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Abstract. Kahan introduced an explicit method of discretization for
systems of first order differential equations with nonlinearities of degree
at most two (quadratic vector fields). Kahan’s method has attracted
much interest due to the fact that it preserves many of the geometrical
properties of the original continuous system. In particular, a large num-
ber of Hamiltonian systems of quadratic vector fields are known for which
their Kahan discretization is a discrete integrable system. In this note,
we introduce a special class of explicit order-preserving discretization
schemes that are appropriate for certain systems of ordinary differential
equations of higher order and higher degree.

1 Introduction

Kahan’s method is a special discretization scheme that provides an explicit
method for integrating quadratic vector fields, given by systems of first order
ordinary differential equations (ODEs) of the form

dxi
dt

= fi(x1, . . . , xN ), i = 1, . . . , N, (1)

where each function fi is a polynomial of total degree two in the independent
variables x1, . . . , xN (see [15] or [16]). In order to specify Kahan’s method, one
should replace each derivative on the left-hand side of (1) by the forward differ-
ence, so that

dxi
dt
→ ∆xi :=

xi − xi
h

,

while terms of degrees two, one and zero appearing in each fi on the right-hand
side are replaced according to the rules

xjxk →
1

2
(xjxk + xjxk), xj →

1

2
(xj + xj), c→ c, (2)

where h is the time step and xi denotes the approximation to xi(t+ h).
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It was noticed some time ago that Kahan’s method provides an effective
integration scheme for the classic two-species Lotka-Volterra model

dx

dt
= αx(1− y),

dy

dt
= y(x− 1) (3)

(with α > 0 being an arbitrary parameter), retaining the qualitative features of
the orbits of the continuous system, namely the stability of orbits around the
elliptic fixed point at (x, y) = (1, 1). This was subsequently explained by the fact
that the Kahan discretization of (3), given by

(x− x)/h = α
2

(
x(1− y) + x(1− y)

)
,

(y − y)/h = 1
2

(
y(x− 1) + y(x− 1)

)
,

preserves the same symplectic form

ω =
dx ∧ dy

xy

as the original Hamiltonian system [26]. In the context of Lotka-Volterra models,
a variant of Kahan’s method with similar properties was discovered by Mickens
[19], who had previously considered various examples of nonstandard discretiza-
tion methods [18], but a more rapid growth of interest in Kahan’s method began
when Hirota and Kimura independently proposed the rules (2) for the discretiza-
tion of the Euler equations for rigid body motion, finding that the resulting dis-
crete system is also completely integrable [11], and this has led to the search
for other discrete integrable systems arising in this way [12], with a survey of
several results given in [20], and some more recent examples in [21] and [22], for
instance.

Many of the geometrical properties of Kahan’s method for quadratic vector
fields are based on the polarization identity for quadratic forms [3], and recently
this has led to a generalization of Kahan’s method that can cope with vector
fields of degree three or more, by using higher degree analogues of polarization
[4]. One disadvantage of the latter method for higher degree vector fields is that,
in common with multistep methods in numerical analysis, one must use extra
grid points for the discretization, so the original ODE system does not provide
enough initial values to start the iteration of the discrete version. However, if
one is looking for a discretization scheme that preserves integrability or other
geometric properties of ODEs, then it is desirable for the initial value space of
the discrete system to have the same dimension as that of the continuous one.
Here we would like to suggest a discretization scheme with the latter property,
which is a natural generalization of Kahan’s method to higher order and higher
degree.

The idea is to consider a system of ODEs of order n ≥ 1, with the right-hand
sides being functions of the coordinates x1, . . . , xN only, of the form

dnxi
dtn

= fi(x1, . . . , xN ), i = 1, . . . , N, (4)
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where each function fi is a polynomial of maximal degree n+1. For n = 1 this is
a quadratic vector field, which one can discretize using Kahan’s method. In the
next section, we present an explicit discretization scheme for systems of the form
(4), valid for any n ≥ 1, which reduces to Kahan’s method when n = 1. The
first new case is n = 2, corresponding to systems of Newton equations, which are
relevant in many applications. We illustrate this in section 3 by considering the
discretization of the motion of a single particle moving in a quartic potential. The
latter is one of the simplest examples of an integrable Hamiltonian system, and
it turns out that the discrete version produced by the method is also integrable,
with a conserved quantity and an invariant symplectic form. In section 4, we
consider a different example of fourth order, namely a nonlinear beam equation,
and briefly compare the discretization obtained by the new method with another
discretization obtained by applying an approach similar to Kahan’s directly to
the Lagrangian of the continuous system.

