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ABSTRACT

Classical Maxwell’s equations have been fundamental to our understanding of physics

since their inception in the 19th century. Any research which contributes to our un-

derstanding of them is of importance. In 1989, Ranãda introduced a topological

formalism of Maxwell’s equations in vacuum - investigating a set of solutions involv-

ing a mapping between spherical spaces projected into the electric and magnetic field

lines - named the Hopf fibration. This research has been furthered by Ranãda and

other prominent scientists to include: the family of torus knots within the field lines;

a theory of the fundamental charge; and a description of the number of right and left

handed photons. The Hopf fibration, embedded into charge-free electric and magnetic

field lines as exact solutions to Maxwell’s equations, is a central component to this

body of work. Topological, classical electromagnetism is, therefore, an area that has

the potential to further our understanding of Maxwell’s equations.

This thesis describes a project that advances the knowledge of knotted electromag-

netic fields and electromagnetism in two, distinct areas: zilches of unusual electro-

magnetic fields; and a multipole expansion on the vector spherical harmonics of the

knotted electromagnetic fields. Zilches are a set of little-known conserved quantities

within the charge-free Maxwell’s equations. They were originally posited by Lipkin

as new and potentially exciting - if their physical nature could be determined. This

research examines the zilches in three unusual topologically non-trivial sets of elec-

tromagnetic fields - starting with the knotted solutions to Maxwell’s equations. The

results show a profound connection between the zilches and the fields’ topology. It

conjectures that this is the case for all integrable solutions. Alongside this, it is shown

that the zilches can be written in terms of other, known conserved quantities of the

fields.
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The latter half of this thesis focuses on delivering a generalised multipole expansion of

the vector spherical harmonics for the knotted electromagnetic fields, after outlining

various flaws in the assumptions made by previous literature. Finally, the results

from generating the generalised multipolar expansion coefficients are analysed and

presented. A summary of the first 3680 coefficients are given in 18 equations - after

noticing patterns occurring between them.

Firstly, this research further develops the area of knotted electromagnetic fields, pro-

viding a platform from which to generate them experimentally and to develop the

theory further. Secondly, it sheds considerable light on the interpretation of the

zilches and suggests a more central role in electromagnetism.
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CHAPTER

ONE

INTRODUCTION

Maxwell’s equations are those that encompass all of classical electromagnetism, sur-

viving every test put to them in the constantly changing landscape of scientific ad-

vancement [1]. They can be solved using standard techniques to produce solutions

of monochromatic, wave-like electromagnetic radiation in vacuum [2]. They are cel-

ebrated as one of the great achievements of 19th century physics. Therefore, it is

noteworthy, when science can produce another point from which to view and interpret

them. In 1989, Ranãda introduced a topological formalism of Maxwell’s equations to

study a set of exotic solutions to Maxwell’s equations [3], shown to be equivalent to

previous solutions [4][5][6], in the form of a topological mapping - named the Hopf

fibration [7]. The Hopf fibration is a mapping from the three-sphere, S3, to the two-

sphere, S2 [7], that, when projected into the electric and magnetic field lines, fills all

of 3-dimensional real space, R3, with field lines that are loops, linked with each other

once. When encoded in electric and magnetic fields lines via the Hopf fibration, the

different latitudinal levels of S3 appear as toroidal surfaces, nested inside one another

- like Russian dolls. Ranãda’s body of work showed that Maxwell’s equations could

be written in this topological framework, with the Hopf fibration underlying the field

lines. It futher demonstrated a quantization of the fundamental charge (3.3 times that

of the electron charge), without the need for the Dirac monopole [3][8][9][10][11][12].2

The research also characterised the number of right and left-handed photons - relating

a quantum mechanical result to classical theory. The issue with Ranãda’s method is

that the topology of the field lines is not preserved when propagating with time. The

Hopf fibration and its involvement in classical electromagnetic theory is of central im-

portance to the advancement of a topological understanding of Maxwell’s equations.

2The quantization of the fundamental charge is beyond the scope of this thesis.
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In 2003, Bialynicki-Birula investigated a particular method of introducing vortex lines

into electromagnetic fields, using a configuration originally developed in the early

twentieth century, named Bateman’s construction [13][6]. He explored the vortex

lines in a set of null fields, discussed extensively by Robinson and Trautman [4][14] -

named the Robinson congruence. These fields represented the velocity field that un-

derlies Hopf-knotted fields. Robinson demonstrated that this field was constant, with

time allowing the field lines to be transported along them without breaking. Irvine

followed this paper by showing that the condition enforced by Bateman’s construc-

tion, named the null condition (forcing the electric and magnetic fields to remain

perpendicular to each other), was vital to ensuring that the topology of the field

lines within the Hopf-knotted electromagnetic fields was preserved with propagation

in time - and not dependant on the helicity of the field [15]. Kedia bolstered this

research [16] by utilising a theorem from complex analysis, showing that under a par-

ticular set of conditions the powers of two complex functions when applied (the initial

inputs to Bateman’s construction for the Hopf fibration) were the winding numbers

associated with the family of torus knots [17]. This allowed Kedia to demonstrate the

infinite family of torus knots appearing within the electromagnetic field lines. Irvine

published two papers outlining a multipolar expansion method applied to the Hopf-

knotted fields[18][15], leading to a suggestion for their experimental realisation. The

second of these papers extended this work to include the whole family of torus-knotted

fields. Fully understanding these unusual electromagnetic fields would provide a real

advance in the theory of electromagnetism - and beyond. As these exact solutions

are found to have converging total energy, when considered over all space, they also

provide a unique opportunity to examine other areas of electromagnetism that are

poorly understood. The research presented here provides advancement in both areas.

This thesis is divided into three main chapters: Background Theory; Zilches of Knot-

ted Electromagnetic Fields; and The Generalised, Multipolar Expansion of the Knot-

ted Electromagnetic Fields. The first chapter aims to set the scene for the reader

- explaining the underlying theory that forms the base for the investigations that

follow. It provides a break-down of the basics of knot theory, to allow the reader a

complete understanding of a mathematical knot. It then builds to discuss the nature

of different spaces (spherical space) through which the Hopf fibration is defined. The

Hopf fibration is then described in detail - mathematically. A method is provided by

which to view this mapping in R3 - stereographic projection. It moves on to show

2



how the Hopf fibration can be projected into the electric and magnetic field lines,

via Bateman’s construction. This construction has the added benefit, in comparison

to Ranãda’s method, that the topology projected into the field lines is preserved for

all time, because of the enforced null condition at time, t = 0. More advanced solu-

tions are demonstrated involving the theorem that enables the powers of two complex

numbers to represent the winding numbers of the family of torus knots, allowing an

infinite set of solutions to be encoded within the electromagnetic field lines. A novel

method for viewing the topology is demonstrated through scalar field representation.

Finally, the conserved properties of the sets of solutions are shown to be related to

the total energy of the fields and their winding numbers.

The second chapter contributes to the body of work concerning a set of conserved

quantities within vacuum electrodynamics, named the zilch of the field. Zilches were

first introduced by Lipkin, in 1964, and promised to be a new, potentially exciting,

quantity, the physical nature of which was not yet understood. This chapter explores

the zilches in three, different, unusual electromagnetic fields - starting with the set

of knotted solutions to Maxwell’s equations. It will be demonstrated that the zilches

have a deep connection to the topology of the charge-free dynamic fields, when such

fields have solutions that have converging total energy. It will also be demonstrated

that the zilches can be written entirely in terms of the other, known conserved quanti-

ties of the fields and their winding numbers: energy, momentum, angular momentum

and helicity. This research differs from the current literature - not only because it

examines the zilches in unusual fields that have converging total energy, and because

it produces results for more than just Z000 - but it also facilitates a more in-depth

understanding of the connection between the zilches and the fields.

The third chapter tackles one of the leading papers on knotted electromagnetic the-

ory, by Irvine and Boumeester, that demonstrates a method of conducting a multipole

expansion on the vector spherical harmonics, leading to the suggestion of a method

for experimentally verifying such a set of fields [18]. It is the contention of this chap-

ter that an initial assumption by Irvine and Boumeester invalidated the method used

and, therefore, their results. An extension to higher knotted solutions is developed,

using their original method, in an attempt to produce an equation given by Irvine

in a subsequent paper [15]. This process achieves differing results. Because of the

failure to find satisfactory results in this area, this chapter moves to develop a general
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multipole expansion of the vector spherical harmonics. In doing so, patterns are dis-

covered in the multipole coefficients that could help summarise them. These patterns

are explored, defined and checked for the first 3680 multipole coefficients emanating

from the first 49 different knot combinations, across four fields: electric, magnetic,

electric vector potential and magnetic vector potential. This chapter summarises

these coefficients in 18 equations, via the patterns discovered.

Finally, this thesis will culminate in a concluding chapter, summarising the results

and suggesting routes for further work.
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CHAPTER

TWO

BACKGROUND THEORY

This chapter aims to cover the foundation theory upon which this research is built.

It is broken down into two, main sections: Mathematical Knot Theory and the Hopf

fibration; and Knotted Solutions to Maxwell’s Equations. The first section covers the

basics needed to understand knot theory and the equations that are used to under-

stand the topological connections given in Chapter 3. It concludes with a discussion

of the mathematical construction of the Hopf fibration, describing what it is and a

way to view it in three dimensions of space. The second section outlines a novel way

to reformulate Maxwell’s equations - through a method called Bateman’s construc-

tion - which allows the null electromagnetic fields’ associated velocity field to remain

constant with time. By employing this method, it will be shown that the Hopf fibra-

tion - and later the whole family of torus knots - can be projected into the electric

and magnetic field lines as exact solutions to Maxwell’s equations. A unique way of

visualising the topology of these knotted fields is also given, as well as a few of the

known properties of these solutions.

2.1 Mathematical Knot Theory and the

Hopf fibration

In Mathematics, there is a whole field devoted to the theory of knots within Topology.

Historically, mathematical knots were appreciated merely for their aesthetics. How-

ever, Lord Kelvin, in the 1860s, famously proposed a hypothesis that atoms could be

differing knot-types within the fabric of the ether [19]. This idea led to the tabulation
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of many differing knots by Tait [20], who suspected he was creating a table of ele-

ments. Since the Michelson-Morley experiment disproved the existence of the ether

[21], chemists were less inclined to pursue mathematical knots, in a bid to tabulate

the elements. Instead, mathematicians became increasingly intrigued by the potential

of knots. Knot theory now sits as a sub-discipline within the area of Topology and

has been shown to have many applications: from allowing the comprehension of the

affects of knotting DNA strands; to facilitating the understanding of the handedness

of polymers [22]. For this thesis, several aspects of knot theory have been utilised:

within the construction of the knotted electromagnetic fields; and in the assessments

of the zilches within the knotted electromagnetic fields. A solid understanding of the

fundamentals of mathematical knots is integral to the reading of this thesis.

2.1.1 Unknots, Knots, and Links

Within knot theory, there are three, distinct quantities - unknots, knots and links

[22]. To describe a mathematical knot, it is easiest to use an analogy. Imagine that

someone is holding a shoelace and ties a knot in it, then glues the ends of the string

together. This is a knot, as defined within mathematics, because there is no possi-

ble way of undoing the knot through manipulation of the shoelace - unless one cuts

through it. When dealing with knots within mathematics, one should consider the

shoelace to be infinitely thin and, therefore, a closed curve within Euclidean space

(see figure 2.1(b) for an example of a knot - the trefoil). The unknot is such a loop

- a closed loop - that, when completely unravelled, forms only a circle3 (see figure

2.1(a)). A link, as the name suggests, is where two or more unknots - or knots -

are linked together, without intersecting at any point (see figure 2.1(c) and 2.1(d)).

The unlink is the most basic form of link, it is comprised of two unlinked unknots.

The next most basic link is the Hopf-link - made up of two linked unknots (see figure

2.1(c)).The Hopf-link is a central component of what is called the Hopf fibration,

which appears in the electromagnetic field lines of a particular set of solutions to

Maxwell’s equations, and is the subject of section 2.1.5.

3The unknot is also known as the trivial knot.
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(a) The unknot (b) A trefoil Knot (c) The Hopf-link (d) Borromean rings
(three, linked unknots)

Figure 2.1: Examples of the different quantities within mathematical knot theory

2.1.2 Knot Tabulation, Knots’ Projections, and Reidemeis-
ter’s Moves

Figure 2.2: An example of a knot table4

The images that are displayed in knot tables are those of the most basic projection of

each distinct knot (see figure 2.2). As knots sit within three-dimensional, Euclidean

space, they can be observed from many angles. This means that, depending from

which point of view a knot has been observed, it may not appear to be a specific knot

4Image sourced at [23].
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(see figure 2.3). These points of view are called projections, and can be understood

as an image of the knot, projected onto a two-dimensional plane located behind it.

Understanding what tangle of lines equates to what knot is key to mathematical knots.

The tabulated knots are those which show the minimum number of crossings5 - points

at which the lines pass over each other. This means that, no matter what projection

one is observing, the crossing number will never decrease, regardless of manipulation

via the Reidemeister moves. The Reidemeister moves are a set of methods that allow

one to untangle sections of the knot to reveal the least number of crossings (see figure

2.4).

(a) Projection along
the x-axis

(b) Projection along the
y-axis

(c) Projection along the z-
axis

Figure 2.3: Examples of the three different projections of the trefoil knot

(a) Type I (b) Type II (c) Type III

Figure 2.4: The three Reidemeister moves

The first Reidemeister move (Type I) allows the action of inserting in or removing a

twist. The second move (Type II) facilitates the inclusion or removal of two crossings.

The third move (Type III) permits moving a strand from one side of a crossing to the

5This is referred to as the crossing number.
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other. A knot for which remaining crossings cannot be undone with the Reidemeister

moves is called a prime knot. An example of a prime knot is figure 2.3(a), with a

crossing number of 3. Figure 2.3(a) is the projection with the lowest possible crossing

number. This is why the same knot in figure 2.2 has a label 31 - as per the Alexander-

Briggs notation[22]. In figure 2.2 a table of knots is shown, including knots with up

to eight crossings. The large number denotes the number of crossings the prime knot

contains. The subscript denotes the order of the prime knots with the same crossing

number.6 It is important to note that the mirror image of a prime knot is not included

in the table, so each entry represents two knots - the knot and its mirror. Amphichiral

knots exist.7 For such knots there is, obviously, only one representation.

2.1.3 Knot Classes

In 1978, Thurston proved that there are only three different classes of knots [24]:

torus knots; satellite knots; and hyperbolic knots. The vast majority of the knots

discovered have been hyperbolic. Some of the most thoroughly understood, however,

are torus knots. Torus knots are central to research on higher knotted solutions to

Maxwell’s equations [16].

2.1.3.1 Torus Knots and the Torus

Torus knots are those knots that are acted out on a torus. A torus, T n, is a surface

defined within topology as a product of circles, S1,8:

T n = S1 × S1 × ...× S1︸ ︷︷ ︸
n

. (2.1)

The most common is the two-dimensional torus, T 2, and is that surface over which

the torus knots are defined. This surface is a subset of three dimensional real space,

T 2 ⊂ R3, (2.2)

and can be written explicitly in Cartesian coordinates,(
R−

√
x2 + y2

)2
+ z2 = r2, (2.3)

and parametrically,
x = (R + r cosθ)cosφ,
y = (R + r cosθ)sinφ,
z = r sinθ.

(2.4)

6Although, torus knots tend to appear first before knots with twists.
7Amphichirial meaning equal to their mirror image.
8S1 is one dimensional spherical space and will be discussed in more detail in section 2.1.5
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R is the distance from the centre of T 2 to the centre of the torus’ tube structure

(figure 2.6), r is the radius of the tube and θ and φ define the set of angles from

the two circles of its construction, θ, φ ∈ [0, 2π). Multiple surfaces can be created

by adjusting the two radius parameters to fill all of R3 with nested tori (see figure

2.5). At the limits of R, r → ∞, or when R → 1 and r → 0, two degenerate tori

appear. The former is a line along the z-axis at the centre of the tori, representing

the infinitely thick torus. The latter, a circle, or the infinitely thin torus, sits in the

x-y-plane at the centre of the tubes. These toroidal surfaces will be shown to appear

as solutions to Maxwell’s equations in section 2.2.5.

Figure 2.5: Nested tori sat in R3 9

A curve that transits the smallest circumference around T 2 is called a meridian

curve, and it can be described as wrapping around the torus in the poloidal direction.

A curve that transits the largest circumference is called a longitude curve, and it can

be described as wrapping around the torus in the toroidal direction (see figure 2.6).

Figure 2.6: The toroidal direction is denoted by the blue arrow, the poloidal
direction by the red arrow

The number of times the curve wraps itself around the torus, and in what direction,

9Image sourced at [25].
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is indicated via the integer winding numbers, p and q. If the curve traverses a number

of rotations in the poloidal direction, q indicates how many rotations have occurred.

Another way to quantify this would be to count how many times the line crosses the

longitude curve. The same is true for p, with respect to the toroidal direction and the

meridian curve. For a torus knot to be produced, (p, q) ≥ 2 and have to be co-prime,

otherwise the result is a torus link.10 If either (p, q) = 1, the result is a trivial torus

knot, as they are equivalent to the unknot. Consider the p = 2, q = 3 torus knot,

(2, 3). The line drawn on the surface of the torus crosses the longitude line three times

and, therefore, is wrapping poloidally three times. The line also crosses the meridian

line twice, therefore wrapping two times toroidally. This prescription produces the

trefoil knot. Figure 2.7 demonstrates combinations of winding numbers, producing

their respective torus knots.

(a) p = 2, q = 3 (b) p = 3, q = 2 (c) p = 3, q = 10 (d) p = 10, q = 7

Figure 2.7: Four examples of torus knots and their winding numbers

Parametrically these knots can be defined by the following equations,

x = (R + r cos(q t))cos(p t),
y = (R + r cos(q t))sin(p t),
z = r sin(q t).

(2.5)

Another construction of the family of torus knots utilises a connection between knots

and singularities of complex maps from the three sphere to complex space, S3 → C.11

For a pair of complex numbers, u and v, where u±v = 0, where (u, v) ∈ C2 such that

|u|2 + |v|2 = 1, such numbers produce a (p, q)-torus knot when p and q are co-prime

[17].

10Co-prime means that (p, q) share no prime factors. This property is sometimes described as
being relatively prime.

11The three sphere, S3 will be described in more detail in section 2.1.5.
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2.1.4 Knot Invariants

When one considers mathematical knots, there are certain properties which will re-

main constant. These constants are called knot invariants and are topologically im-

portant. The knot invariants upon which this thesis focuses are: the crossing number;

and the unknotting number for torus knots and links.

2.1.4.1 Crossing Number

The crossing number, c(K), is determined by counting every time the line drawing out

the knot projection passes over itself without intersecting. If the number of crossings

is a minimum in all projections, and it is shown to be distinct from any knots with

fewer crossings, then that is the crossing number for the knot. For the torus knots

the crossing number is,

c(T (p, q)) = min(p(q − 1), q(p− 1)). (2.6)

2.1.4.2 Unknotting Number

The unknotting number, u(K), states the number of crossings that need to be changed

so that the knot can be manipulated into the unknot. This must be a minimum across

all projections of the knot for it to be the unknotting number. Intuitively, one would

suspect that a projection of a knot with the minimised number of crossings would

give the unknotting number. This is not the case, and has been disproved [26]. The

unknotting number for the torus knots is given by,

u(T (p, q)) =
1

2
(p− 1)(q − 1). (2.7)

Consider the torus knot T (2, 3). Its unknotting number is, u(T (2, 3)) = 1. Geomet-

rically this involves changing one of the crossings in the knot and then applying two

Reidemeister moves to manipulate the projection to become the unknot (see figure

2.8). All prime knots have u(Kprime) = 1.

2.1.4.3 Other Key Knot Invariants

The invariants just mentioned are those that are relevant to the later research in this

thesis. That does not mean that they are the only, or most important invariants

with regard to mathematical knot theory. The most notable invariants are that of

the Alexander polynomial and the Jones polynomial [27][28]. The polynomials are
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Figure 2.8: Removing one crossing from the T (2, 3) knot and applying Reidemeister
moves II and III to reveal the unknot.

a great way to tell what type of knot one is looking at. To each knot a polynomial

is assigned from its projection. No matter the projection given the polynomial will

always be the same - hence, a knot invariant.

2.1.5 The Hopf fibration

In 1931, Hopf discovered a mapping between spherical spaces [29],

η : S3 → S2. (2.8)

This mapping is known by many names: the Hopf-map; the Hopf fibration; the

Hopfion solution etc. It allowed a deeper comprehension of the three-sphere, S3. To

understand the mapping, one must first appreciate the spaces that are used. The

dimension of each spherical space is determined by how many dimensions the surface

of the sphere contains. The first three spheres are S0, S1, and S2 - also known as

the zero-sphere, the one-sphere and the two-sphere respectively. The reason these

spheres have been named first is because their forms are commonly known and easy

to visualise. The zero-sphere is given by the equation,

S0 ⊂ R1

x20 = 1,
(2.9)

which gives the subset of values contained within one-dimensional, real space. The

equation for the one-sphere, S1, is,

S1 ⊂ R2

x20 + x21 = 1,
(2.10)

giving the unit circle contained in the plane. Finally, the two-sphere,

S2 ⊂ R3

x20 + x21 + x22 = 1,
(2.11)
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giving the unit sphere contained in three-dimensional real space. The format contin-

ues indefinitely through the dimensions, with each spherical space being the subset

of values within a real-valued space of one additional dimension,

Sn ⊂ Rn+1∑n
m=0 x

2
m = 1.

(2.12)

The three-sphere is difficult to visualise, as it sits within R4. Fortunately, there are

techniques one can use to overcome this - such as stereographic projection.12 One

property of the spheres is that, sat at the equator of each, is the sphere of one less

dimension.

The Hopf fibration is more than just a mapping between two topological spaces, it

is a fibration over spheres. Within Algebraic Topology a fibration, by definition, is

a surjective mapping between topological spaces that preserves the homotopy lifting

property.13 A homotopy is a continuous mapping from one space to another. The

most common example given is that of the ageing process on human appearance. The

homotopy lifting property enables the continuous mapping to be lifted to the space

above it.14

To understand the final equation of the Hopf fibration, one should understand a little

about the set of numbers called quaternions, H.

H =
{
q = w + x i+ y j + z k | i2 = j2 = k2 = ijk = −1

}
. (2.13)

Quaternions are an extension to complex numbers in that they have one, real scalar,

w, and a vector composed of a set of special numbers - denoted by i, j and k, whose

coefficients, x, y and z, are real. These special numbers are called the fundamental

quaternion units and have the property, i2 = j2 = k2 = ijk = −1. It is important to

note that they do not commute and, therefore, multiplicative order is essential. The

quaternion units have the following multiplicative properties,

i j = k, j i = −k,
j k = i, k j = −i,
k i = j, i k = −j.

(2.14)

12See section 2.1.6.
13Surjective - many points from one space map to one point in another.
14For a more technical explanation of a fibration, refer to Chapter 7 of the book, A Concise

course on Algebraic Topology, by May [30].
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The three-sphere is the set of all unit quaternions,

S3 =
{
q = w + x i + y j + z k | w2 + x2 + y2 + z2 = 1

}
. (2.15)

For this to be true, for q ∈ S3 there is a q−1 = w − x i − y j − z k such that

q · q−1 = w2 + x2 + y2 + z2 = 1.15

The definition of the Hopf-map, η, is as follows,

η : S3 → S2

η(q) = q · k · q−1
= (0, 2wy + 2xz, 2yz − 2wx,w2 + z2 − x2 − y2).

(2.16)

Therefore, η(q) ∈ R3. The sum of each element squared adds to unity - which is just

those set of values whose distance from the origin is 1, defining the unit two-sphere.

Therefore, Hopf fibration has completely encoded the whole of the three-sphere onto

the two-sphere and is a demonstration of surjective mapping.

This chapter presents the implementation of the Hopf fibration into the electromag-

netic field lines. However, it does not rely upon the quaternionic formulation. The

inclusion of the formulation is to demonstrate the nature of the mapping. A more

common set-up is by noting that R4 ∈ C2 and R3 ∈ C1 × R1. Therefore,

S3 =

{
(z1, z2) ∈ C2

∣∣∣ |z1|2 +|z2|2 = 1

}
,

S2 =

{
(z, x) ∈ C1 × R1

∣∣∣ |z|2 + x2 = 1

}
.

(2.17)

The Hopf-map is defined,

η(z1, z2) =
(

2 z1z̄2, |z1|2 −|z2|2
)
. (2.18)

This definition becomes the same as that defined through the quaternionic formula-

tion (see equation 2.16), if one allows z1 = w + i z and z2 = y + i x. To understand

the form the fibres take mapping from multiple points in S3 to a singular point in S2,

one should consider the effect of multiplying complex numbers together. A multipli-

cation of one complex number by another (for example, w = λ z, where λ is complex)

induces a rotation and a scaling factor in the range. For solutions to remain in S3,

according to equation 2.17, the sum of the unit norm of the complex input functions,

15Here, the quaternionic arithmetic is rather straightforward and, therefore, will not be demon-
strated.

15



2.1. MATHEMATICAL KNOT THEORY AND THE
HOPF FIBRATION

w1 and w2, has to equal unity. This imposes the condition, |λ|2 = 1. This requirement

yields a mapping to the same point in S2. Explicitly, if η(z1, z2) = η(w1, w2) in S2,

then (w1, w2) = (λz1, λz2) in S3. Therefore,

η(w1, w2) =

(
2λz1λ̄z̄2, |λ|2

(
|z1|2 −|z2|2

))
= |λ|2 η(z1, z2). (2.19)

Because the set of all complex values that has |λ|2 = 1 form the unit circle in C1, it

suggests that each point on S2 has a fibre that is a circle in S3 (See figure 2.9).

Figure 2.9: The Hopf-map, η, and the pre-image, η−1

This means that λ takes the form ei ψ. Considering the reverse map, with this form

for λ, one can observe the pre-image of the Hopf fibration, but now in spherical

coordinates:

η−1(w1, w2) =

(
ei
φ+ψ
2 cos

(
θ

2

)
, ei

φ−ψ
2 sin

(
θ

2

))
. (2.20)

This takes a point on S2 and gives the fibre from S3 - the circle, S1. The next section

gives an explicit breakdown of an effective method used to view this pre-image in R3.

2.1.6 Stereographic Projection

The Hopf fibration is virtually impossible to imagine, as it sits within R4. Fortu-

nately, one can use a method called stereographic projection to visualise the Hopf

fibration in R3. Most simply, stereographic projection is a method used for visual-

ising higher dimensional spaces in lower dimensions. It assigns two antipodal points

to our spherical space: a north pole, from which the projection line emanates; and a

south pole. The image produced in the projection space is a warped version of the

original space.
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Taking the space S1 (the circle), sat in R2 (the x-y plane), a line can be drawn through

the diameter of the sphere and be considered as R1 (or the x-axis). The y-axis also

follows the diameter of S1, but orthogonal to R1. One can assign the highest positive

y-valued point on the sphere as the north pole, and the highest negative y-valued

point as the south pole. A line is then projected from the north pole, through the

surface of S1, onto the projection space, R1 (see figure 2.10). This gives a mapping

from S1 → R1, and includes all points from S1 - except that point at the north pole.

The point at the north pole projects to ±∞ and, therefore, has to be added to com-

plete the mapping.

p1 : S1 → R1 ∪ {∞}
p1(x1, x2) =

(
x1

1−x2

)
.

