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Article

Escargot maintains stemness and suppresses
differentiation in Drosophila intestinal stem cells
Jerome Korzelius1, Svenja K Naumann1, Mariano A Loza-Coll2,3, Jessica SK Chan1, Devanjali Dutta1,

Jessica Oberheim1, Christine Gläßer1, Tony D Southall4,†, Andrea H Brand4, D Leanne Jones2,3 &

Bruce A Edgar1,*

Abstract

Snail family transcription factors are expressed in various stem cell
types, but their function in maintaining stem cell identity is
unclear. In the adult Drosophila midgut, the Snail homolog Esg is
expressed in intestinal stem cells (ISCs) and their transient undif-
ferentiated daughters, termed enteroblasts (EB). We demonstrate
here that loss of esg in these progenitor cells causes their rapid
differentiation into enterocytes (EC) or entero-endocrine cells (EE).
Conversely, forced expression of Esg in intestinal progenitor cells
blocks differentiation, locking ISCs in a stem cell state. Cell type-
specific transcriptome analysis combined with Dam-ID binding
studies identified Esg as a major repressor of differentiation genes
in stem and progenitor cells. One critical target of Esg was found
to be the POU-domain transcription factor, Pdm1, which is
normally expressed specifically in differentiated ECs. Ectopic
expression of Pdm1 in progenitor cells was sufficient to drive their
differentiation into ECs. Hence, Esg is a critical stem cell determi-
nant that maintains stemness by repressing differentiation-
promoting factors, such as Pdm1.
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Introduction

Great progress has been made in understanding how external cues,

provided by signaling molecules emanating from stem cell niches,

instruct stem cells to either self-renew or differentiate. However,

much remains to be learned about the transcriptional programs that

define and maintain stem cell identity. Ultimate proof for the

potency of transcription factors in controlling stemness comes from

work with induced pluripotent stem cells (iPS cells), wherein addi-

tion of four factors (Oct4, Sox2, Klf4 and C-Myc) is sufficient to

confer stem identity to terminally differentiated cells of many types

(Takahashi & Yamanaka, 2006). However, it is less clear how stem

cell identities are maintained in vivo.

The Drosophila adult midgut is an excellent model in which to

address how stem cell identity is defined and maintained. Similar to

the mammalian small intestine and colon, the fly’s midgut is main-

tained by intestinal stem cells (ISC) that divide to give rise to new

ISCs and transient cells called enteroblasts (EB) in a near 50/50

ratio. The enteroblast can then differentiate to give rise to either an

absorptive enterocyte (EC) or secretory entero-endocrine cell (EE)

(Micchelli & Perrimon, 2006; Ohlstein & Spradling, 2006). This deci-

sion depends on Notch signaling: ISCs produce the Notch ligand

Delta, which activates a Notch-dependent transcriptional program

in the EB leading to its differentiation into an EC (Ohlstein &

Spradling, 2006, 2007; Bardin et al, 2010). Loss of Notch signaling

leads to expansion of Delta-positive proliferative stem-like cells as

well as postmitotic EEs. Many conserved signaling pathways regu-

late ISC growth and division during homeostasis and under stress

(Jiang & Edgar, 2011; Lucchetta & Ohlstein, 2012). When the midgut

is damaged by stresses such as enteric infection, EGFR and Jak/Stat

ligands are induced in the ECs and the visceral muscle (VM)

surrounding the gut epithelium. These stimulate ISCs to respond to

increase their division rate and differentiation speed (Buchon et al,

2009a,b; Jiang et al, 2009, 2011).

The first two studies of Drosophila midgut stem cells described

that the progenitor cell compartment (ISCs and EBs) is marked by

expression of the zinc-finger transcription factor escargot (Esg). Esg

is expressed in both Delta-positive ISCs and transient committed

progenitors (EBs) positive for the Notch reporter gene Su(H)-GBE-

LacZ. esg mRNA is highly expressed in these cell types, but not in

any other cell type of the adult midgut (Supplementary Table S1;
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Micchelli & Perrimon, 2006; Ohlstein & Spradling, 2006; Toledano

et al, 2012). However, the function of esg in these progenitor cells

has thus far not been reported. The first esg mutant was found in a

screen for embryonic lethal mutants and was identified as a Snail-

related transcription factor (Whiteley et al, 1992). Escargot, snail

and worniu comprise the three Drosophila members of the Snail-

related family of zinc-finger transcription factors (Nieto, 2002). Esg

is essential for the maintenance of diploidy in larval imaginal disc

cells (Hayashi et al, 1993; Fuse et al, 1994), and it plays a critical

role in tracheal tube formation through upregulation of the Drosophila

E-cadherin, Shotgun (Tanaka-Matakatsu et al, 1996).

Intriguingly, the mammalian Snail family member, Snai1, acts as a

transcriptional repressor of E-cadherin expression in mouse and

human fibroblasts, and overexpression of Snai1 can trigger an

epithelial-mesenchymal transition (EMT) when overexpressed (Batlle

et al, 2000; Cano et al, 2000). In addition, the Snail paralog Slug marks

a stem cell population in the mouse mammary gland, and mammary

epithelial cells (MECs) with high levels of Slug are more clonogenic

than Slug-negative MECs (Guo et al, 2012), suggesting a stem cell

maintenance function. In fact, there is increasing evidence that cells

undergoing EMT gain stem cell-like characteristics (Mani et al, 2008).

Hence, Snail family members act as important regulators of both the

mesenchymal and the stem cell fate. However, how exactly Snail

family members exert their role in maintaining stemness and what

their target genes are in different adult stem cell contexts remains

largely unexplored. We show here that Esg is essential to maintain

stem cell identity and suppress differentiation in the Drosophila ISC

lineage. Esg does this by repressing the transcription of differentiation-

promoting genes such as Pdm1 and functions in a transcriptional

network with Notch signaling to regulate stem cell maintenance and

differentiation in the intestinal stem cell compartment.

Results

Loss of esg causes loss of midgut stem and progenitor cells

To investigate the function of Esg in the adult Drosophila midgut,

we used the MARCM technique to generate clones homozygous for

the null allele esgG66B (Whiteley et al, 1992). With the MARCM

method, null mutant clones of esg are generated in ISCs by heat-

shock and mutant cells are positively marked by GFP (Lee & Luo,

1999). Subsequently, these MARCM clones were allowed to grow

for 4–7 days and stained for the ISC marker Delta (Fig 1A and B).

Control clones contained one or more Delta-positive ISCs

(Fig 1A, arrows), but esgG66B mutant clones contained virtually no

Delta-positive ISCs, although ISCs could often be found adjacent to

the clones (Fig 1B, arrowhead, quantification in C). Hence, loss of

esg led to a loss of Delta-positive ISCs.

To confirm this, we depleted esg in ISCs and EBs by RNAi

expressed under the control of the conditional, temperature-sensitive

esg-Gal4 UAS-GFP tub-Gal80ts system (hereafter referred to as esgts).

In controls, esg-positive progenitor cell nests were evenly dispersed

throughout the midgut epithelium (Supplementary Fig S1A and C).

