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Abstract 

 
The ever-increasing population and resource demand are putting a stress upon the planet’s 

resources. This increased demand places an even greater need today for the exploration 

of alternative, greener fuels that can aid in the alleviation of the traditionally used fossil fuels. 

One such method is in the production of acetone, butanol and ethanol (ABE) by the bacteria 

genus Clostridium spp. These gram-positive anaerobic bacteria were first characterised in 

the late 19th centaury and have been used throughout the 20th and 21st centauries for their 

solvent producing capability, most notably in the supply of weapons grade acetone during 

the first world war. After falling out of favour in the last half of the 20th century due to 

competition with cheaper and more readily available petrochemicals; interest in ABE 

production via Clostridium spp. has been on the rise in recent years as the ABE 

fermentation is investigated for its potential as a greener more renewable source of fuel 

production.  As interest in ABE fermentation has been on the rise in recent years, so too 

has our understanding of the genus as a whole. Traditionally C. Acetobutylicum first 

described by Chaim Weizmann in the early 20th centaury has been the industrial strain of 

choice. However, as the overall understanding of the strains has improved other strains 

have been explored for their industrial relevance. These are largely split into two 

characterisations, autotrophs who are able to fix CO2 and CO, converting them acetyl-CoA 

for solvent production and heterotrophs who are able to metabolise hexose sugars in 

solvent production. The strain used in this study is Clostridium saccharoperbutylacetonicum 

N1-4(HMT). Clostridium saccharoperbutylacetonicum N1-4(HMT) is a heterotrophic 

Clostridium species first described by (Hongo and Ogata, 1969) . 

 
Herein we have utilised CLEAVEÔ, this is a CRISPR/Cas system developed by Green 

biologics ltd. CLEAVEÔ was used for the deletion of the gene gapN from the genome of 

Clostridium saccharoperbutylacetonicum N1-4(HMT). GapN is a cytosolic non-

phosphorylating NADP-dependant GAPDH that catalyses the irreversible oxidation of 

glyceraldehye-3-phospate (G3P) to 3-phospholycerate. Deletion of gapN causes a 

reduction in acid production, an increased rate of solvent production to pre-toxic 

concentrations, as well as an increase in ATP and ratio of NADH:NAD+. Additionally, the 

deletion of gapN results in an increase in formic and lactic acid production that is believed 

to be as a result of pyruvate accumulation in response to the earlier shift into 

solventogenesis in gapN deletion strain  
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1.1 Introduction 
 

The work in this thesis focuses on improving processes of renewable n-butanol and acetone 

production from the solvent-producing bacterium C. saccharoperbutylacetonicum N1-4 

(HMT). In addition to the establishment of fermentation and growth techniques, new 

molecular biology methodology has been explored to further understand the metabolism C. 

saccharoperbutylacetonicum N1-4(HMT) and improve the capacity for solvent production. 

This chapter will first provide the background knowledge on the current state of fossil fuel 

utilisation and renewable energy alternatives. The focus will then shift to introducing the 

unique metabolism of solventogenic Clostridia strains, and provide an in-depth analysis of 

the available tools for genetic manipulation across Clostridia. Finally examples of how these 

tools have been used in each strain alongside introducing alternative hosts for ABE 

production 

 

1.2 Fossil Fuels  
 

1.2.1 Global supply and demand for fossil fuels 
 

Currently, the global appetite for energy is ever increasing as more and more countries 

become wealthier and more industrialised. This insatiable appetite for energy is being met 

mainly by traditional fossil fuels, coal, gas and oil. Currently 91.6% of power generation 

globally is met by fossil fuels, with the remaining 8.4% being met by renewables (British 

Petroleum, 2018). Overall the global energy demand for the year 2017 rose by 2.2%, 

substantially higher than the average per year from the last 10 years of 1.7%. This sharp 

growth has been mainly due to global increases in GDP driven by the expanding markets 

in China and India accounting for 40% of the overall observed increase (British Petroleum, 

2018).  
 

Up to this point there has been little change in the mixture of sources used for power 

generation compared to that in 1998. This is large part due to the decrease in nuclear power, 

alongside the massive economic growth China has seen in the past 20 years. The 

knowledge that little has changed on a global scale in terms of energy production is 

daunting, especially as renewables have seen the largest growth rates in recent years (16.2 

% between 2006 – 2016) over traditional fossil fuels. Renewables however, still only 

account for 8.4% of power generation globally. In addition to this, 2017 saw CO2 rise by 

1.6% (British Petroleum, 2018; “Global Energy & CO 2 Status Report,” 2018), the first time 

a rise was witnessed in the 3 years prior.  
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Currently the best models predict that if the world continues to use fuel at a rate similar to 

that of 2006 then oil, coal and gas will be diminished in around 40,200 and 70 years 

respectively (Shafiee and Topal, 2009). However as has been shown in years from 2006-

2016, overall consumption of oil, coal and particularly natural gas has been on the rise by 

1.1%, 1.3% and 2.3% respectively. This paints a dreary picture for energy consumption 

globally as the demand is increasing year on year.  

 

The increase in demand for fossil fuels in particular oil as it is the main source of energy for 

global transport, raises the additional question of energy security. Currently, the majority of 

the oil produced globally comes from regions of political, social and economic uncertainty, 

such as Iraq, Venezuela and Nigeria (Bang, 2010; Lilliestam, 2012). It is because of the 

ever-increasing demand on fossil fuels that regions such as the USA and Europe have 

become dependent on these unstable regions for their energy demands. However, because 

of these factors of instability, the USA and Europe have recognised that their dependency 

on imported energy must be reduced, and they have identified a need to explore alternative 

sources to meet their energy demands.  

 
1.3 Biofuels 

 

Biofuels are energy carriers whose energy has been stored by means of carbon fixation in 

biological material over a relatively short period, i.e. decades as opposed to millennia such 

as in the form of petroleum-based fossil fuels. Biofuel production is diverse ranging from 

gasses such as hydrogen and methane, liquids in the form of ethanol, butanol, fatty acid 

methyl esters (FAMES) and to solids such as wood. In recent years a number of regulatory 

requirements in the face of depletion of fossil fuels has created a market place for biofuels 

as a commodity. The EU adopted legislation in 2009 stating that 10% of all transport fuel 

should be renewable by the year 2020 (EASAC, 2012). In addition, the USA in 2007 passed 

legislation that would require an aggregate of 36 billion gallons of ethanol (or equivalents) 

from renewables to be used in transport by 2020 (United States Congress, 2007).   

 

1.3.1 First generation biofuels 
 

First generation biofuels are those that are derived from biomass that could be more often 

than not considered edible, such as crop plants in the form of starch from corn and wheat, 

sucrose from sugar cane / sugar beets and oils in the form of palm oil and canola oil. 

Currently, bioethanol and bio-diesel are the two main first generation biofuels produced 

using these feedstocks. The production of bio ethanol largely relies upon the fermentation 

of starch and sugar biomass. The USA leads global production of bio ethanol at 33.7 x 109 
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L / year produced, followed by Brazil at 24.3 x 109 L / year produced (Lee and Lavoie, 

2013)(Aro, 2016). Unlike bioethanol production which typically involves fermentation 

straight from a sucrose source or following a simple hydrolysis of starch material such as 

corn or wheat, biodiesel production is considered a chemical process. The production of 

biodiesel requires filtering and transesterification of fatty acids to allow it to be used. 

Germany is the largest producer of biodiesel at 9.2 x 109 L / year (Sorda et al., 2010)  

 

Despite good intentions, first generation biofuels are largely now banned, in the EU due to 

the fact that they not only compete with land for food production, in the EASAC 2012 study 

revealed that once the processing of first generations biofuels was taken into consideration 

from the biomass cultivation, to fuel production they provide no or little benefit to the 

greenhouse gas effect and have a detrimental effect on food agriculture as well as natural 

ecosystems (EASAC, 2012). In addition to this, the fluctuation and cost associated with first 

generation biofuel feedstocks can often result in abandonment of biofuel production. This 

was seen in Brazil in 2012, were the production of around 1 L of bioethanol from sugar cane 

was around $ 0.30/0.35 / L whereas the price of raw sugar cane was around $ 0.20 / lb and 

due to these low margins, the market favoured the production of the raw sugar instead of 

bioethanol (Sorda et al., 2010).  

 
1.3.2 Second generation and third generation biofuels 

 
Second generation biofuels are produced using biomass that is considered not suitable for 

consumption. Most commonly this takes the form of waste lignocellulosic biomass from 

wheat stover, corn stover and rice stover (i.e. the plant material left over from harvest). The 

use of waste lignocellulose helps create synergy in the agricultural cycle, enabling the 

productive use of an otherwise wasted by product. In addition to waste lignocellulose 

second generation biofuels are also produced from plants that have been specifically grown 

as bioenergy crops. Bioenergy crops such as perennial grasses, Miscanthus giganteus 

(Boehmel et al., 2008) and Panicum virgatum (switchgrass) (David and Ragauskas, 2010) 

are grown in marginal lands that are not able to sustain agricultural crops but can be used 

in the production of second-generation biofuels. The unfortunate drawback of second-

generation biofuels is that they require extensive pre-treatment from mechanical, chemical 

or enzymatic methods (Braguglia et al., 2017; Hijosa-Valsero et al., 2017). Third generation 

biofuels are often described as those produced from algal biomass, although these are 

more poorly categorised and are not applicable to this study. 
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1.3.3 Biofuel applications for n-butanol  
 

Currently, bioethanol is the largest produced biofuel globally. This, however is down to its 

ease of production rather than its ability as a biofuel. Butanol is a far superior biofuel in 

comparison to ethanol and a number of other fuel types, and a breakdown of the properties 

of butanol in comparison to a number of other fuel types can be seen in Table 1.1. The 

advantages of Butanol over bioethanol include: (i) Higher energy density over ethanol (25 

%), allowing for increased range in Km/ h per mass of fuel. (ii) lower volatility due to the 

increased length of carbon chain. This is advantageous as gasoline / butanol fuel blends 

will have less of a tendency towards cavitation or vapour lock problems; (iii) Heat 

vaporisation, and autoignition of butanol is lower than both ethanol and methanol; (iv) 

increased viscosity of butanol results in decreased wear for rubber tubing, pumps and 

general infrastructure, this will increase longevity of infrastructure and reduce frequency of 

maintenance of perishables; (v) Lower water solubility; meaning reduced hygroscopicity 

and better miscibility with fuel, meaning that cars would not require modifications even with 

a 10% butanol gasoline blend (Bharathiraja et al., 2017; Dürre, 2008; Green, 2011; Lee et 

al., 2008). It has also been demonstrated that butanol can be used on its own as a pure 

motor fuel. This was accomplished by David Ramey (Autoblogcom. 2019) in the USA in 

2005 and 2007 when he travelled across America fuelled only by butanol in a car with no 

modifications. This has also been demonstrated in the form of biobutanol by Celtic 

renewables (Bbccouk. 2019. BBC News) demonstrating the ability of butanol as a drop-in 

fuel replacement to gasoline.  

 

Butanol is not only useful in fuel blends or as a drop-in replacement for conventional 

gasoline, it is also used in a number of industrial applications. Butanol is used for the 

production of butyl acrylic, which is subsequently used in the manufacturing of polymer 

coatings, adhesives, plastics, resins and as an additive in the leather and paper industry. 

Additional products produced from butanol are butyl glycol in industrial solvents, butyl 

acetate used in prints and as a flavouring agent in the food and drink industry (Dürre, 2008). 

As of 2008 the global market for n-butanol was around 2.8 million tons at a valuation of 

roughly $ 5 billion USD, with projected valuation of $ 247 billion dollars by 2020, due to the 

advantageous properties of butanol over ethanol and biodiesel (Bharathiraja et al., 2017). 

As long as the process economics are kept competitive with those of petrochemical-derived 

butanol, the production of biobased n-butanol will continue to be an economically viable 

biofuel and bulk chemical. 
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1.4 History of biobutanol production 

 
The industrial application of solvent-producing Clostridium was first exploited at the turn of 

the 20th century. Strange and Graham Ltd. were the first manufacturer to incorporate 

fermentative alcohol in the production of their synthetic rubbers in 1910. During this period 

the company hired a Jewish Russian Chemist Chiam Weizmann, who had arrived in 

Manchester from Berlin in 1904. At Manchester Chiam Weizmann assisted on the 

investigation into the production of butadiene and isoprene via microbial fermentative. Not 

a microbiologist by trade Weizmann set about becoming one between the years of 1912 

and 1914. Following his termination of contract with Strange and Graham in 1912 he 

continued his investigation into fermentative microbiology for the production of synthetic 

rubber, concluding that production of butanol by fermentative microbiology was key for the 

success of synthetic rubber production. From 1912 to 1914 period, Weizmann isolated a 

number of bacterial strains, one of which he had called “BY” that later became known as 

Clostridium acetobutylicum and further known as the Weizmann strain, this strain was able 

to metabolise a number of starch substrates as well as produce higher concentrations of 

acetone and butanol than the original Fernbach strain (Bengelsdorf and Dürre, 2017; Gi 

Moon et al., 2015; Jones and Woods, 1986). 

 

The outbreak of the first world war shifted Weizmann’s focus away from rubber production 

to the production of acetone as a component of nitro cellulose, to form cordite. Cordite is a 

smokeless gunpowder that was used in naval munitions during the first world war. Having 

spent time developing his fermentation methodology for the production of acetone via 

Table 1.1 Properties and applications of n-butanol  
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microbial fermentation, he was awarded a patent for this method in March of 1915. The 

following year Weizmann was summoned by Winston Churchill, who at the time was acting 

Lord of the Admiralty, who tasked Weizmann with undertaking the pilot plant production of 

acetone for cordite. These pilot plants were so successful that the Royal Naval Cordite 

factory was established in Dorset, where 6 distilleries were adapted for the production of 

acetone for cordite using the patented Weizmann methodology.  

 

Commercial production of acetone and butanol continued globally using licenced version of 

the Weizmann patent until the late 1950’s / early 1960’s. Unfortunately, production was 

unable to keep up with unprecedented growth of the petrochemical industry. Due to the this 

alongside the increase in the cost of substrates (starch and molasses) production had all 

bit stopped in most of Europe and the USA during the 1960’s (Jones and Woods, 1986). 

However, increased oil prices and the global drive for discovery of green energy countries 

such as China (Jiang et al., 2015) and Brazil (Green, 2011) have been quick to re-adopt 

ABE fermentation. More recently companies such as Green Biologics (Lane and Digest, 

2014) and Celtic Renewables (2019. BBC News) have initiated industrial solvent production 

via ABE fermentation in the USA and Scotland, respectively. An overview of key milestones 

in the history of ABE fermentation can be seen in Figure 1.1. 
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Figure 1.1 Timeline of notable events and advances in butanol fermentation from 1916 to 2019 
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1.5 ABE Fermentation 
 
1.5.1 Solventogenic clostridial species 

 
Clostridia are a class of Gram-positive, anaerobic, rod shaped endospore forming bacteria 

with a low GC content. Clostridia play key roles in both human health and disease with 

Clostridium perfringens, C. difficile, C. tetani and C. botulinum known opportunistic 

pathogenic bacteria (Kenneth Todar, n.d.). However, solventogenic clostridia have a safe 

history of use in the production of acetone and butanol. The best known and most studied 

of the industrial solventogenic clostridial species is C. acetobutylicum (Aristilde et al., 2015; 

Cho et al., 2012; Clare M. Cooksley et al., 2012; Heap et al., 2007; Jones and Keis, 1995; 

Kaminski et al., 2011; Poehlein et al., 2017; Ryan S. Senger, 2009) also known as the 

Weizmann strain; it is second only to yeast in terms of global ethanol production (Bao et al., 

2011) and since its original discovery has been used as a model organism for endospore 

formation (Nölling et al., 2001). In the century that has passed since the discovery of the 

original Weizmann strain, strains such as Clostridium beijerinckii (Jones and Keis, 1995) 

and Clostridium saccharoperbutylacetonicum (Hongo and Ogata, 1969) have surpassed 

the original Weizmann strain as the preferred choice for ABE fermentation when grown on 

carbohydrate material. Acetogens such as Clostridium ljungdahlii (Köpke et al., 2010) and 

Clostridium autoethanogenum (Marcellin et al., 2016; Minton et al., 2016) have shown that 

these versatile bugs are able to fix simple C1 carbons for the production of biofuels (Jiang 

et al., 2015; Köpke et al., 2010; Marcellin et al., 2016).   

 

1.5.2 Feedstock Metabolism 
 

Clostridia are able to utilize a large variety of carbohydrate sources, from simple mono- and 

disaccharides, through to complex polysaccharides such as cellulose and hemicellulose, 

making them ideal candidates to metabolise a large variety of waste material (Al-Shorgani 

et al., 2012b; Lynd et al., 2002; Shaheen et al., 2000; Takors et al., 2018). A recent genomic 

study found that throughout commonly used industrial strains such as C. beijerinckii, C. 

saccharobutylicum, C. acetobutylicum and C. saccharoperbutylacetonicum genes for 

sucrose-specific phosphotransferase systems and sucrose degradation were present, as 

well as for starch degradation (Poehlein et al., 2017). In addition to heterotrophic growth, 

some clostridia can also grow autotrophically by fixing CO2 and CO chemolithotrophically 

(Drake et al., 2008) converting them to acetyl-CoA for solvent production.  

 

Industrial feedstocks such as brewers’ grain can often contain a mixture of C5 and C6 

sugars including glucose, xylose, arabinose and mannose (Tracy et al., 2012). This C5/C6 

mixture has a high propensity to cause carbon catabolite repression (CCR), whereby 
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utilisation of one sugar (usually a C6 sugar) will predominate and metabolism of any other 

sugars present in the media will not take place (Bruder et al., 2015). CCR is a problem for 

ABE fermentation as the C5 sugar xylose is an abundant component in lignocellulosic 

feedstocks, and in the presence of glucose this xylose is not metabolised until glucose and 

other C6 sugars have been used up (Ren et al., 2010).  

 

Autotrophic and heterotrophic growth both lead to the production of acetyl-CoA. In the case 

of autotrophic metabolism, the production of acetyl-CoA involves the use of the Wood–

Ljungdahl pathway in which two moles of CO2 are reduced to one mole of acetyl-CoA using 

H2 and CO to produce reducing equivalents. The Wood–Ljungdahl pathway itself is split into 

two parts, an Eastern and a Western branch. In the Eastern branch formate dehydrogenase 

(FDH) is used to reduce CO2 to formate, and formate is then attached to a tetrahydrofolate 

and further reduced to a methyl-group. In the Western branch one molecule of CO2 is 

reduced directly to CO by part of the bifunctional CO Dehydrogenase/Acetyl-CoA Synthase 

complex (CODH/ACS). Carbonyl- and methyl- groups from both branches are combined in 

the Acetyl-CoA Synthase complex with a molecule of coenzyme-A to form acetyl-CoA 

(Ragsdale, 2008) (Figure 1.2) 
 

During heterotrophic growth, hexose and cellulose sugars are metabolised through 

glycolysis, resulting in 2 moles of pyruvate per 1 mole of hexose with a net production of 2 

moles of ATP and 2 moles of NADH, or in the production of NADPH at a loss of 1 ATP at 

the conversion stage of Glyceraldehyde 3-phosphate to 3 – Phosphoglyceric acid (Ren et 

al., 2016). Pentose sugars flow into glycolysis via the Pentose Phosphate Pathway (PPP) 

or via the Phosphoketalse pathway (PKP). Recently it has been shown that in a hexose 

pentose mixture, flux from the PPP into glycolysis is minimal with a large accumulation of 

PPP intermediates (Aristilde et al., 2015). The pyruvate resulting from the process of 

glycolysis is cleaved by pyruvate ferredoxin oxidoreductase in the presence of coenzyme A 

to produce acetyl-CoA and reduced ferredoxin. (Figure 1.2).  
 
Now that an overview of feedstock metabolism has been given, the following sections will 

focus on the unique growth physiology of solventogenic Clostridia. This growth physiology 

is unique in that can often be broken up into two distinct phases, acidogenesis, in which 

there is the production of acetic and butyric acid; and solventogenesis in which the acids 

produced in acidogensis are re-assimilated to form acetone, butanol and ethanol.  
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Figure 1.2 Overview of metabolism of autotrophs and heterotrophs leading to Acetyl -
CoA in Clostridia. Glycolysis is shown in blue, the pentose phosphate and phosophketolase 

pathway are shown in pink. The Wood–Ljungdahl pathway is shown in yellow. Enzyme 

abbreviations are as follows; FDH, formate dehydrogenase; FTS, formyl-THF synthase; 

MTC, methenyl-THF cyclohydrolase; MTD, methylene-THF dehydrogenase; MTR, methyl 
transferase; MTRS, methylene-THF reductase; PFK-1, ACS/ CODH, acetyl-CoA 

synthase/CO dehydrogenase; GPI, phosphoglucose isomerase; PFK-1, 

phosphofructokinase;ALDO, fructose biphosphate aldolase; GAPDH, glyceraldehyde 
phosphate dehydrogenase; GapN, glyceraldehyde -3 phosphate dehydrogenase; PGM, 

phosphoglycerate mutase; ENO, enolase; PK, pyruvate kinase; PFOR, pyruvate:ferredoxin 

oxidoreductase; PGK, phosphoglycerate kinase.  
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1.5.3 Acidogenesis 
During acidogenesis, sugars consumed during growth are typically metabolised to form 

acetic acid and butyric acid, H2 and CO2. The production of acetic acid and butyric acid 

involves the enzymes phosphate acetyltransferase (Pta), acetate kinase (Ack), 

butyryltransferase (Ptb), and butyrate kinase (Buk1) (Figure 1.2). In both pathways of 

acidogensis, additional ATP is generated in the final phosphorylation reaction. Acidogensis 

typically occurs during the log phase of growth when the cells are at their most vegetative 

in conditions were the pH is typically greater than 5 and there is a depletion of iron. The 

significant production of the acids leads to acid accumulation externally in the media and a 

significant drop in the surrounding pH. If left unchecked, the undissociated acids would 

diffuse back into the cell, destroying the proton gradient and inhibiting cell growth. To 

Overcome this, the cells trigger what is commonly known as “solventogenic switch” whereby 

the genes involved in solvent production become expressed, producing the traditionally 

seen ABE solvents to overcome rising acid concentrations (Jones and Woods, 1986; Lee 

et al., 2008).  

 

If unchecked by the solventogenesis switch acid accumulation in concentrations of between 

57-60 mmol L -1 can result in acid crash, whereby the cells will fail to shift into 

solventogenesis. This results in decreased solvent production and cessation of glucose 

uptake. In addition to this, at acid concentrations of between 240-350 mmol L -1 

solventogenesis can be inhibited completely, resulting in cell death (Chen and Blaschek, 

1999; Maddox et al., 2000). Acid crash is typically seen in unregulated batch fermentations 

were acids are neither buffered or removed from the fermentation media 
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Figure 1.3 ABE Fermentation pathway A). The major products during acidogenesis are shown in the blue boxes, 

while those mainly produced during solventogenesis are shown in the green boxes. The dashes lines show the CoA-

T pathway, where organic acids are re-assimilated during solventogenic growth. Enzymes are shown in italics. 