(2.21)

North Pole

South Pole

Figure 2.10: Stereographic projection from S1 → R1

The projection is calculated by employing trigonometry. Consider now the next

dimension, S2 (the sphere) embedded in R3 (see figure 2.11). The projection space,

R2 (the x-y-plane), will be sat at the equator of the sphere, with the north and south

poles located at the +z and −z axis, respectively. To give an analogy, the projection

given in this set-up is equivalent to the geographical mapping of the Earth’s surface

to a world map. The mapping is calculated in the same way as the dimension below

and takes on the following explicit form:

p2 : S2 → R2 ∪ {∞}
p2(x1, x2, x3) =

(
x1

1−x3 ,
x2

1−x3

)
.

(2.22)

For S2, we are still enforcing the conditions that x21 + x22 + x23 = 1. If the plane

to which we are projecting were considered to be C1, then this sphere is called the

Riemann Sphere.

17



2.1. MATHEMATICAL KNOT THEORY AND THE
HOPF FIBRATION

North Pole

South Pole

Figure 2.11: Stereographic projection from S2 → R2

The method of stereographic projection continues in this manner through the dimen-

sions. The projection of S3 → R3 therefore has the form:

p3 : S3 → R3 ∪ {∞}
p3(x1, x2, x3, x4) =

(
x1

1−x4 ,
x2

1−x4 ,
x3

1−x4

)
,

(2.23)

with x21 + x22 + x23 + x24 = 1 for S3. The remarkable property of this mapping is

that it is a conformal mapping, meaning that shapes and angles in the domain are

preserved in the range. The projection warps the image of the space being projected,

much in the same way that the map of the world distorts the areas of land masses,

most notably towards to the north and south poles. In figure 2.12, one can see that

projecting a line around the entire equator of S2 gives the same sized circle as it sits

at the projective plane. Projecting a line through all the points in a line of latitude

closer to the north pole maps out to a much larger circle on the projective plane (see

figure 2.12). Repeating for a latitude line closer towards the south pole maps out

a smaller circle on the projective plane. There are limits: when trying to project

through the poles, the south pole maps to the singular point at the origin, and north

pole projects to infinity.

Stereographic projection, therefore, is a beneficial method for viewing S3, via the

Hopf fibration. If one takes a composite function of the pre-image of the Hopf-map,

η−1, (equation 2.20) and its stereographic projection, p3, (equation 2.23) one finds

for each point on S2 there is a circle projected from its pre-image into R3 (See figure
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Figure 2.12: Stereographic projection, S2 → R2, showing the warping of the sizes of
latitude circles on the projection plane when taken closer to the north or south pole

(shown as dotted lines)

2.13). Explicitly, the mapping is:

p3 ◦ η−1 =
1

1− sin
(
θ
2

)
sin
(
ψ
2
− φ

2

) (cos(θ
2

)
cos

(
ψ

2
+
φ

2

)
, cos

(
θ

2

)
sin

(
ψ

2
+
φ

2

)
, sin

(
θ

2

)
cos

(
ψ

2
− φ

2

))
.

(2.24)

Figure 2.13: Stereographic projection, S3 → R3, of the pre-image of the Hopf-map
of a singular point from S2

If one takes more than one point from S2, the projection of the pre-images into R3

are multiple, non-intersecting circles that are all linked through a central point (see

figure 2.14). As mentioned in section 2.1.1, these are known as Hopf-links.
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Figure 2.14: Stereographic projection, S3 → R3, of the pre-image of the Hopf-map
of two points from S2, showing two linked circles - known as the Hopf-link

Figure 2.15: Stereographic projection, S3 → R3, of the pre-image of the Hopf-map of
one complete latitude level of S2, showing all the linked circles form a torus surface

The structure becomes more defined when selecting latitudinal points on S2. Con-

sider multiple points on the equator for example, these start to map out the surface

of a torus, with all circles linked through its centre (see figure 2.15). If all points

from the equator are considered, the projection is a torus surface, comprised of those

Hopf-linked circles.

If one now takes multiple points from a selection of latitudinal levels of S2, the
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Figure 2.16: Stereographic projection, S3 → R3, of the pre-image of the Hopf-map
of multiple points from three latitude levels of S2, showing multiple nested tori

emerging

projections of their pre-images are that of multiple nested tori (like Russian dolls),

comprised of the same circles that all link through their mutual centre (see figure

2.16). When considering the projection of all points from S2, the projection of the

pre-image fills the whole of R3 with these nested tori. There are only two extra pro-

jections: a vertical line that is the torus that passes through infinity and represents

the north pole; and a circle nested at the centre of all the tori (considered to be the

infinitely thin torus), which represents the projection of the south pole.

For completeness, one can also determine the inverse stereographic projection, mean-

ing taking a point from the projection plane and projecting back to the original space.

With the previous examples, that would be a projection from a real space back to a

sphere. Explicitly, the inverse stereographic projection from R3 → S3 is given by:

p3(x1, x2, x3) =
1

x21 + x22 + x23 + 1

(
2x1, 2x2, 2x3, x

2
1 + x22 + x23 − 1

)
. (2.25)

2.2 Knotted Solutions to Maxwell’s Equations

In 1989, Rañada realised a unique set of exact solutions to Maxwell’s equations that

encoded the Hopf fibration within the charge-free electric and magnetic field lines [3].

He extended this body of work to eventually suggest that this model could be used as
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a topological description of the fundamental charge [8][9][10][11][12]. In 2008, Irvine

and Bouwmeester conducted a multipole expansion on the vector spherical harmonics

of this Hopfion-solution, leading them to suggest an experimental verification in the

form of circularly polarised beams of light, with a further paper by Irvine extending

these results to higher knot types [18][15]. A few years later Kedia, Bialynicki-Birula,

Peralta-Salas and Irvine, reformulated the problem with the simpler method of Bate-

man’s construction [16][6], previously employed by Bialynicki-Birula whilst analysing

vortex lines in electromagnetic fields [13]. Kedia et al.’s paper managed to generalise

Bateman’s construction so that it could not only provide the Hopf-knotted solutions

to Maxwell’s equations, but also of torus knots and links (of which there are an

infinite amount) by applying a theorem from complex analysis [17]. This area of

Hopf-knotted and torus-knotted solutions to Maxwell’s equations is a hugely exciting

area of Physics research, with the Hopf fibration being viewed as a central geometrical

object that permeates several disciplines within Physics. It has been found to have

beneficial results in quantum computing, general relativity, and classical mechan-

ics [31][32]. This thesis outlines the physical nature of an obscure set of conserved

quantities within Maxwell’s equations, named zilches - within the context of knot-

ted electromagnetic fields, it also aims to improve upon the results of Irvine et al. to

progress the research closer to experimentally producing these knotted pulses of light.

The following section will specifically deal with the method of Bateman’s construction.

Bateman’s construction will provide a consistent method for generating solutions to

Maxwell’s equations. Once the electric and magnetic fields have been set up, the

method for encoding the stereographic projection of the inverse Hopf-map will be

introduced, followed by the extension to obtaining the infinite family of torus knots

and links - that will appear within the field lines. Further to this, a breakdown

of a selection of known properties of these unique solutions will be examined. An

explanation of the scalar plots used for visualising them will also be provided.

2.2.1 Bateman’s Construction

Bateman’s construction and its use in setting up the Hopf fibration and torus knots in

the electromagnetic fields, is essential to providing a consistent topological structure

that is preserved with time. The reason for this is down to its ability to construct

all null electromagnetic fields (which has been proven by Hogan [33]) with an associ-

ation to what is called a null geodetic shear-free congruence [16]. The null condition

demands that the electric and magnetic fields are continuously perpendicular to each
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other, and of equal magnitude. What it does, mathematically, is most relevant when

creating a tensor formulation of the fields. Without its enforcement, the fields could

be classified as non-null. Consequentially - in some inertial reference frame - the

electric or magnetic field could disappear. The null condition and its importance

in relation to the time evolution of the Hopf-knotted and torus-knotted solutions to

Maxwell’s equations will be discussed further in section 2.2.2.

For these equations it is important to note that the international standard of units

(S.I.) will be employed. The free field Maxwell’s equations will be used. Finally, the

fields will be adjusted to have a high degree of symmetry via,

E → E,

B → 1

c
B.

The symmetrised Maxwell’s equations, for a free field in a vacuum in S.I. units are,

therefore,
∇ ·E = 0,

∇ ·B = 0,

∇×E = −1

c

∂B

∂t
,

∇×B =
1

c

∂E

∂t
.

(2.26)

E is the electric field vector, B is the magnetic field vector, c is the speed of light

in a vacuum and t is time. Every other mathematical operator takes on their usual

meaning.

Bateman’s construction creates a complex vector field, R, in dimensions (3+1) where

the electric field and magnetic field are the real and imaginary parts, respectively,

R = E + iB. (2.27)

This is usually referred to as the Riemann-Silberstein vector [34], and assumes that

the electric and magnetic fields themselves are comprised of real sets of numbers. It

is important that Maxwell’s equations can be retrieved from this equation, otherwise

it would hold no meaning in reality. To retrieve the first two of Maxwell’s equations,

the divergence of the field will be taken and put equal to zero,

∇ ·R = ∇ · (E + iB) = 0 = ∇ ·E + i∇ ·B.
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Taking the real and imaginary parts,

∇ ·E = <(∇ ·R) = 0, (2.28)

∇ ·B = =(∇ ·R) = 0. (2.29)

This, therefore, shows that the first two of Maxwell’s equations can be retrieved from

this complex vector field. Maxwell’s next two equations are encompassed by:

∇×R =
i

c

∂R

∂t
. (2.30)

Below, the straight forward proof is shown:

∇×R = ∇× (E + iB) = ∇×E + i(∇×B) = −1

c

∂B

∂t
+ i

(
1

c

∂E

∂t

)
∇×R =

i

c

∂E + iB

∂t
=
i

c

∂R

∂t
.

(2.31)

For this, newly constructed, complex vector field, Maxwell’s equations can be sum-

marised by the following,
∇ ·R = 0,

∇×R =
i

c

∂R

∂t
.

(2.32)

It is then customary to express this newly constructed vector field in terms of a couple

of complex scalar functions, α(x, y, z, t) and β(x, y, z, t), using the following ansatz,

R = E0∇α×∇β =
i

c

(
∂α

∂t
∇β − ∂β

∂t
∇α
)
, (2.33)

where E0 is an arbitrary constant with units of electric field. These complex functions

are dimensionless and, as will be demonstrated in the next section, can be written

in terms of space-time coordinates, along with a scale factor, k. Equation 2.33 is

important, as it enables one to check the validity of each form that α and β assume.

This amounts to the following conditions:

∇2α− ∂2α
∂t2

= 0,

∇2β − ∂2β
∂t2

= 0,

∇α · ∇β − ∂α
∂t

∂β
∂t

= 0.

(2.34)

To establish this, one must take the x-component of the left hand side of equation

2.33 and then square it to give:

(∇α×∇β)2x =

(
∂α

∂y

∂β

∂z
− ∂β

∂y

∂α

∂z

)2

. (2.35)
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2.2. KNOTTED SOLUTIONS TO MAXWELL’S EQUATIONS

Which after some manipulation looks like,

(∇α×∇β)2x =

(
∂2α

∂y2
+
∂2α

∂z2

)(
∂2β

∂y2
+
∂2β

∂z2

)
−
(
∂α

∂y

∂β

∂y
+
∂β

∂z

∂α

∂z

)2

. (2.36)

If one then uses equations 2.34,

(∇α×∇β)2x =

(
∂2α

∂t2
− ∂2α

∂x2

)(
∂2β

∂t2
− ∂2β

∂x2

)
−
(
∂α

∂t

∂β

∂t
− ∂β

∂x

∂α

∂x

)2

. (2.37)

Expanding and then simplifying finally gives,

(∇α×∇β)x =
i

c

(
∂α

∂t

∂β

∂x
− ∂β

∂t

∂α

∂x

)
. (2.38)

The above, when repeated for the y and z coordinates, gives the right hand side

of equation 2.33. It is important to check that the chosen ansatz meets the same

requirements that the Riemann-Silberstein vector has demonstrated in equations 2.32.

∇ · (∇α×∇β) =

(
∂2α

∂x∂y

∂β

∂z
+
∂α

∂y

∂2β

∂x∂z
− ∂2β

∂x∂y

∂α

∂z
− ∂β

∂y

∂2α

∂x∂z

)
+(

∂2β

∂y∂x

∂α

∂z
+
∂β

∂x

∂2α

∂y∂z
− ∂2α

∂y∂x

∂β

∂z
− ∂α

∂x

∂2β

∂y∂z

)
+(

∂2α

∂z∂x

∂β

∂y
+
∂α

∂x

∂2β

∂z∂y
− ∂2β

∂z∂x

∂α

∂y
− ∂β

∂x

∂2α

∂z∂y

)
=0.

(2.39)

All the terms cancel, as shown, to give ∇ ·R = 0 where R = ∇α×∇β and, therefore,

the first two of Maxwell’s equations. As with the previous form of R, it is important

to find the second set of Maxwell’s equations - but using α and β. Starting with

equation (2.33) and substituting equation (2.32) into it gives,

i

c

∂∇α×∇β
∂t

=∇×R

=∇×∇α×∇β.
(2.40)
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Taking the left hand side first,

i

c

∂∇α×∇β
∂t

=
i

c

∂

∂t

[(
∂α

∂y

∂β

∂z
− ∂β

∂y

∂α

∂z

)
x+

(
∂β

∂x

∂α

∂z
− ∂α

∂x

∂β

∂z

)
y +

(
∂α

∂x

∂β

∂y
− ∂β

∂x

∂α

∂y

)
z

]

=
i

c

( ∂2α

∂t∂y

∂β

∂z
+
∂α

∂y

∂2β

∂t∂z
− ∂2β

∂t∂y

∂α

∂z
− ∂β

∂y

∂2α

∂t∂z

)
x+

(
∂2β

∂t∂x

∂α

∂z
+
∂β

∂x

∂2α

∂t∂z
− ∂2α

∂t∂x

∂β

∂z
− ∂α

∂x

∂2β

∂t∂z

)
y+

(
∂2α

∂t∂x

∂β

∂y
+
∂α

∂x

∂2β

∂t∂y
− ∂2β

∂t∂x

∂α

∂y
− ∂β

∂x

∂2α

∂t∂y

)
z

 .
Here, the algebra has brought the partial differential operator, ∂

∂t
, into the brackets.

In the same way that, that operation has occurred, the process of bringing an applied

operator outside of the brackets can be achieved. This gives,

i

c

∂∇α×∇β
∂t

=
i

c

[(
∂

∂y

(
∂α

∂t

∂β

∂z
− ∂β

∂t

∂α

∂z

)
− ∂

∂z

(
∂β

∂y

∂α

∂t
− ∂α

∂y

∂β

∂t

))
x+

(
∂

∂z

(
∂β

∂x

∂α

∂t
− ∂α

∂x

∂β

∂t

)
− ∂

∂x

(
∂α

∂t

∂β

∂z
− ∂β

∂t

∂α

∂z

))
y+

(
∂

∂x

(
∂α

∂t

∂β

∂y
− ∂β

∂t

∂α

∂y

)
− ∂

∂y

(
∂β

∂x

∂α

∂t
− ∂α

∂x

∂β

∂t

))
z

 .
It becomes fairly obvious that this is a curl acting on a relation between α and β and

time derivatives. The equation can therefore be written,

i

c

∂∇α×∇β
∂t

=
i

c
∇×

(
∂α

∂t
∇β − ∂β

∂t
∇α
)
. (2.41)

The dynamical parts of Maxwell’s equations in terms of α and β are,

∇× (∇α×∇β) = ∇×
[
i

c

(
∂α

∂t
∇β − ∂β

∂t
∇α
)]

. (2.42)

This equation, therefore, demonstrates the other form of the initial ansatz,

R =
i

c

(
∂α

∂t
∇β − ∂β

∂t
∇α
)
. (2.43)

This shows ∇α × ∇β has the same properties that are required by the Riemann-

Silberstein vector (equation 2.32) and can return Maxwell’s equations. There is one,
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final property that needs to be constrained before any complex functions can be

inserted into α and β for testing. The field should be a null-field,

R2 = 0. (2.44)

To prove that the fields are, in-fact, null, the original form of our complex vector field

will be substituted into the above equation,

R2 = (E + iB)2

= E2 −B2 + 2iE ·B = 0.
(2.45)

Taking the real and imaginary parts,

<
(
R2
)

= E2 −B2 = 0,

E2 = B2,
(2.46)

=
(
R2
)

= 2E ·B = 0, (2.47)

which quite clearly demonstrates the null-field conditions. This is also confirmed with

the α and β configurations (equation 2.33).

This concludes the construction of the null complex vector field, R, that has been

shown to give Maxwell’s equations and written in a way that combinations of complex

scalar functions can be inserted. This allows for exploration of how they affect the

nature of the electric and magnetic fields.

2.2.2 An Extension to an Infinite Family of Solutions

In 2013, Kedia et al. produced a remarkable extension to Bateman’s construction

method which, in the case of the knotted solutions to Maxwell’s equations, produced

the whole family of torus knots [16]. This method will be explained, before applying

it to project the Hopf fibration and torus-knotted solutions into electromagnetic field

lines. Starting with a couple of analytic functions of α and β,

f(α, β), and g(α, β). (2.48)

One can define another function,

h(α, β) =
∂f

∂α

∂g

∂β
− ∂f

∂β

∂g

∂α
. (2.49)

If one considers the following form of R,

R = ∇f(α, β)×∇g(α, β) = h(α, β)(∇α×∇β), (2.50)
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it can be shown that,

R = i

(
∂f

∂t
∇g − ∂g

∂t
∇f
)

= h(α, β)i

(
∂α

∂t
∇β − ∂β

∂t
∇α
)
. (2.51)

Therefore, as this conforms to the conditions set by Bateman’s construction, and re-

turns the initial ansatz, the result is an equation that produces an infinite family of

solutions, determined by α and β.

Now that the construction of an infinite family of solutions has been demonstrated,

the null condition and its relevance to the time evolution of the fields should be fur-

ther discussed. Underlying each null knotted electromagnetic field, there is a velocity

field that transports the electric and magnetic field lines as if they were suspended in

a flowing fluid. For the Hopfion solution the velocity field is commonly referred to as

the Robinson congruence [4][35]. The preservation of the orthogonality of the fields

(due to enforcing the null condition), within this fluid-like transportation, makes the

fields shear-free - this is referred to as the frozen field condition [15]. At time t = 0,

the velocity field is a tangent to the Poynting vector field and remains fixed in form

as it moves at the speed of light in the −z direction. The electric and magnetic

field lines propagate along these straight lines given by the velocity field at this time.

Therefore, to find the form of the electric and magnetic fields at a later time, it is only

necessary to know the velocity field at t = 0. Irvine proved that, for the Hopf-knotted

electromagnetic field setup, this null condition - present at t = 0 - is the key to the

preservation of the topology within the field lines [15]. Previously, this was considered

due to the conserved helicity of the field lines [3].16 Irvine gave an example of a field

that, at t = 0, is not null, but has its helicity conserved. He showed that, over time,

the topology of the fields was lost. This null condition is, therefore, hugely important

in preserving the topology within the electromagnetic field lines. Because Bateman’s

construction enforces this condition, it is ideal for application within this research.

An interesting consequence, when considering a whole family of solutions, is that,

across them all, the normalised Poynting field is always the same. To demonstrate

this, consider the Poynting field [36] - given by,

S =
1

µ0

(E×B). (2.52)

16Helicity is commonly use to determine the linking number or knottedness of the fields.
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The normalised Poynting field is, therefore,

S̃ =
(E×B)

|E×B|
. (2.53)

This can be written in terms of the Riemann-Silberstein vector and its complex con-

jugate,

S̃ = i
(

R×R∗
R·R∗

)
= i |h(α,β)|

2

|h(α,β)|2
(∇α×∇β)×(∇α∗×∇β∗)
(∇α×∇β)·(∇α∗×∇β∗)

= i (∇α×∇β)×(∇α∗×∇β∗)
(∇α×∇β)·(∇α∗×∇β∗) .

(2.54)

No matter the forms of f(α, β), g(α, β), and therefore h(α, β), the normalised Poynt-

ing field remains unchanged for all members of that family. For the Hopf fibration,

the normalised Poynting field, its constancy with time, and its relation to the elec-

tric and magnetic fields’ deformations through the velocity field is futher analysed in

section 2.2.4.

2.2.3 Examples and Proofs

To further demonstrate the validity of Bateman’s construction, one can consider an ex-

ample involving circularly polarised plane waves.This example was originally demon-

strated by Bialynicki-Birula and then by Kedia, et al., alongside the Hopf fibration

solution - which will be described in section 2.2.4 [13][16]. The choices for the input

functions are as follows:

α = kz − ωt, β = kx+ i ky,
f(α, β) = ei α, g(α, β) = β.

(2.55)

Where k is the wave number and ω the angular frequency. It is now necessary to

check that these choices of α and β are suitable inputs for the Riemann-Silberstein

vector.

(∇α)2 −
(
∂α
∂t

)2
= 0,

(∇β)2 −
(
∂β
∂t

)2
= 0,

∇α · ∇β − ∂α
∂t

∂β
∂t

= 0.

(2.56)

These, clearly, conform to the relations given by equations 2.34. The input functions

can now be inserted into equation 2.50,

R = E0∇f(α, β)×∇g(α, β),
= E0(kx̂ + i kŷ)ei(kz−ωt).

(2.57)
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Where E0 is an arbitrary constant with units of electric field. Breaking R up into its

real and imaginary parts for the electric and magnetic fields:

E = E0(cos(kz − ωt)kx̂− sin(kz − ωt)kŷ),
B = E0(sin(kz − ωt)kx̂ + cos(kz − ωt)kŷ).

(2.58)

Section 2.2.2 demonstrated that infinite families of solutions could be created where

a function h(α, β) = ∂f
∂α

∂g
∂β
− ∂f

∂β
∂g
∂α

. This led to a shared, unchanging, normalised

Poynting field being observed across the whole family of solutions. For the circularly

polarised fields, the normalised Poynting field is calculated via,

S̃ = i
(

R×R∗
R·R∗

)
= kẑ.

(2.59)

This result is exactly what one would expect and further corroborates the applicabil-

ity of Bateman’s construction for the purposes of examining electromagnetic fields.

2.2.4 The Hopf fibration and the Electromagnetic Field

This chapter has, so far, given the framework for understanding a new development of

the electromagnetic field through Bateman’s construction, alongside giving equations

to view a noteworthy mapping from S3 → S2, the Hopf fibration, in R3, via stereo-

graphic projection. This thesis will now combine the contents of the previous sections

to project the Hopf fibration into the electromagnetic field lines as exact solutions

to Maxwell’s equations. The input functions as stated by Bialynicki-Birula [13], and

then by Kedia, et al. [16], give the form of the Robinson congruence that underlies

the Hopf fibration, and are shown by,

α = −d
b
, β = −i a

2b
,

f(α, β) = 1
α2 , g(α, β) = β,

(2.60)

where,

a = kx− i ky, b = kct− i− kz, d = k2x2 + k2y2 + k2z2 − (kct− i)2. (2.61)

Above, k is a scale factor with units of inverse distance and c is the speed of light.

To make the forms comparable to the equations given for the Hopf fibration, this is

written as,

α = −k
2x2 + k2y2 + k2z2 − (kct− i)2

kct− i− kz
, β = −i kx− i ky

2(kct− i− kz)
. (2.62)
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These forms of α and β were furthered by Kedia et al. [16] to give the inputs to

project the Hopf fibration into the electric and magnetic fields, and then extend them

to an infinite family of results (see section 2.2.5).

α =
k2r2 − k2c2t2 − 1 + 2i kz

k2r2 − (kct− i)2
, β =

2(kx− i ky)

k2r2 − (kct− i)2
, (2.63)

where r2 = x2 + y2 + z2. The forms of α and β given here are, strangely, the inverse

stereographic projection coordinates (see equation 2.25) when t = 0 - which is a pro-

jection from R3 → S3. This seems counter-intuitive since, to view the Hopf fibration

mathematically, one has to take the stereographic projection of the inverse map of

the Hopf-map. One can assume that this comes about through its relation to the

Robinson congruence.

These equations now need to be tested for legitimacy for use within the Riemann-

Silberstein vector (and, therefore, Maxwell’s equations) according to equations 2.33

and 2.34.

(∇α)2 −
(
∂α
∂t

)2
= 0,

(∇β)2 −
(
∂β
∂t

)2
= 0,

∇α · ∇β − ∂α
∂t

∂β
∂t

= 0.

(2.64)

Therefore, the following condition holds,

∇α×∇β =
i

c

(
∂α

∂t
∇β − ∂β

∂t
∇α
)
. (2.65)

Finally,

|α|2 + |β|2 = 1. (2.66)

This demonstrates that these combinations of α and β are coordinates on S3. When

α and β get inserted into the Riemann-Silberstein vector,

R = E0
4

(A+ 2ikct)3

 (kct− kx− kz + i(ky − 1)(−kct− kx+ kz + i(ky + 1)),
−i(kct+ ky − kz + i(kx− 1))(−kct+ ky + kz + i(kx+ 1)),

2(kx− iky)(−kct+ kz + i)

 ,

(2.67)

where E0 is an arbitrary constant with units of electric field. The components of the

electric and magnetic fields are the real and imaginary parts of R, respectively:

Ex = − 4E0

(A+ 2ikct)3
(A4 − 2A3k2(y2 + z2 − ctz)− 12A2k2ct(kxy + z) + 24Ak4c2t2(y2 + z2 − ctz) + 16k4c3t3(−ct+ kxy + z)),

(2.68)
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Ey = − 4E0

(A+ 2ikct)3
(−2A3k(kxy − z − 2ct)− 12A2k2ct(kx2 + kz2 − z) + 24Ak3c2t2

(
kxy +

2ct

3
− z
)

+ 16k5c3t3(x2 + z2 − ctz)),

(2.69)

Ez = − 4E0

(A+ 2ikct)3
(−2A3k(kx(ct− z)− y)− 12A2k2ct(ky(z − ct)− x) + 24Ak3c2t2(kx(ct− z)− y) + 16k4c3t3(ky(z − ct)− x)),

(2.70)

Bx = − 4E0

(A+ 2ikct)3
(−2A3k(kxy + z − 2ct)− 12A2k3ct(czt− z2 − y2) + 24Ak3c2t2

(
kxy + z − 2ct

3

)
+ 16k5c3t3(ctz − z2 − y2)),

(2.71)

By = − 4E0

(A+ 2ikct)3
(A4 − 2A3k2(x2 + z2 − ctz)− 12A2k2ct(−kxy + z) + 24Ak4c2t2(x2 + z2 − ctz) + 16k4c3t3(−ct− kxy + z)),

(2.72)

Bz = − 4E0

(A+ 2ikct)3
(−2A3k(z − x− y)− 12A2k2ct(y + kx(z − ct)) + 24Ak3c2t2(ky(z − ct)− x) + 16k4c3t3(y + kx(z − ct))).

(2.73)

In the above, A = 1
2
(k2x2 + k2y2 + k2z2− k2c2t2 + 1). If one considers these fields for

fixed time, t = 0, they give the stereographic projection coordinates of the pre-image

of the Hopf-map in the electric, magnetic, and Poynting fields. Each are orthogonal

to each other and are centred at the origin (see figure 2.17).