Progenitor cell nests are defined by: (i) expression of esg (Supplemen-

tary Fig S1A and C); (ii) expression of the Notch ligand Delta in the

ISC (Fig 1A); and (iii) increased presence of Drosophila E-cadherin

(DE-cadherin, shg), especially at the ISC-EB junction (Supplementary

Fig S1C, arrows). Upon 4 days of esgRNAi induction, the majority of

GFP+cells had disappeared from the midgut (Supplementary Fig S1B

and D). The loss of small GFP+ cells was accompanied by loss of

strongly DE-cadherin-positive progenitor cell nests (Supplementary

Fig S1D–D’’, arrows). Flow cytometry (Dutta et al, 2013) showed

that the GFP-positive progenitor population in control (esgts > UAS-

GFP) midguts typically accounted for 5% of total cells (Fig 1I). We

noted an almost complete disappearance of this GFP-positive popula-

tion in esgts > UAS-GFP, esgRNAi animals (Fig 1J). Hence, loss of esg

leads to a loss of the stem/progenitor cell population, demonstrating

that Esg is required for their maintenance.

If Esg loss depletes ISCs, it should compromise regenerative

growth of the intestine. To test this, we used the intestinal lineage-

tracing system esg-FlipOut (esg-F/O) (Jiang et al, 2009). This system

uses the temperature-inducible expression of a FLPase which will

activate a constitutive Act>STOP>Gal4 driver by removing the STOP

cassette flanked by FRT sites. This system was used to drive

expression of GFP and esgRNAi in both progenitor cells and their

descendant progeny (ECs and EEs) for 1 week before exposing

animals to the pathogenic bacterium Pseudomonas entomophila

(P.e.) (see Fig 2F for an overview of the esg-F/O system). Indeed,

following depletion of esg, all of the animals died from infection

within 4 days, whereas 90% of controls survived to this timepoint

(Fig 1D). Animals expressing esgRNAi had dramatically shortened,

disorganized midguts that had few or no pH3-positive cells

compared to control midguts 2 days after P.e. infection (Fig 1E and F,

quantification in G). Whereas control midguts showed an almost

complete renewal of midgut tissue after 2 days of P.e. infection

based on their ubiquitous expression of GFP, esgRNAi midguts still

had many GFP-negative cells, highlighting the inability of the

midgut to self-renew upon infection (Fig 1E and F). Altogether,

these data further support that loss of esg leads to loss of the

Delta-positive, E-cadherin-positive ISC population in the midgut.

Loss of esg drives stem cells to differentiate

Our results led us to hypothesize that loss of esg resulted in stem

cell loss through precocious differentiation, rather than cell death.

To test this, we generated esgG66B mutant MARCM clones for 4, 7 or

14 days and stained for the EE marker Prospero (Fig 2A and B), or

the EC marker nubbin (Pdm1), a POU-domain transcription factor

specifically expressed in mature ECs (Lee et al, 2009; Dantoft et al,

2013) (Fig 2C and D). Whereas control clones contained ECs, EEs

and also Delta-positive ISCs (Figs 1A and 2A and C), esgG66B mutant

clones consisted exclusively of differentiated ECs and EEs (Fig 2B

and D). Thus, loss of esg leads to precocious differentiation into

either EC or EE cell types, with an accompanying loss of Delta-

positive ISCs. Similar results were observed using the esg-F/O

system to clonally express esgRNAi. We quantified the differentiation

phenotype that occurred upon loss of esg by using the esg-F/O

system to express esgRNAi (Fig 2F–H). Strikingly, after 1 day of

induction, the esgRNAi cell clones consisted mostly of Pdm1-positive

ECs (Fig 2H, arrows). Control clones at this timepoint consisted

mostly of Pdm1-negative progenitor cells (Fig 2G, quantification in I).

Importantly, the total number of GFP-positive cells for each

region of interest (ROI) that was analyzed did not differ signifi-

cantly between control and esgRNAi animals, indicating that stem/

progenitor cells were not lost through cell death (Fig 2J).
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Previous studies demonstrated that loss of esg in larvae leads to a

loss of diploidy in abdominal histoblasts (abdominal epithelial

progenitor cells) (Fuse et al, 1994). Hence, we considered the possi-

bility that the main function of Esg in the ISC/EB population might be

to restrain polyploidization, a normal aspect of EC differentiation.

However, by staining for the entero-endocrine (EE) cell marker Pros-

pero (Pros), we determined that there were also Pros-positive EE cells

present in many of the esgG66B mutant clones (Fig 2A and B). EE cells

normally differentiate with a 2C DNA content (Zielke et al, 2014).

However, we noticed an increase in EE nuclear size inside several of

the esgG66B MARCM clones. Quantification of the DNA content of

differentiated Pros-positive EEs in wild-type and esgG66Bmutant tissue

revealed that esgG66B EE cells had, on average, doubled their DNA

content compared to WT EE cells (Fig 2E) and thus were mostly in

G2. However, these EE cells did not become polyploid like the fully

matured EC cells within the clone (compare Fig 2A and B). Thus, Esg

acts as a general repressor of cell differentiation, but not as a specific

repressor of polyploidization in the ISC/EB compartment.

To precisely delineate the cell type in which Esg is required to

repress differentiation, we expressed esgRNAi specifically in EBs

using the Su(H)GBE-Gal4 UAS-GFP tub-Gal80ts driver (Su(H)ts), a

Notch-responsive transgene combination that is highly active in EBs

A A’ A’’

B B’ B’’

C D

E E’

F F’

G H

I J

Figure 1. Loss of esg leads to a loss of ISCs and regenerative capacity in the Drosophila midgut.

A, B ISCs are absent from esgG66B MARCM clones. Control clones have 1 or more Delta+ ISCs in the clonal area (A–A’’, arrows). esgG66B clones do not contain GFP/Delta-
marked ISCs, although there are GFP�/Delta+ ISCs neighboring the clone (B–B’’, arrowhead). Scale bars, 50 lm.

C Quantification of Delta+ cells in clones from (A, B). n = 627 cells/35 clones for FRT40A, n = 374 cells/81 clones for FRT40A esgG66B clones, P < 0.0001, Student’s t-test
with Welch’s correction.

D Kaplan–Meier survival curve of flies on P. entomophilae-containing food. esg-F/O clones expressing UAS-GFP alone, UAS-esg or esgRNAi were induced for 1 week
before infection with P. entomophilae, n = 30 for each genotype.

E, F Representative images from esg-F/O midguts expressing UAS-GFP alone (control) or expressing esgRNAi 2 days after P. entomophilae infection. Samples were stained
for GFP and pH3S10 (arrows). Scale bars, 50 lm.

G Quantification of the number of pH3-positive cells/midgut of the guts in (E, F).
H–J FACS profiles of w1118, esgts > UAS-GFP and esgts > UAS-GFP, UAS-esgRNAi animals. The GFP-positive population makes up 5% of the cells in esgts > UAS-GFP animals

(I). This population is completely absent from midguts expressing esgRNAi (J) similar to w1118 flies not expressing any UAS-GFP (H).

Source data are available online for this figure.
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A A’ C C’

B B’ D D’

E

F

I J

G G’

H H’

Figure 2. Progenitor cells are lost through differentiation upon loss of esg.

A–D esgG66 null mutant MARCM clones are solely composed of both Pros+ enteroendocrine (EE) cells (B–B’, arrow) and Pdm1+ enterocytes (EC) (D–D’, outline, compare
with control clones in (A, C). Scale bars, 50 lm.

E Integrated DAPI intensity/nucleus for Pros+ EE cells in esgG66B null mutant clones and the surrounding wild-type EE cells. n = 320 for WT, n = 35 for esgG66B.
P < 0.0001, Student’s t-test.

