalised variance).

As this generalisation measurement for comparing two methods is based on
the actual weights of the learned models (not on the gap between training and test

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 127

accuracy), we can describe the generalisation based on the variance in the weights
matrix. The generalised variance of NCE is smaller than SM and thus the weights of
the matrices 6 have less variance and are less likely to have large weights compared
to softmax. The Test PPL is also aligned to the results. We want to see the actual
variance of the weights in each hidden node for words. In Fig. 5.11 and 5.13 we see
that the variance is smaller in RHN compared to Stacked models, NCE has smaller
variance compared to softmax and the weights are smaller in NCE.

Based on the above analysis we can see that NCE works as a regulariser and
generalised variance can be used to explain the generalisation based on the weight
matrix. In the next section, we will analyse NCE based on reduced co-adaptation and
induced sparsity.

5.4.5 Reducing Co-adaptation and Inducing Sparsity

The qualitative and quantitative results presented above have an intuitive explana-
tion based on the existing regularisation techniques. The dropout is a regularisation
technique for deep neural models. This regularisation reduces the co-adaptation of
the over-parametrised neural models (Hinton et al. 2012, Srivastava et al. 2014). We
are going to analyse how NCE reduces the co-adaptation in weight matrix 6. In
softmax, the entire weight matrix, 0, needs to be updated in every training iteration,
which leads to co-adaptation in the weight matrix 6. NCE does not update all rows
of the matrix in every iteration because only words that are sampled from the noise
distribution (P, in section 5.1) and the true labels of the mini-batch are updated.
To explain this elaborately, we will consider Fig. 5.1. For softmax, the output is a
V-dimensional probability vector where V is the vocabulary size. The forward pass
involves multiplication of the h-dimensional internal representation with the "<V
matrix and normalisation of the result. The NCE model, on the other hand, only
needs the scores of the correct word and k additional noise sample words during

training. This involves extracting k + 1 rows from the "<V

matrix, multiplying the
h-dimensional internal representation with the resulting (k 4+ 1) x h matrix and no
normalisation. Thus in NCE, not all rows of the 6 matrix get updated at each it-
eration. Therefore, NCE’s selected updates can arguably reduce co-adaptation and
lead to more structured vectors of parameters. This is what we demonstrated in sec-
tion 5.4.3. The explanation is based on the reduced co-adaptation that also justifies

dropout regularisation (Srivastava et al. 2014).

Dropout is expected to reduce co-adaptation in the entire network, whereas

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 128

our results show that NCE additionally reduces co-adaptation in the output layer
(i.e. © weight matrix). We could conjecture that NCE can achieve that due to in-
formed noise sampling that is based on the power-law distribution over the vocabu-
lary. Dropout’s sampling is in contrast not informed by the data.

Dropout regularisation was explained by sparsity. Specifically, Srivastava
et al. (2014) described that dropout affects the sparsity of hidden unit activations,
resulting in reduced co-adaptation and induced regularisation. We have seen in sec-
tion 5.1 that sparsity is an important regularisation technique for deep neural net-
works. We also know that low-rank reconstruction is related to sparsity (Wen et al.
2018, Chen 2018). We believe that the low-rank regularisation induced by NCE is per-
haps related to the induced sparsity. As previously stated, all our experiments used
variational dropout proposed by (Gal & Ghahramani 2016a). As long as dropout can
lead to the sparsification of the entire network, its impact on the softmax output layer
in Fig. 5.6 was smaller than that of NCE, showing that the reduced co-adaptation and
induced sparsity present in NCE can explain the regularisation of the output layer.

5.4.6 Reduced Parametrisation

Y 600 Y g

= Sttt % PPt

< e = 4001 T

> 400 e > 7

- 2 p— NCE E A - NCE

E’ 200 ,,'7 ----- Softmax © 2007 /’ ---- Softmax

=] 4 -] //

£ ! € /

=} l’] i

O o O oL ‘ ‘ ‘ ‘

0 50 100 150 200 0 50 100 150 200
Number of principal components Number of principal components
(a) PTB dataset (WT) (b) WikiText-2 dataset (WT)

Figure 5.14: Cumulative variance analysis of the output layer (i.e., matrix 0), on PTB
and Wiki-Text2 with weight tying (WT)

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 129

5 S

& 400/ 0 750,

c C

o Qo

T — NCE G 5007

>

g 200+ —— Softmax a

Z € 250 —— NCE

S b —— Softmax

Q [V}

x 0L ‘ : : x 0+ : ‘ :
0 250 500 750 0 250 500 750
Rank of Approximate Matrix Rank of Approximate Matrix

(a) PTB dataset (WT) (b) WikiText-2 dataset (WT)

Figure 5.15: Reconstruction error of the output layer (i.e., matrix 6), on PTB and
Wiki-Text2 with weight tying (WT)

Table 5.6: Generalised Variance and Generalisation Performance (WT)

Model Generalised Variance = PPL
RHN (NCE) on PTB 1.5 X 101605 60.502
RHN (SM) on PTB 2.8 x 1071521 61.982
RHN (NCE) on WK2 1.0 X 10 492 68.054
RHN (SM) on Wk2 2.0 X —1408 71.791
0.05/
o 0.04
O
c 1 -
2 0.031 — NCE
g —— Softmax
0.02; !

0 200 400 600 800
Values of 6 in Hidden Node

Figure 5.16: Weight Variance (RHN and PTB dataset)

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 130

| M f m.l

—— NCE
—— Softmax

Ty

0 200 400 600 800
Values of 6 in Hidden Node

0.04

Variance
o
o
w

0.02

Figure 5.17: Weight Variance (RHN and Wiki-text2 dataset)

Weight tying reduces the number of parameters to be learned, which usually im-
proves generalisation and convergence speed (Press & Wolf 2016, Zhang et al. 2018).
For this reason, we explored the cumulative variance of the 6 matrices in networks
with weight tying (WT). From Fig. 5.14, we can see that with weight tying NCE has
faster growth of the cumulative variance. The reconstruction error is also lower in
NCE (Fig. 5.15). This means that NCE provides complimentary regularisation of the
output layer even when dropout and weight tying are used. The regularisation can
be explained by the generalised variance as we see in Tab. 5.6 that NCE based model
has lower generalised variance than Softmax when WT was used for both models.
This impact can be noticed in terms of perplexity in Tab. 5.4 for WT2, where weight
tying improves perplexity from 77.753 to 71.791 in softmax and from 73.080 to 68.054
in NCE (keeping the configuration the same except for the weight tying). These
differences show that softmax benefits from dropout much more than NCE, which
confirms that NCE delivers better regularisation than softmax. Similar improvement
was also observed in Tab. 5.3 for PTB.

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 131

5.4.7 Gradient Analysis

i~ —— min(h9) —— min(hl)
© —+— max(h9) —+— max(hl)
1S
T 0.050
@©
£ 0.025
=3
9 0.000
>
© —-0.025
& —0.050
© 0 200 400
(G] Epoch Number
(a) Softmax
= —— min(h9) —— min(h1)
g —— max(h9) —— max(hl)
= 0.050
@©
£ 0.025
3
¥ 0.000
3
€ -0.025
1=
2 -0.050
© 0 200 400
o Epoch Number
(b) NCE
40001 -, ‘ ‘
TR ~+—NCE(r = 20)
- —o—Softmax(r=20)
£3000f 70} —
o
o
()
o 691
< 2000
o s o o, g o
S 68
;‘5 1000
67
120 140 160 180 200
0
0 100 200 300

Epoch Number

(c) Convergence

Figure 5.18: Gradients with respect to microsteps h; and h, versus asymptotic con-
vergence of NCE and softmax. Fig. 5.18a and Fig. 5.18b show the gradients with
respect to h; and h, for softmax and NCE respectively. In Fig. 5.18c, NCE’s conver-
gence improves when the gradient of h, increases in Fig. 5.18b.

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 132

In this section, we show that in the RHN models NCE leads to different gradients
than softmax, and the differences are correlated with the convergence. Our goal
is to show deeper insights as to what happens when NCE outperforms softmax in
our experiments. We consider the microsteps h; and h, (for the reasons explained
in section 5.2.2), where h, is closer to the output layer than h;. We run the same
model with NCE and softmax, and we compare the magnitude of the gradients of
the loss function with respect to the hidden vectors of the microsteps h; and h,,.
Figures 5.18a and 5.18b show the maximum and minimum values of those gradients
across the epochs. We can see that in the initial epochs of NCE, the gradients of the
loss function with respect to the higher microstep, hy, have smaller values than h,,
but increase as learning progresses. The gradient values of the loss function with
respect to h, are the same across all the epochs. This difference between microsteps
h; and hy is, however, not visible in softmax.

The observations that we made above gain relevance to our study when
we include Fig. 5.18c in our analysis. Specifically, when in Fig. 5.18b the gradient
becomes larger with respect to hy around the epochs number 150200, the valida-
tion perplexity of NCE becomes better than the validation perplexity of softmax in
Fig. 5.18c. The graphs show a clear relationship between the magnitude of gradients
and the learning convergence. Using this evidence and noting that h, is closer to
the output layer than h,, one could conjecture that NCE is more robust against the
vanishing gradient problem than softmax since it allows for higher gradients when
compared against softmax in the same conditions. The rationale is also the fact that
the increase in the solution quality begins at the time when the values of h, gradi-
ents start increasing. These results show that the NCE's regularisation effect can go
beyond the output layer.

5.5 Conclusion

In this chapter, we showed that NCE improves language modelling using RHNS,
which are a particular generalisation of LSTM. We analysed the positive impact of
NCE and observed that NCE can be seen as a regulariser because it learns models
of approximately lower rank than softmax. Both qualitative and quantitative jus-
tification was provided, and it was also demonstrated that NCE improves results
even when weight tying is used. For understanding the regularisation, generalised
variance was introduced, and the technique gave us learning insights about trained
models. NCE’s impact on gradient propagation was shown to be correlated with its

CHAPTER 5. REGULARISATION THROUGH APPROXIMATION 133

better generalisation, which is another evidence of its effective regularisation.

Our results can raise interesting theoretical questions for future work. For
example, dropout was recently shown to cause a sharp reduction in Rademacher
complexity (Gao & Zhou 2016). Since NCE is a randomised method as well, we
assume the NCE may have a similar effect on Rademacher complexity, which could
be an interesting question to answer for theoretical machine learning.

CONCLUSION AND FUTURE WORKS

We have studied sequence modelling, particularly, language modelling to improve
performance in terms of accuracy, speed, and model understanding. We have given
the emphasis on the standard baseline models and showed that there are opportu-
nities for improvement of the baseline models. Moreover, our investigations have
emphasised the output layer and its impact on the representation layer. We hope that
our results will motivate further research on improving the output layers. Although
it was known that optimising the output layer is important, there was no extensive
previous research that would show the impact of the output layer on the quality of

the entire network.

