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Abstract

In this thesis we will study the horofunction boundary of metric spaces, in particular the

Funk, reverse-Funk and Hilbert’s metrics, and one of its applications, Denjoy-Wolff type

theorems. In a Denjoy-Wolff type setting we will show that Beardon points are star points

of the union of the ω-limit sets. We will also show that Beardon and Karlsson points are not

unique in R2. In fact, we will show one can have a continuum of Karlsson points. We will

establish two Denjoy-Wolff type theorem that confirm the Karlsson-Nussbaum conjecture

for classes of non-expanding maps on Hilbert’ metric spaces. For unital Euclidean Jordan

algebras we will give a description of the intersection of closed horoballs with the boundary

of the cone as the radius tends to minus infinity.

We will expand on results by Walsh by establishing a general form for the Funk and

reverse Funk horofunction boundaries of order-unit spaces. We will also give a full classifi-

cation of the horofunctions of JH-algebras and the horofunctions and Busemann points of

the spin factors for the Funk, reverse Funk and Hilbert metrics. Finally we will show that

there exists a reverse-Funk non-Busemann horofunction for the cone of positive bounded

self-adjoint operators on an infinite dimensional Hilbert space, the infinite dimensional

spin factors and a space in which the pure states are weak* closed, answering a question

raised by Walsh in [66].
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Chapter 1

Introduction and overview

The horofunction boundary was first introduced by Gromov in [27]. It provides a natural

way to add a “boundary at infinity” to a metric space. One of the strengths of the horo-

function boundary is that we can define one for every metric space and it does not require

the space to have special properties like the Gromov boundary of a δ-hyperbolic space,

see [9]. The union of the original metric space with the horofunction boundary is also a

compact set, unlike other boundaries such as the bordification, see [9]. The horofunction

boundary has applications in the study of isometry groups of metric spaces, see [45, 64, 65],

the analysis of Denjoy-Wolff type problems in metric spaces, see [6, 25, 35, 41, 42], and

establishing multiplicative ergodic theorems [26]. In general the horofunction boundary is

hard to determine, though it has been found for a variety of metric spaces, including spe-

cial cases of, normed spaces [29, 31, 30, 62], Hilbert metric spaces [41, 65] and Teichmüller

spaces [36, 67], see [37] for an overview.

In this thesis we will be particularly interested in Hilbert metric spaces. Hilbert’s

(cross-ratio) metric dh was first defined by Hilbert in [32] on an open bounded convex set

C of a finite dimensional real vector space in the following way:

dh(x, y) = log

(
‖x′ − y‖‖y′ − x‖
‖x′ − x‖‖y′ − y‖

)
(x, y ∈ C)

where x′ and y′ are the intersections of the line through x and y and the boundary of

C such that x lies between x′ and y and y lies between x and y′. Hilbert metric spaces

are a generalisation of Klein’s model of the real hyperbolic space and have been studied

intensively, see [57] for an overview. In [8] Birkhoff noted a connection between Hilbert’s

cross-ratio metric and the order structure of the cone. This gave rise to Birkhoff’s version

of Hilbert’s metric, which gives an alternative definition of Hilbert’s metric between the

rays of the cone solely using the partial order. This version was popularised by Bushell in
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Chapter 1: Introduction and overview

[11]. Birkhoff’s version of Hilbert’s metric also gives rise to two pseudo-metrics, the Funk

and reverse-Funk metrics, whose sum forms Hilbert’s metric.

In this thesis we will be studying the geometry and applications of the horofunction

boundary for order-unit spaces. For the applications specifically we will look at Denjoy-

Wolff type theorems. Below we will give an overview of the main results of this thesis.

First we will recall the necessary background in Chapter 2, introducing partially or-

dered vector spaces, order-unit spaces, the Funk and reverse-Funk metric and Hilbert’s

metric, and the horofunction boundary.

In Chapter 3 we study Denjoy-Wolff type theorems. The classical Denjoy-Wolff theorem

describes the accumulation points of the orbits of fixed point free holomorphic maps on

the open unit disc of C. Beardon expanded this result to metric spaces, and for finite

dimensional Hilbert metric spaces Karlsson and Nussbaum independently conjectured that

the accumulation points of the orbits of fixed point free non-expansive maps should satisfy

similar behaviour. For numerous special cases the conjecture has been shown to hold, see

[6, 35, 46].

We will in particular focus on Denjoy-Wolff type theorems by Beardon [6] and Denjoy-

Wolff type theorems by Karlsson [35]. The methods in their proofs give rise to a special

class of points; which we call Beardon and Karlsson points. Karlsson and Noskov have

shown in [40] that Karlsson points are star points of the accumulation set of the orbit and,

in Theorem 3.1.11, we will show that Beardon points are star points of the accumulation

set of the orbit as well. Though Karlsson and Beardon points are unique for an open

bounded strictly convex set of a vector space equipped with Hilbert’s metric, we will show

this is not the case in general. In Example 3.3.6 we will also show that for R2 equipped

with the Euclidean norm the Karlsson and Beardon points in general are not unique. In

fact, we will show that one can find a continuum of Karlsson points.

Finally, we will prove two special cases of the Karlsson-Nussbaum conjecture. In The-

orem 3.4.1 we will show that the conjecture holds if the map is an isometry instead of

non-expansive. In Theorem 3.4.8 we show that, if f is a fixed point free non-expansive

map on a finite dimensional Hilbert metric space such that the images of the limit maps

of (fn) are closed, then the Karlsson-Nussbaum conjecture holds. This result is analogous

to a result by Chu and Rigby in [14] for bounded symmetric domains.

In Chapter 4 we will provide an alternate version of another result by Chu and Rigby.

In Theorem 5.10 in [14] Chu and Rigby give an explicit description of the closed horoballs
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Chapter 1: Introduction and overview

on bounded symmetric domains, using the Pierce decomposition of Jordan algebras. We

will give a description of the intersection of closed horoballs of Euclidean Jordan algebras

as the radius tends to minus infinity.

In the remainder of the thesis we focus on the horofunction boundary of infinite dimen-

sional order-unit spaces. A lot of our results are based on work in [66], by Walsh, which

gives a classification of the Busemann points of order-unit spaces. Busemann points are

horofunctions that are the limits of almost geodesics which were introduced by Rieffel in

[59]. Walsh in particular has shown that in C(K), where K is a compact Hausdorff space,

all horofunctions of the Funk and reverse-Funk geometry are Busemann points. Walsh

raised the question if for general order-unit spaces this remains the case [66, Question 6.6].

In [62] Walsh shows that for finite dimensional order-unit spaces the horofunctions of the

reverse-Funk geometry are always Busemann points, and the horofunctions of the Funk

geometry are all Busemann points if and only if the pure states are weak* closed. For infi-

nite dimensional order-unit spaces there are no known necessary and sufficient conditions

for which all horofunctions are Busemann points.

In Chapter 5 we will recall Kuratowski-Painlevé convergence. Kuratowski-Painlevé con-

vergence is used to define a limit of a net of subsets of a Hausdorff space. The convergence

is not always topological; if a Hausdorff space X is not locally compact, then there is no

topology on the power set of X for which the limits coincide with the Kuratowski-Painlevé

limit. One of the advantages of Kuratowski-Painlevé convergence is that the convergence

is “compact”, i.e. for every net there exists a convergent subnet. One can define the limit

of a net of maps from a Hausdorff space to R by taking the Kuratowski-Painlevé limit

of the epigraphs or hypographs. These modes of convergence play an important role in

Walsh’s classification of the Busemann point in C(K) and in Chapter 7.

We will study and expand Walsh’s results from [66] in Chapter 6. In the first two

sections we will provide the proofs of the results in more detail. In the final section we use

the classification of the Busemann point in C(K) to describe the horofunction boundary of

order-unit spaces. In Theorem 6.3.7 and Theorem 6.3.8 we will show that the horofunctions

on order-unit spaces of the reverse-Funk and Funk geometry respectively are always of a

specific form. This form is determined by the respective epigraph or hypograph limit of

the evaluation maps of the net defining the horofunction. To obtain this result we use work

by Kalauch, Lemmens and van Gaans [34] which shows the existence of an order dense
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embedding from an order-unit space into the continuous functions on the weak* closure

of the pure states. We can show that any horofunction on the original order-unit space

corresponds to a unique horofunction of the continuous functions on the weak* closure

of the pure states, whose form is already known due to Walsh. Unfortunately the reverse

is not true. Therefore, though we have a description of the horofunction boundary of an

order-unit space, we do not have a classification.

In Chapter 7 we will provide an answer to the first part of Question 6.6 in [66]. We will

show that there exist order-unit spaces for which not all horofunctions of the reverse-Funk

geometry are Busemann points. Theorem 7.1.20 shows that there exists a reverse-Funk

non-Busemann horofunction on B(H)sa, the space of self-adjoint bounded operators on

a complex Hilbert space. For this we will use that the pure states of B(H)sa are not

weak* closed. As this was an important condition in [62] for all horofunctions of the Funk

geometry to be Busemann point, one might think that it will be sufficient to require the

pure states to be weak* closed, but in Theorem 7.1.22 we will show that, even for the

reverse-Funk geometry, this is not a sufficient condition.

Finally, in Theorem 7.2.1 and Theorem 7.3.14 we will give a classification of the ho-

rofunctions and Busemann points of the Hilbert geometry of the spin factors and JH-

algebras. Spin factors are well known and important Jordan algebras. They are one of the

main building blocks of the Euclidean Jordan algebras, which were classified by Jordan,

von Neumann and Wigner in [56]. Spin factors are also used as a model for real hyperbolic

spaces. JH-algebras are Jordan algebras which are also a Hilbert space, where the multi-

plication map is self-adjoint with respect to the inner product. Roelands and Wortel have

classified the unital JH-algebras as a finite direct sum of Euclidean Jordan Algebras and

spin factors. In Theorem 7.3.5 and Theorem 7.3.8 respectively we will classify the horo-

function of the reverse-Funk and Funk geometry of a finite direct sum of order-unit spaces

in terms of the horofunction boundaries of the terms of the direct sum. As the horofunction

boundary of Euclidean Jordan algebras has been fully classified by Lemmens, Lins, Nuss-

baum and Wortel in [41], this allows us to give the full classification of the horofunction

boundary of the Hilbert geometry of JH-algebras. For both the infinite dimensional spin

factors and infinite dimensional JH-algebras we find non-Busemann horofunctions for the

Funk, reverse-Funk and Hilbert geometry.
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Chapter 2

Preliminaries

2.1 Partially ordered vector spaces

Recall that a partial order on a set X is a binary relation which for all x, y, z ∈ X satisfies

the properties

1. (reflexive) x ≤ x,

2. (anti-symmetry) x ≤ y and y ≤ x implies that x = y and

3. (transitive) x ≤ y and y ≤ z implies that x ≤ z.

A real vector space (X,≤) is a partially ordered vector space if it is equipped with a partial

order ≤ which for all λ ≥ 0 and x, y, z ∈ X satisfies the properties

1. x ≤ y implies that x+ z ≤ y + z and

2. x ≤ y implies that λx ≤ λy.

We call a subset X+ ⊂ X of a real vector space a cone if X+ is convex, for all λ ≥ 0 we

have λX+ = X+ and X+ ∩ −X+ = {0}. Cones and partially ordered vector spaces are

linked. For a partially ordered vector space (X,≤) the set X+ = {x ∈ X : x ≥ 0} is a

cone, and for a cone (X+ ∪ {0}) ⊂ X of a real vector space the relation x ≤ y if and only

if y − x ∈ X+ is a partial order. An element u ∈ X+ is called an order-unit of X if for all

x ∈ X there is a λ > 0 such that −λu ≤ x ≤ λu. If X is Archimedean, i.e. for all x ∈ X+

we have that nx ≤ u for all n ∈ N if and only if x ∈ −X+, then X can be equipped with

the order-unit norm

‖x‖u = inf{λ > 0 : −λu ≤ x ≤ λu}.

The triple (X,X+, u), where X is an Archimedean partially ordered vector space with cone

X+ and order-unit u is called an order-unit space. One can show that in an order-unit
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Chapter 2: Preliminaries

space every order-unit lies in the interior of the cone with respect to the order-unit norm.

Also every element in the interior of the cone is an order-unit.

Let (X,≤), (Y,≤) be a partially ordered vector spaces. We call a map f : X → Y

order-preserving if for all x, y ∈ X with x ≤ y we have that f(x) ≤ f(y). If f is linear

and order-preserving, we call f positive. It is easy to verify that f is positive if and only

if it maps the cone of X into the cone of Y . We call f strictly positive if f(x) > 0 for

all x ∈ X◦+. Furthermore, if X is a normed partially ordered vector space we denote the

set of all continuous linear functionals by X∗ and the set of all positive continuous linear

functionals by X∗+.

2.1.1 Example. Consider Rn with the standard positive cone

Rn+ = {(x1, . . . , xn) ∈ Rn : xi ≥ 0}.

This cone defines an order on the coordinates; for all x, y ∈ Rn we have x ≤ y if and only

if xi ≤ yi for all 1 ≤ i ≤ n.

positive cone

2.1.2 Example. Consider Rn+1 with the Lorentz cone

Λn = {(x1, . . . , xn+1) ∈ Rn+1 :
√
x22 + . . .+ x2n+1 < x1}.

6
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Lorentz cone

One can find a general version of the Lorentz cone for any normed vector space X by

considering the vector space V = R×X with cone

V+ = {(λ, x) ∈ V : ‖x‖ ≤ λ}.

We will call such a cone a base cone. If H is a Hilbert space, then V = R × H admits

a natural Jordan algebra structure, whose cone of squares is V+, see Chapter 4. These

spaces are known as spin-factors and will be discussed in more detail in Section 7.2.

2.1.3 Example. Let X = Mn×n(R)sa be the space of real, self-adjoint, n × n matrices.

Recall that a matrix A is positive semidefinite if for all x ∈ Rn we have xTAx ≥ 0. The

set

X+ = {A ∈Mn×n(R)sa : A positive semidefinite}

is a cone of Mn×n(R)sa. Recall that a matrix A is positive semidefinite if and only if

its eigenvalues are non-negative. Note that the identity matrix I is an order-unit. The

associated order-unit norm is given by its spectral radius ‖A‖I = ρ(A) = max{|r| : r ∈

σ(A)}.

2.1.4 Definition. Let X be a vector space with cone X+. Let x, y ∈ X+, we call x

comparable to y if there exists an λ ∈ R>0 such that 1
λx ≤ y ≤ λx. We call the set

Px := {y ∈ X+ : x comparable to y}.

a part of X+.

7
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Note that comparability is an equivalence relation and the parts of X+ are equivalence

classes.

2.1.5 Proposition. If X is a vector space with cone X+, then the parts of X+ are convex.

Proof. Let x ∈ X+ and let Px be a part of X+. Let y, z ∈ Px and let λ1, λ2 > 0 such that

1
λ1
x ≤ y ≤ λ1x and 1

λ2
x ≤ z ≤ λ2x. For all c ∈ (0, 1) we find that

λ1(1− c) + λ2c

λ1λ2
x ≤ cy + (1− c)z ≤ (λ1c+ λ2(1− c))x.

Picking

λ = max

(
λ1c+ λ2(1− c),

λ1λ2
λ1(1− c) + λ2c

)
gives that cy + (1− c)z ∈ Px.

2.1.6 Definition. Let X be a topological vector space and let X+ be a closed cone. Then

F ⊂ X+ is called a face of X+ if F is non-empty, convex, and if for all x, y ∈ X+ for which

there exists a λ ∈ (0, 1) such that λx+ (1− λ)y ∈ F , we have x, y ∈ F .

Faces and parts are closely related.

2.1.7 Proposition. Let X be an order-unit space with closed cone X+. Every face is a

union of parts.

Proof. Suppose there is a face F which is not the union of parts. As parts are equivalence

classes on the closed cone this means that there exists a part P such that there are x, y ∈ P

for which x ∈ F and y 6∈ F . Now let 0 < λ < 1 be such that λy ≤ x. Then 1
1−λx−

λ
1−λy ∈ P ,

since

x =
1− λ
1− λ

x ≤ 1

1− λ
x− λ

1− λ
y ≤ 1

1− λ
x.

However we find that

x = λy + (1− λ)

(
1

1− λ
x− λ

1− λ
y

)
,

so by definition y ∈ F which is a contradiction.

In fact, the parts of X+ are precisely the relative interiors of the faces of X+, see [42,

Lemma 1.2.2]. Since X+ is a face of X+ it follows that X+ is the disjoint union of parts.

Finally we will show that every convex set in the boundary of the cone is contained in a

face.
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2.1.8 Proposition. Let X be an order-unit space with closed cone X+. If C ⊂ ∂X+ is a

convex set, then C is contained in a face of X+.

Proof. We will first construct a face containing C and then show it is contained in the

boundary of the cone. Consider

F1 = {x ∈ X+ : ∃y ∈ X+ such that there is a 0 < λ < 1 such that λx+ (1− λ)y ∈ C}

and for all n > 1 we define inductively

Fn = {x ∈ X+ : ∃y ∈ X+ such that there is a 0 < λ < 1 such that λx+ (1−λ)y ∈ Fn−1}.

Note that F =
⋃
n>0 Fn is a face, as for all x, y and λ ∈ (0, 1) there exists and n such

that λx + (1 − λ)y ∈ Fn and thus x, y ∈ Fn+1 ⊂ F . Furthermore we claim that for all n

the set Fn is contained in the boundary. To see this, let x ∈ X◦+ and a y ∈ X+. For all

0 < λ < 1 we have that λx + (1 − λ)y ∈ X◦+ by convexity, hence, as C ⊂ ∂X+, we have

that F1 ⊂ ∂X+. By induction it follows this holds for all n.

2.2 Hemi-metric spaces

Let M be a set we call a map d : M×M → R a hemi-metric if for all x, y, z ∈M it satifies

the properties

• (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) and

• d(x, y) = d(y, x) = 0 if and only if x = y.

We call (M,d) a hemi-metric space. Note that a hemi-metric need not be positive. If

additionally d satisfies the properties

• (Non-negativity) d(x, y) ≥ 0 and

• (Symmetry) d(x, y) = d(y, x),

then we call d a metric and (M,d) a metric space. Note that every metric is a hemi-metric.

2.2.1 Proposition. Let (M,d) be a hemi-metric space. Then δ : M ×M → R given by

δ(x, y) = max(d(x, y), d(y, x)) (x, y ∈M)

is a metric.
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Proof. One can easily verify that δ is symmetric and satisfies the triangle inequality. Since

for all x, y ∈M we have that 0 = d(x, x) ≤ d(x, y)+d(y, x) we have that δ is non-negative.

If δ(x, y) = 0, then d(x, y) and d(y, x) are both non-positive hence, by the inequality above,

d(x, y) = d(y, x) = 0, so x = y.

We call a hemi-metric space (M,d) complete if its associated metric space (M, δ) is

complete.

2.2.2 Lemma. Let (M,d) be a hemi-metric space. For all y ∈M the functions x 7→ d(x, y)

and x 7→ d(y, x) are Lipschitz continuous with constant 1 with respect to δ.

Proof. Let x, x′, y ∈ M . Using the triangle inequality we find d(x, y) − d(x′, y) ≤ d(x, x′)

and d(x′, y)− d(x, y) ≤ d(x′, x), so

|d(x, y)− d(x′, y)| ≤ δ(x, x′).

The proof for x 7→ d(y, x) is similar.