F Diagram outlining the esg-F/O system. (left) At 18°C, the system is held inactive by the temperature-sensitive suppressor Gal80ts. (middle) 1-day shift to 29°C
inactivates the Gal80ts, and esg-Gal4 will drive the expression of UAS-GFP and UAS-Flp, thereby activating the Act > STOP > Gal4 cassette. (right) After 6 days, the
F/O system will express UAS-GFP in both the progenitor cells and the progeny from these progenitors due to the activated Act-Gal4 driver.

G, H esg-F/O clones induced for 1 day show that expression of esgRNAi leads to a rapid loss of progenitor morphology and the appearance of GFP-positive/Pdm1-positive
small EC cells (H, arrows, compare to control in G). Scale bars, 50 lm.

I Quantification of GFP-positive/Pdm1-positive cells/ROI in (G, H). P < 0.0001, Student’s t-test.
J Quantification of total number of GFP-positive cells/ROI in (G, H), P = 0.097, Student’s t-test.

Source data are available online for this figure.
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(Furriols & Bray, 2001; Zeng et al, 2010). While control Su(H)-GBE-

positive EBs were mostly small, spindle-shaped cells situated adjacent

to a Delta-expressing ISC (Supplementary Fig S2A and D arrows),

esgRNAi expression transformed most EBs into Pdm1-positive cells with

a larger (likely polyploid) nucleus, strongly resembling ECs (Supple-

mentary Fig S2B, arrowheads, quantification in C). GFP expression

was also lost from these cells (compare Supplementary Fig S2D

with E). Knockdown of esg in the EB population for 7 days led to a

threefold reduction in the number of Su(H)GBE-positive cells as

determined by flow cytometry (Supplementary Fig S2F–H). These

results indicate that esg knockdown in EBs that have received the

Notch signal accelerates their differentiation into ECs, suggesting a role

for Esg in the maintenance of the transient EB state.

Enforced Esg expression in ISCs blocks differentiation

If esg loss from progenitor cells results in precocious differentia-

tion, locking Esg expression “on” in this compartment might,

conversely, inhibit differentiation. To test this possibility, we used

the esg-F/O or MARCM systems to clonally express Esg (UAS-esg)

in ISCs and EBs. In these cases, Esg expression is driven by the

Actin 5C or tubulin promoters, which are constitutive in all cell

types and cannot be switched off. Whereas control MARCM clones

consisted of many Pdm1+ECs and a few Pros+EEs (Fig 3A and C,

arrows), MARCM clones expressing Esg contained only small,

diploid, Pdm1� and Pros� cells (Fig 3B and D, arrowheads, quanti-

fication in E). Similar results were obtained using the esg-F/O and

esgts systems to drive UAS-esg expression (data not shown). Upon

P.e. infection, esgts animals overexpressing UAS-esg in their

progenitor cells could still respond by increasing the ISC division

rate (Fig 3F). However, an increased mortality was observed upon

P.e. infection (Fig 1D), most likely because ISCs could not differen-

tiate into ECs, and therefore, the damaged epithelium could not be

replenished. Some cells within esg-F/O > UAS-esg clones were

positive for Delta (Fig 3H, arrows, Supplementary Fig S3A, B and

E), but other, adjacent cells expressed the Notch-responsive Su(H)-

GBE-lacZ reporter (Supplementary Fig S3C, D and F). Overexpres-

sion of Esg in EBs increased the number of GFP-positive EBs

(compare Supplementary Fig S2I with G). This increase in EBs was

also seen in esg-F/O > UAS-esg clones expressing the Su(H)-GBE-

lacZ reporter (Supplementary Fig S3F). In summary, cells in clones

with Esg expression locked “on” retain either ISC or EB identity

and do not differentiate.

Esg represses differentiation genes in progenitor cells

To gain a comprehensive picture of how Esg controls stem cell

identity in the midgut, we generated whole-genome RNA-Seq

profiles of sorted Esg-positive cells overexpressing Esg or expressing

esgRNAi and compared them to controls, as well as to expression

profiles of each normal midgut cell type (Supplementary Table S1)

(Dutta et al, 2013) (Materials and Methods and Supplementary

Materials and Methods). Upon depletion of esg by RNAi, 268 genes

were downregulated and 382 genes were significantly upregulated

(> twofold change, 95% CI, Fig 4A and Supplementary Table S2).

In contrast, very few genes were differentially regulated following

overexpression of Esg in esg+ cells (Supplementary Table S2). To

gain an overview of the variance between the different samples

from the different genotypes used in our analysis, we used principal

component analysis (PCA). This showed that the esgRNAi samples

distinctly clustered away from control and UAS-esg (Fig 4B),

whereas control and UAS-esg samples clustered nearby each other.

Hence, overexpression on Esg in the ISC/EB compartment for 1 day

did not lead to significant changes in gene expression, whereas

depletion of Esg caused a significant shift in the transcriptional

landscape of these progenitor cells. Strikingly, many of the genes

that were significantly upregulated following esg knockdown were

genes normally expressed in ECs and EEs. These included the EC

markers nubbin (Pdm1), Myo61F (brush border Myosin) and big

bang (bbg) (Bonnay et al, 2013) as well as the EE markers prospero,

tachykinin, asense and Rab3 (Fig 4A and Supplementary Tables S1

and S2). Several established Notch target genes, such as E(Spl) genes

and hairy, went up upon esgRNAi (Supplementary Table S2).

Conversely, many reported stem/progenitor cell-specific genes were

downregulated upon esgRNAi. These included miranda, Egfr and its

ligand spitz, the Jak/Stat receptor dome/Domeless, LIMK and esg

itself (Jiang et al, 2009, 2011; Bardin et al, 2010; Lourenco et al,

2013) (Fig 4A). Gene Ontology (GO)-term analysis of the genes

downregulated upon esgRNAi yielded many significantly enriched

GO-terms associated with cell fate specification, cell signaling, and

wing disc and tracheal development (Supplementary Table S3).

This is consistent with previous work, which demonstrated that

Esg plays a crucial role in imaginal disc and tracheal development

(Fuse et al, 1994, 1996; Samakovlis et al, 1996; Tanaka-Matakatsu

et al, 1996). Few GO-terms were significantly enriched in the

upregulated gene set. However, we found a strong overrepresenta-

tion of genes involved in septate junction formation (Supplementary

Table S3). Both Snakeskin (Ssk) and mesh are highly upregulated

upon esgRNAi (30-fold and 43-fold, respectively). It was shown

recently that these smooth septate junction structures are essential in

ECs for intestinal barrier function (Izumi et al, 2012; Yanagihashi

et al, 2012). Hence, upregulation of septate junction components

might be an important early step in EC differentiation, triggered by

loss of Esg.

The loss of stem cell and upregulation of differentiation gene

expression could be a direct effect of Esg on the promoters of its

target genes. Alternatively, these changes might reflect indirect

effects of losing Esg, namely transcriptional changes affected as an

aspect of differentiation. To distinguish between these possibilities

and define direct midgut targets of Esg, we used genome-wide bind-

ing data for Esg obtained by in vivo Dam-ID (Loza-Coll et al, 2014).