We have also shown the links between neural models and weighted finite-
state automata (WFA) through language modelling. This has improved the under-
standing of the models and data properties, and also opened up a new avenue for fu-
ture research in that direction — specifically, we hope that more theoretical research
will be conducted to improve the neural network understanding through compar-
isons with WFAs.

To summarise, we believe that the results and analyses of the thesis will
enhance the research emphasis on standard baseline neural models before designing
new architectures for improving the modelling performance. We also believe that
the results of this research will encourage researchers to optimise the output layer
and design methods to improve the understanding of a neural model. The main
contributions of the thesis are summarised next:

1. We have contributed with extensive experiments to investigate models’ capacity
for capturing the long term dependency and found that in a datasets with long-
distance context dependency (e.g. NLP, Biology), deep neural language models
perform superiorly compared to other state-of-the-art models. Comparison of
advanced techniques shows that RNN language models reach state-of-the-art
performance on several benchmark datasets, mainly on the well-known bench-
mark corpus PennTreebank and PAutomaC. This contribution is based on the

134

CHAPTER 6. CONCLUSION AND FUTURE WORKS 135

results and analyses of chapters 3, 4, and 5.

2. We have found that spectral algorithms for WFA cannot capture long term de-
pendency due to the computation intractability with large substring statistics,
but they can be used as an empirical probing tool to understand deep neural
models and dataset characteristics. This insight is novel. This contribution is
based on the results and analyses of chapter 3.

3. In the literature, RNNs are stacked to increase the depth to get better accuracy
for a language modelling task. For the sequence modelling task, it is not clear
what benefit the depth actually brings. We have shown that layers in neural
models are efficient in capturing the hidden state representation and less ef-
ficient in capturing long-term dependency. This contribution is based on the
results and analysis of chapter 3. Furthermore, we have seen in chapters 4 and
5 that increasing the recurrence depth has improved the accuracy for bench-
mark datasets compared to increasing the depth by stacking layers of RNNs.

4. In the literature, it is shown that NCE does not work efficiently with deep
RNNSs. In chapters 4 and 5, we have proposed new approaches to integrate
NCE with deep RNN language models when trained using stochastic gradient
descent and backpropagation through time; and we have shown the effective-
ness of the proposed approaches.

5. The NCE, which approximates softmax; works on the output layer of the RNN.
The main purpose of the approximation is to improve the training speed. We
have shown that the proper use of NCE can enhance generalisation performance
(i.e. testing accuracy) while improving the training speed. This conclusion is
based on the results and analyses of chapters 4 and 5.

6. The generalisation of deep neural networks is difficult to explain with the clas-
sical learning theory. We have explained generalisation in terms of trained
models, using the concept of generalised variance. Intuitively, reduced gener-
alised variance moves a model from an overfitted region to a fitted region. This
would help us to connect deep learning with classical learning theory in future
and could provide new theoretical research directions. This conclusion is based
on chapter 5.

7. We have provided an explanation about why deep neural models work better
with over-parameterisation. We have found that performance enhancement is
related to low-rank regularisation. We have related the explanation with spar-
sity and a reduced number of effective parameters. This contribution is based
on chapter 5.

CHAPTER 6. CONCLUSION AND FUTURE WORKS 136

There is of course rooms for future improvements. Language modelling
techniques are usually compared based on the following properties: accuracy, speed,
size and implementation complexity. Improving accuracy while reducing training
time is challenging. Although we have proposed new approaches that can achieve
that, there are rooms for improving the accuracy and reducing the training time that
will be explored in future research. Understanding neural models is difficult and
crucial for knowledge advancement. The next obvious step is thus getting the neural
models to learn to reason. Future research that would aim to improve accuracy and

training time includes but is not limited to:

1. Exploring other training algorithms (e.g. Hessian-Free Optimisation) for recur-
rent neural networks and NCE.

2. Improving noise sampling (e.g. interpolating different noise samples) for NCE
with RNNS.

3. Exploring approaches that can be used to learn context-based noise samples
with a GPU implementation.

4. Exploring approaches that will make neural models perform efficiently with
low resource datasets (i.e. small datasets).

5. Exploring representations based on different levels of textual data (character-
level, subword-level, word-level, phrase-level etc.) to allow models to access
information more easily from a distant history.

The findings of the thesis are based on the empirical results and experiments
conducted on a few benchmark datasets. More theoretical investigations are needed
to understand neural networks. Our findings can also be extended to explore the
theoretical research. Most of the deep learning research is empirical and there are
many contradictory empirical findings that make the researchers puzzled. Theoret-
ical research will help to establish the knowledge contribution. We plan to explore
the theoretical aspect of the study in future work. The potential theoretical questions
are:

1. Is that possible to find a theory on how much data is needed for a particular
neural model?

2. As the neural models work better with over-parameterisation, is there anything
special about deep learning architectures or a particular component that re-

CHAPTER 6. CONCLUSION AND FUTURE WORKS 137

duces the VC-dimension significantly? Can we get any theoretical explanation
of generalisation in that direction?

3. Gao & Zhou (2016) showed that dropout reduces the Rademacher complexity.
Does incorporating NCE into deep neural networks reduce the Rademacher
complexity of those networks?

4. How to connect weighted finite-state automata and recurrent neural networks
to explain the results of chapter 3 from the theoretical perspective?

Although language modelling has received much attention since 1980s, the
main problems (e.g. data sparsity or curse of dimensionality problems Bengio et al.
(2003)) are still far from being solved. This is due to the complexity of the task, as
often the easiest way to obtain good results is to choose trained models based on as
much data as possible. This strategy is however not getting any closer to solving
the main problems, rather avoiding them as much as possible. At present, for many
tasks involving the neural network training, the amount of available training data
(e.g. one billion words benchmark dataset for language modelling) is so huge that
further progress by adding more data is not very likely. Although such models are
very interesting as they can be used for transfer learning and knowledge extraction,
the problem of language modelling is still unsolved.

It is commonly known that most of the published papers report only negligi-
ble improvements over baselines. For an example, if we consider speech recognition
systems, even the best technique rarely affects the word error rate of the system by
more than 10% relatively and that is not a meaningful difference from users perspec-
tives. However, even a small difference can be a stepping stone to a huge difference
in the long term — competitions are often won by a slight margin. Also, even if the
improvements are small and hardly observable, it is likely that in longer term, the
majority of users will tend to prefer the best system.

The next best step for the advancement of neural language models is to
understand the trained models. For example, it is essential to understand the patterns
that have been learned by a model so that we can improve the model to incorporate
the patterns that have not been learned. The first step to understand the patterns
that have been learned by a neural model would be extracting automata from trained
RNN models (Weiss et al. 2018, Okudono et al. 2019) and analyse the automata.
Training deep models with the biggest possible dataset to achieve better accuracy is
important for practical applications, but for advancing the knowledge, we need to
understand the models and their generalisation capacity.

Appendices

138

Appendix: A

The classical formulation of cross-entropy as a relationship between two distributions
and the Eq. A.1 are not immediately obvious. This section will relate the Perplexity’s
relation to Entropy which is adapted from (Jurafsky & Martin 2009, section 4.6).
Given a random variable W ranging over the observations we are predicting (words,
letters, parts of speech, the set of which we’ll call W) and with a particular probability
function, call it p(w), the entropy of the random variable W is:

HW) =~ 3 p(w)log,p(w)
wew

The log can, in principle, be computed in any base. If we use log base 2, the
resulting value of entropy will be measured in bits. The above formulation computes
the entropy of a single variable. But in NLP we use entropy that involves sequences.
For a grammar, for example, we will be computing the entropy of some sequence of
words W = wy, W, W,, ..., Wn. One way to do this is to have a variable that ranges
over sequences of words. For example we can compute the entropy of a random
variable that ranges over all finite sequences of words of length L in some language
K as follows:

Hiwy, ..., wi) ==) p(Wy)logp(Wr)

whekK

We could define the entropy rate (we could also think of this as the per-word
entropy) as the entropy of this sequence divided by the number of words:

1 1
EH(wl,...,wL) =1 Z p(WE)logp(WH)
wkekK

But to measure the true entropy of a language, we need to consider se-
quences of infinite length. If we think of a language as a stochastic process K that

139

APPENDIX A. APPENDIX: A 140

produces a sequence of words, its entropy rate H(K) is defined as

H(K) = — lim %H(WI,...,WL)

L—oo

Z p(wll e /WL) logzp(wll cee /WL)
wek

The Shannon-McMillan-Breiman theorem (Algoet & Cover 1988, Cover &
Thomas 2012) states that if the language is regular in certain ways (to be exact, if it is
both stationary and ergodic),

H(K) = lim —log, p(wy, ..., wi)

That is, we can take a single sequence that is long enough instead of sum-
ming over all possible sequences. The intuition of the Shannon-McMillan-Breiman
theorem is that a long-enough sequence of words will contain in it many other
shorter sequences and that each of these shorter sequences will reoccur in the longer
sequence according to their probabilities.

A stochastic process is said to be stationary if the probabilities it assigns to
a sequence are invariant with respect to shifts in the time index. In other words, the
probability distribution for words at time t is the same as the probability distribution
at time t + 1. Markov models, and hence N-grams, are stationary. For example, in a
bigram, P; is dependent only on P;_;. So if we shift our time index by x, Pi is still
dependent on P;,x_,. But natural language is not stationary, since the probability of
upcoming words can be dependent on events that were arbitrarily distant and time
dependent. Thus, our statistical models only give an approximation to the correct
distributions and entropies of natural language.

To summarise, by making some incorrect but convenient simplifying as-
sumptions, we can compute the entropy of some stochastic process by taking a very
long sample of the output and computing its average log probability.

The cross-entropy is useful when we don’t know the actual probability dis-
tribution p that generated some data. It allows us to use some q, which is a model of
p (i.e. an approximation to p). The cross-entropy of g on p is defined by

APPENDIX A. APPENDIX: A 141

H(p/ ngrolo_g Z p Wi,eo o, W logzq(wll'“/WL)
wek
That is, we draw sequences according to the probability distribution p, but

sum the log of their probabilities according to q.

Again, following the Shannon-McMillan-Breiman theorem, for a stationary

ergodic process:

. 1
H(p,q) = lim —rlog, q(w:...wi)

This means that, as for entropy, we can estimate the cross-entropy of a model
q on some distribution p by taking a single sequence that is long enough instead of
summing over all possible sequences.

What makes the cross-entropy useful is that the cross-entropy H(p, q) is an
upper bound on the entropy H(p). For any model q:

H(p) < H(p, q)

This means that we can use some simplified model q to help estimate the
true entropy of a sequence of symbols drawn according to probability p. The more
accurate q is, the closer the cross-entropy H(p, q) will be to the true entropy H(p).
Thus, the difference between H(p, q) and H(p) is a measure of how accurate a model
is. Between two models q; and q,, the more accurate model will be the one with

lower cross-entropy.