Asterisk (*) indicates genes and enzymes encoded by the sol operon. Pathway in red arrow indicates isopropanol 
production naturally occurs C. beijerinckii; Pathway in grey arrow indicates lactate production under un- favourable 

condition B). Butanol formation routes via “hot and cold channel(s)” in Clostridium. Blue arrows indicate the cold 

channel, which is the organic acid assimilation route. Red arrows indicate the hot channel, which is the direct route. 
Taken from (Ying., 2018) 
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1.5.4 Solventogenesis 

 
The shift from acidogensis into solventogenesis is closely linked to that of sporulation, as 

solvent production allows the cells to survive in a metabolically active form for a longer 

period of time under acid stress. Solventogenesis doe come at a cost as the solvents 

produced (mainly butanol) are by in large toxic to the cells. The initiation of solventogenesis 

initiates the process of long-term survival through the formation of endospores. The master 

regulator for the solventogenic shift is the transcription factor Spo0A (Ravagnani et al., 

2000). Spo0A is activated when it is phosphorylated by the phosphorelay two-component 

signal transduction system (Sandoval et al., 2015) in response to the drop in pH and 

accumulation of ATP, H2 and CO2 during acidogensis. Upon phosphorylation Spo0A acts 

as the master regulator of both solventogenesis as well as sporulation, and deletion of 

Spo0A in Clostridium saccharoperbutylacetonicum N1-4(HMT) resulted in abolished 

solvent production on top of a detrimental effect on vegetative cells (Atmadjaja et al., 2019). 

Expression of Spo0A is a balancing act, and previous work shows that Spo0A 

overexpression favours a shift towards sporulation over solvent production (Harris et al., 

2002). 

 

Regulation for the shift from acidogensis to solventogenesis is not only dependent upon the 

drop in pH due to acid production, the reducing environment created in the production of 

acetyl-CoA also play a key role. Electron flow within Clostridium is governed by ferredoxin. 

The cleavage of pyruvate to acetyl-CoA results in the transfer of an electron from a reduced 

ferredoxin to the hydrogenase, which uses the proton as its final electron acceptor and 

results in a rapid drop in the redox potential due to the increased H2 produced at this step. 

Additionally, fermentation of carbohydrates increases the NAD(P)H:NAD(P)+ ratio within the 

cell, this ratio shift has been shown to result in the dissociation of the Rex complex from 

genes involved in butanol production aiding in the shift into solventogenesis (McLaughlin et 

al., 2010; Wietzke and Bahl, 2012). Overall the shift from acidogensis to solventogenesis is 

regulated a complex network of phosphorylation, redox and pH drop due to acid production.  

 

Upon shifting into solventogenesis, expression of genes involved in the solvent production 

takes place. The operon responsible for this is the sol operon. and the placement and 

arrangement of the sol operon can vary depending upon the Clostridium species. The Type 

I operon found in strains such as C. acetobutylicum is comprised of an adhE–ctfA–ctfB 

cluster (encoding a bifunctional butyraldehyde/butanol dehydrogenase and the two subunits 

of CoA transferase), and an adjacent, convergently transcribed, monocistronic adc operon 

(encoding acetoacetate decarboxylase). The Type II operon consisting of ald–ctfA–ctfB–

adc (encoding NADH-dependent aldehyde dehydrogenase, CoA transferase, and 

acetoacetate decarboxylase) found in the genome in strains such as C. 
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saccharoperbutylacetonicum N1-4(HMT) and C. beijerinckii (Poehlein et al., 

2017)(KOSAKA et al., 2007). Both operons are shown in Figure 1.4   
 

 

 

 

 

 

 

 

 

 

 

 

 

There are two pathways for butanol production, these are known as the “hot” and “cold” 

channels. The “cold channel” generates butanol via the re-assimilation of acetate and 

butyrate into acetyl-CoA and butyryl-CoA via the CoA- transferase (CoA-T) pathway. From 

here, acetyl-CoA is either converted to butyryl-CoA or reduced to ethanol. If converted to 

butyryl-CoA, butyryl-CoA will be reduced to form butanol. In the “Hot Channel” organic acid 

assimilation is prevented and is responsible for the direct conversion of acetyl-CoA to 

butyryl-CoA followed by reduction to butanol (Jang et al., 2012). The hot channel for butanol 

production prevents yield losses to CO2 and acetone, as 1 mole of acetoacetate is 

generated from each mol of assimilated organic acid. acetoacetate is then decarboxylated 

into CO2 and acetone (Jang et al., 2012; Ou et al., 2015). In their study Jang et. Al., (2012) 

show that a reduction in the “cold channel” does indeed lead to a reduction in organic acid 

production however it also results in reduced butanol yields, hence decreasing the “cold 

channel” does not increase butanol yield unless organic acid production is stopped at the 

same time (Jang et al., 2012) (Figure 1.3).  

 
  

Figure 1.4 Type I and Type II Sol operon. A). Type I operon found in C. acetobutylicum. The sol 
operon structure of C. acetobutylicum is different from beijerinckii, and C. 

saccharoperbutylacetonicum, where the aad replaces aldH, and adc is part of a separate operon; 

B). Type II  C. beijerinckii, and C. saccharoperbutylacetonicum. The sol operon structure of C. bei- 

jerinckii, and C. saccharoperbutylacetonicum are the same (Ying., 2018) 
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1.6 Limitation of ABE fermentation and possible strategies for 
improvement of ABE fermentation 
 

The industrial interest in the ABE fermentation process has continued to grow in recent 

years as butanol’s potential as a chemical or fuel is ever-increasing. Companies such as 

Green Biologics Ltd who specialise in traditional lignocellulose ABE fermentation, and 

Lanzatech who specialise in C1 waste utilisation using acetogens and autotrophs have 

been paving the way for the industrial usage of Clostridium. As desirable as the idea of 

butanol production from ABE fermentation may be, the process itself needs to be 

economically viable. To achieve this economic viability improvements to current systems 

must be made. These improvements include (i) Acquisition of cheap readily available 

substrate that does not compete with land or human survivability; (ii) improvements of 

overall solvent yields and improvements to solvent recovery; (iii) improvements in strain 

capability to withstand toxicity of solvents, produce higher concentrations of solvents and 

diversification of compounds created using butanol as a precursor.  

 

The cost of substrate in a conventional ABE corn starch process accounts for up to 79% of 

the total cost of production (Green, 2011). Due to this cost, it is imperative that cheap 

alternative feedstocks are sourced. As suggested previously in Section 1.3.2, lignocellulosic 

material has excellent potential as a feedstock. Lignocellulose is the most abundant 

renewable resource on earth, with India alone producing in excess of 370 million tonnes of 

this biomass every year from plant, rice husk and saw from saw mills (Kumar and Gayen, 

2011). Due to the saccharolytic ability of Clostridium, lignocellulose has the potential to be 

an ideal substrate for ABE fermentation. However, to be efficiently metabolised during 

fermentation the lignocellulose must first be pre-treated. Pre-treatment enables (1) 

breakdown of lignin shell of lignocellulosic material; (2) breakdown of a large proportion of 

crystalline cellulose, this is key as it aids the Clostridium cellulosomes to further metabolise 

cellulose (Ezeji et al., 2007; Mitchell et al., 1995); (3) Increasing porousness, enabling 

access for enzymes. Pre-treatment methodologies have been reviewed extensively by 

Bharathiraja et al., (2017) who revealed that most methodologies for lignocellulose pre-

treatment are highley efficient and can recover approximately 90 % of the fermentable sugar 

material. As discussed in Section 1.4.2 certain strains of solventogenic Clostridium are able 

to metabolise simple C1 carbons for the production of ethanol and acetate primarily (Köpke 

et al., 2010; Marcellin et al., 2016). In addition to lignocellulose the C1 waste gases from 

power plants and steel mills, syngas from agricultural waste, or reformed methane from bio 

gas offer additional renewable feedstock avenues (Takors et al., 2018).  
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One of the key issues that faces the industrialisation of the ABE fermentation process is the 

overall low yields of butanol that are obtainable. Typically, in fermentation broths there is a 

low percentage of butanol present usually around 1-2 % (<20 g L -1). This low yield is largely 

due to the toxic effect of butanol on the cells. Low butanol yields of < 0.36 g / g of sugar 

may be due to the heterofermentation of sugars and low butanol productivity due to low cell 

counts, which will also increase the cost of product recovery (Green, 2011; Ni and Sun, 

2009; Tashiro et al., 2013). Fermentation conditions and optimisation have been extensively 

studied for various strains (Braguglia et al., 2017; Ezeji et al., 2003; Green, 2011; Latif et 

al., 2014; Liao et al., 2017; Procentese et al., 2018; Wang et al., 2012; Zhang et al., 2018) 

and batch fermentation is widely adopted for industrial ABE fermentation due to ease of 

use. Fed batch and continual fermentation are other alternative fermentation techniques 

used, although extended production times come with the trade-off of having lower 

concentrations of solvents per litre compared to batch processes. For successful fed batch 

or continuous fermentation, solvent recovery must take place throughout not only in a bid 

to maximise overall yield but also to maintain butanol concentrations that are below toxic 

levels. A number of recovery methods have been trialled over the years including 

pervaporation, gas stripping, liquid–liquid extraction, and liquid-membrane extraction 

(Bharathiraja et al., 2017). Fed batch cultures using pervaporation have been shown to 

produce butanol concentrations of 105 gL-1, whereas traditional batch fermentation 

achieved butanol concentrations of around 12.8 gL-1 (Qureshi and Blaschek, 2000).  

 

Finally, a major inefficiency within in the ABE process is the bacteria themselves. The 

butanol that they produce is inherently toxic, and because of this butanol concentrations 

rarely exceed 1- 2 % (v/v) in the fermentation media. Butanol has membrane distorting 

properties, where the hydrophobic chain and polar group can elicit severe damage to the 

cell (Baer et al., 1987)(Bowles, 1985). Butanol toxicity affects the cells in a number of ways; 

(i) ion transport is disrupted; (ii) nutrient transportation; (iii) composition of the phospholipid 

membrane is destroyed; (iv) finally the cells metabolism breaks down (Ezeji et al., 2010). 

Several attempts at elevating butanol toxicity have been attempted with limited success 

(Dunlop et al., 2011; Liu et al., 2014). In addition to this, phage infections have occurred 

previously in an industrial setting, in the 1980’s in South Africa, a phage infection resulted 

in loss of ABE production. This resulted in strain rotation and isolation to strains resistant to 

the infection to be able to restart production (Jones et al., 2000).  
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1.7 Metabolic engineering in Clostridium 
 

Despite the significant understanding of the Clostridium genus and its genome, the genus 

is notoriously difficult to engineer. As a result, tools available for genetic engineering of 

Clostridium have lagged behind those for Gram-negative species such as E. coli. Moreover, 

development of tools for creation of robust strain development in C. 

saccharoperbutylacetonicum N1-4(HMT) has lagged behind that of other Clostridium 

strains such as C. acetobutylicum and C. beijerinckii. Herein, we investigate the current 

technologies used for genetic engineering and how these tools have been applied in the 

improvement of industrial strains. Finally, other possible butanol-producing strains are 

introduced. 

 
1.7.1 ClosTron 

 
The ClosTron system was developed by Heap et al., (2007) as a Clostridium specific system 

that takes advantage of the TargetTron system developed by Sigma Aldrich, with the initial 

ClosTron vector (pMTL007) a tailored version of the plasmid pACD4k-C. Bacterial group II 

intron technology allows for site directed mutagenesis by retrohoming of the Mobile group 

II introns. Mobile group type II introns are retroelements responsible for reverse encoding 

transcriptases (RT), inserting into specific DNA target sites at a high frequency. The process 

of retrohoming involves the self-splicing of group II introns that are then reverse transcribed 

by their own reverse transcriptases. The process of retrohoming is mediated by a 

ribonuclease (RNP) complex consisting of an RNA lariat and an intron encoded protein. 

The RNP inserts bound RNA into one strand of the double stranded genomic target site, 

the RNA is then reverse transcribed resulting in its removal and replacement of it by DNA 

by the host repair machinery. This results in a stable integrated intron (Zhong et al., 2003) 

(Figure 1.5).  
 

The ClosTron system was developed to include a set of standardized parts such as 

promoters, origins of replication and retrotransposition-activated selection markers (RAM) 

suitable in Clostridium. The ClosTron introns were designed in silico using software that 

identifies sequences based for a 35 bp region that is recognised by the intron-encoded 

protein, allowing for targeting of the intron into the desired gene (Heap et al., 2010). 

ClosTron has been used for a number of targeted gene disruptions within a number of 

Clostridium spp. (Antunes et al., 2011; Cartman et al., 2010; Clare M Cooksley et al., 2012; 

Cooksley et al., 2010; Underwood et al., 2009; Wietzke and Bahl, 2012; Xu et al., 2014).  
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1.7.2 Double crossover recombination events 

 
Double crossover recombination events allow for targeted gene disruption. The first cross 

over event incorporates a vector containing a pair of homology arms flanking a cargo 

sequence into the target locus via homologous recombination (HR). The second crossover 

event deletes the specific region between the homologous sequence, replacing it with the 

cargo DNA Figure 1.5. Double crossover events rely on the use of counter selection 

markers, these being elements that when present result in cell death. Counter selection 

markers are useful for selecting chromosomal insertions that do not contain any undesirable 

parts, i.e. vector backbone from the incomplete cross over event. Counter selection markers 

specific to Clostridium spp. were first developed by (Awad et al., 1995; Bannam et al., 1995).  

 

One such system developed by Soucaille and colleagues (Soucaille et al., 2008) uses a 

negative selection marker for the second cross over event similar to that developed in B. 

subtilis (Fabret et al., 2002). In order to work correctly, this method requires a C. 

acetobutylicum strain that lacks the gene upp. The upp gene encodes the uracil 

phosphoribosyl-transferase and the upp deficient strain will be resistant to 5-fluorouracil. A 

knockout plasmid is required for this to work correctly. The knockout plasmid will contain 

DNA sequences that flank the region that is going to be deleted from the genome. An 

erythromycin cassette flanked on both sides by FRT sites is inserted into the plasmid that 

already contains a functional copy of the upp gene previously removed from the genome. 

Following transformation of the knockout plasmid, colonies were selected based upon their 

resistance to 5-fluorouracil and erythromycin. Introduction of a plasmid containing a Flp 

recombinase will allow for the removal of the erythromycin cassette and allow for additional 

genes to be cloned in as part of the process.  

 

Allelic coupled exchange (ACE) is another form of coupling a counter selection marker gene 

to a desired double crossover event Figure 1.5. ACE methodology has been demonstrated 

in two ways. The first method involves exploitation of resistance to 5-fluorouracil by 

disruption of the pyrE or pyrF gene. ACE does not rely on the cells being auxotrophic for 

uracil prior to recombination, it also does not require a heterologous version of the gene to 

be used as counter selection marker. The process of ACE involves the use of asymmetric 

homology arms that direct the order in which the recombination occurs. The longer of the 

two arms ~1200 bp is immediately downstream of the pyrE or pyrF and directs first 

crossover event that incorporates the entire plasmid into the genome. The second 

crossover event is led by the shorter of the arms ~ 300 bp, which is homologous to a 300 

bp internal region pyrE or pyrF and results in removal of the plasmid backbone. Following 

the second recombination event the wild type pyrE gene is replaced by a truncated form 

that will then allow for screening via 5-fluorouracil resistance (Heap et al., 2012). 
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Alternatively, a promoter-less heterologous pyrE gene or antibiotic marker can be inserted 

in the integration vector with the regions of homology. This is done in such a way that a 

successful double crossover event would place the silent gene directly downstream of a 

constitutive promoter (Heap et al., 2012). The use of ACE technology allows for the 

circumvention of prerequisite mutant strains created using the pMTL ClosTron plasmids 

because of the use of antibiotic markers.  
 
  

Figure 1.5 Counter selection markers used in Clostridium spp. and their mechanisms of action. The gene 

of interest (G.O.I) is represented in red with the intended insert in blue and the counter selection marker in dark 

purple. Green and Blue bars represent regions of homology between the insert and the genome. A). ClosTron: 
RAM disrupted by a Group I intron (white triangle) is only active after the L1.LtrB intron is inserted into the 

chromosom; ; B). pyrE complementation: PyrE catalyzes conversion of 5-fluoroorotic acid (5FOA) to 5-

fluororotidine monophosphate (5FOMP) producing toxic fluorodeoxyuridine monophosphate (FdUTP); C). Allele-
Coupled Exchange: (1) double-crossover event at the pyrE locus results in truncated version of pyrE for counter 

selection with same mechanism as (B), (2) successful homologous recombination inserts a promoter-less copy of 

the pyrE gene directly downstream a native constitutive promoter, allowing production of uracil 5′ monophosphate 

(UMP). Note: must be performed on pyrE deficient strain; (D) Cas9: successful homologous recombination gRNA-
targeted double stranded break resulting in cell death. Diagram adapted from (Joseph et al., 2018) 
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1.7.3 CRISPR 

 
Clustered Regulatory Interspaced Palindromic Repeats (CRISPR) alongside their 

associated Cas proteins are part of the adaptive immune system found in bacteria. This 

CRISPR/Cas defence process is best described in three main stages; (i) adaption of new 

genetic material, results in spacer sequence acquisition and insertion into the CRISPR locus 

within the cell; (ii) once acquired, cas genes are expressed and the CRISPR locus is 

transcribed into long CRIPSR-RNA (pre-crRNA). The pre-crRNA is processed into mature 

crRNA by the Cas proteins and accessory factors; (iii) interfering DNA matching the crRNA 

and Cas proteins is destroyed (Boyaval et al., 2007).  

 

Sequence repeats and spacer length used in the CRISPR locus are typically conserved 

within organisms but can vary between species. Repeat regions in the CRIPSR cassette 

have been shown to be between 21-48 bp in length and spacers 26 -72 bp in length. Not 

all Cas proteins are found adjacent to the CRIPSR loci, and sometimes these CRIPSR loci 

rely upon trans-encoded factors. In addition to the spacer and repeat regions, there is a 

leader sequence that is conserved within the CRISPR locus relating to the direction of 

transcription of the crRNA (Rath et al., 2015). There is  high diversity within the Cas proteins, 

with Cas1 and Cas 2 involved in the adaption stage of the adaptive immune mechanism 

and are thought to be universal in CRISPR/Cas systems (Makarova et al., 2002). Outside 

of that, Cas proteins are typically broken down into three main groups, Type I, Type II and 

Type III (Figure 1.6). Type I systems are defined by the presence of the protein Cas3, which 

has both helicase and DNase domains responsible for the degradation of target DNA. There 

are 6 subtypes of Type I systems A through F all with varying Cas genes present. Outside 

of cas1, cas2 and cas3 Type I systems all encode a Cascade complex. This complex binds 

to crRNA and locate the target. Cascade complexes have been shown to enhance the 

acquisition stage (Sinkunas et al., 2011). Type II systems are responsible for encoding 

Cas1, Cas2 and the Cas9 protein. Like the cascade complex Cas9 assists in the adaption 

stage, takes part in crRNA processing and cleaves target DNA assisted by crRNA with an 

additional RNA (tracrRNA). Like Type I systems, Type II systems are divided into sub types,  

A and B (Chylinski et al., 2013; Martin Jinek et al., 2012). Finally Type III, contain the 

signature protein Cas10 who’s function is unclear at this point. Unlike Type I and Type II 

systems however, Type III systems have shown to target DNA as well as RNA (Staals et 

al., 2013).   
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The first use of CRISPR/Cas systems for genetic modifications was by the Type II Cas9 

system known as spyCas9 (Martin Jinek et al., 2012). This system originated from 

Streptococcus pyogenes and was formed of a single Cas9 protein that is able to bind and 

implement a double stranded break to targeted DNA sequences. To be able to target 

sequences the spyCas9 system required a single guide RNA ~20 bp that was immediately 

adjacent to the protospacer adjacent to a motif (PAM). The PAM sight in this system was 

NGG and can be used to provide many possible target sites within a sequence.  

 

Within Clostridium genetic engineering by CRISPR/Cas has mostly been used as a counter-

selection method to screen against homologous recombination events Figure 1.5 (Bruder 

et al., 2016; Huang et al., 2016; Nagaraju et al., 2016; Wang et al., 2017a; Wasels et al., 

2017). One major drawback of CRISPR/Cas systems in Clostridium spp. is their lack of non-

homologous end-joining (NHEJ) systems meaning that Cas9-activated site directed 

breakage (DSB) can only be used to select against non-edited genes i.e. wild types (Xu et 

al., 2017). Despite recent advancements in genetic engineering tools and the advent of 

CRISPR/Cas toolkits within Clostridium spp., the influence of low plasmid transformation 

efficiencies, lack of recombineering, and lack of NHEJ tools and other characterized genetic 

parts still act as a barrier that needs to be overcome to take full advantage the Clostridium 

metabolic chassis.   
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Figure 1.6 Model of crRNA processing and interference. A). In Type I systems, the pre-crRNA 

is processed by Cas5 or Cas6. DNA target interference requires Cas3 in addition to Cascade and 

crRNA. B). Type II systems use RNase III and tracrRNA for crRNA processing together with an 
unknown additional factor that perform 50 end trimming. Cas9 targets DNA in a crRNA-guided 

manner. C). The Type III systems also use Cas6 for crRNA processing, but in addition an 

unknown factor perform 30 end trimming. Here, the Type III Csm/Cmr complex is drawn as 
targeting DNA, but RNA may also be targeted 
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1.8 Well-characterised examples of metabolic engineering in 
Clostridium spp. 

 
1.8.1 Engineered strains 

 
Throughout the short history of genetic manipulation of Clostridium spp., a major focus has 

been on increasing solvent production by targeting the genes that are involved in acid and 

solvent production. The first successful example of such metabolic engineering reported a 

recombinant C. acetobutylicum with up-regulated adc (encoding acetoacetate 

decarboxylase) and ctfAB (encoding CoA transferase) genes (Mermelstein et al., 1993). 

Batch fermentation of this recombinant strain resulted in the earlier expression of acetone-

forming enzymes leading to earlier acetone production. This recombinant strain produced 

elevated concentrations of acetone, butanol and ethanol of 95%, 37% and 90 % 

respectively. Another early study by Nair et al. (Nair and Papoutsakis, 1994) utilised the 

degenerated strain C. acetobutylicum M5 (Clark et al., 1989) that could no longer produce 

solvents or sporulate due to the loss of the pSOL1 mega plasmid encoding the alcohol 

dehydrogenase gene adhE. This strain could not be used for acetone production, but was 

able to produce butanol and ethanol. Despite its ability to produce butanol and ethanol, 

when butanol concentrations were around 10 g L -1 the adhE M5 strain shifted to ethanol 

production over butanol. The M5 strain of C. acetobutylicum has been used as a 

background strain in a number of studies as a platform for the introduction of solvent 

production minus acetone production as demonstrated by (Nair and Papoutsakis, 1994). 

However, recent studies by (Sillers et al., 2008) showed that the M5 strain lacks the 

metabolic flexibility to be able to change its redox poise effectively enough achieve a 

desirable electron balance. In the study, when Sillers et al. attempted to over express the 

adhE only strains with inactivated acetate kinases were able to produce transformants 

(Sillers et al., 2008), although these lead to increased acid production and decreased 

solvent production. This suggested that the strain was limited in its ability to balance redox 

potential and relied heavily on butyrate production as a means of balancing its production 

of reducing equivalents. Additional experiments have since been carried out to examine the 

effect of disruption of the butyrate forming pathway. In one study, the deletion of the buk1 

and pta genes encoding the butyrate kinase and phosphotransacetylase was carried out in 

an attempt to re-direct carbon flow through to solvent production and away from acid 

production (Green et al., 1996). The mutations were obtained by homologous, single cross-

over events. Overall, the pta knockout had decreased acetate production and increased 

butyrate production, with the opposite being true for the buk1 mutant. Solvent production 

was only affected in the buk1 mutant, in fact the buk1 deletion resulted in the strain being a 

butanol super producer. When tested under optimised conditions, this strain was able to 
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produce concentrations of 16.7 g L -1 butanol, 4.4 g L -1 acetone, and 2.6 g L -1 ethanol 

(Harris et al., 2000).  