The Dam-ID technique uses a DNA methylase fused to a

DNA-binding factor of interest (i.e., Esg) that results in enriched

DNA methylation at places in the genome where the Esg-Dam fusion

protein binds (van Steensel & Henikoff, 2000). An Esg-Dam fusion

protein was expressed in the entire midgut, and enriched Esg-bind-

ing regions (EBRs) were defined by comparing Esg-Dam methylation

profiles to a Dam-alone control (see Materials and Methods). We

defined genes that had 1 or more EBRs within 5 kb of a gene in 2 of 3

DamID repeats as binding targets. There was a high degree of over-

lap between Esg-Dam-bound genes and genes upregulated upon

esgRNAi (Fig 4D). We used the hypergeometric distribution to deter-

mine the significance of this overlap, that is, we determined whether

the high degree of overlap could arise by chance alone when

comparing these large datasets (Fury et al, 2006; see Supplementary

Materials and Methods). This showed that the overlap was highly
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significant (Fig 4D); hence, the set of genes that are present in the

overlap are likely to be directly regulated by Esg. Esg-Dam binding

targets included nubbin (Pdm1), Myo31-DF (MyoIA), the Notch effec-

tor gene hairy, the EGF receptor Egfr and the cytokine receptor dome

(Domeless). The binding profiles for these target gene loci showed

that most have a strong enrichment for Esg-Dam binding at the 50 UTR
of their transcript isoforms, that is, close to the transcription start site

(Fig 4C). Hence, Esg acts in progenitor cells to repress differentiation

genes and promote stem cell gene expression and in many cases binds

the affected target loci.

A A’ C C’

B B’ D D’

G G’

H H’

E

F

Figure 3. Overexpression of Esg leads to a block in differentiation.

A–D MARCM FRT82B clones expressing UAS-esg. Control (FRT82B) clones are large and contain many polyploid Pdm1+ ECs 2 weeks after clonal induction (A, arrows),
whereas clones expressing UAS-esg only contain small Pdm1� diploid cells (B, arrows). UAS-esg MARCM clones do not contain Pros+ cells (D–D’) compared with
control (C–C’, arrows). Scale bars, 50 lm.

E Quantification of clones in (A, B). GFP-positive/Pdm1-positive cells within each clone were counted 2 weeks after clonal induction. n = 22 clones for control
(FRT80B), n = 46 clones for UAS-esg FRT80B, P < 0.0001, Mann–Whitney U-test.

F Quantification of mitoses/midgut in control, esgRNAi and UAS-esg animals.
G, H Both control FRT80B (G–G’) and UAS-esg FRT80B (H–H’) MARCM clones contain Delta-positive ISCs. Scale bars, 50 lm.

Source data are available online for this figure.
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Ectopic expression of Esg in enterocytes triggers hallmarks
of de-differentiation

Our observations support a model in which stem and progenitor

cells require Esg to maintain their identity, whereas Esg function

needs to be extinguished for the de-repression of differentiation

genes in order for differentiation to proceed. To further test this

model, we ectopically expressed Esg in differentiated ECs using the

EC-specific, temperature-inducible driver MyoIA-Gal4, UAS-GFP,

tub-Gal80ts (MyoIAts). MyoIA encodes a gut-specific myosin that is

a component of the apical brush border and is found only in

differentiated enterocytes. Forced expression of Esg in ECs had

dramatic effects on intestinal homeostasis. First, UAS-GFP expres-

sion driven by MyoIA-Gal4 was lost from ECs within 24 h of Esg

induction (Fig 5A–C). Furthermore, these midguts displayed an

increased mitotic index (Supplementary Fig S4A and C, quantifica-

tion in G) and increased expression of Upd3 cytokines (Fig 5F and

Supplementary Fig S4E and F), which occurs as a regenerative

response to EC loss (Buchon et al, 2009a; Jiang et al, 2009). Close

inspection revealed that the loss of GFP expression was not,

however, solely due to a loss of GFP-positive ECs. Indeed, many

large polyploid EC-like cells with reduced or undetectable GFP

A B

C
D

Figure 4. Transcriptome and Dam-ID analysis reveals that Esg acts as a suppressor of differentiation in the stem cell compartment.

A Scatter plot showing the genes differentially regulated upon esgRNAi. Y-axis shows log2 fold-change ratio. X-axis represents the log2 counts per million read (CPM)
value. Blue dots represent genes > twofold change with P < 0.05; yellow dots represent genes with < twofold change and/or P > 0.05.

B Principal component analysis (PCA) of the RNA-seq samples. Note that esgRNAi samples (red) cluster away from control (UAS-GFP, blue) and UAS-esg (green) samples.
C Esg-Dam binding profiles for nubbin/Pdm1, Myo31-DF/MyoIA, hairy, Egfr and dome loci. Average peak intensity calculated from 3 repeats in green. Black boxes

represent EBR calls. Associated genes/transcripts are in blue. Red arrowheads indicate the gene polarity of the different transcripts from these loci.
D Venn diagrams showing the overlap between genes bound by Esg-Dam (left) and genes > twofold downregulated and genes upregulated > twofold upon esgRNAi in

ISC/EB with esgts (right). The P-value for the overlap was calculated using the hypergeometric probability function.
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remained in the gut for 1–3 days following induction of Esg in ECs.

Co-expression of the apoptosis inhibitor dIAP with Esg could

partially rescue EC loss and the concomitant mitotic response.

However, the level of GFP expression in MyoIAts > UAS-esg UAS-

dIAP animals still decreased dramatically following 24 hours of

transgene induction (Fig 5C, arrows). These GFP-negative ECs in

MyoIAts > UAS-esg UAS-dIAP animals appeared to be normally

structured and similar in shape with wild-type ECs (Fig 5A and C,

arrows).

Since MyoIA and Pdm1 were identified as Esg-DamID targets

(Fig 4C), we hypothesized that ectopic expression of Esg in ECs

might repress these differentiation markers. To further test this, we

performed RNA-Seq on whole midguts that expressed either Esg

alone or in combination with dIAP from the MyoIAts driver for 24

hours. In both cases, Esg repressed the expression of a myriad of

differentiation genes, including known EC markers such as MyoIA

and Pdm1 (Fig 5D and G). Various genes involved in midgut

immune recognition (PGRP-SC2, PGRP-LE, bbg) and smooth septate

junction formation (mesh, cora, Ssk) were also significantly down-

regulated (Fig 5D and G, and Supplementary Tables S4 and S5)

(Izumi et al, 2012; Bonnay et al, 2013; Buchon et al, 2013). Further-

more, many digestive enzymes (Trypsins, Amylases, Lysozymes) as

well as transporter proteins were significantly downregulated. GO-

term enrichment analysis showed significant (P < 0.05) enrichment

for GO-terms such as peptidase activity (e.g., a,b,e,ι-Trypsin, 8.5%
in MyoIAts > UAS-esg, > twofold down genes VS 4.3% in the

genome), as well as a high enrichment for genes with transmem-

brane transport activity (12.3 Versus 3.2%) and hydrolase activity

(e.g., Mal-A1, Mal-A8, LysB, 23.7 versus 14.1%) (Supplementary

Table S5). On the other hand, upregulated genes included many cell

cycle genes as well as the stem cell marker gene Delta (Fig 5D), and

cell cycle-related GO-terms were highly enriched in the upregulated

gene set, in line with the increased mitotic activity in these guts at

this timepoint (Supplementary Fig S4G). Interestingly, many genes

that went down significantly upon Esg overexpression in ECs were

upregulated in esgts > esgRNAi RNA samples (Fig 5G). We confirmed

repression of the EC marker Pdm1 and upregulation of Upd3 by qRT-

PCR (Fig 5E and F). Thus, ectopic expression of Esg in ECs results in

transcriptional repression of EC-specific differentiation genes such as

MyoIA and Pdm1 as well as a general loss of expression for genes

important in the metabolic functions of the absorptive enterocytes.