2.2.3 Definition. Let (M,d) be a hemi-metric space, let x ∈ M and let r ∈ R. We call

Br(x) = {y ∈M : d(x, y) < r} the open (hemi-metric) ball of radius r around x.

Note that if y ∈ Br(x), it does not necessarily imply that x ∈ Br(y). Let (M,d) be a

hemi-metric space. If x, y ∈M and r, s ∈ R, z ∈ Br(x)∩Bs(y) and t = min(r−d(x, z), s−

d(y, z)), then Bt(z) ⊂ Br(x) ∩Bs(y), since for all u ∈ Bt(z) we have

0 > d(z, u)−min(r − d(x, z), s− d(y, z))

= max(d(x, z) + d(z, u)− r, d(y, z) + d(z, u)− s)

≥ max(d(x, u)− r, d(y, u)− s).

So the open hemi-metric balls form a basis for a topology.

Let (M1, d1) and (M2, d2) two hemi-metric spaces. We call a map f : M1 → M2 an

isometry if d1(x, y) = d2(f(x), f(y)) for all x, y ∈M1. We call f non-expansive if d1(x, y) ≥

d2(f(x), f(y)) for all x, y ∈M1. We call f strictly non-expansive if d1(x, y) > d2(f(x), f(y))

for all x, y ∈ M1, x 6= y. We call f a contraction if there exists an r ∈ (0, 1) such that

rd1(x, y) > d2(f(x), f(y)) for all x, y ∈M1, x 6= y.

It is well known that every contraction map in a complete metric space has a unique

fixed point.
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2.2.4 Theorem (Contraction mapping theorem, [3]). Let (M,d) be a complete metric

space, then every contraction has a unique fixed point.

This theorem does not hold for strictly non-expansive maps. Consider for example the

map f : [1,∞) → [1,∞) given by f(x) = x + 1
x which is strictly non-expansive with

respect to the Euclidean distance, but has no fixed point. One can easily show that if a

strictly non-expansive map has a fixed point, it is unique. For non-expansive maps one

cannot guarantee existence or uniqueness of fixed point. This can be easily verified as

every translation on a vector space is norm non-expansive.

2.3 The Funk, reverse-Funk and Hilbert metric

Natural hemi-metrics appear in the study of cones in order-unit space. One can define

Birkhoff’s version of Hilbert’s metric using the gauge function,

M(x/y) = inf{λ > 0 : x ≤ λy} (x ∈ X+, y ∈ X◦+).

Note that, as y is an order-unit, M(x/y) is finite. We can now define the Funk metric as

dF (x, y) = logM(x/y) (x, y ∈ X◦+)

the reverse-Funk metric as

dR(x, y) = logM(y/x) (x, y ∈ X◦+)

and Hilbert’s metric as

dH(x, y) = log(M(x/y)M(y/x)) (x, y ∈ X◦+).

Note that Hilbert’s metric is the sum of the Funk metric and the reverse-Funk metric.

One can prove that Hilbert’s metric is a pseudo metric on X◦+, i.e. it is non-negative,

symmetric, it satisfies dH(x, x) = 0 for all x and the triangle inequality. It is well known

[42] that Hilbert’s metric is a metric on the rays of the interior cone. This is a direct

consequence of the fact that dH is invariant under scaling; for all x, y ∈ X◦+ and λ, µ > 0

we have M(λx/µy) = λ
µM(x/y), so M(λx/y)M(y/λx) = M(x/y)M(y/x).

One can also prove that the Funk and the reverse-Funk metrics are hemi metrics on

X◦+. By Proposition 2.2.1 it follows that Thompson’s metric dT given by

dT (x, y) = log(max(M(x/y),M(y/x))) = max(dF (x, y), dR(x, y)) (x, y ∈ X◦+).

11
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is a metric on the interior of the cone. Note that by Lemma 2.2.2 we have that dH is

Lipschitz continuous with constant 2 with respect to dT .

2.3.1 Example. Consider Rn+1 with the standard positive cone

Rn+1
+ = {(x1, . . . , xn+1) ∈ Rn+1 : xi ≥ 0}.

For x, y ∈ (Rn+1
+ )◦ we find

dF (x, y) = log

(
max

1≤i≤n+1

xi
yi

)
,

dR(x, y) = log

(
max

1≤i≤n+1

yi
xi

)
,

dH(x, y) = log

(
max

1≤i,j≤n+1

xi
xj

yj
yi

)
,

dT (x, y) = log

(
max

1≤i≤n+1
max

(
xi
yi
,
yi
xi

))
.

Hilbert’s metric can also be defined using a cross-ratio product. Let X be a real normed

space and let C ⊂ X be an open bounded convex set. Hilbert’s cross-ratio metric is defined

as follows. Let u and v be different elements of C and let lu,v be the line through u and v.

Let u′ and v′ be the intersection of lx,y and the boundary of C such that u is between u′

and v and v is between u and v′.

u′ u v v′

Hilbert’s cross-ratio metric is given by

dh(u, v) = log

(
‖u′ − v‖‖v′ − u‖
‖u′ − u‖‖v′ − v‖

)
(u, v ∈ C).

Note that C can always be viewed as a slice of a cone in Y = R×X, by taking

Y+ = {λ(1, x) ∈ Y : λ ≥ 0, x ∈ C}.

Then (1, C) is the slice of the cone at height 1. It is well-known that Hilbert’s cross-ratio

metric and Hilbert’s metric coincide on the interior of the cone, see [42].

2.3.2 Example. Consider Rn+1 with the Lorentz cone

Λn = {(x1, . . . , xn+1) ∈ Rn+1 :
√
x22 + . . .+ x2n+1 ≤ x1}.

12
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The disc

D = {(x1, ..., xn+1) ∈ Rn+1 :
√
x22 + . . .+ x2n+1 < x1 = 1}

equipped with the metric 1
2dH is known as Klein’s model, which is a model of the real

n-dimensional hyperbolic space.

If in a Hilbert metric space the elements of two converging sequences stay close to each

other, the limits will be in the same part of the cone.

2.3.3 Lemma. Let X be an order-unit space with closed cone X+ equipped with Hilbert’s

metric dH and let x, y ∈ ∂X+. If (xn) and (yn) are sequences in X◦+ converging in norm

to x and y respectively and there exists an M > 0 such that dH(xn, yn) < M for all n ∈ N,

then x and y are comparable.

Proof. Let u ∈ X+ be a unit. By continuity of the norm, and since dH is invariant under

scaling, we may assume that ‖xn‖u = ‖yn‖u = 1. Note that, as xn and yn are positive, we

have that

‖xn‖u = inf{λ > 0 : xn ≤ λu} = 1 and ‖yn‖u = inf{λ > 0 : yn ≤ λu} = 1.

Let αn = M(xn/yn) and βn = M(yn/xn). Note that αn, βn ≥ 1 as xn ≤ αnyn ≤ αnu and

yn ≤ βnxn ≤ βnu. Therefore, since log(αnβn) < M , we find that αn and βn are bounded.

So by taking a further subsequence we may assume that (αn) and (βn) converge to some

α, β ∈ [1, eM ] respectively. We find that

x = lim
n→∞

xn ≤ lim
n→∞

αnyn = αy

and

y = lim
n→∞

yn ≤ lim
n→∞

βnxn = βx.

2.4 Horofunctions

Let (M,d) be a hemi-metric space. Fix b ∈M as a base point and consider the embedding

i : M → C(M) given by

i(x)(y) = d(y, x)− d(b, x) (x, y ∈M) (2.4.1)

13
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where C(M) is equipped with the topology of compact convergence; see [53, §46]. Recall

that by Lemma 2.2.2 i is continuous with respect to the metric δ given by

δ(x, y) = max(d(x, y), d(y, x)) (x, y ∈M).

Now consider the family i(M). Note that by Lemma 2.2.2 we have

|i(x)(y)− i(x)(y′)| = |d(y, x)− d(y′, x)| ≤ δ(y, y′),

hence i(M) is equicontinuous. Furthermore, note that for all x, y ∈ M we have that

|i(x)(y)| ≤ δ(y, b), so {i(x)(y) : x ∈ M} has compact closure in R. By Ascoli’s Theorem;

see [53, Theorem 47.1] we find that i(M) has compact closure in C(M). The closure i(M)

is called the horofunction compactification of (M,d). The set i(M) \ i(M) is called the

horofunction boundary of (M,d) and its elements are called horofunctions.

Horofunctions are a fundamental tool in metric geometry and have found applications

in numerous fields including, geometric group theory [21], ergodic theory [26, 38], nonlinear

operator theory [42, 25] and metric and non-commutative geometry [59]. In this thesis we

will focus on their properties and their applications in proving Denjoy-Wolff type theorems.

In many applications of horofunctions one uses horoballs. Let ξ ∈ i(M) \ i(M) be a

horofunction, then

Hξ(r) = {x ∈M : ξ(x) ≤ r} (r ∈ R)

is a horoball of ξ. Horoballs have a number of useful properties. First we recall the definition

of a net and a subnet.

2.4.1 Definition. We call a set (J,≤) a directed set if ≤ is a partial order and every two

elements have an upper bound, i.e. for every x, y ∈ J there exists a z ∈ J such that z ≥ x

and z ≥ y. A net in X is a map f : J → X from a directed set J to X. We will denote a

net by (xα)α∈J or (xα) if there is no ambiguity.

2.4.2 Definition. Let X be a set and let (xα)α∈A and (xβ)β∈B be nets in X. We call

(xβ)β∈B a subnet of (xα)α∈A if there exists a map f : B → A such that xβ = xf(β) for all

β ∈ B, f is order-preserving, i.e., for all β, γ ∈ B with β ≤ γ we have f(β) ≤ f(γ), and f

is final, i.e., for all α ∈ A there exist a β ∈ B such that α ≤ f(β).

2.4.3 Proposition. Let X be a vector space and let M ⊂ X be equipped with a hemi-

metric. If all hemi-metric balls in M are convex, then all horoballs are convex.

14
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Proof. Let b be a base point and let ξ ∈ i(M) \ i(M) be a horofunction. Let (xα) be a

net in X such that limα i(xα) = ξ. Let r ∈ R and let x, y ∈ Hξ(r). As the metric balls are

convex we find for all 0 ≤ λ ≤ 1

ξ(λx+ (1− λ)y) = lim
α
d(λx+ (1− λ)y, xα)− d(b, xα)

≤ lim
α
λd(x, xα)− λd(b, xα) + (1− λ)d(y, xα)− (1− λ)d(b, xα)

= λξ(x) + (1− λ)ξ(y).

We can show that the Funk, reverse-Funk, Hilbert and Thompson metrics all have

convex hemi-metric balls.

2.4.4 Lemma. If (X, ‖ · ‖u) is an order-unit space with closed cone X+ equipped with the

reverse-Funk metric, then every closed ball Br[x] = {y ∈ X◦+ : dR(x, y) ≤ r} is a convex

subset of X.

Proof. Let y1, y2 ∈ Br[x] and let 0 < α1, α2 ≤ er such that y1 ≤ α1x and y2 ≤ α2x. For

t ∈ [0, 1] we have

ty1 + (1− t)y2 ≤ (tα1 + (1− t)α2)x ≤ erx

hence ty1 + (1− t)y2 ∈ Br[x].

The proof for the Funk metric is similar.

2.4.5 Lemma. If (X, ‖ · ‖u) is an order-unit space with closed cone X+ equipped with the

Funk metric, then every closed ball Br[x] = {y ∈ X◦+ : dF (x, y) ≤ r} is a convex subset of

X.

Proof. Let y1, y2 ∈ Br[x] and let 0 < α1, α2 ≤ er such that x ≤ α1y1 and x ≤ α2y2. For

t ∈ [0, 1] we have

er(ty1 + (1− t)y2) ≥ tα1y1 + (1− t)α2y2 ≥ x

hence ty1 + (1− t)y2 ∈ Br[x].

The proofs of Hilbert’s metric and Thompson’s metric use similar methods and can be

found in [42, Lemma 2.6.1, Lemma 2.6.2].

We call a metric space proper if all closed balls are compact. For proper metric spaces the

horofunction boundary can be viewed as a boundary at infinity.
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2.4.6 Proposition. Let (M,d) be proper a metric space. If x ∈ M and (xα) is a net in

M converging to x, then limα i(xα) = i(x).

Proof. Fix b ∈M . For all y ∈M we find

lim
α
i(xα)(y) = lim

α
d(y, xα)− d(b, xα)

≤ lim
α
d(y, x) + 2d(x, xα)− d(b, x) = i(x)

= d(y, x)− d(b, x) = lim
α
d(y, x)− 2d(xα, x)− d(b, x)

≤ lim
α
d(y, xα)− d(b, xα) = lim

α
i(xα)(y).

It is an easy consequence to see that if M is proper all horofunction are generated by

unbounded nets.

2.4.7 Corollary. Let (M,d) be a proper metric space. If (xα) is a net such that ξ =

limα i(xα) ∈ i(M) \ i(M) is a horofunction, then (xα) is unbounded.

In general there can exist horofunctions generated by bounded nets. We will discuss

these in more detail in Chapter 6.

Recall that a topological space is metrizable if and only if there exists a metric such

that the topologies coincide.

2.4.8 Proposition. If (M,d) is a proper metric space, then i(M) equipped with the topol-

ogy of compact convergence is metrizable.

Proof. To see this note that on i(M) the topology of compact convergence is equivalent

to the topology of pointwise convergence, see Step 3 on page 291 of [53]. Also note that

for x0 ∈ M we can write M =
⋃∞
n=1Bn[x0], where Bn[x0] is the closed ball around x0 of

radius n. As M is proper Bn[x0] is a compact metric space and hence separable. So M

is separable as the countable union of separable sets, hence we can find a countable set

{xn ∈M : n ∈ N} which lies dense in M . It is easy to verify that d̂ : C(M)× C(M)→ R

given by

d̂(f, g) =

∞∑
j=1

min(|f(xj)− g(xj)|, 1)

2j
(f, g ∈ C(M))

is a metric.

We will show that the metric topology and the topology of pointwise convergence

coincide on i(M). Recall that a basis of the topology of pointwise convergence on i(M)
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consists of sets of the form U = {f ∈ i(M) : |f(w) − g(w)| < ε} with ε > 0, w ∈ M and

g ∈ i(M). We want to show there is an open metric ball in i(M) contained in U . Let n ∈ N

such that d(xn, w) < ε
3 and consider the metric ball B = {f ∈ i(M) : d̂(f, g) < ε

3·2n }. Let

f ∈ B and let (i(xα)) and (i(zα)) be nets in i(M) converging to f and g respectively. We

find

|f(w)− g(w)| ≤ lim
α
|i(xα)(w)− i(xα)(xn)|+ |f(xn)− g(xn)|+ |i(zα)(xn)− i(zα)(w)|

≤ lim
α
|d(xα, w)− d(xα, xn)|+ |f(xn)− g(xn)|+ |d(zα, w)− d(zα, xn)|

≤ 2d(xn, w) + 2nd̂(f, g) < ε

so B ⊂ U .

Now let ε > 0, g ∈ i(M) and let B = {f ∈ i(M) : d̂(f, g) < ε}. We want to show there

is an open set in the topology of pointwise convergence contained in B. Let n ∈ N be such

that
∑∞

j=n+1 2−j < ε
2 and let

U = {f ∈ i(M) : |f(xj)− g(xj)| <
ε

2
for all 1 ≤ j ≤ n}.

Then for all f ∈ U we have

d̂(f, g) =
n∑
j=1

min(|f(xj)− g(xj)|, 1)

2j
+

∞∑
j=n+1

min(|f(xj)− g(xj)|, 1)

2j
< ε

so f ∈ B.

One of the consequences of Proposition 2.4.8 is that for (M,d) a proper metric space

i(M) is first countable, so we can use sequences instead of nets.
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Denjoy-Wolff type theorem

One famous application of horofunctions are Denjoy-Wolff type theorems. The Denjoy-

Wolff theorem is a theorem in the field of complex analysis proven by Denjoy [19] and

Wolff [69] in 1926. The theorem states that any holomorphic self-map of the open unit

disk without a fixed point has a unique accumulation point on the boundary of the unit

disc.

3.0.1 Theorem. If D is the open unit disk of C and f : D → D is a fixed point free

holomorphic map, then there is a unique point z0 ∈ ∂D such that for all z ∈ D it holds

that

lim
n→∞

fk(z) = z0.

Beardon noted that this result can be viewed in a geometric context and gave a proof of

the Denjoy-Wolff theorem using only geometrical methods, see [5]. In [6] Beardon expanded

this result to a general geometric setting for metric spaces with boundary that is similar

to the boundary of a hyperbolic space. Let us recall some basic terminology.

3.0.2 Definition. Let (X, τ) be a Hausdorff topological space. Let f : X → X be a map.

For x ∈ X we call

O(x, f) = {fn(x) : n ∈ N}

the orbit of x, and

ω(x, f) = {y ∈ A : ∃(nk) sequence in N such that lim
k→∞

fnk(x) = y with respect to τ}

the ω-limit set of x.

Karlsson and Nussbaum independently conjectured the following generalization of the

Denjoy-Wolff theorem;
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3.0.3 Conjecture. Let f : Σ → Σ be a fixed point free non-expansive map on a finite

dimensional Hilbert metric space (Σ, dH). Then there exists a convex set Ω ⊂ ∂Σ such that

for each x ∈ Σ the ω-limit set ω(x, f) lies in Ω.

The conjecture is still an open problem, though it has been solved for a number of

special cases like strictly convex sets by Beardon [6] and polyhedral domains by Lins [46].

There are also cases with special maps such as maps with a strictly positive translation

number which was solved by Karlsson [35] and Nussbaum [55]. In this chapter we will study

Denjoy-Wolff type theorems by Beardon and Karlsson. Their results are a generalisation

of the following observation due to Wolff [70].

3.0.4 Theorem. If D is the open unit disk of C and f : D → D is a fixed point free

holomorphic map, then there is a horofunction ξ ∈ i(D)\i(D) with respect to the hyperbolic

metric on D such that f leaves the horoballs of ξ invariant.

The results from Beardon and Karlsson provide good examples of applications of ho-

rofunctions and give rise to so called Beardon and Karlsson points which we will study in

more detail. At the end of this chapter we will prove two special cases of the Karlsson-

Nussbaum Conjecture 3.0.3.

3.1 Beardon’s Theorem

We will make two minor alterations to Beardon’s original proof. First, Beardon’s proof

uses horoballs which are defined using a different definition. Though the two definitions

of horoballs can be shown to be equivalent for the specific conditions of Beardon’s the-

orem, we will instead follow the proof in [42], which uses our definition of a horoball.

Second, Beardon’s original Theorem only considers the case where the map is strictly

non-expansive. One can show, using Ca lka’s theorem [12, Theorem 5.6], a more general

case for maps with a certain fixed point property.

3.1.1 Theorem (Ca lka’s theorem,). Let (M,d) be a proper metric space. If f : M →M is

non-expansive and there exists a y ∈M such that the orbit O(y) has a bounded subsequence,

then O(x) is bounded for all x ∈M .

3.1.2 Definition. Let (M,d) be a metric space and let f : M → M be a map. We say

f has the fixed point property if f has a fixed point in M whenever there exists a x ∈ M

such that O(x, f) is bounded.
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We can show that strictly non-expansive maps have the fixed point property.