 

In addition to over expression and gene knockouts, the use of technology for the disruption 

of genes without the need for full knockouts has been investigated. First of the technologies 

tested was anti-sense RNA (asRNA). The use of asRNA was first used to test its 

effectiveness in the reduction of the genes involved in butyrate formation (Desai and 

Papoutsakis, 1999). In this study two asRNA’s were designed, one for the gene buk and 

the other for ptb. This work successfully reduced the butyrate kinase and 

phosphotransbutyrylase activities by 85% and 70%, respectively, with the concentrations of 

solvent and acid production from the asRNA comparable with the previous knockout strains 

(Green et al., 1996). The use of asRNA was also later used to demonstrate that CoA 

transferase was the rate limiting step in acetone production and not acetoacetate 

decarboxylase as previously believed (Tummala et al., 2003). A more recent and modern 

technique for the disruption of desired genes, is through the use of CRISPR interference 

(CRISPRi). This method was used by (Woolston et al., 2018) for the downregulation target 

genes in Clostridium ljungdahlii, an autotrophic Clostridium. CRISPRi was deployed in a 

strain engineered for 3-hydroxybutyrate (3HB) production. Downregulation of 

phosphotransacetylase (pta) with a single sgRNA led to a 97% decrease in enzyme activity 

and a 2.3-fold increase in titre. Unfortunately, acetone production still accounted for 40 % 

of carbon flux. In an attempt to overcome this acetone production, sgRNA downregulation 

of aldehyde:ferredoxin oxidoreductase (aor2) and an additional sgRNA targeted to pta 

reduced overall acetate production from 40 % of the carbon flux to 25 %, which lead to an 

increase in 3HB titre and yield.  

 

Finally, due to the destabilising effects that butanol has on proteins and membrane fluidity, 

another prospective target for metabolic engineering is to engineer strains that have 

increased tolerance to butanol (Ezeji et al., 2010). The solvent tolerance mechanism of 

solventogenic clostridium involves the expression of molecular pumps, chaperone proteins 

such as groES, dnaKJ, hsp18, and hsp90, as well as genes involved in sporulation and fatty 

acid synthesis (Ezeji et al., 2010; Tomas et al., 2004). Tomas et al. were able to increase 

final solvent concentrations by the overexpression of GroES and GroEL heat shock proteins 

as part of the groESL operon (Tomas et al., 2003). When cells were exposed to stress 

conditions, GroES and GroEL assist in the refolding of misfolded proteins. During 

overexpression of the groESL operon, growth inhibition by butanol was reduced by 85 % in 

2 g L -1 butanol and 40 % in 4 g L -1 butanol, compared to the control strain. This increase in 

butanol resistance enabled strains to tolerate solvent titres that were elevated by 33 %. 

Selective enrichment has also been used to try and increase resistance to solvents. 

Microarray analysis revealed that enrichment of a fragment containing the gene ca_c1869. 
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The strain that was responsible for the over expression of the gene ca_c1869 (ca_c1869 

was annotated as a singleton transcriptional regulator) had an 80 % increase in its 

resistance towards butanol relative to the control (Borden and Papoutsakis, 2007).  

 
1.8.2 Engineered C. saccharoperbutylacetonicum N1-4(HMT) strains 

 
Unlike the more well characterised strain C. acetobutylicum, C. 

saccharoperbutylacetonicum N1-4(HMT) is a relative new comer to the world of industrial 

ABE production. First discovered in 1969 (Hongo and Ogata, 1969) the full genome 

sequence of the strain was not published until 2014 (Poehlein et al., 2014). Throughout the 

year’s fermentation experiments using a wide verity of feedstocks have been carried out 

using this known butanol hyperproducing strain (Noguchi et al., 2013; Tashiro et al., 2007, 

2004)(Al-Shorgani et al., 2012b). Early investigative work demonstrated that unlike C. 

acetobutylicum strains, cell degradation did not come from loss of the sol genes but more 

so from the breakdown of the regulation of the sol operon and upstream proteins in the 

system (Kosaka et al., 2007). Further to this, the mega plasmid found in C. 

saccharoperbutylacetonicum N1-4(HMT) has also been linked to ester production of butyl 

acetate and butyl butyrate (Gu et al., 2019) . Recently the development of CRISPR/Cas 

based tools for the genetic manipulation of C. saccharoperbutylacetonicum N1-4(HMT) has 

been established (Jenkinson et al., 2015; Wang et al., 2017a), with both systems published 

working by means of a counter-selection method to screen against homologous 

recombination events (Section 1.7.3). A large majority of the published strain engineering 

in this strain has been carried out by the Wang group from the University of Auburn. The 

group have carried out a number of strain metabolic engineering experiments in C. 

saccharoperbutylacetonicum N1-4(HMT). To better understand the butanol production 

mechanism of the strain, the key biosynthetic genes (either endogenous or exogenous) 

including the sol operon (bld-ctfA- ctfB-adc), adhE1, adhE1D485G, thl, thlA1V5A, thlAV5A and 

the expression cassette EC (thl-hbd-crt-bcd) were over- expressed in the strain (Wang et 

al., 2017b). Overall over expression of the sol operon resulted in a 400% increase in the 

production of ethanol with the highest increase in butanol (13.7 %) seen in the strain with 

the over expression of the EC cassette. In an attempt to better understand and elevate the 

process of CCR, the group inactivated the sucrose metabolic pathway by inactivation of the 

gene scrO, doing this resulted in a decrease sucrose consumption by 28.9% and a 

decrease in ABE production by 44.1% using sucrose as the main carbon source. 

Additionally, deletion of the gene scrR alleviated  CCR in the glucose/sucrose mixed 

fermentation; and over expression of the endogenous sucrose pathway resulted in 

increased ABE production (Zhang et al., 2018). (Atmadjaja et al., 2019) have demonstrated 

that it is possible to use the CRISPR/Cas technology for the creation of successful single 

nucleotide polymorphisms (SNPs), deletion and integrations within the genome of C. 

saccharoperbutylacetonicum N1-4(HMT).  
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1.8.3 Alternative butanol producing strains.  
 
An alternative to metabolic engineering the Clostridium spp. directly is to bypass the species 

all together and produce n-butanol in other organisms circumventing many of pitfalls of the 

species. These circumvention tactics have typically involved the heterologous expression 

of the butanol production machinery from Clostridium into strains such as E .coli and S. 

cerevisiae (Fisher et al., 2014; Iddar et al., 2002; Kutty and Bennett, 2007; Morimoto et al., 

2005) as they typically are more well-studied and more genetically accessible than 

Clostridium. However, these organisms typically are more sensitive to butanol 

concentrations in their media as well as a narrower substrate range amongst other issues 

(Luttke-Eversloh and Bahl, 2011). Despite these drawbacks, studies in E. coli from (Atsumi 

et al., 2008), (Inui et al., 2008) and (Nielsen et al., 2009) were able to successfully detect 

butanol production in concentrations of 550 mg L -1 , 1200 mg L -1 and 520 mg L -1  

respectively. Finally, due to the powerhouse of reduction that solventogenic Clostridium are 

known for, similar to butanol production, introduction of genes from Clostridium have been 

introduced into E. coli in a bid to alter the reducing potential within E.coli (Iddar et al., 2002; 

Klein et al., 2010)   

 

1.9 Aims of the Thesis 
 

The research outlined in this thesis can be split into two major sections with the first section 

focusing on the design and construction of a cost effective, expandable, and easy to run 

fermentation system that enables like for like growth conditions that are found in industry 

leading fermentation systems. The second part focusing on improving the solvent producing 

capabilities of C. saccharoperbutylacetonicum N1-4(HMT) by the deletion of the gene gapN, 

deletion of gapN gene was achieved using proprietary CRISPR/Cas tooling known as 

CLEAVE developed by Green Biologics Ltd. Deletion of gapN was carried out as a means 

of recovering ATP that would otherwise be lost by transcription of the GAPN enzyme in C. 

saccharoperbutylacetonicum N1-4(HMT).  

 

As part of the Shepherd lab fermentation testing, buffering compounds CaCo3 and MES 

‘goods buffer’ were tested with MES coming out as the pH buffering compound of choice 

due to its ability to effectively buffer the pH of the acids produced during fermentation, as 

well as its ability to dissolve easily into solution, something that CaCO3 was unable to do. 

Successful culturing of C. saccharoperbutylacetonicum N1-4(HMT) was carried out using 

the shepherd lab fermenters and acids and solvents were successfully measured using 

GCMS.  
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The final section of this thesis focuses on the construction of the ∆gapN mutant C. 

saccharoperbutylacetonicum N1-4(HMT) strain and the characterisation of the phenotype 

differences of of this strain compared to the wild type during fermentation. One of the main 

hypotheses in the deletion of the gapN gene was that there would be an increase in the 

internal concentrations of ATP which would result in increased concentrations of solvents 

acetone and butanol. Increased solvent production was hypothesised through the deletion 

of gapN as acid production in acidogensis is responsible for generating a large 

concentration of the intracellular ATP, this in turn is then used for solvent production. 

Deletion of the gene gapN and the subsequent loss of GAPN in glycolysis would result in 

increased ATP concentrations which can then be used for solvent production, additionally, 

a decrease in acid production was expected to occur as the cell no longer needs to produce 

as much acid to generate the required ATP for solvent production and growth.  
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Chapter 2  

 
Materials and Methods 
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2.1 Bacteriology Methods  
 

2.1.1 Bacterial strains and plasmids 
 
A list of all of the bacterial strains, plasmids this study can be found in Table 2.1 and Table 

2.2 respectively. Clostridium strains were cultured in Reinforced clostridium media (RCM) 

(sigma 27546-500G-F) that was made anaerobic by autoclaving at 121 oC at 15 psi for 20 

min in serum bottles sealed with butyl stoppers. Depending upon starter culture needed for 

an experiment either 30 mL or 100 mL of RCM was inoculated with 500 µL of 15% (v/v) 

glycerol stocks of C. saccharoperbutylacetonicum N1-4(HMT) and grown statically at 32 oC. 

E. coli strains were grown aerobically at 37 oC and shaken at 180 rpm in Luria-Bertani (LB) 

media. Starter cultures for E. coli growth were taken from single colonies plated out in LB 

agar plates. 

 

Table 2.1 Bacterial Strains and Plasmids used in Thesis 
Strain Characterisation Source or Reference 
C. saccharoperbutylacetonicum 
N1-4(HMT) 

DSM-14923 (=ATCC 
27021) 

DSM 

E. coli 

JM109 genotype: 
endA1, recA1, gyrA96, 
thi, hsdR17 (rk–, mk+), 
relA1, supE44, Δ( lac-
proAB), [F´ traD36, 
proAB, laqIqZΔM15]. 

Promega 

Turbo Genotype: F' 
proA+B+ lacIq 
∆lacZM15 
/ fhuA2  ∆(lac-
proAB)  glnV galK16 
galE15  R(zgb-
210::Tn10)TetS  endA1 
thi-1 ∆(hsdS-mcrB)5 

New England 
Biolabs  

DH5! genotype: fhuA2 
Δ(argF-lacZ)U169 
phoA glnV44 Φ80 
Δ(lacZ)M15 gyrA96 
recA1 relA1 endA1 thi-
1 hsdR17  

New England 
Biolabs 
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Table 2.2 Plasmids used in the thesis 
Name Characteristic  Source or reference  
PMTL Shuttle Vector System 
PMTL82154 Shuttle vector used in the construction of the 

homologous recombination vector. Contains 
Gram-positive origin (pBP1) element, 
antibiotic resistance marker (catP), gram 
negative replicon (ColE1 + tra) and a CatP 
reporter complex.   

GBL, Clostron (Heap et 
al. 2009)  

PMTL83251 
+Ldr 

Shuttle vector used in the construction of 
killing vector. Contains Gram-positive origin 
(pCB102), antibiotic resistance maker 
(emrB), gram negative replication (ColE1 + 
tra) and a MCS with the addition of the native 
leader sequence from the C. 
saccharoperbutylacetonicum N1-4(HMT) 
CRISPR/Cas system. 

GBL, Clostron (Heap et 
al. 2009)  

Gene Art – 
Spcr-dr-
Spcr 
plasmid 

Plasmid containing the spacer (Spcr), direct 
repeat (dr), spacer (Spcr) element that is 
blunt ligated into the killing vector. Vector 
additionally contains, gram negative replicon 
(ColE1), antibiotic resistance marker(AmpR). 

Gene art 

 

2.1.2 Oligonucleotides 
 
All oligonucleotides used in this study are listed in Table 2.3. Oligonucleotides were 

designed using Benchling (https://www.benchling.com/). Each pair of primers were 

designed with less than 5°C difference in melting temperature (Tm) and less than a 5% 

difference in their GC content. Oligonucleotides were synthesised by Eurofins MWG.  

 

2.1.3 Chemicals and water 
 
All chemicals were purchased from sigma unless stated otherwise. Nutrient Agar, tryptone, 

yeast extract were all purchased from OXOID. Throughout distilled water was used for most 

experiments that did not require a high level of purity. For experiments that required a high 

level of purity, Milli-Q water was used. Solutions were sterilised by either autoclaving at 121 

oC at 15 psi for 20 min or via filter sterilisation through a 0.2 µM filter.  

 

2.2 Media/Buffer 
 
2.2.1 Luria-Bertani medium 
 
Luria-Bertani medium (LB) was prepared as described by Sambrook et.al.; (1987). The 

media consisted of 10 g sodium chloride (Fisher Scientific), 10 g peptone (Difco 

Laboratories), 5 g yeast extract and made up to 1 L with distilled water. Media was sterilised 

by autoclaving at 120 oC at 15 psi for 20 min.  
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LB agar was prepared by the addition of 1% (w/v) number 2 agar (Oxiod scientific) to LB 

medium and then autoclaved as before.  

 
2.2.2 Reinforced Clostridium Medium 
 
Reinforced Clostridium Medium (RCM) (Oxoid Scientific) consisted of 0.5g Agar, 0.5g L-

Cysteine hydrochloride, 5 g D(+)-glucose, 10 g meat extract, 5 g peptone, 3 g sodium 

acetate, 5 g sodium chloride, 1 g starch, 3 g yeast extract and made up to 1 L with distilled 

water. RCM was sterilised by autoclaving at 120 oC at 15 psi for 20 min.  

 

2.2.3 Yeast extract tryptone media 
 
Yeast extract tryptone media (YETM) consists of 40 g L-1glucose, 2.5 g L-1 yeast extract, 2.5 

g L-1 tryptone, 0.5 g L-1 ammonium sulphate and 0.025 g L-1 iron sulphate. YETM was 

sterilised by autoclaving at 120 oC at 15 psi for 20 mins. 

 
2.2.4 X2 CGM Media 
 
X2 stock GCM consists of 5.0g Yeast Extract, 0.75g Dipotassium Phosphate, 0.75g 

Monopotassium phosphate, 0.4g Magnesium sulphate, 0.01g Iron sulphate, 0.01g 

Manganese sulphate, 1 g sodium chloride, 2 g ammonium sulphate, 2 g Asparagine and 

made up to 500 mL with distilled water. Media was sterilised by autoclaving at 120 oC at 15 

psi for 20 min.  

 

LB x2 CGM is prepared as above but with the addition of 7.5 g agar (oxiod scientific) and 

made up to 500 mL. Media was sterilised by autoclaving at 120 oC at 15 psi for 20 min and 

then left at room temperature to set.  

 

2.2.5 10% Sugar Stocks 
 
10% Sugar stocks were made up in 500 mL and sterilised by autoclaving at 121 oC at 15 psi 

for 20 min.  
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2.2.6 X1 CGM Media 
 
A bottle of 10% sugar is decanted into a bottle x2 CGM media. This now gives x1 CGM 

media with 5% sugar. X1 CGM agar is prepared in a similar way to x1 CGM minus agar, 

however prior to addition of 10% sugar the x2 CGM agar is melted in a microwave, and 

10% is only added to solution when it is cool enough to be handled without thermal 

protection.  

 

X1 CGM agar is prepared similar to x1 CGM minus agar, however prior to addition of 10% 

sugar the x2 CGM agar is melted in a microwave, 10% is only added to solution when it is 

cool enough to be handled without thermal protection.  

 
2.2.7 Electroporation buffer with salt 
 
Electroporation buffer with salt (EPB_S) consists of 300 mM sucrose, 0.6 mM sodium 

phosphate dibasic, 4.4 mM monosodium phosphate, 10mM magnesium chloride. Sucrose 

was sterilised by autoclaving at 121oC at 15 psi for 20 min. Sodium phosphate dibasic and 

monosodium phosphate were made into a phosphate stock. Phosphate stock buffer was 

then sterilised by 0.45 µM filter sterilisation. Magnesium chloride was sterilised by 

autoclaving at 121oC at 15 psi for 20 min. pH was adjusted to pH 6.0. Buffer components 

were assembled aseptically.  

 

2.2.8 Electroporation buffer without salt 
 
Electroporation buffer with salt (EPB_NS) consists of 300 mM sucrose, 0.6 mM sodium 

phosphate dibasic, 4.4 mM monosodium phosphate. Sucrose was sterilised by autoclaving 

at 121oC at 15 psi for 20 min. Sodium phosphate dibasic and Monosodium phosphate were 

made into a phosphate stock. Phosphate stock buffer was then sterilised by 0.45 µM filter 

sterilisation. pH was adjusted to pH 6.0. Buffer components were assembled aseptically.  

 

2.2.9 SOB Media 
 
SOB media contained the following: 20 g tryptone, 5 g yeast extract, 0.548 g sodium 

chloride and 0.186 g potassium chloride added to 990 mL of distilled water and autoclaved. 

Once cooled to room temperature 10 mL of 0.2 µm filter sterilised 2 M magnesium chloride 

was added.  
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2.2.10 SOC Media 
 
To prepare SOC media, 20 mL of autoclaved 1 M glucose stock was added to 980 mL of 

SOB media.  

 

2.3 Media Supplementation 
 
2.3.1 Antibiotics 
 
Media were supplemented, were indicated, with Thiamphenicol (75 µg mL -1), 

Spectinomycin (250 µg mL -1), Erythromycin (100 µg mL -1 liquid and 40 µg mL -1 Solid) or 

chloramphenicol (25 µg mL -1).    

 

2.3.2 -(N-Morpholino) ethanesulfonic acid 
 
2-(N-Morpholino) ethanesulfonic Acid (MES) (Millipore Corp. Cat: 475893-500GM) was 

used in fermentations at a concentration of 0.1 M as a buffering agent for pH control. MES 

was added to fermentation media and sterilised with the media by autoclaving at 121 oC at 

15 psi for 20 min.  

 
2.3.3 Calcium Carbonate 
 
Calcium carbonate (5 g L -1) was used during fermentation as a buffering agent in the control 

of pH. Calcium carbonate was added to media and sterilised with the media by autoclaving 

at 121 oC at 15psi for 20 min.  

 

Table 2.3 Oligonucleotides used in this study 
Name Sequence  Description of Function 
HR_F1 5’ – ATAATGCTTGCTATTCTAGG – 3’ 

 
First forward primer used 
in the amplification of one 
of the HR 1kB fragments. 

HR_R1 
 

5’ –ATCTTACTATTAATTTGTAAT 
AGTTGCTTTATTTTCACCTCTATCCATTG – 3’ 
 

Frist reverse primer used 
in the implication of one 
of the HR 1kB fragments 

HR_F2 
 

5’ –
AACAATGGATAGAGGTGAAAATAAAGCAACTATT 
ACAAATTAATAGTAAG -3’ 
 

Second forward primer 
used in the amplification 
of one of the HR 1kB 
fragments. 

HR_R2 
 

5’ – AGCTACTTCCATATCAGAAAATTG -3’  
 

Second reverse primer 
used in the amplification 
of one of the HR 1kB 
fragments. 

M13F 5’ - TGTAAAACGACGGCCAGT – 3’ 
 

M13 Primers were used 
to amplify regions of 
interest in the pMTL80k 
plasmids that fell 
between M13F and 
M13R 

M13R 5’ – CAGGAAACAGCTATGAC – 3’  
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2.4 Culture conditions  
 
2.4.1 E. coli 
 
10 mL starter cultures were inoculated from a single colony on an agar plate. Cells grown 

up aerobically overnight in LB (37 oC and 180 rpm). A 1% inoculum from the overnight was 

as starter culture when inoculating fresh media. Liquid E. coli cultures were grown in a New 

Brunswick™ Innova® 3100 water bath at 37°C and 180 rpm in 50 mL conical flasks 

containing 10 mL of LB medium, unless otherwise stated. 

 

2.4.2 Preparation of glycerol stocks 
 
Glycerol growth stocks of Clostridium were prepared by mixing 750 µL of 50% (v/v) glycerol 

with 750 µL of an overnight culture. Glycerol Stocks of C. saccharoperbutylacetonicum N1-

4 were prepared by mixing 750 µL of 30% (v/v) glycerol with 750 µL of C. 

saccharoperbutylacetonicum N1-4 at an OD600 of between 1.8 and 2.2. Stocks were stored 

at -80oC.  

 

2.4.3 Culture optical density 
 
The optical density of cultures was measured at 600 nm (OD600) using a Shimadzu UV-

1800 spectrophotometer in cuvettes with a 1 cm path length. 

 

2.4.4 Butanol Toxicity  
 
To test butanol toxicity the Clostridium cells were first inoculated from 15 % glycerol stocks 

into 30 mL of RCM in 30 mL serum bottles overnight. Following this, a 1 /10 dilution of the 

overnight cultures was used to inoculate YETM media containing 40 g L -1 glucose. Cells 

were left to grown for 4 h to maintain a stable OD600. Once cells had reached an OD600 of ~ 

2 they were challenged with various percentages v/v of butanol ranging from 0.5-5 %. Once 

challenged, growth of the cells was monitored to see the impact on butanol toxicity on 

growth rates.  

 

2.4.5 Seeding of Clostridium 
 
To be able to carry out fermentation experiments at the required volumes, the correct 

volume of inoculum was required in the correct media. This was achieved by growing C. 

saccharoperbutylacetonicum N1-4 firstly overnight between 18-24 h in 30 mL or 100 mL 
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RCM at 32 oC in serum bottles. From here, a 10% inoculum from the RCM overnights was 

used to inoculate 100 mL of the fermentation media in serum bottles. This was left overnight 

for 16-18 h at 32 oC. From here, the overnights in the correct media were used as a 10 -15 

% inoculum into fermentation media at the required volume for the fermentation. Cells were 

monitored until the OD600 reached a value of around 1.8-2.5. Once this was achieved the 

3rd and final seed was used to inoculate the fermenters. The seed train can be seen in 

Figure 2.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.5 Fermentations 
 
 
2.5.1 Batch Fermentation – University of Kent Set up 
 
Batch fermentation was carried out in 1 L culture vessels (SciLabware, Pyrex Quickfit) with 

a 500 mL culture volume at 32oC.  Fermentation media consisted of a yeast extract tryptone 

media (YETM) (40 g L-1glucose, 2.5 g L-1 yeast extract, 2.5 g L-1 tryptone, 0.5 g L-1 

ammonium sulphate and 0.025 g L-1 iron sulphate) at pH 6.2, supplemented with 0.1 M MES 

free acid (Merck, 475893) for pH control during fermentation. Anaerobic conditions in the 

fermentation were generated by sparging filtered (0.2 µm pore size) oxygen-free nitrogen 

through the fermentation media for 20 min pre-inoculation and then 5 min post-inoculation. 