After longer induction of Esg expression in ECs, midguts short-

ened and animal viability declined. Whereas MyoIAts > UAS-esg

midguts lost gut structure and integrity after 5 days of induction

(Supplementary Fig S4I), midguts from MyoIAts > UAS-esg UAS-

dIAP animals retained a comparatively normal morphology (Supple-

mentary Fig S4J) and had extended long-term survival, albeit still

well below that of controls (Supplementary Fig S4K). Thus, ectopic

expression of Esg in differentiated ECs had a detrimental effect on

gut homeostasis, which was only partially relieved by inhibition of

the apoptotic pathway.

To further distinguish direct effects of Esg on gene transcription

from indirect effects, we cross-compared the datasets of Esg-Dam

binding targets, genes upregulated upon esgts > esgRNAi and genes

downregulated in whole midguts upon MyoIAts > UAS-esg expres-

sion. Genes that are direct targets of Esg would be expected: 1) to

show increased expression upon loss of Esg, 2) to show reduced

expression upon overexpression of Esg and 3) to have binding sites

for Esg in their promoters. We found 76 genes in this category

(Fig 5H and Supplementary Table S6). These genes showed

> twofold upregulation upon esg knockdown, > twofold downregu-

lation upon UAS-esg expression and had 1 or more EBRs. Hence, we

consider these 76 genes high-confidence Esg targets. This set

included Pdm1, the smooth septate junction component Snakeskin

(Ssk), the transcription factor bowl and the cell cycle regulator trib-

bles (Trbl) (Supplementary Table S6), suggesting that Esg represses

diverse aspects of the differentiation process.

Overexpression of nubbin/Pdm1 triggers loss of esg expression
and EC differentiation

Loss of esg causes a strong upregulation of Pdm1 in progenitor cells.

Furthermore, our transcriptome analysis data strongly suggest that

Esg directly downregulates Pdm1 expression. Therefore, we investi-

gated whether ectopic expression of Pdm1 in the stem/progenitor

compartment would be sufficient to cause a loss of stemness and EC

differentiation. Expression of a UAS-Pdm1 construct with esgts trig-

gered a rapid loss of Delta+ ISCs and increased the ploidy of the

remaining GFP+ cells, which resemble larger, developing ECs

(Fig 6A and B, quantification of Delta+ cells in H). These cells also

express the EC-specific MyoIA-lacZ reporter gene (Fig 6D–D’,

arrows). The total number of GFP+ cells/ROI in UAS-Pdm1 midguts

did not significantly change at this timepoint compared to the

control (data not shown). We confirmed the apparent increased

ploidy upon Pdm1 overexpression by calculating the integrated

DAPI intensity/nucleus for GFP+ cells in both genotypes. Control

esg+ progenitor cells resided mainly in G2 and G1, consistent with

recent reports on cell cycle phasing in the adult midgut (Zielke et al,

2014). Overexpression of Pdm1 caused a depletion of both the G1

and G2 peaks, with the vast majority of cells having an 8C DNA

content (Fig 6E). Thus, based on the increased ploidy and morphol-

ogy, we conclude that Pdm1 overexpression results in EC differenti-

ation. To confirm loss of stem/progenitor identity upon ectopic

Pdm1 expression, we combined UAS-Pdm1 expression with the

progenitor-specific mira-GFP reporter and used an esgts driver strain

driving expression of a membrane-bound, myristoylated RFP (UAS-

myrRFP) (Fig 6F and G). Whereas control animals have high levels

of both mira-GFP and esg promoter-driven UAS-myrRFP (Fig 6F–

F’’’), Pdm1 expression resulted in a rapid loss of mira-GFP+/esg+-

double-positive progenitor cell nests (Fig 6G–G’’’). Thus, expression

of Pdm1 is sufficient to trigger a loss of esg expression and stem cell

identity and results in a rapid initiation of EC differentiation.

Activated Notch overrides ectopic Esg

Notch signaling is a key regulator of differentiation in the Drosophila

ISC lineage. (Ohlstein & Spradling, 2006, 2007; Perdigoto & Bardin,

2013). To determine the epistatic relationship between Notch and

Esg, we tested whether a constitutively active intracellular domain

of the Notch receptor (Nintra) could override the block to differentia-

tion that results from enforced Esg expression. We used esg-F/O to

clonally express UAS-Nintra, UAS-esg or the combination of both and

then scored the appearance of differentiated ECs in the clones. As

previously reported (Ohlstein & Spradling, 2007), Nintra rapidly

drove differentiation of the ISCs and EBs into ECs (Fig 7B–B’,

arrows). Conversely, UAS-esg expression caused the formation of

The EMBO Journal Vol 33 | No 24 | 2014 ª 2014 The Authors

The EMBO Journal Esg maintains stemness in Drosophila intestine Jerome Korzelius et al

2974



A A’ D

E

G H

F

B B’

C C’

Figure 5. Overexpression of Esg in differentiated enterocytes leads to a loss of EC-specific differentiation gene expression.

A–C MyoIAts > UAS-esg and MyoIAts > UAS-esg; UAS-dIAP animals show a loss of GFP after 24 h of induction, even in ECs with a wild-type structure (B–B’ and C–C’,
arrows, see A–A’ for control). Cells are co-stained with Armadillo (b-catenin) staining (red), which outlines the cell borders. Scale bars, 50 lm.

D Scatter plot showing the genes differentially expressed between MyoIAts > UAS-esg and control.
E, F qRT-PCR analysis for the enterocyte marker Pdm1 (E) and the Unpaired 3 (Upd3) cytokine (F).
G Expression heatmap of representative EC differentiation genes from MyoIAts > UAS-esg and esgts > esgRNAi RNA-Seq samples.
H Venn diagram showing the overlaps between Esg-Dam midgut target genes, genes upregulated upon esgts > esgRNAi expression and genes downregulated in

MyoIAts > UAS-esg midguts. The P-value for the overlap was calculated using the hypergeometric probability function.
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small, diploid cells that were Pdm1-negative (Fig 7C–C’, arrow and

Fig 3B–D). Combined expression of UAS-Nintra and UAS-esg led to

the appearance of large polyploid cells that had low levels of Pdm1

(Fig 7D–D’, arrows). Based on their morphology and condensed

nuclear DNA, it is likely that these cells were ECs undergoing apop-

tosis. Hence, Notch activation can at least partially override the

block to differentiation that occurs when Esg is overexpressed in

progenitor cells.

Esg is required for the growth of ISC-derived tumors induced
by NotchRNAi

Loss of Notch leads to a rapid overproliferation of stem-like cells that

express high levels of Delta, have a high mitotic index and no longer

differentiate into ECs. Large numbers of EEs are also produced

(Supplementary Fig S5; Ohlstein & Spradling, 2007; Perdigoto et al,

2011). These Notch mutant ISC-derived tumors rapidly supplant

differentiated cells in the intestinal epithelium and eventually kill

the host (P. Patel and B.A.E. unpublished observations). We investi-

gated the requirement for Esg in these stem cell tumors by creating

esgG66B null mutant MARCM clones that also expressed NotchRNAi.