2 A higher order version of Kahan’s method

For n = 2, (4) becomes a system of Newton equations, assumed to have polyno-
mial forces of degree at most three, which can be conveniently written as

d2xi
dt2

=
∑

0≤j1≤j2≤j3≤N

ci,j1,j2,j3 xj1xj2xj3 , i = 1, . . . , N, (5)

where cijk` are arbitrary coefficients, and we have included an additional dummy
variable x0 = 1 to allow terms of degree less than three to be included within
the same summation. Then to discretize (5) we propose the following:

xi − 2xi + xi
h2

=
1

6

∑
σ∈S3

∑
0≤j1≤j2≤j3≤N

ci,j1,j2,j3 xjσ(1)xjσ(2)xjσ(3) , (6)

for i = 1, . . . , N ; the first summation is over permutations σ in S3, the symmetric
group on three symbols, and xi = x(1), xi = x(−1) are the approximations to
xi(t ± h), with time step h. For terms of degree three, with each variable xj

appearing at the three adjacent lattice points xj = x
(−1)
j , xj = x

(0)
j , xj = x

(1)
j ,

the replacement rule is described explicitly by

xjxkx` →
1

6

(
xjxkx` + xjxkx` + xjxkx` + xjxkx` + xjxkx` + xjxkx`

)
, (7)

while for terms of degree two the rule is obtained by setting ` = 0, so that
x` → x0 = 1 in the above, and for the linear terms one can set k = ` = 0, so
that the rule for terms of degree less than three is

xjxk → 1
6

(
xjxk + xjxk + xjxk + xjxk + xjxk + xjxk

)
,

xj → 1
3

(
xj + xj + xj

)
, c→ c.

(8)
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Following the approach of [4], a second order system of equations can be
written in vector form as

d2x

dt2
= f(x), (9)

where each component of the vector of functions f = (f1, f2, . . . , fN )T is a poly-
nomial of degree at most three, and then the replacement rules (7) and (8) are
equivalent to the formula

1
h2

(
x− 2x + x

)
= 9

2 f
(

x+x+x
3

)
− 4

3

(
f
(

x+x
2

)
+ f
(

x+x
2

)
+ f
(

x+x
2

))
+ 1

6

(
f(x) + f(x) + f(x)

)
.

(10)

Proposition 1. The discretization (10) commutes with affine transformations

y 7→ x = Ay + b, (11)

where A ∈ GL(N,R) is a constant matrix and b ∈ RN is a vector of constants.

Proof. Under the transformation (11), f(·) in (9) is replaced by A−1f(A · +b).
Upon substituting (11) and its shifted versions into (10), it is not hard to check
that the same occurs for each appearance of f on the right-hand side. ut

The symmetric replacement rules above generalize to any order n ≥ 1, so
that for a system of nth order ODEs (4) with right-hand sides all of degree n+1
the discretization becomes

∆nxi =
1

(n+ 1)!

∑
σ∈Sn+1

∑
jk≤jk+1

ci,j1,...,jn+1
xjσ(1)x

(1)
jσ(2)

x
(2)
jσ(3)
· · ·x(n)jσ(n+1)

, (12)

for i = 1, . . . , N , with x
(1)
i = xi, x

(2)
i = xi, . . . , x

(n)
j corresponding to shifts by

steps of h, 2h, . . . , nh, and the interior summation being for 0 ≤ j1 ≤ · · · ≤
jn+1 ≤ N . On the left-hand side of (12) we have replaced the nth derivative
by the nth power of the forward difference operator, and for convenience we
have written everything on the right-hand side in terms of forward shifts of the
variables xj . The discretization (12) reduces to Kahan’s method when n = 1,
and to (6) when n = 2, modulo shifting the lattice points −1, 0, 1 in the latter
up to 0, 1, 2.