Seed cultures were established by growing recovered RCM grown cells, in 80 mL YETM in 

serum bottles overnight to an OD600
 of ~4.0. The final fermentation inoculation was 10% 

(V/V). Fermentations were carried out in triplicate. 

 

Day 3 – 5: 
5ml Sample taken.  

Every 3hrs over 48h 

Figure 2.1 Seed train for Clostridium fermentation. This seed strain was 
used for fermentation experiments and allowed for establishment of a healthy 

starter culture for fermentation experiments.  
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Throughout fermentation OD600 (Agilent technologies Cary 60 uv Vis), pH (Mettler Toledo, 

InLab pH) and redox potential (Mettler Toldeo, InLab Redox Micro) of the fermentation 

media was measured. Following measurement, supernatant and cells were separated by 

centrifugation at 8000 rpm for 10 min. Supernatant and cell pellet were separated and 

frozen at -80 oC for later use 

 
 
2.5.2 Batch Fermentation – GBL 
 
Batch fermentation was carried out in 2 L fermentation vessels (Electrolabs fermac 200) 

with a fermentation volume of 500 mL. Fermentation media consisted of a yeast extract 

tryptone media (YETM) ( 2.5 g L-1 yeast extract, 2.5 g L-1 tryptone, 0.5g L-1 ammonium 

sulphate and 0.025 g L-1 iron sulphate), supplemented with 0.1 M MES free acid (Merck, 

475893) for pH control during fermentation Anaerobic conditions in the fermentation were 

generated by sparging (0.2 µM pore size) filtered oxygen free nitrogen through the 

fermentation media for 1 h pre-inoculation at a rate of 1L min -1.  Fermentation sugars 

totalled 50 g L -1 consisting of 11 g L -1 glucose, 14 g L -1 xylose, 4.65 g L -1 galactose, 1.95 

g L -1 and 18.4 g L -1 mannose.  

 

2.5.3 Fed Batch Fermentation – GBL  
 
Fed batch fermentation was carried out in 2 L fermentation vessels (Electrolabs fermac 200) 

with a fermentation volume of 1000 mL. Fermentation media consisted of a yeast extract 

tryptone media (YETM) (50 g L-1 glucose, 2.5 g L-1 yeast extract, 2.5 g L-1 tryptone, 0.5 g L-

1 ammonium sulphate and 0.025 g L-1 iron sulphate), with a starting pH of 5.3. The pH was 

maintained via the addition of ammonium hydroxide (Fermac 260 pH controller) and 

fermentation media was agitated at 50 rpm throughout. The process of fed batch first 

involved an initial batch fermentation to allow sugars to drop to below 15 g L -1 and for cell 

culture to reach a high density. Following this initial batch fermentation, gas stripping 

(Section 2.5.4) was initiated to enable removal of solvents, preventing them reaching toxic 

concentrations. In addition to this, cell feeding was initiated. The media fermentation media 

was used as the media for feed. Feeding rate was altered throughout to maintain sugars 

below 15 g L -1 while still maintaining gas stripping.  

 
2.5.4 Gas Stripping – GBL 
 
To maintain non-toxic levels of solvents throughout the fed batch fermentation, 0.2 µM 

filtered N2 was bubbled through the fermentation media at a rate of x3 the fermentation 

volume per minute which in our case was 3 L min -1. Evaporated gases were not collected.  
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2.6 Genetic Methods  
 

2.6.1 Isolation of plasmid DNA 
 

Plasmid DNA was isolated using QIAprep Spin Miniprep Kit (QIAGEN) according to 

manufacturers’ instructions. Overnight cultures were pelleted at 5000 x g for 10 min 

using a Sigma Laboratory Centrifuge 2k15. Following this first stage, all further 

centrifugation was carried out at 16000 x g in an Eppendorf 5415R micro centrifuge. 
 
2.6.2 Polymerase chain reaction (PCR) 
 
A number of different PCR reactions were carried out throughout the project. For E. coli 

colony PCR reactions (CPCR), a small fragment of a colony was taken with a sterile pipette 

tip and mixed directly into the pre-assembled reaction. For PCR reactions from isolated 

genomic material, firstly the genomic material was quantified using a nanodrop. Following 

quantification, <1000 ng of DNA was added to the pre-mixed PCR reaction mix. For 

Clostridium CPCR reactions, the colonies are first exposed to a lysis step. This lysis step 

involves a scrape of a colony being add to a lysis solution consisting of 0.25 µL of 20 mg 

ml -1 proteinase K  and 24.75 µl TE buffer pH 8.0. Following addition of colony and prior to 

CPCR, lysis PCR reaction was carried out, shown in Table 2.4 All PCR reactions carried 

out at the university of Kent used the 2x Q5 master mix (NEB) reaction mix shown in Table 

2.5. 2x Q5 reactions are shown in Table 2.6 For all PCR reactions carried out at GBL 

Phusion polymerase mixture was used, reaction mixture Table 2.7 and experiment 

conditions Table 2.8 for Phusion are shown below.   

 

Table 2.4 Lysis PCR reaction for Clostridium PCR  
Temperature (oC) Time (Min) 
55 15  

80 15 

10 Final hold 

 

Table 2.5 2x Q5 Master Mix PCR reaction mixture  
Component 25 µl Reaction 50 µl Reaction Final Concentration 
Q5 High-Fidelity 2X Master Mix 12.5 µl 25 µl 1X 
10 µM Forward Primer 1.25 µl 2.5 µl 0.5 µM 
10 µM Reverse Primer 1.25 µl 2.5 µl 0.5 µM 
Template DNA variable variable < 1,000 ng 
Nuclease-Free Water to 25 µl to 50 µl   
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Table 2.6  2x Q5 PCR reaction  

STEP TEMP TIME 
Initial Denaturation 98°C 30 s 

25–35 Cycles 

98°C 5–10 s 

*50–72°C 10–30 s 

72°C 20–30 s/kb 

Final Extension 72°C 2 min 
Hold 4–10°C   
 

 

Table 2.7 – Phusion PCR reaction mixture 
Component 20 µL Reaction 50 µL Reaction Final Concentration 
Nuclease-free water to 20 µL to 50 µL   
5X Phusion HF or GC Buffer 4 µL 10 µL 1X 
10 mM dNTPs 0.4 µL 1 µL 200 µM 
10 µM Forward Primer 1 µL 2.5 µL 0.5 µM 
10 µM Reverse Primer 1 µL 2.5 µL 0.5 µM 
Template DNA variable variable < 250 ng 
DMSO (optional) (0.6 µL) (1.5 µL) 3% 
Phusion DNA  
Polymerase 0.2 µL 0.5 µL 1.0 units/50 µL PCR 

 

Table 2.8 – Phusion PCR reaction 

STEP  TEMP  TIME  
Initial Denaturation  98°C  30 s  

25-35 Cycles  
98°C 
45-72°C 
72°C  

5-10 s 
10-30 s 
15-30 s/kb  

Final Extension  72°C  5-10 min  
Hold  4-10°C    
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2.6.3 DNA electrophoresis on agarose gels 
 
1 % (w/v) agarose gels were prepared and ran in 1 x TEA buffer and electrophoresis was 

carried out using gel apparatus at 80 V 300 mA for 45 min to 1 h depending upon fragment 

size. Samples were mixed with a 6x blue/orange loading dye (Promega). A 1 kb DNA ladder 

(Promega) was used for Kent samples or 1 kb gene ruler (Thermo) for GBL samples. 

Following running of the gel, DNA samples in the gels were stained with 100 mL of 0.5 mg 

mL -1 ethidium bromide (in water) and visualised on a UV box. 

 

2.6.4 Preparation of E. coli competent cells   
 
E. coli from overnight cultures were used as a 1% (V/V) inoculum into 100 ml of fresh LB. 

These fresh inoculations were left to aerobically grow at 37 oC shaking at 180 rpm until 

OD600 reached 0.4 – 0.5. When optimum OD600 was reached, cells were immediately put on 

ice for 30 minutes, once the 30 minutes was up, the cells were centrifuged at 2300 xg for 5 

min to pellet the cells. The pelleted cells were then resuspended in 10 ml of pre-chilled ice 

cold 100 mM CaCl2 and left for 2 h. Once the two hours had passed, the cells were pelleted 

again, and then resuspended in 2 ml ice cold 100 mM 30% glycerol and snap frozen in a 

dry ice ethanol bath and stored at -80 oC for future use. Cells were kept a maximum of 6 

months as to not lose competency.   

 
2.6.5 DNA ligations 
 
Sticky end ligations 
 

Following digestion of both the desired insert and plasmid with compatible sticky end 

enzymes, a reaction mixture of 50 ng total vector backbone was mixed with varying molar 

ratios of insert at 1:1, 1:3, 1:5. Following mixing, 2 x rapid ligation buffer (Promega) was 

added alongside 2 µL of T4 Ligase (Promega) and total volume made up to 20 µL. Following 

this, reactions were incubated at 22 oC for 2-3 h or overnight at 4 oC and then transformed 

into a variety of chemically competent E. Coli cells. A vector cut with a single sticky end 

enzyme was also ligated and transformed during these experiments as a positive control.  

 
Blunt end Ligations 
 
Following identification of a blunt end restriction sites in the plasmid of choice, successful 

PCR amplification of insert and clean-up of DNA was then used to calculate molar ratios of 

vector to insert similar to stick end ligation, ratios: 1:1, 1:3 and 1:5 were calculated. Once 

molar ratios were calculated 50 ng of Vector, the required volume of PCR insert for correct 
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molar ratio, 5 µL of x 2 rapid ligation buffer (Promega), 0.5 µL of blunt cloning enzyme of 

choice were added to a PCR tube and made up to 9 µL with nuclease free water. Once 

assembled, reaction was incubated in thermos cycler for 30 min to allow optimum digestion 

of plasmid. When digestion is complete, 1 µL of T4 Ligase was added to the reaction 

mixture, reaction was then returned to incubation in the thermo cycler for 3 h at 22 oC. 

Finally, after the 3 h incubation was finished 2 µL of x10 cutsmart buffer (NEB), 0.5 µL blunt 

enzyme of choice (NEB) and 7.5 µL of nuclease free water were added to the reaction and 

left to incubate for 1 h at 37 oC. Following this incubation, 5 µL of final blunt mixture was 

transformed into chemically competent E.coli.  

 
Gibson assembly 
 
Using the NEBioCalulator (http://nebiocalculator.neb.com/#!/ligation) the correct pmol 

concentration of vector and insert were calculated to ensure maximum success. For the 

Gibson assembly concentrations of between 0.02 – 0.5 pmol are required for an optimal 

reaction.  Following these calculations, the inserts and vectors were added to 10 µL 2 x 

Gibson assembly master mix and then incubated in a thermocycler at 50 oC for 1 h. 

Reactions after incubation were stored at -20 oC or 2 µL of assembled reaction was 

transformed into chemically competent E. Coli.  

 
2.6.6 Transformation of E.coli competent cells 
 
Plasmid DNA (2-5 µL) or reactions from Gibson assembly or ligations were mixed with 50 

µL of competent E. coli cells and incubated on ice for 30 min. Cells were then heat shocked 

for 45 s at 42 oC and then immediately placed on ice for 2 min. 200 µL of SOC media was 

added and the cells were left to recover at 37 oC shaking at 200 rpm for 1 h. The cells were 

then spread onto LB agar plates (containing appropriate antibiotic), and left to grow for 

either 37 oC overnight or on the bench for 48 h. 
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2.6.7 Clostridium transformations 
Day 1:  

54 mL of 1 x GCM glucose media was aliquoted into a 250 mL flask along with 10 

mL of the same media into a 50 mL sterile universal tube. The aliquoted 1 x CGM glucose 

media was transferred into the anaerobic chamber (Whitley A85TG Workstation) along with 

1 mL aliquots of EPB_S and 50 mL of EPB_NS (Section 2.1.4.8) and left overnight to 

equilibrate with the anaerobic atmosphere. Alongside media, overnight cultures of C. 

saccharoperbutylacetonicum N1-4(HMT) were prepared from glycerol stocks (Section 

2.4.2). Glycerol stocks were inoculated into either 30 mL or 100 mL RCM and then left to 

grow overnight at 32 oC.  

 

Day 2: 

The overnight cultures that were grown in either 30 mL or 100 mL RCM serum 

bottles (Section 2.2.2) were degassed prior to aliquoting. Degassing involves piercing of the 

rubber septum of the serum bottle using a needle and syringe that has had the plunger 

removed. Degassing decreases the internal pressure within the serum bottle for safe 

removal of the metal cap and rubber septum. The degassing of the overnight cultures was 

carried out outside of the chamber. Following degassing 10 mL of the overnight culture was 

transferred to a 50 mL universal tube (this was done outside of the chamber). The 50 mL 

universal tube containing 10 mL of overnight culture was transferred to the anaerobic 

chamber where 6 ml of the overnight culture was used to inoculate the 54 ml of 1 x GCM 

from left to equilibrate in the chamber overnight from day 1. This culture was grown at 32 
oC in the anaerobic chamber until the OD600 reached 1.2. 25 mL of this culture was then 

decanted into 2 x 50 mL falcon tubes, which were placed on ice to cool for 15 min. After 15 

min, cells were centrifuged at 4000 xg and 4 oC for 10 min. The pelleted cells were 

transferred back into the anaerobic chamber, the supernatant was discarded, and 20 mL of 

EPB was used to resuspend one of the cell pellets. These resuspended cells were 

transferred into the second falcon tube and the second pellet was resuspended. Following 

resuspension, cells were centrifuged at 4000 xg and 4 oC for 10 min and the supernatant 

was discarded. The cell pellet was placed on ice immediately and then resuspended in 1 

mL EPB_NS. After resuspension, 200 µL of EPB_NS suspended cells were transferred to 

electroporation cuvettes that were pre-chilled on ice containing the correct amount of DNA 

(Appendix D) for electroporation and left on ice to chill for 5 min. The electroporator 

delivered 1.5 kV to the cuvette, and immediately following electroporation 1 mL of 1 x GCM 

was added to the cuvette and cells were left to recover in the anaerobic chamber in the 

cuvette overnight. 
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Day 3 – 7:  

After recovering overnight, 200 µL of cells were plated out onto GCM agar containing 

the correct selective antibiotic and left for between 48 – 72 h to allow for the appearance of 

Clostridium colonies. After colonies appeared, a single colony was taken and CPCR was 

carried out to check for the correct plasmid. Following identification of the correct plasmid, 

the colony was grown overnight in 10 mL RCM at 32oC overnight inside of the anaerobic 

chamber, the following day subsequent 15% glycerol stocks (Section 2.4.2) were made and 

stored at – 80 oC for future use.   

 
2.6.8 CLEAVE™ 
 
Patent: WO2015159087A1 

CLEAVE is CRISPR/ Cas technology developed by Green Biologics limited (Jenkinson 

et al., 2015). Overview of functionality is described in Chapter 4. 

 

2.6.9 Sequencing of DNA  
 
To confirm successful mutagenesis DNA samples were sequenced by Eurofins and the 

data was analysed using Benchling (https://www.benchling.com/). For whole genome 

sequencing libraries were prepped using Nextera® XT DNA Library Prep Kit from Illumina® 

following the manufacturer’s instructions. Library preparations were then sequenced using 

an Illumina® MiSeq benchtop sequencer using a MiSeq reagent kit v3.  
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2.8 Biochemical Methods 

 
2.8.1 NADPH: NADH Assay 
 
Extraction Technique 
 
The extraction technique from Beri et al., (2016) was used. 2 mL from exponentially growing 

and stationary phase culture was added to 1 mL of 1 M HCL for NAD(P)+ extraction and 1 

mL of 1 M KCL for NAD(P)H extraction. Cells were incubated at 55oC for 10 minutes. 

Following incubation, the pH of the samples was neutralised to pH 6.5 for acid samples and 

pH 7.5 for base samples. This was achieved by adding 1 M HCL and 1 M KCL dropwise 

with continual vortexing. After neutralisation, samples were centrifuged for 15 min at 4400 

x g, with the supernatant following centrifugation being saved for subsequent analysis. Two 

biological repeats and two technical repeats of each biological repeat were taken.  

 

Quantitation of NADH and NADPH 
 
Concentrations of NADH and NADPH were measured using previously described methods 

(Baker, 2016; Bernofsky and Swan, 1973; Nisselbaum and Green, 1969). In brief, the 

reaction mixture for the NADH assay consisted of 100 µL 1M tricine-NaOH (pH 8), 100 µL 

40mM EDTA, 100 µL 0.1 M NaCl, 100 µL 4.2 mM MTT, 100 µL 16.6 mM PES, 100 µL 100 

% EtOH . The reaction mixture for NADPH assay consisted of 100 µL 1M tricine-NaOH (pH 

8), 100 µL 40mM EDTA, 100 µL 0.1 M NaCl, 100 µL 4.2 mM MTT, 100 µL 16.6 mM PES, 

100 µL 10 mM Glucose-6-phospahte.  500 µL of each of the assay mixture was added to 

100 µL of extracted sample, topped up to 900 µL with 0.1 mM NaCl and incubated at 37 oC 

(change to oC throughout) for 5 min. To generate standard curves, similar reactions were 

set up where the extracted sample was replaced with nucleotide solutions of known 

concentration. 100 µL of Alcohol dehydrogenase and 100 µL Glucose-6-phosphate 

dehydrogenase were then added at 10 U of enzyme per reaction. The reaction was 

incubated at 37 oC for 1 h in the dark. 500 µL of 5 M NaCl was then added to stop the 

reaction and precipitate MTT. Samples were centrifuged at 4oC and x10,000 g for 5 min. 

Supernatants were decanted and the MTT pellets were resuspended in 1 mL of ethanol, 

and absorbance was measured at 570 nm 
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2.8.2 ATP Luminescence assay 
 
ATP was quantified in cells grown anaerobically in P2 minimal media (Baer et al., 1987) 

using a luminescence assay according to the manufacturer’s instructions (Abcam 

ab113849).  
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Figure 2.3 ATP standard curve diluted in YETM media. Relative light units were collected 
with 0.5 sec integration time 

Figure 2.2 (A) NADH and (B) NADPH standard curves. 
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2.8.3 GCMS quantification of acids and solvents 
 
Solvent analysis was carried out using Gas Chromatography Mass Spectrometry (GCMS) 

of the fermentation supernatant samples. Agilent 6890N at the University of Kent was used 

for this. The GC was equipped with 7HG-6013-11 Zebron. Helium (>99.999%) was used as 

the carrier gas, with a constant flow rate of 1 mL -1 minute. A 0.2 µL water sample was 

injected with a 100:1 split. Injection temperature was set to 150oC, the GCMS transfer line 

temperature was set to 280 oC, ion source 230 oC, quadrapole 150 oC. After injection column 

temperature was held at 30 oC for 5 min, following this increased to 150oC at the 20 min 

mark. Compounds were identified by comparing retention times of each of the compounds 

with retention times of reference compounds. 

 
2.8.4 HPLC quantification of sugars (Kent) 
 
Fermentation supernatants were removed from the -20 oC and allowed to thaw to room 

temperature. Once samples had reached room temperature they were homogenised and 

centrifuged at 13400 xg for 5 min. 200 µL of the sample was then added to 600 µL of HPLC 

grade water, achieving a x4 dilution and a total volume of 800 µL. Glucose concentrations 

were measured using cation exchange chromatography. Column used was a phenomenex 

rezex ROA H+ 1 ml minute -1 5 mM sulphuric acid. Samples were run at 60oC and compared 

to known standard concentrations for glucose.  
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2.8.5 HPLC quantification of sugars and solvents – GBL  
 
Fermentation supernatants were removed from the -20 oC and allowed to thaw to room 

temperature. Once samples had reached room temperature they were homogenised and 

centrifuged at 13400 xg for 5 min. 200 µL of the sample was then added to 600 µL of HPLC 

grade water, achieving a x4 dilution and a total volume of 800 µL. Prior to addition to HPLC 

tubes, samples were filtered through a 0.2 µm cellulose filter to remove any remaining 

bacteria, ensuring that they are unable to affect the results by still being metabolic active. 

Samples are analysed using Bio Rad Aminex HPX-87H column. Solvents, acids and 

common sugars run under the following conditions Table 2.9.  

 
Table 2.9 HPLC Conditions for Solvents, acids and common sugars: 
 Condition  Setting  
Elution type  Isocratic elution  
Flow rate  0.9 mL/min  
Oven temperature  85 °C  
Run time  Maximum 30 min  
Injection volume  10 μL  
Detector type & detection 
temperature  

Refractive index at 35 °C  

Mobile phase  5 x 10-3 mol/L H2SO4  
Seal wash  10% methanol  
Injector wash  HPLC grade water  

 

2.8.7 Glucometer Sugar measurements 
 
Glucose concentrations were measured during fermentation using a Sinocase Safe AQ 

Smart Blood glucose monitoring system. Samples were taken during fermentation and 

centrifuged at 13400 xg for 5 min. Following separation from the cell mass, a glucose test 

strip was submerged into the supernatant to gain a reading for glucose concentration in 

each sample.    
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2.9 Genomic sequencing and analysis methods 

 
2.9.1 Clostridium Genomic DNA isolation 
 
Genomic DNA was extracted using the GenElute Ô bacterial genomic DNA kit (Sigma 

NA2100-1KT) following manufactures instructions.  

 
2.9.2 Whole Genome sequencing 
 
Whole genome sequencing was carried out using the illumina MiSeq system Genome 

library for both the wild type strain and the ∆gapN were prepared using the Nextera® XT 

DNA Library Prep Kit, which is optimized for small genomes. Once the libraries were 

prepared, they were sequenced using an Illumina MiSeq benchtop sequencer.  

 

2.9.3 Assembly and annotation  
 
Following Illumina® MiSeq, the read quality was assessed with FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc). To improve read quality 

reads were trimmed using Trimmomatic (Bolger et al., 2014). Trimmomatic improves 

read quality of the illumina reads by removing sequence adapters, trimming bases at 

the beginning and end of the reads if they fall below the stipulated threshold, finally it 

eliminates any of the reads that fall below the minimum read length, which by default is 

set to 36 bp. Following this, reads mapped using BWA (Li, 2013) to the refence genome 

for C. saccharoperbutylacetonicum N1-4(HMT) obtained from Genbank (CP004121.1). The 

quality of the genome maps were  assessed using Qualimap (García-Alcalde et al., 2012).  

Functional annotation was performed using PROKKA (Seemann, 2014) and Roary (Page 

et al., 2015) was used for analysis of gene content and the pangenome. 

 
2.9.4 Variant identification   
 

To asses any variation between the Wild type and ∆gapN C. saccharoperbutylacetonicum 

N1-4(HMT) SNP analysis of the BWA assembled genomes to the reference genome C. 

saccharoperbutylacetonicum N1-4(HMT), Snippy was used 

(https://github.com/tseemann/snippy). In addition to SNP analysis, PROKKA (Seemann, 

2014) was used to annotate the assembled illumina reads and identify properties such as 

tmRNA, CDS, rRNA and tRNA in each of the assembles. Genome alignments were 

achieved using the online tool GVIEW (https://server.gview.ca/).  
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Chapter 3  
 
 

Design and construction of fermentation 
platform and establishment of analytical tools 
for ABE fermentation analysis  
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3.1 Summary 
 

Clostridium species are known to be difficult to handle due to their anaerobic nature and 

typically require specialist equipment for their culture such as anaerobic chambers, serum 

bottles and fermentation systems. As the overall goal of the project was to optimise solvent 

production in Clostridium spp. we required a three-vessel parallel fermentation system to 

provide consistent culture conditions. To achieve this, a bioreactor was designed and 

constructed that had the capabilities for batch and fed batch processes, and could even be 

set up for continuous fermentation experiments at a fraction of the cost of commercial 

systems. This system has a reduced cost per unit comparatively, and carries over many of 

the same functionality of those systems with a higher price point of entry, including in-line 

monitoring of temperature, pH, redox poise. In future, this system will be of interest to 

researchers in low to middle income counties that require high performance parallel 

fermentation platforms but commercial systems are financially out of reach. 