Many of these esgG66B NotchRNAi clones had a phenotype similar to

esgG66B single mutant clones, namely that the clones consisted of

only a few cells and these were differentiated ECs and EEs.

However, infrequent Delta-positive stem cell overgrowths were also

observed (Fig 7H). Despite these rare overgrowths, midguts from

esgG66B NotchRNAi animals still had much lower mitotic indices than

seen in NotchRNAi controls, and the overgrowths in these midguts

A

F F’ F’’ F’’’

G G’ G’’ G’’’

A’ C C’
E

B B’ D D’

H

Figure 6. Ectopic expression of Pdm1 in progenitors leads to EC differentiation.

A Control esgts animals have stem-progenitor nests with 1 or more Delta+ ISCs.
B esgts > UAS-Pdm1 animals lack Delta+ ISCs and appear as young EC-like cells with larger nuclei.
C, D Expression of the EC-specific MyoIA-lacZ reporter gene in control (C–C’) and UAS-Pdm1-expressing esgts animals (D–D’). Expression is absent from control Esg+ ISC

and EB cells (C–C’, arrows), whereas Pdm1 expression results in MyoIA-lacZ+/GFP+ double-positive cells (D–D’, arrows).
E Frequency histogram showing the integrated DAPI intensity/nucleus in control (upper panel) and UAS-Pdm1 GFP+ cells (lower panel) (n = 540 nuclei for control,

n = 565 nuclei for UAS-Pdm1).
F, G esgts, UAS-myrRFP expressing either the mira-GFP reporter alone (control, F–F’’’) or in combination with Pdm1 overexpression (UAS-Pdm1, G–G’’’). Transgene

induction for 2 days results in disappearance of the population of esg+/mira-GFP+ double-positive cells (G–G’’’).
H Quantification of the number of Delta+ cells/ROI in control and UAS-Pdm1-expressing esgts animals after 4 days of transgene induction. P < 0.0001, Student’s

t-test.

Data information: Scale bars, 50 lm.
Source data are available online for this figure.
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Figure 7. Esg is required for NotchRNAi-induced stem cell overgrowths in the midgut.

A Control esg-FO clones 2 days after clonal induction. Few cells have differentiated into mature Pdm1-positive ECs (arrow).
B Overexpression of the constitutively active Notch intracellular domain (Nintra) results in EC differentiation in most of the esg-FO clones (arrows).
C UAS-esg-expressing esg-FO clones consist of small clusters of diploid cells, negative for Pdm1 (arrow).
D UAS-esg UAS-Nintra expression results in an extensive loss of GFP-positive cells with few large polyploid GFP-positive cells with an aberrant nuclear morphology

(arrows).
E Control FRT40A clones consist mainly of large differentiated ECs, with occasionally a mitotic ISC (arrow).
F esgG66B clones consist mainly of differentiated cells (also see Fig 1).
G Clonal expression of NotchRNAi generates large overgrowths, consisting of highly mitotic Delta-positive cells (arrows, quantification in I).
H esgG66BNotchRNAi clones occasionally form overgrowths resembling NotchRNAi clones, but these are much smaller and less mitotic as the NotchRNAi-only tumors.
I Quantification of mitotic cells/midgut 7 days AHS for the genotypes presented in (E–H). P < 0.0001, Student’s t-test with Welch’s correction.
J Quantification of the percentage of mitotic cells/clonal area unit (1,000 lm) for NotchRNAi and esgG66BNotchRNAi stem cell clones. n = 11 clones for NotchRNAi clones

and n = 18 clones for esgG66BNotchRNAi clones.
K Kaplan–Meier survival curves for the different genotypes. n = 3 × 20 animals/genotype for each of the genotypes.

Data information: Scale bars, 50 lm.
Source data are available online for this figure.
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were much smaller than overgrowths in NotchRNAi midguts (Fig 7I

and Supplementary Fig S5A and B). Quantification of the number of

mitoses per clonal area unit in cell overgrowths from NotchRNAi and

esgG66B NotchRNAi animals showed a bimodal distribution, such that

many overgrowths in esgG66B NotchRNAi animals contained no

mitotic cells whereas others had as many mitoses as clones

expressing NotchRNAi alone (Fig 7J). The percentage of Pros-positive

EE cells in esgG66B NotchRNAi clones was significantly higher than

in NotchRNAi clones (Supplementary Fig S5C and D, quantification

in E), suggesting that loss of Esg in NotchRNAi clones biases preco-

cious differentiation toward the EE fate. The EE bias in these clones

is in line with results from Loza-Coll et al, which show that loss

of Esg results in a bias toward EE differentiation (Loza-Coll et al,

2014).

Long-term survival assays showed that the extensive overprolif-

eration of ISC-derived tumors in NotchRNAi animals led to lethality

(Fig 7K). However, this loss of viability was nearly completely

rescued in esgG66B NotchRNAi animals (Fig 7K), supporting our

hypothesis that Esg is required to maintain the proliferative poten-

tial of ISCs. In summary, activated Notch can overcome the action

of Esg to induce differentiation. However, Esg is required in stem

cell-derived tumors to maintain stem cell characteristics such as

proliferative capability, and to prevent differentiation toward the

EE fate.

Discussion

Stem cell identity is controlled by both extrinsic cues from the niche

and cell-intrinsic transcriptional programs. Thus far, most studies of

the Drosophila midgut have focused on the niche-derived signals

that control midgut stem cell self-renewal (Jiang & Edgar, 2011;

Lucchetta & Ohlstein, 2012). Here, we demonstrate a cell-intrinsic

role for the Snail family transcription factor, Escargot, in controlling

ISC self-renewal and differentiation. Loss of Esg leads to a rapid loss

of all stem/progenitor cells in the midgut, due to their differentia-

tion, whereas Esg overexpression keeps these cells permanently in

an undifferentiated state. The dramatic effects of manipulating Esg

levels support a central role for this Snail family member in control-

ling stem cell identity in the fly intestine.

Esg promotes self-renewal by repressing differentiation
gene expression

Our transcriptomics analysis indicated that Esg acts as a transcrip-

tional repressor of a large diverse set of differentiation genes. These

targets include transcription factors specific to ECs and EEs (Pdm1,

Prospero) and genes used in digestion, immunity and cytoarchitec-

tural specialization (Figs 4 and 5 and Supplementary Tables S2, S4

and S6). Interestingly, one of these transcription factors, Pdm1,

plays an important role in EC differentiation: ectopic expression of

Pdm1 in progenitor cells was sufficient to trigger EC differentiation,

partially mimicking the esg loss of function phenotype. The rapid

loss of the Esg-expressing cell population upon Pdm1 overexpres-

sion suggests that Pdm1 might repress Esg expression, perhaps

directly (Fig 6). In this case, Esg and Pdm1 together would consti-

tute a negative feedback switch that governs EC differentiation (see

Fig 8).