E = 4E0

(k2x2+k2y2+k2z2+1)3
(k2y2 + k2z2 − k2x2 − 1,−2k(kxy − z),−2k(y + kxz))

B = 4E0

(k2x2+k2y2+k2z2+1)3
(2k(kxy + z), k2y2 − k2z2 − k2x2 + 1,−2k(x− kyz)

S = 1
µ0

16
(k2x2+k2y2+k2z2+1)5

(−2k(kxz − y),−2k(kyz + x), k2x2 + k2y2 − k2z2 − 1)

(2.74)

This structure is preserved within the Poynting fields but deforms, with time, through-

out the electric and magnetic fields. Although the field lines deform, the topology

of the Hopf fibration remains with time, due to the field lines’ translation via the

velocity field.17

2.2.5 The Production of the Whole Family of Torus Knots
as Solutions to Maxwell’s Equations

Kedia, et al. [16] established that the whole family of torus knots could be produced

within Bateman’s constructed fields. They utilise a particular proof, originally ex-

pounded by Milnor [17], and later employed by Dennis, et al. [37] in their work on

optical vortices in the zeroes of intensity in light beams. This proof showed that, if

there is a pair of complex numbers where up ± vq = 0, where (u, v) ∈ C2, such that

17See the paper by Irvine for a complete proof of this [15], and their figure 3 for a geometric
demonstration of this.
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Figure 2.17: One latitude level of S2 from the Hopf fibration projected into the
electric, magnetic, and Poynting fields at time t = 0

|u|2 + |v|2 = 1, these numbers will produce a (p, q)-torus knot - when p and q are

co-prime, and (p, q) > 1. Clearly, these sets of numbers are also coordinates on S3.

Kedia, et al. used this theorem to select the input functions (f(α, β) and g(α, β))

to apply to their specified α and β for the Hopf fibration and to be entered into the

Riemann-Silberstein vector.

α = k2r2−k2c2t2−1+2i kz
k2r2−(kct−i)2 , β = 2(kx−i y)

k2r2−(kct−i)2 ,

f(α, β) = αp, g(α, β) = βq.
(2.75)

These input functions are put into equations 2.33 and 2.34 to check viability for use

within the Riemann-Silberstein vector and, therefore, Maxwell’s equations:

(∇α)2 −
(
∂α
∂t

)2
= 0,

(∇β)2 −
(
∂β
∂t

)2
= 0,

∇α · ∇β − ∂α
∂t

∂β
∂t

= 0,

(2.76)

∇α×∇β =
i

c

(
∂α

∂t
∇β − ∂β

∂t
∇α
)
. (2.77)

To prove that they are, indeed, coordinates sat on S3,

|α|2 + |β|2 = 1. (2.78)

The choices of α and β conform to the initial conditions and, therefore, so too do

f(α, β) and g(α, β). This is now inserted into the Riemann-Silberstein vector,

R = E0∇αp ×∇βq
= E0pqα

p−1βq−1(∇α×∇β),
(2.79)
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where,

h(α, β) = pqαp−1βq−1. (2.80)

It becomes transparent that the Hopfion solution is a limiting case of this torus-

knotted set-up where if p = 1 and q = 1, this equation returns the Hopf fibration

within the fields - in the same manner as in section 2.2.4. Any value can be assigned

to p and q, but only those that are co-prime will return torus knots within the fields.

All other number combinations return torus links.

2.2.6 Visualisation of the Electromagnetic Fields

To gain a complete picture of what the mathematics describes, it is useful to find

a geometric method of visualising what these fields look like. This section aims to

address this, while expanding upon recently published work on zilches, authored by

Smith and Strange (see Chapter 3) [38][39]. The method broached was originally

discussed by Kedia, et al. [16] and availed further by Hoyos, et al. [40]. It defines

a scalar field that can be used to create the electric and magnetic fields to study

their topology. In order to make it applicable to Chapter 3 of this thesis, it needs

generalising. Defining,

φ = αβ = φ1 + i φ2, (2.81)

it can be shown that if R = ∇α×∇β, then,

R · ∇φ = 0. (2.82)

If one takes the real and imaginary parts of this relation,

E · ∇φ1 −B · ∇φ2 = 0,
B · ∇φ1 + E · ∇φ2 = 0.

(2.83)

These equations will always be satisfied. There are a number of outcomes that arise

from these equations which allow the scalar functions φ1(2) to be fully characterised.

If, for example, the first of the two equations is satisfied because the scalar products

are both zero, then φ1 and φ2 represent the electric and magnetic fields, respectively.

Or, if the second of the two equations is satisfied because, again, each scalar product

is zero, then it can be said that φ1 and φ2 represent the magnetic and electric fields,

respectively. There is also the usual case, where the two equations are satisfied be-

cause the scalar products cancel out. In this situation, both φ1 and φ2 are needed to

describe the total electromagnetic field, but do not describe the electric and magnetic

fields separately. Therefore, φ is a complex scalar field that we can use to examine
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the topology of the electromagnetic fields, where at each point in space there is a real

and imaginary component. In the set-up of the knotted electromagnetic fields the

second of the two equations is satisfied for the above reason and, therefore, φ1 and

φ2 represent the magnetic and electric fields, respectively.

This is a productive way of viewing each of the fields, as the topology of the field lines

is preserved on the scalar surfaces. The surfaces do not appear, as one may imagine,

for imaging surfaces of the Hopf fibration or the torus knots - as they appear within

the fields. Take the Hopf-knotted electromagnetic fields, for example. If one considers

multiple points from a choice of latitude levels of S2, the pre-image stereographically

projected into the magnetic (electric) field lines take on the form of figure 2.18. Take,

for instance, a single latitude level of S2 - the projected field lines would map out a

perfectly symmetric torus (see figure 2.15). In the vector field plots, the field lines

for both the electric and magnetic fields are each linked once through their mutual

centre, with the separate fields sat orthogonal to each other. This means that, if one

considered one latitude level of S2, the results would be two single torus surfaces sat

at 90◦ to each other - with the holes of both tori coinciding (see figure 2.17). As figure

2.19 demonstrates, the scalar surfaces link through the tori holes and are deformed.

Figure 2.18: The three levels of S3 from the Hopf fibration projected into R3

35



2.2. KNOTTED SOLUTIONS TO MAXWELL’S EQUATIONS

Figure 2.19: One magnitude level of the electric and magnetic scalar fields

To explain the reasons for this seemingly abnormal appearance within the scalar fields,

one must consider the equation used to create the gradient field. The equations below

demonstrate that, for the magnetic field, there is an orthogonal vector field, diver-

gence with the magnetic field of which is zero. This can be seen as a rotation of the

magnetic field by π
2
.

Before advancing on this discussion in more detail, it is necessary to consider the

method to turn a torus ‘inside-out’. It is possible, within topology, to puncture a

torus and peel it over itself to create an orthogonal torus, the axis of which has been

flipped, before resealing the original hole (see figure 2.20). This means that a circle on

the original torus surface, that was mapped out in the toroidal direction, will appear

in the poloidal direction on the surface of the inside-out torus. Most simply, circles

on the original torus become bands on the inside-out torus. The hole through the

original torus becomes the inside of the inverted torus.
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Figure 2.20: The puncturing and turning inside-out of the torus to form an
orthogonal torus18

Within the vector field, the field lines take on the usual characteristics, where a higher

density of field lines produces a stronger magnitude, and a lower density of field lines

produces a weaker magnitude. Contemplate the Hopf fibration projected into one

field - the magnetic field (figure 2.18). The field lines are the closest together as they

pass through the middle of the torus and denote the region of highest magnitude. The

field lines are furthest apart on the largest circumference of the torus and represent

the region of lowest magnitude. The circles and bands can be represented by the re-

gions of high or low magnitude of the vector field, when considering a single latitude

level of S2 - (figure 2.21). The magnitude of the inside-out torus is now contained as

bands that wrap around the poloidal direction of the torus, as opposed to the toroidal

direction demonstrated by the initial torus.

18Image sourced at [41].
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High Magnitude

Medium Magnitude

Low Magnitude

Original torus with 

magnitudes distributed

according to the density 

of field lines

Orthogonal torus

with magnitudes

transformed

Figure 2.21: The magnitudes of both the original and inside-out torus

This new inside-out torus can represent our orthogonal scalar gradient field, ∇φ1.

But the scalar fields underlying this vector field are deformed, as shown in figure

2.22.

Vector Field Scalar Field

High Magnitude

Medium Magnitude

Low Magnitude

Figure 2.22: The deformation of the scalar torus

The problem of thinking about peeling the torus inside-out is that it would be applied

to the projection from the pre-image of the Hopf-map and, therefore, cannot produce

the same deformed fields. Another way to achieve this is through rotations within S3,
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rather than in R3. If a torus is rotated in the three-sphere, it can be deformed and

turned completely inside-out through a rotation - without the need to puncture it.

The stereographic projection of a smaller rotation will look the same as the deformed

scalar plots in figure 2.19.19 Therefore, one way to reflect on the orthogonal gradient

field - the dot product with the magnetic (electric) field of which is zero - is a rotation

of the magnetic (electric) field within the three sphere. The stereographic projection

of this reveals a deformed torus the core of which is the inside of the orthogonal field

and is shown to be knotted around the electric (magnetic) field. Tori deformed in

this way are called Dupin cyclides [43].

This explains the deformed nature of each of the scalar fields. However, that, alone,

does not account for the illumination of the knottedness of the fields. That comes

from an understanding of what exactly is being knotted within the fields - the holes

through the middle of the initial torus. The hole through the middle of the initial

torus became the inside of the orthogonal torus that lead to the scalar field depiction.

Therefore, the scalar field plots demonstrate precisely how the cores of the electric

and magnetic field tori are knotting around each other. Their deformed shape is

accounted for by the mathematics of rotations within the three-sphere.

Now that a method for visualising the different knots geometrically has been estab-

lished, examples of knots projected into the electric and magnetic fields are required.

19Banchoff has created animations demonstrating this [42]
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Knot Type
a

p=1, q=1 trivial torus
knot

Top View
b

p=1, q=1 in the electric
and magnetic scalar fields,

φ1(2) = 0.45

Isometric View
c

p=1, q=1 in the electric
and magnetic scalar fields,

φ1(2) = 0.45

d

p=1, q=2 trivial torus
knot

e

p=1, q=2 in the electric
and magnetic scalar fields,

φ1(2) = 0.35

f

p=1, q=2 in the electric
and magnetic scalar fields,

φ1(2) = 0.35

g

p=2, q=1 trivial torus
knot

h

p=2, q=1 in the electric
and magnetic scalar fields,

φ1(2) = 0.25

i

p=2, q=1 in the electric
and magnetic scalar fields,

φ1(2) = 0.25

Figure 2.23: Scalar plots of the electric and magnetic fields with differing trivial
(p, q)-knots, projected at different magnitudes of φ1(2)
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Knot Type
j

p=2, q=3 torus knot

Top View
k

p=2, q=3 in the electric
and magnetic scalar fields,

φ1(2) = 0.18

Isometric View
l

p=2, q=3 in the electric
and magnetic scalar fields,

φ1(2) = 0.18

m

p=3, q=10 torus knot

n

p=3, q=10 in the electric
and magnetic scalar fields,

φ1(2) = 0.005

o

p=3, q=10 in the electric
and magnetic scalar fields,

φ1(2) = 0.005

m

p=10, q=7 torus knot

n

p=10, q=7 in the electric
and magnetic scalar fields,

φ1(2) = 0.0005

o

p=10, q=7 in the electric
and magnetic scalar fields,

φ1(2) = 0.0005

Figure 2.24: Scalar plots of the electric and magnetic fields with differing
(p, q)-knots projected at different magnitudes of φ1(2)
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It can be seen that, in the scalar fields, both the electric and magnetic fields take on

the shape of the corresponding torus knots - and are both linked with each other.

This is to be expected, as the scalar fields show the cores of the vector fields knotting

around each other. These plots are all for t = 0. The electric and magnetic fields

warp with the flow of time. This is demonstrated in figure 2.25 for a couple of knot

types. With time, the fields warp, whilst expanding outward in the x− y plane and

translating along the z-axis at the speed of light. The warping is related to the need

to remain orthogonal to the velocity field (normalised Poynting field), which remains

constant with time. Although the fields warp, the topology in the field lines is pre-

served.
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t = 0
a

p=1, q=1

t = 1
b

t = 5
c

d

p=2, q=1

e f

g

p=2, q=3

h i

Figure 2.25: Time evolution for three different knots projected into the electric and
magnetic field lines
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2.2.7 Known Properties of Knotted Solutions to Maxwell’s
Equations

Now that the Hopf and torus-knotted fields have been demonstrated, some of the

properties of the fields will be reviewed in order to obtain a greater comprehension

of the area on which this thesis focuses. A list of a selection of conserved quantities

within the Hopf-knotted and torus-knotted fields are known [16][40]. The densities

of known, conserved quantities within the electromagnetic fields are shown below in

table 2.1. The final values of the conserved quantities are given, once integrated over

all three dimensional real space, R3 - where; E, B, are the electric and magnetic field

vectors and A, C are the magnetic vector potential and the electric equivalent (where

E = ∇×C).

Quantity Expression
Energy Density: ξ = 1

2
(E2 + B2),

Momentum Density: p = (E×B),
Angular Momentum Density: l = (p× x),
Magnetic Helicity Density: hmm = A ·B,
Electric Helicity Density: hee = C · E,

Table 2.1: Table displaying the densities of known, conserved quantities

The helicities of each field are topological constants which indicate the linking number

of the field. Each density has been integrated over all space to confirm the previous

results, by employing a combination of algebraic and numerical mathematics in Maple

and Matlab. The results for all (p, q)-knotted solutions are all related to the total

energy of the field given by,

Ep,q =
2 (p+ q) p q π2p!q!ε0E

2
0

(p+ q)!
k. (2.84)

This can be written in terms of the total energy of the Hopfion solution,

E1,1 = 2π2kε0E
2
0 , (2.85)

giving,

Ep,q =
p q p!q!

(p+ q − 1)!
E1,1, (2.86)

where E0 is an arbitrary constant, with units of electric field times distance squared,

k is a scaling factor with units of inverse distance, and ε0 is the usual permittivity of

free space - all of which are set to unity. A beneficial way of viewing this family of

knotted solutions to Maxwell’s equations is not necessarily as independent fields, but
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of excitations of a single field - the Hopf-knotted field. The conserved quantities for

the knotted fields in terms of the total energy of the field are therefore,

Quantity Expression
Momentum: Pp,q = (0, 0,− p

p+q
Ep,q),

Angular Momentum: Lp,q = (0, 0,− q
p+q

Ep,q),

Magnetic Helicity: Hm
p,q = 1

p+q
Ep,q,

Electric Helicity: He
p,q = 1

p+q
Ep,q.

Table 2.2: Table displaying the conserved quantities in terms of the winding
numbers of the fields, (p, q), and the total energy of the fields, Ep,q

2.3 Summary

This chapter aimed to provide a theoretical and mathematical framework for the re-

search presented in this thesis. The subsequent chapters draw from this foundation

knowledge. This chapter has provided an historical review of the most relevant liter-

ature and permits an understanding of the position of this study within the context

of previous research.

This research examines properties of knotted electromagnetic fields. Therefore, the

essentials of knot theory were central to this chapter - including detailed descriptions

of the Hopf fibration, torus knots and other knot invariants. The method by which one

can view the Hopf fibration (the mapping S3 → S2) - stereographic projection - was

discussed in order to facilitate further deliberation on: the mathematical approach to

this research; and why and how the Hopf fibration is projected into electromagnetic

fields. An extension to this was demonstrated, producing an infinite family of solu-

tions - torus knots.

In order to provide a basis for understanding Chapter 3 and 4, an exploration of how

the Hopf fibration, and family of torus knots, could be projected into the field lines

of charge-free solutions to Maxwell’s equations was provided, demonstrating an im-

portant method: Bateman’s construction. This construction preserves the topology

of the fields for all time.

A novel method for visualising knotting and linking of the cores of the electromag-

netic fields was exhibited via the scalar fields. It was shown that, via a rotation of the
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three-sphere, the tori that make up the projection of the Hopf fibration were turned

inside-out. When viewed through the scalar fields, they produced Dupin cyclides.

This method of visualisation allows one to observe a deep topological connection

with zilches (see Chapter 3).

Finally, the known properties of the Hopf-knotted and torus-knotted fields were shown

to be related to the total energy of the field. In addition, an interpretation - which

allows the properties to be written in terms of the total energy of the Hopfion solution

- was outlined. The known, conserved quantities of the fields are shown to be related

to zilches in Chapter 3.
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CHAPTER

THREE

ZILCHES OF KNOTTED ELECTROMAGNETIC FIELDS

In 1964, Lipkin discovered a set of ten conserved quantities within electromagnetism,

represented by a third-rank tensor which he collectively named, the ‘zilch’ [44]. The

zilches were shown to have units of force - but Lipkin felt that they might be linked,

in some way, to the helicity of fields of light. They demonstrated changes of direc-

tion of flow, when examined in the context of the handedness of circularly polarised

plane-waves (with respect to the propagation direction). However, they could not be

linked with units of angular momentum. Further, the flow of zilch could not be found

for linearly polarised plane-waves - lending additional weight to Lipkin’s conjecture.

Lipkin suggested they were independent of the electromagnetic stress energy tensor,

as they could not be linked to its derivatives. Since their introduction, the zilches

have been heavily investigated and explored in numerous papers. They are under-

stood mathematically, but their physical nature is still debated.

In the subsequent year, the questions initially posed by Lipkin attracted various re-

sponses. Candlin [45], followed by Morgan [46], O’Connell and Tompkins [47] and

Kibble [48], all managed to show that, for any free field, one can find an infinite num-

ber of conserved quantities, with densities that are bilinear functions of the charge-free

electromagnetic fields. Candlin specifically related these extensions to optical helicity.

Kibble demonstrated how the zilches were related to usual quantities in electromag-

netism: the electromagnetic field tensor; and the Maxwell stress-energy tensor. Each

author made the inference that it was unlikely any physical significance would be

found from further examination of the zilches.
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In 1918, Noether expounded a remarkable theorem which showed that a conservation

law would imply a symmetry of the Lagrangian [49]. For the zilches (conserved quan-

tities), this symmetry remained a mystery until recently. Their conservation has been

shown to be a symmetry involving the second derivative of both the magnetic and

electric vector potential [50] - and of the magnetic vector potential [51]. Previously,

this symmetry has also been suggested for the individual zilches [52][53].

In the attempt to find a physical interpretation of the zilches, the literature has mainly

been restricted to the Z000 zilch. Z000 has been thought of as a measure of optical

chirality and has been used in this capacity to successfully predict and interpret ex-

periments [54][55]. For monochromatic light, Z000 has been shown to be proportional

to the helicity of the field and the Z0j0-zilches have been proved proportional to the

components of spin of the fields [56][57][58]. As emphasised by Cameron and Barnett

[50], there are no such proportionalities in a polychromatic field. Beyond Z000, vir-

tually nothing has been said about the physical interpretation of the zilches. Hence,

the full meaning of these conserved quantities has remained a mystery throughout

the 55 years since their discovery. Any new contribution to the understanding of the

zilches is, therefore, of fundamental import.

This chapter explores the properties of the zilches using topologically unusual elec-

tromagnetic fields. It will demonstrate a profound connection between the topology

of three different electromagnetic fields and their zilches. Connections to the Maxwell

stress energy and angular momentum tensors are also demonstrated, through an in-

terpretation that allows the zilches to be written in terms of the other conserved

properties of the fields.
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3.1 Lipkin’s Zilches

Lipkin’s original work [44] started with the unveiling of a new conservation law in

vacuum electrodynamics. This led to the creation of a tensor formulation, the parts

of which, he conjectured, may be new physical quantities. He found that the tensor

form had symmetry properties,

Zνµγ = Zµνγ, (3.1)

which also satisfy the divergence equation,20

∂γZνµγ = 0. (3.2)

These symmetries limited the total number of independent equations to ten. Lipkin

suggested that the components in Zνµ0 should be interpreted as the spatial densities

of the conserved quantities. The components Zνµi should be interpreted as the fluxes

of the conserved quantities. The conserved quantities can be written concisely by

using only the first two indices of the original tensor. The spatial density components

of zilch can be found in vacuum, with an input of the electric field vector, E, and

magnetic field vector, B. This is given by,

Z000 =
ε0
2

(E · (∇×E) + c2B · (∇×B)), (3.3)

Z0i0 =
ε0c

2
(E × (∇×B)−B × (∇×E))i, (3.4)

Z ij0 = δijZ000− ε0
2

(Ei(∇×E)j +Ej(∇×E)i+c2Bi(∇×B)j +c2Bj(∇×B)i). (3.5)

The flux density components of zilch are given by,

Z ijk = δijZ00k +
ε0c

2

(
Bi
∂Ej
∂xk

+Bj
∂Ei
∂xk
− Ei

∂Bj

∂xk
− Ej

∂Bi

∂xk

)
. (3.6)

Finally, other symmetry relationships are that,

Z00i = Z0i0, Z0ij = Z ij0. (3.7)

Consider a surface, X, bounding a region of space in vacuum. If the densities are

integrated over a defined volume within X, they give the total conserved quantities

20Where Greek letters are used in the superscripts, they represent 1 dimension of time and the 3
dimensions of space. Where Latin letters are used, they represent the 3 dimensions of space only.
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within that region,21

Zνµ =

∫
Zνµ0 d3r. (3.8)

Lipkin concluded that these newly discovered, conserved quantities might possibly be

found in other areas of physics and, therefore, would need a defining name - zilch.22

Considering the remaining components of the zilch tensor and integrating over the

surface, Xi, of the defined volume,

Sνµ =

∫
Zνµi dXi. (3.9)

Sνµ, therefore, represents the rate of flow of zilch out of the volume. Thus, the integral

form of the conservation law is expressed, as stated in Lipkin’s paper, as,

d

dt
Zνµ = −Sνµ. (3.10)

All ten components of the total zilch for a given volume, as defined in equation 3.8,

have units of force. As Lipkin suggested, if multiplied by a factor that has dimensions

of the speed of light, it will give units of power. This implies that the zilches are a

dynamical quantity. To give further strength to Lipkin’s conjecture, the zilches do

not appear in static fields. Finally, Lipkin discussed the propagation of zilch in the

charge-free electromagnetic fields. Zilch is not transported by linearly polarised fields.

The zilch will flow in circularly polarised fields, in the same - or opposite - direction

as the energy and momentum of the field. The direction of the flow is distinctly con-

nected to the handedness of the circular polarisation. In addition, Lipkin highlighted

the linear connection between the rate of flow of zilch and the frequency of oscillation

of the field.

In this chapter, the fields employed to explore the zilches are completely distinct

from their plane-wave counterparts - those which have been used in past examina-

tions. The relationship between the zilch and the twisting of the fields will become

apparent, as they are linked to the fields’ topology. The computation of the zilches

is straightforward once the electric and magnetic field vectors are known. The cal-

culations have been carried out using the algebraic mathematics program, Maple, as

well as numerically, using Matlab. A number of sets of unusual electromagnetic fields

21For this chapter, densities will be shown via calligraphic letters, while for total, integrated
quantities, Latin letters will be used.

22Lipkin did not elaborate on his choice of name unfortunately.
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will be used to examine the role of zilches within electromagnetism, starting with the

knotted solutions to Maxwell’s equations. There are two specific areas on which this

analysis is focused: relationship of the zilches to known physical quantities of the

fields; and the relationship of the zilches to the topological properties of the fields.

3.2 Zilches in Knotted Electromagnetic Fields

Chapter Two gave a detailed description of the construction of knotted solutions to

Maxwell’s equations. Here, the results of calculating the zilches from these knotted

solutions will be presented. To be specific, the α and β used are those from equation

2.75, the powers of which, p and q, are the winding numbers - dictating which type

of torus knot or link will be projected into the field lines.

The known properties of the knotted fields are calculated to check the validity of equa-

tions given in the literature (see section 2.2.7) [40][16]. Alongside this, the zilches are

also calculated by inserting the components of the electric and magnetic fields into

equations 3.3-3.6. Initial analysis demonstrates that the zilches are not all indepen-

dent for knotted electromagnetic fields, as,

Z000
p,q = Z110

p,q + Z220
p,q + Z330

p,q . (3.11)

As the zilches are conserved quantities within the electromagnetic fields, it is nec-

essary to put them in a form for comparison with the known conserved quantities:

energy, momentum, angular momentum etc. In order to do this, the total zilch is

divided by the total energy of the field for each component. The known conserved

quantities have already been shown, in Chapter Two, to be summarised in terms of

only the winding numbers of the fields (in this set of units - with c = k = 1). Upon

examination of the zilches, patterns started emerging for all calculated combinations

of knotted field - in the form of rational numbers (see table 3.1).

This warranted further exploration - to ascertain if the zilches could be written in

terms of the winding numbers and in terms of the total energy of the fields - as

concisely as the other conserved quantities. A standardised method is required, in

order to be consistent across all results. To achieve this, an ansatz was made of the

possible form that the combination of winding numbers could take. Once multiplied

by the total energy of the field, this would reveal the zilch being analysed. The initial
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Winding Number (p,q) Z000/Ep,q Z030/Ep,q Z011/Ep,q Z022/Ep,q Z033/Ep,q

(1, 1) 5
2

−5
4

3
4

3
4

4
4

(1, 2) 7
2

−7
6

8
6

8
6

5
6

(1, 3) 9
2

−9
8

15
8

15
8

6
8

(1, 4) 11
2

−11
10

24
10

24
10

7
10

(1, 5) 13
2

−13
12

35
12

35
12

8
12

(1, 6) 15
2

−15
14

48
14

48
14

9
14

(2, 1) 8
2

−17
6

5
6

5
6

14
6

(2, 2) 10
2

−22
8

12
8

12
8

16
8

(3, 1) 11
2

−27
8

7
8

7
8

30
8

(3, 2) 13
2

−43
10

16
10

16
10

33
10

(4, 1) 14
2

−59
10

9
10

9
10

52
10

(5, 1) 17
2

−89
12

11
12

11
12

80
12

(6, 1) 20
2

−125
14

13
14

13
14

114
14

Table 3.1: Table displaying the numerical components of zilch for a variety of the
winding numbers of the fields, (p, q)

estimate was that the combinations of (p, q)-winding numbers are either linear or

quadratic in nature. For example,

Z000
p,q = (Ap2 +B q2 + C p q +Dp+ E q + F )Ep,q. (3.12)

This leaves a set of six coefficients, A-F, to be found, in order to confirm this as-

sumption. To obtain the coefficients, six simultaneous equations needed to be solved,

where the form of the zilch is calculated for a variety of (p, q)- winding numbers.

The elimination method was used in Maple to obtain algebraic forms of each of the

coefficients, in terms of the possible zilch values, for the associated inputs of p and q.

For example, taking the value for zilch in terms of the total energy of the field for a

combination of winding numbers gives,

Z000
1,1

E1,1
= (A+B + C +D + E + F ) = 5

2
,

Z000
1,2

E1,2
= (A+ 4B + 2C +D + 2E + F ) = 7

2
,

Z000
2,1

E2,1
= (4A+B + 2C + 2D + E + F ) = 8

2
.

(3.13)

Once the elimination method has been applied, the coefficients are found for each
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3.2. ZILCHES IN KNOTTED ELECTROMAGNETIC FIELDS

zilch. For Z000
p,q ,

Z000
p,q

Ep,q
=

3 p+ 2 q

2
. (3.14)

This method is applied to all the zilches, giving the results in the table below. The

results are then checked against a number of p, q-torus knots to test for validity (see

table 3.2).