 

Following instalment of the fermentation system, techniques to analyse the acids, solvents 

and sugars from the fermentation mixture were established allowing for small scale 

fermentation reactions to take place. This allowed for the characterisation of strains to take 

place in a scaled down industrial setting. CaCO3 and MES were compared as buffering 

compounds for controlling the pH of the fermentation, MES provided more accurate 

measurements in comparison to CaCO3 and was chosen preferentially going forward in 

batch experiments. GCMS was established as the preferential method for acid and solvent 

detection. HPLC was used to quantify sugar concentrations of fermentation supernatant 

samples. In addition to this, in keeping with the cost-effective theme of the project, 

glucometers that are typically used for the measurement of blood glucose concentrations 

in diabetics were tested alongside HPLC analysis of glucose. Overall the concentrations of 

glucose measured by the glucometer correlated with around 88% accuracy to the 

concentrations detected by HPLC.  
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3.2 Introduction 
 
 

 

For the culture of solventogenic clostridial strains, three main types of fermentation have 

been studied in depth. These are, batch, fed batch and continuous fermentations. Of these 

techniques, batch culture is the quickest and simplest of the three methodologies. Batch 

fermentations start with an initial high concentration of feed. Throughout the process of 

batch fermentation, this feed is metabolised and the production of ABE solvents occurs. 

Batch fermentations have been carried out on a number of species using a number of 

differing feedstocks (Al-Shorgani et al., 2012a; Ellis et al., 2012; Mermelstein et al., 1993; 

Noguchi et al., 2013; Qureshi and Blaschek, 2000). The control of pH is crucial during batch 

fermentations as the drop of pH due to acid production allows for the solventogenic shift to 

occur. However, for optimum solvent production the pH cannot be allowed to drop and 

cause acid crash (Maddox et al., 2000), and the pH also cannot be maintained too high as 

this will lead to inefficient solvent production (Zheng et al., 2015). There are, however, a 

number of drawbacks from batch fermentations. These drawbacks include: (i) inhibition of 

solvent production and accumulation of vegetative cells as a result of butanol toxicity build 

up in the system; (ii) carbon catabolite repression during batch fermentation; (iii) lengthy 

downtime and start up time between fermentation cycles and treatment of fermentation 

media.  

 

Fed-batch fermentations begin with high concentrations of feedstocks. Typically fed-batch 

systems are run initially as a batch fermentation alone, despite using a large majority of the 

feedstock this initial batch will allow for the establishment of a dense culture medium of 

cells. This high density of cells following the batch will be in the solventogenic phase of their 

growth. Once this phase is reached, the cells are fed with additional feedstock to take 

advantage of the cells solventogenic phase for an extended period of time that would not 

be possible in traditional batch fermentations. However, due to the toxicity of solvent 

accumulation, butanol in particular, fed-batch systems have traditionally been investigated 

in tandem with various solvent recovery methods to maximise the solvent production and 

yield during the fermentation process (Jang et al., 2012; Outram et al., 2017; Qureshi and 

Blaschek, 2001, 2000). Finally, continuous fermentation is a chemostat culture whereby the 

concentrations of cells, substrates and products are at a steady state following the gradual 

addition of multiple culture volumes of fresh fermentation broth. One of the main drawbacks 

of continuous fermentation with Clostridium is a low cell count. This has been overcome via 

the use of cell immobilisation in various carriers as well as cell recycling using membranes 

(Tashiro et al., 2013). 
  



 66 

3.3 Results  
 
3.3.1 Fermenter design and construction 
 
Having the ability to run fermentation experiments is key to better understanding the 

process of the ABE fermentation, as it replicates a scaled down version of what is seen in 

an industrial setting. The fermentation facility will enable the following; (i) characterisation 

of a veriety of growth conditions as well as feedstocks that could be used in an industrial 

setting; (ii) Characterisation of any genetic engineering that is achieved on Clostridium and 

how these changes affect the overall cell life cycle as well as the effects on ABE production 

during fermentation.  

 

One of the main hurdles in establishing a fermentation protocol is the cost of entry per unit. 

Prices for these fermentation units can range from entry at 8000 GBP per unit, to upwards 

of 25,000 GBP per unit (Table 3.1). Knowing this, we set about to establish our own 

fermentation system that could retain as much of the functionality of the commercial units, 

but at a fraction of their cost. Overall, there were 3 main criteria for the fermenters:  

 

1. Flexibility in fermentations style, i.e. batch, fed batch or continuous culture.  

2. Affordable (Cheaper than current market products) 

3. Upgradeable, i.e. new style head gaskets, culture volume change or additional 

probes/electrodes addition. 

 

To ensure that these criteria could be met along with retaining all the required functionality, 

research of commercial fermentation units was carried out. This functionality included 

temperature control to accommodate varying preferential growth temperatures of different 

organisms. Most of the systems researched used either an electric heated jacket system, 

such as the fermac 200 and the F0-Baby, or a jacketed water system like that seen on the 

BioFlo 120 from Eppendorf (Table 3.1). In our system we opted for a water jacketed system 

in which the temperature was controlled via the use of an aquarium heater for tropical fish. 

Doing this enabled us to maintain temperatures between 18-37oC (Appendix A1). 
 

Alongside temperature control, culture agitation was achieved via the use of a magnetic 

stirring bead with the fermenters placed on magnetic stirrers. Redox and pH measurements 

were achieved via the use of the Mettler Toledo InLab probe system, attached to a hand-

held monitor.  
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Schematics for our fermentation system to be used in batch, fed batch as well as continuous 

were drawn up (Figure 3.1). From here a list of components was established 

 (Appendix A2). Aside from all the purchased components, a custom gas escape/sample 

port had to be constructed, this was achieved by running metal piping at varying lengths 

through rubber bungs and sealing them to ensure airtight. These ports can be seen in 

Appendix A3. Pictures of the final system set ups can be found in (Appendix B), in addition 

to pictures there are a number of videos demonstrating the system functioning and set up 

as batch, fed batch and continuous without live cell culture.   
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Table 3.1 Comparison of main functionality of commercially available fermentation systems compared to the Shepherd lab designed system 
Name 

 Electrolab FerMac 200 Eppendorf BioFlo® 120  BioNet F0-BABY  Shepherd Lab Set up 

In Line Functionality 

Temperature control range (oC) 5 – 50 oC 0-70 oC Temp Range not given 18-37 oC 
pH control range 4-10 2-12 2-12 Controlled via buffering agent 

Agitation (rpm) 50 -1100 25 – 1500 0-2000 0-1000 

In line OD measurements Yes - Optional Extra No No No 

Redox (mV) Yes – Optional Probe Yes – (-)2000 – (+) 2000 Yes - Optional probe Yes 

Dissolved O2 0-120% 0 200% Yes – Optional Probe No 

Fermentation type 

Batch Yes Yes Yes Yes 

Fed Batch Yes – Optional extra pump Yes – Built in Yes – Optional extra pump Yes – Optional extra pump 

Continual Yes – Optional extra pump Yes – Built in Yes – Optional extra pump Y – Optional Extra 
Volume Range (L) 2-1000 0.25 – 40 1-5 1 

Price (GBP) 8000 20,000 19,995 2000 

 

N
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 A. 

B. 

C. 

Figure 3.1 Schematic overview of the shepherd lab fermentation units. A). 
Schematic for batch fermentation system. B). Fed batch schematic. C). 

Continuous culture system.   
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3.3.2 Growth optimisation of C. saccharoperbutylacetonicum N1-4(HMT) 
 

When establishing optimal fermentation conditions, a seeding system was developed 

Figure 2.1, this was used to ensure that a healthy, dense culture of C. 

saccharoperbutylacetonicum N1-4(HMT) was acclimatised in the fermentation media prior 

to fermentation. In total the seeding process took 3 days prior to inoculation into the 

fermenters. It was this seeding procedure that resulted in the highest rate of observed 

fermentation failing. This is an unfortunate result of the difficulties in working with anaerobic 

Clostridium spp. This problem was mitigated throughout by ensuring that over seeding took 

place, whereby a larger number of seeds cultures were started to ensure that enough of the 

starter and seeding cultures were made available come the time of fermentation.  

 

The largest drawback of the current ‘Shepherd Lab’ fermenters is the lack of a pH control 

module that would allow for the addition of acids and alkali to control of pH within a tight 

window. The issue of pH control was largely overcome by the use of buffering agents during 

fermentation. Two buffers, calcium carbonate (CaCO3) and 2-(N-morpholino) 

ethanesulfonic acid (MES Buffer) were tested and compared during batch fermentations.  

 

The buffering action for both CaCO3 and MES are shown in Figure 3.2. Previous studies 

have demonstrated the use of CaCO3 as a buffer during ABE fermentations (Maddox et al., 

2000; Sadie R. Bartholomew, 2006; Yang et al., 2013). The suitability for autoclaving and 

relative affordability makes CaCO3 a strong buffer choice for ABE fermentations. MES 

buffer was first described as part of the Goods buffers (Frederic Monot , Jean-Marc 

Engasser, 1984) and has been shown to be the most effective between the pH ranges 

observed during ABE fermentation, with a pKa value of 6 compared to 9 for CaCO3.  

 

A. CaCO3(s) + 2 H+(aq) → Ca2+(aq) + CO2(g) + H2O(l) 

B. 

 

Figure 3.2 Buffering agents used in ABE fermentation A). Chemical reaction of CaCO3 with acids and 

the formation of products from this reaction. B). Dissosication process of MES with acids and alkalis  
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To test both CaCO3 and MES as buffering agents, batch fermentation experiments in YETM 

40 g L -1 glucose were carried out, batch fermentation conditions were kept the same in 

both experiments with the only variable being MES and CaCO3 in each. Both MES and 

CaCO3 were able to adequately buffer the pH during a batch fermentation Figure 3.3B 

avoiding a drop in pH below 5 that would result in ‘acid crash’. Despite both MES and CaCO3 

being adequate buffers, CaCO3 appears to have inhibited cell growth with OD600 only 

reaching around 2.5 compared to around 6 in the MES buffered cultures Figure 3.3A. 

Despite the observed inhibition of growth in the CaCO3 fermentations, the OD600 of the 

CaCO3 fermentations is not representative of the actual culture turbidity or health. This is a 

result of CaCO3 inability to fully dissolve into solution at the concentrations required for 

effective pH buffering. This causes large visible particles of CaCO3 in solution, whereas 

MES is able to fully dissolves, is colourless and does not absorb visible light. Due to this, it 

becomes almost impossible to be able to accurately blank CaCO3 buffered solutions at 

OD600 and results in it being less effective at accurately measuring the OD600 during 

fermentation. This inaccuracy is shown by the larger error bars and the flatter growth curve 

in Figure 3.3A compared to fermentations buffered with MES.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 3.3 Fermentation analysis using CaCO3 and MES pH buffering systems. A). OD600 and B). 

pH of C. saccharoperbutylacetonicum N1-4(HMT) grown in YETM with 40g L -1 glucose with either MES 

(closed squares) or CaCO3 (closed circles) as a buffering agent during fermentation.  
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3.3.3 Assessment of analytical techniques for measurement of acids, solvents and 
sugars. 
 

Herein we assess the methodology used for the measurement of the end products of 

fermentation (i.e. acids and solvents) and establish methodology to measure the depletion 

in sugar concentrations.  For the measurement of acids and solvents, Gas Chromatography 

Mass Spectrometry (GCMS) was used. To measure sugar concentrations in the 

fermentation mix, HPLC was used for sugar mixtures as well as single sugar fermentations. 

In addition to this, glucose concentrations were measured using HPLC (with refractometry 

detection) and were compared to measurements made with a hand-held glucometer similar 

to those used by diabetic patients. 

 
3.3.3.1 Solvent and acid quantitation 

 
As described above, GCMS was used as the methodology of choice for the detection and 

quantification of acids and solvents during fermentation. GCMS chromatographs in Figure 

3.4 show the retention time of each of the compounds that are being measured during ABE 

fermentation, acetic acid (11.42 min), butanoic acid (12.9), acetone (2.8 min), butanol (8.5 

min) and ethanol (5.4 min). Figure 3.4 also shows show the solventogenic shift that occurs 

during fermentation, with peak acetic acid and butanoic acid concentrations occurring 

between 6 -12 h, followed by their consumption as the cells switch to solventogenesis from 

12 – 24 h. To enable quantification of ABE fermentation products, standard curves were 

established for the compounds of interest Figure 3.5.   
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Figure 3.4. GCMS Chromatographs from C. saccharoperbutylacetonicum N1-4(HMT) YETM 40 g L 
-1 batch fermentation for the identification of the acids (acetic acid and butanoic acid) and solvents 
(acetone and butanol). 2ml of cell culture taken from cells growing in a batch fermentation and separated 
by centrifugation. Sample supernatants were taken and run on the GCMS following protocol in section 

2.8.4 

Retention time (Min) 

Fermentation time (h) 

0 16 8 4 12 
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Figure 3.5 GCMS standard curves. Solvents 
were diluted in H2O to corresponding g / L 

concentration and ran on the GCMS following the 

protocol in Section 2.8.4. A). Acetic acid, B.) 

Butanoic acid, C.) Acetone, D.) Butanol and E.) 
Ethanol  
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3.3.3.2 Optimisation of sugar quantification 
 
Alongside the ability to be quantify acids and solvents during fermentation, it is important to 

identify and quantify sugars due to the complex nature of different feedstocks and the 

changes in rates of feed and carbon utilisation that occurs. Sugars quantification was 

performed via High-pressure liquid chromatography (HPLC). While very sensitive, HPLC 

can be time consuming and expensive, especially for fed batch or continuous fermentation 

experiments where the concentrations of sugars are monitored regularly. To overcome this, 

the use of a glucometer, similar to those used by those by diabetics, was employed as a 

way of quickly and easily measuring glucose concentrations during fermentations. To test 

the accuracy of the glucometer, a fed batch fermentation was carried out. Following a 16 h 

batch overnight, the glucose concentrations were maintained below 20 g L -1 for the 

remainder of the fermentation. During this time, the glucometer was used to measure 

glucose concentrations from each sample. This dictated the feed rate that maintained the 

glucose concentrations at the desired level. At the same time, samples were taken for 

subsequent analysis via HPLC to allow for comparison of the two methods. The data reveal 

that although the glucometer struggles at higher sugar concentrations (>25 gL-1) it is a 

relatively accurate method for measuring glucose concentrations when compared to the 

HPLC approach (Figure 3.6) with a correlation of 88% with the data from the HPLC samples.   
 

 
 
 
 
 
 
 
 
  

Figure 3.6 Glucose concentrations during fed batch fermentation comparing the 
ability of the Glucometer vs HPLC analysis. C. saccharoperbutylacetonicum N1-

4(HMT) was grown in YETM 50g L-1 glucose as a starting sugar concentration. Feed 

rate was kept the same at throughout. 300 g L -1 glucose was consumed for the duration 
of the fermentation. 2 mL cell samples were taken during fermentation, separated via 

centrifugation and the supernatant separated and used to measure glucose 

concentrations using both the Glucometer and HPLC.  
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3.3.4 Implementation of new fermentation approaches for integrated analysis of ABE 
fermentation 
 
To initially test the fermentation setup a batch fermentation was carried out. For this, wild 

type C. saccharoperbutylacetonicum N1-4(HMT) grown according to the seeding process 

described in section 2.4.4 into a final culture volume of 500 mL of YETM 40g L -1 glucose 

with 0.1 M MES as a buffering agent. The batch fermentation was carried out at 32 oC for 

48 h. Anaerobic conditions were established by purging with filtered (0.2 µm pore size) N2 

for 30 min per vessel prior to inoculation and then 10 min following inoculation. The batch 

fermentations were run in triplicate and set up as illustrated by the schematics in Figure 

3.1A. 
 

The final OD600 measured was 7.2 ± 0.2, the lowest pH value reached was 5.09 ± 0.03, and 

the lowest redox value reached was -298 ± 9 mV vs. NHE (Figure 3.9A). Glucose 

consumption was measured using HPLC (Figure 3.9B). This showed that the glucose 

concentration diminished from the initial 40 gL -1 to 1.3 ± 1.96 g L-1. 

 

Peak concentrations of acetic acid and butanoic acid at 12h (Figure 3.9C) were 0.203 ± 

0.03 gL-1 and 0.17 ± 0.005 gL-1, respectively. Acid concentrations were fully depleted by 30 

h and solvent production started at 12 h. Solvent concentrations were at maximum levels 

at 45 h, with a peak acetone concentration of 4.9 ± 0.48 g L -1 and a peak butanol 

concentration of 13.4 ± 0.8 g L -1.  

 

To conclude, it has been demonstrated above that it is possible to design and construct a 

fermentation system that has similar functionality to commercial units at a fraction of the 

cost. In addition to this, a system for detection and quantification of acids, solvents and 

sugars was established.  
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  Figure 3.9 Overview of growth, acids and solvents of a C. saccharoperbutylacetonicum N1-

4(HMT) batch fermentation in the shepherd fermentation system. A). Output obtained for OD600, 

pH and Redox (mV vs NHE); B). Glucose consumption during fermentation measured using HPLC; 

C). Concentrations of Acetic acid (closed circles), Acetone (open circles), butanoic acid (Closed 
squares) and butanol (open squares) during the fermentation.  
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3.7 Discussion 
 
3.7.1 General Discussion 
 
As the revival of ABE fermentation in Clostridium continues to grow in the wake of 

renewable energy demands, reducing cost barriers at the point of access will be important 

to promote research in this area, especially in lower income countries. As the cost of 

specialist fermentation technology can be high (Table 3.1.), the current project aimed to 

create a cost-effective alternative that uses affordable parts in conjunction with equipment 

available in most labs (e.g. spectrophotometer for OD600 readings).  

 

The system designed here is versatile, easy to set up and run, and shares many of the 

same functionality as current commercial models such as, pH and redox measurements, 

along with the ability to be set up for batch/fed batch or continuous processes (Figure 3.1). 

In addition to this, the techniques for measuring compounds of interest such as acids, 

solvents and sugar consumption have been established (Figure 3.4 & Figure 3.5 & Figure 

3.6). 

 
3.7.2 Dissolved oxygen control and control 
 
The functional repertoire of the current fermentation system could be expanded by 

introducing in-line dissolved oxygen (DO) measurements, similar to commercial systems 

from Electrolabs, Eppendorf or Bionet. While this is of limited value for anaerobic cultures 

other than to ensure that the media is indeed anaerobic, DO measurements may be 

useful for other fermentation applications such as the production of protein therapeutics in 

E. coli. 
 

To measure DO in a system, a DO probe is required and typically, this is what commercial 

systems provide. Recently however (Sadie R. Bartholomew, 2006) have developed a cost-

effective CHO K-1 cell bioreactor. The main goal set out by (Sadie R. Bartholomew, 2006) 

was to establish a method that could be used to introduce oxygen into the bioreactors, as 

well as measure the concentration of DO during growth. Oxygen was introduced into a 

bioreactor via the catalytic breakdown of hydrogen peroxide with manganese oxide. 

Alongside this, the Winkler dissolved oxygen assay (Winkler, 1888) was adapted to fit a 

microscale volume which when compared to DO reading from a DO probe gave a linear 

relationship of r2 =0.9995. 

 



 79 

In the future, it would be possible to introduce the methods described by (Sadie R. 

Bartholomew, 2006) in the system designed in this chapter allowing for introduction of 

oxygen and measurement of dissolved oxygen in the system in a cost-effective manner.   

 
3.7.3 pH control and acid crash 
 
pH control of ABE fermentation is important for maximising solvent yields. Acid crash and 

the mechanisms involved have been investigated previously (Martin et al. 1983; Wang et 

al. 2011; Zverlov et al. 2006)(Yang et al., 2013). Acid crash, as the name suggests, is 

characterised by a dramatic decrease in pH leading to the cessation of glucose uptake and 

very little solvent production. Over-production of un-assonated acids (i.e acetic and butyric 

acid) from acidogensis at a concentration of 57-60 mmol/L are thought to be the main cause 

of acid crash (Maddox et al., 2000). Acid production, in particular butyric acid, is key in the 

shift from acidogensis into solventogenesis. It has previously been reported that a minimum 

concentration of 1.5 g L -1 butyric acid results in the shift into solventogenesis (Frederic 

Monot , Jean-Marc Engasser, 1984). However, it is not fully understood at which pH acid 

crash will occur and in addition to this George and Chen 1983 reported that acidic conditions 

are not required for the solventogenesis to occur.   

 

The system designed in this chapter has the ability to control the pH via the addition of 

buffering compounds, although it is not able to buffer pH automatically via titration of acids 

or alkalis. In our system, bolus additions of CaCO3 and MES were tested as pH buffering 

solutions. CaCO3 as a buffer during fermentations has previously been extensively studied 

(Tsai et al., 2014)(Ai et al., 2014)(Yang et al., 2013)(Wang et al., 2019), and has been 

shown to extend cell growth time, alleviate inhibitory effects of acid production as well as 

toxicity of butanol (Kanouni et al., 1998), leading to higher overall yields of solvents. MES 

buffer was first described in Good et al. 1966 as part of an investigation into hydrogen ion 

buffers for biological research with various favourable properties. 

 

As shown in Figure 3.3, CaCO3 provided a good level of pH buffering acids, preventing the 

pH of the culture to drop below pH 5 similar results were achieved by MES. The accuracy 

of OD600 measurements with CaCO3 was much lower than with MES as shown by the larger 

error bars in Figure 3.3A. The higher error bars and the reduction in the actual measurable 

OD600 of the samples buffered with CaCO3, is not believed to be a result of the CaCO3 itself. 

Unlike MES, the solubility of CaCO3 is only 0.013 g L -1 compared to MES, which has been 

documented at upwards of 0.5 M or 97 g L -1 due to the lack of solubility of CaCO3 when 

measurements of OD600 the concentration of dissolved CaCO3 in the sample is unknown 

making readings inaccurate and unrepresentative of the real cell density due to background 

absorption by undissolved CaCO3.  
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Although CaCO3 and MES have been chosen for use herein, ammonium acetate, sodium 

bicarbonate, acetate buffer, sodium acetate and citrate buffer (Yang et al., 2013) (Tsai et 

al., 2014) (Xue et al., 2016)  have all been used to varying degrees of success. CaCO3 was 

used here as it cheap, effective and buffering and has been extensity studied.  A recent 

review of the functionality of the Goods buffers (Ferguson et al., 1980) has leads to an 

understanding and selection of “better” buffers, providing schematics and insight into the 

best pH ranges for the non-complexing tertiary amine buffer compounds (Kandegedara and 

Rorabacher, 1999), this review reveals that MES has a more preferential pka values related 

to acidogenesis pH levels compared to other good buffers throughout temperature ranging 

from 15-45 oC, for this reason MES was used as the buffer of choice herein.   