We are finally ready to see the relation between perplexity and cross-entropy.
Cross-entropy is defined in the limit, as the length of the observed word sequence
goes to infinity. We will need an approximation to cross-entropy, relying on a (suffi-
ciently long) sequence of fixed length. This approximation to the cross-entropy of a
model Q = P(wiwi_N41...Wi—_;) on a sequence of words W is

H(W) = —% log, q(w;...wr)

APPENDIX A. APPENDIX: A 142

1
H(w) =— ilog2 qwy,...,wr)

L
1
=— flogZHq(wilwl,...,wi,l) (A.1)

i=1

From equation 2.2 and A.1, the relation between the perplexity and the cross entropy

is as follows:

Y R (A.2)

PPL(w) = 2HW)

Bibliography

Adolphs, L. (2018), Non convex-concave saddle point optimization, Master’s thesis,
ETH Zurich. 28

Advani, M. S. & Saxe, A. M. (2017), ‘High-dimensional dynamics of generalization
error in neural networks’, CoRR abs/1710.03667. 40

Algoet, P. H. & Cover, T. M. (1988), “A sandwich proof of the Shannon-McMillan-
Breiman theorem’, The annals of probability pp. 899—909. 140

Allison, B., Guthrie, D. & Guthrie, L. (2006), Another look at the data sparsity prob-
lem, in ‘International Conference on Text, Speech and Dialogue’, Springer, pp. 327-

334 4

Andreas,]. & Klein, D. (201514), When and why are log-linear models self-
normalizing?, in ‘Proceedings of the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technolo-

gies’, pp. 244-249. 34

Andreas,]J. & Klein, D. (20150), When and why are log-linear models self-
normalizing?, in ‘Proceedings of the 2015 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language Technolo-
gies’, pp. 244-249. 35

Angluin, D. (1978), ‘On the complexity of minimum inference of regular sets’, Infor-
mation and control 39(3), 337-350. 11

Angluin, D. (1988), ‘Queries and concept learning’, Machine learning 2(4), 319-342. 11

Arora, S., Ge, R., Neyshabur, B. & Zhang, Y. (20184), Stronger generalization bounds
for deep nets via a compression approach, in J. Dy & A. Krause, eds, ‘Proceedings
of the 35th International Conference on Machine Learning’, Vol. 8o of Proceedings of
Machine Learning Research, PMLR, Stockholmsmaéssan, Stockholm Sweden, pp. 254-

263. 40, 98, 99

143

BIBLIOGRAPHY 144

Arora, S., Ge, R., Neyshabur, B. & Zhang, Y. (2018b), ‘Stronger generalization bounds
for deep nets via a compression approach’, arXiv preprint arXiv:1802.05296 . 42

Arpit, D., Jastrzebski, S., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S., Maharaj,
T., Fischer, A., Courville, A., Bengio, Y. et al. (2017), A closer look at memorization
in deep networks, in ‘Proceedings of the 34th International Conference on Machine
Learning-Volume 70’, JMLR. org, pp. 233—242. 40

Bahl, L. R, Jelinek, F. & Mercer, R. L. (1983), “A maximum likelihood approach to
continuous speech recognition’, IEEE transactions on pattern analysis and machine
intelligence (2), 179-190. 10

Bai, Z., Fahey, G. & Golub, G. (1996), ‘Some large-scale matrix computation prob-
lems’, Journal of Computational and Applied Mathematics 74(1-2), 71-89. 116

Bailly, R. (2011), ‘Quadratic weighted automata: Spectral algorithm and likelihood
maximization’, Journal of Machine Learning Research 20, 147-162. 54

Balle, B., Carreras, X., Luque, F. M. & Quattoni, A. (2014), ‘Spectral learning of
weighted automata’, Machine learning 96(1-2), 33-63. 11, 17, 18, 19, 20, 50, 53

Balle, B., Eyraud, R., Luque, E. M., Quattoni, A. & Verwer, S. (2017), Results of the
sequence prediction challenge (spice): a competition on learning the next symbol
in a sequence, in ‘International Conference on Grammatical Inference’, pp. 132-136.

43, 47, 48, 50

Balle, B. & Mohri, M. (2012), Spectral learning of general weighted automata via
constrained matrix completion, in “Advances in neural information processing sys-

tems’, pp. 2159—2167. 11

Balle, B. & Mohri, M. (2015), Learning weighted automata, in A. Maletti, ed., “Alge-
braic Informatics’, Springer International Publishing, Cham, pp. 1—21. 11

Balle, B., Quattoni, A. & Carreras, X. (2012), Local loss optimization in operator mod-
els: A new insight into spectral learning., in ‘ICML’, icml.cc / Omnipress. 20, 54

Baltescu, P. & Blunsom, P. (2015), Pragmatic neural language modelling in machine
translation., in R. Mihalcea, J. Y. Chai & A. Sarkar, eds, ‘'HLT-NAACL’, The Associ-
ation for Computational Linguistics, pp. 820-829. 74, 75

Bartlett, P. L., Foster, D.]. & Telgarsky, M. J. (2017), Spectrally-normalized margin
bounds for neural networks, in “Advances in Neural Information Processing Sys-
tems’, pp. 6240-6249. 42

BIBLIOGRAPHY 145

Baum, E. B. & Haussler, D. (1989), What size net gives valid generalization?, in *Ad-
vances in neural information processing systems’, pp. 81-90. 39

Bengio, Y. (2012), Practical Recommendations for Gradient-Based Training of Deep Archi-
tectures, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 437-478. 41, 76, 81, 82,
98, 109, 121

Bengio, Y., Boulanger-Lewandowski, N. & Pascanu, R. (2012), “Advances in optimiz-
ing recurrent networks’, CoRR abs/1212.0901.
URL: http://arxiv.org/abs/1212.0901 98, 102

Bengio, Y., Courville, A. & Vincent, P. (2013), ‘Representation learning: A review
and new perspectives’, IEEE transactions on pattern analysis and machine intelligence

35(8), 1798-1828. 3

Bengio, Y., Ducharme, R., Vincent, P. & Jauvin, C. (2003), ‘A neural probabilistic
language model’, Journal of machine learning research 3(Feb), 1137-1155. 11, 12, 73,

137

Bengio, Y. & Frasconi, P. (19954), ‘Diffusion of context and credit information in
markovian models’, Journal of Artificial Intelligence Research 3, 249—270. 71

Bengio, Y. & Frasconi, P. (1995b), Diffusion of credit in markovian models, in
G. Tesauro, D. S. Touretzky & T. K. Leen, eds, “Advances in Neural Information
Processing Systems 7', MIT Press, pp. 553-560. 68, 71

Bengio, Y. & Sénécal,].-S. (2003), Quick training of probabilistic neural nets by im-
portance sampling, in ‘Proceedings of the conference on Artificial Intelligence and
Statistics (AISTATS)’. 34

Bengio, Y. & Senécal, J.-S. (2008), “Adaptive importance sampling to accelerate train-
ing of a neural probabilistic language model’, IEEE Transactions on Neural Networks

19(4), 713-722. 34, 35, 86

Bengio, Y., Simard, P., Frasconi, P. et al. (1994), ‘Learning long-term dependencies
with gradient descent is difficult’, IEEE transactions on neural networks 5(2), 157-
166. 31, 85

Bengio, Y. et al. (2009), ‘Learning deep architectures for ai’, Foundations and trends in
Machine Learning 2(1), 1-127. 65, 66, 71

Bergstra, J. & Bengio, Y. (2012), ‘Random search for hyper-parameter optimization’,
Journal of Machine Learning Research 13(Feb), 281-305. 56

BIBLIOGRAPHY 146

Bergstra, J. S., Bardenet, R., Bengio, Y. & Kégl, B. (2011), Algorithms for hyper-
parameter optimization, in ‘Advances in neural information processing systems’,

pp- 2546-2554. 56
Bishop, C. M. (2006), Pattern recognition and machine learning, springer. 112

Blumer, A., Ehrenfeucht, A., Haussler, D. & Warmuth, M. K. (1987), “Occam’s razor’,
Information processing letters 24(6), 377-380. 41

Boning, D. S., Elfadel, I. A. M. & Li, X. (2019), A Preliminary Taxonomy for Machine
Learning in VLSI CAD, Springer International Publishing, Cham, pp. 1-16. ix, 23

Boots, B., Gretton, A. & Gordon, G. J. (2013), Hilbert space embeddings of predictive
state representations, in ‘Proceedings of the Twenty-Ninth Conference on Uncer-
tainty in Artificial Intelligence’, UAI'13, AUAI Press, Arlington, Virginia, United
States, pp. 92—-101.

URL: http://dl.acm.org/citation.cfm?id=3023638.3023648 11

Botev, A., Zheng, B. & Barber, D. (2017), Complementary sum sampling for likelihood
approximation in large scale classification, in ‘Proc. of AISTATS’, pp. 1030-1038. 101

Bottou, L. (2010), Large-scale machine learning with stochastic gradient descent, in
‘Proceedings of COMPSTAT 2010’, Springer, pp. 177-186. 94

Bousquet, O. & Bottou, L. (2008), The tradeoffs of large scale learning, in ‘Advances
in neural information processing systems’, pp. 161-168. 40, 81, 92

Brants, T., Popat, A. C., Xu, P, Och, F. J. & Dean, J. (2007), Large language models
in machine translation, in ‘Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning (EMNLP-CoNLL)’, pp. 858-867. 2

Britz, D., Goldie, A., Luong, M.-T. & Le, Q. (2017), Massive exploration of neural
machine translation architectures, in ‘Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing’, Association for Computational
Linguistics, pp. 1442-1451.

URL: http://aclweb.org/anthology/D17-1151 31

Brown, A. D. & Hinton, G. E. (2001), Products of hidden markov models., in ‘AIS-
TATS'. 70

Brown, P. E, Desouza, P. V., Mercer, R. L., Pietra, V. J. D. & Lai, J. C. (1992), ‘Class-
based n-gram models of natural language’, Computational linguistics 18(4), 467—479.