Quantity Expression

Z000
p,q /Ep,q:

3 p+2 q
2

Z030
p,q /Ep,q:

(q−3p (p+q))
2(p+q)

Z110
p,q /Ep,q = Z220

p,q /Ep,q:
(q2+2 p q)
2(p+q)

Z330
p,q /Ep,q:

(3 p2+p q)
2(p+q)

Table 3.2: The zilches in terms of the total energy of the field are completely related
to the winding numbers of the field

The results have been confirmed for all combinations of winding numbers up to

p + q = 15. The forms of the zilches given here allow them to be written entirely in

terms of the other conserved quantities: momentum, angular momentum and energy

(see table 3.3).

Quantity Expression

Z000
p,q : − (p+q) k c

2
(3P z

p,q + 2 k Lzp,q)

Z030
p,q : −3(p+q) k c2 P zp,q

2Ep,q
(P z

p,q + k Lzp,q)− k2 c
2
Lzp,q

Z110
p,q = Z220

p,q :
(p+q) k2 c2Lzp,q

2Ep,q
(k Lzp,q + 2P z

p,q)

Z330
p,q :

(p+q) k c2 P zp,q
2Ep,q

(3P z
p,q + k Lzp,q)

Table 3.3: The zilches in terms of known conserved quantities of the knotted fields

As the zilches can be shown to be comprised of these conserved quantities, one can

state that the zilches are conserved. These results also allow the zilches to be used as

a gauge of other dynamical quantities within the knotted fields - although how useful
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this might be is open to interpretation.

3.2.1 Linking the Zilches to Topological Properties of the
Fields

This section will probe previously unseen connections between the zilches and the

properties of the fields. The topological constants for torus knots and links will be

shown to be embedded in the zilches and therefore show a strong topological con-

nection to the fields. In a particular set of units, the zilches reveal even more about

their structure. The units employed were selected as they are the lowest that give

all the zilches as dimensionless integers. To obtain them, the non-zero zilches are all

divided by 1
4 (p+q)

Ep,q = p q π2p!q!ε0E
2
0k

2/(2(p + q)!). The following figures (3.1-3.5)

will display a selection of seperate combinations of winding number used - and there-

fore torus knots and links explored. The numerical results for the non-zero zilches are

then specified. They will assist in the explanation of the methods used to establish

the algebraic results.
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This thesis introduces now a prescription to obtain the number of pieces of surface of

the torus knots and links via the zilches:

1. Evaluate Z000
p,q , Z030

p,q , Z110
p,q and Z330

p,q .

2. Evaluate Z000
q,p , Z030

q,p , Z110
q,p and Z330

q,p .

3. Evaluate Yp,q = gcd(Z000
p,q , Z

030
p,q , Z

110
p,q , Z

330
p,q ) and Yq,p = gcd(Z000

q,p , Z
030
q,p , Z

110
q,p , Z

330
q,p ).

4. Evaluate N s
p,q = gcd(Yp,q, Yq,p).

The value given by Np,q is exactly the number of pieces of surface associated with

the scalar knotted fields for every (p,q) and (q,p) torus knot and link examined. The

scalar knotted fields are those demonstrated in Chapter Two, revealing the underlying

topology. The number of pieces of surface are easily calculated for (p, q)-torus knots

and links - calculated as the greatest common divisor (gcd) of both p and q - and can

be seen in the scalar field plots. This prescription demonstrates that this topological

information is also encoded in the zilches. To better demonstrate this prescription,

an example will be exhibited. Below is a table giving the values of the zilches within

the previously stated units.

(p, q) (1, 5) (2, 4) (3, 3) (4, 2) (5, 1)

Z000
p,q 78 84 90 96 102

Z030
p,q −13 −32 −51 −70 −89

Z110
p,q = Z220

p,q 35 32 27 20 11

Z330
p,q 8 20 36 56 80

Yp,q 1 4 3 2 1

Np,q 1 2 3 2 1

Table 3.4: The values of the zilches for the various p+ q = 6 knot-types and the
results for calculating the number of pieces of surface, Np,q

Consider now the zilches with p = 2 and q = 4, and p = 4 and q = 2. The

gcd(2, 4) = gcd(4, 2) = 2, meaning that these particular torus-links have two distinct

pieces. If one now considers the values of the zilches from the table for p = 2 and

q = 4: Z000
2,4 = 84, Z030

2,4 = −32, Z110
2,4 = 32 and Z330

2,4 = 20. The gcd of all four of these
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zilches is given by, Y2,4 = gcd(84,−32, 32, 20) = 4. Now considering for p = 4 and

q = 2: Z000
4,2 = 96, Z030

4,2 = −70, Z110
4,2 = 20 and Z330

4,2 = 56. The gcd of all four of these

zilches is given by, Y4,2 = gcd(96,−70, 20, 56) = 2. To find the number of pieces of

surfaces, N s
2,4 = gcd(Y2,4, Y4,2) = 2. This corroborates the number of pieces of surface

for the torus-link. Furthermore, this has been confirmed for all combinations of p and

q, up to p+ q = 15.

There are also a number of other topological constants that can be found from the

zilches. In Chapter Two, various invariants were discussed, such as crossing number,

c(K), and unknotting number, u(K). For the torus-knotted fields, these were shown

to be calculated from the winding numbers, as follows:

c(T (p, q)) = min(p(q − 1), q(p− 1)), (3.15)

u(T (p, q)) =
1

2
(p− 1)(q − 1), (3.16)

for p, q > 1 and p 6= q. The crossing number can be determined from the zilches via

Z110 when they are put in the same units, for p, q > 1 and p 6= q. For p+ q odd,

c(T (p, q)) = Z110
(q−p+1)/2, p−1, q > p,

= Z110
(p−q+1)/2, q−1, q < p.

(3.17)

While for p+ q even,

c(T (p, q)) = 1
2
(Z110

(q−p)/2, p−1 + Z110
(q−p+2)/2, p−1), q > p,

= 1
2
(Z110

(p−q)/2, q−1 + Z110
(p−q+2)/2, q−1), q < p.

(3.18)

Perhaps strangely, when one inputs the winding numbers, the zilch that gives the

corresponding result originates from a field with a different set of winding numbers.

To demonstrate that these numbers are, indeed, appearing in the zilches, the following

figures (3.6-3.7) give a visual representation of the results. Here, figure 3.6 for Z110
p,q

has been reproduced for the sake of comparison. One will notice multiple colours

and circles around the numbers. The colours and circles are split broadly into two

categories for the crossing numbers, c(Tp, q): coloured numbers, red, orange, blue,

refer to the crossing numbers that appear when p+q = odd; coloured circles, blue ,

yellow , green , denote the pairs of Z110
p,q needed to obtain c(Tp, q) for p+ q =
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even. Their specific colour shows the column in which they appear in c(Tp, q), figure

3.7. Additional colours, red , cyan , magenta , green , are used in the

outlines of the circles to emphasise which pairs of numbers are used in Z110
p,q . Finally,

there are a number of circles that have no colour to them. These circles have been

highlighted to show that they are results but, as the pairs of numbers producing them

overlap with numbers from other columns, they have not been highlighted in figure

3.6 of Z110
p,q . To help clarify this system, consider this example. For p = 2, q = 5:

p+ q = 7 = odd and q > p

c(T (2, 5)) = Z110
(5−2+1)/2, 2−1

= Z110
2, 1

= 5.

(3.19)

Quite simply, checking the positions on both pages confirms this to be true, whilst

showing the number highlighted in orange. Consider another example. For p = 10,

q = 12:

p+ q = 22 = even and q > p

c(T (10, 12)) = 1
2
(Z110

(12−10)/2, 10−1 + Z110
(12−10+2)/2, 10−1)

= 1
2
(Z110

1, 9 + Z110
2, 9 )

= 1
2

 99 + 117


= 108 .

(3.20)

Repeated results are shown also for the swapping of p and q, as there is a line of

symmetry (figure 3.7) through the values with p = q.

The unknotting number can also be written in terms of Z110 for p, q > 2 and p 6=
q. The results for the unknotting number are, again, explained graphically in the

following figures (3.6-3.8), using the same colour and circle referencing system, but

with p+ q = odd and p+ q = even exchanged. Algebraically, for p+ q even,

u(T (p, q)) = 1
2
Z110

(q−p)/2, p−1, q > p,

= 1
2
Z110

(p−q)/2, q−1, q < p.
(3.21)
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While for p+ q odd,

u(T (p, q)) = 1
4
(Z110

(q−p−1)/2, p−1 + Z110
(q−p+1)/2, p−1), q > p,

= 1
4
(Z110

(p−q−1)/2, q−1 + Z110
(p−q+1)/2, q−1), q < p.

(3.22)

63



3.2. ZILCHES IN KNOTTED ELECTROMAGNETIC FIELDS

Z
1
1
0

p
,q

=
Z

2
2
0

p
,q

3

8
12

5

15
21

27
16

7

24
32

40
48

33
20

9

35
45

55
65

75
56

39
24

11

48
60

72
84

96
10

8
85

64
45

28
13

63
77

91
10

5
11

9
13

3
14

7
12

0
95

72
51

32
15

80
96

11
2

12
8

14
4

16
0

17
6

19
2

16
1

13
2

10
5

80
57

36
17

99
11

7
13

5
15

3
17

1
18

9
20

7
22

5
24

3
20

8
17

5
14

4
11

5
88

63
40

19

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

26
1

22
4

18
9

15
6

12
5

96
69

44
21

F
ig

u
re

3.
6:

T
h
e

re
su

lt
s

fo
r
Z

1
1
0

w
it

h
th

e
co

m
p

on
en

ts
h
ig

h
li
gh

te
d

u
si

n
g

th
e

co
lo

u
r

co
d
in

g
sy

st
em

d
es

cr
ib

ed
in

th
e

te
x
t

b
o
d
y

th
at

ar
e

u
se

d
fo

r
ca

lc
u
la

ti
n
g

th
e

cr
os

si
n
g

an
d

u
n
k
n
ot

ti
n
g

n
u
m

b
er

s
fo

r
to

ru
s

k
n
ot

s

64



3.2. ZILCHES IN KNOTTED ELECTROMAGNETIC FIELDS

c(
T

(p
,q

))

0

0
2

0

0
3

6
3

0

0
4

8
12

8
4

0

0
5

10
15

20
15

10
5

0

0
6

12
18

24
30

24
18

12
6

0

0
7

14
21

28
35

42
35

28
21

14
7

0

0
8

16
24

32
40

48
56

48
40

32
24

16
8

0

0
9

18
27

36
45

54
63

72
63

54
45

36
27

18
9

0

0
10

20
30

40
50

60
70

80
90

80
70

60
50

40
30

20
10

0

0
11

22
33

44
55

66
77

88
99

11
0

99
88

77
66

55
44

33
22

11
0

0
12

24
36

48
60

72
84

96
10

8
12

0
13

6
12

0
10

8
96

84
72

60
48

36
24

12
0

F
ig

u
re

3.
7:

T
h
e

re
su

lt
s

fo
r
c(
T

(p
,q

))
w

it
h

th
e

co
m

p
on

en
ts

h
ig

h
li
gh

te
d

u
si

n
g

th
e

co
lo

u
r

co
d
in

g
sy

st
em

d
es

cr
ib

ed
in

th
e

te
x
t

b
o
d
y

th
at

ar
e

u
se

d
fo

r
ca

lc
u
la

ti
n
g

th
e

cr
os

si
n
g

an
d

u
n
k
n
ot

ti
n
g

n
u
m

b
er

s
fo

r
to

ru
s

k
n
ot

s

65



3.2. ZILCHES IN KNOTTED ELECTROMAGNETIC FIELDS

u
(T

(p
,q

))

0

0
1 2

0

0
1

2
1

0

0
3 2

3
9 2

3
3 2

0

0
2

4
6

8
6

4
2

0

0
5 2

5
1
5 2

10
2
5 2

10
1
5 2

5
5 2

0

0
3

6
9

12
15

18
15

12
9

6
3

0

0
7 2

7
2
1 2

14
3
5 2

21
4
9 2

21
3
5 2

14
2
1 2

7
7 2

0

0
4

8
12

16
20

24
28

32
28

24
20

16
12

8
4

0

0
9 2

9
2
7 2

18
4
5

27
6
3 2

36
8
1 2

36
6
3 2

27
4
5 2

18
2
7 2

9
9 2

0

0
5

10
15

20
25

30
35

40
45

50
45

40
35

30
25

20
15

10
5

0

0
1
1 2

11
3
3 2

22
5
5 2

33
7
7 2

44
9
9 2

55
1
2
1

2
55

9
9 2

44
7
7 2

33
5
5 2

22
3
3 2

11
1
1 2

0

F
ig

u
re

3.
8:

T
h
e

re
su

lt
s

fo
r
u

(T
(p
,q

))
w

it
h

th
e

co
m

p
on

en
ts

h
ig

h
li
gh

te
d

u
si

n
g

th
e

co
lo

u
r

co
d
in

g
sy

st
em

d
es

cr
ib

ed
in

th
e

te
x
t

b
o
d
y

th
at

ar
e

u
se

d
fo

r
ca

lc
u
la

ti
n
g

th
e

cr
os

si
n
g

an
d

u
n
k
n
ot

ti
n
g

n
u
m

b
er

s
fo

r
to

ru
s

k
n
ot

s

66



3.3. ZILCHES IN SEGMENTED ELECTROMAGNETIC FIELDS

Finally, a supplementary surface property can be demonstrated in the zilches. If one

considers a knotted surface, with q = 1, a helix will be observed. The number of

turns of the helix within this surface can be extracted from the zilches via,

Nt(T (p, 1)) =
1

2
(Z110

p,1 − 3). (3.23)

This section has shown that, in the arena of knotted electromagnetic fields, the zilches

can be written in terms of the other conserved quantities, whose physicality is known.

It has also demonstrated that there is an integral relationship between the zilches and

the topology of the knotted fields that has not before been seen. This could explain

the connection to the change in direction of the flow of zilch, when considering the

different handed circularly polarised light.

The following sections will demonstrate that these properties are also true for other

families of solutions to Maxwell’s equations. It is essential to demonstrate that these

results can be reproduced in other fields and, therefore, verify that zilches do, indeed,

have an intrinsic topological connection - and that this is the case across multiple

examples.

3.3 Zilches in Segmented Electromagnetic Fields

It is possible to generate new solutions to Maxwell’s equations by taking known

solutions and applying transformations. As long as the new equations adhere to the

criteria given in equations 2.34, they will provide solutions to Maxwell’s equations,

via Bateman’s construction. One possible transformation that can be conducted is

called a special conformal transformation (SCT). A SCT, applied to the coordinates

of the knotted solutions to Maxwell’s equations, gives new expressions:

α = 2 i k (z−c t)−1
A+4 i c t

, β = 2 k (x−i y)
A+4 i k c t

, (3.24)

where, A = 1 + 4 k2 (x2 + y2z2 − c2 t2). Again, the functions f(α, β) = αp and

g(α, β) = βq are used to generate a whole family of solutions. As α and β satisfy

equations 2.34, then so too do f(α, β) and g(α, β). These solutions give completely

different scalar surfaces to those of the knotted solutions to Maxwell’s equations (see

figure 3.9). Again, the scalar fields are used to illuminate the underlying topology

of the fields. Quite clearly, the common features are that there are specific numbers

of pieces of closed surface appearing - some of which are twisting around each other.

These examples, differ from the plane-wave solutions that are typically examined

67



3.3. ZILCHES IN SEGMENTED ELECTROMAGNETIC FIELDS

when discussing zilches, in that the scalar surfaces are all closed. This could be the

key to understanding why such results have remained obscured.

a b

c d

e f

Figure 3.9: Segmented surfaces for: a. (p, q) = (1, 1), φ2 = 0.20, giving one surface;
b. (p, q) = (4, 2), φ2 = 0.005, giving two surfaces; c. (p, q) = (1, 5), φ2 = 0.005,

giving five surfaces; d. (p, q) = (3, 3), φ2 = 0.005, giving three surfaces; e.
(p, q) = (1, 5), φ1 = 0.005, giving five surfaces; f. (p, q) = (3, 3), φ1 = 0.005, giving

three surfaces
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3.3. ZILCHES IN SEGMENTED ELECTROMAGNETIC FIELDS

As with the knotted electromagnetic fields, the momentum and angular momentum

are both in the z-direction. The number of pieces of surface can easily be counted

and, in every case tested, is shown to be equal to q - where p appears to give a

measure of to what extent the potential surfaces wrap around themselves. The rela-

tionship between the zilches and the field properties are straightforward. The units

are the minimum necessary for the conserved quantities to take on integer values. To

achieve this, all the values are calculated from the initial equations (3.24) and then

divided by, p q p! q!π2ε0E
2
0/2

2(p+q)−1 (p + q)! - with c = k = 1. Once in this form,

the conserved quantities (including the zilches) can be calculated by inserting the

electric and magnetic fields in the same way as in section 3.2.1. From these results,

the following relations are obtained:

Ep,q =
Z000
p,q

((2 p+2 q+1)k)
,

P z
p,q =

Z030
p,q

((2 p+2 q+1)k)
,

Lzp,q =
Z110
p,q

((4 p+2 q)k2)
,

He
p,q = Hm

p,q = − Z030
p,q

(2 p k3(2 p+2 q+1))
=

Z000
p,q

(2 k3(2 (p+q)2+p+q))
.

(3.25)

The number of pieces of surface, N s
p,q, is quite simply related to the zilches and other

conserved quantities, too.

N s
p,q =

2 (p+ q)2 + p+ q

2 p+ q

Z110
p,q

Z000
p,q

= −2 p2 + 2 p q + p

2 p+ q

Z110
p,q

Z030
p,q

= −
Lzp,q
k He

p,q

. (3.26)

These relations can all be verified with a simple example. The results for the con-

served quantities and number of pieces of surface of the (p, q) = (2, 3) segmented field

are shown in the table below.

(p, q) Ep,q P z
p,q Lzp,q He

p,q Z000
p,q Z030

p,q Z110
p,q Z330

p,q N s
p,q

(2, 3) 60 −24 −18 6 660 −264 252 156 3

Table 3.5: Conserved field properties and number of pieces of surface for the
(p, q) = (2, 3) segmented field

These results demonstrate, for another type of field, that the zilches can be related

to the conserved properties of the field, and are related to the number of pieces of

surface. Although these fields are different to the knotted fields, they have been cre-

ated through a transformation of the original inputs. To show that the same results

can be found outside of the knotted solutions and transformations, another distinct

example will be issued.
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3.4 Zilches in ‘Dripping’ Electromagnetic Fields

The final example is of a disparate family of fields that are solutions to Maxwell’s

equations in a vacuum (see figure 3.10). These are now termed the ‘Dripping’ elec-

tromagnetic fields - named for their appearance and time evolution within the scalar

fields. One can see, when propagating the fields with time, that each piece moves

towards the lowest piece of surface and starts flattening out, like drops of water. The

Dripping fields are given by the following forms for α and β,

α =
1

2
− i (−i+ k c t+ i k x+ k y − k z)

2A+ 2 i k c t
, β =

1

2
− i (k c t− i− k z)

2A+ 2 i k c t
, (3.27)

where, A = 1
2
(k2 x2 + k2 y2 + k2 z2 − k2 c2 t2 + 1). Again, the functions f(α, β) = αp

and g(α, β) = βq are used. As α and β satisfy equations 2.34, so to do f(α, β) and

g(α, β). The Dripping fields produce motion in the y-direction. The implications of

this are that P y
p,q, L

y
p,q and Z020

p,q are non-zero, and Z110
p,q 6= Z220

p,q .
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a b

c d

e f

Figure 3.10: Dripping surfaces for: a. (p, q) = (1, 1), φ2 = 0.20, giving two surfaces;
b. (p, q) = (1, 3), φ2 = 0.05, giving four surfaces; c. (p, q) = (4, 1), φ2 = 0.04, giving

five surfaces; d. (p, q) = (2, 3), φ2 = 0.03, giving five surfaces; e. (p, q) = (1, 1),
φ1 = 0.29, giving two surfaces; f. (p, q) = (1, 3), φ1 = 0.05, giving four surfaces (the
plotting grid has been chosen here to cut holes in the outer surface so as to view the

inner surfaces, in reality this surface is closed)
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As with the last two sections of this chapter, the conserved quantities of the fields are

calculated - but this time divided by u =
p q p! q!π2ε0E2

0 k
2

22(p+q)(p+q)!
- to be put in a dimensionless

set of units, where all values are integers. These conserved quantities of the fields can

then be compared to the zilches. For example,

Z000
p,q = −k (p+ q)

(
3

2
P z
p,q + k Lyp,q

)
. (3.28)

Also, the motion in the y-direction is encoded in the zilches,

P y
p,q = −k Lyp,q =

2

(3(p+ q) + 1)k
Z020
p,q . (3.29)

The number of pieces of surface can also be calculated via,

N s
p,q = gcd(Z000

p,q ) = gcd
(
Z110
p,q + Z220

p,q + Z330
p,q

)
∀ p+ q = constant. (3.30)

Examples to demonstrate the number of pieces of surface for p+ q = 5 are shown in

the subsequent table. To be clear, the Z000
p,q needs to be calculated for all combinations

of p + q = constant. Then the gcd of the results is equal to the number of pieces of

surface that appear in each of the fields for which Z000
p,q has been calculated.

(p, q) (1, 4) (2, 3) (3, 2) (4, 1)

Z000
p,q 70 245 530 500

Table 3.6: Examples to demonstrate the number of pieces of surface for p+ q = 5

Considering the results, it is apparent that the gcd = 5, and that it is also the number

of pieces of surface that appear in the Dripping fields. 23

This section has established a further example of a family of electromagnetic fields

the zilches of which, when put in units that make them integers, are related to the

conserved properties and the topology of the fields. Again, the type of field being

considered gives closed surfaces within the scalar field plots, making them different

to the plane-wave solutions previously considered.

23Two of the examples listed in the above table are also displayed in figure 3.10.
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3.5 Summary

The aim of this chapter was to consider Lipkin’s zilches within a previously uncon-

sidered set of solutions to Maxwell’s equations - to uncover anything new pertaining

to them. Three sets of solutions were selected, ranging from the knotted solutions to

Maxwell’s equations, to the dripping field solutions.

The similarities between solutions studied were that they all produced converging val-

ues, when their densities were integrated over all space. They all gave closed surfaces,

when considering their scalar field plots - for constant magnitude, φ1,2. The results

produced can be positioned into two categories. Firstly, because analytic expres-

sions for the components of the zilch have been produced, it has been demonstrated

that they can be written entirely in terms of the known conserved quantities of the

field: energy, momentum, angular momentum and helicity. Secondly, the zilches,

quite clearly, contain information about the topology of the fields - the most evident

being the number of pieces of closed surface. Even more specific properties of the

fields’ topology were determined for the knotted fields, in finding the crossing and

unknotting numbers in terms of the Z110
p,q . All these quantities can be determined

from the number of theoretic properties of the zilches. There also appears to be an

unquantified correlation between the zilches and the degree of chirality in the field.

This chapter conjectures that the results shown will always be the case for this class

of fields.

Exploration of electromagnetic fields, of which the field energy does not converge (such

as plane-waves or constant fields), have not been found to give the same relationship

between the components of the zilch and other properties of the field. The obvious

difference between the aforementioned fields, and the ones produced in this chapter,

is that, when plotting the scalar fields, the surfaces generated are neither finite, nor

closed. This further supports the hypothesis of this chapter - that the components

of the zilch describe the topology of the fields when their properties are convergent,

and that the converse can be said when the field properties become divergent.
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CHAPTER

FOUR

THE GENERALIZED, MULTIPOLAR EXPANSION OF

KNOTTED ELECTROMAGNETIC FIELDS

In 2008, Irvine and Bouwmeester published an exciting paper, suggesting a possi-

ble route to the experimental verification of the Hopf-knotted solutions to Maxwell’s

equations [18]. They conducted a multipole expansion on the Vector Spherical Har-

monics (VSH) of the knotted fields, using a method given in the book, Classical

Electrodynamics, by Jackson [2]. Irvine and Bouwmeester utilised this expansion to

ascertain the magnetic vector potential, in a form known as the Chandrasekar-Kendal

eigenstates [59]. From this, they suggested a way of generating approximate knotted

solutions, using condensed circularly polarised laser beams. In a following paper [15],

Irvine went on to use this method to make a suggestion for an extension to all knot

types for a particular case.24

The aim of this chapter is to assess the published literature [18][15], working through

the derivations of the methods in order to argue that they are not ideally suited for

conducting a multipole expansion on the Hopf-knotted and torus-knotted solutions

to Maxwell’s equations. It will start by considering the first paper by Irvine and

Bouwmeester - focussing on the Hopf-Knotted solutions, before then moving on to

the second paper, by Irvine, which provides an extension to torus-knotted solutions

- giving an equation that generalises to all knot-types [15]. The latter paper’s ex-

tension will be produced and show differing results to those published. This chapter

goes on to discuss a prescription for the multipole emerging coefficients, as well as the

potential for patterns occurring between them. This will be followed by a new, more

24This example is of a knotted non-null field with conserved magnetic helicity. Irvine suggests its
construction is via the same method described in this chapter. Section 4.1.1 will contest this.
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4.1. MULTIPOLAR EXPANSION OF THE VECTOR SPHERICAL
HARMONICS FOR THE HOPF-KNOTTED FIELDS

widely applicable and more accurate method for conducting a multipole expansion on

the VSH for the Hopf-knotted and torus-knotted fields. The results will be compared

with those from the body of work led by Irvine.

This chapter will conclude with an analysis of the patterns which emerge between the

multipole coefficients. A set of 18 equations is demonstrated, that produces the first

3, 680 multipole coefficients which appear for the first 49 different knot configurations

- in terms of only the radius, r, the winding numbers, p and q, the dimensionless

constant, k, and the angular momentum numbers, l and m.

4.1 Multipolar Expansion of the Vector Spherical

Harmonics for the Hopf-Knotted Fields

This section is specifically concerned with Irvine and Bouwmeester’s 2008 paper. It

will dissect their method - reproducing critical parts of that method, discuss their

assumptions and analyse their final results.25 Scrutiny of this paper allows for a com-

parison with the fresh results presented in this thesis.

Chapter Two discussed how multipole expansions are usually used to determine the

size of the fields generated by a set of charges, the shape of the field lines, and how

quickly the magnitude falls off with distance from the origin. A multipole expansion

could be conducted on any one of the fields that are present, but the most common,

and obvious, is via the magnetic vector potential. This was one of the core aims of

Irvine and Bouwmeester. As the solutions are comprised of complex vector fields,

this could only be conducted through the VSH. In Jackson’s book [2], there is a

brief analysis for obtaining the multipole coefficient equations (This method is fully

derived in the section 4.1.2.). Jackson derives the equations for the magnetic vector

potential in terms of multipolar coefficients, with the assumption of an exponential

time-dependence - as is common in plane wave solutions to Maxwell’s equations. The

equations he arrives at (for the magnetic vector potential - P746-747, eq:16.46 &

16.47) are also the starting point for the work by Irvine and Bouwmeester:

A(r, t) =

∫
dk

∞∑
l=1

l∑
m=−l

[αTMlm (k)ATM
lm (k, r) + αTElm (k)ATE

lm (k, r)]e−iωt + c.c, (4.1)

25The method derived in this chapter focusses primarily on the multipole expansion given in the
‘supplementary methods’ section of Irvine and Bouwmeester’s work.
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where,

ATE
lm (k, r) =

1

iω
fl(kr)LYlm(θ, φ), (4.2)

ATM
lm (k, r) =

1

k2
∇× [fl(kr)LYlm(θ, φ)], (4.3)

are the contributions from the transverse electric (TE) and transverse magnetic (TM)

parts of the field.26 The operator,

L = −ir ×∇, (4.4)

and in free-space the function,

fl(kr) =
jl(kr)√
l(l + 1)

, (4.5)

with the spherical Bessel functions, jl(kr), taking on their usual form. The spherical

harmonics:

Ylm(θ, φ) =

√
1 + 2l

2π

√
(l −m)!