3.1.3 Example. Let (M,d) be a metric space, let f : M →M be a strictly non-expansive

map and suppose there exists an x ∈ M such that O(x, f) is bounded. Then ω(x, f) is

bounded and, since M is first countable we find that ω(x, f) =
⋂
n∈N {fk(x) : k ≥ n},

hence ω(x, f) is closed and bounded and therefore compact. It follows that, as f(ω(x, f)) =

ω(x, f), we can find y, z ∈ ω(x, f) such that

d(f(y), f(z)) = diam(ω(x, f)) = sup{d(u, v) : u, v ∈ ω(x, f)}.

Since f is strictly non-expansive we have

diam(ω(x, f)) = d(f(y), f(z)) ≤ d(y, z) ≤ diam(ω(x, f))

with equality if and only if y = z. So ω(x, f) = {y} and, since f(ω(x, f)) = ω(x, f) we

find f(y) = y.

Let X be a finite dimensional vector space and let C ⊂ X be a convex bounded set

equipped with Hilbert’s metric. By Corollary 3.6’ in [55] any non-expansive map f : X →

X has the fixed point property.

Beardon’s proof [6] consists of two parts. First Beardon proves a generalisation of

Wolff’s theorem 3.0.4.

3.1.4 Theorem. Let (M,d) be a proper metric space such that M ⊂ A is a precompact

open subset of a first-countable Hausdorff space (A, τ) and the topology of M coincides

with the topology τ of A. If

(i) for all sequences (xn) and (yn) in M , converging to distinct points x, y ∈ ∂M re-

spectively, we have

lim
n→∞

d(xn, z) =∞ and lim
n→∞

d(xn, yn)−max(d(xn, z), d(yn, z)) =∞ (z ∈M)

(ii) and f : M → M is a fixed point free non-expansive map such that there exists a

sequence of contractions (fn) converging pointwise to f ,

then there exists a horofunction ξ such that f leaves the horoballs of ξ invariant.

Proof. By Theorem 2.2.4 we can find (xn), the sequence of the unique fixed points of

(fn) in M . As M is precompact and A is first countable we may assume, by taking a
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subsequence if necessary, that (xn) converges to some x ∈ M . Note that x ∈ ∂M , as

otherwise it is a fixed point of f . Indeed, as f is the pointwise limit of contractions fn, if

x ∈M we have

d(x, f(x)) ≤ lim
n→∞

d(x, xn) + d(fn(xn), fn(x)) + d(fn(x), f(x))

≤ lim
n→∞

d(x, xn) + d(x, xn) + d(fn(x), f(x)) = 0,

which implies that x is a fixed point of f . Hence we may also assume, by taking a further

subsequence if necessary, that (i(xn)) converges to some horofunction ξ. Let y ∈ M . We

find

ξ(f(y)) = lim
n→∞

d(f(y), xn)− d(b, xn)

≤ lim inf
n→∞

d(f(y), fn(y)) + d(fn(y), fn(xn))− d(b, xn)

≤ lim inf
n→∞

d(f(y), fn(y)) + d(y, xn)− d(b, xn)

= lim
n→∞

d(y, xn)− d(b, xn) = ξ(y).

Hence f leaves the horoballs of ξ invariant.

Theorem 3.1.4 can be used to obtain a Denjoy-Wolff type theorem.

3.1.5 Theorem (Beardon’s Theorem [6]). Let (M,d) be a proper metric space such that

M ⊂ A is a precompact open subset of a first-countable Hausdorff space (A, τ) and the

topology of M coincides with the topology τ of A. If

(i) for all sequences (xn) and (yn) in M , converging to distinct points x, y ∈ ∂M re-

spectively, we have

lim
n→∞

d(xn, z) =∞ and lim
n→∞

d(xn, yn)−max(d(xn, z), d(yn, z)) =∞ (z ∈M)

(ii) and f : M →M is a fixed point free non-expansive map with the fixed point property

such that there exists a sequence of contractions (fn) converging pointwise to f ,

then there exists a point x ∈ ∂M such that for all y it holds that

lim
n→∞

fn(y) = x.

Proof. Let ξ, (xn) and x be as in the proof of Theorem 3.1.4. Suppose the orbit (fn(y)) has

a bounded subsequence. By Theorem 3.1.1 we have that the entire orbit is bounded. Thus
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f has a fixed point, as f has the fixed point property. Since f is fixed point free it follows

that all subsequences of the orbit of y are unbounded. So ω(y, f) ⊂ ∂M . Furthermore,

taking r = ξ(y) we get that y ∈ Hξ(r), where Hξ(r) is the horoball of ξ with radius r. By

Theorem 3.1.4 f leaves the horoballs invariant, so the accumulation points of (fn(y)) all

lie in ∂M ∩Hξ(r). Let z ∈ ∂M ∩Hξ(r) and let (zn) be a sequence in Hξ(r) converging to

z with respect to τ . Fix ε > 0 and note that since (zn) is in Hξ(r), for every n ∈ N we can

find a kn such that kn > kn−1 and for all k ≥ kn it holds that

d(zn, xk)− d(b, xk) < r + ε.

From this it follows that

d(zn, xkn)− d(b, xkn) < r + ε

for all n ∈ N, and thus

lim
n→∞

d(zn, xkn)−max (d(b, xkn), d(b, zn)) ≤ r + ε.

As

lim
n→∞

d(zn, xkn)−max (d(b, xkn), d(b, zn)) =∞

if x 6= z, we find that ∂M ∩Hξ(r) ⊂ {x}. By compactness of M every orbit has at least

one accumulation point, hence for all y ∈M we have

lim
n→∞

fn(y) = x.

Note that if X is a finite dimensional vector space with a strictly convex closed cone

X+ equipped with Hilbert’s metric, then by Lemma 2.3.3 if we identify X with A and a

slice of X+ with M , then they satisfy the conditions of Theorem 3.1.5.

The proof of Theorem 3.1.5 depends mainly on the properties of the horofunction ξ

and the geometry of the cone. The point x ∈ ∂M however is an interesting point in its

own right.

3.1.6 Definition. Let X be a finite dimensional vector space, let C ⊂ X be a convex

bounded open set equipped with Hilbert’s metric and let f : C → C be a fixed point

free non-expansive map. We call x ∈ ∂C a Beardon point if there exist a sequence of

contractions fn : C → C converging pointwise to f with unique fixed points (xn) such

that a subsequence (xnk) converges to x.
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Due to a result by Walsh [63] we find that the horofunction ξ in the proof of Theo-

rem 3.1.5 has a uniquely associated Beardon point.

3.1.7 Theorem. [63, Theorem 1.3] Let X be a finite dimensional vector space and C ⊂ X

be a bounded open convex subset equipped with Hilbert’s metric. If a sequence (xn) is such

that (i(xn)) converges to a horofunction, then the sequence converges to some point in ∂C,

i.e. every horofunction has a unique associated point in the boundary.

In general the converse of this result is not true, i.e. not every point in the boundary

has a unique associated horofunction.

3.1.8 Example. Consider the 2-simplex

∆n = {(x1, x2, x3) ∈ R3
+ : x1 + x2 + x3 = 1}.

Recall that for all x, y ∈ ∆◦n Hilbert’s distance between x and y is given by

dH(x, y) = log

(
max

1≤i,j≤3

xi
xj

yj
yi

)
Consider the sequences (xn) = ((n+1

n+2 ,
1

2n+4 ,
1

2n+4)) and (yn) = ((n+1
n+2 ,

2
3n+6 ,

1
3n+6)). We may

assume that for the sequences (i(xn)) and (i(yn)) there exist subsequence that converges

to horofunctions ξ and γ respectively. Let b = (13 ,
1
3 ,

1
3) and let z = (12 ,

3
10 ,

1
5) and consider

lim
n→∞

i(xn)(z) = lim
n→∞

log

(
2n+ 2

n+ 2
· 3n+ 6

5

)
− log

(
3n+ 3

n+ 2
· 2n+ 4

3

)
= log

(
3

5

)
= ξ(z)

and

lim
n→∞

i(yn)(z) = lim
n→∞

log

(
2n+ 2

n+ 2
· 3n+ 6

5

)
− log

(
3n+ 3

n+ 2
· (n+ 2)

)
= log

(
2

5

)
= γ(z)

so ξ 6= γ. Note however that limn→∞ xn = limn→∞ yn = (1, 0, 0).

Beardon points have some useful properties.

3.1.9 Definition. Let A ⊂ X be a subset of a vector space X and let x ∈ A. We call x a

star point of A if for all y ∈ A the (straight) line segment xy between x and y is in A.

We will show that every Beardon point is a star point of
⋃
x∈X ω(x, f). For this we

need the following result.
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3.1.10 Lemma. Let X be a finite dimensional vector space and let C be a bounded open

convex set equipped with Hilbert’s metric dH . Let (xn) and (yn) be sequences in C con-

verging to x, y ∈ ∂C. If the line segment xy between x and y is not contained in ∂C, then

for all z ∈ C we have

lim
n→∞

dH(xn, yn)−max(dH(xn, z), dH(yn, z)) =∞.

Proof. For all n ∈ N and 0 ≤ λ ≤ 1, let un,λ = λxn + (1− λ)yn. Suppose

u = lim
n→∞

un,λ = λx+ (1− λ)y 6∈ ∂C.

for some 0 < λ < 1. Let z ∈ C, consider

dH(xn, yn)−max(dH(xn, z), dH(yn, z)) = dH(xn, un,λ) + dH(yn, un,λ)

−max(dH(xn, z), dH(yn, z))

≥ dH(xn, z) + dH(yn, z)− 2dH(un,λ, z)

−max(dH(xn, z), dH(yn, z))

= min(dH(xn, z), dH(yn, z))− 2dH(un,λ, z).

Since limn→∞min(dH(xn, z), dH(yn, z)) = ∞ and limn→∞ dH(un,λ, z) = dH(u, z) < ∞,

the result follows.

Recall that the convex hull of a subset A of a vector space X is the smallest convex

set C containing A.

3.1.11 Theorem. Let X be a finite dimensional vector space and let C ⊂ X be a bounded

open convex set equipped with Hilbert’s metric dH . Let f : C → C be a non-expansive fixed

point free map and let ξ ∈ i(C) \ i(C) be a horofunction such that f leaves the horoballs of

ξ invariant. Let x ∈ ∂C be such that there is a sequence (xn) in C such that (xn) converges

to x in norm topology and limn→∞ i(xn) = ξ. If Ω is the convex hull of
⋃
y∈C ω(y; f), then

x is a star point of ∂C ∩ Ω.

Proof. Let (xn) be a sequence in C such that i(xn) converges to ξ. Note that all we have

to prove is that for all y0 ∈ C and all y ∈ ω(y0, f) the line segment between x and y is

in ∂C. Let r ∈ R be such that y0 ∈ Hξ(r). Since f leaves the horoballs of ξ invariant, we

find that ξ(fn(y)) ≤ r. Now note that, as (i(xn)) converges pointwise to ξ, we can find a

subsequence (xnk) such that

|ξ(fk(y))− dH(fk(y), xnk) + dH(b, xnk)| < 1

k
,
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thus

lim
k→∞

|ξ(fk(y))− dH(fk(y), xnk) + dH(b, xnk)| = 0.

Now suppose that the line segment between x and y is not contained in ∂C. Then by

Lemma 3.1.10 we have

lim
k→∞

ξ(fk(y)) = lim
k→∞

dH(fk(y), xnk)− dH(b, xnk)

≥ lim
k→∞

dH(fk(y), xnk)−max(dH(b, xnk), dH(b, fk(y))) =∞

This however is in contradiction with ξ(fn(y)) ≤ r.

This result is very similar to the Karlsson-Noskov theorem [40] which we will discuss

in the next section. Note that the theorem not only concerns Beardon points, but any

point in the boundary that is associated with some horofunction which horoballs are left

invariant by the map f . The following Denjoy-Wolff type theorem is an easy consequence

of Theorem 3.1.11.

3.1.12 Corollary. Let X be a finite dimensional normed vector space and let C ⊂ X be

a bounded open convex set equipped with Hilbert’s metric dH . Let f : C → C be a non-

expansive fixed point free map and let ξ ∈ i(C) \ i(C) be a horofunction such that f leaves

the horoballs of ξ invariant. Let x ∈ ∂C be such that there is a sequence (xn) in C such

that (xn) converges to x in norm topology and limn→∞ i(xn) = ξ. If the set

{y ∈ ∂C : xy ⊂ ∂C}

is convex, then there exists a convex set Ω ⊂ ∂C such that for each y ∈ C we have

ω(y, f) ⊂ Ω.

3.2 Karlsson’s theorem

Karlsson’s theorem is another variation on Wolff’s theorem 3.0.4. Instead of showing all

horoballs of a horofunction are invariant it shows a single orbit will remain in a horoball

of radius 0. The advantages of Karlsson’s theorem over Beardon’s theorem 3.1.5 are that

there is no need to find contractions approximating f . Moreover, for specific f it can be

shown that this particular orbit will be contained in horoballs with radius tending to −∞.

For these kind of maps one can show a Denjoy-Wolff type theorem.
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3.2.1 Definition. Let (X, d) be a metric space, let f : X → X be a non-expansive map

and let x ∈ X. Then we call

τf = lim
n→∞

1

n
d(x, fn(x))

the translation number of f .

It is easy to show, using the non-expansiveness of f , that the translation number exists

and is independent of x. Indeed note that for all x, y ∈ X and all n ∈ N we have that

d(x, fn(x))− d(y, fn(y)) ≤ d(x, y) + d(y, fn(x))− d(y, fn(y))

≤ d(x, y) + d(fn(x), fn(y)) ≤ 2d(x, y)

and hence

lim
n→∞

1

n
|d(x, fn(x))− d(y, fn(y))| ≤ lim

n→∞

2d(x, y)

n
= 0.

The existence of the translation numbers is a direct consequence of Fekete’s subadditive

lemma.

3.2.2 Lemma (Fekete’s subadditive lemma). Let (an) be a subadditive sequence of real

numbers, i.e. an+m ≤ an + am, then

lim
n→∞

an
n

= inf
n>0

an
n
<∞.

Proof. Let ε > 0. We can find an N ∈ N such that aN
N < infn>0

an
n + ε. For all n > N we

can find a kn ∈ N and an 0 ≤ rn < N such that n = knN + rn. Now for n > N
ε we find

inf
k>0

ak
k
≤ an

n
=
aknN+rn

n
≤ knaN + arn

n
≤ aN

N
+
rna1
n
≤ aN

N
+
N |a1|
n
≤ inf

k>0

ak
k

+(1+ |a1|)ε.

Letting ε tend to 0 gives the required result.

Karlsson uses the translation number to bound the values of a special horofunction of

a single orbit.

3.2.3 Theorem ([35]). Let (M,d) be a proper metric space and let f : M → M be a

non-expansive map with translation number τf . Then for all x ∈ X there exists a function

ξ ∈ i(X) such that for all m

ξ(fm(x)) ≤ −τfm.

Proof. Let x ∈ X and consider O(x, f). Note that for all ε > 0 the sequence d(x, fn(x))−

n(τf − ε) is unbounded. Let (εk) be a strictly positive sequence converging to 0. By

26



Chapter 3: Denjoy-Wolff type theorem

Lemma 3.2.2 we can find (fnk(x)), a subsequence of (fn(x)) such that (i(fnk(x))) converges

to some horofunction ξ and for all m < nk we have that d(x, fnk(x)) − nk(τf − εk) >

d(x, fm(x))−m(τf − εk).

Then we find that for all m ∈ N we have

ξ(fm(x)) = lim
k→∞

d(fm(x), fnk(x))− d(x, fnk(x))

≤ lim inf
k→∞

d(x, fnk−m(x))− d(x, fnk(x))

= lim inf
k→∞

d(x, fnk−m(x))− (nk −m)(τf − εk)

− d(x, fnk(x)) + nk(τf − εk)−m(τf − εk)

≤ lim inf
k→∞

−m(τf − εk) = −mτf .

3.2.4 Remark. Note that the function ξ in Karlsson’s theorem is not necessarily a horo-

function. If f is fixed point free, then the orbits of f will be unbounded and ξ will be a

horofunction, as (M,d) is assumed to be proper.

A consequence of Karlson’s theorem is, that for any finite dimensional Hilbert metric

space, if the translation number is strictly positive, then Conjecture 3.0.3 holds as proven

by Karlsson, Metz and Noskov [39, Theorem 5.2] and Nussbaum [55, Theorem 4.25]. Just

like with Beardon’s Theorem, Karlsson’s Theorem gives rise to a special set of points.

3.2.5 Definition. Let X be a finite dimensional normed vector space and let C ⊂ X be an

open bounded convex set equipped with Hilbert’s metric. Let f : C → C be a fixed-point

free non-expansive map and for x ∈ C let (fnk(x)) be a subsequence of (fn(x)) such that

for all m < nk we have that d(x, fnk(x)) > d(x, fm(x)) and limk→∞ f
nk(x) = z ∈ ∂C. We

call z a Karlsson point.

Note that if f is fixed point free, then the horofunctions found in Theorem 3.2.3 have

associated Karlsson points. It is not known if the converse is true, i.e., if we can find

a horofunction with the properties described in Theorem 3.2.3 for every Karlsson point.

Karlsson and Noskov have shown that every Karlsson point is a star point, see [40].

3.2.6 Theorem. Let X be a finite dimensional vector space and let C ⊂ X be an open

bounded convex set equipped with the Hilbert metric. If f : C → C is a fixed-point free

non-expansive map and Ω is the convex hull of
⋃
y∈C ω(y; f), then every Karlsson point is

a star point of ∂C ∩ Ω.
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Proof. Let x ∈ C and let an = dH(fn(x), x) for all n ≥ 1. Let (fnk(x)) be a subsequence

such that (i(fnk(x))) converges to some horofunction ξ and for all m < nk we have

am < ank . Now let u ∈ ω(x, f). Then there exists a subsequence (mk) and a y ∈ X such

that limn→∞ f
mn(y) = u, by taking a further subsequence of nk we may assume that

mk < nk. Now consider the Gromov product

−∞ ≤ lim sup
k→∞

dH(fnk(x), fmk(y))−max(dH(fnk(x), x), dH(fmk(y), x)

≤ lim sup
k→∞

dH(fnk(x), fmk(y))− dH(fnk(x), x)

≤ lim sup
k→∞

dH(fnk(x), fmk(x)) + dH(fmk(x), fmk(y))− ank

≤ lim sup
k→∞

ank−mk − ank + dH(x, y) ≤ dH(x, y) <∞.

The result follows by Lemma 3.1.10.

3.3 Uniqueness of Karlsson and Beardon points

In Chapter 9 of [57] Karlsson shows that the Karlsson-Nussbaum conjecture 3.0.3 holds for

bounded convex sets in R2 equipped with Hilbert’s metric. In his proof he makes use of the

properties of both the Karlsson and Beardon points. In the same chapter Karlsson claims

that if the Beardon point and the Karlsson point coincide then the Karlsson-Nussbaum

conjecture would hold. In a bounded strictly convex subset of Rn equipped with Hilbert’s

metric it is easy to see that, as Beardon and Karlsson points are star points, the Beardon

and Karlsson points are unique and coincide. This leads us to ask the question if in general

the Karlsson and the Beardon point are unique. In this section we will show that in general

this is not the case. The example we will construct comes from a special class of Hilbert’s

metric non-expansive maps. To introduce them, let us recall some basic terminology.

3.3.1 Definition. Let X,Y be real vector spaces. We call a map f : X → Y homogeneous

(of degree one) if f(λx) = λf(x).