10

BIBLIOGRAPHY 147

Broyden, C. G. (1970), “The convergence of a class of double-rank minimization al-
gorithms 1. general considerations’, IMA Journal of Applied Mathematics 6(1), 76—90.
81

Brutzkus, A., Globerson, A., Malach, E. & Shalev-Shwartz, S. (2017), ‘Sgd learns over-
parameterized networks that provably generalize on linearly separable data’, arXiv
preprint arXiv:1710.10174 . 39

Buchsbaum, A., Giancarlo, R. & Westbrook, J. R. (1998), Shrinking language mod-
els by robust approximation, in ‘Proceedings of the 1998 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No.
98CH36181)’, Vol. 2, IEEE, pp. 685-688. 66

Carrasco, R. C. & Oncina, J. (1994), Learning stochastic regular grammars by means of
a state merging method, in ‘International Colloquium on Grammatical Inference’,

Springer, pp. 139-152. 48

Chen, S. F. & Goodman, J. (1996), An empirical study of smoothing techniques for
language modeling, in ‘Proceedings of the 34th Annual Meeting on Association for
Computational Linguistics’, ACL "96, Association for Computational Linguistics,
Stroudsburg, PA, USA, pp. 310-318.

URL: http://dx.doi.org/10.3115/981863.981904 16, 52

Chen, W. (2018), ‘Simultaneously sparse and low-rank matrix reconstruction via non-

convex and nonseparable regularization’, IEEE Transactions on Signal Processing
66(20), 5313-5323. 128

Chen, W., Grangier, D. & Auli, M. (2015), ‘Strategies for training large vocabulary
neural language models’, CoRR abs/1512.04906.
URL: http://arxiv.org/abs/1512.04906 13, 34, 35, 44, 75, 76, 101

Cheng, W.-C., Kok, S., Pham, H. V,, Chieu, H. L. & Chai, K. M. A. (2014), Language
modeling with sum-product networks, in ‘Fifteenth Annual Conference of the In-
ternational Speech Communication Association’. 9o

Chierichetti, F.,, Kumar, R. & Pang, B. (2017), On the power laws of language: Word
frequency distributions, in ‘Proceedings of the g4oth International ACM SIGIR Con-
ference on Research and Development in Information Retrieval’, ACM, pp. 385-

394. 86

Cho, K., van Merrienboer, B., Bahdanau, D. & Bengio, Y. (2014), On the properties of
neural machine translation: Encoder-decoder approaches, in ‘Proceedings of SSST-
8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation’,

BIBLIOGRAPHY 148

Association for Computational Linguistics, Doha, Qatar, pp. 103-111.
URL: https://fwww.aclweb.org/anthology/W14-4012 29

Church, K. W. (1989), A stochastic parts program and noun phrase parser for unre-
stricted text, in ‘International Conference on Acoustics, Speech, and Signal Process-
ing,’, IEEE, pp. 695-698. 10

Ciampi, A. & Lechevallier, Y. (2007), Statistical Models and Artificial Neural Networks:
Supervised Classification and Prediction Via Soft Trees, Birkhduser Boston, Boston, MA,

pPpP. 239—261. 9

Cortes, C., Haffner, P. & Mohri, M. (2004), ‘Rational kernels: Theory and algorithms’,
Journal of Machine Learning Research 5(Aug), 1035-1062. 11

Cover, T. M. & Thomas,]. A. (2012), Elements of information theory, John Wiley & Sons.
140

Cybenko, G. (1989), ‘Approximation by superpositions of a sigmoidal function’,
Mathematics of Control, Signals, and Systems (MCSS) 2(4), 303-314. 31

Dai, A. M. & Le, Q. V. (2015), Semi-supervised sequence learning, in ‘Advances in

neural information processing systems’, pp. 3079—3087. 1

Darken, C. & Moody, J. E. (1991), Note on learning rate schedules for stochastic
optimization, in “Advances in neural information processing systems’, pp. 832-838.
76, 82

De Vine, L., Zuccon, G., Koopman, B., Sitbon, L. & Bruza, P. (2014), Medical semantic
similarity with a neural language model, in ‘Proceedings of the 23rd ACM inter-
national conference on conference on information and knowledge management’,

ACM, pp. 1819-1822. 2

Delalleau, O. & Bengio, Y. (2011), Shallow vs. deep sum-product networks, in ‘Ad-
vances in Neural Information Processing Systems’, pp. 666—674. 65

Denil, M., Shakibi, B., Dinh, L., Ranzato, M. & de Freitas, N. (2013), ‘Predicting
parameters in deep learning’, CoRR abs/1306.0543. 109

Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R. & Makhoul, J. (2014), Fast and
robust neural network joint models for statistical machine translation, in ‘Proceed-
ings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers)’, Vol. 1, pp. 1370-1380. 35

BIBLIOGRAPHY 149

Dong, L., Yang, N., Wang, W., Wei, E, Liu, X., Wang, Y., Gao, J., Zhou, M. & Hon, H.
(2019), ‘Unified language model pre-training for natural language understanding
and generation’, CoRR abs/1905.03197. 3

Droste, M. & Kuich, W. e. (2009), Handbook of weighted automata, EATCS Monographs
on Theoretical Computer Science. 11

Duchi, J., Hazan, E. & Singer, Y. (2011), “Adaptive subgradient methods for on-
line learning and stochastic optimization’, Journal of Machine Learning Research
12(Jul), 2121-2159. 40, 81

Duda, R. O,, Hart, P. E. & Stork, D. G. (2012), Pattern classification, John Wiley & Sons.
40

Dupont, P.,, Denis, F. & Esposito, Y. (2005), ‘Links between probabilistic automata and
hidden markov models: probability distributions, learning models and induction
algorithms’, Pattern recognition 38(9), 1349-1371. 11

Dziugaite, G. K. & Roy, D. M. (2017), ‘Computing nonvacuous generalization bounds
for deep (stochastic) neural networks with many more parameters than training
data’, arXiv preprint arXiv:1703.11008 . 42

Eckart, C. & Young, G. (1936), “The approximation of one matrix by another of lower
rank’, Psychometrika 1(3), 211—218. 124

Edwards, P. N. (2016), “‘Michael D. Gordin. Scientific Babel: How Science Was Done
before and after Global English.’, The American Historical Review 121(5), 1636—1637.
URL: https://doi.org/10.1093/ahr/121.5.1636 2

Eilenberg, S. (1974), Automata, Languages, and Machines, Academic Press, Inc., Or-
lando, FL, USA. 11

El Hihi, S. & Bengio, Y. (1996), Hierarchical recurrent neural networks for long-term
dependencies, in ‘Advances in neural information processing systems’, pp. 493-

499. 65, 66

Elman, J. L. (1990), ‘Finding structure in time’, COGNITIVE SCIENCE 14(2), 179—211.
12, 66

Engl, H. W,, Hanke, M. & Neubauer, A. (1996), Regularization of inverse problems, Vol.
375, Springer Science & Business Media. 38

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P. & Bengio, S. (2010),
‘Why does unsupervised pre-training help deep learning?’, Journal of Machine
Learning Research 11(Feb), 625-660. 1

BIBLIOGRAPHY 150

Filippova, K., Alfonseca, E., Colmenares, C. A., Kaiser, L. & Vinyals, O. (2015), Sen-
tence compression by deletion with Istms, in ‘Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing’, pp. 360-368. 1

Finn, R. D., Coggill, P, Eberhardt, R. Y., Eddy, S. R., Mistry,]J., Mitchell, A. L., Potter,
S. C., Punta, M., Qureshi, M., Sangrador-Vegas, A. et al. (2015), ‘The pfam pro-
tein families database: towards a more sustainable future’, Nucleic acids research
44(D1), D279-D285. 50

Finnoff, W., Hergert, F. & Zimmermann, H. G. (1993), ‘Improving model selection by
nonconvergent methods’, Neural Networks 6(6), 771-783. 38

Fischer, A. & Bauckhage, C. (2018), ‘Language modeling with recurrent neural net-
works’. 2

Fletcher, R. (1970), ‘A new approach to variable metric algorithms’, The Computer
Journal 13(3), 317-322. 81

Gal, Y. (2016), Uncertainty in Deep Learning, PhD thesis, University of Cambridge.
96

Gal, Y. & Ghahramani, Z. (2016a), Dropout as a Bayesian approximation: Represent-
ing model uncertainty in deep learning, in ‘Proc. of ICML’, pp. 1050-1059. 29,
128

Gal, Y. & Ghahramani, Z. (2016b), A theoretically grounded application of dropout in
recurrent neural networks, in ‘Proc. of NIPS’, pp. 1019-1027. 29, 32, 90, 107, 114

Gal, Y., Hron, J. & Kendall, A. (2017), Concrete dropout, in ‘Advances in Neural
Information Processing Systems’, pp. 3581-3590. 42

Gambhir, M. & Gupta, V. (2017), ‘Recent automatic text summarization techniques: a
survey’, Artificial Intelligence Review 47(1), 1-66. 1

Gao, W. & Zhou, Z.-H. (2016), ‘Dropout rademacher complexity of deep neural net-
works’, Science China Information Sciences 59(7), 072104. 133, 137

Garg, P. K. & Mohanty, D. (2013), ‘Mean (standard deviation) or mean (standard error
of mean): time to ponder’, World Journal of Surgery 37(4), 932—932. 59

Gavish, M. & Donoho, D. L. (2017), ‘Optimal shrinkage of singular values’, IEEE
Transactions on Information Theory 63(4), 2137-2152. 28

Geman, S., Bienenstock, E. & Doursat, R. (1992), ‘Neural networks and the
bias/variance dilemma’, Neural computation 4(1), 1-58. 39, 112

BIBLIOGRAPHY 151

Gers, F. (2001), Long short-term memory in recurrent neural networks, PhD thesis,
Universitdat Hannover. 76, 77, 89

Gers, E. A., Schraudolph, N. N. & Schmidhuber, J. (2002), ‘Learning precise timing
with Istm recurrent networks’, Journal of machine learning research 3(Aug), 115-143.