Our expression analysis also raised the possibility that Esg acti-

vates progenitor cell-specific genes in ISCs and EBs. These include

the EGF signaling components Cbl, spitz, argos and Egfr as well as

the Jak/Stat receptor domeless. Both EGFR and Jak/STAT pathways

are crucial for ISC growth and maintenance, and receptivity to these

signals is downregulated in differentiated ECs and EEs (Jiang &

Edgar, 2009; Jiang et al, 2011; J. Xiang, D. Dutta and B.A. Edgar,

unpublished observations). While Snail family members are best

understood as repressors, the Esg paralog Snail has been reported to

function as a context-dependent transcriptional activator (Rembold

et al, 2014), suggesting that an activating role for Esg is also plausi-

ble. The function of Esg as either an activator or repressor is likely

determined by co-factors and/or other transcription factors acting

on the same promoters that are expressed in the ISC and EB popula-

tion. In the Drosophila embryo, Snail cooperates with Twist at

Figure 8. Model describing the gene regulatory interaction between Esg,
Notch and Pdm1 in the adult midgut.
Notch, Esg and Pdm1 are part of a transcriptional network with negative
feedback that controls stem cell identity and differentiation in the adult midgut.
Esg acts in the ISC to repress expression of differentiation genes such as Pdm1
and maintains expression of stem cell-associated genes such as Egfr and
miranda. Simultaneously, growth factors such as Upd cytokines and EGFR ligands
from ECs control ISC mitosis and Jak/STAT and EGFR pathway activity in both ISC
and EB. The combined activity of the Notch and Jak/STAT pathways is required for
differentiation gene expression to initiate in the EB. This results in the
downregulation of Esg upon differentiation, through the action of specific
differentiation genes such as Pdm1 (in ECs). Under “quiescent” conditions (top),
growth factor activity is low and differentiation does not occur. When EC stress
requires regeneration (bottom), high Jak/STAT and EGFR pathway activity
promotes ISC mitosis, and EB differentiation is promoted through the
combinatorial action of Delta-Notch and Jak/STAT signaling. Only after the
differentiation factor Pdm1 is activated, Esg is finally repressed.
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distinct promoters to activate EMT gene expression during meso-

derm formation (Rembold et al, 2014). Snail2 can bind to Sox9 to

activate expression from its own promoter during chick neural crest

formation (Sakai et al, 2006). In its role as a repressor, Esg binds

the co-repressor CtBP to maintain somatic Cyst stem cells and hub

cells in the Drosophila male testis (Leatherman & Dinardo, 2008;

Voog et al, 2014). Future work to unravel the complete transcrip-

tional network within which Esg functions to maintain the stem/

progenitor state should prove to be very interesting.

Esg, Notch and Stat form a transcriptional circuit that
governs differentiation

Our data support a model in which Esg acts in a circuit with Delta-

Notch signaling to control the switch from stem/progenitor identity

to differentiated cell identities (Fig 8). In its simplest form, this

circuit might be a bistable switch in which Esg and Notch mutually

inhibited each other, with Esg being “on” and dominant in progeni-

tor cells and Notch signaling “on” and dominant in their differenti-

ated progeny, the enterocytes. However, the constant presence of a

substantial population of intermediate progenitor cells, the entero-

blasts (EBs), which express both Esg and Notch reporter genes, indi-

cates that a simple bistable switch is not an accurate conception.

Indeed, EBs, defined here as cells positive for both Esg and the

Notch reporter Su(H)GBE-LacZ, can persist for many days in the

absence of ISC division. Thus, the EB transition state is metastable.

In this transition state, Notch is apparently active, but secondary

downstream targets that directly affect differentiation, such as

Pdm1, brush border Myosin and smooth septate junction proteins,

remain repressed (Supplementary Table S1). Since these genes are

rapidly activated following depletion of Esg, we suggest that their

repression is most likely mediated by Esg binding.

We can offer two potential explanations for the longevity of the

EB transition state. First, we suggest that the repression of esg

transcription by Notch is indirect and that this delays esg silencing

(Fig 8). Silencing of Esg is not likely to be mediated by the Notch-

regulated transcription factor Su(H) (a transcriptional activator) but

by downstream repressors that act only after enterocyte or endo-

crine differentiation has begun. Pdm1 in ECs and Prospero in EEs

are presently the most obvious candidates. Both are specifically

induced coincident with Esg silencing, in ECs and EEs, respectively,

and Dam-ID assays suggest that Pros has binding sites in the esg

locus (Choksi et al, 2006). Our finding that overexpression of Pdm1

caused the rapid differentiation of Esg+ stem/progenitor cells

supports the notion that Pdm1 could directly repress Esg expression

to control EC differentiation. Furthermore, nubbin/Pdm1 was found

to restrict expression of Notch target genes in the Drosophila

larval wing disc (Neumann & Cohen, 1998). Hence, Pdm1 likely

triggers EC differentiation by downregulating both Esg and the

expression of Notch target genes in the EB. Therefore, Notch is only

transiently active in EBs but fully off in mature ECs with high levels

of Pdm1.

While a delay circuit that controls the silencing of Esg is likely,

theoretically it cannot explain how Esg+ EBs can persist for such

long periods during times of low gut epithelial turnover and then

rapidly differentiate during gut regeneration. Hence, we speculate

that a second input signal acts in combination with Notch-

dependent factor(s) to silence Esg (Fig 8). This second signal is

likely to be a downstream effector of the growth factor signaling

network that also drives ISC division and gut epithelial renewal

(Jiang & Edgar, 2011; Lucchetta & Ohlstein, 2012). Of the transcrip-

tional effectors involved in maintaining gut homeostasis, the most

obvious candidate as an indirect mediator of esg repression is

Stat92E, which is activated by the highly stress-dependent cyto-

kines, Upd2 and Upd3. Tellingly, the cytokine receptor, Dome,

Janus Kinase (hop) and Stat92E are all required for EB maturation

into ECs (Jiang & Edgar, 2009; Beebe et al, 2010; Lin et al, 2010). If

the silencing of esg was dependent upon both Notch and Stat92E,

and Delta-Notch signaling was irreversible once resolved; then, the

Notch+ Esg+ EB transition state should in principle be stable in

conditions of low Jak/Stat signaling, as is observed during periods

of midgut quiescence. It needs to be noted, however, that ISCs and

EBs maintain appreciable levels of Stat-reporter gene expression even

during relative quiescence, and so, in this model, it would be

Stat activity above some threshold that would combine with Notch

signaling to trigger differentiation. Since Jak/Stat signaling also

triggers ISC division, a surge in cytokine signaling could coordinately

trigger both the differentiation of older EBs and the production of

new ones in this model (Fig 8), thus explaining how a significant

EB population is maintained even as stem cell activity waxes

and wanes.

A central role for Snail family members in regulating stemness
and differentiation

Snail family transcription factors have been described as regulators

of epithelial-to-mesenchyme transitions (EMT) that occur during

development, wound healing and cancer metastasis (Thiery et al,

2009). In some contexts, notably metastasis, EMT is believed to

accompany the acquisition of stem-like properties (Mani et al,

2008). Although Esg itself has not been reported to regulate EMT, its

paralog in flies (Sna) and homologs in mammals (Snai1, Snai2) do

promote EMT (Thiery et al, 2009). Interestingly, our RNA-seq exper-

iments showed that not only Esg, but Snail, Worniu and the Zeb

family members Zfh1 and Zfh2 were all expressed in intestinal stem

cells and downregulated in ECs and EEs (Supplementary Table S1).