 

3.7.4 Concluding remarks 
 

A cost-effective fermentation system was designed and constructed that incorporates many 

of the same functionalities as commercially available systems, and reliable approaches for 

pH modulation and metabolite analysis have also been established. This work will be 

important for researchers requiring reproducible and industrially relevant clostridial culture 

techniques, and indeed for researchers working on microbial biofuel formation with other 

organisms such as yeast and algae. 
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Chapter 4  
 

Deletion of the gapN gene from C. 

saccharoperbutylacetonicum N1-4(HMT) 

using CLEAVE™ and subsequent evaluation 

∆gapN C. saccharoperbutylacetonicum N1-

4(HMT) using whole genome sequencing.  
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4.1 Summary  
 

Despite the recent revival in research into Clostridium spp. and the growing interest into the 

industrial capabilities of solventogenic strains of Clostridium, the development of tools for 

genetic engineering of these strains has lagged behind those of Gram-negative species 

such as E. coli. In this chapter, we exploit the new CLEAVEÔ methodology (Jenkinson et 

al., 2015) a CRIPSR/Cas tool developed by Green biologics Ltd, to delete the gapN gene 

from the chromosome of C. saccharoperbutylacetonicum N1-4(HMT). Following successful 

deletion of gapN, whole genome sequencing (WGS) was carried out using illumina MiSeq 

technology on the wild type and gapN strains to screen for additional unwanted mutations 

that may be introduced by CLEAVEÔ. The WGS from the ∆gapN C. 

saccharoperbutylacetonicum N1-4(HMT) shows no undesired or unwanted mutations as a 

result of the CLEAVEÔ process.  
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4.2 Introduction 
 
Clustered Regulatory Interspaced Palindromic Repeats (CRISPR) alongside their 

associated Cas proteins are part of the adaptive immune system within prokaryotes (Figure 

1.5). In recent years as the molecular biology toolkit available to Clostridium has grown, so 

has the adaption and use of CRISPR/Cas systems within a variety of Clostridium spp. 

(Bruder et al., 2016; Huang et al., 2016; Nagaraju et al., 2016; Wang et al., 2017a; Wasels 

et al., 2017). Typically, CRISPR/Cas systems used in Clostridium spp. involve screening 

against those strains that have successfully undergone a homologous recombination (HR) 

event. Those that have undergone a successful HR event are typically those that survive 

as the CRISPR/Cas machinery will be targeting wild type strains that have not undergone 

HR. The technology used herein was developed by Green Biologics Ltd. as their proprietary 

CRISPR/Cas system. CLEAVEÔ makes use of the endogenous CRISPR-Cas systems of 

the bacteria and is not limited to C. saccharoperbutylacetonicum N1-4(HMT), it has 

previously been shown to successfully generate strains carrying desired SNPs as well as 

those with deletions and insertions (Atmadjaja et al., 2019), although detailed WGS 

analyses have not previously been performed on the engineered strains to screen for 

unwanted mutations. CLEAVEÔ has been utilised herein for the deletion of the gapN gene 

that for encodes the glyceraldehyde-3-phosphate dehydrogenase GapN from the genome 

of C. saccharoperbutylacetonicum N1-4(HMT), an industrially relevant butanol hyper-

producing Clostridium strain. 

 
The work carried out in this chapter focuses on GapN, a cytosolic non-phosphorylating 

NADP-dependant GAPDH that catalyses the irreversible oxidation of glyceraldehye-3-

phosphate (G3P) to 3-phospholycerate (Figure 4.1). However, three classes of 

glyceraldehyde-3-phosphate dehydrogenases (GAPDH) that are known to be involved in 

the central carbon metabolism pathway (Fothergill-Gilmore and Michels, 1993) With the 

other two being; (i) A NAD-dependant glycolytic enzyme found in the cytoplasm of all 

organisms, which plays a key role in the Embden-Meyerhoff pathway in glucose as well as 

gluconeogenesis; (ii) An NADPH-dependant GAPDH that is a key component of the 

reductive pentose-phosphate cycle (Iddar et al., 2002).  

 

Originally discovered in photosynthetic eukaryotes (Mateos and Serrano, 1992), GapN has 

gone on to be confirmed in Streptococcus mutans and S. salivarius (Boyd et al., 1995). 

Recombinant GapN from Streptococcus mutans has been expressed in Corynebacterium 

glutamicum as a route for NADPH generation to facilitate L–Lysine production (Takeno et 

al., 2010). Additionally, recombinant GapN from C. acetobutylicum has been expressed in 

E. coli and has been shown to have an absolute specificity for NADPH (Iddar et al., 2002).  
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Despite developing complex metabolic networks for energy generation (Demmer et al., 

2015), anaerobic bacteria lack the ability to generate ATP via oxidative respiration. In a 

sense this can be seen as a limiting factor in energy generation as generally having a larger 

pool of ATP is seen as a positive for the cells. As described above, GapN forms part of the 

glyceraldehyde-3-phophate oxidation pathway (Figure 4.1). Previous flux analysis in in C. 

acetobutylicum (Minyeong Yoo, Gwenaelle Bestel-Corre, Christian Croux, Antoine Riviere, 

Isabelle Meynial-Salles, 2015) has revealed that GapN is poorly expressed at 0.56 mRNA 

molecules per cell in comparison to 66 mRNA molecules per cell of GAPDH. This poor 

expression leads to only 3500 protein molecules per cell of GapN compared to 190000 

protein molecules per cell of GAPDH. It was predicted that GapN would only be responsible 

for around 5% of flux through the glyceraldehyde-3-phosphate oxidation pathway. With the 

knowledge of predicted low flux and alongside the poor expression data, the gapN gene in 

C. saccharoperbutylacetonicum N1-4(HMT) was targeted for the creation of a ∆gapN C. 

saccharoperbutylacetonicum N1-4(HMT) as a way of recovering any ATP generation within 

the cell that may be as a result of the flux lost through GapN in the glyceraldehyde-3-

phophate oxidation pathway (Figure 4.1). In addition to this, recombinant GapN expression 

has been used a method of NADPH generation in other bacteria, deletion of GapN may 

alter the NADH/NADPH ratio within C. saccharoperbutylacetonicum N1-4(HMT) (Centeno-

Leija et al., 2014). 

 
Following deletion of the gapN gene from C. saccharoperbutylacetonicum N1-4(HMT) 

whole genome sequencing (WGS) was carried out to assess the precision of CLEAVEÔ 

and these findings were compared to the current literature.  
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Figure 4.1 The pathways involved in conversion of glyceraldehyde 3-phosphate to 3–
phosphoglyceric acid in C. saccharoperbutylacetonicum N1-4(HMT). Also known as the 

glyceraldehyde-3-phophate oxidation pathway  
 



 86 

4.3 Results 

 
4.3.1 Deletion of gapN in C. saccharoperbutylacetonicum N1-4(HMT) using CLEAVEÔ  
 
Deletion of gapN was carried out using the proprietary CRISPR/Cas technology CLEAVE™ 

developed by Green Biologics limited (Jenkinson et al., 2015). The CLEAVE™ process 

consistent of three main steps. (i) Homologous recombination vector generation and 

transformation. The homologous recombination vector consists of a substitution cassette, 

that contains homology arms that are able to replace all of or part of the intended site of 

mutation. The homologous recombination vector does not contain any CRISPR/PAM 

protospacer that is recognisable by the crRNA of the CRISPR/Cas system in the cells. (ii) 

Following transformation with the recombination vector, the bacteria population undergo 

several rounds of sub culturing. The sub culturing stage of CLEAVE™ is intended to 

encourage the bacterial population now transformed with the recombination vector to 

undergo a double recombination event at the intended site, replacing the wild type genome 

with that in the recombination vector; stopping the now replaced DNA from being recognised 

by the crRNA of CRISPR/Cas. (ii) Finally, following sub-culturing, the cells are finally 

transformed with the Killing vector. The killing vector is capable of producing crRNA which 

targets the PAM protospacer site within the intended region of mutation where the double 

recombination event has taken place. The crRNA within the killing vector will only be able 

to recognise the PAM/protospacer within cells that have been unable to undergo the double 

recombination event and still contain the wild type DNA, resulting in killing of those cells 

that have not undergone double recombination. Following transformation with the killing 

vector, cells are plated, colonies are selected and screened for desired mutations.  

 

4.3.1.1 Creation of the Homologous recombination vector and sub-cloning 
 
The first step in the CLEAVE™ process is the design and construction of the homologous 

recombination (HR) vector and the gapN deletion cassette. To construct the gapN deletion 

cassette, colony PCR of C. saccharoperbutylacetonicum N1-4(HMT) was carried out to 

amplify 2 x 1.5 kb regions upstream and downstream of gapN. The 1.5 kb fragments 

upstream of gapN was designed to contain a 25 bp 3' region that was complementary to 

the 5' end of the downstream fragment (Figure 4.2). In doing this, it was possible to generate 

a seamless in-frame deletion cassette fragment that lacked the gapN gene.  
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Following successful PCR reactions, fragment isolation and Sanger sequencing to confirm 

the correct sequence of the deletion cassette, it was successfully blunt cloned into the HR 

vector. This can be seen in Figure 4.3A whereby successful cloning would remove the StuI 

restriction site within the plasmid, and when digested with NdeI + HindIII two fragments 

would be visible, one around 3kB and 250bp. The new HR gapN deletion vector was first 

transformed into E. coli.  The HR vector pMTL82154 is a linage of the pMTL80000 shuttle 

vector system first described by (Heap et al., 2007) The HR vector is formed of the following 

components a pBP1 Gram-positive replicon, catP antibiotic maker, ColE1 +tra Gram-

negative replicon and a catP reporter gene Figure 4.3B. After successful transformation into 

E. coli the HR_gapN_del vector isolated and was transformed into C. 

saccharoperbutylacetonicum N1-4(HMT).  

  

Figure 4.2 Diagrammatic representation of the PCR reaction used to create the deletion cassette insert 
for the Homologous Recombination vector. 1). Amplification of 1 kb fragment 3‘ of the gapN gene using 

primers HR1 and HR2 with HR2 containing complementary to the HR3 primer. 1 kB fragment 5’ of gapN 

amplified using HR3 and HR4 with HR3 having complementary sequence to HR2. 2). HR1 and HR4 used with 

two newly PCR amplified 1 kb fragments with overhangs to fuse both fragments together. 3). Assembled 

fragment from two previous fragments with overhangs, ready to be blunt ligated into pMTL81254.  

 

5’ 3’ 

5’ 3’ 

5’ 3’ 
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Figure 4.3 - Cloning of the homologous recombination vector for deletion of gapN. A). 1% 

agarose gel showing: lane 1 – Undigested miniprepred pMTL82154 + homologous recombination 

(HR) fragment. Lane 2 – Minipreped pMTL82154 + HR fragment digested with StuI. Lane 3 – Double 

digest with HindIII and NdeI of pMTL82154 + HR fragment. Lane 4 – 1kB Gene ladder. B).  Vector 

map of the expected final construct. 
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1.3.1.2 Design and construction of Killing Vector 
 

Like the HR vector, the killing vector (also known as the CRISPR/Cas targeting vector) is 

derived from the pMTL8000 shuttle vector system (Heap et al., 2007). The killing vector is 

a modified version of pMTL83251. Traditionally pMTL83251 consists of Gram-positive 

replicon pCB102, ermB antibiotic marker, ColE1 + tra Gram-negative replicon and a multiple 

cloning site (MCS). Pre-Engineered into the MCS of pMTL83251 is the native leader 

sequence (LDR), a 181 bp sequence that is found downstream of the Cas2 machinery in 

C. saccharoperbutylacetonicum N1-4(HMT). With the leader sequence pre-engineered into 

pMTL83251 it allows for the construction of CRISPR/Cas clusters on the plasmid that 

replicate how they are seen natively within the cells. The CRISPR/Cas targeting system 

seen in C. saccharoperbutylacetonicum N1-4(HMT) is formed of DR_Target-specific-

spacer_DR clusters downstream of the Cas2.  For the successful deletion of gapN a 

DR_gapN-spacer_DR cluster was created insilico (Figure 4.4), synthesised and 

successfully cloned into pMTL83125 (Figure 4.5). The ~50 bp gapN spacer sequence that 

was used in the DR_gapN_spacer_DR was found adjacent to a 5’ – CCX sequence within 

the gapN gene itself. 

 
 

  
Figure 4.4 Overview of the killing vector targeting cassette for endogenous CRISPR-
Cas for genome editing.  
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Figure 4.5 PCR screening for successful ligation of DR_gapN_DR spacer sequence into 
the pMTL83125 vector. (A) 2% agarose gel showing PCR products from E. coli colonies 

screened with M13 primers after ligation of killing vector fragment into pMTL83251 Lane 5 

shows successful ligation. (B) Diagram of expected final killing vector construct after successful 

ligation into pMTL83251 
.  

400 bp 

75 bp 

200 bp 

Negative
 

Positi
ve 

Colony #
1  

Colony #
2  

Colony #
3 

DNA Ladder 

1 2 3 4 5 6 



 91 

 
4.3.1.3 Confirmation of gapN deletion from the genome of C. 
saccharoperbutylacetonicum N1-4(HMT) 
 

Following successful transformation of the killing vector a total of 144 colonies post 

transformation from undiluted cultures and 10 colonies from 1/10 culture dilutions were 

obtained. 15 colonies were screened in total, from this initial screen, a large proportion of 

screened colonies appeared successful (Appendix I). From these initially screened colonies 

one colony was taken, re-screened and sent for sequencing (Figure 4.6). For the CPCR 

HR1 and HR4 primers were used. These primers anneal upstream and downstream of 

gapN, were used in the construction of the HR vector and following amplification resulted 

in a fragment that was 1256 bp in length compared to the wild type at around 3 kB containing 

the gene gapN. Successful colonies were sent for Sanger sequencing to confirm successful 

deletion of gapN (Appendix D).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 4.6 Colony PCR screening of C. saccharoperbutylacetonicum N1-4(HMT) ∆gapN 
mutants. 1% agarose gel was used to resolve PCR products. Lane 1: GeneRuler 1kB ladder 

(Thermos Fisher Scientific). Lane 2: Negative control of PCR without template DNA but still 

containing primers and Phusion. Lane 3: Positive control PCR of wild type strain. Lane 4: 16S 

PCR to ensure that cell lysis was successful for Lane 3 PCR.  Lane 5: PCR confirming deletion 

of gapN in the genome. Fragment size with gapN deletion is expected to be around 1256bp. 

Lane 6: 16S PCR confirming cell lysis in Lane 5.   
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4.4 Whole genome sequencing and comparison of ∆gapN and wild type C. 
saccharoperbutylacetonicum N1-4(HMT). 
 

To evaluate the effectiveness and specificity of CLEAVEÔ, whole genome sequencing via 

Illumina MiSeq was carried out on both wild type and ∆gapN C. 

saccharoperbutylacetonicum N1-4(HMT). It was deemed necessary to be directly involved 

in the sequencing process, rather than commercial outsourcing, to gain an in-depth 

understanding of the process to enable a thorough quality control analysis of the data 

generated. An overview of the pipeline and sequence evaluation techniques used are 

shown in Figure 4.7. A genome library for both the wild type strain and the ∆gapN were 

prepared using the Nextera® XT DNA Library Prep Kit, which is optimized for small 

genomes. This kit uses a transposome complex that simultaneously fragments genomic 

DNA and inserts adapter sequences. Following on fragmentation and adaptor insertion, a 

PCR step uses the adapter to amplify the DNA fragments and add specific index sequences 

to each genomic DNA sample, thus allowing sequencing of pooled libraries (this process is 

often termed ‘barcoding’). Once the libraries for the wild type and ∆gapN strains were 

prepared, they were sequenced using an Illumina MiSeq benchtop sequencer.  

 

 
 
 
  

Figure 4.7 Diagram detailing the process of genome evaluation following illumina Miseq of the 
wild type and ∆gapN C. saccharoperbutylacetonicum N1-4(HMT). 
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4.4.1 Genomic read mapping of Illumina reads 
 

The resulting short paired-end reads were assessed using FastQC before and after 

trimming of the reads using Trimmomatic (Bolger et al., 2014). Trimmomatic removes 

adaptor sequences inserted during library preparation, as well as low quality reads and 

bases from each dataset. The final trimmed reads from the wild type and the ∆gapN strain 

were mapped to the reference C. saccharoperbutylacetonicum N1-4(HMT) genome 

obtained from Genbank (CP004121.1). The mapping was carried out using BWA and 

Samtools (Li, 2013), and then Qulimap (García-Alcalde et al., 2012) was used to assess 

the quality of genome mapping of both strains (Table 4.1). Qualimap revealed that the main 

difference between the assemblies is that the coverage depth in the wild type strain is much 

lower than for the ∆gapN strain, meaning that during the process of sequencing the number 

of unique reads given to each nucleotide in the reconstruction process is much lower than 

in the wild type strain than in the ∆gapN. A coverage depth of 68.59 ± 33.2 is seen in the 

∆gapN strain and 18.8 ± 11.3 is seen the wild type C. saccharoperbutylacetonicum N1-

4(HMT), this was thought to be a result of poorer quality starting material from the genomic 

DNA extraction process . Although coverage varied, 97.12 % of the total 596,655 reads for 

the wild type strain were mapped and 95.21% of the total 2,093,890 from the ∆gapN were 

successfully mapped to the reference genome obtained from Genebank (CP004121.1). The 

full Qualimap reports for wild type C. saccharoperbutylacetonicum N1-4(HMT) can be found 

in the Appendix E1 and appendix E2 for both the ∆gapN strain and wild type strain.  

 

Table 4.1 Qualimap results of C. saccharoperbutylacetonicum N1-4(HMT) ∆gapN and 
Wild type following read mapping via bwa to the reference C. 
saccharoperbutylacetonicum N1-4(HMT) obtained from Gene bank (CP004121.1)  

 C. saccharoperbutylacetonicum N1-4(HMT) 
Strain  

Characteristic  ∆gapN Wild Type  
Reference size (bp) 6,530,257 6,530,257 
Number of reads  2,093,890 596,655 
Mapped reads 1,993,694 / 95.21% 579,484 / 97.12% 
Supplementary 
alignments 1,509 / 0.07% 247 / 0.04% 

Unmapped reads 100,196 / 4.79% 17,171 / 2.88% 
Read min/max/mean 
length (bp) 30 / 251 / 224.9 30 / 251 / 212.68 

Clipped reads 21,456 / 1.02% 4,726 / 0.79% 

Mapping Quality  59.11 59.30 

Mean Coverage 68.59 ± 33.2 18.8 ± 11.3 
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4.4.2 Sequence variant analysis and SNP identification  
 
Once mapped, the illumina reads for the wild type and ∆gapN strain were analysed for 

variations between both sets of reads and the reference genome. Snippy 

(https://github.com/tseemann/snippy). is a software that finds SNPs between a reference 

and query next generation sequences (NGS). An overview of the variations found in the 

wild type and ∆gapN strain when compared to the reference genome for C. 

saccharoperbutylacetonicum N1-4(HMT) Genbank (CP004121.1) can be found in Table 4.2. 
Snippy reveals a total of 165 SNPs in the wild type NGS and 17 in the ∆gapN NGS, the 

complete list of all identified SNPs in both strains can be found in Appendix G.  

 

Table 4.2 Breakdown of the total number of mutations identified in the wild type and ∆gapN 
strains compared to reference C. saccharoperbutylacetonicum N1-4(HMT) genome obtained 
from Gene bank (CP004121.1) by Snippy 

 C. saccharoperbutylacetonicum N1-4(HMT) Strain 

 Wild Type ∆gapN 

Mutation type:    

Complex  9 1 

Deletion 9 4 

Insertion 3 2 

SNP 142 10 

Total Variants   165 17 
 

The SNP’s identified by Snippy in the ∆gapN WGS were manually investigated using the 

Integrated genome viewer (IGV) (Robinson et al., 2011) alongside the wild type WGS 

mapping to further investigate withier or not the identified SNP’s are a result of sequencing 

error. The SNP’s predicted SNPs in the ∆gapN WGS occur within the following genes; ybdl 

(a predicted methionine transferase), rocR_1 (predicted arginine utilization regulatory 

protein), rsgl_2 (a predicted anti-sigma-I factor), fdtB_2 (a predicted dTDP-3-amino-3,6-

dideoxy-alpha-D-galactopyranose transaminase) and a hypothetical coding region.  

 

Manual inspection of the SNP’s identified in the ∆gapN WGS with the Wild type WGS in 

IGV (Appendix G1-7) show that all of the SNP’s identified by Snippy (Appendix H) are 

also present in the WGS for the Wild type strain. This suggests that the Snippy predicted 

SNPs may not be genuine SNPs in the ∆gapN strain and they may be due to an error in 

sequencing or processing of the sequencing data and when compared to the published 

genome sequence Genbank (CP004121.1).  
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4.4.3 Whole genome annotation of Wild type and ∆gapN illumina reads 
 

Once each of the genomes had been assembled both were annotated using Prokka 

(Seemann, 2014), a prokaryotic annotation software. Following annotation of the wild type 

C. saccharoperbutylacetonicum N1-4(HMT) and the ∆gapN NGS using Prokka, both 

annotations were compared to each other to gain a list of genes that are present or absent 

between the two assemblies. This analysis was carried out by Roary (Page et al., 2015). 

Typically used for the identification of large pan genomes in bacteria, Roary is able to 

compare two assembled and output a list of genes that are present and absent between 

both the wild type and ∆gapN assemblies. Roary identified a total of 5827 genes with a 

similarity of 97% (5659 genes) between the wild type and ∆gapN. Of the total 5827 genes 

130 (2.2%) were uniquely identified in the ∆gapN strain and only 38 genes (0.65%) were 

unique to the wild type annotation and not ∆gapN. Complete Gene presence and absence 

can be found in Appendix I. Visualisation of the annotated genomes post Prokka was 

carried out using the BLAST atlas setting of the Gview server. (https://server.gview.ca/) 

(Figure 4.8).  

  
 

 

 

 

 

  

Figure 4.8 Whole genome comparison of the reference C. saccharoperbutylacetonicum N1-4(HMT) 
to genome assembly of the ∆gapN and wild type strains illumina sequenced strains. Inner ring 

(black) relates to the complete genome sequence of C. saccharoperbutylacetonicum N1-4(HMT), Fasta 

file for whole genome obtained from gene bank (CP004121.1). Purple ring related to the GC screw in the 

reference genome. Orange ring, genome annotation assembly from reference 

saccharoperbutylacetonicum N1-4(HMT), GBK for annotation obtained from gene bank (CP004121.1). 

Blue ring – Prokka assembly of illumina sequenced and Prokka annotated wild type C. 

saccharoperbutylacetonicum N1-4(HMT). Red ring – Prokka assembly of illumina sequenced and Prokka 

annotated ∆gapN C. saccharoperbutylacetonicum N1-4(HMT). 
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4.6 Discussion 
 
4.6.1 CLEAVE™ results in successful deletion of ∆gapN and analysis reveals that it 
is accurate 
 
Genetic manipulation of Clostridium spp. has lagged behind that of other well established 

industrially relevant organisms such as E. coli and S. cerevisiae. Prior to 2007 only a handful 

of targeted mutant strains had been established in Clostridium spp. (Clark et al., 1989; 

Harris et al., 2000; Mermelstein et al., 1993) with almost all of them being constructed by 

the process of either single or double recombination which themselves brought their own 

issues. In single recombination events a plasmid serves as an insertional mutagen, this is 

typically very unstable (Heap et al., 2012). In double recombination events the wild type 

allele is exchanged with the desired mutant allele. Double cross over events however were 

typically hard to screen for as the negative selection markers used in other more established 

strains were not yet developed in Clostridium spp., until the advent of Group II mutagenesis 

system ClosTron (Heap et al., 2007) (Figure 1.4A). Post 2007 with the advent of available 

CRISPR/Cas and CRISPR interference (CRISPRi) technology the scope and flexibility of 

genetic tools in Clostridium has been quickly catching up to that of other industrial strains 

(Atmadjaja et al., 2019; Jenkinson et al., 2015; Joseph et al., 2018; Nagaraju et al., 2016; 

Wang et al., 2016; Woolston et al., 2018)  

 

CLEAVE is a newly developed technology for CRISPR/Cas genome editing within 

Clostridium spp. because of this the literature around this technology is limited. Atmadjaja 

et al., (2019) have published work that details the discovery and deisgn of the CLEAVE™ 

including the discovery of the CRISPR/Cas features within C. saccharoperbutylacetonicum 

N1-4(HMT), including the idenfitifcation of C. saccharoperbutylacetonicum N1-4(HMT) PAM 

sites. In additon to documenting the developemnt of the CLEAVE™ the work also 

demonstrates the flexibility of CLEAVE for the creation of new strains containing SNPs, 

Deletions and Intigrations. In the work, intigraiton of varying sized lambda phage DNA (1,3,5 

kb). into a site 4.8 kb downstream of the pyrE gene was tested. For the intigration of 1 kb 

fragemtents a success rate of 60% was achived, for 3 kb fragments a success rate of 53 % 

was achived and for 5 kb fragments a success rate of 35% was achived. It was noted that 

the decrease in intigration of larger fragments might be due to the instability of larger 

plasmids generated when intigrating larger Lambda DNA seqeuences.  