Clearly there are other choices of discrete nth derivative that one could take,
and other affine combinations of terms with the same homogeneous degree could
be chosen while preserving the continuum limit. We have taken the most sym-
metrical choice in (12), because it is manifestly linear in each of the highest shifts

x
(n)
1 , x

(n)
2 . . . , x

(n)
N , so it can be explicitly solved for each of these quantities to

yield rational functions of all the lower shifts. It is also linear in each of the

lowest shifts xi = x
(0)
i for i = 1, . . . , N , so it can be explicitly solved for these

as well. Thus (12) is an implicit way of writing an explicit birational map in
dimension nN , corresponding to X 7→ X̄, where

X = (x
(0)
1 , . . . , x

(0)
N , x

(1)
1 , . . . , x

(1)
N , . . . , x

(n−1)
1 , . . . , x

(n−1)
N ),

X̄ = (x
(1)
1 , . . . , x

(1)
N , x

(2)
1 , . . . , x

(2)
N , . . . , x

(n)
1 , . . . , x

(n)
N ).
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3 Discretization of a quartic oscillator

To see why it might be worth investigating these higher Kahan-like schemes, we
start by presenting the following example: n = 2 with a cubic force on a particle
in one dimension, generated by a natural Hamiltonian with a quartic potential,
that is

H =
1

2
p2 +

1

4
ax4 +

1

3
bx3 +

1

2
cx2 + dx,

which yields the Newton equation

ẍ = −ax3 − bx2 − cx− d. (13)

This is an integrable system par excellence, and the generic level sets H = const
are quartic curves of genus one in the (x, p) plane. The discretization (6) applied
to (13) produces a difference equation of second order, given by

x =
(3− γ)x− δ − (βx+ γ)x

βx+ γ + (αx+ β)x
, (14)

where

α = ah2, β =
bh2

3
, γ = 1 +

ch2

3
, δ = dh2.

The map (14) is an example of a QRT map [25], but let us suppose that we
do not know the geometric properties of this map. To find these properties, such
as the existence of a preserved measure, and first and second integrals of the
map (14), we will look for preserved Darboux polynomials, as detailed in our
recent work [5] and [6]. To this end, we write the second order equation (14) as
two first order ones, namely

x = y, y =
(3− γ)y − δ − (βy + γ)x

βy + γ + (αy + β)x
, (15)

and look for polynomials P satisfying

P (x, y) = J(x, y)P (x, y), (16)

where J is the Jacobian determinant of the map (15), i.e.

J(x, y) =
(βy + γ)2 + (αy + β)

(
(3− γ)y − δ

)
(αxy + β(x+ y) + γ)2

. (17)

Substituting (17) into (16), and looking for polynomials up to total degree four
in x and y, we find two linearly independent solutions, given by

P1 = αxy + β(x+ y) + γ,

P2 = (αγ−β2)x2y2 + εxy(x+y) + ζ(x2 +y2)− (3−γ)2xy+ (3−γ)δ(x+y)− δ2,
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with

ε = αδ + β(3− γ), ζ = βδ + γ(3− γ).

It follows that the map (14) is measure-preserving, with the invariant symplectic
form

dx ∧ dy

P1
=

dx ∧ dy

αxy + β(x+ y) + γ
, (18)

and the first integral

I =
P2

P1
(19)

given by

(αγ − β2)x2y2 + εxy(x+ y) + ζ(x2 + y2)− (3− γ)2xy + (3− γ)δ(x+ y)− δ2

αxy + β(x+ y) + γ
.

Hence the integrability is preserved by the discretization in this case, and we
recover the standard property of a QRT map, that it preserves a pencil of bi-
quadratic curves, here given by

λP1(x, y) + P2(x, y) = 0.

Moreover, in the continuum limit h → 0, the standard area form dx ∧ dy and
the Hamiltonian H are recovered from (18) and (19) respectively, since from
y = x+ hp+O(h2) we find

P1 = 1 +O(h2), P2 = 4Hh2 +O(h3).