(l +m)!
Lml (cos(θ))eimφ, (4.6)

where Lml are the usual associated Legendre polynomials. Finally, the multipolar

coefficients are given by:

αTElm (k)jl(kr) =
k√

l(l + 1)

∫
dΩY ∗lmB · r, (4.7)

αTMlm (k)jl(kr) = − k√
l(l + 1)

∫
dΩY ∗lmE · r, (4.8)

where jl(kr) are, again, the spherical Bessel functions, and l and m are the angular

momentum numbers. The multipole coefficients are the equations that will determine

the type of fields investigated - demonstrating whether they are completely pure fields

(such as a dipole or quadrupole field), or comprised of combinations of fields (as only

certain angular momentum numbers give finite values for the coefficients). Their so-

lution makes them the most important to understanding how the Hopf-knotted elec-

tromagnetic fields fall off with distance. The key limit of Irvine and Bouwmeester’s

method is the inclusion of an exponential time dependency, whilst simultaneously ex-

cluding it by putting it to unity through t = 0. In the equations, initially employed by

Jackson to derive equation 4.7 and 4.8, the same occurs. This is not compatible with

26Transverse magnetic refers to those components that are perpendicular to the radius vector of
the magnetic multipole - in other words, the electric field. Transverse electric (TE) refers to those
components that are perpendicular to the radius vector of the electric multipole - in other words,
the magnetic field - which is explained in more detail in section 4.1.2
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the Hopf-knotted and torus-knotted fields: firstly, the knotted fields do not have any

exponential time dependency and, therefore, it seems inappropriate to include it to fit

a method; secondly, without an exponential time dependency, the final equations for

the multipole coefficients (4.7 and 4.8) cannot be obtained.27 In order to demonstrate

the limitations of Irvine and Bouwmeester’s work, this chapter will, now, fully derive

their method and that of Jackson [2].

4.1.1 Irvine and Bouwmeester’s Multipole Expansion Method

The following method will start with field components that are slightly different to

those given by Irvine and Bouwmeester, due to the use of differing units and derivation

methods - as outlined in Chapter Two.28 For the units to make sense, x, y, and z

are scaled with a constant of which the units are inverse distance, set to 1 - to make

them dimensionless. k is already dimensionless, and E0 is set to unity and has units

of electric field - in accordance with equations 2.74.

B(r, t = 0) =
4

(r2 + 1)3
(2(xy − z), 1− x2 + y2 − z2, 2(yz + x)), (4.9)

E(r, t = 0) = − 4

(r2 + 1)3
(1 + x2 − y2 − z2, 2(xy + z), 2(xz − y)). (4.10)

From here, Irvine and Bouwmeester applied a Fourier transform, followed by an in-

verse Fourier transform to the fields.29 The Fourier inversion method was employed

purely to obtain the final forms of the multipolar coefficients in terms of spherical

Bessel functions. These cancel with those that they are multiplied on the left-hand-

side of equation 4.7 and 4.8, to give a more concise presentation.

The TM multipole coefficient, αTMlm (k) will be considered first. This will involve

applying the Fourier transform to the electric field. Using the x-component of the

electric field and applying the transform:

Ẽx(k) = −
∫

4

(r2 + 1)3
(1 + x2 − y2 − z2)e−ik·xdx. (4.11)

27See section 4.1.2 for an explicit derivation.
28Despite different input equations, the results are shown to be the same within this section.
29For the remainder of the thesis, a Fourier transform followed by an inverse Fourier transform

will be referred to as a Fourier inversion.
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The integral can be made simpler if one considers the form that the second derivative

of the exponential would take, with respect to kx:

∂2(e−ik·x)

∂k2x
= −x2e−ik·x. (4.12)

The above can be rearranged and substituted into equation 4.11. The same method

can be applied for both the −y2 and −z2 parts of the x-component of the electric

field. This means that the Fourier transform becomes:

Ẽ(k)x = −

(
1− ∂2

∂k2x
+

∂2

∂k2y
+

∂2

∂k2z

)∫
e−ik·x

π(r2 + 1)3
dx. (4.13)

This integral has a solution [18],∫
e±ik·x

(a2 + r2 − d)n+1
d3x =

∂n

∂dn

(
2π2

n!k
e−k(a

2−d)
1
2

)∣∣∣∣
d=0

. (4.14)

After inserting the appropriate variables, then applying the chain rule and quotient

rule, the solution becomes,

1

π

∫
e−ik·x

(r2 + 1)3
d3x =

π

k

∂2

∂d2

(
e−k(1−d)

1
2

) ∣∣∣∣
d=0

=
πe−k

4
(k + 1).

(4.15)

Substituting this back into the Fourier transform,

Ẽx(k) = −

(
1− ∂2

∂k2x
+

∂2

∂k2y
+

∂2

∂k2z

)
πe−k

4
(k + 1). (4.16)

Calculating the second derivatives and solving gives the final form for the Fourier

transform,

Ẽx(k) = −πe
−k

2k
(k2y + k2z). (4.17)

This method can be repeated for the remaining components of the electric field, as

well as the components of the magnetic field within the TE multipole coefficient,

αTElm (k), to give,

Ẽ(k) = −πe
−k

2k
(k2y + k2z , ikkz − kxky, ikky − kxkz),

B̃(k) =
πe−k

2k
(ikkz − kxky, k2x + k2z , ikkx − kykz).

(4.18)

It is at this point that Irvine and Bouwmeester apply the inverse Fourier transform

to obtain a unique form for the fields. Again, continuing with the electric field,
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eventually focussing on the x-component. The inverse Fourier transform takes the

form,

E(r) =

∫
Ẽ(k)eik·xd3k, (4.19)

therefore becoming,

E(r) = −
∫
πe−k

2k
(k2y + k2z , ikkz − kxky, ikky − kxkz)eik·xd3k. (4.20)

Focussing now on the x-component by itself,

Ex(r) = −
∫
πe−k

2k
(k2y + k2z)e

ik·xdkx. (4.21)

As with the Fourier transform, the integral can be simplified by considering derivatives

of the exponential component - but this time, with respect to y first. The second

derivative is given by,
∂2(eik·x)

∂y2
= −k2yeik·x. (4.22)

Which can be rearranged and substituted, along with the z-derivative, into equation

4.21 to give,

Ex(r) = −
∫
πe−k

2k

(
− ∂2

∂y2
− ∂2

∂z2

)
eik·xdkx. (4.23)

There is, now, another integral solution that can be used [18],∫
f(k)e±ik·xd3k =

4π

r

∫
f(k) k sin(kr)dk. (4.24)

The field now becomes,

Ex(r) = −2π2

∫
e−k

(
− ∂2

∂y2
− ∂2

∂z2

)
sin(kr)

r
dk. (4.25)

The above corroborates the results of Irvine and Bouwmeester, other than a factor of

two. This process can easily be repeated for the x and y components of the electric

field and gives the form,

E(r) = −2π2

∫
e−k

(
− ∂2

∂y2
− ∂2

∂z2
,
∂

∂x

∂

∂y
+ k

∂

∂z
,
∂

∂x

∂

∂z
− k ∂

∂y

)
sin(kr)

r
dk.

(4.26)

Now the Fourier inversion is complete, it is important to check that this equation pro-

duces the original Hopf-knotted fields, by solving the differentials in their Cartesian

coordinates. This has been checked using the program, Maple. The equation returns
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the same form in each spatial direction as given by equation 4.10 when evaluated at

k = 0, but with a factor of (−2 π2). As this amounts to a scaling factor, and is con-

stant, one can ignore it. The next step is to solve the differentials, before substituting

into equation 4.8. Before the substitution takes place, the electric field is multiplied

with the radius vector, r, to form the dot product, and then converted into spherical

polar coordinates. This gives,

E · r =
2 e−k

r2
(sin(kr)− kr cos(kr)) sin(θ) cos(φ). (4.27)

This can now be substituted into equation 4.8,

αTMlm (k)jl(kr) = −2 e−k k3
√
π√

l(l + 1)

(
sin(kr)

k2 r2
− cos(kr)

k r

)∫
dΩY ∗lmsin(θ) cos(φ). (4.28)

The part of this equation in the larger set of brackets looks very similar to that of

the spherical Bessel function with angular momentum number l = 1. If one solves

this equation for a number of integers for l, one will see which angular momentum

numbers may or may not contribute - and therefore which multipole coefficients are

non-zero. Once the integral is solved for each value of l, only one solution appears. It

correspondingly has its own spherical Bessel function which cancels out with that on

the left-hand-side of the equation. Therefore, this leaves only one, elegant solution -

with angular momentum numbers l = m = 1,

αTM1,1 =

√
4π

3
k3e−k. (4.29)

The principle reason to use the Fourier inversion method is because these spherical

Bessel functions appear and then cancel out at the specific integers of l. The result

demonstrates that the field is that of a pure dipole, due to the contributions only

coming from l = 1. This process can be repeated for the TE multipole coefficient as

well - again, finding results with angular momentum numbers l = m = 1,

αTE1,1 = −i
√

4π

3
k3e−k. (4.30)

Finally, this gives the equation for the magnetic vector potential as,

A(r, t) =

√
4π

3

∫
dk k3e−k[ATM

1,1 (k, r)− iATE
1,1 (k, r)]e−iωt + c.c. (4.31)

This corroborates the work of Irvine and Bouwmeester. However, the final equation

is questionable because they made the assumption that t = 0. So for all time outside

of this value the equation is invalid, therefore the equation should be,

A(r, t = 0) =

√
4π

3

∫
dk k3e−k[ATM

1,1 (k, r)− iATE
1,1 (k, r)] + c.c. (4.32)
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This detracts from its use within their paper - as this exponential time dependency

appears essential to forming the circularly polarised light beams. It can, therefore,

be suggested that this approach is not suitable as a complete method for a multipole

expansion on the Hopf-fields and, by extension, nor the experimental realisation. This

chapter will move on to demonstrate a more general method that is correct for all

knot types.30

4.1.2 The Derivation of Jackson’s Multipole Expansion Co-
efficients

To demonstrate that the method employed by, and the assumptions made by, Irvine

and Bouwmeester [18] are not suitable, a derivation of the multipole coefficient

equations, given by Jackson [2], must be shown. Jackson starts with the free-field

Maxwell’s equations,

∇× E = −∂B
∂t
, ∇ · E = 0,

∇×B = 1
c2
∂E
∂t
, ∇ ·B = 0.

(4.33)

At this point, Jackson assumes a time dependence of e−i ω t for the electric and mag-

netic fields. One can assume this is because of the commonality of its inclusion in

everyday problems. These equations become,

∇× E = i ωB, ∇ · E = 0,

∇×B = −i ω
c2

E, ∇ ·B = 0.

(4.34)

As previously mentioned, this is the point within Jackson’s derivation where this

method becomes incompatible with the Hopf-knotted and torus-knotted fields. Nei-

ther of these sets of fields contain an exponential time dependence and, therefore,

could not be reproduced using this set of Maxwell’s equations. Also, without the ex-

ponential time dependency one cannot obtain Maxwell’s equations in the form above.

But the derivation will be continued, to display that there are no deviations that can

rectify this. If one takes the curl of two of these equations, one obtains,

∇×∇× E = i ω∇×B = i ω
−i ω
c2

E = k2E, (4.35)

as k = ω/c - the wave number. The standard vector relations [36] give,

∇×∇× E = ∇(∇ · E)−∇2E = −∇2E. (4.36)

30See section 4.2.
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Thus,

−∇2E = k2 E
(∇2 + k2) E = 0.

(4.37)

Following the same method for the other Maxwell equation,

(∇2 + k2) B = 0. (4.38)

These last two equations are the Helmholtz equation for each field [2]. The next step

is to find the general solution to these equations for a scalar function ψ. In spherical

polar coordinates,

∇2 =
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

r2 sin2(θ)

∂2

∂φ2
. (4.39)

Inserting this into equations 4.37 and 4.38 and multiplying through by r2 gives,

∂

∂r

(
r2
∂ψ

∂r

)
+

1

sin(θ)

∂

∂θ

(
sin(θ)

∂ψ

∂θ

)
+

1

sin2(θ)

∂2ψ

∂φ2
+ r2 k2 ψ = 0. (4.40)

Next, using separation of variables one can write,

ψ(r, θ, φ) = R(r)Y m
l (θ, φ), (4.41)

∂

∂r

(
r2
∂R(r)Y m

l (θ, φ)

∂r

)
+

1

sin(θ)

∂

∂θ

(
sin(θ)

∂R(r)Y m
l (θ, φ)

∂θ

)
+

1

sin2(θ)

∂2R(r)Y m
l (θ, φ)

∂φ2
+ r2 k2R(r)Y m

l (θ, φ) = 0.

(4.42)

Dividing through by R(r)Y m
l (θ, φ) and rearranging gives,

1

R(r)

∂

∂r

(
r2
∂R(r)

∂r

)
+ r2 k2 = − 1

Y m
l (θ, φ)

1

sin(θ)

∂

∂θ

(
sin(θ)

∂Y m
l (θ, φ)

∂θ

)
− 1

Y m
l (θ, φ)

1

sin2(θ)

∂2Y m
l (θ, φ)

∂φ2
= Constant.

(4.43)

Considering the angular part first, and letting the constant equal l(l + 1).

−

[
1

sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1

sin2(θ)

∂2

∂φ2

]
Y m
l (θ, φ) = l(l + 1)Y m

l (θ, φ). (4.44)

This is the differential equation that defines the spherical harmonics. Now, looking

at the radial part.

∂

∂r

(
r2
∂R(r)

∂r

)
+ r2 k2R(r) = l(l + 1)R(r). (4.45)

Using the product rule,

r2
∂2R(r)

∂r2
+ 2 r

∂R(r)

∂r
+ (r2 k2 − l(l + 1))R(r) = 0. (4.46)
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Let z = k r and, therefore, r2 = z2

k2
, ∂R
∂r

= k ∂R
∂z

, and ∂2R
∂r2

= k2 ∂2R
∂z2

. Substituting these

into equation 4.46 gives,

z2
∂2R(r)

∂z2
+ 2 z

∂R(r)

∂z
+ (z2 − l(l + 1))R(r) = 0. (4.47)

This is equation 10.1.1 from textbook, Handbook of Mathematical Functions With

Formulas, Graphs, and Mathematical Tables [60]. The standard solutions to this

equation are spherical Bessel functions, but here using the Hankel function form,

Rl(z) = Rl(kr) = A
(1)
l,m(k r)h

(1)
l (k r) + A

(2)
l,m(k r)h

(2)
l (k r) . (4.48)

The solution to the Helmholtz equation for a particular l,m, is,

ψ(r, θ, φ) = [A
(1)
l,m(k r)h

(1)
l (k r) + A

(2)
l,m(k r)h

(2)
l (k r)]Y m

l (θ, φ) (4.49)

and the general solution is,

ψ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

[A
(1)
l,m(k r)h

(1)
l (k r) + A

(2)
l,m(k r)h

(2)
l (k r)]Y m

l (θ, φ). (4.50)

The coefficients A
(1)
l,m and A

(2)
l,m are defined by the boundary conditions.

From equation 4.37, one can write,

r · ∇2E + k2r · E = 0. (4.51)

Using the vector identity,

∇2(r ·A) = r(∇2A) + 2∇ · A, (4.52)

for any vector field A, let A = E:

∇2(r · E) = r(∇2E) + 2∇ · E = r∇2E. (4.53)

Putting equation 4.53 into 4.51

∇2(r · E) + k2r · E = (∇2 + k2)r · E = 0. (4.54)

r · E and r ·B, therefore both satisfy Helmholtz wave equations [2],

(∇2 + k2) r · E = 0,

(∇2 + k2) r ·B = 0.

(4.55)
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Knowing the solutions to these equations are given by equation 4.49, one can, there-

fore, define a magnetic multipole field of order l, m, as,

r ·Bl,m = l(l+1)
k

[
A

(1)
l,m(k r)h

(1)
l (k r) + A

(2)
l,m(k r)h

(2)
l (k r)

]
Y m
l (θ, φ),

r · El,m = 0.

(4.56)

The factor l(l+1)
k

is currently arbitrary, but can be addressed by the coefficients A
(1)
l,m

and A
(2)
l,m. It is taken out for convenience when later simplifying. Using equation 4.34,

r ·Bl,m =
1

i ω
r · ∇ × E =

1

i ω
(r×∇) · E =

1

ω
L · E. (4.57)

Putting this back into equation 4.56,

L · El,m = l(l+1)ω
k

[
A

(1)
l,m(k r)h

(1)
l (k r) + A

(2)
l,m(k r)h

(2)
l (k r)

]
Y m
l (θ, φ),

r · El,m = 0.

(4.58)

The L operator does not act on the radial parts of the field, giving,

El,m =
ω

k

[
A

(1)
l,m(k r)h

(1)
l (k r) + A

(2)
l,m(k r)h

(2)
l (k r)

]
LY m

l (θ, φ), (4.59)

because,

L2 Y m
l (θ, φ) = l(l + 1)Y m

l (θ, φ). (4.60)

The expressions for the electromagnetic fields of the magnetic multipole are,

E
(TE)
l,m = ω

k

[
A

(1)
l,m(k r)h

(1)
l (k r) + A

(2)
l,m(k r)h

(2)
l (k r)

]
LY m

l (θ, φ),

B
(TE)
l,m = − i

ω
∇× El,m.

(4.61)

Because the electric field, E, is transverse to the radius vector, these are called TE,

rather than magnetic. The electric multipole fields can be derived similarly and for

the same transverse properties to the radius vector are TM, giving:

B
(TM)
l,m = fl(k r) LY m

l (θ, φ),

E
(TM)
l,m = i ω

k
∇×B

(E).
l,m

(4.62)
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From these definitions one arrives at the vector spherical harmonics,

Xl,m(θ, φ) =
1√

l(l + 1)
LYl,m(θ, φ), (4.63)

which have the orthogonality properties,

∫
X∗l′,m′ ·Xl,m dΩ = δl,l′ δm,m′∫
X∗l′,m′ · (r×Xl,m) dΩ = 0,

(4.64)

and fl(k r) is similar to the term in brackets in equation 4.61,

gl(k r) = A
(1)
l,m(k r)h

(1)
l (k r) + A

(2)
l,m(k r)h

(2)
l (k r),

fl(k r) = B
(1)
l,m(k r)h

(1)
l (k r) +B

(2)
l,m(k r)h

(2)
l (k r).

(4.65)

If one combines B in both equation 4.61 and 4.62, and the same for E,

B =
∑

l,m

(
B

(TM)
l,m + B

(TE)
l,m

)
=
∑

l,m

(
αTMl,m (k)fl(k r)Xl,m − i

ω
αTEl,m(k)∇×gl(k r)Xl,m

)
,

(4.66)

E =
∑

l,m(E
(TM)
l,m + E

(TE)
l,m )

=
∑

l,m

(
i
k
αTMl,m (k)∇×fl(k r)Xl,m + αTEl,m(k)gl(k r)Xl,m

)
,

(4.67)

where the coefficients αTMl,m (k) and αTEl,m(k), specify the amounts of electric multipole

and magnetic multipole fields of order (l,m). These coefficients are also determined

by the sources and boundary conditions. Operating with r on equation 4.67,

r · E =
∑
l,m

(
i

k
αTMl,m (k)r · ∇×fl(k r)Xl,m + αTEl,m(k)gl(k r) r ·Xl,m

)
. (4.68)

Xl,m is given by equation 4.63. Putting that in the second term and using a vector

identity on the first term gives,

r · E =
∑
l,m

(
i

k
αTMl,m (k)(r×∇)·fl(k r)Xl,m + αTEl,m(k)gl(k r)

1√
l(l + 1)

r · LYl,m

)
.

(4.69)

L = 1
i
r×∇, and it is a vector identity that r · r×∇ = 0, so the second term in

equation 4.69 is zero. Therefore,

r · E = −
∑

l,m

(
i
k
αTMl,m (k)Lfl(k r)Xl,m

)
,

= −
∑

l,m

(
i
k
αTMl,m (k)Lfl(k r)

1√
l(l+1)

LYl,m

)
.

(4.70)
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L only acts on angular coordinates, so it commutes through fl(k r),

r · E = −
∑
l,m

(
αTMl,m (k)fl(k r)

i

k
√
l(l + 1)

L2Yl,m

)
. (4.71)

But, by definition, L2Yl,m = l(l + 1)Yl,m, so,

r · E = −
∑
l,m

(
i

k
αTMl,m (k)fl(k r)

√
l(l + 1)Yl,m

)
. (4.72)

Multiplying by Y ∗l,m and integrating over all angles. Knowing,∫
Y ∗l′,m′Yl,mdΩ = δl,l′ δm,m′ , (4.73)

so,

αTMl,m (k)fl(k r) = − k√
l(l + 1)

∫
Y ∗l,mr · EdΩ. (4.74)

A completely analogous calculation gives,

αTEl,m(k)gl(k r) =
k√

l(l + 1)

∫
Y ∗l,mr ·BdΩ. (4.75)

One can put the values obtained here back into equation 4.66 and 4.67 to express

the fields as a multipole expansion around an electric or magnetic multipole and,

therefore, potential field.

For Hopf-knotted solutions to Maxwell’s equations, this derivation does not appear

valid. There are two reasons for this: Firstly, Jackson, and therefore Irvine and

Bouwmeester, have assumed an exponential time dependence, eiωt, which the knotted

fields do not have. Irvine and Bouwmeester attempt to circumvent this by assuming

validity at t = 0, which brings this term to unity; Secondly, as previously stated,

two of the equations in 4.34 rely on eiωt dependence. Without this assumption, the

Helmholtz equations (4.37 and 4.38), and therefore everything that follows (equations

4.61 and 4.62) cannot be obtained. This makes the multipole coefficient equations im-

possible to derive. Because of this, the method employed by Irvine and Bouwmeester

cannot be reconciled with the Hopf-knotted solutions to Maxwell’s equations.
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4.1.3 Irvine and Bouwmeester’s Results Extended to Higher
Knot Types

It would be quite simple to explore higher knotted potential fields, assuming that this

method was valid. In a later paper by Irvine [15], this extension was considered and

the equation given for all knot types was,

A(r, t) =

∫
dk k3e−k

[
ATM

1,1 (k, r)− ip
q
ATE

1,1 (k, r)

]
e−iωt + c.c. (4.76)

This suggests that, for all p− q knot types, the potential field will always be a dipole,

as l = 1. This result poses some problems: the higher the knotting number, the

higher the concentration of field lines through the origin and, therefore, the quicker

drop-off of magnitude from the centre of the pulse. In order to further analyse this,

a calculation of the higher knotting number combinations was undertaken. In accor-

dance with Irvine’s work, the method used to obtain these results was precisely that

derived in the first section of this chapter. However, this thesis, instead, uses the

electric and magnetic field components for the different p− q knot types. The initial

field components for each p−q knot type, and their associated multipolar coefficients,

have been calculated using the same method, but have produced different results to

those published in the original literature.

Before looking at the results directly, one should note the lowest 25 combinations of

p− q winding numbers that give different knot-types. These are shown, below, in the

winding number tree (p− q tree):

p, q

1, 1

1, 2 2, 2 2, 1

1, 3 2, 3 3, 3 3, 2 3, 1

1, 4 2, 4 3, 4 4, 4 4, 3 4, 2 4, 1

1, 5 2, 5 3, 5 4, 5 5, 5 5, 4 5, 3 5, 2 5, 1
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The p − q number combinations in red show what knot-types have been calculated

(using the method previously demonstrated by Irvine and Bouwmeester). Below

are the individual multipole coefficient results for these different knot-types. For

continuity, the coefficients have been brought inside the square roots for the magnetic

vector potential equations, and the terms grouped so differences are easily comparable

to published literature.31

p = 1, q = 1

Multipole coefficients and the potential field:

αTM1,1 =
√

4π
3
k3e−k

αTE1,1 = −iαTM1,1
(4.77)

A(r, t = 0) =

√
4π

3

∫
dk k3e−k[ATM

1,1 (k, r)− iATE
1,1 (k, r)] (4.78)

p = 1, q = 2

Multipole coefficients and the potential field:

αTM2,2 = − 4
15
k4
√

5
√
πe−k

αTE2,2 = −iαTM2,2
(4.79)

A(r, t = 0) = −
√

16π

45

∫
dk k4e−k

[
ATM

2,2 (k, r)− iATE
2,2 (k, r)

]
(4.80)

p = 1, q = 3

Multipole coefficients and the potential field:

αTM3,3 = 2
105

k5
√

105
√
πe−k

αTE3,3 = −iαTM3,3
(4.81)

A(r, t = 0) =

√
4π

105

∫
dk k5e−k

[
ATM

3,3 (k, r)− iATE
3,3 (k, r)

]
(4.82)

31To see the initial components of each electric (E(x, y, z, t)) and magnetic (B(x, y, z, t)) fields,
please refer to the appendix A where they are stated at time t = 0.
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p = 2, q = 1

Multipole coefficients and the potential field:

αTM1,1 = −2
3
k3
√

3
√
π e−k(k − 2); and αTM2,1 = −i 2

15
k4
√

5
√
πe−k∑2

l=1 α
TE
l,1 = −i

∑2
l=1 α

TM
l,1

(4.83)

A(r, t = 0) =
√

4π
9

∫
dk k3e−k

[
(−
√

3 (k − 2)ATM
1,1 (k, r)− i k√

5
ATM

2,1 (k, r))

−i(−
√

3 (k − 2)ATE
1,1 (k, r)− i k√

5
ATE

2,1 (k, r))
] (4.84)

p = 2, q = 2

Multipole coefficients and the potential field:

αTM2,2 = 8
45
k4
√

5
√
πe−k(k − 3); and αTM3,2 = 4 i

315
k5
√

70
√
πe−k∑3

l=2 α
TE
l,2 = −i

∑3
l=2 α

TM
l,2

(4.85)

A(r, t = 0) =
√

16π
405

∫
dk k4e−k

[
(
√

4 (k − 3)ATM
2,2 (k, r) + i

√
2
7
kATM

3,2 (k, r))

−i(
√

4 (k − 3)ATE
2,2 (k, r) + i

√
2
7
kATE

3,2 (k, r))

]
(4.86)
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p = 3, q = 1

Multipole coefficients and the potential field:

αTM1,1 = 2
5
k3
√

3
√
πe−k(k2 − 5 k + 5); αTM2,1 = 2 i

15
k4
√

5
√
πe−k(k − 3);

and αTM3,1 = − 2
105

k5
√

7
√
πe−k∑3

l=1 α
TE
l,1 = −i

∑3
l=1 α

TM
l,1

(4.87)

A(r, t = 0) =
√

4π
25

∫
dk k3e−k

[
(
√

3 (k2 − 5 k + 5)ATM
1,1 (k, r)

+i
√

5
9
k (k − 3)ATM

2,1 (k, r)−
√

1
63
k2ATM

3,1 (k, r))

−i(
√

3 (k2 − 5 k + 5)ATE
1,1 (k, r) + i

√
5
9
k (k − 3)ATE

2,1 (k, r)−
√

1
63
k2ATE

3,1 (k, r))

]
(4.88)

Below, the p − q tree is shown with the multipole coefficient terms, demonstrating

the contributions for each different knot type.

p, q
(αTM1,1 )

(αTM2,2 ) (αTM2,2 and αTM3,2 ) (αTM1,1 and αTM2,1 )
(αTM3,3 ) 2, 3 3, 3 3, 2 (αTM1,1 and αTM2,1 and αTM3,1 )

1, 4 2, 4 3, 4 4, 4 4, 3 4, 2 4, 1
1, 5 2, 5 3, 5 4, 5 5, 5 5, 4 5, 3 5, 2 5, 1

This thesis’ extension to the results of Irvine and Bouwmeester constructs a differing

picture to that given by Irvine in his later paper [15], via equation (4.76). The pre-

scription clearly shows that as one changes the winding number for q from 1− 3, and

hold p = 1 (red and green), the form of the field changes from a dipole (l = 1) to a

quadrupole (l = 2) and then to an octupole (l = 3) for every next level of knot - with

each change of q giving a pure form of each multipole. This changes when one holds

q = 1 and increases the p winding number. When p changes from 1 − 3 and q = 1

(blue and green), the field gains contributions from the number of multipole fields

dictated by p, and its starting point is defined by q. For example, if p = 3 and q = 2,

the fields would have contributions from three multipole fields (as dictated by p) and

the multipole field types - would start with a quadrupole (defined by q = 2) - where

the other, higher contributions are from the higher levels of multipole field (q = 3 and

q = 4). If you consider the topology of the field lines, this reinforces the assertions

made in this thesis. As the field lines become more knotted, there will be a higher
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density of field lines passing through the centre of the knot. This higher density will

lead to a higher magnitude acting in the centre and a quicker fall-off of magnitude,

with increasing radius. This would give rise to magnitudes falling off, with higher

powered, inverse relationships with respect to their radii. This is in stark contrast

to Irvine and his suggestion that all knot types have pure dipole multipole coefficients.