29

Giles, C. L., Miller, C. B., Chen, D., Chen, H. H., Sun, G. Z. & Lee, Y. C. (1992),
‘Learning and extracting finite state automata with second-order recurrent neural

networks’, Neural Comput. 4(3), 393-405. 69

Gillis, N. & Glineur, F. (2011), ‘Low-rank matrix approximation with weights or miss-
ing data is np-hard’, SIAM Journal on Matrix Analysis and Applications 32(4), 1149—
1165. 20

Girosi, F,, Jones, M. & Poggio, T. (1995), ‘Regularization theory and neural networks
architectures’, Neural computation 7(2), 219-269. 36, 38

Glorot, X. & Bengio, Y. (2010), Understanding the difficulty of training deep feed-
forward neural networks., in ‘Proc. of AISTATS’, Vol. 9, pp. 249—256. 84, 85, 88,
107

Godin, F, Dambre, J. & Neve, W. D. (2017), ‘Improving language modeling using
densely connected recurrent neural networks’, CoRR abs/1707.06130. 100

Gold, E. M. (1978), ‘Complexity of automaton identification from given data’, Infor-
mation and control 37(3), 302—320. 11

Goldberg, Y. (2017), ‘Neural network methods for natural language processing’, Syn-
thesis Lectures on Human Language Technologies 10(1), 1-309. 25

Goldberger,]J. & Melamud, O. (2018), ‘Self-normalization properties of language
modeling’, CoRR abs/1806.00913. 74

Goldfarb, D. (1970), ‘A family of variable-metric methods derived by variational
means’, Mathematics of computation 24(109), 23—26. 81

Golkar, S., Kagan, M. & Cho, K. (2019), ‘Continual learning via neural pruning’, CoORR
abs/1903.04476.
URL: http://arxiv.org/abs/1903.04476 109

Golowich, N., Rakhlin, A. & Shamir, O. (2017), ‘Size-independent sample complexity
of neural networks’, arXiv preprint arXiv:1712.06541 . 42

BIBLIOGRAPHY 152

Goodfellow, 1., Bengio, Y. & Courville, A. (2016), Deep Learning, The MIT Press. x, 27,
36, 37, 76, 80, 91, 99, 109, 112, 113, 120

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A. & Bengio, Y. (2013), Max-
out networks, in ‘Proceedings of the 3oth International Conference on International
Conference on Machine Learning - Volume 28", ICML'13, JMLR.org, pp. llI-1319—
[M-1327. 65

Goodman, J. T. (2001), ‘A bit of progress in language modeling’, Computer Speech &
Language 15(4), 403—434. 13, 16

Grave, E., Joulin, A., Cissé, M., Jégou, H. et al. (2017), Efficient softmax approxi-
mation for gpus, in ‘Proceedings of the 34th International Conference on Machine
Learning-Volume 70’, JMLR. org, pp. 1302-1310. 34

Grave, E., Joulin, A. & Usunier, N. (2017), ‘Improving neural language models with a
continuous cache’, Proc. of ICLR . 118

Graves, A. (2013), ‘Generating sequences with recurrent neural networks’, CoRR
abs/1308.0850. 100

Graves, A. (2016), “Adaptive computation time for recurrent neural networks’, CORR
abs/1603.08983.
URL: http://arxiv.org/abs/1603.08983 100

Greff, K., Srivastava, R. K., Koutnik,]J., Steunebrink, B. R. & Schmidhuber, J. (2015),
‘LSTM: A search space odyssey’, CoRR abs/1503.04069.
URL: http://arxiv.org/abs/1503.04069 31

Guedj, B. (2019), “A primer on pac-bayesian learning’, arXiv preprint arXiv:1901.05353
.11

Gulcehre, C., Firat, O., Xu, K., Cho, K. & Bengio, Y. (2017), ‘On integrating a language
model into neural machine translation’, Computer Speech & Language 45, 137-148. 1

Gutmann, M. & Hyviérinen, A. (2010), Noise-contrastive estimation: A new estima-
tion principle for unnormalized statistical models., in “AISTATS’, Vol. 1, pp. 297-

304. 35, 44, 74, 80, 86, 98

Gutmann, M. U. & Hyvérinen, A. (2012), ‘Noise-contrastive estimation of unnor-
malized statistical models, with applications to natural image statistics’, Journal of
Machine Learning Research 13(Feb), 307-361. 34, 35, 44

Hammerschmidt, C., Loos, B. L., Verwer, S. et al. (2016), ‘Flexible state-merging for
learning (p) dfas in python’. 52

BIBLIOGRAPHY 153

Han, S., Pool, J., Tran, J. & Dally, W. (2015), Learning both weights and connections for
efficient neural network, in “Advances in neural information processing systems’,

pp- 1135-1143. 109

Hardt, M., Recht, B. & Singer, Y. (2016), Train faster, generalize better: Stability of
stochastic gradient descent, in ‘Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48’, ICML'16, JMLR.org,

pp- 1225-1234. 40

Harvey, N., Liaw, C. & Mehrabian, A. (2017), Nearly-tight ve-dimension bounds for
piecewise linear neural networks, in ‘Conference on Learning Theory’, pp. 1064—
1068. 39

He, K., Zhang, X., Ren, S. & Sun,]. (2015), Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification, in ‘Proceedings of the IEEE
international conference on computer vision’, pp. 1026-1034. 84

Hecht-Nielsen, R. (1992), Theory of the backpropagation neural network, in ‘Neural
networks for perception’, Elsevier, pp. 65-93. 25

Heeman, P. A. (1999), Pos tags and decision trees for language modeling, in ‘1999
Joint SIGDAT Conference on Empirical Methods in Natural Language Processing
and Very Large Corpora’. 10, 12

Heinz, J. & Rogers, J. (2010), Estimating strictly piecewise distributions, in ‘Proceed-
ings of the 48th annual meeting of the association for computational linguistics’,
Association for Computational Linguistics, pp. 886-896. 51

Herculano-Houzel, S. (2009), ‘The human brain in numbers: a linearly scaled-up
primate brain’, Frontiers in human neuroscience 3, 31. 21

Hillar, C. J. & Lim, L.-H. (2013), ‘Most tensor problems are np-hard’, |. ACM
60(6), 45:1—45:39. 20

Hinton, G., Brown, A. & London, Q. S. (2001), “Training many small hidden markov
models’, Proc. of the Workshop on Innovation in Speech Processing . 68, 71

Hinton, G. E. (2002), “Training products of experts by minimizing contrastive diver-
gence’, Neural computation 14(8), 1771-1800. 74

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R.
(2012), ‘Improving neural networks by preventing co-adaptation of feature detec-
tors’, arXiv preprint arXiv:1207.0580 . 65, 107, 110, 127

BIBLIOGRAPHY 154

Hochreiter, S. (1991), “Untersuchungen zu dynamischen neuronalen netzen’, Diploma,
Technische Universitit Miinchen 91(1). 31

Hochreiter, S. (1998), ‘The vanishing gradient problem during learning recurrent neu-
ral nets and problem solutions’, International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 6(02), 107-116. 31

Hochreiter, S. & Schmidhuber, J. (1997), ‘Long short-term memory’, Neural computa-
tion 9(8), 1735-1780. 32, 76, 77, 89

Hodosh, M., Young, P. & Hockenmaier, J. (2013), ‘Framing image description as a
ranking task: Data, models and evaluation metrics’, Journal of Artificial Intelligence

Research 47, 853-899. 48

Hoerl, A. E. & Kennard, R. W. (1970), ‘Ridge regression: Biased estimation for
nonorthogonal problems’, Technometrics 12(1), 55-67. 38

Hornik, K., Stinchcombe, M. & White, H. (1989), ‘Multilayer feedforward networks
are universal approximators’, Neural networks 2(5), 359-366. 31

Hornik, K., Stinchcombe, M. & White, H. (1990), ‘Universal approximation of an
unknown mapping and its derivatives using multilayer feedforward networks’,
Neural networks 3(5), 551-560. 25

Howar, F, Isberner, M., Merten, M., Steffen, B., Beyer, D. & Pasareanu, C. S. (2014),
‘Rigorous examination of reactive systems - the RERS challenges 2012 and 2013,

STTT 16(5), 457-464. 48

Hsu, D., Kakade, S. M. & Zhang, T. (2012), ‘A spectral algorithm for learning hidden
markov models’, Journal of Computer and System Sciences 78(5), 1460-1480. 11, 54

Hu, Z., Nie, F,, Tian, L., Wang, R. & Li, X. (2018), Low rank regularization: a review,
Vol. abs/1808.04521.
URL: http://arxiv.org/abs/1808.04521 41, 101, 106, 110, 121

Hutchins, W. J. (1995), Machine translation: A brief history, in ‘Concise history of the
language sciences’, Elsevier, pp. 431-445. 2

Hyvaérinen, A. (2005), ‘Estimation of non-normalized statistical models by score
matching’, Journal of Machine Learning Research 6(Apr), 695—709. 74

Inan, H., Khosravi, K. & Socher, R. (2017), “Tying word vectors and word classifiers:
A loss framework for language modeling’, Proc. of ICLR abs/1611.01462.
URL: http://arxiv.org/abs/1611.01462 32, 90, 115

BIBLIOGRAPHY 155

Irsoy, O. & Cardie, C. (2014), Opinion mining with deep recurrent neural networks,
in ‘Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP)’, pp. 720-728. 32

Jean, S., Cho, K., Memisevic, R. & Bengio, Y. (20144), ‘On using very large target
vocabulary for neural machine translation’, arXiv preprint arXiv:1412.2007 . 34

Jean, S., Cho, K., Memisevic, R. & Bengio, Y. (2014b), ‘On using very large target
vocabulary for neural machine translation’, CoRR abs/1412.2007.
URL: http://arxiv.org/abs/1412.2007 35

Jelinek, F. (1997), Statistical methods for speech recognition, MIT press. 10

Jim, K., Horne, B. G. & Giles, C. L. (1995), Effects of noise on convergence and gen-
eralization in recurrent networks, in ‘Advances in neural information processing
systems’, pp. 649-656. 41

Jin, C., Netrapalli, P. & Jordan, M. I. (2017), “Accelerated gradient descent escapes
saddle points faster than gradient descent’, CoRR abs/1711.10456.
URL: http://arxiv.org/abs/1711.10456 83

Jolliffe, I. (2002), Principal component analysis, John Wiley & Sons. 110

Jordan, M. (1986), Serial order: a parallel distributed processing approach. technical
report, june 1985-march 1986, Technical report, California Univ., San Diego, La Jolla
(USA). Inst. for Cognitive Science. 12

Joulin, A., van der Maaten, L., Jabri, A. & Vasilache, N. (2016), Learning visual fea-
tures from large weakly supervised data, in ‘European Conference on Computer
Vision’, Springer, pp. 67-84. 35

Jézefowicz, R., Vinyals, O., Schuster, M., Shazeer, N. & Wu, Y. (2016), “Exploring the
limits of language modeling’, CoRR abs/1602.02410.
URL: http://arxiv.org/abs/1602.02410 1, 35, 44, 73, 74, 75, 101

Jozefowicz, R., Zaremba, W. & Sutskever, 1. (2015), An empirical exploration of re-
current network architectures, in ‘International Conference on Machine Learning’,

PP. 2342—2350. 32, 65, 66
Jurafsky, D. (2000), Speech & language processing, Pearson Education India. 13, 14

Jurafsky, D. & Martin, J. H. (2009), Speech and Language Processing (2nd Edition),
Prentice-Hall, Inc., Upper Saddle River, NJ, USA. 139

BIBLIOGRAPHY 156

Kakade, S. M., Liang, P., Sharan, V. & Valiant, G. (2016), ‘Prediction with a short
memory’, CoRR abs/1612.02526. 68

Katz, N. M. (2004), ‘Notes on g2, determinants, and equidistribution’, Finite Fields and
Their Applications 10(2), 221-269. 48

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M. & Tang, P. T. P. (2016),
‘On large-batch training for deep learning: Generalization gap and sharp minima’,
arXiv preprint arXiv:1609.04836 . 42