3.3.2 Proposition. Let X be a topological vector space with closed cone X+. If f : X◦+ →

X◦+ is homogeneous and order-preserving, then f is non-expansive with respect to Hilbert’s

metric.

Proof. Let x, y ∈ X◦+. We have to show thatM(f(x)/f(y))M(f(y)/f(x)) ≤M(x/y)M(y/x).

Note that

f(x) ≤ f(M(x/y)y) = M(x/y)f(y),
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so M(f(x)/f(y)) ≤M(x/y). Similarly we find that M(f(y)/f(x)) ≤M(y/x).

3.3.3 Corollary. Let X be a vector space with closed cone X+. If a map f : X◦+ → X◦+

is a positive linear operator, then f is non-expansive with respect to Hilbert’s metric.

3.3.4 Example. In this example we will show that in general a Karlsson point is not

unique.

Consider the 2-simplex

∆2 = {x ∈ R3
+ : x1 + x2 + x3 = 1}

equipped with Hilbert’s metric dH . Consider the positive operator

A =


0 2 0

1 0 0

0 0 1
2

 .

Note that, as it is linear and leaves R3
+ invariant, it is order-preserving and homogeneous.

Hence B : ∆◦2 → ∆◦2, defined by Bx = Ax/‖Ax‖1 is non-expansive with respect to Hilbert’s

metric. Now let x = (1, 1, 1)T and let x̂ = x/‖x‖1. We find the following

Akx =


(

2
1
2
k+ 1

2 , 2
1
2
k− 1

2 , 2−k
)T

if k is odd.(
2

1
2
k, 2

1
2
k, 2−k

)T
if k is even.

Note that since Bkx̂ = Akx/‖Akx‖1 we find that

dH(Bkx̂, x̂) = dH(Akx, x) =


log
(

2k · 2
1
2
k+ 1

2

)
=
(
3
2k + 1

2

)
log(2) if k is odd.

log
(

2k · 2
1
2
k
)

= 3
2k log(2) if k is even.

We can show that every accumulation point of O(x̂, B) is a Karlsson point. Indeed, for all

even k ∈ N we find that

dH(Bk−1x̂, x̂) =

(
3

2
k − 1

)
log(2) <

3

2
k log(2) = dH(Bkx̂, x̂)

<

(
3

2
k + 2

)
log(2) = dH(Bk+1x̂, x̂),

so for all k ∈ N and all m < k we have that dH(Bkx̂, x̂) > dH(Bmx̂, x̂). Note that

lim
k→∞

A2kx

‖A2kx‖1
= lim

k→∞

(2k, 2k, 2−2k)T

‖(2k, 2k, 2−2k)T ‖1
=

(
1

2
,
1

2
, 0

)T
and

lim
k→∞

A2k+1x

‖A2k+1x‖1
= lim

k→∞

(2k+1, 2k, 2−2k−1)T

‖(2k+1, 2k, 2−2k−1)T ‖1
=

(
2

3
,
1

3
, 0

)T
.
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As both points are accumulation points we have shown there can be more than one Karls-

son point.

In the following example we will show the same for Beardon points.

3.3.5 Example. Consider the 2-simplex

∆2 = {x ∈ R3
+ : x1 + x2 + x3 = 1}

equipped with Hilbert’s metric dH . Consider the positive operator

A =


1 0 0

0 1 0

0 0 1
2

 .

Note that, as it is linear and leaves R3
+ invariant, it is order-preserving and homogeneous.

Hence B : ∆◦2 → ∆◦2, defined by Bx = Ax/‖Ax‖1 is non-expansive with respect to Hilbert’s

metric. Consider the perturbations

Anx = Ax+
‖x‖1
n

(1, 1, 1)T .

An is order-preserving and homogeneous, hence Bn : ∆◦2 → ∆◦2, defined by Bnx =

Anx/‖Anx‖1 is non-expansive with respect to dH , in fact Bn is a contraction, see the

proof of Theorem 4.3 in [41]. One can show that for

xn =


4

6−n+
√
n2+4n+36

4
6−n+

√
n2+4n+36

4
2n+12+

√
n2+4n+36

 and λn =
3n+ 6 +

√
n2 + 4n+ 36

4n

we have Anxn = λnxn, hence xn is a fixed point of Bn. So

lim
n→∞


4

6−n+
√
n2+4n+36

4
6−n+

√
n2+4n+36

4
2n+12+

√
n2+4n+36

 =


1
2

1
2

0


is a Beardon point. Now consider another sequence of perturbations

Ânx = Ax+
‖x‖1
n

(2, 1, 1)T .

Ân is order-preserving and homogeneous, hence B̂n : ∆◦2 → ∆◦2, defined by B̂nx =

Ânx/‖Ânx‖1 is non-expansive with respect to dH , in fact B̂n is a contraction, see the
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proof of Theorem 4.3 in [41]. One can show that for

x̂n =


8

8−n+
√
n2+8n+64

4
8−n+

√
n2+8n+64

4
2n+8+

√
n2+8n+64

 and λ̂n =
3n+ 8 +

√
n2 + 8n+ 64

4n

we have Ânx̂n = λ̂nx̂n, hence x̂n is a fixed point of B̂n. So

lim
n→∞


8

8−n+
√
n2+8n+64

4
8−n+

√
n2+8n+64

4
2n+8+

√
n2+8n+64

 =


2
3

1
3

0


is also a Beardon point.

We can also introduce the concept of Karlsson and Beardon points in different kinds of

spaces. Consider Rn equipped with the Euclidean distance ‖x− y‖2 for all x, y ∈ Rn. One

can show that the horofunction boundary can be identified with the Euclidean unit sphere.

Take b = 0 as base point and let (xn) be a sequence in Rn such that (i(xn)) converges

to some horofunction ξ ∈ i(Rn) \ i(Rn). Note that, as Rn is proper, by Proposition 2.4.7

‖xn‖2 tends to infinity. By taking a subsequence we may assume that
(

xn
‖xn‖2

)
converges

to some x ∈ Sn−1 where Sn−1 denotes the unit sphere. Note that this subsequence gives

rise to the same horofunction. Indeed,

ξ(y) = lim
n→∞

(‖y − xn‖2 − ‖xn‖2)

= lim
n→∞

(√
‖y‖22 + ‖xn‖22 − 2〈xn, y〉 − ‖xn‖2

)
= lim

n→∞

‖y‖22 + ‖xn‖22 − 2〈xn, y〉 − ‖xn‖22√
‖y‖22 + ‖xn‖22 − 2〈xn, y〉+ ‖xn‖2

= lim
n→∞

‖y‖22
‖xn‖2 − 2〈 xn

‖xn‖2 , y〉√
‖y‖22+1

‖xn‖22
− 2〈 xn

‖xn‖2 ,
y

‖xn‖2 〉+ 1

= −〈x, y〉.

So we can identify the horofunction boundary with the Euclidean unit sphere, which, like in

Beardon’s theorem, is strictly convex. Also note that, like Hilbert’s metric, the Euclidean

metric balls are strictly convex. One might expect that in this situation Beardon and

Karlsson points will be unique again, this however is not the case.

3.3.6 Example. Consider R2 with Euclidean norm. We use Theorem 11.3 in [68] which

states that if we find some non-expansive sequence (xn), then there exists a non-expansive

map f : R2 → R2 such that f(xn) = xn+1. Using a strategy similar to Lins in [46] we will

31



Chapter 3: Denjoy-Wolff type theorem

show that the Karlsson point is not unique, indeed, we will show there is a continuum of

Karlsson points. We do this by going back and forth between the lines l1 : y = −1
8x and

l2 : y = 1
8x following lines parallel to l3 : y = 1

4x and l4 : y = −1
4x. To ensure the sequence

created is non-expansive we need to make sure that the angle between l3 and l4 is not too

large, and every time we switch between a line parallel to l3 and a line parallel to l4 or the

other way around, we need to decrease the step size sufficiently. In this example we will

halve the step sizes. This will give us the construction in the figure below.

xn0

xn1

xn2

l1 : y = 1
8
x

l2 : y = − 1
8
x

y ↑

x
−→

Here ni are the indices of the sequence elements for which xni lies on l1 for i even, and

xni lies on l2 for i odd.

We can calculate the ni, for this first consider the point a = (n, n8 ) ∈ l1 and let l5 : y =

−1
4x+ 3n

8 be the line parallel to l4 passing through a. l5 intersects l2 in b = (3n,−3n
8 ), let

l6 : y = 1
4x−

9n
8 be the line parallel to l3 passing through b. l6 intersects l1 in c = (9n, 9n8 ).

One can easily see that c1 − b1 = 3(b1 − a1), so if it takes m steps to go between a and b,

then, as we use half the step length between b and c, it takes 6m steps between b and c.

Using this we define x0 = (0, 0), x1 = (1, 0) and x2 = (2, 14), which gives us n0 = 2,

it then takes 8 steps to get from (2, 14) to (6,−3
4) giving us n1 = 10 and subsequently it

takes 3 times the distance to travel between the two lines. Combined with the fact that

the step length gets halved we find ni = 2 +
∑i−1

j=0 8 · 6j . We can then define for n > 2

xn =


xn−1 + 2−i(1, 14) if ni−1 < n ≤ ni and i is even.

xn−1 + 2−i(1,−1
4) if ni−1 < n ≤ ni and i is odd.

We first need to show that the sequence (xn) is non-expansive. Let m,n ∈ N. It is easy

to see that

‖xn+1 − xm+1‖2 ≤ ‖xn − xm‖2
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if n = m + 1, so we may assume m + 1 < n. Let xn = (y1, y2) and let xm = (z1, z2) and

let u1 = y1 − z1 > 0 and let u2 = y2 − z2. Let i, j ∈ N such that ni < m + 1 ≤ ni+1 and

nj < n+ 1 ≤ nj+1. If i = j then clearly xn − xm = xn+1 − xm+1 so we may assume that

j > i, from which it follows that 2−i ≥ 2−j+1. Note that u2 ≤ 1
4u1 and also note that since

m+ 1 < n we have that u1 ≥ (2−i + 2−i−1) = 3
2 · 2

−i. We now find

‖xn+1 − xm+1‖22 ≤ (u1 − (2−i − 2−j))2 + (u2 +
1

4
(2−i + 2−j))2

= u21 − 2(2−i − 2−j)u1 + 2−2i − 2−(i+j)+1 + 2−2j

+ u22 +
1

2
(2−i + 2−j)u2 + 2−2i−4 + 2−(i+j)−3 + 2−2j−4

= ‖xm − xn‖22 +
17

16
· 2−2i +

17

16
· 2−2j

+ (
1

2
u2 − 2u1)2

−i + (
1

2
u2 + 2u1)2

−j − 15 · 2−(i+j)−3

≤ ‖xm − xn‖22 +
17

16
· 2−2i +

17

16
· 2−2j − 15

8
u12
−i +

17

8
u12
−j − 15 · 2−(i+j)−3

≤ ‖xm − xn‖22 +
17

16
· 2−2i +

17

16
· 2−2j − 30

16
u12
−i +

17

16
u12
−i − 15 · 2−(i+j)−3

≤ ‖xm − xn‖22 +
17

16
· 2−2i +

17

16
· 2−2j − 13

16
u12
−i − 15 · 2−(i+j)−3

≤ ‖xm − xn‖22 +
17

16
· 2−2i +

17

16
· 2−2j − 39

32
2−2i − 15 · 2−2j−2

= ‖xm − xn‖22 −
5

32
2−2i − 43

16
· 2−2j < ‖xm − xn‖22

This proves that (xn) is non-expansive. Hence by Theorem 11.3 in [68] there exists a non-

expansive map f such that f(xn) = xn+1. Furthermore, let 0 < m < n and let xn = (y1, y2)

and xm = (z1, z2). Note that |y2 − z2| ≤ 1
4(y1 − z1), |z1| < y1, |y2| ≤ 1

4y1 and z2 ≤ 1
4z1.

Using this we find

‖xm‖22 = z21 + z22 = z21 + (z2 − y2)(z2 + y2) + y22 =

≤ z21 +
1

16
(y1 − z1)(y1 + z1) + y22

≤ 15

16
z21 +

1

16
y21 + y22 ≤ y21 + y22 = ‖xn‖22

Hence for any subsequence of (xkn) satisfying that (i(xkn)) converges to some horofunction

ξ, it follows that ξ is a Karlsson point. Recall that the horofunctions can be represented

by considering the projections on the unit sphere. Since for i large enough

Xi =

{
xn
‖xn‖2

: ni−1 ≤ n ≤ ni
}

gives an arbitrarily fine partition of the arc between ( 8√
65
, 1√

65
) and ( 8√

65
,− 1√

65
) we see

that the Karlsson points of f form a continuum on the unit circle.
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With a slight modification to the above example we can also ensure that there are

multiple Beardon points. This is done by going back and forth between l1 and l2 as above,

but every time upon reaching either l1 or l2 we take two steps along l1 or l2 respectively.

Using similar calculations as above we can again calculate the ni. Let a = (n, n8 )

and let l5 be a line parallel to l4 passing through a. By the above l5 intersects l2 in

b′ = (3n,−3n
8 ). Let s be the step length between a and b′. Taking two more steps along l2

gives us b = (3n+2s,−3n+2s
8 ). With a similar procedure we find c = (9n+7s, 9n+7s

8 ). One

can easily see that c1 − b1 = 3(b1 − a1)− s, so if it takes m steps between a and b, then,

as we use half the step length between b and c, it takes 6m− 2 steps between b and c.

Using this we define x0 = (0, 0), x1 = (1, 18), and x2 = (2, 14), and n0 = 2, n1 = 12 and

for i ≥ 2 we find ni = 2 +
∑i−1

j=0 10 · 6j − 2j. We can then define for n > 2

xn =



xn−1 + 2i(1, 14) if ni−1 < n ≤ ni − 2 and i is even.

xn−1 + 2i(1, 18) if ni − 2 < n ≤ ni and i is even.

xn−1 + 2i(1,−1
4) if ni−1 < n ≤ ni − 2 and i is odd.

xn−1 + 2i(1,−1
8) if ni − 2 < n ≤ ni and i is odd.

This gives us a construction like the figure below

xn0

xn1−2

xn1−1

xn1

xn3−2

y = 1
8
x

y = − 1
8
x

y ↑

x
−→

We can use the same calculation as above to show that (xn) is a non-expansive sequence

and therefore by Theorem 11.3 in [68] there exists a non-expansive map f such that

f(xn) = xn+1. Now for 0 < r < 1 define fr = rf and note that fr converges to f pointwise

if r → 1. One can easily see that for all i the point xni−2 is a fixed point of fri for some

ri ∈ (0, 1). Furthermore as the step size decreases and the distance from the origin increases

we find that r0 < r1 < . . . < 1 and limi→∞ ri = 1. It follows that ξ+(·) = − 8√
65
〈(1, 18), ·〉

and ξ−(·) = − 8√
65
〈(1,−1

8), ·〉 are Beardon points with respect to f .

Finally we will show that with some adaptations we can use this method to get a

continuum of Karlsson points with an angle which is arbitrarily close to 90 degrees. For

34



Chapter 3: Denjoy-Wolff type theorem

this let a ∈ N and 0 < b < 1. For all 0 < δ < b we can go back and forth between the

lines l1 : y = (b − δ)x and l2 : y = −(b − δ)x following lines parallel to l3 : y = bx and

l4 : y = −bx. Every time we switch between a line parallel with l3 and a line parallel with

l4, or the other way around, we multiply the step size by a−1. We can define ni and xi

similar to our first example.

Let m,n ∈ N and let xn = (y1, y2), xm = (z1, z2), u1 = y1 − z1 > 0 and let u2 = y2 − z2.

Let i, j ∈ N such that ni < m + 1 ≤ ni+1 and nj < n + 1 ≤ nj+1. As before we may

assume that n > m + 1 and j > i. Suppose u1 < 2a−i, then there must exists a k such

that xm = xnk−1 and an l < a such that xn = xnk+l. But in this case ‖xn+1 − xm+1‖2 ≤

a−i
√

1 + b2 ≤ ‖xn − xm‖2, see the figure below, so we may assume that u1 ≥ 2a−i.

xnk+a

xnk

xnk−1

ba−i

2a−i

a−i
√
1 + b2

From this figure, and the fact that u1 ≥ 2a−i and j > i we may also deduce that

u2 ≤ b(u1 − 2a−i). Using this we find:

‖xn+1 − xm+1‖22 ≤ (u1 − (a−i − a−j))2 + (u2 + b(a−i + a−j))2

= ‖xn − xm‖22 + 2bu2(a
−i + a−j)− 2u1(a

−i − a−j)

+ (1 + b2)a−2i + (1 + b2)a−2j + 2(b2 − 1)a−i−j

≤ ‖xn − xm‖22 + 2b2(u1 − 2a−i)(a−i + a−j)− 2u1(a
−i − a−j)

+ (1 + b2)a−2i + (1 + b2)a−2j + 2(b2 − 1)a−i−j

= ‖xn − xm‖22 + 2u1(b
2 − 1)a−i + 2u1(b

2 + 1)a−j

+ (1− 3b2)a−2i + (1 + b2)a−2j − 2(b2 + 1)a−i−j

Now if b2 ≤ a−1
a+1 we find that

(b2 − 1)a−i + (b2 + 1)a−j ≤ (b2 − 1)a−i + (b2 + 1)a−i+1

≤ − 2

a+ 1
a−i + (

2

a+ 1
)a−i ≤ 0.
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Hence

‖xn+1 − xm+1‖22 ≤ ‖xn − xm‖22 + 4(b2 − 1)a−2i + 4(b2 + 1)a−i−j

+ (1− 3b2)a−2i + (1 + b2)a−2j − 2(b2 + 1)a−i−j

= ‖xn − xm‖22 + (b2 − 3)a−2i + 2(b2 + 1)a−i−j + (1 + b2)a−2j

≤ ‖xn − xm‖22 + (b2 − 3)a−2i + 2(b2 + 1)a−2i−1 + (1 + b2)a−2i−2

Now let k ∈ R such that 0 < 1
k ≤ 1− b2 < 1. Then it holds that

‖xn+1−xm+1‖22 ≤ ‖xn−xm‖22−
2k + 1

k
a−2i+

4k − 2

k
a−2i−1 +

2k − 1

k
a−2i−2 ≤ ‖xn−xm‖22

if and only if

−(2k + 1)a2 + (4k − 2)a+ 2k − 1 ≤ 0.

Solving this and letting k tend to infinity gives us that for 0 < b < 1 and a ≥ max(1 +
√

2, 1+b
2

1−b2 we have that (xn) is a non-expansive sequence. By Theorem 11.3 in [68] there

exists a non-expansive map f such that f(xn) = xn+1. Furthermore, let 0 < m < n and

let xn = (y1, y2) and xm = (z1, z2). Note that |y2 − z2| ≤ b(y1 − z1), z1 < y1, |y2| ≤ by1

and |z2| ≤ bz1. Using this we find

‖xm‖22 = z21 + z22 = z21 + (z2 − y2)(z2 + y2) + y22 =

≤ z21 +
1

b2
(y1 − z1)(y1 + z1) + y22

≤ b2 − 1

b2
z21 +

1

b2
y21 + y22 ≤ y21 + y22 = ‖xn‖22

Hence for any subsequence of (xkn) satisfying that (i(xkn)) converges to some horofunction

ξ, it follows that ξ is a Karlsson point. Therefore we can find a continuum of Karlsson

points with an angle which is arbitrarily close to 90 degrees.