The equation (13) includes Duffing’s equation, which is the case b = d = 0,
and also the second order ODE for the Weierstrass ℘ function, which arises when
a = c = 0. In [23], another replacement rule is used for the cubic and linear
terms in Duffing’s equation, somewhat less symmetrical than the one defined
by (7), and it is shown that if the coefficients and denominator in the second
difference operator are replaced by suitable functions of the parameters and the
time step h then this alternative rule results in a discretization that is exact,
in the sense that the iterates of the difference equation interpolate the solution
of the original ODE. Similarly, in [24] an exact discretization is obtained for
the case corresponding to the Weierstrass ℘ function, with only quadratic and
constant terms on the right-hand side. However, in the latter case, the exact
discretization (derived from the addition formula for the ℘ function) requires
not only a different replacement rule for the quadratic terms compared with (8),
but also extra cubic and linear terms that must be included, with a coefficient
which is O(h2). When a = c = 0, the equation (13) can be rewritten as a
quadratic vector field, namely

dx

dt
= p,

dp

dt
= −bx2 − d,
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so that Kahan’s method can be applied, as in [20], resulting in a first order
discrete system which is equivalent to a second order difference equation for x,
namely

x+ x =
4x− 2δ

3βx+ 2
(20)

(where we set β = bh2/3, δ = dh2 as before). The equation (20) is a QRT map
in additive form, clearly of a different type to (14), which becomes

x =
2x− δ − (βx+ 1)x

β(x+ x) + 1

when α = 0, γ = 1. To see that they are really different QRT maps, in the sense
that they are not related to one another via so-called curve-dependent McMillan
maps [14], observe that the pencil of invariant biquadraic curves corresponding
to (20) is

λ− β2x2y2 +
4

3
βxy(x+ y) +

4

3
(x2 + y2)− 2

3
(4 + βδ)xy +

4

3
δ(x+ y) = 0,

whereas when α = 0, γ = 1 the pencil λP1(x, y) + P2(x, y) = 0 for (14) reduces
to one of a different type, namely

λ
(

1+β(x+y)
)
−β2x2y2+2βxy(x+y)+(βδ+2)(x2+y2)−4xy+2δ(x+y)−δ2 = 0.

4 Two discretizations of a nonlinear beam equation

Vibrating beams were considered by Leonardo da Vinci [7], but the traditional
theory of vibrations of a beam is usually attributed to Euler and Bernoulli [10],
being described by a partial differential equation (PDE) of fourth order, which
in dimensionless form is given by

∂2w

∂t2
+
∂4w

∂x4
= Q.

For the case of a static beam, the equation has the form

d4w

dx4
= Q, (21)

where w = w(x) is the vertical deflection of the beam, which lies horizontally
along the x-axis. The standard beam model is linear, with the distributed load
Q on the right-hand size being a constant (or more generally, a function of x,
the independent variable). However, here we consider a more general nonlinear
version of the model, derived from a second order Lagrangian of the form

L =
1

2

(
d2w

dx2

)2

− V (w), (22)
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which gives a nonlinear load function

Q(w) =
dV

dw
.

In the linear case, the model was considered recently from the viewpoint of a
Hamilton-Jacobi approach to higher order implicit systems [8], while a coupled
PDE system of beam equations with cubic nonlinearity was analysed in [27].
From the second order Lagrangian (21), we can introduce the Ostrogradsky
variables (see [1], for instance), given by

q1 = w, q2 = w′, p1 =
∂L

∂w′
− d

dx

(
∂L

∂w′′

)
= −w′′′, p2 =

∂L

∂w′′
= w′′,

where the primes denote derivatives with respect to the independent variable x.
Then (q1, p1), (q2, p2) provide two pairs of canonically conjugate positions and
momenta, and the Euler-Lagrange equation

d2

dx2

(
∂L

∂w′′

)
− d

dx

(
∂L

∂w′

)
+
∂L

∂w
= 0, (23)

which for the Lagrangian (22) is given by (21) with Q = dV/dw, is equivalent
to Hamilton’s equations for the Hamiltonian function

H =
1

2
(p2)2 + q2p1 + V (q1).

For the sake of concreteness, we consider the case of an odd potential

V (w) =
a

5
w5 +

b

3
w3 + cw,

so that the nonlinear beam equation is given by

w′′′′ = aw4 + bw2 + c. (24)

To begin with, we consider the result of applying the discretization rule (12)
to the nonlinear beam equation (24), which produces a difference equation of
fourth order, of the form

∆4w = F (w(0), w(1), w(2), w(3), w(4)) (25)

for a function F that is a sum of terms of total degree four, two and zero. This
can be written more symmetrically by shifting down by two steps, to yield

w(−2) − 4w(−1) + 6w(0) − 4w(1) + w(2)

h4
= F4 + F2 + c, (26)

where the quartic terms are specified by

5
aF4 = w(−2)w(−1)w(0)w(1) + w(−2)w(−1)w(0)w(2) + w(−2)w(−1)w(1)w(2)