At this stage, one should assess the patterns which start to emerge, as the number

of contributing coefficients increase. As the number of contributing multipole terms

increases - for example, when p changes from 1− 3 and q = 1 (blue and green), one

starts to see extra coefficients emerge in powers of k from k0 − k2. For p = 3 and

q = 1, there are three contributing terms for both the TM and TE parts. The first

term has an extra quadratic factor in k; the second term has an extra factor starting

in k1; and the third has no extra factor - which could be considered as a k0 factor.

One can also notice, whilst varying q, that the power of the original k term increases.

For example, as one changes q from 1− 3 and holds p = 1 (red and green), the power

in k varies from 3− 5. One could quite easily start assigning patterns for the deriva-

tion of the multipole coefficients in a similar vein to that employed with the zilches in

terms of the p−q winding numbers, k, and possibly the angular momentum numbers,

l and m. For this limited set of results, this is conjecture and is considered retrospec-

tively, with respect to exploring patterns that emerge in the generalised multipole

coefficients.32

4.2 Generalised Multipolar Expansion of the VSH

of the Knotted Solutions to Maxwell’s Equa-

tions Method

As this chapter has, hitherto, demonstrated, there are some issues with the published

literature. This warrants the exploration of a new method. The aim of this section

is to improve upon the results of Irvine and Bouwmeester and Irvine individually,

by conducting a generalised multipole expansion for as many knot types as possible.

A selection of equations produced in a book called Theoretical Nuclear Physics, by

Blatt and Weisskopf, have been employed [61]. The equations state that an arbitrary

32See section 4.2.2.
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vector field can be expanded in the following series,

A(r) =
∞∑
l=0

l∑
m=−l

Al,m(r), (4.89)

Al,m(r) = r−1[fl,m(r)Vl,m + gl,m(r)Wl,m + hl,m(r)Xl,m], (4.90)

where, Vl,m, Wl,m, and Xl,m are the VSH, and the functions f, g, and h are the

multipole coefficients. These were found from the following:

r−1fl,m(r) =
∫

[Vl,m(θ, φ)]∗ ·Al,m(r)dΩ,

r−1gl,m(r) =
∫

[Wl,m(θ, φ)]∗ ·Al,m(r)dΩ,

r−1hl,m(r) =
∫

[Xl,m(θ, φ)]∗ ·Al,m(r)dΩ.

(4.91)

To find the multipole coefficients and determine the shape of the fields, the above

equations must be solved. The VSH are derived in a paper by E. L. Hill [62]:

Vlm = r1

−
(
l + 1

2l + 1

) 1
2

Y m
l

+ θ1

{
1

[(l + 1)(2l + 1)]
1
2

∂ Y m
l

∂θ

}
+ φ1

{
imY m

l

[(l + 1)(2l + 1)]
1
2 sin(θ)

}
,

Xlm = θ1

{
− mY m

l

[l(l + 1)]
1
2 sin(θ)

}
+ φ1

{
− i

[l(l + 1)]
1
2

∂ Y m
l

∂ θ

}
,

Wlm = r1


(

l

2l + 1

) 1
2

Y m
l

+ θ1

{
1

[l(2l + 1)]
1
2

∂ Y m
l

∂ θ

}
+ φ1

{
imY m

l

[l(2l + 1)]
1
2 sin(θ)

}
,

(4.92)

where,
r1 = i sin(θ) cos(φ) + j sin(θ) sin(φ) + k cos(θ),

θ1 = i cos(θ) cos(φ) + j cos(θ) sin(φ)− k sin(θ),

φ1 = −i sin(φ) + j cos(φ).

(4.93)

As A(r) is arbitrary, one can enter any vector field here. This means one can insert

the magnetic vector potential directly into these equations. From these, one should

be able to determine to which multipole type each knotted field belongs. This thesis

will be considering the electric and magnetic fields and potentials - E, B, A, and C.

In order to compare the results obtained during the course of this research to those

of Irvine and Bouwmeester, it is necessary to outline the magnetic vector potential

for the Hopf-knotted solutions to Maxwell’s equations. One does not know at which

angular momentum numbers the multipole coefficients will occur. This drastically
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affects the VSH from above. The VSH will need to be derived for each set of angu-

lar momentum numbers tested, converted into Cartesian components, multiplied by

the components of the magnetic vector potential via a dot product, then converted

back to spherical polar coordinates. Finally, integrating the result over all angles - as

stated in equation 4.91.

The program, Maple, was used extensively for this process: for efficiency when cal-

culating multiple equations; but it was also used for its ability to create a script that

can generate all the results by changing only the two input parameters - p and q.

The script calculates the initial complex functions, α and β, along with their powers

(the winding numbers p and q), which are then inserted into the equation for each

component of the overall complex field, R, and also the overall complex potential

field, H . When taking the real and imaginary parts, one can extract the electric

and magnetic fields from R, and the electric and magnetic vector potentials from H

(again all calculated at time t = 0). A separate script is required for each combination

of winding numbers and for each different multipole coefficient functions f , g, and h

- attached to their VSH, Vl,m, Wl,m and Xl,m respectively. Within each script, the

multipole coefficients were calculated for every combination of angular momentum

numbers, from l = 0, 1, ..., 12, 13 and m = −l,−l + 1, ..., l − 1, l. This allowed the

identification of exactly which multipole coefficients were finite and which were zero.

In total, three base scripts were needed for each of the multipole coefficient functions

attached to their VSH. For simplicity and accuracy, the only input needed was the

change of integer of the winding numbers, p and q. This thesis considers many com-

binations of the winding numbers from p = 1 − 8 and q = 1 − 10. This eventually

gave 49 different knot types. Therefore, 147 scripts needed to be produced - consid-

ering each multipole coefficient.33 As with the extension to the results of Irvine and

Bouwmeester, a change in the winding number, p, produced multiple coefficients from

the different contributions, and followed a prescription.34 The multipole coefficients

that were produced for each different knot type were tabulated.35 This amounted to a

collection of 3, 680 multipole coefficient equations. As the scripts are all based off the

same three initial scripts, there is a very high level of consistency in their production.

33See figure 4.1 for the exact knot types and their p− q combinations that were calculated.
34See section 4.2.1.
35A sample can be found in the appendix G.

93



4.2. GENERALISED MULTIPOLAR EXPANSION OF THE VSH OF THE
KNOTTED SOLUTIONS TO MAXWELL’S EQUATIONS METHOD

p,
q

1,
1

1,
2

2,
2

2,
1

1,
3

2,
3

3,
3

3,
2

3,
1

1,
4

2,
4

3,
4

4,
4

4,
3

4,
2

4,
1

1,
5

2,
5

3,
5

4,
5

5,
5

5,
4

5,
3

5,
2

5,
1

1,
6

2,
6

3,
6

4,
6

5,
6

6,
6

6,
5

6,
4

6,
3

6,
2

6,
1

1,
7

2,
7

3,
7

4,
7

5,
7

6,
7

7,
7

7,
6

7,
5

7,
4

7,
3

7,
2

7,
1

1,
8

2,
8

3,
8

4,
8

5,
8

6,
8

7,
8

8,
8

8,
7

8,
6

8,
5

8,
4

8,
3

8,
2

8,
1

1,
9

2,
9

3,
9

4,
9

5,
9

6,
9

7,
9

8,
9

9,
9

9,
8

9,
7

9,
6

9,
5

9,
4

9,
3

9,
2

9,
1

1,
10

2,
10

3,
10

4,
10

5,
10

6,
10

7,
10

8,
10

9,
10

10
,1

0
10
,9

10
,8

10
,7

10
,6

10
,5

10
,4

10
,3

10
,2

10
,1

F
ig

u
re

4.
1:

T
h
e

ex
ac

t
k
n
ot

ty
p

es
an

d
th

ei
r
p-
q

co
m

b
in

at
io

n
s

th
at

w
er

e
ca

lc
u
la

te
d

ar
e

sh
ow

n
in

re
d
,

w
it

h
th

e
p-
q

w
in

d
in

g
n
u
m

b
er

tr
ee

sh
ow

in
g

th
e

va
ri

ou
s

co
m

b
in

at
io

n
s

p
os

si
b
le

fo
r
p

=
1
−

10
an

d
q

=
1
−

10
.

94



4.2. GENERALISED MULTIPOLAR EXPANSION OF THE VSH OF THE
KNOTTED SOLUTIONS TO MAXWELL’S EQUATIONS METHOD

4.2.1 Results from the Generalised Multipolar Method

A sample of the results for the magnetic vector potential is shown here at time t = 0.

For continuity, the same knot types that were given in the extension to the work

of Irvine and Bouwmeester [18][15] will be demonstrated for the potential field.36

The form that the results take below are slightly different to those displayed in the

appendices because their coefficients have been brought into the square-roots. The

reason for this is that they are comparable with the extended results of Irvine and

Bouwmeester. For each knot-type the multipole coefficients will be displayed, followed

by the form of the potential field.

p = 1, q = 1

Multipole coefficients and the potential field at t = 0:

r−1 fl=1,m=±1(r) = −
√

16π

9

i k3r2

(k2r2 + 1)2
,

r−1 gl=1,m=±1(r) = −
√

2 π

9

i k
(
k2r2 − 3

)
(k2r2 + 1)2

,

r−1 hl=1,m=±1(r) =

√
16 π

3

k2r

(k2r2 + 1)2
.

A(r, t = 0) = r−1
√

2 π

3

k

(k2 r2 + 1)2

1∑
m=−1

(
−
√

8

3
i k2 r2 V1,m −

1√
3
i (k2 r2 − 3)W1,m +

√
8

3
k rX1,m

)
.

(4.94)

36To see more multipole coefficients, please refer to the appendix G.
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p = 1, q = 2

Multipole coefficients and the potential field at t = 0:

r−1 fl=2,m=±2(r) =

[
m

|m|

]√
512π

25

i k6r5

(k2r2 + 1)4
,

r−1 fl=3,m=±2(r) =

√
2, 048 π

735

k5r4

(k2r2 + 1)4
,

r−1 gl=2,m=±2(r) =

[
m

|m|

]√
64π

75

i k2 r
(
k4r4 − 5

)
(k2r2 + 1)4

,

r−1 gl=3,m=±2(r) =

√
128 π

2, 205

k3 r2
(
k2r2 + 7

)
(k2r2 + 1)4

,

r−1 hl=2,m=±2(r) = −
[
m

|m|

]√
1, 024π

45

k3r2

(k2r2 + 1)3
.

A(r, t = 0) = r−1
√

64 π

25

k2 r

(k2 r2 + 1)3

2∑
m=−2

[ m
|m|

](√
8

i k4 r4

(k2 r2 + 1)
V2,m +

√
1

3
i

(k4 r4 − 5)

(k2 r2 + 1)
W2,m −

√
80

9
k rX2,m

)
+

(√
160

147

k3 r3

(k2 r2 + 1)
V3,m +

√
10

441

k r (k2 r2 + 7)

(k2 r2 + 1)
W3,m

) .
(4.95)

p = 1, q = 3

Multipole coefficients and the potential field at t = 0:

r−1 fl=3,m=±3(r) = −
√

36, 864 π

245

i k5r4
(
k2r2 − 1/3

)
(k2r2 + 1)5

,

r−1 fl=4,m=±3(r) = −
[
m

|m|

]√
16, 384 π

567

k6r5

(k2r2 + 1)5
,

r−1 gl=3,m=±3(r) = −
√

768 π

245

i k3 r2
(
k4r4 + 2 k2r2 − 7

)
(k2r2 + 1)5

,

r−1 gl=4,m=±3(r) = −
[
m

|m|

]√
1, 024π

2, 835

k4 r3
(
k2r2 + 9

)
(k2r2 + 1)5

,

r−1 hl=3,m=±3(r) =

√
3, 072π

35

k4r3

(k2r2 + 1)4
.

A(r, t = 0) = r−1
√
π

k3 r2

(k2 r2 + 1)4
×

3∑
m=−3

(
−
√

36, 864π

245

i k2 r2
(
k2r2 − 1/3

)
(k2 r2 + 1)

V3,m −
√

768π

245
i

(
k4r4 + 2 k2r2 − 7

)
(k2 r2 + 1)

W3,m +

√
3, 072 π

35
k rX3,m

)
+

[
m

|m|

](
−
√

16, 384π

567

k3 r3

(k2 r2 + 1)
V4,m −

√
1, 024π

2, 835

k r (k2 r2 + 9)

(k2 r2 + 1)
W4,m

) .
(4.96)
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p = 2, q = 1

Multipole coefficients and the potential field at t = 0:

r−1 fl=1,m=±1(r) = −
√

16 π

225

i k3 r2 (5 k4 r4 + 6 k2 r2 − 23)

(k2 r2 + 1)4
,

r−1 fl=2,m=±1(r) = −
[
m

|m|

]√
512 π

25

k4r3

(k2r2 + 1)4
,

r−1 fl=3,m=±1(r) = −
√

4, 096 π

3, 675

i k5r4

(k2r2 + 1)4
,

r−1 gl=1,m=±1(r) = −
√

2π

9

i k
(
k6r6 − 63

5
k4r4 − k2r2 + 3

)
(k2r2 + 1)4

,

r−1 gl=2,m=±1(r) =

[
m

|m|

]√
1, 024 π

75

k4r3

(k2r2 + 1)4
,

r−1 gl=3,m=±1(r) = −
√

256π

11, 025

i k3 r2
(
k2r2 + 7

)
(k2r2 + 1)4

,

r−1 hl=1,m=±1(r) =

√
64π

3

k2r
(
k2r2 − 1

)
(k2r2 + 1)3

,

r−1 hl=2,m=±1(r) = −
[
m

|m|

]√
256π

45

i k3r2

(k2r2 + 1)3
.

A(r, t = 0) = r−1
√
π

k

(k2 r2 + 1)3
×

1∑
m=−1

(−√ 16

225

i k2 r2 (5 k4 r4 + 6 k2 r2 − 23)

(k2 r2 + 1)
V1,m −

√
2

9

i
(
k6r6 − 63

5
k4r4 − k2r2 + 3

)
(k2r2 + 1)

W1,m +

√
64

3
k r
(
k2r2 − 1

)
X1,m

)
+

[
m

|m|

](
−
√

512

25

k3r3

(k2r2 + 1)
V2,m +

√
1, 024

75

k3r3

(k2r2 + 1)
W2,m −

√
256

45
i k2r2 X2,m

)
+

(
−
√

4, 096

3, 675

i k4r4

(k2r2 + 1)
V3,m −

√
256

11, 025

i k2 r2
(
k2r2 + 7

)
(k2r2 + 1)

W3,m

) .
(4.97)
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p = 2, q = 2

Multipole coefficients and the potential field at t = 0:

r−1 fl=2,m=±2(r) = −
[
m

|m|

]√
512 π

25

i k4 r3
(
k2r2 − 5

3

)
(k2r2 + 1)4

,

r−1 fl=3,m=±2(r) = −
[
m

|m|

]√
8, 192 π

735

k5 r4

(k2r2 + 1)4
,

r−1 gl=2,m=±2(r) = −
[
m

|m|

]√
64π

75

i k2 r
(
k4r4 − 10 k2r2 + 5

)
(k2r2 + 1)4

,

r−1 gl=3,m=±2(r) = −
[
m

|m|

]√
512 π

2, 205

k3 r2
(
k2r2 − 7

)
(k2r2 + 1)4

,

r−1 hl=2,m=±2(r) = −
[
m

|m|

]
−
√

4, 096 π

45

k3 r2
(
k2r2 − 1

)
(k2r2 + 1)4

,

r−1 hl=3,m=±2(r) = −
[
m

|m|

]√
8, 192π

315

i k4 r3

(k2r2 + 1)4
.

A(r, t = 0) = r−1
√
π

k2 r

(k2 r2 + 1)4
× 2∑

m=−2

[
m

|m|

](√
512

25
i k2 r2

(
k2r2 − 5

3

)
V2,m +

√
64

75
i
(
k4r4 − 10 k2r2 + 5

)
W2,m −

√
4, 096

45
k r
(
k2r2 − 1

)
X2,m

)
+

(√
8, 192

735
k3 r3 V3,m +

√
512

2, 205
k r
(
k2r2 − 7

)
W3,m +

√
8, 192

315
i k2r2 X3,m

) .
(4.98)
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p = 3, q = 1

Multipole coefficients and the potential field at t = 0:

r−1 fl=1,m=±1(r) = −
[
m

|m|

]
−
√

16 π

225

i k3 r2
(
5 k6r6 + 3 k4r4 − 81 k2r2 + 49

)
(k2r2 + 1)5

,

r−1 fl=2,m=±1(r) = −
[
m

|m|

]
−
√

247, 808π

1, 225

k4r3
(
k2r2 − 13

11

)
(k2r2 + 1)5

,

r−1 fl=3,m=±1(r) = −
[
m

|m|

]
−
√

12, 288π

1, 225

k5r4
(
k2r2 − 3

)
(k2r2 + 1)5

,

r−1 fl=4,m=±1(r) = −
[
m

|m|

]
−
√

16, 384π

3, 969

k6r5

(k2r2 + 1)5
,

r−1 gl=1,m=±1(r) = −
[
m

|m|

]
−
√

2π

9

i k
(
k8r8 − 144

5
k6r6 + 162

5
k4r4 + 8 k2r2 − 3

)
(k2r2 + 1)5

,

r−1 gl=2,m=±1(r) = −
[
m

|m|

]√
248, 832π

1, 225

k4r3
(
k2r2 − 7

9

)
(k2r2 + 1)5

,

r−1 gl=3,m=±1(r) = −
[
m

|m|

]
−
√

256 π

1, 225

i k3 r2
(
k4r4 + 18 k2r2 − 7

)
(k2r2 + 1)5

,

r−1 gl=4,m=±1(r) = −
[
m

|m|

]
−
√

1, 024π

19, 845

k4 r3
(
k2r2 + 9

)
(k2r2 + 1)5

,

r−1 hl=1,m=±1(r) = −
[
m

|m|

]√
48π

k2 r
(
k4r4 − 14

5
k2r2 + 1

)
(k2r2 + 1)4

,

r−1 hl=2,m=±1(r) = −
[
m

|m|

]
−
√

256π

5

i k3 r2
(
k2r2 − 1

)
(k2r2 + 1)4

,

r−1 hl=3,m=±1(r) = −
[
m

|m|

]
−
√

1, 024 π

175

k4 r3

(k2r2 + 1)4
.

A(r, t = 0) = r−1
√
π

k

(k2 r2 + 1)4
× 1∑

m=−1

[
m

|m|

](
−
√

16

225

i k2 r2
(
5 k6r6 + 3 k4r4 − 81 k2r2 + 49

)
(k2r2 + 1)

V1,m −
√

2

9

i
(
k8r8 − 144

5
k6r6 + 162

5
k4r4 + 8 k2r2 − 3

)
(k2r2 + 1)

W1,m+

√
48 k r

(
k4r4 − 14

5
k2r2 + 1

)
X1,m

)
+(

−
√

247, 808

1, 225

k3r3
(
k2r2 − 13

11

)
(k2r2 + 1)

V2,m +

√
248, 832

1, 225

k3r3
(
k2r2 − 7

9

)
(k2r2 + 1)

W2,m −
√

256

5
i k2 r2

(
k2r2 − 1

)
X2,m

)
+(

−
√

12, 288

1, 225

k4r4
(
k2r2 − 3

)
(k2r2 + 1)

V3,m −
√

256

1, 225

i k2 r2
(
k4r4 + 18 k2r2 − 7

)
(k2r2 + 1)

W3,m −
√

1, 024

175
k3 r3 X3,m

)
+

(
−
√

16, 384

3, 969

k5r5

(k2r2 + 1)
V4,m −

√
1, 024

19, 845

k3 r3
(
k2r2 + 9

)
(k2r2 + 1)

W4,m

) .
(4.99)
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In their entirety, the results show that there is a prescription to their generation,

relating the number of multipolar coefficients, the starting angular momentum num-

ber, l, and the winding numbers, p and q. This prescription is similar to this thesis’

extension to the work of Irvine and Bouwmeester, where the potential fields, A and

C, have a number of multipole coefficients determined by: p + 1 if p 6= q; and by

p if p = q - for the f and g multipole coefficient functions. They always start with

l = q and increase for the next coefficient in integers, and m = ±q for all coefficients.

For example, for the p = 3 and q = 2 knot, considering the Vl,m VSH, you would

have r−1 fl=2,m=±2(r), r−1 fl=3,m=±2(r), r−1 fl=4,m=±2(r), r−1 fl=5,m=±2(r). For h, the

number of multipole coefficients is determined by p, and they always start with l = q.

Using the same example, for the Xl,m VSH, you would have r−1 hl=2,m=±2(r),

r−1 hl=3,m=±2(r), r−1 hl=4,m=±2(r). The electric and magnetic fields, E and B, are

slightly different, having the number of multipolar coefficients determined by p, but

still start with l = q. These results serve as a more accurate set in comparison to

that given and suggested by Irvine and Bouwmeester.

4.2.2 Investigating the Patterns Occurring in the Multipole
Coefficients

Whilst generating the 3, 680 multipole coefficients, it was noted that there was some

sort of pattern emerging between each term. Initially, simple relationships were

recorded, like the powers of k increasing by one for each change of p or q, or by

two for a change in both. As Chapter Three states, zilches can be written in terms

of the winding numbers for the different knot types and the properties of the fields -

it is the contention here that a similar occurrence might be possible.

It became fairly obvious that there was an expansion of the terms occurring. The

higher ordered knot types resulted in terms appearing with a descending power series

of kr. The assumption was made, initially, that each term would be a multiplication

of a pre-factor, H, and a factor of the form, (k2r2 + 1)ζ , where ζ was related to the

order in which the multipole coefficient appeared. Within the pre-factor was found

a combination of two binomial expansion terms - which can be written in terms of

gamma functions.

After a process of trial and error, Maple scripts were completed that allowed the user

to input: which knot type was required; what multipole term was needed, according
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to the angular momentum number, l; and what type of field the user was looking at.

The script would then give the correct form for the multipole coefficient. The final

results have been triple checked for all 3, 680 terms. Whether this remains true for all

values to infinity is not known, as these have not been solved analytically. The final

forms of each script narrow down the set of total equations from 3, 680 to just 18. The

equations shown below relate to the potential fields for each corresponding multipole

coefficient type for each VSH. There are labels: ‘The last term’; ‘The second last

term’ etc. - these refer to the contributing coefficients for the different knot types.

For example, as previously stated, if one uses the p = 3 and q = 2 knot, this would

have four contributing coefficients for f and the Vl,m VSH. The last term out of these

is the fourth coefficient. If one considers the p = 1 and q = 1 knot, there are only two

contributing coefficients, therefore the last term is the second coefficient. The reason

they have been labelled this way is because the last term always has the smallest

expansion in kr for every knot type, and the higher expansions appear in the second

and third last terms - in that order.

For: r−1 fl,m(r) attached to Vl,m for the A and C fields:

The pre-factor:

H =

[
m

|m|

]2 (p+q)−l+δf 2p+q+l+1 (p+ q) p! q! l! (−1)l+p−δpq+δf (−i)3 l+5 q+2 p−2 δpq+δf kl+2 rl+1

(p+ q + l + 1)! (k2 r2 + 1)p+q+1−δpq

(
Γ(l) Γ(l + q + 1) l π

Γ(q)2 Γ(l − q + 1) Γ(l + 2)

) 1
2

(4.100)

The last term:

r−1 fl,m(r) = H (−p2 + q2 − p+ q + 2 δpq q (p+ q))

2 q (p+ q)
. (4.101)

The second last term:

r−1 fl,m(r) = H (Z1−δfg (p+ q − δpq) (q − p+ 1 + δpq (8 p2 − 6 p) + 2 δfg))

2 q (4 p)δpq
. (4.102)

The third last term:

r−1 fl,m(r) = H p+q−1
8 q (p+q)

(
(−2 p3 + (−2 q + 7) p2 + (2 q2 + 8 q − 7) p+ 2 q3 + q2

−5 q + 2 + δpq (16 q3 − 60 q2 + 52 q − 14))Z2

−4 (− p3+(q−2) p2+(q2−8 q+5) p−q3−6 q2+7 q−2−δpq (−64 q3+56 q2−16 q))
p−q+δpq (2 q−1) Z

+4 (p4+(−2 q+1) p3+(q−1) p2+(2 q3+3 q2+4 q−3) p−q4−5 q3+13 q2−9 q+2+δpq (−64 q4+112 q3−108 q2+40 q−4))
p−q+δpq (2 q−1)2

(4.103)
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Where,

Z = k2 r2 − p (2−δpq)−q δpq−l−3 δpq
p (2−δpq)−q δpq−l+δpq−2−δfg

,

δpq =

{
1, If p = q.

0, Otherwise.

δf =

{
1, Potential field.

0, Dual potential field.

(4.104)

For: r−1 gl,m(r) attached to Wl,m for the A and C fields:

The pre-factor:

H =

[
m

|m|

]l+δf 2p+q+l−2 p! q! l! (−1)q−δpq+δf (−i)2 p+q−l+δf kl rl−1

(p+ q + l)! (k2 r2 + 1)p+q+1−δpq

(
Γ(l) Γ(l + q + 1) (l + 1) π

Γ(q)2 Γ(l − q + 1) Γ(l + 2)

) 1
2

(4.105)

The last term:

r−1 gl,m(r) = H
2 (q − p+ 1

2
δpq) (4 p− 3)δpq

q (2 (p+ q − 1) + 3− 4 δpq)
Z. (4.106)

The second last term:

r−1 gl,m(r) = H
q

((p− q − 1− δpq (2 p− 2))Z2 + (6 p2 − 6 q2 − 4 p− 2 + δpq (24 p2 − 12 p+ 4))Z+

(8 p3 + (8 q − 6) p2 + (−8 q2 − 1) p− 8 q3 + 6 q2 − 3 q − 1 + δpq (−64 p3 + 56 p2 − 2 p− 2))).