Ernest Ryu independently proved that Karlsson points are not necessarily unique in

[60].

3.4 Two Denjoy-Wolff type Theorems

In this section we will prove two special cases of the Karlsson-Nussbaum conjecture 3.0.3,

where we have special conditions on the map f .

3.4.1 Theorem. Let X be a finite dimensional vector space and let C be a bounded open

convex set equipped with the Hilbert metric dH . Let f : C → C be a fixed point free isometry.

Then there exists a convex set Ω ⊂ ∂C such that for each x ∈ C we have ω(x, f) ⊂ Ω.
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We will prove this theorem by utilizing a theorem from Walsh [65, Theorem 1.3] clas-

sifying the isometries on cones equipped with Hilbert’s metric.

Recall that, if C is a bounded open convex set in a vector space X, then we can identify

C in Y = R×X with a slice of the open cone

Y ◦+ = {(λ, x) ∈ Y : λ > 0 and
x

λ
∈ C}.

It is easy to verify that if we equip Y ◦+ and C with Hilbert’s metric, the natural bijection

from C to Σ = {(1, x) ∈ Y ◦+} sending x to (1, x) is an isometry. So for the proof of

Theorem 3.4.1 we only have to consider order-unit spaces. Therefore we can use Birkhoff’s

version of Hilbert’s metric using the gauge function.

3.4.2 Definition. Let X be an order-unit space with closed cone X+. Recall the gauge

function

M(x/y) = inf{β > 0 : x ≤ βy} (x, y ∈ X◦+).

We call a map f : X◦+ → X◦+ gauge-preserving if M(x/y) = M(f(x)/f(y)) for all x, y ∈

X◦+, we call it gauge-reversing if M(x/y) = M(f(y)/f(x)) for all x, y ∈ X◦+.

Walsh has classified the isometries in [65].

3.4.3 Theorem. Let X be a finite dimensional order-unit space with closed cone X+

equipped with Hilbert’s metric. Every isometry on X◦+ arises as the projection of either a

gauge-preserving or gauge-reserving map.

We can now use a result from Noll and Schäfer in [54] which shows that every gauge-

preserving map is the restriction of an isomorphism, and a result by Lins and Nussbaum

which shows that if f is a (linear) isomorphism the Karlsson-Nussbaum conjecture holds.

This shows that the conjecture holds for gauge-preserving maps, we can then use the fact

that the square of a gauge-reversing map is gauge-preserving to prove Theorem 3.4.1.

3.4.4 Theorem ([54]). Let X be a finite dimensional order-unit space with closed cone

X+. Every gauge-preserving map is the restriction of an isomorphism to X◦+.

3.4.5 Theorem (Theorem 2, [47]). Let X be a finite dimensional vector space with closed

cone X+. Let f : X → X be a positive linear map, let ϕ ∈ X∗+ be a strictly positive linear

functional and let

Σϕ = {x ∈ X◦+ : ϕ(x) = 1}.
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If T : Σϕ → Σϕ given by T (x) = f(x)/ϕ(f(x)) has no fixed points, then there exists some

u ∈ Σϕ \ Σϕ such that ω(x, T ) ⊂ Pu ∩ (Σϕ \ Σϕ) for all x ∈ Σϕ. Recall that Pu is the part

of u.

Recall that by Corollary 2.1.5 parts are convex sets. We can now prove Theorem 3.4.1.

Proof 3.4.1. Let Y = R×X be the order-unit space with open cone

Y ◦+ = {(λ, x) ∈ Y : λ > 0 and
x

λ
∈ C}.

We can view f as an isometry on (1, C). By Theorem 3.4.3 f is the projection of a gauge-

preserving or gauge-reversing map f̃ on Y ◦+. If f̃ is gauge-preserving, then by Theorem 3.4.4

it follows that f̃ is the restriction of an isomorphism on Y and by Theorem 3.4.5 we find

that there exists some u ∈ ∂Y+ such that for all x ∈ X the set of accumulation points

ω((1, x), f) ∈ Pu ∩ (1, ∂C).

If f is gauge-reversing, then f2 is a gauge-preserving map and by the same reasoning

there exists some u ∈ ∂Y+ such that for all x ∈ X we have ω((1, x), f2) ∈ Pu ∩ (1, ∂C).

In particular, for all x ∈ X it holds that ω(f(x), f2) ⊂ Pu ∩ ∂C. As ω(x, f) = ω(x, f2) ∪

ω(f(x), f2) we find that ω(x, f) ⊂ Pu ∩ ∂C.

Our second Denjoy-Wolff type theorem is analogous to Theorem 6.3 [14] by Chu and

Rigby.

3.4.6 Definition. Let X be a normed vector space, let A ⊂ X be some subset of X and

let f : A→ A be a map. We call l : A→ A a limit function of f if l is the pointwise limit

of some subsequence (fnk).

For “well-behaved” spaces and maps these limit functions always exist, as shown in

the following proposition.

3.4.7 Proposition. Let X be a normed vector space and let (M,d) be a proper metric

space such that M ⊂ X is a precompact open subset and the topologies defined by the

metric and the norm coincide on M . If f : M → M is a non-expansive map, then for

every subsequence of (fn) there exists a further subsequence which converges pointwise to

a limit map.

Proof. We will prove this using Ascoli’s theorem [53, 47.1]. Note that for all x, y ∈M and

n ∈ N we have

d(fn(x), fn(y)) ≤ d(x, y),

38



Chapter 3: Denjoy-Wolff type theorem

from which it follows that {fn(x) : n ∈ N} is equicontinuous with respect to the metric

topology, and, since the topologies coincide, with respect to the norm topology. Further-

more, for all x ∈M the closure of

{fn(x) : n ∈ N}

is compact with respect to the norm, as it is contained in M which is compact. By Ascoli’s

theorem the set {fn : n ∈ N} is contained in a compact set of C(M,M), the set of norm

continuous maps from M to M equipped with the topology of compact convergence. Since

singletons of M are compact in the norm topology, it follows that the topology of pointwise

convergence is weaker than the topology of compact convergence. Hence every subsequence

of (fn) has a further subsequence which converges pointwise to a limit map.

3.4.8 Theorem. Let X be a finite dimensional Banach space with closed cone X+ equipped

with the Hilbert metric dH and let f : X◦+ → X◦+ be an order-preserving homogeneous map

with no eigenvectors. Let ϕ be a positive linear functional and let

Σ = {x ∈ X◦+ : ϕ(x) = 1}.

If T : Σ→ Σ, given by T (x) = f(x)
ϕ(f(x)) for all x ∈ Σ, is such that for every limit map l of

T the image l(Σ) is closed, then there exists a convex set Ω ⊂ ∂X+ such that for all x ∈ Σ

we have ω(x, T ) ⊂ Ω.

Proof. By Theorem 4.3 from [41] we can find a sequence (Tn) of contractions converging

pointwise to T . By Theorem 3.1.4 there exists a horofunction ξ such that T leaves the

horoballs of ξ invariant. Furthermore by Proposition 3.1.10 we know that horoballs of ξ

are convex. Hence

Ω̃ :=
⋂
r>0

Hξ(−r) ⊂ ∂X+

is convex. By Proposition 2.1.8 we have that there is a face F ⊂ ∂X+ containing Ω̃. Now

let (xn) be a sequence in X◦+ such that xn ∈ Hξ(−n). Since the horoball of a Beardon

point is T -invariant we find that for every limit map l of T we have l(xn) ∈ Hξ(−n). Thus,

since Σ is compact, by taking a further subsequence if required, we may assume that

lim
n→∞

l(xn) ∈ Ω̃.

Since l(Σ) is closed there exists an x ∈ Σ such that l(x) = limn→∞ l(xn). Note that, since

f is order preserving, for all y ∈ X◦+ we have

M(l(x)/l(y)) = lim
n→∞

M(T kn(x)/T kn(y)) = lim
n→∞

M(fkn(x)/fkn(y)) ≤M(x/y) <∞
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and in a similar way we have M(l(y)/l(x)) ≤ M(y/x). So for all x, y ∈ Σ we find that

l(x) and l(y) are comparable. It follows that there is a part P ⊂ ∂(Σ) such that l(Σ) ⊂ P .

Furthermore, since Ω̃ ∩ P ⊂ F is non-empty and by Proposition 2.1.7 F is a union of

parts, we have that l(Σ) ⊂ P ⊂ F . As F is independent of l, we find that all accumulation

points lie in the convex set F ⊂ ∂X+.
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Jordan Algebras

Jordan algebras can be viewed as order-unit spaces with additional algebraic structure.

In this chapter we will provide an alternate version of a result by Chu and Rigby. In

Theorem 5.10 in [14] Chu and Rigby give an explicit description of closed horoballs on

bounded symmetric domains, using the Pierce decomposition of Jordan Algebras. We will

give a description of the intersection of the boundary of the cone of a Euclidean Jordan

algebra with closed horoballs whose radius tends to minus infinity. Before we do this we

will briefly recall the basic concepts of the theory of Jordan algebras required in this

chapter. One can find a thorough introduction in [22] by Faraut and Korányi and in [48]

by McCrimmon.

4.0.1 Definition. Let X be a vector space over R equipped with a bilinear map • :

X × X → X, (x, y) 7→ xy. We call X a Jordan algebra and • a Jordan product if for all

x, y ∈ X we have

xy = yx

x(x2y) = x2(xy)

and for all x ∈ X the map L(x) : X → X, y 7→ xy is linear. If there is an e ∈ X such that

ex = x for all x ∈ X we call e the unit of X and X a unital Jordan algebra. Furthermore,

if X is finite dimensional and there exists an inner product 〈·, ·〉 on X which is associative

with respect to the Jordan product, i.e. for all x, y, z ∈ X holds

〈xy, z〉 = 〈y, xz〉,

then we call X a Euclidean Jordan algebra.

If the Jordan product can be confused with a different product, e.g. the matrix product
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or an operator product, we will denote the Jordan product as x • y. We will simply write

xy otherwise.

Unital Euclidean Jordan algebras are all formally real, i.e. for all x, y ∈ X it holds that

x2 + y2 = 0 if and only if x = y = 0. This can be easily verified as

‖x‖2 + ‖y‖2 = 〈x, x〉+ 〈y, y〉 = 〈e, x2〉+ 〈e, y2〉 = 〈e, x2 + y2〉 = 〈e, 0〉 = 0

if and only if x = y = 0. Conversely, it is known that all unital finite dimensional formally

real Jordan algebras are unital Euclidean Jordan algebras, see [22, Proposition VIII 4.2].

4.0.2 Example. We will give some examples of well known Euclidean Jordan algebras.

1. The space Rn with the pointwise product and standard inner product.

2. The space of bounded self-adjoint operators of a finite dimensional real inner product

space H, B(H)sa equipped with the following Jordan product A •B = 1
2(AB+BA)

for A,B ∈ B(H)sa with as inner product trace(AB).

3. Let (H, 〈·, ·〉H) be a finite dimensional real inner product space, the space X = R×H

with inner product

〈(λ, x), (µ, y)〉 = λµ+ 〈x, y〉H ((λ, x), (µ, y) ∈ X)

and product

(λ, x) • (µ, y) = (λµ+ 〈x, y〉H , µx+ λy) ((λ, x), (µ, y) ∈ X).

This family of Euclidean Jordan algebras is known as spin factors.

For the remainder of this chapter we will only consider finite dimensional unital Jordan

algebras with unit element e.

Let (X, •) be a Euclidean Jordan algebra. We call two elements x, y ∈ X orthogonal

if x • y = 0. Recall that an element x ∈ X is called an idempotent if x2 = x. We

call an idempotent primitive if it is non-zero and can not be written as the sum of two

different non-zero idempotents. We call a set of pairwise orthogonal primitive idempotents

{e1, . . . , en} a Jordan frame if
n∑
i=1

ei = e.
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4.0.3 Theorem (Spectral theorem, Theorem III.1.2 [22]). Let (X, •) be a Jordan algebra.

Then for all x ∈ X there exists a Jordan frame {e1, . . . , en} and real numbers λ1, . . . , λn

such that

x =
n∑
i=1

λiei.

The numbers λ1, . . . , λn are uniquely determined by x.

The set {λ1, . . . λn} is called the spectrum of x. Using the spectrum we can equip X

with a natural cone X+, the set of all elements with positive spectrum. It is an easy

consequence of the Spectral theorem 4.0.3 that this set is also the set of squares

X+ = {x ∈ X : ∃y ∈ X such that y2 = x}.

For the remainder of this chapter X+ refers to the cone of squares. Using the Spectral

theorem 4.0.3 it is easy to see that the interior of X+ with respect to the order-unit norm

‖ · ‖e is the set of squares of invertible elements.

4.0.4 Definition. Let (X, 〈·, ·〉) be an inner product space with cone X+. We call X+

self-dual if

X∗+ = {x ∈ X : 〈x, y〉 ≥ 0, ∀y ∈ X+} = X+.

We call X+ homogeneous if the automorphism group

G(X+) = {A ∈ GL(X) : AX+ = X+}

acts transitively on X◦+, i.e. for all x, y ∈ X◦+ there exists an A ∈ G(X+) such that Ax = y.

We call X+ symmetric if it is both self-dual and homogeneous.

If X is a Euclidean Jordan algebra with cone of squares X+, then, by the Koecher-

Vinberg theorem [22, Theorem III.2.1], X◦+ is a symmetric cone.

We call the linear map U(x) = 2L(x)2−L(x2) the quadratic representation of x. Using

the spectral theorem it is easy to verify that x ∈ X◦+ is invertible and that U(x−
1
2 )x = e.

Furthermore, for all invertible x ∈ X we have that U(x) is invertible and U(x)−1 = U(x−1).

It follows that U(x) is in the automorphism group G(X+) if x is invertible, see Proposition

III.2.2 [22]. Thus for all x, y ∈ X◦+ we have

M(x/y) = inf{β > 0 : U(y−
1
2 )x ≤ βe} = max{λ ∈ σ

(
U(y−

1
2 )x
)
}.

From this it follows that

dH(x, y) = log
(

max{λ ∈ σ
(
U(y−

1
2 )x
)
}max{λ ∈ σ

(
U(x−

1
2 )y
)
}
)
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4.1 Pierce decomposition

Let (X, •) be a Euclidean Jordan algebra and let x ∈ X be an idempotent one can show

(Proposition III.1.3) that the eigenvalues of L(x) are 0, 1
2 and 1. The decomposition of X

in the eigenspaces X = V (x; 0) + V (x; 1
2) + V (x; 1) is called the Pierce decomposition.

4.1.1 Proposition (Proposition IV.1.1 [22]). If (X, •) is a Jordan algebra and x an

idempotent, then V (x; 1) and V (x; 0) are Jordan subalgebras. Furthermore

V (x; 1) • V (x; 0) = {0},

(V (x; 1) + V (x; 0)) • V (x;
1

2
) ⊂ V (x;

1

2
) and

V (x;
1

2
) • V (x;

1

2
) ⊂ V (x; 1) + V (x; 0)

One can find projections on V (x; 1), V (x; 1
2) and V (x; 0). It is easy to verify that

L(x)(2L(x)− I) is a projection on V (x; 1), 4L(x)(I −L(x)) is a projection on V (x; 1
2) and

(I − L(x))(2L(x)− I) is a projection on V (x; 0).

A consequence of Proposition 4.1.1, is that if x ∈ X is a primitive idempotent, then

V (x; 1) = Rx. One can verify this by applying the spectral theorem 4.0.3 to the Jordan

algebra V (x; 1).

4.1.2 Theorem (Theorem IV.2.1 [22]). Let (X, •) be a Euclidean Jordan algebra. Let

{e1, . . . , en} be a Jordan frame and let Vii = V (ei; 1) = Rei and Vij = V (ei;
1
2) ∩ V (ej ;

1
2).

Then

(i) X decomposes in the direct sum

X =
⊕
i≤j

Vij .

(ii) If we define Pij to be the orthogonal projection on Vij, then Pii = U(ei) and Pij =

4L(ei)L(ej).

(iii) And furthermore

Vij • Vij ⊂ Vii + Vjj ,

Vij • Vjk ⊂ Vik if i 6= k,

Vij • Vkl = {0} if {i, j} ∩ {k, l} = ∅.
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The decomposition X =
⊕

i≤j Vij as defined in Theorem 4.1.2 is call the joint Pierce

decomposition.

4.1.3 Example. Consider the spin factor X = R× Rn with Jordan product

(λ, x) • (µ, y) = (λµ+ 〈x, y〉, λy + µx〉 ((λ, x), (µ, y) ∈ X).

This has unit element e = (1, 0) and note that if (λ, x) ∈ X is an idempotent, then

(λ, x) = (λ, x)2 = (λ2 + ‖x‖2, 2λx)

from which it follows that λ = 1
2 and ‖x‖ = 1

2 . It follows that all non-unit, non-zero

idempotents are primitive. For a unit vector x ∈ Rn one can easily verify that the only

idempotent orthogonal to e1 = (12 ,
1
2x) is e2 = (12 ,−

1
2x). As e1 + e2 = e we find that

{e1, e2} is a Jordan frame and

V11 = Re1,

V22 = Re2,

V12 = {(0, y) ∈ X : 〈x, y〉 = 0}.

4.2 Horoballs of the symmetric cone

Let (X, •) be a Euclidean Jordan algebra with unit e. Recall that the cone of squares X+ is

the set of all elements with positive spectrum. By applying the Spectral theorem 4.0.3 one

can verify that the inverse map (x 7→ x−1) is well-defined on X◦+ and leaves X◦+ invariant.

It is well known that the inverse map is gauge-reversing on the interior of the cone, i.e.

M(x/y) = M(y−1/x−1),

see [44, page 8]. This was utilised by Lemmens, Lins, Nussbaum and Wortel [41] to classify

the Hilbert horofunction boundary for Euclidean Jordan algebras.

4.2.1 Theorem (Theorem 5.6 [41]). If X◦+ is a symmetric cone in a Euclidean Jordan

Algebra (X, •) with as base point the unit e, then the horofunctions of the Hilbert geometry

are precisely the functions of the following form:

ξ(x) = log(M(y/x)) + log(M(z/x−1)) (x ∈ X◦+),

where y, z ∈ ∂X+ such that ‖y‖e = ‖z‖e = 1 and y • z = 0.
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We can use this to gain more information on the geometry of the horoballs. In the case

of bounded symmetric domains there is actually a full description of the horoballs known

by Chu and Rigby [14, Theorem 5.11]. We will do something similar for Euclidean Jordan

algebras for the intersection of the closure of the horoballs with the boundary of the cone.

For this we will need the following two lemmas.

4.2.2 Lemma. Let (X, •) be a finite dimensional Euclidean Jordan algebra, with closed

symmetric cone X+ and unit e. Let {e1, ..., en} be a Jordan frame of X. For all 1 ≤ i ≤ n,

if w ∈ V (ei;
1
2), then eiw

2 = 1
2‖w‖

2ei. Furthermore, for all 1 ≤ i < j ≤ n, if w ∈ Vij then

w2 = 1
2‖w‖

2(ei + ej).

Proof. Let 1 ≤ i ≤ n and let w ∈ V (ei;
1
2). Note that by Proposition 4.1.1 we have that

w2 ∈ V (ei; 1) + V (ei; 0). As ei is a primitive idempotent by Theorem 4.1.2 we have that

eiw
2 ∈ V (ei; 1) = Rei. Consider

〈eiw2, ei〉 = 〈L(ei)w
2, ei〉 = 〈w2, L(ei)ei〉

= 〈w2, ei〉 =
1

2
〈w,w〉 =

1

2
‖w‖2,

hence eiw
2 = 1

2‖w‖
2ei.