+w(−2)w(0)w(1)w(2) + w(−1)w(0)w(1)w(2),
(27)
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and the quadratic terms are given by

10
b F2 = w(−2)w(−1) + w(−2)w(0) + w(−2)w(1) + w(−2)w(2) + w(−1)w(0)

+w(−1)w(1) + w(−1)w(2) + w(0)w(1) + w(0)w(2) + w(1)w(2).
(28)

It turns out that the birational map defined by (26) is measure-preserving.
This is a consequence of the fact that the formula for the right-hand side of
(25) is both linear and symmetric in its arguments, so that the derivatives with
respect to the highest and lowest shifts, namely

∂F

∂w(0)
= G(w(1), w(2), w(3), w(4)),

∂F

∂w(4)
= H(w(0), w(1), w(2), w(3)), (29)

are very closely related to one another.

Proposition 2. The discretization (26) preserves the volume form

Ω =
1

1− h2H(w(−2), w(−1), w(0), w(1))
dw(−2) ∧ dw(−1) ∧ dw(0) ∧ dw(1),

where H is defined by (29).

Proof. Upon taking the differential of both sides of (26) , we obtain the equation(
1− h2G(w(−1), w(0), w(1), w(2))

)
dw(−2)

+
(

1− h2H(w(−2), w(−1), w(0), w(1))
)

dw(2) + · · · = 0,

where the ellipsis denotes terms that are linear in dw(−1), dw(0) and dw(1). The
result then follows from taking the wedge product of the equation above with
dw(−1) ∧ dw(0) ∧ dw(1), and noting the identity

G(w(−1), w(0), w(1), w(2)) = H(w(−1), w(0), w(1), w(2)),

which follows from the symmetry of F . ut

When a, b are not both zero, so that the nonlinear terms are present, the
above discretization of (24) cannot be obtained from a second order discrete
Lagrangian of the form

L = L(w(n), w(n+1), w(n+2)),

since the discrete Euler-Lagrange equations

2∑
i=0

∂

∂w(n)
L(w(n−i), w(n+1−i), w(n+2−i)) = 0 (30)

do not generate terms containing products w(j)wk) with |j − k| > 2. In order
to obtain a discretization with a Lagrangian structure, we fix n = 0 and take a
discrete Lagrangian of the form

L(w(0), w(1), w(2)) = T − V,
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where the discrete fourth derivative is generated by the term

T =
1

2h4

(
2(w(0) − w(1))2 − (w(0) − w(2))2 + 2(w(1) − w(2))2

)
,

and the other terms are specified by

V = V5 + V3 +
c

3

(
w(0) + w(1) + w(2)

)
with

5
aV5 = α0w

(0)(w(1))3w(2) + 1
2α1

(
(w(0))2(w(1))3 + (w(1))2(w(2))3

)
+ 1

2α2

(
(w(1))2(w(0))3 + (w(2))2(w(1))3

)
+ 1

2α3

(
w(0)(w(1))4 + w(1)(w(2))4

)
+ 1

2α4

(
w(1)(w(0))4 + w(2)(w(1))4

)
+ 1

3α5

(
(w(0))5 + (w(1))5 + (w(2))5

)
,

(31)

and
3
bV3 = β0w

(0)w(1)w(2) + 1
2β1

(
w(0)(w(1))2 + w(1)(w(2))2

)
+ 1

2β2

(
w(1)(w(0))2 + w(2)(w(1))2

)
+ 1

3β3

(
(w(0))3 + (w(1))3 + (w(2))3

)
,

(32)

where, in (31) and (32) we have taken affine combinations, so that the coefficients
are required to satisfy

5∑
j=0

αj = 1 =

3∑
j=0

βj

in order to ensure the correct continuum limit, and we have included all possible
terms of degrees 5 and 3, respectively, except those whose discrete variational
derivative produces expressions of degree greater than one in w(−2) or w(2) (we
have also grouped together terms having the same variational derivative). Hence
we arrive at a discretization of (24) which is explicit and birational, being given
by

w(−2) − 4w(−1) + 6w(0) − 4w(1) + w(2)

h4
= F̂4 + F̂2 + c, (33)

where the quartic and quadratic terms are given by

5
a F̂4 = α0

(
w(−2)(w(−1))3 + 3w(−1)(w(0))2w(1) + (w(1))3w(2)