Khandelwal, U., He, H., Qi, P. & Jurafsky, D. (2018), Sharp nearby, fuzzy far away:
How neural language models use context, in ‘Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers)’,
Association for Computational Linguistics, pp. 284-294. 36, 71

Kiefer, J., Wolfowitz, J. et al. (1952), ‘Stochastic estimation of the maximum of a re-
gression function’, The Annals of Mathematical Statistics 23(3), 462-466. 40, 80

Kim, Y, Jernite, Y., Sontag, D. & Rush, A. M. (2016), Character-aware neural language
models., in "AAAT’, pp. 2741-2749. 5, 90

Kingma, D. P. & Ba, J. (2015), Adam: A method for stochastic optimization, in ‘Proc.
of ICLR". 40, 81

Kneser, R. & Ney, H. (1995), Improved backing-off for m-gram language modeling, in
‘1995 International Conference on Acoustics, Speech, and Signal Processing’, Vol. 1,
pp- 181-184 vol.1. 17, 52

Koehn, P. (2010), Statistical Machine Translation, 1st edn, Cambridge University Press,
New York, NY, USA. 53

Krogh, A. & Hertz, J. A. (1992), A simple weight decay can improve generalization,
in “Advances in neural information processing systems’, pp. 950-957. 38, 41

Labeau, M. & Allauzen, A. (2018), Learning with noise-contrastive estimation: Easing
training by learning to scale, in ‘Proceedings of the 27th International Conference
on Computational Linguistics (COLING)’, pp. 3090—-3101. 80

Lafferty, J., Sleator, D. & Temperley, D. (1992), Grammatical trigrams: A probabilistic
model of link grammar, Vol. 56, School of Computer Science, Carnegie Mellon Uni-
versity. 10

Langeberg, P, Balda, E. R.,, Behboodi, A. & Mathar, R. (2019), ‘On the effect of
low-rank weights on adversarial robustness of neural networks’, arXiv preprint
arXiv:1901.10371 . 108, 110, 121

BIBLIOGRAPHY 157

Larochelle, H., Erhan, D., Courville, A., Bergstra,]J. & Bengio, Y. (2007), An empir-
ical evaluation of deep architectures on problems with many factors of variation,
in ‘Proceedings of the 24th international conference on Machine learning’, ACM,

pp- 473-480. 56

Lawrence, S., Giles, C. L. & Tsoi, A. C. (1998), What size neural network gives opti-
mal generalization? convergence properties of backpropagation, Technical report,
Technical report, U. of Maryland. 113

Le Roux, N. & Bengio, Y. (2010), ‘Deep belief networks are compact universal approx-
imators’, Neural computation 22(8), 2192—2207. 65

Le, X.-H., Ho, H. V,, Lee, G. & Jung, S. (2019), ‘Application of long short-term memory
(LSTM) neural network for flood forecasting’, Water 11(7), 1387. ix, 30

Lebedev, V. & Lempitsky, V. (2016), Fast convnets using group-wise brain damage, in
‘Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition’,

Pp- 2554—2564. 109

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. et al. (1998), ‘Gradient-based learning
applied to document recognition’, Proceedings of the IEEE 86(11), 2278-2324. 40

LeCun, Y. Haffner, P, Bottou, L. & Bengio, Y. (1999), Object recognition with
gradient-based learning, in ‘Shape, contour and grouping in computer vision’,

Springer, pp. 319-345. 25
Lei, D., Sun, Z., Xiao, Y. & Wang, W. Y. (2018), ‘Implicit regularization of stochastic

gradient descent in natural language processing: Observations and implications’,
CoRR abs/1811.00659. 42

Lesher, G. W., Moulton, B. J. & Higginbotham, D. J. (1999), ‘Effects of ngram order
and training text size on word prediction’. 17

Li, H., Kadav, A., Durdanovic, 1., Samet, H. & Graf, H. P. (2017), ‘Pruning filters for
efficient convnets’, In Proc. of ICLR . 109

Li, M. & Vitanyi, P. (2013), An introduction to Kolmogorov complexity and its applications,
Springer Science & Business Media. 41

Liao, J., Liu, T., Liu, M., Wang, J., Wang, Y. & Sun, H. (2018), ‘Multi-context integrated
deep neural network model for next location prediction’, IEEE Access 6, 21980—
21990. 36

BIBLIOGRAPHY 158

Liza, F. F. & Grze$, M. (2016), Estimating the accuracy of spectral learning for hmmes,
in ‘Proc. of International Conference on Artificial Intelligence: Methodology, Sys-
tems, and Applications’, Springer, pp. 46-56. 7, 20

Liza, F. FE. & Grze$, M. (2017), A spectral method that worked well in the spice’16 com-
petition, in ‘Proc. of International Conference on Grammatical Inference’, pp. 143—

148. 7, 52

Liza, F. F. & Grze$, M. (2018), Improving language modelling with noise-contrastive
estimation, in ‘Proc. of AAATI". 7, 106

Liza, F. F. & Grzes, M. (2019), Relating RNN layers with the spectral WFA ranks
in sequence modelling, in ‘Proceedings of the Workshop on Deep Learning and
Formal Languages: Building Bridges’, Association for Computational Linguistics,
Florence, pp. 24-33.

URL: https://fwww.aclweb.org/anthology/W19-3903 7

Lothaire, M. (2005), Applied Combinatorics on Words, Encyclopedia of Mathematics and
its Applications, Cambridge University Press. 11

Luong, T., Kayser, M. & Manning, C. D. (2015), Deep neural language models for ma-
chine translation, in ‘Proceedings of the Nineteenth Conference on Computational
Natural Language Learning’, pp. 305-309. 1, 2

Manning, C. D., Manning, C. D. & Schiitze, H. (1999), Foundations of statistical natural
language processing, MIT press. 10

Manning, C. D., Raghavan, P. & Schiitze, H. (2008), Introduction to Information Re-
trieval, Cambridge University Press, New York, NY, USA. 110

Marcus, M. P, Marcinkiewicz, M. A. & Santorini, B. (19934), ‘Building a large an-
notated corpus of english: The penn treebank’, Comput. Linguist. 19(2), 313-330.

48

Marcus, M. P, Marcinkiewicz, M. A. & Santorini, B. (1993b), ‘Building a large anno-
tated corpus of english: The penn treebank’, Computational linguistics 19(2), 313—

330. 70,75

Martin, C. H. & Mahoney, M. W. (2018), ‘Implicit self-regularization in deep neural
networks: Evidence from random matrix theory and implications for learning’,

arXiv preprint arXiv:1810.01075 . 99

Martin, C. H. & Mahoney, M. W. (2019), ‘“Traditional and heavy-tailed self regulariza-
tion in neural network models’, arXiv preprint arXiv:1901.08276 . 40, 111

BIBLIOGRAPHY 159

McNaughton, R. & Papert, S. A. (1971), Counter-Free Automata (M.1.T. Research Mono-
graph No. 65), The MIT Press. 51

Melis, G., Dyer, C. & Blunsom, P. (2017), ‘On the state of the art of evaluation in
neural language models’, CoRR abs/1707.05589.
URL: http://arxiv.org/abs/1707.05589 100

Merity, S., Keskar, N. S. & Socher, R. (2017), ‘Regularizing and optimizing LSTM
language models’, CoRR abs/1708.02182.
URL: http://arxiv.org/abs/1708.02182 100, 117, 118

Merity, S., Xiong, C., Bradbury, J. & Socher, R. (2016), ‘Pointer sentinel mixture mod-
els’, CoRR abs/1609.07843.
URL: http://arxiv.org/abs/1609.07843 9o, 118

Mikolov, T. (2012), Statistical Language Models Based on Neural Networks., PhD
thesis, Faculty of Information Technology. 13

Mikolov, T., Deoras, A., Povey, D., Burget, L. & Cernocky, J. (2011), Strategies for
training large scale neural network language models, in ‘2011 IEEE Workshop on
Automatic Speech Recognition & Understanding’, IEEE, pp. 196—201. 13, 33

Mikolov, T., Karafiat, M., Burget, L., Cernocky, J. & Khudanpur, S. (2010), Recurrent
neural network based language model., in T. Kobayashi, K. Hirose & S. Nakamura,
eds, INTERSPEECH’, ISCA, pp. 1045-1048. 1, 12, 32, 33, 73

Mikolov, T., Kombrink, S., Burget, L., Cernocky, J. & Khudanpur, S. (2011), Extensions
of recurrent neural network language model., in ICASSP’, IEEE, pp. 5528-5531. 33

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. S. & Dean, J. (2013), Distributed rep-
resentations of words and phrases and their compositionality, in C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani & K. Q. Weinberger, eds, ‘Advances in Neu-
ral Information Processing Systems 26", Curran Associates, Inc., pp. 3111-3119. 1,
12, 87

Mikolov, T., Yih, W.-t. & Zweig, G. (2013), Linguistic regularities in continuous space
word representations., in ‘"HLT-NAACL', pp. 746-751. 1, 12

Mikolov, T. & Zweig, G. (2012), Context dependent recurrent neural network lan-
guage model., in ‘SLT’, pp. 234-239. 13, 90

Mnih, A. & Teh, Y. W. (2012), A fast and simple algorithm for training neural proba-
bilistic language models, in ‘Proc. of ICML". 35, 74, 78, 80

BIBLIOGRAPHY 160

Mohri, M. (19974), ‘Finite-state transducers in language and speech processing’, Com-
putational linguistics 23(2), 269-311. 11

Mohri, M. (1997b), ‘On the use of sequential transducers in natural language process-
ing’, Finite-State Language Processing p. 355. 11

Mohri, M. (2004), Weighted finite-state transducer algorithms. an overview, in ‘For-
mal Languages and Applications’, Springer, pp. 551-563. 11, 17

Mohri, M. & Pereira, F. C. (1998), Dynamic compilation of weighted context-free
grammars, in ‘Proceedings of the 36th Annual Meeting of the Association for
Computational Linguistics and 17th International Conference on Computational
Linguistics-Volume 2’, Association for Computational Linguistics, pp. 891-897. 11

Moody, J. (1994), Prediction risk and architecture selection for neural networks, in
‘From statistics to neural networks’, Springer, pp. 147-165. 36, 38

Morgan, N. & Bourlard, H. (1990), Generalization and parameter estimation in feed-
forward nets: Some experiments, in ‘Advances in neural information processing

systems’, pp. 630-637. 38

Morin, F. & Bengio, Y. (2005), Hierarchical probabilistic neural network language
model., in “Aistats’, Vol. 5, Citeseer, pp. 246—252. 34