(4.107)

The third last term:

r−1 gl,m(r) = H (p+q−1)
q

(
(p−q−2+δpq (4 q2−7 q+5))

2 (δpq (p+q)−1) Z3+

4 (p3+(q−4) p2+(−q2−8 q+ 17
4
) p−q3−4 q2+ 7

4
q− 1

2
)+δpq (16 q3+8 q2+31 q−13)

(−δpq (p+q)+2 q+2 p−1) Z2+

(2 (−p3 + (−q + 8) p2 + (q2 + 20 q − 11) p+ q3 + 12 q2 − q − 2) + δpq (16 q3 − 180 q2 + 162 q − 50))Z+

(−12 p3 + (−44 q + 24) p2 + (−52 q2 + 32 q + 4) p− 20 q3 + 8 q2 + 12 q − 8) + δpq (32 q3 + 184 q2 − 228 q + 68))

(4.108)

Where,
Z = k2 r2 + (−1)p+q−l (p+ q − δpq + l + 1).

δpq =

{
1, If p = q.

0, Otherwise.

δf =

{
1, Potential field.

0, Dual potential field.

(4.109)
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For: r−1 hl,m(r) attached to Xl,m for the A, C, E and B fields:

The pre-factor:

H =

[
m

|m|

]l+δf 2p+q+l+1−δpf (p+ q)1−δpf p! q! l! (−1)l−p+δpf (−i)2 p+q−l−δf−1+2 δpf kl+2−δpf rl

(p+ q + l)! (k2 r2 + 1)p+q+1−δpf

(
Γ(l) Γ(l + q + 1) (2 l + 1) π

Γ(q)2 Γ(l − q + 1) Γ(l + 2)

) 1
2

(4.110)

The last term:

r−1 hl,m(r) = H. (4.111)

The second last term:

r−1 hl,m(r) = H (p+ q − 1)Z. (4.112)

The third last term:

r−1 hl,m(r) = H (p+ q − 2)

(
(2 p+ 2 q − 3)

4
Z2 − Z − 1

)
(4.113)

The fourth last term:

r−1 hl,m(r) = H (p+ q − 2) (p+ q − 3)Z

(
(2 p+ 2 q − 5)

12
Z2 − Z − 1

)
(4.114)

Where,
Z = k2 r2 − 1.

δpf =

{
1, Potential field.

0, Field.

δf =

{
1, Magnetic, or magnetic vector potential.

0, Electric, or dual potential.

(4.115)
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4.3 Summary

The aim of this chapter was to understand the methods used by Irvine and Bouwmeester,

and later, Irvine, to conduct a multipole expansion on the Hopf-knotted and torus-

knotted fields. It has shown that, although their results were remarkable at the time,

they are no longer suitable for application in their proposed experimental verification.

This is primarily due to the limitations forced upon them by their own assumptions.

It has been demonstrated that the equations, initially derived by Jackson, cannot be

obtained without the variable t, always being valid. Therefore, the multipole coeffi-

cient equations cannot be derived, if fixing t = 0 - as is the case in the work of Irvine

and Bouwmeester. In addition, the Hopf-knotted fields do not contain an exponential

time-dependency.

An extension to the results of Irvine and Bouwmeester was undertaken and showed

drastically different results to those published in Irvine’s later paper. The results dis-

played a prescription that: as the winding number q got higher, whilst p = 1, a pure

multipole would appear - giving a higher pure multipole term for each increasing value

of q; or if p and q varied, then coefficients would have contributions from the num-

ber of multipole terms dictated by p, starting with angular momentum number, l = q.

As the published literature proved insufficient, this chapter aimed to provide an al-

ternative approach. Utilising a method given by Blatt and Weisskopf, a completely

general multipole expansion was applied to the Hopf-knotted and torus-knotted fields

and potentials. This method successfully produced all the multipole coefficients for

the first 49 different combinations of knots. Patterns between the multipolar coef-

ficients were recorded and relationships between the fields and potentials emerged.

Triangular numbers also appeared integral, as binomial expansion coefficients were

found in all the multipole coefficients. As these patterns were further investigated,

a complete set of scripts, and therefore equations, were produced to describe each

field and potential in terms of the winding numbers, p and q, the radius, r, and the

angular momentum numbers, l and m. This apparent relation is one that requires

further investigation - ideally to find an analytic solution.37

37See Chapter Five for suggestions of further work.
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CHAPTER

FIVE

CONCLUSIONS

This thesis has described a project that has advanced the knowledge of knotted

electromagnetic fields and electromagnetism. It has focused on two distinct areas:

Lipkin’s zilches in unusual electromagnetic fields; and the conduct of a multipole

expansion on the vector spherical harmonics of the knotted electromagnetic fields.

As such, this concluding chapter is devoted to the research chapters discussing these

areas. The remaining chapter, Chapter Two of this thesis, consisted of a detailed

analysis of the literature and background to the science on which this thesis is based.

It allowed for deeper understanding of the current academic landscape and afforded

a suitable position from which to start the research chapters.

For the last 55 years, physical understanding of Lipkin’s zilch has remained elusive.

Chapter Three presented the components of the zilch in three examples that provide

a new way of viewing them, which sheds considerable light on their interpretation.

The examples involved three sets of families of vacuum electromagnetic solutions -

all of which were developed in the same manner - through Bateman’s construction.

It was found that all solutions deliberated resulted in converging values - when their

densities were integrated over all space. When taking into account their scalar field

plots (for constant magnitude, φ1,2), they all produced closed surfaces. Chapter Three

identified two, core findings into which the results can be divided: the zilches can be

written entirely in terms of the known conserved quantities of the field (energy, mo-

mentum, angular momentum and helicity); and it ascertained that the zilches contain

information about the topology of the fields. Further to this, second strand, more de-

tailed and specific properties were established for the knotted fields the crossing and

unknotting numbers were found, in terms of the Z110
p,q . Finally, the chapter observed
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an unquantified correlation between the zilches and the degree of chirality in the field.

Future work on the zilches might involve exploring further examples to attempt to

determine a general theory confirming or denying the conjecture given here - suggest-

ing that these results are only possible in convergent solutions. Further exploration of

the topological nature of the zilches, and the exact mechanism that causes it, would

be of worth because it could allow them to be used experimentally to determine how

the topology of fields changes with time. Strong links between the zilches and the

topology of these fields has been established. Rather than continuing to pursue a

physical interpretation, a more fruitful way of viewing them is one of a topological

invariant.

An interpretation of the components of zilch have been demonstrated in a number of

examples of this class of fields, in terms of both the physically conserved properties

associated with the electromagnetic fields, and in terms of their topology. It is spec-

ulated that this may only be possible for fields of which properties are convergent.

Exploration to find any through diverging solutions were unsuccessful. This chap-

ter has taken the opportunity to investigate the zilches in a previously unconsidered

arena - knotted electromagnetic fields - and gave a fresh insight into their properties.

These properties are expected to give the zilches a more central role in future elec-

tromagnetic theory.

The second aspect of this thesis concentrated on the multipole expansion of the knot-

ted fields and potentials. Chapter Four ascertained that the work of Irvine, and the

collaborative work of Irvine and Bouwmeester, in conducting a multipole expansion

of the vector spherical harmonics, is no longer applicable for application in their

proffered experimental validation. It was established, here, that the multipole coef-

ficient equations cannot be obtained without the variable, t, being valid. Therefore,

this thesis claims that the multipole coefficient equations cannot be derived if fixing

t = 0. Additionally, it was maintained that the Hopf-knotted fields do not contain

an exponential time-dependency in their equations.

This thesis went on to provide an extension to the results of Irvine and Bouwmeester.

Subsequent results were distinct from those previously published by Irvine. It was

found that: when holding the winding number p = 1 and increasing the value of q,

a pure multipole would appear - giving a higher pure multipole term for each higher
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value of q; or if p and q were both varied, then coefficients would have contributions

from the number of multipole terms dictated by p, starting with angular momentum

number, l = q.

Finally, Chapter Four gave an alternative approach to that of Irvine and Bouwmeester.

A general, multipole expansion was applied to Hopf-knotted and torus-knotted fields

and potentials. This resulted in the successful production of all multipole coefficients

for the first 49 combinations of knots. As patterns were observed, a complete script,

and therefore equations, were formed to portray each field and potential in terms of

the winding numbers, p and q, the radius, r, and the angular momentum numbers, l

and m.

This work has stated that, to an extent, the original work of Irvine and Bouwmeester

is unfitting. This dictates that their final experimental verification is affected and

requires attention. Further work in this area might possibly take two routes: an

attempt to improve upon the original results of Irvine and Bouwmeester, to achieve

experimental verification of the knotted solutions to Maxwell’s equations; or an effort

to find an analytic solution that describes the multipole coefficients indefinitely. The

former of these routes would need to consider the method of Irvine and Boumeester

in generating the knotted solutions through circularly polarised plane waves. The

possibility of this producing tangible results may be affected by the fact there is no

exponential time dependancy in the new multipolar expansion solutions.

As the knotted electric and magnetic field lines fill all of space, the likelihood that

they can be experimentally verified globally through superpositions of plane waves

is unlikely. There could be a possibility of creating a local approximation to them

experimentally for an instant in time, but as the fields expand out radially with the

speed of light and propagate linearly in the z-direction at the same time, it is unlikely

that this could be fulfilled at later times.

The aim of this thesis was to contribute to the body of knowledge of electromagnetic

theory through exploration of two, distinct projects, related through a topological

formalism of Maxwell’s equations and the Hopf fibration. This thesis’ exploration of

Lipkin’s zilches in unusual, electromagnetic fields has enhanced our understanding by

providing unique insight which identifies the zilches’ deep connection with topology.

The subsequent work on the multipolar expansion of the vector spherical harmonics of
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the knotted electromagnetic fields has provided a thorough study into the assumptions

made in the current literature and presented a viable alternative. The hope is that

this work can inspire further progression within the area of electromagnetism and

advance our overall understanding.
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[11] Rañada AF, Trueba JL. Electromagnetic Knots. Physics Letters A. 1995;202(5-

6):337–342.

109



BIBLIOGRAPHY
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APPENDIX

A

FIELD COMPONENTS FOR THE DIFFERENT P −Q
KNOT-TYPES
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p = 1, q = 2

Initial Field Components:

E(r, t = 0) = − 16
(1+r2)4


x3 − 3xy2 − xz2 − 2 yz + x,

3x2y − y3 + yz2 − 2 zx− y,

2(x2z − y2z + 2xy)



B(r, t = 0) = − 16
(1+r2)4


−3x2y + y3 + yz2 − 2 zx− y,

x3 − 3xy2 + xz2 + 2 yz − x,

2(−2xyz + x2 − y2)



(A.1)

p = 1, q = 3

Initial Field Components:

E(r, t = 0) = − 48
(1+r2)5


x4 − 6x2y2 − x2z2 + y4 + y2z2 − 4xyz + x2 − y2,

2
(
2x3y − 2xy3 + xyz2 − x2z + y2z − xy

)
,

2
(
x3z − 3xy2z + 3x2y − y3

)



B(r, t = 0) = − 48
(1+r2)5


2
(
−2x3y + 2xy3 + xyz2 − x2z + y2z − xy

)
,

x4 − 6x2y2 + x2z2 + y4 − y2z2 + 4xyz − x2 + y2,

2(−3x2yz + y3z + x3 − 3xy2)


(A.2)
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p = 2, q = 1

Initial Field Components:

E(r, t = 0) = − 8
(1+r2)4


x4 − y4 − 2 y2z2 − z4 + 4xyz + 2 y2 + 6 z2 − 1,

2
(
x3y + xy3 + xyz2 − 2x2z − 2 z3 − xy + 2 z

)
,

2
(
x3z + xy2z + xz3 + x2y + y3 + 3 yz2 − 3xz − y

)



B(r, t = 0) = − 8
(1+r2)4


2
(
−x3y − xy3 − xyz2 − 2 y2z − 2 z3 + xy + 2 z

)
,

x4 + 2x2z2 − y4 + z4 + 4xyz − 2x2 − 6 z2 + 1,

2
(
−x2yz − y3z − yz3 + x3 + xy2 + 3xz2 + 3 yz − x

)


(A.3)

p = 2, q = 2

Initial Field Components:

E(r, t = 0) = − 32
(1+r2)5


x5 − 2x3y2 − 3xy4 − 4xy2z2 − xz4 + 4x2yz − 4 y3z − 4 yz3 + 4xy2 + 6xz2 + 4 yz − x,

3x4y + 2x2y3 + 4x2yz2 − y5 + yz4 − 4x3z + 4xy2z − 4xz3 − 4x2y − 6 yz2 + 4xz + y,

2
(
x4z + x2z3 − y4z − y2z3 + 2x3y + 2xy3 + 6xyz2 − 3x2z + 3 y2z − 2xy

)



B(r, t = 0) = − 32
(1+r2)5


−3x4y − 2x2y3 − 2x2yz2 + y5 + 2 y3z2 + yz4 − 8xy2z − 4xz3 + 2x2y − 2 y3 − 6 yz2 + 4xz + y,

x5 − 2x3y2 + 2x3z2 − 3xy4 − 2xy2z2 + xz4 + 8x2yz + 4 yz3 − 2x3 + 2xy2 − 6xz2 − 4 yz + x,

2(−2x3yz − 2xy3z − 2xyz3 + x4 + 3x2z2 − y4 − 3 y2z2 + 6xyz − x2 + y2)


(A.4)

p = 3, q = 1

Initial Field Components:

E(r, t = 0) = − 12
(1+r2)5


x6 + x4y2 + x4z2 − x2y4 − 2x2y2z2 − x2z4 − y6 − 3 y4z2 − 3 y2z4 − z6 + 8x3yz + 8xy3z + 8xyz3 − x4 + 2x2y2 + 6x2z2 + 3 y4 + 18 y2z2 + 15 z4 − 8xyz − x2 − 3 y2 − 15 z2 + 1,

2
(
x5y + 2x3y3 + 2x3yz2 + xy5 + 2xy3z2 + xyz4 − 3x4z − 2x2y2z − 6x2z3 + y4z − 2 y2z3 − 3 z5 − 2x3y − 2xy3 − 6xyz2 + 6x2z + 2 y2z + 10 z3 + xy − 3 z

)
,

2
(
x5z + 2x3y2z + 2x3z3 + xy4z + 2xy2z3 + xz5 + x4y + 2x2y3 + 6x2yz2 + y5 + 6 y3z2 + 5 yz4 − 6x3z − 6xy2z − 10xz3 − 2x2y − 2 y3 − 10 yz2 + 5xz + y

)
,



B(r, t = 0) = − 12
(1+r2)5


2
(
−x5y − 2x3y3 − 2x3yz2 − xy5 − 2xy3z2 − xyz4 + x4z − 2x2y2z − 2x2z3 − 3 y4z − 6 y2z3 − 3 z5 + 2x3y + 2xy3 + 6xyz2 + 2x2z + 6 y2z + 10 z3 − xy − 3 z

)
,

x6 + x4y2 + 3x4z2 − x2y4 + 2x2y2z2 + 3x2z4 − y6 − y4z2 + y2z4 + z6 + 8x3yz + 8xy3z + 8xyz3 − 3x4 − 2x2y2 − 18x2z2 + y4 − 6 y2z2 − 15 z4 − 8xyz + 3x2 + y2 + 15 z2 − 1,

2
(
−x4yz − 2x2y3z − 2x2yz3 − y5z − 2 y3z3 − yz5 + x5 + 2x3y2 + 6x3z2 + xy4 + 6xy2z2 + 5xz4 + 6x2yz + 6 y3z + 10 yz3 − 2x3 − 2xy2 − 10xz2 − 5 yz + x

)


(A.5)
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APPENDIX

B

MULTIPOLE COEFFICIENT GENERATION, R−1FL,M ,

FOR THE V-VSH, FOR THE ELECTRIC (C) AND

MAGNETIC (A) VECTOR POTENTIALS

Below is the Maple script used to generate the multipole coefficients, r−1fl,m, for the

Electric and Magnetic Vector Potentials in terms of only their windings numbers p

and q, their angular momentum numbers l and m, and the radius, r.
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> > 
(8)(8)

(9)(9)

(2)(2)

> > 
(4)(4)

(1)(1)

(6)(6)

> > 

> > 

> > 

> > 

(5)(5)

> > 

> > 

> > 

> > 

> > 

(3)(3)

(7)(7)

(10)(10)

> > 

> > 

> > 



> > 

(11)(11)

> > 

(13)(13)

(12)(12)

> > 

> > 

(10)(10)

> > 



APPENDIX

C

MULTIPOLE COEFFICIENT GENERATION, R−1FL,M ,

FOR THE V-VSH, FOR THE ELECTRIC (E) AND

MAGNETIC (B) FIELDS

Below is the Maple script used to generate the multipole coefficients, r−1fl,m, for the

Electric and Magnetic fields in terms of only their windings numbers p and q, their

angular momentum numbers l and m, and the radius, r.
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(2)(2)

(8)(8)

> > 

> > 

(9)(9)

> > 
> > 

> > 

(3)(3)

(4)(4)

(6)(6)

(1)(1)

(7)(7)
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> > 

> > 

> > 

> > 

> > 

(5)(5)

> > 

> > 



> > 

(9)(9)

(10)(10)

(11)(11)

> > 



APPENDIX

D

MULTIPOLE COEFFICIENT GENERATION, R−1GL,M ,

FOR THE W-VSH, FOR THE ELECTRIC (A) AND

MAGNETIC (C) VECTOR POTENTIALS

Below is the Maple script used to generate the multipole coefficients, r−1gl,m, for the

Electric and Magnetic Vector Potentials in terms of only their windings numbers p

and q, their angular momentum numbers l and m, and the radius, r.
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(4)(4)

(3)(3)

> > 

(7)(7)

> > 

> > 

> > 

> > 

> > 

(2)(2)

> > 

> > 

(1)(1)

> > 

(6)(6)
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> > 

(5)(5)
> > 

(9)(9)

> > 

> > 



(11)(11)
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> > 

(12)(12)

> > 

> > 

(10)(10)

> > 



APPENDIX

E

MULTIPOLE COEFFICIENT GENERATION, R−1GL,M ,

FOR THE W-VSH, FOR THE ELECTRIC (E) AND

MAGNETIC (B) FIELDS

Below is the Maple script used to generate the multipole coefficients, r−1gl,m, for the

Electric and Magnetic fields in terms of only their windings numbers p and q, their

angular momentum numbers l and m, and the radius, r.
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(9)(9)

> > 

> > 

(8)(8)

> > 

(3)(3)

(10)(10)

> > 

(7)(7)
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(2)(2)

(4)(4)
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> > 
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(12)(12)

> > 

> > 
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APPENDIX

F

MULTIPOLE COEFFICIENT GENERATION, R−1HL,M ,

FOR THE X-VSH, FOR THE ELECTRIC (E) AND

MAGNETIC (B) FIELDS, AND THE ELECTRIC (A) AND

MAGNETIC (C) VECTOR POTENTIALS

Below is the Maple script used to generate the multipole coefficients, r−1hl,m, for

the Electric and Magnetic fields, and the Electric and Magnetic Vector Potentials in

terms of only their windings numbers p and q, their angular momentum numbers l

and m, and the radius, r.
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> > 

(4)(4)

> > 

> > 

(2)(2)

> > 

> > 

> > 
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> > 

> > 

(13)(13)
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APPENDIX

G

TABULATED MULTIPOLE COEFFICIENTS

Below is a sample of the tabulated multipolar coefficients.
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Table G.1: The Generalised Multipolar Coefficients For the Vector Spherical
Harmonics, Knot type: p=1; q=1

p=1, q=1, Electric and Magnetic Fields

l m E-field B-field

r−1fl,m

1 1 −16/3
k4r2
√
π

(k2r2 + 1)3
−16/3

ik4r2
√
π

(k2r2 + 1)3

1 -1 16/3
k4r2
√
π

(k2r2 + 1)3
−16/3 ik4r2

√
π

(k2r2 + 1)3

r−1gl,m

1 1 −4/3

√
2k2
√
π
(
k2r2 − 3

)
(k2r2 + 1)3

−4/3 i
√

2k2
√
π
(
k2r2 − 3

)
(k2r2 + 1)3

1 -1 4/3

√
2k2
√
π
(
k2r2 − 3

)
(k2r2 + 1)3

−4/3 i
√

2k2
√
π
(
k2r2 − 3

)
(k2r2 + 1)3

r−1hl,m

1 1
−16/3 ik3r

√
3
√
π

(k2r2 + 1)3
16/3

k3r
√

3
√
π

(k2r2 + 1)3

1 -1
16/3 ik3r

√
3
√
π

(k2r2 + 1)3
16/3

k3r
√

3
√
π

(k2r2 + 1)3
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p=1, q=1, Electric and Magnetic Potential Fields

l m A-field C-field

r−1fl,m

1 1
−4/3 ik3r2

√
π

(k2r2 + 1)2
−4/3

k3r2
√
π

(k2r2 + 1)2

1 -1
−4/3 ik3r2

√
π

(k2r2 + 1)2
4/3

k3r2
√
π

(k2r2 + 1)2

r−1gl,m

1 1
−i/3k

√
2
√
π
(
k2r2 − 3

)
(k2r2 + 1)2

−1/3
k
√

2
√
π
(
k2r2 − 3

)
(k2r2 + 1)2

1 -1
−i/3k

√
2
√
π
(
k2r2 − 3

)
(k2r2 + 1)2

1/3
k
√

2
√
π
(
k2r2 − 3

)
(k2r2 + 1)2

r−1hl,m

1 1 4/3
k2r
√

3
√
π

(k2r2 + 1)2
−4/3 ik2r

√
3
√
π

(k2r2 + 1)2

1 -1 4/3
k2r
√

3
√
π

(k2r2 + 1)2
4/3 ik2r

√
3
√
π

(k2r2 + 1)2
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Table G.4: The Generalised Multipolar Coefficients For the Vector Spherical
Harmonics, Knot type: p=1; q=2

p=1, q=2, Electric and Magnetic Fields

l m E-field B-field

r−1fl,m

2 2
64
√

2k5r3
√
π

5 (k2r2 + 1)4

64 i
5

√
2k5r3

√
π

(k2r2 + 1)4

2 -2
64
√

2k5r3
√
π

5 (k2r2 + 1)4
−64 i

5

√
2k5r3

√
π

(k2r2 + 1)4

3 2 0 0

3 -2 0 0

r−1gl,m

2 2
32
√
π
√

3k3r
(
k2r2 − 5

)
15 (k2r2 + 1)4

32 i
15

√
π
√

3k3r
(
k2r2 − 5

)
(k2r2 + 1)4

2 -2
32
√
π
√

3k3r
(
k2r2 − 5

)
15 (k2r2 + 1)4

−32 i
15

√
π
√

3k3r
(
k2r2 − 5

)
(k2r2 + 1)4

3 2 0 0

3 -2 0 0

r−1hl,m

2 2
64 i
5

√
5k4r2

√
π

(k2r2 + 1)4
−64

√
5k4r2

√
π

5 (k2r2 + 1)4

2 -2
64 i
5

√
5k4r2

√
π

(k2r2 + 1)4
64
√

5k4r2
√
π

5 (k2r2 + 1)4

3 2 0 0

3 -2 0 0
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Table G.6: The Generalised Multipolar Coefficients For the Vector Spherical
Harmonics, Knot type: p=1; q=2

p=1, q=2, Electric and Magnetic Potential Fields

l m A-field C-field

r−1fl,m

2 2
16 i
5
r5
√

2k6
√
π

(k2r2 + 1)4
16 r5

√
2k6
√
π

5 (k2r2 + 1)4

2 -2
−16 i

5
r5
√

2k6
√
π

(k2r2 + 1)4
16 r5

√
2k6
√
π

5 (k2r2 + 1)4

3 2
32
√

30k5r4
√
π

105 (k2r2 + 1)4
−32 i

105

√
30k5r4

√
π

(k2r2 + 1)4

3 -2
32
√

30k5r4
√
π

105 (k2r2 + 1)4

32 i
105

√
30k5r4

√
π

(k2r2 + 1)4

r−1gl,m

2 2
8 i
15

√
πr
√

3k2
(
k4r4 − 5

)
(k2r2 + 1)4

8
√
πr
√

3k2
(
k4r4 − 5

)
15 (k2r2 + 1)4

2 -2
−8 i

15

√
πr
√

3k2
(
k4r4 − 5

)
(k2r2 + 1)4

8
√
πr
√

3k2
(
k4r4 − 5

)
15 (k2r2 + 1)4

3 2
8
√
π
√

10k3r2
(
k2r2 + 7

)
105 (k2r2 + 1)4

− 8 i
105

√
π
√

10k3r2
(
k2r2 + 7

)
(k2r2 + 1)4

3 -2
8
√
π
√

10k3r2
(
k2r2 + 7

)
105 (k2r2 + 1)4

8 i
105

√
π
√

10k3r2
(
k2r2 + 7

)
(k2r2 + 1)4

r−1hl,m

2 2 − 32 k3
√

5r2
√
π

15 (k2r2 + 1)3

32 i
15
k3
√

5r2
√
π

(k2r2 + 1)3

2 -2
32 k3

√
5r2
√
π

15 (k2r2 + 1)3

32 i
15
k3
√

5r2
√
π

(k2r2 + 1)3

3 2 0 0

3 -2 0 0
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Table G.8: The Generalised Multipolar Coefficients For the Vector Spherical
Harmonics, Knot type: p=1; q=3

p=1, q=3, Electric and Magnetic Fields

l m E-field B-field

r−1fl,m

3 3 −768 k6r4
√

5
√
π

35 (k2r2 + 1)5
−768 i

35
r4k6
√

5
√
π

(k2r2 + 1)5

3 -3
768 k6r4

√
5
√
π

35 (k2r2 + 1)5
−768 i

35
r4k6
√

5
√
π

(k2r2 + 1)5

4 3 0 0

4 -3 0 0

r−1gl,m

3 3 −
64
√

5
√

3k4r2
√
π
(
k2r2 − 7

)
35 (k2r2 + 1)5

−64 i
35

√
5
√

3k4r2
√
π
(
k2r2 − 7

)
(k2r2 + 1)5

3 -3
64
√

5
√

3k4r2
√
π
(
k2r2 − 7

)
35 (k2r2 + 1)5

−64 i
35

√
5
√

3k4r2
√
π
(
k2r2 − 7

)
(k2r2 + 1)5

4 3 0 0

4 -3 0 0

r−1hl,m

3 3
−256 i

35
k5r3
√

3
√

35
√
π

(k2r2 + 1)5
256 k5r3

√
3
√

35
√
π

35 (k2r2 + 1)5

3 -3
256 i
35
k5r3
√

3
√

35
√
π

(k2r2 + 1)5
256 k5r3

√
3
√

35
√
π

35 (k2r2 + 1)5

4 3 0 0

4 -3 0 0
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Table G.10: The Generalised Multipolar Coefficients For the Vector Spherical
Harmonics, Knot type: p=1; q=3