Now let 1 ≤ i < j ≤ n and let w ∈ Vij . By Theorem 4.1.2 we have that w2 ∈ Vii + Vjj

and w ∈ V (ei;
1
2)∩V (ej ;

1
2). From the above it follows that w2 = (ei+ej)w

2 = 1
2‖w‖

2(ei+

ej).

4.2.3 Lemma. Let (X, •) be a finite dimensional Euclidean Jordan algebra, with closed

symmetric cone X+ and unit e. Let {e1, ..., en} be a Jordan frame of X. For all 1 ≤ i ≤ n,

if (wm) is a sequence in V (ei;
1
2), then limk→∞w

2
m−eiw2

m = 0 if and only if (wm) converges

to 0.

Proof. First, note that V (ei;
1
2) =

∑
j 6=i Vij . Indeed, since 4L(ei)(I −L(ei)) is a projection

on V (ei;
1
2) by Theorem 4.1.2 we find

V (ei;
1

2
) = 4L(ei)(I − L(ei))X = 4L(ei)(I − L(ei))

 n∑
j=1

Vjj +
∑

1≤j<k≤n
Vjk


= 4L(ei)

∑
j 6=i

Vjj +
∑
j 6=i

1

2
Vij +

∑
j 6=i 6=k

Vjk

 =
∑
j 6=i

Vij .
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So for all m ∈ N we can write wm =
∑

j 6=iwmij with wmij ∈ Vij . By Theorem 4.1.2 we

find

w2
m =

∑
j 6=i

w2
mij + 2

∑
0≤j<k≤n
j 6=i 6=k

wmijwmik ∈
∑
j 6=i

w2
mij +

∑
1≤j<k≤n
j 6=i 6=k

Vjk.

By Lemma 4.2.2 we find ∑
j 6=i

w2
mij =

∑
j 6=i

1

2
‖wmij‖2(ei + ej)

hence by Theorem 4.1.2 it follows that eiw
2
m =

∑
j 6=i

1
2‖wmij‖

2ei. As by Lemma 4.2.2 we

have that eiw
2
m = 1

2‖wm‖
2ei, we conclude that ‖wm‖2 =

∑
j 6=i ‖wmij‖2. So

w2
m − eiw2

m = w2
m −

1

2
‖wm‖2ei ∈

∑
j 6=i

1

2
‖wmij‖2ej +

∑
1≤j<k≤n
j 6=i 6=k

Vjk.

By Theorem 4.1.2 we have that X =
⊕

1≤j≤k≤n Vjk, so limm→∞w
2
m − eiw2

m = 0 if and

only if (‖wmij‖) tends to 0 for all j 6= i. Since (‖wm‖2) = (
∑

j 6=i ‖wmij‖2) it follows that

limm→∞w
2
m − w2

m • ei = 0 if and only if wm converges to 0.

We can now prove the main theorem of this chapter.

4.2.4 Theorem. Let (X, •) be a finite dimensional Euclidean Jordan algebra, with closed

symmetric cone X+ and unit e. If ξ is a horofunction of the Hilbert geometry given by

ξ(x) = log(M(y/x)) + log(M(z/x−1)) (x ∈ X◦+)

where y, z ∈ ∂C such that y • z = 0 and ‖y‖e = ‖z‖e = 1, then⋂
r>0

H−r(ξ) = V (z; 0) ∩X+

where H−r(ξ) is the norm closure of the horoball of ξ of radius −r.

Proof. Let J = {e1, . . . , en} be a Jordan frame such that z =
∑k

i=1 αiei and y =
∑l

i=k+1 βiei.

We will first prove that V (z; 0) ∩ X+ ⊂
⋂
r>0H−r(ξ). Let x ∈ V (z; 0) ∩ X+. Since

V (z; 0) = V (
∑k

i=1 ei; 0) =
⊕

k+1≤i≤j≤n Vij we can find µi ∈ R and xij ∈ Vij such that

x =

n∑
i=k+1

µiei +
∑

k+1≤i<j≤n
xi,j .

For all m ∈ N we define

xm =

k∑
i=1

1

m2
ei +

n∑
i=k+1

(
1

m
+ µi)ei +

∑
k+1≤i<j≤n

xij .
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Clearly xm converges to x in norm as m → ∞ and xm ∈ X◦+ as xm > x + 1
m2 e ≥ 1

m2 e as

x ∈ X+.

As
∑k

i=1 ei is an idempotent by Proposition 4.1.1 V (z; 0) = V (
∑k

i=1 ei; 0) is a Jordan

subalgebra. As the cones of Euclidean Jordan algebras are the set of squares we have

V (z; 0)+ = V (z; 0)∩X+. It is easy to verify that u =
∑n

i=k+1 ei is the unit of V (z; 0) and

therefore an order-unit of V (z; 0). Since x ∈ V (z; 0) ∩X+ = V (z; 0)+ we can find a β > 0

such that x ≤ βu. Then xm ≤ 1
m2

∑k
i=1 ei + ( 1

m + β)u. Thus

x−1m ≥ m2
k∑
i=1

ei + (
m

βm+ 1
)u ≥ m2z and

xm ≥ x+
1

m

n∑
i=k+1

ei ≥
1

m

n∑
i=k+1

ei ≥
1

m
y

we have M(y/xm) ≤ m and M(z/x−1m ) ≤ m−2. Hence

ξ(xm) = log(M(y/xm)) + log(M(z/x−1m )) ≤ log(m)− 2 log(m).

So we find that ξ(xm) tends to −∞ if m→∞ and hence V (z; 0) ∩X+ ⊂
⋂
r>0H−r(ξ).

For the opposite inclusion let (xm) be a sequence in X◦+ such that ‖xm‖e = 1,

limm→∞ xm = x ∈ ∂X+ and limm→∞ ξ(xm) = −∞. Note that, as xm ≤ e implies that

y ≤M(y/xm)xm ≤M(y/xm)e,

we have

M(y/xm) ≥M(y/e) = ‖y‖e = 1.

In particular this means that

−∞ = lim inf
m→∞

log
(
M(y/xm)M(z/x−1m )

)
≥ lim inf

m→∞
log
(
M(z/x−1m )

)
.

So we have to prove that, if limm→∞M(z/x−1m ) = 0, then x ∈ V (z; 0).

To understand the limit of (M(z/x−1m )) we will first examine the limit of (M(ei/x
−1
m )).

Recall that

M(ei/x
−1
m ) = M(U(x

1
2
m)ei/e) = M((2L(x

1
2
m)2ei − L(xm)ei)/e).

Let λm ∈ R, um, 1
2
∈ V (ei;

1
2) and um,0 ∈ V (ei; 0) such that x

1
2
m = λmei+um, 1

2
+um,0. Recall

that by Lemma 4.2.2 we have eiu
1
2

m, 1
2

= 1
2‖um, 12 ‖

2ei. Using this and Proposition 4.1.1 we

find

xm = (λ2m +
1

2
‖um, 1

2
‖2)ei + 2um,0 • um, 1

2
+ λmum, 1

2
+ (u2m,0 + u2

m, 1
2

− 1

2
‖um, 1

2
‖2ei)
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and

L(xm)ei = (λ2m +
1

2
‖um, 1

2
‖2)ei + um,0 • um, 1

2
+
λm
2
um, 1

2
.

Furthermore

2L(x
1
2
m)2ei = 2(λmei + um, 1

2
+ um,0) • (λmei +

1

2
um, 1

2
)

= 2(λ2mei +
λm
4
um, 1

2
+
λm
2
um, 1

2
+

1

2
u2
m, 1

2

+ um,0 • um, 1
2
)

= (2λ2m +
1

2
‖um, 1

2
‖2)ei +

3λm
2
um, 1

2
+ um,0 • um, 1

2
+ (u2

m, 1
2

− 1

2
‖um, 1

2
‖2ei)

This gives us

2L(x
1
2
m)2ei − L(xm)ei = λ2mei + λmum, 1

2
+ (u2

m, 1
2

− 1

2
‖um, 1

2
‖2ei)

Now suppose that limm→0 U(x
1
2
m)ei = 0. As U(x

1
2
m)ei is a direct sum of V (ei; 1), V (ei;

1
2)

and V (ei; 0) we find that limm→∞ U(x
1
2
m)ei = 0 if and only if

lim
m→∞

u2
m, 1

2

− 1

2
‖um, 1

2
‖2ei = 0,

lim
m→∞

λmum, 1
2

= 0 and

lim
m→∞

λ2mei = 0.

Note that limm→∞ λ
2
mei = 0 if and only if limm→∞ λm = 0. Furthermore, by Lemma 4.2.3

we find that limm→∞ u
2
m, 1

2

− 1
2‖um, 12 ‖

2ei = 0 if and only if limm→∞ um, 1
2

= 0. Note

that limm→∞ λmum, 1
2

if limm→∞ λm = 0, hence limm→0 U(x
1
2
m)ei = 0 if and only if

limm→∞ um, 1
2

= 0 and limm→∞ λm = 0.

Now we consider the components of x. Note that if limm→∞ um, 1
2

= 0 and limm→∞ λm = 0,

then limm→∞ λ
2
m + 1

2‖um, 12 ‖
2 = 0 and limm→∞ 2um,0 •um, 1

2
+λmum, 1

2
= 0. Also note that

if limm→∞ λ
2
m + 1

2‖um, 12 ‖
2 = 0 then clearly limm→∞ um, 1

2
= 0 and limm→∞ λm = 0. Thus

we conclude that limm→∞ U(x
1
2
m)ei = 0 if and only if limm→∞ xm ∈ V (ei; 0).

Now consider

U

(
x

1
2
m

)
z =

k∑
i=1

αiU

(
x

1
2
m

)
ei.

We know from Proposition IV.3.2 in [22] that the primitive idempotents are exactly the

extreme rays of the cone. Furthermore recall that as x
1
2
m is invertible, U(x

1
2
m) is invertible, so

U(x
1
2
m) is a linear isomorphism which leaves X+ invariant. Consequently it sends extreme
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rays to extreme rays, i.e. U(x
1
2
m)ei is the multiple of a primitive idempotent. As αi > 0 we

find that

lim
m→∞

M(U(x
1
2
m)z/e) = lim

m→∞
M(

k∑
i=1

αiU(x
1
2
m)ei/e)

= lim
m→∞

‖
k∑
i=1

αiU(x
1
2
m)ei‖e = 0

if and only if limm→∞M(U(x
1
2
m)ei/e) = 0 for all 1 ≤ i ≤ k, i.e. limm→∞ xm ∈ V (ei; 0).
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Kuratowski-Painlevé convergence

In the remainder of this thesis we will focus on the horofunction boundary itself. We

will give descriptions and classifications of the horofunctions of the Funk, reverse-Funk

and Hilbert geometry for the cone of, possibly infinite dimensional, order-unit spaces. For

general order-unit spaces we will give only a description. This result is based on the work

of Walsh in [66]. In this paper Walsh gives a classification of the Busemann points of

the Funk, reverse-Funk and Hilbert geometry for the cone of an order-unit spaces. The

Busemann points are a special class of horofunctions which we will introduce in Chapter 6.

In particular Walsh shows that the horofunctions of the Funk and reverse-Funk geometry

of the cone of positive continuous functions on a compact set are all Busemann points.

For this result we need Kuratowski-Painlevé convergence which we will introduce in this

chapter. In Chapter 6 we will give the proof of Walsh’s results in [66] and extend it to a

description of the horofunction boundary of general order-unit spaces. Finally we will give

a partial answer to the following question which was raised by Walsh in [66]. Is it possible

for reverse-Funk geometries to have non-Busemann horofunctions? In Section 7 we will

show that this is possible even for some “well-behaved” spaces. As part of this effort we

will also classify the horofunctions and Busemann points of the Funk, reverse-Funk, and

Hilbert geometry of the cone of spin-factors and JH-algebras.

5.1 Kuratowski-Painlevé convergence

Every function f : X → Y is just a representation of the graph of the function

{(x, y) ∈ X × Y : f(x) = y}.

Kuratowski-Painlevé convergence deals with the convergence of nets of sets and thus can

be used to define convergence on nets of functions.
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5.1.1 Definition. Let J ′ be a subset of a directed set J . J ′ is called residual if there

exists an α ∈ J such that α′ ∈ J ′ for all α′ ≥ α. J ′ is called cofinal if for all α ∈ J there

exist an α′ ≥ α such that α′ ∈ J ′.

5.1.2 Definition. Let (X, τ) be a Hausdorff space and let (Aα)α∈J be a net of subsets of

X. We call x0 a limit point of (Aα)α∈J if for every neighbourhood U of x0 there exist a

residual subset J ′ ⊂ J such that for all α ∈ J ′ we have Aα ∩ U 6= ∅.

We call x0 a cluster point of (Aα)α∈J if for every neighbourhood U of x0 there exist a

cofinal subset J ′ ⊂ J such that for all α ∈ J ′ we have Aα ∩ U 6= ∅.

We denote the set of limits point of (Aα) as Li Aα and the set of cluster points as Ls Aα.

Note that Li Aα ⊂ Ls Aα. We will call Li Aα and Ls Aα the lower closed limit and

the upper closed limit. The fact that both are closed is a direct consequence of a result by

Choquet in [13].

5.1.3 Proposition. Let (X, τ) be a Hausdorff space and let (Aα)α∈J be a net of subsets

of X. Then

Li Aα =
⋂{ ⋃

α∈J ′
Aα : J ′ is a cofinal subset of J

}
and

Ls Aα =
⋂{ ⋃

α∈J ′
Aα : J ′ is a residual subset of J

}
.

Proof. The proof for the formula of Li Aα and Ls Aα are similar so we will only provide

the proof for Ls Aα. Let x ∈ Ls Aα and let J ′ be a residual subset of J and let α ∈ J

be such that for all α ≤ α′ ∈ J we have α′ ∈ J ′. As x ∈ Ls Aα, we know that for all

neighbourhoods U of x there is an α′ ≥ α such that Aα′ ∩ U 6= ∅, so

x ∈
⋃
α′≥α

Aα′ ⊂
⋃
α′∈J ′

Aα′ .

Now let x ∈ X\Ls Aα, i.e., there is a neighbourhood V of x such that {α ∈ J : V ∩Aα 6= ∅}

is not cofinal. Then J ′ = {α ∈ J : V ∩Aα = ∅} is residual and x 6∈
⋃
α∈J ′ Aα.

Note that an immediate consequence of Proposition 5.1.3 is that the set of limits points

and the set of cluster point are both closed.

5.1.4 Definition. Let (X, τ) be a Hausdorff space let A be a subset of X and let (Aα)

be a net of subsets of X. We call (Aα) Kuratowski-Painlevé convergent to A if Li Aα =

Ls Aα = A. We write A = K − limAα.
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As Li Aα ⊂ Ls Aα, there are two easy ways to verify if a net of sets is Kuratowski-

Painlevé convergent.

5.1.5 Lemma (Lemma 5.2.4, [7]). Let X be a Hausdorff space and let (Aα) be a net of

subsets of X and let A ⊂ X. (Aα) is Kuratowski-Painlevé convergent if Ls Aα ⊂ Li Aα.

Moreover, (Aα) is Kuratowski-Painlevé convergent to A if Ls Aα ⊂ A ⊂ Li Aα.

Note that for any open set U ⊂ X and subset A ⊂ X we have U ∩A = ∅ if and only if

U∩A = ∅, Thus K− limAα = K− limAα. This allows us to compare Kuratowski-Painlevé

convergence to the convergence in the Fell topology, a topology on the closed sets of X

introduced by Fell in [23].

5.1.6 Definition. Let X be a Hausdorff space and let CL(X) be the set of closed subsets

of X. The Fell topology τF on CL(X) is the topology generated by the base which consists

of all sets of the following form, for all open sets V ⊂ X the sets V − = {C ∈ CL(X) :

C ∩V 6= ∅} and for all open set W ⊂ X with a compact complement the sets W+ = {C ∈

CL(X) : C ⊂W}.

One can also define the Fell topology in non-Hausdorff spaces, which has applications

in functional analysis. However this does make the Fell topology harder to work with

due to lack of unique limits. As we are mainly interested in metric spaces, we will only

consider the Fell topology in Hausdorff spaces. For Hausdorff spaces Kuratowski-Painlevé

convergence always implies convergence with respect to the Fell topology [20], as the

following proposition shows.

5.1.7 Proposition. Let X be a Hausdorff space, let (Aα)α∈J be a net of subsets of X

and let ∅ 6= A ⊂ X be closed. If (Aα) is Kuratowski-Painlevé convergent to A, then (Aα)

converges to A in the Fell topology.

Proof. First let V ⊂ X be an open set such that A ∈ V −, i.e. A ∩ V 6= ∅. Let x ∈ A ∩ V

and note that V is a neighbourhood of X. As Li Aα = A there exists an α such that for

all α′ ≥ α we have Aα′ ∩ V 6= ∅ and in particular Aα′ ∈ V −. Finally let W ⊂ X be an

open set such that X \W is compact and A ⊂ W . Now suppose there is some cofinal set

J ′ ⊂ J such that for all α ∈ J ′ we have Aα ∩ (X \W ) 6= ∅. As X \W is compact this

implies there is a cluster point of (Aα) in X \W which contradicts K − limAα = A.

The converse of this statement only is true ifX is locally compact. In fact, by a result by

Mrówka in [51], if X is not locally compact then there exist no topology that coincides with
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Kuratowski-Painlevé convergence. In particular one can see that convergence in the Fell

topology and Kuratowski-Painlevé convergence do not coincide if X is not locally compact

as the Fell topology is Hausdorff if and only if X is locally compact [7, Proposition 5.1.2],

while Kuratowski-Painlevé convergence is always unique if X is Hausdorff.

5.1.8 Proposition. Let X be a locally compact Hausdorff space, let (Aα)α∈J be a net of

subsets of X and let A ⊂ X be closed. If (Aα) converges to A in the Fell topology, then

(Aα) is Kuratowski-Painlevé convergent to A.

Proof. By Lemma 5.1.5 we only have to prove Ls Aα ⊂ A ⊂ Li Aα. So let x ∈ Ls Aα be

a cluster point and suppose x 6∈ A. As X is a locally compact Hausdorff space there is a

compact neighbourhood C of x which is disjoint from A. As C has non-empty interior C◦

and x is a cluster point there exists a cofinal set J ′ ⊂ J such that for all α ∈ J ′ we have

Aα ∩ C◦ 6= ∅. So for all α ∈ J ′ it holds that Aα 6∈ (X \ C)+. This contradicts that (Aα)

converges to A in the Fell topology.

Now let x ∈ A and suppose A is not a limit point. Then there is some open neighbourhood

U of x and a cofinal set J ′ ⊂ J such that for all α ∈ J ′ we have Aα ∩U = ∅. In particular

this means Aα 6∈ U− which contradicts that (Aα) converges to A in the Fell topology.

If X is not locally compact then the result does not hold, as illustrated by the following

example.

5.1.9 Example. Let B1[0] ⊂ `2 be the closed unit ball, let x ∈ `2 with ‖x‖ = 2 and let

K(x) = {K ⊂ `2 : x ∈ K,K compact and K ∩B1[0] = ∅}

be the sets of all compact sets containing x which do not intersect the closed unit ball.