Neal, B., Mittal, S., Baratin, A., Tantia, V., Scicluna, M., Lacoste-Julien, S. & Mitliagkas,
I. (2018), ‘A modern take on the bias-variance tradeoff in neural networks’, CoRR
abs/1810.08591. ix, 37

Neyshabur, B. (2017), Implicit Regularization in Deep Learning, PhD thesis. 40, 99,
109, 120

Neyshabur, B., Bhojanapalli, S., McAllester, D. & Srebro, N. (2017), Exploring general-
ization in deep learning, in ‘“Advances in Neural Information Processing Systems’,

Pp- 5947-5956. 42

Neyshabur, B., Bhojanapalli, S. & Srebro, N. (2017), ‘A pac-bayesian approach
to spectrally-normalized margin bounds for neural networks’, arXiv preprint
arXiv:1707.09564 . 42

Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y. & Srebro, N. (2019), “Towards un-
derstanding the role of over-parametrization in generalization of neural networks’,
Proc. of ICLR . 111

BIBLIOGRAPHY 161

Neyshabur, B., Tomioka, R. & Srebro, N. (20154), ‘In search of the real inductive bias:
On the role of implicit regularization in deep learning’, Proc of ICLR workshop track

- 39, 113

Neyshabur, B., Tomioka, R. & Srebro, N. (2015b), Norm-based capacity control in
neural networks, in ‘Conference on Learning Theory’, pp. 1376-1401. 42

Nocedal, J. & Wright, S. J. (2006), Numerical Optimization, second edn, Springer, New
York, NY, USA. 27

Novak, R., Bahri, Y., Abolafia, D. A., Pennington, J. & Sohl-Dickstein, J. (2018), ‘Sen-
sitivity and generalization in neural networks: an empirical study’, International
Conference on Learning Representations . 39

Obozinski, G., Jacob, L. & Vert,].-P. (2011), ‘Group lasso with overlaps: the latent
group lasso approach’, arXiv preprint arXiv:1110.0413 . 108

Okudono, T., Waga, M., Sekiyama, T. & Hasuo, I. (2019), “Weighted automata extrac-
tion from recurrent neural networks via regression on state spaces’, arXiv preprint
arXiv:1904.02931 . 137

Olshausen, B. A. & Field, D. J. (1996), ‘Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images’, Nature 381(6583), 607. 42

Omlin, C. W. & Giles, C. L. (1996), ‘Constructing deterministic finite-state automata
in recurrent neural networks’, Journal of the ACM (JACM) 43(6), 937-972. 69

Qualil, Y., Singh, M., Greenberg, C. & Klakow, D. (2016), Long-short range context
neural networks for language modeling, in J. Su, X. Carreras & K. Duh, eds, ‘Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016’, The Association
for Computational Linguistics, pp. 1473-1481.

URL: http://aclweb.org/anthology/D/D16/ 36

Pascanu, R., Gtilgehre, C., Cho, K. & Bengio, Y. (2014), ‘'How to construct deep recur-
rent neural networks’, In the Proc. of ICLR . 32, 65, 66, 71, 90, 100

Pascanu, R., Mikolov, T. & Bengio, Y. (2013), On the difficulty of training recurrent
neural networks, in ‘Proc. of ICML’, Atlanta, Georgia, USA, pp. 1310-1318.
URL: http://proceedings.mlr.press/v28/pascanu13.html 31, 77

Pascanu, R., Montufar, G. & Bengio, Y. (2013), ‘On the number of response regions
of deep feed forward networks with piece-wise linear activations’, arXiv preprint
arXiv:1312.6098 . 65, 72

BIBLIOGRAPHY 162

Penagarikano, M. & Bordel, G. (2004), Layered Markov models: a new architec-
tural approach to automatic speech recognition, in ‘Proceedings of the 2004 14th
IEEE Signal Processing Society Workshop Machine Learning for Signal Processing,
2004.", IEEE, pp. 305-314. 68

Pérez, G. V., Louis, A. A. & Camargo, C. Q. (2019), ‘Deep learning generalizes because
the parameter-function map is biased towards simple functions’, Proc. of ICLR . 41,

98, 99

Peters, J. & Klakow, D. (1999), Compact maximum entropy language models, in ‘Pro-
ceedings of the IEEE workshop on automatic speech recognition and understand-

ing’. 11, 12

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. & Zettlemoyer,
L. (2018), Deep contextualized word representations, in ‘Proc. of NAACL'. 36

Piantadosi, S. T. (2014), "Zipt’s word frequency law in natural language: A critical
review and future directions’, Psychonomic Bulletin & Review 21(5), 1112-1130.
URL: http://dx.doi.org/10.3758/513423-014-0585-6 86

Pierce, J. R. & Carroll, J. B. (1966), Language and Machines: Computers in Translation
and Linguistics, National Academy of Sciences/National Research Council, Wash-
ington, DC, USA. 2

Pitt, L. & Warmuth, M. K. (1993), “The minimum consistent dfa problem cannot be
approximated within any polynomial’, Journal of the ACM (JACM) 40(1), 95-142. 11

Potamianos, G. & Jelinek, F. (1998), ‘A study of n-gram and decision tree letter lan-
guage modeling methods’, Speech Communication 24(3), 171-192. 10

Prabhavalkar, R., Rao, K., Sainath, T. N., Li, B., Johnson, L. & Jaitly, N. (2017), A com-
parison of sequence-to-sequence models for speech recognition., in ‘Interspeech’,

PP- 939-943- 1

Press, O. & Wolf, L. (2016), ‘Using the output embedding to improve language mod-
els’, In the Proc. of EACL 2, 157-163. 32, 90, 115, 117, 130

Quattoni, A., Carreras, X. & Gallé, M. (2017), ‘A maximum matching algorithm for
basis selection in spectral learning’, CoRR abs/1706.02857.
URL: http://arxiv.org/abs/1706.02857 20, 46

Rabusseau, G., Li, T. & Precup, D. (2018), ‘Connecting weighted automata and recur-
rent neural networks through spectral learning’, arXiv preprint arXiv:1807.01406 .

69

BIBLIOGRAPHY 163

Radford, A., Narasimhan, K., Salimans, T. & Sutskever, 1. (2018), ‘Improving lan-
guage understanding by generative pre-training’, URL https://s3-us-west-2. ama-
zonaws. com/openai-assets/research-covers/language-unsupervised/language_ understand-

ing_paper. pdf . 1

Rashkin, H., Choi, E., Jang, J. Y., Volkova, S. & Choi, Y. (2017), Truth of varying shades:
Analyzing language in fake news and political fact-checking, in ‘Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing’, pp. 2931—

2937. 1

Razborov, A. A. (1992), On small depth threshold circuits, in ‘Scandinavian Workshop
on Algorithm Theory’, Springer, pp. 42-52. 9

Reed, R. & Marksll, R. J. (1999), Neural smithing: supervised learning in feedforward
artificial neural networks, Mit Press. 112

Rei, M. & Yannakoudakis, H. (2017), “Auxiliary objectives for neural error detection
models’, arXiv preprint arXiv:1707.05227 . 1

Rissanen, J. (1978), ‘Modeling by shortest data description’, Automatica 14(5), 465—471.
41

Robbins, H. & Monro, S. (1951), ‘A stochastic approximation method’, The annals of
mathematical statistics pp. 400—407. 40, 80, 82

Rosenblatt, F. (1958), ‘The perceptron: a probabilistic model for information storage
and organization in the brain.”, Psychological review 65(6), 386. 24

Rosenfeld, R. (1994), Adaptive statistical language modeling; a maximum entropy
approach, Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT
OF COMPUTER SCIENCE. 11

Rosenfeld, R. (2000), “Two decades of statistical language modeling: Where do we go
from here?’, Proceedings of the IEEE 88(8), 1270-1278. 1, 2, 46

Ruder, S. (2016), “An overview of gradient descent optimization algorithms’, CoRR
abs/1609.04747.
URL: http://arxiv.org/abs/1609.04747 28

Salomaa, A. & Soittola, M. (1978), Automata: Theoretic Aspects of Formal Power Series,
Springer-Verlag, Berlin, Heidelberg. 11

Sanyal, A., Kanade, V. & Torr, P. H. (2018), ‘Low rank structure of learned represen-
tations’, arXiv preprint arXiv:1804.07090 . 108

BIBLIOGRAPHY 164

Sato, I., Chubachi, K. et al. (2017), Evaluation of machine learning methods on spice,
in ‘International Conference on Grammatical Inference’, pp. 149-153. 51

Schifer, A. M. & Zimmermann, H. G. (2006), Recurrent neural networks are uni-
versal approximators, in ‘International Conference on Artificial Neural Networks’,
Springer, pp. 632-640. 13

Schmidhuber, J. (2008), ‘Learning complex, extended sequences using the principle
of history compression’, Learning 4(2). 65

Schmidhuber, J. (2015), ‘Deep learning in neural networks: An overview’, Neural
Networks 61, 85 — 117.
URL: http://www.sciencedirect.com/science/article/pii/S0893608014002135 42

Schwenk, H. & Gauvain, J.-L. (2002), ‘Connectionist language modeling for large
vocabulary continuous speech recognition’, 2002 IEEE International Conference on
Acoustics, Speech, and Signal Processing 1, I-765-1-768. 4

Sengupta, A. (2004), ‘Generalized variance’, Encyclopedia of statistical sciences . 113

Shanno, D. F. (1970), ‘Conditioning of quasi-newton methods for function minimiza-
tion’, Mathematics of computation 24(111), 647-656. 81

Shannon, C. E. (1948), ‘A mathematical theory of communication’, Bell system technical
journal 27(3), 379—423. 13

Shibata, C. & Heinz, J. (2017), Predicting sequential data with Istms augmented with
strictly 2-piecewise input vectors, in ‘International Conference on Grammatical In-
ference’, pp. 137-142. xiii, 51, 52, 57, 58, 59, 60

Siddiqi, S. M., Boots, B. & Gordon, G. J. (2009), ‘Reduced-rank hidden markov mod-
els’, CoRR abs/0910.0902. 54

Siddiqi, S. M., Gordon, G. J. & Moore, A. W. (2007), Fast state discovery for hmm
model selection and learning, in ‘Artificial Intelligence and Statistics’, pp. 492—499.