Thus, these EMT-linked transcription factors may work together to

affect different aspects of midgut homeostasis and ISC differentia-

tion. Indeed, Esg-positive ISCs and EBs are morphologically more

similar to mesenchymal cells than they are epithelial, whereas Esg-

negative EEs and ECs have the pronounced apical-basal polarity

typical of epithelial cells. Esg+ cells often make striking lateral

projections, suggestive of dynamic behavior, and they have the

capacity to multilayer when their differentiation is blocked or they

are forced to overproliferate. Furthermore, a number of epithelial-

class genes are repressed in Esg+ progenitors and activated upon EC

and/or EE differentiation (Supplementary Table S1). These include

genes encoding the apico-lateral cortical Lgl-Dlg-Scrib-Crb complex,

septate junction proteins (e.g., Ssk, Cora, Mesh) and polarity factors

including Par3 and Par6. Strikingly, Scrib and Ssk both have

Esg-binding sites in their promoters, and their expression is highly

regulated by Esg (Fig 5 and Supplementary Tables S2, S4 and S6).

However, some gene targets that are central to EMT in mamma-

lian cells show opposite trends in the fly’s ISC lineage. For

instance, Esg+ progenitors express significant levels of integrins,

and E-cadherin—typically lost during EMT—is highly upregulated
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specifically in ISCs and EBs. Thus, the Esg-regulated differentiation

of Drosophila ISCs only partially resembles a mesenchymal-

to-epithelial transition (MET).

Esg’s role in ISC maintenance nicely parallels the functions of

other Snail family members in Drosophila and mammals. For

instance, in Drosophila neuroblasts (neural stem cells), the Snail

family member Worniu promotes self-renewal and represses neuro-

nal differentiation (Lai et al, 2012). In mice, Snail family members

have been associated with the regulation of the stem cell state in

both normal and pathological conditions (reviewed in Scheel &

Weinberg, 2012). For instance, mammary stem cells require the

Snail family member Slug to retain their MaSC identity (Guo et al,

2012). Mouse Snai1 also represses the transition from the stem cell-

like mitotically cycling trophoblast precursor cell to the endorepli-

cating trophoblast giant cell during rodent placental development

(Nakayama et al, 1998). This process, which also requires a mitotic-

to-endocycle switch upon differentiation, is strikingly similar to the

role we describe here for Esg in EC differentiation and its role during

imaginal disc development (Fuse et al, 1994).

More interesting yet, mouse Snai1 is specifically expressed and

required for stem cell maintenance in the crypts of the mouse intes-

tine and expands the stem cell population when overexpressed

(Horvay et al, 2011; Horvay et al, personal communication).

However, few studies highlight the target genes responsible for the

function of Snail family members in stem cell maintenance. One

example is from mouse muscle progenitors (myoblasts), where

Snai1 and Snai2 repress expression from MyoD target promoters

and this is required to maintain their progenitor state (Soleimani

et al, 2012). The work we present here shows that Esg affects many

aspects of the differentiation process and that it can form a

transcriptional switch with one of the targets it represses (Pdm1) to

balance self-renewal and differentiation in this stem cell lineage.

Together, these studies suggest that the function of Snail family

transcription factors as repressors of differentiation genes is ancient

and widespread and may be an essential component in balancing

self-renewal with differentiation in diverse animal stem cell

lineages.

Materials and Methods

Fly genetics

See Supplementary Materials and Methods for fly stocks used in this

study and a detailed description of clonal analysis and quantifica-

tion methods.

Immunohistochemistry and microscopy

Drosophila female adult intestines were dissected in phosphate-

buffered saline (PBS) and fixed for 30 min at room temperature

(RT) in 4% paraformaldehyde. Antibody incubations were

performed in 2.5% BSA, 0.01% Triton X-100 and 10% normal goat

serum. Washes were performed using PBS containing 0.15% Triton

X-100 or 0.1% Tween-20 (for anti-dCad2), respectively. Samples

were mounted in Vectashield (Vector Laboratories). Antibodies:

chicken anti-GFP (Life Technologies/Molecular probes, 1:500);

mouse anti-Pdm1 (kindly provided by Steve Cohen, 1:20); mouse

anti-Delta extracellular domain (Developmental Studies Hybridoma

Bank (DSHB), 1:50); mouse anti-Prospero (DSHB, 1:50); mouse

anti-Armadillo (DSHB, 1:50) rabbit anti-phospho-Histone 3 (Upstate

Biotechnology, 1:1,000); rat anti-dCad2 (DSHB, 1:20); mouse anti-b-
galactosidase (Sigma, 1:100). Images were acquired on a Leica TCS

SP5II inverted confocal microscope, equipped with a HCX Plan APO

40×/1.30 oil-immersion objective and processed with Fiji/ImageJ

and Adobe Photoshop. Scale bars are 50 lm in all images, unless

otherwise indicated.

Flow Cytometry and RNA-Seq

For transcriptome profiling of sorted progenitor cells, esgts animals

expressing either UAS-GFP alone, esgRNAi or UAS-esg were shifted

for 24 h at 29°C. Midgut dissociation and FACS were performed as

described previously (Dutta et al, 2013). Raw RNA-Seq data were

submitted to ArrayExpress (accession E-MTAB-2915). A detailed

description of the FACS/RNA-Seq procedure and bioinformatic data

analysis can be found in the Supplementary Materials and Methods.

qRT-PCR

MyoIAts was used to drive transgene expression for 24 h at 29°C. 25

adult female intestines per genotype were dissected, and midguts

were homogenized in TRIzol (Life Technologies). RNA was isolated

by phenol/chloroform extraction, followed by purification of the

RNA-containing fractions using RNAeasy columns supplied with the

RNAeasy Mini Kit (Qiagen). 250 ng of total RNA was used for cDNA

synthesis reactions using the QuantiTect Reverse Transcription Kit

(Qiagen). qPCR was performed on a LightCycler 480 II (Roche)

using the LightCycler Universal Probes and Probes Master (Roche).

Each assay was performed in triplicate on four biological repeats.

Expression levels of targets analyzed were calculated relative to

GAPDH expression, using the DDCt method. Primer sequences can

be found in the Supplementary Materials and Methods.

Dam-ID

In transgenic flies that expressed a fusion of Esg and the bacterial

DNA methylase Dam, genomic DNA was extracted from whole

midguts, and the methylated regions were fluorescently labeled by

PCR amplification and hybridized to whole-genome tiling arrays.

Approximately 50 female flies expressing the Dam:Esg fusion (or

control flies expressing Dam alone) were dissected 5-6 days after

eclosion, and genomic DNA (gDNA) was isolated and labeled with

minor modifications to the protocol in Choksi et al (2006). Triplicate

samples of labeled gDNA were hybridized with a dye-swap to

NimbleGen 2.1M Whole-Genome tiling arrays (Roche), and the fluo-

rescence intensity ratios between Esg:Dam and Dam controls were

analyzed to identify EBRs using ad hoc Perl scripts with minor modi-

fications to those reported by Southall and Brand (Southall & Brand,

2009). Briefly, a gene was identified as a putative Esg target if an

EBR was mapped within � 5 kb of its sequence. EBRs are strings of

at least 8 consecutive tiling array probes with a log2 (Dam:Esg/Dam

intensity ratio) above a threshold that was adjusted for each dataset

to correct for differences in background binding and thus generate

similar EBR size distributions (overall FDR < 0.01). The putative

Esg targets considered in this study had an associated EBR in at least
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2 out of the 3 datasets, and only EBRs between 8 and 12 probes in

length were considered (Loza-Coll et al, 2014).

Supplementary information for this article is available online:

http://emboj.embopress.org
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