Note that K(x) is a directed set when equipped with the partial order U ≤ V if and only

if U ⊂ V for all U, V ∈ K(x). Now for every U ∈ K(x) we define rU = maxy∈U ‖y‖, note

that 2 ≤ rU <∞. Since Br−1
U

[x] is not contained in U we can find some xU ∈ Br−1
U

[x] \U .

As {x, nx} ∈ K(x) for all n > 1, we can easily see that the net (ru)U∈K(x) tends to infinity

and therefore limU∈K(x) xU = x.

Now let en ∈ `2 be the standard unit vectors in `2. Note that since every U ∈ K(x) is

compact, the set {2en ∈ U : n ∈ N} is finite. Hence we can define the net (AU )U∈K(x) of

subsets of `2 given by

AU =


B1[0] ∪ {xU} if |{2en ∈ U : n ∈ N}| is odd.

B1[0] if |{2en ∈ U : n ∈ N}| is even.

54



Chapter 5: Kuratowski-Painlevé convergence

Clearly x is a cluster point but not a limit point for (AU )U∈K(x), hence (AU ) is not

Kuratowski-Painlevé convergent. However one can show that (AU ) converges to B1[0] in

the Fell topology. To see this let V ⊂ `2 be an open set such that B1[0] ∈ V −. We have

that AU ∈ V − for all U ∈ K(x). Let W ⊂ `2 be an open set containing B1[0] for which

K = `2 \W is compact. Note that if K 6∈ K(x) then infy∈K ‖x− y‖ > 0. If we pick n ∈ N

such that 1
n < infy∈K ‖x− y‖ then for all U ≥ {x, ne1} we have that ‖x−xU‖ ≤ 1

n . Hence

xU ∈W and therefore AU ⊂W . If K ∈ K(x), then for all U ≥ K we have that AU ⊂W .

It follows that (AU ) converges to B1[0] in the Fell topology.

As in general infinite dimensional order-unit spaces are not locally compact we will

only look at Kuratowski-Painlevé convergence and not at a topology. Finally one important

reason for using Kuratowski-Painlevé convergence is that it is “compact” for any Hausdorff

space, i.e. every net of subsets has a Kuratowski-Painlevé convergent subnet. Mrowka gave

a proof of this result in [52] using Tychonoff’s theorem [53, Theorem 37.3].

5.1.10 Theorem (Mrowka’s theorem). Let X be a Hausdorff space. If (Aα)α∈J is a net

of subsets of X, then (Aα) has a Kuratowski-Painlevé convergent subnet.

Proof. Let O(X) be the set of open sets of X. Let {0, 1} be equipped with the discrete

topology and consider {0, 1}O(X) equipped with the product topology. For all α ∈ J we

define fα ∈ {0, 1}O(X) by

fα(U) =


1 if Aα ∩ U 6= ∅.

0 if Aα ∩ U = ∅.

Since by Tychonoff’s theorem {0, 1}O(X) is compact (fα)α∈J has a convergent subnet

(fα)α∈Ĵ .

We will now show that for the subnet (Aα)α∈Ĵ it holds that Ls Aα ⊂ Li Aα. Applying

Lemma 5.1.5 will then give us that (Aα)α∈Ĵ is Kuratowski-Painlevé convergent.

Let x ∈ X be a cluster point of (Aα)α∈Ĵ and let U be a neighbourhood of x. For some

cofinal J ′ ⊂ Ĵ it holds that for all α ∈ J ′ we have fα(U) = 1. But since (fα)α∈Ĵ converges

this implies that limα fα(U) = 1 and thus there is a residual J† ⊂ Ĵ such that fα(U) = 1

for all α ∈ J†, so x is a limit point of (Aα)α∈Ĵ .
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5.2 Epiconvergence and hypoconvergence

Let X be a topological space and let f : X → R = R∪{−∞,∞} be a map. We define the

epigraph of f as epi(f) = {(x, r) ∈ X ×R : r ≥ f(x)} and we define the hypograph of f as

hypo(f) = {(x, r) ∈ X × R : r ≤ f(x)}.

5.2.1 Definition. Let X be a topological space. A function f : X → R is called upper-

semicontinuous if for all x ∈ X either for all ε > 0 there exists an open neighbourhood

U ⊂ X of x such that for all y ∈ U we have f(x) + ε > f(y) if f(x) > −∞, or, for all

N ∈ R there exists an open neighbourhood U ⊂ X of x such that f(y) < N for all y ∈ U

if f(x) = −∞. We call f lower-semicontinuous if −f is upper-semicontinuous.

If X is Hausdorff there is a useful equivalent definition for upper and lower semi-

continuity.

5.2.2 Proposition. Let f : X → R be a map on a Hausdorff space X. Then f is

upper-semicontinuous at x ∈ X if and only if for all nets (xα) converging to x we have

lim supα f(xα) ≤ f(x).

Proof. Note that the result is evident if f(x) = −∞, so we may assume f(x) > −∞.

Suppose f is upper-semicontinuous at x ∈ X, but there exists a net (xα) in X such

that lim supα f(xα) > f(x), by taking a subnet we may assume limα f(xα) > f(x). Let

ε = 1
2(limα f(xα)− f(x)). There exists a neighbourhood U of x such that for all y ∈ U we

have f(x) ≥ f(y)− ε. As xα ∈ U for α large enough, this is a contradiction.

Now assume for all nets (xα) in X converging to x we have lim supα f(xα) ≤ f(x), but

there is an ε > 0 such that for all neighbourhoods U of x there is a yU ∈ U such that

f(yU )−ε ≥ f(x). Note that the set of neighbourhoods of x is a directed set when equipped

with the partial order U ≤ V if and only if U ⊃ V . Then (yU ) is a net converging to x

with lim supU f(yU ) ≥ f(x) + ε > f(x) which is a contradiction.

A similar result can be obtained for lower-semicontinuous functions.

5.2.3 Proposition. Let f : X → R be a map on a Hausdorff space X. Then f is

lower-semicontinuous at x ∈ X if and only if for all nets (xα) converging to x we have

lim infα f(xα) ≥ f(x).

From the results above we find the following easy consequence.
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5.2.4 Corollary. Let f : X → R be a map on a compact Hausdorff space X. If f is

upper-semicontinuous, then there is a y ∈ X such that f(y) = supx∈X f(x). If f is lower-

semicontinuous, then there is a y ∈ X such that f(y) = infx∈X f(x).

For reasons of convenience for the rest of the thesis we will denote “supx∈X f(x)” by

“sup f” and “infx∈X f(x)” by “inf f” if there is no ambiguity.

Proof 5.2.4. Let f be upper-semicontinuous and let (xα) be a net such that limα f(xα) =

sup f . Since X is compact, by taking a further subsequence, we may assume that xα

converges to some y ∈ X. By Proposition 5.2.2 it follows that

f(y) ≥ lim sup
α

f(xα) = sup f.

The proof for the case in which f is lower-semicontinuous is similar.

IfX is Hausdorff there is another equivalent definition of upper or lower semi-continuity

using the epigraph and the hypograph.

5.2.5 Proposition. Let X be a Hausdorff space and let f : X → R be an extended real

function. Then f is upper-semicontinuous if and only if its hypograph is closed with respect

to the product topology of X × R. Likewise f is lower-semicontinuous if and only if its

epigraph is closed with respect to the product topology of X × R.

Proof. Suppose f is upper-semicontinuous and let (x, r) ∈ X × R such that r > f(x). If

f(x) > −∞ let ε = 1
4(r − f(x)). Then there exists a neighbourhood U of x such that for

all y ∈ U we have r − ε > f(x) + ε > f(y), so (U × (r − ε, r + ε)) ∩ hypo(f) = ∅. If

f(x) = −∞, then there exists an open neighbourhood U ⊂ X of x such that f(y) < r− 1

for all y ∈ U , so (U × (r − 1
2 , r + 1

2)) ∩ hypo(f) = ∅, hence hypo(f) is closed.

Now suppose hypo(f) is closed and let x ∈ X. If f(x) = −∞ then for all N ∈ N there

exists a neighbourhood U of x and a ε > 0 such that (U × (N − ε,N + ε))∩ hypo(f) = ∅,

as hypo(f) is closed. In particular we find that for all y ∈ U we have f(y) < N . If

f(x) > −∞, then for all ε > 0 there exists a µ > 0 and a neighbourhood U of x such that

(U × (f(x) + ε− µ, f(x) + ε+ µ)) ∩ hypo(f) = ∅, so f(y) < f(x) + ε for all y ∈ U , hence

f is upper-semicontinuous.

The proof for the second equivalence relation is an easy consequence of the above and the

fact that epi(−f) = −hypo(f).
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5.2.6 Corollary. The Kuratowski-Painlevé limit of a net of hypographs is always upper-

semicontinuous and the Kuratowski-Painlevé limit of a net of epigraphs is always lower-

semicontinuous.

Proof. This is a direct consequence of the fact that the Kuratowski-Painlevé limit of a net

of sets is always closed by Proposition 5.1.3. The result then follows from Proposition 5.2.5.

This motivates the idea to call a net of functions (fα) convergent to some f if and only

if the epigraphs or hypographs of fα are Kuratowski-Painlevé convergent to epigraph or

hypograph of f .

5.2.7 Definition. Let X be a Hausdorff space and let (fα) be a net of functions from

X to R. We say (fα) is Kuratowski-Painlevé epi-convergent to a function f if epi(f) =

K − lim epi(fα).

Similarly we say (fα) is Kuratowski-Painlevé hypo-convergent to a function f if hypo(f) =

K − lim hypo(fα).

As we will only consider the limits of epigraphs and hypographs with respect to

Kuratowski-Painlevé convergence we will shorten Kuratowski-Painlevé epi-convergent and

Kuratowski-Painlevé hypo-convergent to epi-convergent and hypo-convergent respectively.

A function f is continuous if it is both upper and lower-semicontinuous. Yet it is easy to

find a net of continuous functions which are epi or hypo-convergent to a function that is

not continuous.

5.2.8 Example. Consider the sequence of functions (fn) where fn : [0, 1]→ R is given by

fn(x) =


2nx if 0 ≤ x < 1

2n .

2− 2nx if 1
2n ≤ x <

1
n .

0 if 1
n ≤ x ≤ 1.

( 1
2n
, 1)

0 1
n

1

1

f
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One can see that the sequence (fn) is hypo-convergent to the function f for which f(0) = 1

and f(x) = 0 for all 0 < x ≤ 1 which is not a continuous function. Also note that

evidently (fn) converges pointwise to f ≡ 0, it follows that hypo-convergence is not

stronger or weaker than pointwise convergence. One can construct a similar example for

epi-convergence.

For first countable Hausdorff spaces there is a more intuitive way to verify hypo-

convergence of a sequence of functions. Recall that a space is first countable if each point

has a countable neighbourhood basis.

5.2.9 Theorem. Let X be a first-countable Hausdorff space and let (fn) be a sequence

of upper-semicontinuous functions in X and let f : X → R be an upper-semicontinuous

function. Then (fn) is hypo-convergent to f if and only if for all x ∈ X the following hold:

(i) There exist (xn) converging to x such that limn→∞ fn(xn) = f(x).

(ii) If (xn) converges to x, then lim supn→∞ fn(xn) ≤ f(x).

Proof. Suppose (fn) is hypo-convergent to f and let x ∈ X. We will first show that (ii)

holds.

Let (xn) be a sequence converging to x. Suppose that l = lim supn→∞ fn(xn) > f(x) ≥

−∞. If f(x) = −∞, then let (xnk) be a subsequence such that fnk(xnk) > l − 1 > −∞.

It follows that (xnk , l − 1) ∈ hypo(fnk) for all k ∈ N, so (x, l − 1) is a cluster point

of (hypo(fn)). Since (hypo(fn)) is Kuratowski-Painlevé convergent to hypo(f) we have

(x, l − 1) ∈ hypo(f) which is a contradiction. If f(x) > −∞, then we can find some ε > 0

and a subsequence (fnk) such that for all k ∈ N we have fnk(xnk) > f(x)+ε. In particular

this means that (xnk , f(x) + ε) ∈ hypo(fnk) for all k ∈ N, so (x, f(x) + ε) is a cluster

point of (hypo(fn)). Since (hypo(fn)) is Kuratowski-Painlevé convergent to hypo(f) we

have (x, f(x) + ε) ∈ hypo(f) which is a contradiction proving (ii).

To prove (i) let {Un : n ∈ N} be a neighbourhood basis of (x, f(x)) with Un ⊃ Un+1 for

all n. Since (x, f(x)) is a limit point of (hypo(fn)) we can find a monotone increasing

sequence (Nn) such that for all m ≥ Nn we have that hypo(fm) ∩ Un 6= ∅. We can now

find a sequence ((xn, cn)) such that (xn, cn) ∈ hypo(fn)∩Um for all Nm ≤ n < Nm+1. By

construction ((xn, cn)) converges to (x, f(x)). This proves (i) since it follows from (ii) that

f(x) = lim
n→∞

cn = lim inf
n→∞

cn ≤ lim inf
n→∞

fn(xn) ≤ lim sup
n→∞

fn(xn) ≤ f(x).
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Now suppose that (i) and (ii) hold. By (i) we have for all x that there exists a sequence

((xn, f(xn)) converging to (x, f(x)), so (x, f(x)) ∈ Li hypo(fn). Then for all c < f(x) we

find that (xn, f(xn)− f(x) + c) converges to (x, c) hence hypo(f) ⊂ Li hypo(fn).

Finally let (x, c) ∈ X × R be a cluster point of (hypo(fn)) and suppose that c >

f(x). As X is first-countable there exists a subsequence (hypo(fnk)) for which there exist

(xnk , cnk) ∈ hypo(fnk) such that (xnk) converges to x and (cnk) converges to c. Now we can

define a sequence ((xn, cn)) by picking xn = x and cn = fn(x) for all n ∈ N \ {nk : k ∈ N}.

Then by (ii) we find

lim sup
n→∞

fn(xn) ≤ f(x) < c = lim
k→∞

cnk ≤ lim sup
n→∞

cn ≤ lim sup
n→∞

fn(xn)

which is a contradiction with (ii).

A similar result can be obtained for convergence in the epigraph topology, see [7,

Theorem 5.3.5]. Finally we will show the following result which is similar to [7, Theorem

5.3.6].

5.2.10 Proposition. Let X be a compact Hausdorff space. If (fα) is a hypo-convergent

net of upper-semicontinuous functions on X to some function f , then limα sup fα = sup f .

If (fα) is an epi-convergent net of lower-semicontinuous function on X to some function

f , then limα inf fα = inf f .

Proof. First suppose that sup f > lim infα sup fα and let x ∈ X be such that f(x) >

lim infα sup fα. Let ε = 1
2(f(x)−lim infα sup fα) and consider the open set U = X×(f(x)−

ε, f(x)+ε). We find that for all α′ there is a β ≥ α′ such that sup fβ < lim infα sup fα+ε. So

U∩hypo(fβ) = ∅, hence (x, f(x)) is not a limit point of (hypo(fα)), which is a contradiction

as (fα) is hypo-convergent to f .

Note that, as X is compact, we can find a net (xα)α∈I such that fα(xα) = sup fα. Also

by compactness we can find a subnet (xα)α∈J of (xα)α∈I such that (xα)α∈J converges to

some x ∈ X and limα∈J sup fα = lim supα∈I fα. Then for every open neighbourhood U of

x in X and every open subset V of lim supα∈I sup fα in R we have that for every index

α ∈ I there exists an β ∈ J with β ≥ α such that

hypo(fβ) ∩ (U × V ) 6= ∅.

Hence (x, limα sup fα) is a cluster point of (hypo(fα)), and thus sup f ≥ f(x) ≥ limα sup fα.

The proof for the second part of the proposition is similar.
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5.2.11 Lemma. Let X be a Hausdorff space and let (gα)α∈J : X → R be a net of maps

converging to g : X → R in the hypograph topology. If h : X → [a, b] ⊂ R>0 is a continuous

function, then (gαh )α∈J converges to g
h in the hypograph topology.

Proof. Note that, since h is continuous and 0 < a ≤ h(x) ≤ b for all x ∈ X we have that

the map φ : X × R → X × R given by φ((x, r)) = (x, r
h(x)) and its inverse φ−1 given by

φ−1((x, r)) = (x, rh(x)) are continuous. We can use this to show that (x, r) is a cluster

or limit point of hypo(gα) if and only if (x, r
h(x)) is a cluster or limit point of hypo(gαh )

respectively. Indeed let (x, r) be a cluster point of hypo(gα). Let U be a neighbourhood of

(x, r
h(x)), then φ−1(U) is a neighbourhood of (x, r) and there exists a cofinal index set J ′

of J such that for all α ∈ J ′ we have hypo(gα) ∩ φ−1(U) 6= ∅. Then for all α ∈ J ′ we have

φ(hypo(gα) ∩ φ−1(U)) = hypo(
gα
h

) ∩ U 6= ∅,

so if (x, r) is a cluster point of hypo(gα), then (x, r
h(x)) is a cluster point of hypo(gαh ). The

rest of the assertion follows using similar arguments.
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The horofunction boundary of infinite dimensional

order-unit spaces

6.1 Busemann points

In this chapter we will examine the horofunction boundary of the Funk, reverse-Funk and

Hilbert metric of infinite dimensional order-unit spaces. While there has been a lot of

interest and research on the horofunction boundary of finite dimensional spaces, see for

example [41, 63], the horofunction boundary of infinite dimensional order-unit spaces is

still relatively unknown. Only recently Walsh classified the Busemann points of infinite

dimensional order-unit spaces in [66]. In this section we will introduce these results fol-

lowing Walsh’s proof and then expand on them to give a description of all horofunctions

of infinite dimensional order-unit spaces. To start we will introduce Busemann points.

Busemann points were first introduced by Rieffel in [59]. These special horofunctions are

known to be particularly useful in the study of isometric problems in metric spaces, see

for instance [45, 66, 65].

6.1.1 Definition. A net (xα) in a hemi-metric space (M,d) with base point b ∈ M is

almost geodesic if, for all ε > 0 there exists an index A such that for all α′ ≥ α ≥ A we

have

d(b, xα′) ≥ d(b, xα) + d(xα, xα′)− ε.

A horofunction ξ ∈ i(M) \ i(M) is called a Busemann point if there exists an almost

geodesic net (xα) in X such that ξ = limα i(xα). The Busemann points can be viewed as

a more ”well-behaved” subclass of the horofunctions. Recall that if an order-unit space

(X,X+, u) is finite dimensional by Corollary 2.4.7 horofunctions are only generated by

unbounded nets. This need not be the case for infinite dimensional order-unit spaces.
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6.1.2 Example. Consider X = R×`2 with closed cone X+ = {(λ, x) ∈ R×`2 : λ ≥ ‖x‖2}.

Note that X is an order-unit space with order-unit e = (1, 0). Let en ∈ `2 be the standard

unit vectors, i.e., en(n) = 1 and en(m) = 0 for all m 6= n. Note that the sequence ((1, 12en))

is bounded with respect to Hilbert’s metric, but one can show that (iH((1, 12en))) converges

to a horofunction. We will show this in detail in Section 7.2.

Restricting to Busemann point is a good way to exclude horofunctions generated by

finite nets. Walsh showed in [66] that all Busemann points can be derived from unbounded

almost geodesic nets. Recall that by Proposition 2.4.6 a net (xα) in a metric space M does

not converge to a horofunction if (xα) converges to some x ∈M .

6.1.3 Proposition. Let (xα) be a net in a complete metric space M . If (xα) is almost

geodesic and bounded, then (xα) converges to some x ∈M .