 

Both deletion and SNP generation were attempted in the gene spo0A. For the SNP, a single 

nucleotide in the 782 position was modified in an attempted to cause the change I261T in 

spo0A, in addition a silent mutation was incorporated 180 bp upstream of the SNP to knock 

out the PAM site. Validation of the targeting spc vector as positive control resulting in a 

>99.5% efficiency in killing of wild type strains. However, when transformed with targeting 
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vector for the SNP, only 5 colonies were obtained with subsequently only 1 colony of the 5 

being positive for the desired mutation.  

 

Finally, deletion of the gene Spo0A was achieved using CLEAVE. As with the work in this 

thesis, deletion of a single gene within the genome of C. saccharoperbutylacetonicum N1-

4(HMT) was achived. Similar to the results here for the deletion of gapN, a 100% success 

rate was achieved when attempting a deletion of a single gene within the genome. 100% of 

the 30 colonies tested by Atmadjaja et al., (2019) being postive for the deletion.  

 

4.6.2 NGS results of ∆gapN C. saccharoperbutylacetonicum N1-4(HMT) 
NGS analysis of ∆gapN by illumina MiSeq provided a good depth of coverage (x68 ± 33) 

that resulted in 95% coverage of mapped reads. Alongside the ∆gapN strain, illumina Miseq 

was carried out for the wild type C. saccharoperbutylacetonicum N1-4(HMT) as a control 

sequence against for analysis post sequencing. Coverage in the wild type was not as good 

at a depth x18 ± 11 however 97% of the reads were able to be mapped. Despite Snippy 

detecting 17 SNP’s throughout the NGS of ∆gapN the SNP’s discovered were also present 

and identical in the NGS from the wild type C. saccharoperbutylacetonicum N1-4(HMT) 

(Appendix H1-7), suggesting that these mutations may not be as a result of the CLEAVE 

process, but errors in the sequencing and analysis process. Genome annotation and 

subsequent comparison of annotations reveal a high similarity of 97% between both strains. 

Of the 130 genes identified to be present in only the ∆gapN annotation and not in the wild 

type, the majority were hypothetical coding regions of unknown function. GapN was 

identified as part of the 38 unique genes in the wild type NGS and not found in the ∆gapN 

NGS.  

 

Overall, this work has demonstrated the functionality of CLEAVE for the purpose of gene 

deletion with C. saccharoperbutylacetonicum N1-4(HMT) and demonstrates the 

functionaility of CLEAVE in line with previous studies by Atmadjaja et al., (2019).  
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Chapter 5  
 
 

Characterisation of ∆gapN and its potential 

for improved ABE production.  
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5.1 Summary 
 

In this chapter the ∆gapN strain created in chapter 4 has been compared to the wild type 

C. saccharoperbutylacetonicum N1-4(HMT) to assess the deletion has on ABE production, 

sugar metabolism, butanol toxicity and ATP concentrations. The main hypotheses driving 

the decision the deletion of gapN is to increase the availably of ATP within the cells. 

Increases in ATP as well as NADH have been shown to be responsible for increased solvent 

production (Meyer and Papoutsakis, 1989). To test is this hypothesis the ∆gapN strain was 

firstly grown on a glucose YETM media in a batch fermentation. By keeping the fermentation 

in a batch set up it provided a clear shift into solventogenesis with the addition to showing 

glucose consumption and any increased to peak butanol concentrations and tolerance. 

Overall the ∆gapN strain exhibited similar growth to the wild type strain in the form of OD600, 

pH, and redox potential. However, the ∆gapN strain produced lower concentrations of acetic 

and butyric acid, throughout and generated elevated concentrations of acetone and butanol 

compared to the wild type C. saccharoperbutylacetonicum N1-4(HMT) until pre-toxic 

concentrations ~ 13 g L-1.  In addition to this the ∆gapN strain exhibited an increased rate 

of glucose consumption during the batch fermentation as well as increased concentrations 

of ATP throughout.  

 

To simulate an industrial feedstock and further assess the impact on sugar metabolism, a 

synthetic C5/C6 hydrolysate mixture was used. Overall deletion of gapN does not appear 

to have any detrimental or enhanced effects of the metabolism of the C5/C6 synthetic sugar 

mix compared to the wild type strain. Consistent with the glucose only batch fermentations 

there was diminished concentrations of acids associated with solvent production (acetic and 

butyric acid) as well as increased concentrations in the production of acetone and butanol 

in ∆gapN strain. Initial batch fermentations showed an increase glucose consumption in the 

∆gapN strain as well as an associated increase in solvent production. To confirm this 

observation a fed batch fermentation was carried out in which glucose consumption of 350 

g L -1 was assessed over a longer 65 h period, with solvent removal via gas stripping to 

ensure toxic concentrations were mitigated. Contrary to the initial batch fermentation, the 

observed rate of sugar consumption during the fed batch experiment was lower in the 

∆gapN strain compared to the wild type. Despite this however, the ∆gapN strain had 

comparable concentrations of solvent production to the wild type strain throughout, 

suggesting that glucose consumption may not be linked to increased solvent production 

seen in the ∆gapN strain as lower consumption in the fed batch does not affect solvent 

production. Finally, increased concentrations of both formic and lactic acid in the ∆gapN 

strain were observed during fermentation. This suggests that there is an accumulation of 

pyruvate within the cell that is being converted to either lactic or formic acid as a means of 

dealing with increased concentrations of pyruvate.  
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5.1 Introduction 
 
Deletion of gapN has been done in an attempt to recover ATP that would have otherwise 

been lost in the conversion of glyceraldehye-3-phosphate (G3P) to 3-phosphoglycerate via 

flux through GapN in glycolysis. Removal of GapN, forces the cells to use only GAPDH 

(Figure 4.1) instead of using both GAPDH and GapN in the glyceraldehyde-3-phophate 

oxidation pathway of glycolysis. This in turn, will allow for the cell to recover the ATP that is 

generated via the GAPDH side of the glyceraldehyde-3-phophate oxidation pathway that 

otherwise would not be produced in the presence of GapN. As described above, GapN is 

one of three types of GAPDH’s present in the cell and forms part of the glyceraldehyde-3-

phophate oxidation pathway (Figure 4.1). Previous flux analysis in in C. acetobutylicum 

(Minyeong Yoo, Gwenaelle Bestel-Corre, Christian Croux, Antoine Riviere, Isabelle 

Meynial-Salles, 2015) has revealed that GapN is poorly expressed at 0.56 mRNA molecules 

per cell in comparison to 66 mRNA molecules per cell of GAPDH. This poor expression 

leads to only 3500 protein molecules per cell of GapN compared to 190000 protein 

molecules per cell of GAPDH. It was predicted that GapN would only be responsible for 

around 5% of flux through the glyceraldehyde-3-phophate oxidation pathway. This 

previously observed low flux and low levels of regulation within the cell, heavily influenced 

the decision to delete gapN gene from C. saccharoperbutylacetonicum N1-4(HMT). In 

addition to this, recombinant GapN expression has been used a method of NADPH 

generation in other bacteria (Centeno-Leija et al., 2014). ATP is important throughout the 

cell as a key energy carrier and despite developing complex metabolic networks for energy 

generation (Demmer et al., 2015), anaerobic bacteria lack the ability to generate ATP via 

oxidative respiration. This lack of oxidative respiration limits the overall potential for ATP 

production compared to organisms that are able to generate ATP via oxidative respiration. 

Solventogenic Clostridium spp. generation of the majority of their ATP during acidogensis 

(Meyer and Papoutsakis, 1989) with increased ATP and NADH concentrations associated 

with increased solvent production (Meyer and Papoutsakis, 1989). ATP required by the cells 

to undergo reduction processes following glycolysis as well as extrusion of protons by 

means of proton-translocating ATPaes system (Jones and Woods, 1986).  

 

In this chapter we have replicate industrial growth conditions to test the ∆gapN strain 

compared to the wild type. For this batch fermentations were carried out on both C6 only 

(glucose) and a synthetic C5/C6 hydrolysate, as well as fed-batch using C6 over a 

prolonged period of time. It is of note that despite advancements in fermentation techniques 

and solvent recovery processes, the two main limiting factors in the industrial ABE 

fermentation are feedstock (Green, 2011) and the inherent limitations of the bacteria 

themselves, it is hoped that deletion of gapN will aid in elevating the limiting factor of the 

bacteria.  



 101 

5.2 Results  
 
5.2.1 Characterisation of ∆gapN strain during a batch fermentation on glucose YETM 
to assess the impact on ABE production, Butanol toxicity and ATP.  
 

An initial characterisation of the ∆gapN and wild type C. saccharoperbutylacetonicum N1-

4(HMT) strains was performed via batch fermentation in YETM medium containing 40 g L -

1 glucose and supplemented with 0.1 M MES for pH control. Cells were initially grown in the 

seed culture described in Section 2.1.8 before being used for inoculation of the batch 

fermenters that are described in Chapter 3. The experiment was carried out over 45 h. Both 

strains reached similar cell densities, with maximal OD600 values of 7.22 ± 0.22 for the wild 

type and 7.4 ± 0.26 for the ∆gapN strain (Figure 5.1A).  Although fairly similar throughout, 

between the hours 9 and 21 in fermentation, the pH of the fermenter media for the ∆gapN 

strain is less acidic throughout compared to the wild type C. saccharoperbutylacetonicum 

N1-4(HMT) (Figure 5.1B). The redox potential of the growth media for both strains behaved 

in a predictable manner, both dropping to approximately -300 mV vs. NHE in the first few 

hours (Figure 5.1C). Glucose concentrations were also monitored throughout the 

fermentations, and the rate of consumption was greater between 10-20 h compared to the 

wild type strain (Figure 5.1D).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 5.1 Fermentation measurements for ∆gapN (open circles) and wild type (closed circles) 
C. saccharoperbutylacetonicum N1-4(HMT) grown on 40 g L -1 glucose in YETM media using 
shepherd lab fermenters. 0.1 M MES was supplemented as a pH buffering agent. (A) OD600; (B) 

pH; (C) redox potential of media (mV vs. NHE); (D) Glucose concentrations in growth media. 
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The product of acidogenesis and solventogenesis were then analysed for the ∆gapN and 

wild type strains from the same batch fermentation as described in Figure 5.1.  The ∆gapN 

strain exhibited reduced concentrations of acids throughout the fermentation (Figure 5.2A-

B). In addition, depletion of acid concentrations in the ∆gapN strain also occurred at a faster 

rate in the ∆gapN strain compared to the wild type C. saccharoperbutylacetonicum N1-

4(HMT) (Figure 5.2C-D). The largest observed discrepancies between the strains for acetic 

acid and butyric acid measurements were observed at 15 h: 0.057 g L -1 of butyric acid and 

0.073 g L -1 of acetic acid were measured for the ∆gapN strain, compared to 0.170 g L -1 

of butyric acid and 0.29 g L -1 of acetic acid for the wild type strain. The concentrations of 

acetone and butanol produced by the ∆gapN strain were higher during the first 30 h of the 

fermentation, and largest observed discrepancies between the strains for acetone and 

butanol measurements occurred at 15 h: [acetone] produced by the ∆gapN strain was 3.2 

g L -1 compared with only 1.1 g L -1 in the wild type strain; [butanol] produced by the ∆gapN 

strain was 6.87 g L -1 compared to 3.5 g L -1 in the wild type strain. Peak concentrations of 

butanol in the ∆gapN, however, were similar to those of the wild type cultures at 

approximately 13 g L -1.   

 

 
 
 
 
 
 
 
 

Figure 5.2 Acid and solvent profiles for ∆gapN (open circles) and wild type (closed circles) 
C. saccharoperbutylacetonicum N1-4(HMT) grown on 40 g L -1 glucose in YETM media 
using shepherd lab fermenters. 0.1 M MES was supplemented as a pH buffering agent. (A) 

[butyric acid]; (B) [acetic acid]; (C) [acetone]; (D) [butanol]. 
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As the observed final concentrations of butanol and acetone were similar for ∆gapN and 

wild type strains, it was hypothesised that solvent toxicity was the limiting factor for these 

measurements. To test this hypothesis, a butanol toxicity test was carried out that measured 

growth rates in the presence of varying concentrations of solvents, as described in Section 

2.1.13. Deletion of the gapN did gene not have an effect on the cells ability to handle solvent 

toxicity any better than the wild type, and there is no significant difference (Figure 5.3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Figure 5.3 Butanol toxicity test of wild type (black bars) and ∆gapN (grey bars) strains of C. 
saccharoperbutylacetonicum N1-4(HMT). Cells were grown to an OD600 of 1 and were then 

challenged with varying [butanol]. Doubling times were calculated for the 48 h of growth that followed 

solvent addition. 
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In addition to growth, butanol toxicity, acid and solvent production, ATP concentrations were 

measured during the glucose batch fermentation. The ATP concentration in the ∆gapN 

strain compared to the wild type strain was higher for the majority of fermentation period 

(Figure 5.4). The greatest discrepancy in ATP concentration between the ∆gapN and wild 

type strains was observed at 15 h, where 11.2 µmol g -1 cell dry mass was recorded for the 

∆gapN strain compared to 4.7 µmol g -1 cell dry mass for the wild type.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 5.4 ATP measurements for ∆gapN (open circles) and wild type (closed circles) C. 
saccharoperbutylacetonicum N1-4(HMT) grown in 40 g L -1 glucose in YETM media using shepherd lab 
fermenters. ATP concentrations were measured from cells that from a glucose batch fermentation in YETM 

supplemented with 0.1 M MES for pH control. ATP concentration of cells were measured in accordance to 

methodology in Section 2.8.2  
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Due to the labile nature of NAD(P) derivatives, cells were grown in serum bottles and 

assayed at 4 h and 24 h to give an indication of the state of the cells in early exponential 

phase (acidogensis) as well as in late exponential/stationary phase (solventogenesis). 

Deletion of gapN did not appear to have an effect on the overall concentrations of both 

NADH and NADPH, however there is a marked reduction in the concentrations of NAD+ 

and NADP+ during both acidogensis and solventogenesis, indicating there is a more 

reducing environment present in the ∆gapN strain compared to the wild type (Figure 5.5).  

 
5.3 Characterisation of ∆gapN strain on a synthetic C5/C6 hydrolysate mixture  

 
To further investigate sugar utilisation in the ∆gapN strain, an additional batch fermentation 

was carried out this time using a synthetic C5 hydrolysate mixture consisting of 11 g L -1 

glucose, 14 g L -1 xylose, 4.65 g L -1 galactose, 1. 96 g L -1 arabinose and 18.4 g L -1 mannose 

in YETM. This medium is used by project partners to simulate industrial feedstocks made 

from waste lignocellulosic. Fermentation results show that when grown on the C5 sugar 

mix, the ∆gapN had an increased consumption rate for galactose, whereas all other sugars 

were consumed at the same or similar rates to the wild type strain (Figure 5.6). These data 

also demonstrate that both strains prefer C6 sugar utilisation compared to C5 sugars, which 

Figure 5.5 Concentration of nucleotide cofactors in both the wild type (black box) and the ∆gapN (grey 
box) during acidogensis (4h) and Solventogenesis (24 h). Cells were grown in YETM 40 g L -1 glucose in 

50 ml serum bottle reactions over the course of 24 h.  
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is consistent with previous studies on other solventogenic clostridial strains (Noguchi et al., 

2013)(Bogorad et al., 2013; Bruder et al., 2015; Fu et al., 2017).   

 

To complement the sugar utilisation experiments described above, it was of interest to 

investigate how the ∆gapN mutation impacted upon acidogenesis. In the glucose only batch 

fermentation, the concentration of acids associated with solvent production (i.e. acetic acid 

and butyric acid) were diminished throughout the fermentations in the ∆gapN strain (Figure 

5.2).  similar picture is observed during fermentation on the C5 hydrolysate mixture for the 

∆gapN strain (Figure 5.7A-B). The largest difference discrepancy between the wild type and 

∆gapN strains for butyric acid was seen at 12 h: butyric acid concentrations in the ∆gapN 

strain were 0.063 g L -1, which was x10 lower than the 0.60 g L -1 found in the wild type 

strain at the same timepoint (Figure 5.7B). Interestingly, in the C5 hydrolysate mixture there 

was an increase in the concentration of both formic acid and lactic acid in the ∆gapN not 

seen previously (Figure 5.7C-D). Unlike the solventogenic acids that are produced early on 

and assimilated into solvents, lactic and formic acid concentrations continue to increase 

throughout the duration of the fermentation. The largest discrepancy between the wild type 

and ∆gapN strains was observed at the end of the 48 h fermentation, with 0.37 ± 0.01 g L -

1formic acid produced in the ∆gapN strain and 0.295 ± 0.007 g L -1produced by the wild 

type. Similarly, 2.838 ± 0.005 g L -1and 2.1 ± 0.07  g L -1lactic acid was produced at 48 h in 

the ∆gapN strain and the wild type strain, respectively.  

 

In the synthetic C5 hydrolysate mixture, there was a pronounced increase in the 

concentration of acetone in the ∆gapN strain throughout compared to the wild type strain 

(Figure 5.7E). However, when grown on the C5 mixture, the butanol produced by the ∆gapN 

strain only displayed a modest elevation in butanol levels (Figure 5.7F). 
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Figure 5.6 Sugar profiles for ∆gapN (open circles) and wild type (closed circles) C. 
saccharoperbutylacetonicum N1-4(HMT) grown on C5 hydrolysate mixture using GBL 
fermenters. Cells were grown in a total sugar concentration of 50 g L -1. This medium contained a 

mixture of sugars that closely resembled a C5 sugar hydrolysate mixture containing glucose, 

xylose, maltose, mannose, galactose and arabinose. The pH was controlled via addition of 

ammonium acetate to maintain the pH above 5.2. Measured parameters were: (A) [glucose]; (B) 

[xylose]; (C) [mannose]; (D) [galactose]; (E) OD600; (F) [arabinose]. 
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5.4 Fed batch fermentation to assess glucose uptake and sugar utilisation in relation 
to solvent production 
 
In the experiments described in Section 5.2, the ∆gapN strain was grown in batch 

fermenters in YETM medium containing 40 g L -1 glucose. In summary, the ∆gapN strain 

exhibited an increase in glucose consumption throughout the batch fermentation and 

exhibited increased production of butanol and acetone to sub-toxic concentrations. In 

addition, a reduction in solventogenic acids acetic and butyric acid was observed in the 

Figure 5.7 Acid and solvent profiles for ∆gapN (open circles) and wild type (closed circles) C. 
saccharoperbutylacetonicum N1-4(HMT) grown on C5 hydrolysate mixture using GBL 
fermenters. Cells were grown in a total sugar concentration of 50 g L -1, this 50 g consisted of a mixture 

of sugars that closely resembled a C5 sugar hydrolysate mixture containing Glucose, Xylose, Maltose, 

Mannose, Galactose and Arabinose. pH was controlled via addition of ammonium acetate to maintain 

the pH above 5.2. Measured parameters were: (A) [acetic acid]; (B) [butyric acid]; (C) [formic acid]; (D) 

[lactic acid]; (E) [acetone]; and (F) [butanol]. 
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∆gapN strain compared to the wild type (Figure 5.3). To further test the glucose 

consumption rates observed in the first experiment and to investigate the behaviour of this 

newly constructed strain over a longer more metabolically intense period; a fed batch 

fermentation experiment was carried out. In this experiment, starting glucose 

concentrations of 50 g L -1  were at first  allowed to drop to just below 10 g L -1, and were 

then maintained at 10 g L -1, throughout. Throughout the fermentation, gas stripping using 

nitrogen at 1 volume of gas per fermenter volume per min was carried out to maintain 

solvent concentrations below toxic concentrations. The OD600 of the ∆gapN strain was 

maintained at similar levels to the wild type throughout (Figure 5.8A). The observed 

difference in pH did appear to coincide with the slightly elevated pH in the ∆gapN strain 

later in the fermentation (Figure 5.8B). Unlike the first YETM/glucose experiments, the 

∆gapN strain used less glucose throughout the fermentation and the rate of glucose 

consumption over the duration of the fermentation was also reduced in the ∆gapN strain 

compared to the wild type (Figure 5.8C-D).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
  

Figure 5.8 Growth parameters and glucose profiles for ∆gapN (open circles) and wild type (closed 
circles) C. saccharoperbutylacetonicum N1-4(HMT) grown in fed batch fermentations using GBL 
fermenters. Cells were grown initially in 50 g L -1 glucose YETM, following an initial batch of 16 h cells 

glucose concentrations were maintained as close to 10 g L -1 as possible. Measured parameters were: 

A) cell culture growth and density (OD600); B) pH; C) Concentration of glucose in medium; D) Glucose 

consumption rate g L -1 h -1.  
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Similarly, to the previous fermentations described in this chapter, there was a marked 

decrease in acetic acid and butyric acid throughout the fed batch fermentation in the ∆gapN 

strain (Figure 5.9A-B) as well as the observed increased concentrations in lactic and formic 

acid that were observed during the synthetic C5 hydrolysate fermentation (Figure 5.9C-D). 

Due to the gas stripping that was taking place during this fermentation, concentrations of 

acetone and butanol were similar between both strains.   
 

 
 
 
 
 
 
 
 
 

Figure 5.9 Acid and solvent profiles for ∆gapN (open circles) and wild type (closed 
circles) C. saccharoperbutylacetonicum N1-4(HMT) grown in fed batch fermentations.  
Cells were grown initially in 50 g L -1 glucose YETM, following an initial batch of 16 h cells 

glucose concentrations were maintained as close to 10 g L -1 as possible. Measurements 

made were: A) [acetic acid]; B) [butyric acid]; C) [formic acid]; D) [lactic Acid]; E) [acetone]; 

F) [butanol]. 
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5.5 Discussion  
 
5.5.1 Observed increase in ATP production as a result of gapN deletion, leads to 
decreased acid production, earlier shift into solventogenesis as well as increased 
solvent production until pre-toxic concentrations 
 
The ∆gapN strain exhibits reduced concentrations of acetic and butyric acid with increased 

production of acetone and butanol to pre-toxic concentrations in both the glucose only batch 

fermentation (Figure 5.2) and the C5/C6 synthetic sugar mixture (Figure 5.7). As well as 

reduced concentrations of acids throughout, the assimilation of acetic and butyric acid 

occurs sooner in the ∆gapN strain than in the wild type strain, with butyric acid in ∆gapN 

strain during the glucose only fermentation peaking at 9 h and are then depleted by 18 h 

whereas in the wild type, concentrations of butyric acid do not peak until 15 h and are not 

completely depleted even towards the end of the fermentation (Figure 5.3A). A similar 

picture is seen in the C5/C6 synthetic mixture, here acid concentrations peak much earlier 

and are assimilated much earlier on in the ∆gapN strain compared to the wild type (Figure 

5.7).  