p=1, q=3, Electric and Magnetic Potential Fields

l m A-field C-field

r−1fl,m

3 3
−192 i

35

√
5r4
√
πk5

(
k2r2 − 1/3

)
(k2r2 + 1)5

−
192
√

5r4
√
πk5

(
k2r2 − 1/3

)
35 (k2r2 + 1)5

3 -3
−192 i

35

√
5r4
√
πk5

(
k2r2 − 1/3

)
(k2r2 + 1)5

192
√

5r4
√
πk5

(
k2r2 − 1/3

)
35 (k2r2 + 1)5

4 3 −128 k6r5
√

7
√
π

63 (k2r2 + 1)5

128 i
63
k6r5
√

7
√
π

(k2r2 + 1)5

4 -3
128 k6r5

√
7
√
π

63 (k2r2 + 1)5

128 i
63
k6r5
√

7
√
π

(k2r2 + 1)5

r−1gl,m

3 3
−16 i

35
k3
√

3
√

5r2
√
π
(
k4r4 + 2 k2r2 − 7

)
(k2r2 + 1)5

−
16 k3

√
3
√

5r2
√
π
(
k4r4 + 2 k2r2 − 7

)
35 (k2r2 + 1)5

3 -3
−16 i

35
k3
√

3
√

5r2
√
π
(
k4r4 + 2 k2r2 − 7

)
(k2r2 + 1)5

16 k3
√

3
√

5r2
√
π
(
k4r4 + 2 k2r2 − 7

)
35 (k2r2 + 1)5

4 3 −
32 k4

√
35r3
√
π
(
k2r2 + 9

)
315 (k2r2 + 1)5

32 i
315
k4
√

35r3
√
π
(
k2r2 + 9

)
(k2r2 + 1)5

4 -3
32 k4

√
35r3
√
π
(
k2r2 + 9

)
315 (k2r2 + 1)5

32 i
315
k4
√

35r3
√
π
(
k2r2 + 9

)
(k2r2 + 1)5

r−1hl,m

3 3
32 k4r3

√
3
√

35
√
π

35 (k2r2 + 1)4
−32 i

35
k4r3
√

3
√

35
√
π

(k2r2 + 1)4

3 -3
32 k4r3

√
3
√

35
√
π

35 (k2r2 + 1)4

32 i
35
k4r3
√

35
√

3
√
π

(k2r2 + 1)4

4 3 0 0

4 -3 0 0
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Table G.12: The Generalised Multipolar Coefficients For the Vector Spherical
Harmonics, Knot type: p=1; q=4

p=1, q=4, Electric and Magnetic Fields

l m E-field B-field

r−1fl,m

4 4
2048

√
14k7r5

√
π

63 (k2r2 + 1)6

2048 i
63

√
14k7r5

√
π

(k2r2 + 1)6

4 -4
2048

√
14k7r5

√
π

63 (k2r2 + 1)6
−2048 i

63

√
14k7r5

√
π

(k2r2 + 1)6

5 4 0 0

5 -4 0 0

r−1gl,m

4 4
512
√
π
√

70k5r3
(
k2r2 − 9

)
315 (k2r2 + 1)6

512 i
315

√
π
√

70k5r3
(
k2r2 − 9

)
(k2r2 + 1)6

4 -4
512
√
π
√

70k5r3
(
k2r2 − 9

)
315 (k2r2 + 1)6

−512 i
315

√
π
√

70k5r3
(
k2r2 − 9

)
(k2r2 + 1)6

5 4 0 0

5 -4 0 0

r−1hl,m

4 4
1024 i
21

√
14k6r4

√
π

(k2r2 + 1)6
) −1024

√
14k6r4

√
π

21 (k2r2 + 1)6

4 -4
1024 i
21

√
14k6r4

√
π

(k2r2 + 1)6
1024

√
14k6r4

√
π

21 (k2r2 + 1)6

5 4 0 0

5 -4 0 0
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Table G.14: The Generalised Multipolar Coefficients For the Vector Spherical
Harmonics, Knot type: p=1; q=4

p=1, q=4, Electric and Magnetic Potential Fields

l m A-field C-field

r−1fl,m

4 4
512 i
63
k6r5
√
π
(
k2r2 − 1/2

)√
14

(k2r2 + 1)6
512 k6r5

√
π
(
k2r2 − 1/2

)√
14

63 (k2r2 + 1)6

4 -4
−512 i

63
k6r5
√
π
(
k2r2 − 1/2

)√
14

(k2r2 + 1)6
512 k6r5

√
π
(
k2r2 − 1/2

)√
14

63 (k2r2 + 1)6

5 4
512 k7

√
3
√

35r6
√
π

385 (k2r2 + 1)6
−512 i

385
k7
√

3
√

35r6
√
π

(k2r2 + 1)6

5 -4
512 k7

√
3
√

35r6
√
π

385 (k2r2 + 1)6

512 i
385

k7
√

3
√

35r6
√
π

(k2r2 + 1)6

r−1gl,m

4 4
128 i
315

√
πk4
√

70r3
(
k4r4 + 4 k2r2 − 9

)
(k2r2 + 1)6

128
√
πk4
√

70r3
(
k4r4 + 4 k2r2 − 9

)
315 (k2r2 + 1)6

4 -4
−128 i

315

√
πk4
√

70r3
(
k4r4 + 4 k2r2 − 9

)
(k2r2 + 1)6

128
√
πk4
√

70r3
(
k4r4 + 4 k2r2 − 9

)
315 (k2r2 + 1)6

5 4
128
√
πk5
√

14r4
(
k2r2 + 11

)
385 (k2r2 + 1)6

−128 i
385

√
πk5
√

14r4
(
k2r2 + 11

)
(k2r2 + 1)6

5 -4
128
√
πk5
√

14r4
(
k2r2 + 11

)
385 (k2r2 + 1)6

128 i
385

√
πk5
√

14r4
(
k2r2 + 11

)
(k2r2 + 1)6

r−1hl,m

4 4 −512
√

14k5r4
√
π

105 (k2r2 + 1)5

512 i
105

√
14k5r4

√
π

(k2r2 + 1)5

4 -4
512
√

14k5r4
√
π

105 (k2r2 + 1)5

512 i
105

√
14k5r4

√
π

(k2r2 + 1)5

5 4 0 0

5 -4 0 0
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Table G.16: The Generalised Multipolar Coefficients For the Vector Spherical
Harmonics, Knot type: p=1; q=5

p=1, q=5, Electric and Magnetic Fields

l m E-field B-field

r−1fl,m

5 5 −10240 k8r6
√

6
√

7
√
π

231 (k2r2 + 1)7
−10240 i

231
r6k8
√

6
√

7
√
π

(k2r2 + 1)7

5 -5
10240 k8r6

√
6
√

7
√
π

231 (k2r2 + 1)7
−10240 i

231
r6k8
√

6
√

7
√
π

(k2r2 + 1)7

6 5 0 0

6 -5 0 0

r−1gl,m

5 5 −
1024

√
5
√

7k6r4
√
π
(
k2r2 − 11

)
231 (k2r2 + 1)7

−1024 i
231

√
5
√

7k6r4
√
π
(
k2r2 − 11

)
(k2r2 + 1)7

5 -5
1024

√
5
√

7k6r4
√
π
(
k2r2 − 11

)
231 (k2r2 + 1)7

−1024 i
231

√
5
√

7k6r4
√
π
(
k2r2 − 11

)
(k2r2 + 1)7

6 5 0 0

6 -5 0 0

r−1hl,m

5 5
−2048 i

231
k7
√

77
√

30r5
√
π

(k2r2 + 1)7
)

2048 k7
√

77
√

30r5
√
π

231 (k2r2 + 1)7

5 -5
2048 i
231

k7
√

77
√

30r5
√
π

(k2r2 + 1)7
2048 k7

√
77
√

30r5
√
π

231 (k2r2 + 1)7

6 5 0 0

6 -5 0 0
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Table G.18: The Generalised Multipolar Coefficients For the Vector Spherical
Harmonics, Knot type: p=1; q=5

p=1, q=5, Electric and Magnetic Potential Fields

l m A-field C-field

r−1fl,m

5 5
−2560 i

231
k7
√

7
√
π
(
k2r2 − 3/5

)
r6
√

6

(k2r2 + 1)7
−

2560 k7
√

7
√
π
(
k2r2 − 3/5

)
r6
√

6

231 (k2r2 + 1)7

5 -5
−2560 i

231
k7
√

7
√
π
(
k2r2 − 3/5

)
r6
√

6

(k2r2 + 1)7
2560 k7

√
7
√
π
(
k2r2 − 3/5

)
r6
√

6

231 (k2r2 + 1)7

6 5 −4096 k8r7
√

11
√
π

429 (k2r2 + 1)7

4096 i
429

k8r7
√

11
√
π

(k2r2 + 1)7

6 -5
4096 k8r7

√
11
√
π

429 (k2r2 + 1)7

4096 i
429

k8r7
√

11
√
π

(k2r2 + 1)7

r−1gl,m

5 5
−256 i

231
k5
√

5
√

7r4
√
π
(
k4r4 + 6 k2r2 − 11

)
(k2r2 + 1)7

−
256 k5

√
5
√

7r4
√
π
(
k4r4 + 6 k2r2 − 11

)
231 (k2r2 + 1)7

5 -5
−256 i

231
k5
√

5
√

7r4
√
π
(
k4r4 + 6 k2r2 − 11

)
(k2r2 + 1)7

256 k5
√

5
√

7r4
√
π
(
k4r4 + 6 k2r2 − 11

)
231 (k2r2 + 1)7

6 5 −
1024 k6

√
6
√

77r5
√
π
(
k2r2 + 13

)
9009 (k2r2 + 1)7

1024 i
9009

k6
√

6
√

77r5
√
π
(
k2r2 + 13

)
(k2r2 + 1)7

6 -5
1024 k6

√
6
√

77r5
√
π
(
k2r2 + 13

)
9009 (k2r2 + 1)7

1024 i
9009

k6
√

6
√

77r5
√
π
(
k2r2 + 13

)
(k2r2 + 1)7

r−1hl,m

5 5
512 r5

√
30
√

77k6
√
π

693 (k2r2 + 1)6
−512 i

693
r5
√

30
√

77k6
√
π

(k2r2 + 1)6

5 -5
512 r5

√
30
√

77k6
√
π

693 (k2r2 + 1)6

512 i
693

r5
√

30
√

77k6
√
π

(k2r2 + 1)6

6 5 0 0

6 -5 0 0
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Table G.20: The Generalised Multipolar Coefficients For the Vector Spherical
Harmonics, Knot type: p=1; q=6

p=1, q=6, Electric and Magnetic Fields

l m E-field B-field

r−1fl,m

6 6
16384 k9r7

√
33
√
π

143 (k2r2 + 1)8

16384 i
143

k9r7
√

33
√
π

(k2r2 + 1)8

6 -6
16384 k9r7

√
33
√
π

143 (k2r2 + 1)8
−16384 i

143
k9r7
√

33
√
π

(k2r2 + 1)8

7 6 0 0

7 -6 0 0

r−1gl,m

6 6
4096

√
πk7
√

2
√

77r5
(
k2r2 − 13

)
1001 (k2r2 + 1)8

4096 i
1001

√
πk7
√

2
√

77r5
(
k2r2 − 13

)
(k2r2 + 1)8

6 -6
4096

√
πk7
√

2
√

77r5
(
k2r2 − 13

)
1001 (k2r2 + 1)8

−4096 i
1001

√
πk7
√

2
√

77r5
(
k2r2 − 13

)
(k2r2 + 1)8

7 6 0 0

7 -6 0 0

r−1hl,m

6 6
8192 i
143

k8
√

143
√

2r6
√
π

(k2r2 + 1)8
) −8192 k8

√
143
√

2r6
√
π

143 (k2r2 + 1)8

6 -6
4096 k7

√
143
√

2r6
√
π

1001 (k2r2 + 1)7

4096 i
1001

k7
√

143
√

2r6
√
π

(k2r2 + 1)7

7 6 0 0

7 -6 0 0
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p
=

1,
q
=

6,
E

le
ct

ri
c
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d

M
ag

n
et

ic
P

ot
en

ti
al

F
ie

ld
s

l
m

A
-fi

el
d

C
-fi

el
d

r−
1
f l
,m

6
6

4
0
9
6
i

1
4
3

√
33
√
π
r7
k
8
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√
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√
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√
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√
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√
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√
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Table G.23: The Generalised Multipolar Coefficients For the Vector Spherical
Harmonics, Knot type: p=2; q=1

p=2, q=1, Electric and Magnetic Fields

l m E-field B-field

r−1fl,m

1 1 −
32 k4

√
πr2

(
k2r2 − 2

)
3 (k2r2 + 1)4

−32 i
3
k4
√
πr2

(
k2r2 − 2

)
(k2r2 + 1)4

1 -1
32 k4

√
πr2

(
k2r2 − 2

)
3 (k2r2 + 1)4

−32 i
3
k4
√
πr2

(
k2r2 − 2

)
(k2r2 + 1)4

2 1
32 i
5
k5r3
√

2
√
π

(k2r2 + 1)4
−32 k5r3

√
2
√
π

5 (k2r2 + 1)4

2 -1
32 i
5
k5r3
√

2
√
π

(k2r2 + 1)4
32 k5r3

√
2
√
π

5 (k2r2 + 1)4

3 1 0 0

3 -1 0 0

r−1gl,m

1 1 −8/3

√
2k2
√
π
(
k4r4 − 8 k2r2 + 3

)
(k2r2 + 1)4

−8/3 i
√

2k2
√
π
(
k4r4 − 8 k2r2 + 3

)
(k2r2 + 1)4

1 -1 8/3

√
2k2
√
π
(
k4r4 − 8 k2r2 + 3

)
(k2r2 + 1)4

−8/3 i
√

2k2
√
π
(
k4r4 − 8 k2r2 + 3

)
(k2r2 + 1)4

2 1
16 i
15
k3
√

3
√
πr
(
k2r2 − 5

)
(k2r2 + 1)4

−
16 k3

√
3
√
πr
(
k2r2 − 5

)
15 (k2r2 + 1)4

2 -1
16 i
15
k3
√

3
√
πr
(
k2r2 − 5

)
(k2r2 + 1)4

16 k3
√

3
√
πr
(
k2r2 − 5

)
15 (k2r2 + 1)4

3 1 0 0

3 -1 0 0

r−1hl,m

1 1
−16 ik3

√
3
√
πr
(
k2r2 − 1

)
(k2r2 + 1)4

(
16 k5r3 − 16 k3r

)√
3
√
π

(k2r2 + 1)4

1 -1
16 ik3

√
3
√
πr
(
k2r2 − 1

)
(k2r2 + 1)4

(
16 k5r3 − 16 k3r

)√
3
√
π

(k2r2 + 1)4

2 1 −32 k4r2
√

5
√
π

5 (k2r2 + 1)4
−32 i

5
k4r2
√

5
√
π

(k2r2 + 1)4

2 -1 −32 k4r2
√

5
√
π

5 (k2r2 + 1)4

32 i
5
k4r2
√

5
√
π

(k2r2 + 1)4

3 1 0 0

3 -1 0 0

147



T
ab

le
G

.2
5:

T
h
e

G
en

er
al

is
ed

M
u
lt

ip
ol

ar
C

o
effi

ci
en

ts
F

or
th

e
V

ec
to

r
S
p
h
er

ic
al

H
ar

m
on

ic
s,

K
n
ot

ty
p

e:
p
=

2;
q
=

1

p
=

2,
q
=

1,
E

le
ct

ri
c

an
d

M
ag

n
et

ic
P

ot
en

ti
al

F
ie

ld
s

l
m

A
-fi

el
d

C
-fi

el
d

r−
1
f l
,m

1
1

−
4
i

1
5
k
3
√
π
r2
( 5
k
4
r4

+
6
k
2
r2
−

23
)

(k
2
r2

+
1)

4
−

4
k
3
√
π
r2
( 5
k
4
r4

+
6
k
2
r2
−

23
)

15
(k

2
r2

+
1)

4

1
-1

−
4
i

1
5
k
3
√
π
r2
( 5
k
4
r4

+
6
k
2
r2
−

23
)

(k
2
r2

+
1)

4

4
k
3
√
π
r2
( 5
k
4
r4

+
6
k
2
r2
−

23
)

15
(k

2
r2

+
1)

4

2
1

−
16
k
4
r3
√
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√
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√
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√
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Table G.26: The Generalised Multipolar Coefficients For the Vector Spherical
Harmonics, Knot type: p=2; q=2

p=2, q=2, Electric and Magnetic Fields

l m E-field B-field

r−1fl,m

2 2
128
√

2
(
k2r2 − 5/3

)
r3k5
√
π

5 (k2r2 + 1)5

128 i
5

√
2
(
k2r2 − 5/3

)
r3k5
√
π

(k2r2 + 1)5

2 -2
128
√

2
(
k2r2 − 5/3

)
r3k5
√
π

5 (k2r2 + 1)5
−128 i

5

√
2
(
k2r2 − 5/3

)
r3k5
√
π

(k2r2 + 1)5

3 2
−512 i

105
k6r4
√

30
√
π

(k2r2 + 1)5
512 k6r4

√
30
√
π

105 (k2r2 + 1)5

3 -2
512 i
105

k6r4
√

30
√
π

(k2r2 + 1)5
512 k6r4

√
30
√
π

105 (k2r2 + 1)5

r−1gl,m

2 2
64
√
πr
√

3k3
(
k4r4 − 10 k2r2 + 5

)
15 (k2r2 + 1)5

64 i
15

√
πr
√

3k3
(
k4r4 − 10 k2r2 + 5

)
(k2r2 + 1)5

2 -2
64
√
πr
√

3k3
(
k4r4 − 10 k2r2 + 5

)
15 (k2r2 + 1)5

−64 i
15

√
πr
√

3k3
(
k4r4 − 10 k2r2 + 5

)
(k2r2 + 1)5

3 2
−128 i

105

√
πk4
√

10r2
(
k2r2 − 7

)
(k2r2 + 1)5

128
√
πk4
√

10r2
(
k2r2 − 7

)
105 (k2r2 + 1)5

3 -2
128 i
105

√
πk4
√

10r2
(
k2r2 − 7

)
(k2r2 + 1)5

128
√
πk4
√

10r2
(
k2r2 − 7

)
105 (k2r2 + 1)5

r−1hl,m

2 2
512 i
15

√
π
√

5k4r2
(
k2r2 − 1

)
(k2r2 + 1)5

−
512
√
π
√

5k4r2
(
k2r2 − 1

)
15 (k2r2 + 1)5

2 -2
512 i
15

√
π
√

5k4r2
(
k2r2 − 1

)
(k2r2 + 1)5

512
√
π
√

5k4r2
(
k2r2 − 1

)
15 (k2r2 + 1)5

3 2
512 k5

√
70r3
√
π

105 (k2r2 + 1)5

512 i
105

k5
√

70r3
√
π

(k2r2 + 1)5

3 -2 −512 k5
√

70r3
√
π

105 (k2r2 + 1)5

512 i
105

k5
√

70r3
√
π

(k2r2 + 1)5
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Table G.28: The Generalised Multipolar Coefficients For the Vector Spherical
Harmonics, Knot type: p=2; q=2

p=2, q=2, Electric and Magnetic Potential Fields

l m A-field C-field

r−1fl,m

2 2
16 i
5

√
2
(
k2r2 − 5/3

)
r3k4
√
π

(k2r2 + 1)4
16
√

2
(
k2r2 − 5/3

)
r3k4
√
π

5 (k2r2 + 1)4

2 -2
−16 i

5

√
2
(
k2r2 − 5/3

)
r3k4
√
π

(k2r2 + 1)4
16
√

2
(
k2r2 − 5/3

)
r3k4
√
π

5 (k2r2 + 1)4

3 2
64
√

30r4k5
√
π

105 (k2r2 + 1)4
−64 i

105
k5r4
√

30
√
π

(k2r2 + 1)4

3 -2
64
√

30r4k5
√
π

105 (k2r2 + 1)4

64 i
105
k5r4
√

30
√
π

(k2r2 + 1)4

r−1gl,m

2 2
8 i
15

√
π
√

3k2r
(
k4r4 − 10 k2r2 + 5

)
(k2r2 + 1)4

8
√
π
√

3k2r
(
k4r4 − 10 k2r2 + 5

)
15 (k2r2 + 1)4

2 -2
−8 i

15

√
π
√

3k2r
(
k4r4 − 10 k2r2 + 5

)
(k2r2 + 1)4

8
√
π
√

3k2r
(
k4r4 − 10 k2r2 + 5

)
15 (k2r2 + 1)4

3 2
16
√
πk3
√

10r2
(
k2r2 − 7

)
105 (k2r2 + 1)4

−16 i
105

√
πk3
√

10r2
(
k2r2 − 7

)
(k2r2 + 1)4

3 -2
16
√
πk3
√

10r2
(
k2r2 − 7

)
105 (k2r2 + 1)4

16 i
105

√
πk3
√

10r2
(
k2r2 − 7

)
(k2r2 + 1)4

r−1hl,m

2 2 −
64
√
πr2
√

5k3
(
k2r2 − 1

)
15 (k2r2 + 1)4

64 i
15

√
πr2
√

5k3
(
k2r2 − 1

)
(k2r2 + 1)4

2 -2
64
√
πr2
√

5k3
(
k2r2 − 1

)
15 (k2r2 + 1)4

64 i
15

√
πr2
√

5k3
(
k2r2 − 1

)
(k2r2 + 1)4

3 2
64 i
105
k4
√

70r3
√
π

(k2r2 + 1)4
64 k4

√
70r3
√
π

105 (k2r2 + 1)4

3 -2
64 i
105
k4
√

70r3
√
π

(k2r2 + 1)4
− 64 k4

√
70r3
√
π

105 (k2r2 + 1)4
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Table G.30: The Generalised Multipolar Coefficients For the Vector Spherical
Harmonics, Knot type: p=2; q=3

p=2, q=3, Electric and Magnetic Fields

l m E-field B-field

r−1fl,m

3 3 −
(
1536 k2r2 − 2304

)√
5
√
πk6r4

35 (k2r2 + 1)6
−1536 i

35

(
k2r2 − 3/2

)√
5
√
πk6r4

(k2r2 + 1)6

3 -3

(
1536 k2r2 − 2304

)√
5
√
πk6r4

35 (k2r2 + 1)6
−1536 i

35

(
k2r2 − 3/2

)√
5
√
πk6r4

(k2r2 + 1)6

4 3
512 i
21
k7r5
√

7
√
π

(k2r2 + 1)6
−512 k7r5

√
7
√
π

21 (k2r2 + 1)6

4 -3
512 i
21
k7r5
√

7
√
π

(k2r2 + 1)6
512 k7r5

√
7
√
π

21 (k2r2 + 1)6

5 3 0 0

5 -3 0 0

r−1gl,m

3 3
128
√

2
(
k2r2 − 5/3

)
r3k5
√
π

5 (k2r2 + 1)5

128 i
5

√
2
(
k2r2 − 5/3

)
r3k5
√
π

(k2r2 + 1)5

3 -3
128
√

2
(
k2r2 − 5/3

)
r3k5
√
π

5 (k2r2 + 1)5
−128 i

5

√
2
(
k2r2 − 5/3

)
r3k5
√
π

(k2r2 + 1)5

4 3
−512 i

105
k6r4
√

30
√
π

(k2r2 + 1)5
512 k6r4

√
30
√
π

105 (k2r2 + 1)5

4 -3
512 i
105

k6r4
√

30
√
π

(k2r2 + 1)5
512 k6r4

√
30
√
π

105 (k2r2 + 1)5

5 3 0 0

5 -3 0 0

r−1hl,m

3 3
128
√

2
(
k2r2 − 5/3

)
r3k5
√
π

5 (k2r2 + 1)5

128 i
5

√
2
(
k2r2 − 5/3

)
r3k5
√
π

(k2r2 + 1)5

3 -3
128
√

2
(
k2r2 − 5/3

)
r3k5
√
π

5 (k2r2 + 1)5
−128 i

5

√
2
(
k2r2 − 5/3

)
r3k5
√
π

(k2r2 + 1)5

4 3
−512 i

105
k6r4
√

30
√
π

(k2r2 + 1)5
512 k6r4

√
30
√
π

105 (k2r2 + 1)5

4 -3
512 i
105

k6r4
√

30
√
π

(k2r2 + 1)5
512 k6r4

√
30
√
π

105 (k2r2 + 1)5

5 3 0 0

5 -3 0 0
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Table G.32: The Generalised Multipolar Coefficients For the Vector Spherical
Harmonics, Knot type: p=2; q=3

p=2, q=3, Electric and Magnetic Potential Fields

l m A-field C-field

r−1fl,m

3 3
−64 i

315
k5r4

(
27 k4r4 − 32 k2r2 − 19

)√
5
√
π

(k2r2 + 1)6
−

64 k5r4
(
27 k4r4 − 32 k2r2 − 19

)√
5
√
π

315 (k2r2 + 1)6

3 -3
−64 i

315
k5r4

(
27 k4r4 − 32 k2r2 − 19

)√
5
√
π

(k2r2 + 1)6
64 k5r4

(
27 k4r4 − 32 k2r2 − 19

)√
5
√
π

315 (k2r2 + 1)6

4 3 −256 k8r7
√

7
√
π

63 (k2r2 + 1)6

256 i
63
k8r7
√

7
√
π

(k2r2 + 1)6

4 -3
256 k8r7

√
7
√
π

63 (k2r2 + 1)6

256 i
63
k8r7
√

7
√
π

(k2r2 + 1)6

5 3
512 i
3465

k7r6
√

6
√

35
√
π

(k2r2 + 1)6
512 k7r6

√
35
√

6
√
π

3465 (k2r2 + 1)6

5 -3
512 i
3465

k7r6
√

6
√

35
√
π

(k2r2 + 1)6
−512 k7r6

√
35
√

6
√
π

3465 (k2r2 + 1)6

r−1gl,m

3 3
128
√

2
(
k2r2 − 5/3

)
r3k5
√
π

5 (k2r2 + 1)5

128 i
5

√
2
(
k2r2 − 5/3

)
r3k5
√
π

(k2r2 + 1)5

3 -3
128
√

2
(
k2r2 − 5/3

)
r3k5
√
π

5 (k2r2 + 1)5
−128 i

5

√
2
(
k2r2 − 5/3

)
r3k5
√
π

(k2r2 + 1)5

4 3
−512 i

105
k6r4
√

30
√
π

(k2r2 + 1)5
512 k6r4

√
30
√
π

105 (k2r2 + 1)5

4 -3
512 i
105

k6r4
√

30
√
π

(k2r2 + 1)5
512 k6r4

√
30
√
π

105 (k2r2 + 1)5

5 3 0 0

5 -3 0 0

r−1hl,m

3 3
128
√

2
(
k2r2 − 5/3

)
r3k5
√
π

5 (k2r2 + 1)5

128 i
5

√
2
(
k2r2 − 5/3

)
r3k5
√
π

(k2r2 + 1)5

3 -3
128
√

2
(
k2r2 − 5/3

)
r3k5
√
π

5 (k2r2 + 1)5
−128 i

5

√
2
(
k2r2 − 5/3

)
r3k5
√
π

(k2r2 + 1)5

4 3
−512 i

105
k6r4
√

30
√
π

(k2r2 + 1)5
512 k6r4

√
30
√
π

105 (k2r2 + 1)5

4 -3
512 i
105

k6r4
√

30
√
π

(k2r2 + 1)5
512 k6r4

√
30
√
π

105 (k2r2 + 1)5

5 3 0 0

5 -3 0 0
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