)
+α1

(
3(w(−1))2(w(0))2 + 2w(0)(w(1))3

)
+α2

(
2(w(−1))3w(0) + 3(w(0))2(w(1))2

)
+α3

(
4w(−1)(w(0))3 + (w(1))4

)
+ α4

(
(w(−1))4 + 4(w(0))3w(1)

)
+5α5(w(0))4,

(34)



Analogues of Kahan’s method for higher order equations of higher degree 11

3
b F̂2 = β0

(
w(−2)w(−1) + w(−1)w(1) + w(1)w(2)

)
+β1

(
2w(−1)w(0) + (w(1))2

)
+β2

(
(w(−1))2 + 2w(0)w(1)

)
+ 3β3(w(0))2,

(35)

respectively. A general approach to Lagrangian fourth-order difference equations
and their continuum limits appears in the recent paper [9].

An advantage of using the Lagrangian discretization (33) is that it is sym-
plectic; so it is a birational symplectic integrator. This can be seen from the
discrete analogue of the Ostrogradsky transformation, introduced in [2], which
provides canonical variables q1, p1, q2, p2 via the formulae

q1 = w(0), p1 = L1(w(−1), w(0), w(1)) + L2(w(−2), w(1), w(0)),
q2 = w(1), p2 = L2(w(−1), w(0), w(1)),

(36)

where

Lj =
∂L
∂w(j)

(w(0), w(1), w(2)), j = 0, 1, 2.

In terms of these variables, the four-dimensional map defined by (33) preserves
the canonical symplectic form

ω = dp1 ∧ dq1 + dp2 ∧ dq2,

and this immediately implies that it preserves the volume form ω ∧ ω, so it is
measure-preserving.

Qualitatively it appears that the approximate solutions of (24) provided by
these two discretizations are somewhat similar. To see this, one can consider
solutions in the neighbourhood of a fixed point. If ab 6= 0 then, by scaling w and
x, the parameters can be taken as

a = 1, b = −2ε, c = 1− δ,

with ε2 = 1 and δ arbitrary. Then (24) has fixed points at w = ±
√
ε±
√
δ, so

that δ ≥ 0 is a necessary condition for reality, and then generically there are
either four, two or zero real fixed points depending on the choice of ε = ±1 and
the value of δ. In particular, let us take the case

ε = 1, 0 < δ < 1

when there are four real fixed points, one of which is at w = w∗, where

w∗ =

√
1 +
√
δ.

The eigenvalues of the linearization of (24) around this point consist of a real
pair ±γ and an imaginary pair ±iγ, for γ = (4w∗

√
δ)1/4, corresponding to one

stable direction, one unstable direction, and a two-dimensional centre manifold.
The discretizations (26) and (33) both have the same fixed points as the original
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differential equation, and using the fact that (26) is reversible, and that (33) is
symplectic (and also reversible), together with standard facts about linear stabil-
ity of reversible/symplectic maps (see [13] or [17]), in each case the characteristic
polynomial of the linearization around a fixed point is palindromic (equivalently,
λ is a root if and only if λ−1 is). If we consider the linearization around w∗, then
in both cases we find two real eigenvalues that are reciprocals of one another,
corresponding to the stable and unstable directions, together with a complex
conjugate pair of eigenvalues of modulus one, giving a two-dimensional centre
manifold, just as for the differential equation; and similar considerations apply to
the other fixed points. Thus, to a first approximation, the qualitative behaviour
of the two discretizations is the same.

5 Conclusions

We have found that the higher order analogue of Kahan’s method proposed here
preserves integrability in the second order example of the quartic oscillator (13)
that we have considered, while in the case of a nonlinear beam equation of fourth
order the resulting discretization (26) is measure-preserving, and its qualitative
behaviour looks similar to that of the Lagrangian discretization (33). In future
work we would like to apply this discretization method to other ODE systems
of higher order, as well as looking for first integrals of the particular fourth
order maps (26) and (33) using the method of discrete Darboux polynomials as
described in [5] and [6].
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