 

Despite the lower concentrations of acids, and their assimilation earlier on in fermentation, 

the ∆gapN strain is able to produce increased concentrations of solvents throughout until 

toxic concentrations are reached; this included initiation of solvent production earlier on in 

fermentation. This is observed in both the glucose only batch fermentation (Figure 5.2) and 

in the C5/C6 batch fermentation (Figure 5.7). The increase in solvent production is 

hypothesised to be a result of the increased ATP concentration (Figure 5.4) in tandem with 

the more reducing environment found in the ∆gapN strain compared with the wild type as a 

result of the ratio of NADH:NAD+ observed (Figure 5.5). Throughout the glucose only 

fermentation measured ATP is higher in the ∆gapN, however between 15-25 h there is an 

observable dip in the concentration of ATP in the ∆gapN strain (Figure 5.5), that correlates 

with the beginning of acid assimilation as well as the largest incline in solvent production 

during the fermentation (Figure 5.2). This suggest that deletion of ∆gapN increases ATP 

concentrations enough whereby the cell does not need to invest in acidogensis to generate 

enough of a ATP concentration to aid in the shift into solventogenesis. ATP and reducing 

cofactors such as NAD(P)+/H have been shown to be key in the shift into solventogenesis 

(Amador-Noguez et al., 2011; Girbal et al., 1995; Wang et al., 2012; Zhang et al., 2014) 

with key regulatory proteins such as Rex being closely linked with the reducing conditions 

with the cell (McLaughlin et al., 2010; Wietzke and Bahl, 2012; Zhang et al., 2014). 

Acidogensis occurs in the vegetative stage of growth and acts as a key stage for the 

accumulation of the ATP that will later be used for the production into solventogenesis 

(Grupe and Gottschalk, 1992). ATP in Clostridium spp. has also been documented as being 

responsible for ATPase proton translocation (Jones and Woods, 1986) within the cell that 



 112 

aids in maintaining the proton gradient following the shift into solventogenesis to ensure 

ADP + Pi is recycled via a F1F0 ATPase to maintain ATP concentrations during 

solventogenesis when the overall production of ATP will be greatly reduced without acid 

production (Figure 1.2). V-type ATPases having been documented in Clostridium spp.  

(Boekema et al., 1998; Speelmans et al., 1994), however it is worth noting that C. 

saccharoperbutylacetonicum N1-4(HMT) like a handful of other Clostridium spp. contains 

an RnF complex. The RNF complex, like the ATPases found throughout allows C. 

saccharoperbutylacetonicum N1-4(HMT) generate an ion gradient, and in doing generate 

NADH via the oxidation of ferredoxin (Poehlein et al., 2017); something that others strains 

such as C. acetobutylicum lack. This combined with the data above aids in reinforcing the 

original hypothesis that deletion of gapN would subsequently result in higher ATP 

concentrations, reduced acid concentrations as well as increased solvent concentrations 

during fermentation, however, the earlier shift and assimilation of acids was unexpected in 

the original hypothesis.  

 
5.5.2 Increased production of lactic and formic acid in the ∆gapN strain 
 
In the synthetic C5 sugar mixture there was a marked increase in the production of formic 

acid (Figure 5.6C) and lactic acid (Figure 5.6D) in the ∆gapN strain. Similarly, the ∆gapN 

strain has an increase in the production of formic acid in the glucose fed batch fermentation 

(Figure 5.7C), however the difference in lactic acid was not as significant in the glucose fed 

batch (Figure 5.7D). In both experiments the concentrations of both lactic acid and formic 

acid have continued to rise even in the late stages of the fermentation. It has been 

documented that during the shift from acidogensis to solventogenesis in C. acetobutylicum 

there is a shift metabolically away from pyruvate into oxaloacetate (10 fold), as the cell 

moves away from amino acid production and to solvent production as carbon is redirected 

to acetyl coenzyme A for ABE production (Amador-Noguez et al., 2011). Due to the early 

shift into solventogenesis that is observed in the ∆gapN strain it is not unlikely to consider 

that the earlier shift results in an accumulation of pyruvate, that is then deals with by both a 

lactate dehydrogenase leading to lactate production and formic acid production via a 

pyruvate formate lyase. This suggests that as solvent production becomes saturated and 

butanol toxicity becomes a factor, the cell has to unload any excess pyruvate to enable 

solvent production to continue, hence the observed continual increases in formic and lactic 

acid production all the way throughout fermentation (Figure 5.7 & Figure 5.6).  
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5.5.2 The ∆gapN strain has same plight of CCR common amongst Clostridium  
 
Carbon catabolite repression (CCR) is common among a variety of solventogenic 

Clostridium. Regardless of strain or feedstock there is always a preferential uptake and 

metabolism of C6 sugars that utilise glycolysis over C5 sugars, in fact in the presence of a 

C5/C6 mixture often little to no C5 metabolism will occur even following depletion of C6 

sugars (Aristilde, 2017; Chang, 2010; Zhang et al., 2017). The problem of C5 metabolism 

is further exacerbated by the preferential metabolism that Clostridium have for individual 

C5 sugars over other C5 sugars (Aristilde et al., 2015). Many attempts have been made in 

a bid to elevate CCR in Clostridium, from alterations to fermentation procedures (Noguchi 

et al., 2013) and limiting glucose levels in lignocellulosic material (Bharathiraja et al., 2017). 

However, a large majority of the work has focused on genetically manipulating key 

regulators in the cell in a bid to elevate CCR. Deletion of glcG, a gene that encodes enzyme 

II of the D-glucose phosphoenolpyruvate-dependent phosphotransferase system (PTS) and 

join overexpression of key parts of the xylose pathway resulted in a yield increase of 5% 

over the wild type strain as well as an overall increase in titre by 24% (Xiao et al., 2011). 

Additional work has been carried out on Catabolite control protein A (CcPA). Identification 

and disruption of this protein has led to elimination of CCR in C. acetobutylicum (Ren et al., 

2012, 2010)(Ren et al., 2010). In this work, a synthetic C5/C6 mixture was used that had 

previously been used by our project partners to simulate feedstocks made from waste 

lignocellulosic material.  Overall, the deletion of gapN does not have an effect limiting CCR, 

the ∆gapN strain like the wild type has a preferential utilisation of the C6 sugars (mannose 

and glucose) in the synthetic C5/C6 mixture with incomplete consumption of C5 sugars in 

the presence of C6 sugars. Interestingly, there was a marked increase in the consumption 

of galactose in the ∆gapN compared to the wild type strain. Galactose, unlike other C6 

sugars such as glucose and mannose, is catabolized either via the Leloir pathway that 

generates G6P or the taga- tose-6P pathway that directly produces GAP and DHAP, and 

its catabolism has been shown to be suppressed in the presence of other preferential C6 

sugars such as glucose and mannose (Aristilde, 2017).  
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6 Final Discussion 
 
6.1 Establishment of growth conditions 
 
Along with many other Clostridium spp. C. saccharoperbutylacetonicum N1-4(HMT) is 

notoriously difficult to work with and culture due to the anaerobic nature as well as 

requirement a number of specialised equipment for their culture such as anaerobic 

chambers, serum bottles and fermentation systems. Significant time was spent during this 

project on optimising culture conditions and apparatus, which in turn enabled us to perform 

re-producing growth experiments with C. saccharoperbutylacetonicum N1-4(HMT) and 

other Clostridium spp. In addition to establishing fermentation technology, establishment of 

tools used for analysis of ABE products was carried out.  

 

The design and implementation of an effective fermentation system that enables batch, fed 

batch and continuous fermentation systems formed a large part of this work. Following 

extensive research (Table 3.1) an understanding of what is currently available on the 

market was established. Taking this knowledge forward allowed for the design and 

construction of a system that was flexible, affordable and importantly upgradable. The 

fermentation system developed herein may help to break the cost barrier of entry into 

fermentation on a smaller scale. Implementation of this sort of work could have a profound 

effect in the developing world, in particular regions such as Africa and Asia. These regions 

are areas of rapid economic growth, and will have an increasing need for research and 

development as economic diversification becomes more important. Having a flexible, 

affordable and upgradable piece of equipment could be invaluable in helping to establish 

interest in fermentative science in these regions. 

 

 

6.3 The impact of the deletion of gapN in C. saccharoperbutylacetonicum N1-4(HMT) 
 
The newly created ∆gapN C. saccharoperbutylacetonicum N1-4(HMT) was shown to have 

elevated concentrations of ATP (compared to the wild type strain) for a sustained period 

during batch fermentation (Figure 5.4). Between 15 – 24 h there is an observed drop in the 

measured ATP concentration of the ∆gapN strain over the wild type C. 

saccharoperbutylacetonicum N1-4(HMT). This observed decrease in ATP corresponds to 

the time points with the lowest concentrations of total acids production and the highest 

increase over time in solvent production in the ∆gapN strain (Figure 5.2).  

 

This data suggests that the resulting deletion of ∆gapN increases ATP concentration such 

that ∆gapN has a reduced acid production compared to the wild type strain to generate the 

required concentrations of ATP to allow for the shift into solventogenesis. In solventogenic 
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Clostridium acid production facilitates the generation of the majority of cellular ATP, this is 

a result of kinase activity of the enzymes involved in acetic and butyric acid production 

(Dürre and Hollergschwandner, 2004; Grupe and Gottschalk, 1992). The associated ATP 

generation in acidogenesis is important as it enables the cells to produce adequate 

concentrations of ATP for vegetative growth, as well as to establish an ion gradient via V-

type ATPases, alongside the RnF complex to generate NADH via the oxidation of ferredoxin 

(Poehlein et al., 2017). This ion gradient enables ADP + Pi recycling when the cells shifts 

into solventogensis via the use of F1F0 ATPases (Jones and Woods, 1986). By increasing 

the ATP producing capability as has been done here with the ∆gapN strain, it has been 

possible to reduce the reliance on acidogenesis in the cells and increase overall solvent 

production, due to the shortened acid generation phase, that is historically important for 

ATP generation for growth and solvent production.   

 

As well as an increase in ATP production, there is an increase in the ratio of NADH:NAD+ 

in the ∆gapN strain. ATP production, ∆pH generated by acid production and reducing 

conditions within the cell play a key role in the shift to solventogenesis (Liu et al., 2018; 

Wang et al., 2012; Wietzke and Bahl, 2012; Zhang et al., 2014). The increased reducing 

environment in ∆gapN is also thought to play a key role in conjunction to increased ATP 

resulting in an earlier shift into solventogenesis; which ultimately results in increased solvent 

production. A previous experiment in C. acetobutylicum in which a double over expression 

of 6-phosphofructokinase (pfkA) and pyruvate kinase (pykA) resulted in an increase in 

intracellular ATP and NADH, which also resulted in increased butanol and ethanol 

production, and additionally resulted in increased butanol tolerance in the double knockout 

(Ventura et al., 2013). It has been shown that in cultures with lower ATP production acid 

production prevails as a means of energy generation, whereas cultures with increased ATP 

produce more solvents (Meyer and Papoutsakis, 1989). Enhanced butanol production has 

also been by blocking NAD(P)H consumption in Clostridium beijerinckii NCIMB 8052, 

insertional inactivation of a NADH-quinone oxidoreductase (nuoG), resulted in increased 

NAD(P)H and ATP as well as butanol production (Liu et al., 2016). Overall it can be seen 

that increases in both ATP and NAD(P)H in solventogenic Clostridium aids in maximising 

the solvent producing potential of the bacteria.  

 

Previously it was shown that the shift into solvent production results in the redirection of 

pyruvate from amino acid production via oxaloacetate, decreasing this process 10-fold and 

redirecting pyruvate to coenzyme A for solvent production (Amador-Noguez et al., 2011). 

Deletion of gapN results in increased concentrations of formic and lactic acid during the 

C5/C6 fermentation (Figure 5.5), as well as during the glucose fed batch experiment (Figure 

5.7). This measured increase in both formic and lactic acid may result from the accumulation 

of pyruvate in the ∆gapN strain. Ultimately the solventogenic shift results in a redirection of 
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key metabolites away from vegetative cell growth by redirection off pyruvate towards solvent 

production. Accumulation of pyruvate may be due to further bottlenecks in the solvent 

production as well as an accumulation of pyruvate due to vegetative growth and sugar 

metabolism (Figure 6.1). As a way to cope with excess pyruvate generated by the earlier 

shift into solventogenesis, ∆gapN is producing excess concentrations of lactic acid via a 

lactate dehydrogenase and formic acid using pyruvate formate lyase.  

 

Finally, sugar metabolism of the ∆gapN was assessed to that of the wild type C. 

saccharoperbutylacetonicum N1-4(HMT). Initial glucose batch fermentations suggested an 

increased rate of glucose consumption in the ∆gapN strain, however subsequent fed batch 

experiments revealed that sugar consumption rates were comparable to the wild type strain, 

if not slightly less (Figure 5.8). In addition to glucose, the ∆gapN strain was subsequently 

grown on a C5/C6 mixture and revealed much like wild type, the new strain had a 

preferential catabolism of C6 sugars (glucose, mannose and galactose) over C5 sugars 

(xylose, arabinose) in the C5/C6 mixture. Interestingly, there was a preference towards 

galactose over glucose and mannose, contrary to what has been previously published in 

other Clostridium spp. (Aristilde, 2017) in which galactose catabolism is inhibited in the 

presence of glucose.  

 

Overall the deletion of gapN in C. saccharoperbutylacetonicum N1-4(HMT) results in an 

earlier shift into solventogenesis due to the increase in reducing conditions and increased 

ATP generated via elevated flux in the glyceraldehyde-3-phophate oxidation pathway. This 

ultimately leads to increased solvent production (pre-toxic concentrations), a decreased 

acidogenic phase and an earlier shift from vegetative cell growth to solvent production. The 

shortened acidogenesis that is a result of ∆gapN creation results in an accumulation of 

pyruvate that cannot be fully utilised due to the bottlenecks in solvent production, which in 

turn results in increased levels of formic and lactic acid. In addition, there is a marked 

increase in galactose catabolism as a result of deletion of gapN (Figure 6.1). 
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Figure 6.1 Overview of the deletion of gapN on C. saccharoperbutylacetonicum N1-4(HMT). 1) Deletion of gapN results in increased flux through GAPDH 
following deletion of gapN. 2). Increased flux through GADPH results in increased ATP concentrations that is leveraged to aid in the creation in of a ion gradient 
that can then be used to generate further ATP through ADP + Pi recycling. 3). Increased ATP and reducing environment within the cell results in a decrease in 
acid production. 4). Reduced acid production as a result of increased ATP and reducing environment results in earlier shift into solvent production. 5). The early 
shift into solvent production shifts flux throughout Acetyl-CoA from vegetative growth to solvent production. In doing this creates a bottleneck at pyruvate, this 
bottleneck is subsequently dealt with by the cell by increasing production of lactic acid and formic acid.  
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6.4 Future Studies 

Herein I have listed future studies that could be adapted from each chapter that would 
enable furtherment of the work presented.  
 
Chapter 3: 

• Establish a pH probe and control unit within an affordable price range that would 

allow for the “Shepherd lab” fermentation unit to overcome its largest inability. This 

can be achieved via the use of pH probes and custom software, perhaps written on 

an affordable computation device i.e. a Raspberry Pi  

• Further test “Shepherd lab” system in as many fermentation configurations as 

possible to reinforce the system as a viable affordable option.  

• Field test unit in developing country and further develop system if it does not fit 

needs and cannot be easily transferred.  

 

Chapter 4: 

 

• CLEAVEÔ has been used here for the creation of a single knockout in a region of 

the genome that does not form part of a cluster. To further test the ability of CLEAVE 

Ô,  layering change on top of the ∆gapN strain to create a multiple knockout or test 

the ability of the technology to introduce a gene that could aid in solvent or alterative 

compound production. 

• Sanger sequence SNP regions identified in Snippy to confirm that they are a result 

of sequencing or processing error and not a result of CLEAVEÔ 

• Further investigate ATP via NMR or other metabolomic techniques and identify any 

other accumulations of metabolites that are a result of the gapN knockout, and test 

ATP concentrations from a number of different growth conditions.  

 

Chapter 5: 

• Carry out proteomic studies of the ∆gapN strain during for a number of different 

time points and fermentation conditions to gain an understanding of protein 

concentrations at different stages, i.e. acidogensis and solventogenesis to gain 

better insight into the effects that the earlier observed shift into solventogenesis 

has on a cell wide basis.  

• Try and engineer or investigate ways of increasing the ∆gapN tolerance to 

butanol toxicity.  

• Optimise fermentation conditions that can take advantage of the earlier shift into 

solventogenesis that leads to peak solvent production sooner than in the wild 

type strain.  
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Appendix A-1 – Jacketed water system for fermentation system 
 
 

 
 

 

Aquarium heater  Thermometer   Water Pump  

Magnetic Stirring Plate 
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Batch set up Example 
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Appendix A-2 – List of components used in designed fermentation system.  
This list is extensive for the components of the culture vessel itself, alongside the 
probes used in the measurements of pH and Redox. Peristaltic pumps used were 
already part of the lab equipment as well as the magnetic stirring plate.  
 
 
Component Brand Link to purchase 
1 L Culture 
Vessel 

FV1L QUICKFIT 1LT CULTURE 
VESSEL 100 MM FLAT FLANGE 

http://www.scilabware.com/pro
duct.asp?P_ID=233&strPageHisto
ry=related 
 

Culture 
vessel Port 
lid 

MAF4/41 QUICKFIT LID 100MM 
FLAT FLANGE 3 X SOCKETS 
14/23 & 2 x SOCKET 

http://www.scilabware.com/pro
duct.asp?P_ID=249&strPageHisto
ry=related 
 

Culture 
vessel 
Gasket  

PS100 QUICKFIT 100MM FLAT 
FLANGE PTFE SEAL 

http://www.scilabware.com/pro
duct.asp?P_ID=339&strPageHisto
ry=related 

Lid to vessel 
clips  

JC100F QUICKFIT JOINT CLIPS 
METAL, SPRING WIRE, FG 100 
(FOR EX5/105) 

http://www.scilabware.com/pro
duct.asp?P_ID=250&strPageHisto
ry=related 

Suba seals   https://webshop.fishersci.com/in
sight2_uk/getProduct.do?produc
tCode=11548132&resultSetPositi
on=0 

0.2 µM gas 
filters 

Whatman   https://www.sigmaaldrich.com/c
atalog/product/aldrich/wha6720
5002?lang=en&region=GB&cm_s
p=Insite-_-prodRecCold_xviews-
_-prodRecCold5-2 
 

Aquarium 
heater and 
thermometer  

U-picks Aquarium Heater https://www.amazon.co.uk/gp/p
roduct/B07JM1ND63/ref=ppx_yo
_dt_b_search_asin_title?ie=UTF8
&psc=1 
 

Water Pump Maxesla Submersible Pump https://www.amazon.co.uk/Max
esla-Submersible-Fountain-
Aquarium-
Hydroponics/dp/B071NNG376/re
f=sr_1_7?keywords=water+pump
&qid=1564842361&s=pet-
supplies&sr=1-7 
 

pH probe  pH electrode InLab Semi-Micro-L https://www.mt.com/gb/en/hom
e/products/Laboratory_Analytics
_Browse/pH-meter/sensor/pH-
sensor/InLab-Semi-Micro-
L.html?SE=GOOGLE-
Shopping&cmp=sea_02540126&
Campaign=MT_ANA_EN_UK_Sho
pping&Adgroup=ANA%20product
s&bookedkeyword=&matchtype=
&adtext=266043130549&placem
ent=&network=g&kclid=_k_EAIaI



 138 

QobChMIpvCeqvTm4wIVxrTtCh1
uggdDEAQYCyABEgLpUPD_BwE_
k_&gclid=EAIaIQobChMIpvCeqvT
m4wIVxrTtCh1uggdDEAQYCyABE
gLpUPD_BwE 
 

Redox Probe ORP electrode InLab Redox-L https://www.mt.com/gb/en/hom
e/products/Laboratory_Analytics
_Browse/pH-meter/sensor/orp-
sensor/InLab-Redox-
L.html?SE=GOOGLE-
Shopping&cmp=sea_02540126&
Campaign=MT_ANA_EN_UK_Sho
pping&Adgroup=ANA%20product
s&bookedkeyword=&matchtype=
&adtext=266043130549&placem
ent=&network=g&kclid=_k_EAIaI
QobChMIjeCtwPTm4wIVjLTtCh1d
vwtuEAQYAyABEgKPlPD_BwE_k_
&gclid=EAIaIQobChMIjeCtwPTm4
wIVjLTtCh1dvwtuEAQYAyABEgKPl
PD_BwE 
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Appendix A3 – Custom built gas out and sample port: 
 
 
 

 

Gas out - Short tube 
Sampler – long tube   
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Appendix B – Final set up of fermentation units based upon schematics from 
Figure 3.1 
 
 

 
 

 

Batch   

Fed-batch   
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Continuous   
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Appendix C – Calculations for correct pmol of DNA for Clostridium transformation.  
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Appendix D – Sanger sequences of newly created ∆gapN strains: 
 

 
 
 
 
  



 145 

Appendix E – Qualimap results – Separate PDF 
 
External PDF files:  
 
Appen_E1_WT_qualimap_anlaysis.PDF 
 
<<Appen_E1_WT_qualimap_anlaysis.pdf>> 
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Appen_E2_Qualimap_report.PDF 
 
<<Appen_E2_Qualimap_report.pdf>> 
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Appendix F – List of SNP’s identified in NGS sequences of wild type and ∆gapN 
C. sacc 
 
 
In Excel File - Appen_F_SNP_data.xlsx 
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Appendix G – IGV Manually investigated SNP’s in both WT and ∆gapN strain 
 
Appendix G1 – mdtN_1 mutation identified in ∆gapN snippy. A) WT WGS an B). ∆gapN WGS 

 

A) 

B) 
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Appendix G2 – ybdL mutation identified in ∆gapN snippy – Predicted mutation was insertion of AGTAAA. A) WT WGS an B). ∆gapN WGS 
 

 
 
 

A) 

B) 
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Appendix G3 – Hypothetical coding region mutation identified in ∆gapN snippy. A) WT WGS an B). ∆gapN WGS 
 

 
 
 

A) 

B) 
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Appendix G4 –  rocR_1  mutation identified in ∆gapN snippy. A) WT WGS an B). ∆gapN WGS 

 
 
 
 

A) 

B) 
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Appendix G5 – rsgI  mutation identified in ∆gapN snippy. A) WT WGS an B). ∆gapN WGS 
 

 
 

A) 

B) 
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Appendix G6 –  fdtB_2  mutation identified in ∆gapN snippy. A) WT WGS an B). ∆gapN WGS 

 
 
 

A) 

B) 
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Appendix G7 –  fdtB_2  mutation identified in ∆gapN snippy. A) WT WGS an B). ∆gapN WGS 
 

 
 

A) 

B) 
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Appendix H – Gene presence and absence Via Roary analysis 
 
 
In Excel file - Appen_I_GPA_Roary.xlsx 
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Appendix I – Initial screening of ∆gapN deletion  
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Appendix I. Initial colony PCR screens of ∆gapN colonies post transformation with killing vector. Lanes 
highlighted with red correspond to the CRPC reaction of the ∆gapN deletion, to the right of each of these, 
not highlighted are the corresponding 16S colony PCR reactions that show the successful CPCR for these 
reactions.  