69

Siegelmann, H. T. & Sontag, E. D. (1991), “Turing computability with neural nets’,
Applied Mathematics Letters 4, 77-80. 31, 71

Smith, S. L. & Le, Q. V. (2018), ‘A bayesian perspective on generalization and stochas-
tic gradient descent’, Proc. of ICLR . 40, 41

Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S. & Srebro, N. (2018), “The implicit
bias of gradient descent on separable data’, The Journal of Machine Learning Research
19(1), 2822-2878. 40

BIBLIOGRAPHY 165

Spithourakis, G. P.,, Augenstein, I. & Riedel, S. (2016), ‘Numerically grounded lan-
guage models for semantic error correction’, arXiv preprint arXiv:1608.04147 . 1

Spithourakis, G. P, Petersen, S. E. & Riedel, S. (2016), ‘Clinical text prediction with nu-
merically grounded conditional language models’, arXiv preprint arXiv:1610.06370
.2

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. (2014),
‘Dropout: a simple way to prevent neural networks from overfitting.”, Journal of
Machine Learning Research 15(1), 1929-1958. 29, 42, 59, 87, 107, 113, 127, 128

Srivastava, R. K., Greff, K. & Schmidhuber,]. (2015), ‘Highway networks’, arXiv
preprint arXiv:1505.00387 . 100

Sun, S., Chen, W., Wang, L., Liu, X. & Liu, T.-Y. (2016), On the depth of deep neural
networks: A theoretical view, in ‘Thirtieth AAAI Conference on Artificial Intelli-

gence’. 39

Sutskever, 1., Martens, J., Dahl, G. E. & Hinton, G. E. (2013), ‘On the importance of
initialization and momentum in deep learning.’, ICML (3) 28, 1139-1147. 82, 83, 84

Sutskever, I., Vinyals, O. & Le, Q. V. (2014), Sequence to sequence learning with neural
networks, in “Advances in neural information processing systems’, pp. 3104-3112.

32

Tai, C., Xiao, T., Zhang, Y., Wang, X. et al. (2015), ‘Convolutional neural networks
with low-rank regularization’, arXiv preprint arXiv:1511.06067 . 41, 101

Taulé, M., Marti, M. A. & Recasens, M. (2008), Ancora: Multilevel annotated corpora
for Catalan and Spanish, in ‘LREC’, European Language Resources Association. 48

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’, Journal of the
Royal Statistical Society. Series B (Methodological) pp. 267-288. 41, 42

Tikhomirov, V. M. (1991), On the Representation of Continuous Functions of Several Vari-
ables as Superpositions of Continuous Functions of one Variable and Addition, Springer
Netherlands, Dordrecht, pp. 383-387. 25

Tullo, C. & Hurford, J. (2003), Modelling zipfian distributions in language, in ‘Pro-
ceedings of language evolution and computation workshop/course at ESSLLI,

pp. 62-75. 86

Turing, A. M. (1950), ‘Computing machinery and intelligence’, Mind 59(236), 433—460.
URL: http://wwuw.jstor.org/stable/2251299 3

BIBLIOGRAPHY 166

TYPO CORPUS (2010), http://luululu.com/tweet/. [Online; accessed o5-Feb-2019].
48

Udell, M. & Townsend, A. (2019), “Why are big data matrices approximately low
rank?’, SIAM Journal on Mathematics of Data Science 1(1), 144—-160. 121

Vapnik, V., Levin, E. & Cun, Y. L. (1994), ‘Measuring the vc-dimension of a learning
machine’, Neural computation 6(5), 851-876. 40

Vaswani, A., Zhao, Y., Fossum, V. & Chiang, D. (2013), Decoding with large-scale
neural language models improves translation., in ‘EMNLP’, ACL, pp. 1387-1392.

35, 74, 80

Verwer, S., Eyraud, R. & De La Higuera, C. (2014), ‘Pautomac: a probabilistic au-
tomata and hidden markov models learning competition’, Machine learning 96(1-

2), 120-154. 68

Verwer, S., Eyraud, R. & dela Higuera, C. (2014), ‘Pautomac: a probabilistic automata
and hidden markov models learning competition’, Machine Learning 96(1), 129-154.

48

Vincent, P., Larochelle, H., Bengio, Y. & Manzagol, P.-A. (2008), Extracting and com-
posing robust features with denoising autoencoders, in ‘Proceedings of the 25th

international conference on Machine learning’, ACM, pp. 1096-1103. 107

Vincent, P., Larochelle, H., Lajoie, 1., Bengio, Y. & Manzagol, P--A. (2010), ‘Stacked
denoising autoencoders: Learning useful representations in a deep network with
a local denoising criterion’, Journal of machine learning research 11(Dec), 3371-3408.
107

Wahba, G., Lin, X., Gao, E, Xiang, D., Klein, R. & Klein, B. (1999), The bias-variance
tradeoff and the randomized gacv, in ‘Proceedings of the 1998 Conference on Ad-
vances in Neural Information Processing Systems II', MIT Press, Cambridge, MA,
USA, pp. 620-626.

URL: http://dl.acm.org/citation.cfm?id=340534.340761 36, 38

Wang, S., Schuurmans, D., Peng, F. & Zhao, Y. (2005), ‘Combining statistical language
models via the latent maximum entropy principle’, Machine Learning 60(1), 229-250.
URL: https://doi.org/10.1007/510994-005-0928-7 11

Wang, T. & Cho, K. (2016), Larger-context language modelling with recurrent neural
network, in ‘Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers)’, Association for Computational

Linguistics, pp. 1319-1329. 13, 36

http://luululu.com/tweet/

BIBLIOGRAPHY 167

Wang, T., Yuan, X. & Trischler, A. (2017), ‘A joint model for question answering and
question generation’, arXiv preprint arXiv:1706.01450 . 1

Warner, B. & Misra, M. (1996), ‘Understanding neural networks as statistical tools’,
The American Statistician 50(4), 284—293.
URL: http://wwuw.jstor.org/stable/2684922 9

Weiss, G., Goldberg, Y. & Yahav, E. (2018), Extracting automata from recurrent neu-
ral networks using queries and counterexamples, in ‘International Conference on
Machine Learning’, pp. 5244-5253. 137

Wen, E, Chu, L., Liu, P. & Qiu, R. C. (2018), “A survey on nonconvex regularization-
based sparse and low-rank recovery in signal processing, statistics, and machine
learning’, IEEE Access 6, 69883-69906. 128

Wen, W.,, Wu, C., Wang, Y., Chen, Y. & Li, H. (2016), Learning structured sparsity
in deep neural networks, in “Advances in neural information processing systems’,

pp- 2074-2082. 110

Wilks, S. (1960), ‘Multidimensional statistical scatter’, Contributions to probability and
statistics 2, 486. 110

Wilks, S. S. (1932), ‘Certain generalizations in the analysis of variance’, Biometrika

Pp- 471-494. 113

Williams, C. K. & Hinton, G. E. (1991), Mean field networks that learn to discriminate
temporally distorted strings, in ‘Connectionist Models’, Elsevier, pp. 18—22. 71

Williams, W., Prasad, N., Mrva, D., Ash, T. & Robinson, T. (2015), Scaling recur-
rent neural network language models, in ‘2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP)’, IEEE, pp. 5391-5395. 73

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N. & Recht, B. (2017), The marginal
value of adaptive gradient methods in machine learning, in ‘Advances in Neural
Information Processing Systems’, pp. 4148-4158. 40

Wolpert, D. H. (2018), The relationship between pac, the statistical physics frame-
work, the bayesian framework, and the vc framework, in “The mathematics of gen-
eralization’, CRC Press, pp. 117-214. 41

Xi, D. & Zhuang, D. (2017), Model selection of sequence prediction algorithms by
compression, in ‘International Conference on Grammatical Inference’, pp. 160-163.

52

BIBLIOGRAPHY 168

Xu, H. & Mannor, S. (2012), ‘Robustness and generalization’, Machine Learning
86(3), 391-423. 40

Xu, W. & Rudnicky, A. (2000), Can artificial neural networks learn language models?,
in ‘Sixth International Conference on Spoken Language Processing’. 33

y Arcas, B. A., Fairhall, A. L. & Bialek, W. (2001), What can a single neuron compute?,
in “Advances in neural information processing systems’, pp. 75-81. 21

Young, T., Hazarika, D., Poria, S. & Cambria, E. (2018), ‘Recent trends in deep
learning based natural language processing’, icee Computational intelligenCe maga-

zine 13(3), 55-75. 12

Yu, T., Simoff, S. & Jan, T. (2010), “Vgsvm: A case study for incorporating prior do-
main knowledge into inductive machine learning’, Neurocomputing 73(13-15), 2614—
2623. 46

Yuan, M. & Lin, Y. (2006), ‘Model selection and estimation in regression with grouped
variables’, Journal of the Royal Statistical Society: Series B (Statistical Methodology)
68(1), 49-67. 108

Zaremba, W. (2015), “An empirical exploration of recurrent network architectures’. 31

Zaremba, W., Sutskever, I. & Vinyals, O. (2014), ‘Recurrent neural network regular-
ization’, arXiv preprint arXiv:1409.2329 . X, 29, 32, 57, 58, 65, 66, 82, 87, 88, 89, 9o,
100, 107

Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. (2017), ‘Understanding
deep learning requires rethinking generalization’, International Conference on Learn-
ing Representations . 39, 40, 113

Zhang, C., Liao, Q., Rakhlin, A., Sridharan, K., Miranda, B., Golowich, N. & Poggio,
T. (2017), Musings on deep learning: Properties of sgd, Technical report, Center for
Brains, Minds and Machines (CBMM). 40

Zhang, D., Wang, H., Figueiredo, M. & Balzano, L. (2018), Learning to share: Simul-
taneous parameter tying and sparsification in deep learning, in ‘Proc. of ICLR’.
URL: https://openreview.net/forum?id=rypT3fbob 130

Zhao, Y., Chu, S., Zhou, Y. & Tu, K. (2017), Sequence prediction using neural network
classiers, in ‘International Conference on Grammatical Inference’, pp. 164-169. 51

Zhou, H., Alvarez,]J. M. & Porikli, F. (2016), Less is more: Towards compact CNNSs,
in "‘European Conference on Computer Vision’, Springer, pp. 662-677. 109

BIBLIOGRAPHY 169

Zhu, X. & Goldberg, A. B. (2009), ‘Introduction to semi-supervised learning’, Synthesis
lectures on artificial intelligence and machine learning 3(1), 1-130. 24

Zhu, X., Zhou, W. & Li, H. (2018), Improving deep neural network sparsity through
decorrelation regularization., in ‘IJCAI’, pp. 3264-3270. 110

Zilly, J. G., Srivastava, R. K., Koutnik, J. & Schmidhuber, J. (2017), Recurrent high-
way networks, in ‘Proceedings of the 34th International Conference on Machine
Learning-Volume 70’, JMLR. org, pp. 4189—4198. 32, 72, 89, 90, 100, 102, 104, 106,

114, 115, 117, 119

Zoph, B., Vaswani, A., May, J. & Knight, K. (2016), Simple, fast noise-contrastive
estimation for large rnn vocabularies, in ‘"HLT-NAACL'. 35, 74, 80

Zou, H., Hastie, T. & Tibshirani, R. (2006), ‘Sparse principal component analysis’,
Journal of computational and graphical statistics 15(2), 265-286. 41