Proof. Let b be a base point. The first step is to prove that d(b, xα) converges to some

r ∈ R. To see this we define for an index A the supremum rA = supα≥A d(b, xα) which

exists as the net is bounded. Let ε > 0 and let A be an index such that for all α′ ≥ α ≥ A

we have

d(b, xα′) ≥ d(b, xα) + d(xα, xα′)− ε.

Let αA ≥ A be such that 0 ≤ rA − d(b, xαA) < ε. Then for all α′ ≥ αA we have

rA ≥ d(b, xα′) ≥ d(b, xαA) + d(xαA , xα′)− ε ≥ d(b, xαA)− ε ≥ rA − 2ε.

So for all α′, α ≥ αA we find that |d(b, xα′)− d(b, xα)| ≤ 2ε. Hence (d(b, xα)) is a Cauchy

net from which it follows that limα d(b, xα) = r for some r ∈ R.

Now let ε > 0 and let A be an index such that for all α′ ≥ α ≥ A we have |r−d(b, xα)| <

ε and

d(b, xα′) ≥ d(b, xα) + d(xα, xα′)− ε.

It follows that

d(xα, xα′) ≤ d(b, xα′)− d(b, xα) + ε < 3ε

Hence (xα) is a Cauchy net. The proposition follows by completeness.

6.1.4 Definition. A net of real-valued functions (fα) on a set B is called almost non-

increasing if, for any ε > 0, there exists an index A such that for all α′ ≥ α ≥ A we have

fα ≥ fα′ − ε.
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An almost geodesic net can be represented by a net of almost non-increasing functions

using the natural embedding i : M → C(M), given by i(x) = d(·, x)− d(b, x).

6.1.5 Proposition. Let M be a hemi-metric space and let b ∈ M be a base point. A net

(xα) in M is almost geodesic if and only if (i(xα)) = (d(·, xα)−d(b, xα)) is a net of almost

non-increasing functions.

Proof. Suppose (xα) is an almost geodesic net in M and let ε > 0 be given. Then there

exists some index A such that for all α′ ≥ α ≥ A we have

d(xα′ , b) ≥ d(b, xα) + d(xα, xα′)− ε.

Now for every x ∈M we find

d(x, xα)− d(b, xα) ≥ d(x, xα) + d(xα, xα′)− d(b, xα′)− ε ≥ d(x, xα′)− d(b, xα′)− ε

from which follows that (i(xα)) is an almost non-increasing net.

Now suppose (i(xα)) is an almost non-increasing net and let ε > 0 be given. Then there

exists an index A such that for all α′ ≥ α ≥ A we have i(xα) ≥ i(xα′) − ε, in particular

we find

−d(b, xα) = i(xα)(xα) ≥ i(xα′)(xα)− ε = d(xα, xα′)− d(b, xα′)− ε

from which follows that (xα) is an almost geodesic net.

This representation can be useful to gain a better understanding on Busemann points.

In our case we will use an extension of Dini’s theorem, see [24].

6.1.6 Lemma. Let (fα) be a net of almost non-increasing functions on a Hausdorff

space Y . Then (fα) converges pointwise to some f : Y → R. If for all α, fα is upper-

semicontinuous, then f is upper-semicontinuous. If furthermore Y is compact, then

lim
α

sup fα = sup f.

Proof. Let ε > 0 and x ∈ Y . As (fα) is almost non-increasing there exists an index A such

that for all α′ ≥ α ≥ A we have fα(x) ≥ fα′(x)− ε. From this it follows that

lim inf
α

fα(x) ≥ lim sup
α

fα(x)− ε.

Letting ε tend to 0 gives us that fα converges pointwise to some f : Y → R.

Now assume that fα is upper-semicontinuous for all α. Let x ∈ Y , let (xβ) be a net in
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Y converging to x and let ε > 0. By Proposition 5.2.2 we have fα(x) ≥ lim supβ fα(xβ)

for all α. Furthermore as fα converges pointwise to f we find that f(x) + ε ≥ fα(x) for α

large enough and, as (fα) is almost non-increasing, we have fα ≥ f −ε for α large enough.

Combining this gives

f(x) ≥ fα(x)− ε ≥ lim sup
β

fα(xβ)− ε ≥ lim sup
β

f(xβ)− 2ε.

By Proposition 5.2.2 f is upper-semicontinuous.

Finally suppose moreover that Y is compact. Then, as Y is compact, by Corollary 5.2.4

we have for all α that there exists an xα ∈ Y such that fα(xα) = sup fα. Furthermore

as Y is compact there is a subnet such that xα converges to some x ∈ Y and taking a

further subnet we may also assume that limα fα(xα) exists as R is compact. Let ε > 0,

since f is the pointwise limit of a non-increasing net of functions (fα) we can find an α

such that f(x) ≥ fα(x)− ε and for all α′ ≥ α we have that fα ≥ fα′ − ε. Finally, since fα

is upper-semicontinuous, by Proposition 5.2.2 we find

sup f ≥ f(x) ≥ fα(x)− ε ≥ lim sup
α′

fα(xα′)− ε ≥ lim sup
α′

fα′(xα′)− 2ε

= lim
α′
fα′(xα′)− 2ε = lim

α′
(sup fα′)− 2ε ≥ sup lim

α′
fα′ − 2ε = sup f − 2ε.

Letting ε tend to 0 gives that limα sup fα = sup f .

6.2 A classification of Busemann points

To classify the Busemann points of order-unit spaces we recall some basic terminology.

6.2.1 Definition. Let (X,X+, u) be an order-unit space and let X ′ be its dual space. We

call the set of positive functionals X ′+ = {ϕ ∈ X ′ : ϕ(x) ≥ 0 for all x ∈ X+} the dual cone

and we call S(X) = {ϕ ∈ X ′ : ϕ(x) ≥ 0 for all x ∈ X+ and ϕ(u) = 1} the state space

of X. We call the elements of S(X) states. We call the extreme points of S(X) the pure

states and denote the set of pure states by E(X).

Note that the state space S(X) is convex, closed with respect to the weak*-topology

and contained in the dual unit ball. The last follows from the fact that for all ϕ ∈ S(X)

we have that ‖ϕ‖ = sup{|ϕ(x)| : ‖x‖u ≤ 1} = ϕ(u) = 1, as ϕ is a positive functional

and if ‖x‖u ≤ 1, then −u ≤ x ≤ u. Therefore by the Banach-Alaoglu Theorem S(X) is

weak*-compact. Also note that for every positive non-zero functional ϕ ∈ X ′ it holds that

ϕ/ϕ(u) ∈ S(X).
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6.2.2 Definition. Let X be a vector space and let C ⊂ X be a convex subset. We call a

function f : C → R affine if for all x, y ∈ C and all λ ∈ (0, 1) we have

f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y).

We will denote the set of all restriction of continuous affine functions on X to C by

A(C,X).

In this section we will show the following result due to Walsh in [66]. Recall that for a

vector space X and x ∈ X the map fx : X ′ → R given by fx(ϕ) = ϕ(x) for all ϕ ∈ X ′ is

called the evaluation map of x.

6.2.3 Theorem. [66, Proposition 8.8] Let (X,X+, u) be a complete order-unit space. The

Busemann points of Hilbert’s geometry on X+ are precisely the functions of the following

form:

ξH(x) = log sup
ϕ∈E(X)

ϕ(x)

g(ϕ)
+ log sup

ϕ∈E(X)

h(ϕ)

ϕ(x)
(x ∈ X+)

where g is a weak* lower-semicontinuous non-negative affine function on S(X) with infi-

mum 1 and h is a weak* upper-semicontinuous non-negative affine function on S(X) with

supremum 1, g and h are not evaluation maps of some x ∈ X+, and for all ϕ ∈ S(X),

either h(ϕ) = 0 or g(ϕ) =∞.

The proof of this Theorem is long and technically involved. It might be insightful to

consider the result through a simple example.

6.2.4 Example. Consider the order-unit space (Rn,Rn+, u) where Rn+ = Rn≥0 and u is the

constant one vector. Note that ‖ · ‖u = ‖ · ‖∞. The dual space of Rn can be identified with

Rn itself, where a linear functional y ∈ Rn is given by coordinatewise multiplication, i.e.

y(x) =

n∑
i=1

y(i)x(i) (x ∈ Rn).

The state space is given by

S(Rn) = {x ∈ Rn : x(i) ≥ 0 for all 1 ≤ i ≤ n and

n∑
i=1

x(i) = 1}

and the pure states are the standard unit vectors ei. Consider that for all x, y ∈ (Rn+)◦ we

have

M(x/y) = inf{β > 0 : x ≤ βy}

= inf{β > 0 : x(i) ≤ βy(i) for all 1 ≤ i ≤ n}

= max
i

x(i)

y(i)
= sup

ei∈E(Rn)

xei
yei

.
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In [41] Lemmens, Lins, Nussbaum and Wortel show in Remark 5.7 that the horofunction

of the Funk, reverse-Funk and Hilbert geometry are given by the functions of the form

ξF (x) = log max
i
x(i)z(i),

ξR(x) = log max
i
x(i)−1y(i),

ξH(x) = log max
i
x(i)z(i) + log max

i
x(i)−1y(i),

where y, z ∈ ∂Rn+ such that ‖y‖∞ = ‖z‖∞ = 1 and y(i)z(i) = 0 for all i.

We will show how we can view the horofunctions above in the form described in

Theorem 6.2.3. Let y, z ∈ ∂Rn+ such that ‖y‖∞ = ‖z‖∞ = 1 and y(i)z(i) = 0 for all i.

Consider the sequence (hn) given by

hn(i) =


y(i) if y(i) > 0.

1
z(i)n2 if z(i) > 0.

1
n else.

For all n we define gn = 1/hn. Note that limn→∞ hn = y and limn→∞ gn/‖gn‖∞ = z.

Furthermore recall from section 4.2 that the inverse map (x 7→ x−1) is gauge-reversing.

Hence for all x ∈ (Rn+)◦ we have

iF (hn)(x) = dF (x, hn)− dF (u, hn) = log(M(x/hn))− log(M(u/hn))

= log(M(h−1n /x−1))− log(M(h−1n /u−1)) = log(M(gn/x
−1))− log(M(gn/u))

= log

(
sup

ei∈E(Rn)

gn(ei)

x−1(ei)

)
− log(‖gn‖u) = log

(
sup

ei∈E(Rn)

x(ei)gn(ei)

‖gn‖u

)
Define z−1 ∈ Rn by z−1(i) = z(i)−1 if z(i) > 0 and z−1(i) = ∞ if z(i) = 0. Note

that z−1 : S(X) → R given by coordinatewise multiplication can be viewed as a weak*

lower-semicontinuous affine function on S(Rn), with inf z−1 = 1. Furthermore note that

limn→∞ ‖gn‖∞/gn = z−1. By Lemma 6.1.6 we find

lim
n→∞

iF (hn)(x) = log

(
lim
n→∞

sup
ei∈E(Rn)

gn(ei)x(ei)

‖gn‖u

)

= log

(
sup

ei∈E(Rn)

x(ei)

z−1(ei)

)
= log

(
max
i
x(i)z(i)

)
Similarly for all x ∈ (Rn+)◦ we have

iR(hn)(x) = dR(x, hn)− dR(u, hn) = log(M(hn/x))− log(M(hn/u))

= log(M(hn/x))− log(M(hn/u)) = log

(
sup

ei∈E(Rn)

hn(ei)

x(ei)

)
.
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By Lemma 6.1.6 we find

lim
n→∞

iR(hn)(x) = log

(
lim
n→∞

sup
ei∈E(Rn)

hn(ei)

x(ei)

)

= log

(
sup

ei∈E(Rn)

y(ei)

x(ei)

)
= log

(
max
i
x−1(i)y(i)

)
.

Note that y, when viewed as a function on S(Rn), is continuous, affine and sup y = 1.

Since y(i)z(i) = 0 for all i we have that z(i) = 0 if y(i) > 0, it follows that for all

x ∈ S(Rn) either y(x) =
∑n

i=1 x(i)y(i) = 0, i.e. for all i we have that if y(i) > 0, then

xi = 0 , or z−1(x) =
∑n

i=1 x(i)z−1(i) =∞, i.e. for some i we have xi > 0 and z(i) = 0.

As in the example, we will prove Theorem 6.2.3 by first proving the result for the

Busemann points of the Funk and reverse-Funk geometry. To do this we will need some

preliminary results.

6.2.5 Proposition. If (X,X+, u) is an order-unit space, then for x ∈ X+ and y ∈ X◦+
we have

M(x/y) = {inf β ≥ 0 : x ≤ βy} = sup
ϕ∈S(X)

ϕ(x)

ϕ(y)
= sup

ϕ∈E(X)

ϕ(x)

ϕ(y)
.

Proof. We will first prove that for all x, y ∈ X we have that x ≤ y if and only if ϕ(x) ≤ ϕ(y)

for all ϕ ∈ X ′+. As X ′+ is the set of positive functionals the implication from left to right

is trivial. Now let x, y ∈ X such that y − x 6∈ X+, then by Hahn-Banach separation

theorem there is a linear functional ϕ ∈ X ′ and s ∈ R such that for all z ∈ X+ we have

ϕ(y − x) < s ≤ ϕ(z). Note that s ≤ 0 as 0 ∈ X+. Now suppose there is a z ∈ X+ such

that ϕ(z) < 0. As 2sz
ϕ(z) ∈ X+ we have s < ϕ( 2sz

ϕ(z)) = 2s < s which is a contradiction. So ϕ

is a positive functional such that ϕ(y − x) < 0 proving our claim.

As non-zero positive linear functionals are strictly positive on the interior of the cone,

we can normalise any ϕ ∈ X ′+ \ {0} by ϕ/ϕ(u) ∈ S(X). From this we easily find that for

all x, y ∈ X we have that x ≤ y if and only if ϕ(x) ≤ ϕ(y) for all ϕ ∈ S(X).

Finally we will show that for all x, y ∈ X we have that ϕ(x) ≤ ϕ(y) for all ϕ ∈ S(X) if

and only if ϕ(x) ≤ ϕ(y) for all ϕ ∈ E(X). Note that the implication from left to right is

trivial. Let x, y ∈ X, let ψ ∈ S(X) and suppose that ϕ(x) ≤ ϕ(y) for all ϕ ∈ E(X). By the

Krein-Milman theorem the convex hull of the pure states is weak* dense in S(X) so we

can find ϕα,j ∈ E(X) and λα,j ∈ [0, 1] such that
∑

j λα,j = 1 for all α and (
∑

j λα,jϕα,j)

is a net weak* convergent to ψ. We find that

ψ(x) = lim
α

∑
j

λα,jϕα,j(x) ≤ lim
α

∑
j

λα,jϕα,j(y) = ψ(y).
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It follows that

M(x/y) = {inf β ≥ 0 : x ≤ βy} = inf{β ≥ 0 :
ϕ(x)

ϕ(y)
≤ β for all ϕ ∈ S(X)}

= sup
ϕ∈S(X)

ϕ(x)

ϕ(y)
= sup

ϕ∈E(X)

ϕ(x)

ϕ(y)
.

Let (X,X+, u) be an order-unit space. If we take z ∈ X◦+ and normalise to x =

z/M(u/z), then by Proposition 6.2.5 we find

iF (z) = iF (x) = dF (·, x)− dF (u, x) = log(M(·, x)) = sup
ϕ∈S(X)

ϕ(·)
ϕ(x)

= sup
ϕ∈S(X)

ϕ(·)
fx(ϕ)

where fx : X ′ → R, ϕ 7→ ϕ(x) is the evaluation map of x on X ′. And similarly for the

reverse-Funk metric if we take x = z/M(z/u) we find

iR(z) = iR(x) = sup
ϕ∈S(X)

fx(ϕ)

ϕ(·)
.

In order to prove Theorem 6.2.3 we now need to prove two things for the Funk part. First

that

lim
α

sup
ϕ∈S(X)

ϕ(·)
fxα(ϕ)

= sup
ϕ∈S(X)

ϕ(·)
f(ϕ)

where f is the limit of (fα) with respect to hypoconvergence. Second we need that for

every f which is weak* lower-semicontinuous non-negative affine function of S(X) with

infimum 1 there exists an almost-geodesic net (xα) such that fxα converges to f .

We need to prove similar properties for the reverse-Funk part, but as the proofs are very

similar we will only show the proof for the Funk part. One can find a detailed proof for the

reverse-Funk part in [66]. To prove the Funk part we will use the following results from

[1].

6.2.6 Proposition. [1, Proposition I.1.2] Let K ⊂ X be a compact convex set of a locally

convex Hausdorff space X. If f : K → (−∞,∞] is a lower-semicontinuous affine function,

then for all x ∈ X

f(x) = sup{a(x) : a ∈ A(K,X), a < f}.

The proof of the following result can be found in the proof of Corollary I.1.4 in [1]

6.2.7 Lemma. Let K ⊂ X be a compact convex set of a locally convex Hausdorff space

X. If f : K → (−∞,∞] is a lower-semicontinuous affine function, then the set

{a ∈ A(K,X) : a < f}

is a directed set with respect to ≤.
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We can now prove a slightly altered version of Corollary I.1.4 in [1].

6.2.8 Corollary. Let K ⊂ X be a compact convex set of a locally convex Hausdorff space

X. If f : K → (−∞,∞] is a lower-semicontinuous affine function, then there exists an

increasing net in A(K,X) converging pointwise to f . Furthermore, if f > 0, then there

exists an increasing net of strictly positive functions in A(K,X).

Proof. For the first part note that by Lemma 6.2.7 (a)a<f is a net in A(K,X). Note that

(a)a<f is increasing, and by Proposition 6.2.6 it converges pointwise to f . If f > 0, note

that infK f > 0, as K is compact. Hence the subnet (a) 1
2
inf f≤a<f consists entirely of

positive functions.

We will also use the following result, which is part of Theorem II.1.8 in [1], due to

Kadison.

6.2.9 Proposition. If (X,X+, u) is a complete order-unit space, then Φ : X → C(S(X)),

given by

Φ(x)(ϕ) = ϕ(x) (x ∈ X,ϕ ∈ S(X)),

satisifies Φ(X) = A(S(X), X ′).

This result shows that for every f ∈ A(S(X), X ′) there is a unique x ∈ X such that f

is the evaluation map of x. With some effort we can make Kadison’s result more precise.

6.2.10 Corollary. If (X,X+, u) be a complete order-unit space and f ∈ A(S(X), X ′),

then f is strictly positive on the state space S(X) if and only if f is the evaluation map

of some x ∈ X◦+.

Proof. We will first show the implication from right to left. Let u ∈ X be an order-unit

such that ϕ(u) = 1 for all ϕ ∈ S(X). For all x ∈ X◦+ we can find a λx > 0 such that

x ≥ λxu. For the evaluation map fx of x we find for all ϕ ∈ S(X) that

fx(ϕ) = ϕ(x) ≥ λxϕ(u) = λx > 0.

To show the implication from left to right, suppose that f is strictly positive on S(X). By

Proposition 6.2.9 there exists a unique x ∈ X such that f = fx, the evaluation map of x.

Suppose that x ∈ X \X◦+, note that there exists some λ > 0 such that z = x+ λu ∈ ∂X+

as u is an order-unit. We will construct a linear functional ψ ∈ S(X) such that ψ(z) = 0.

Note that the line {αz : α ∈ R} is a closed convex subset of X and X◦+ an open convex
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subset of X. By the Hahn-Banach separation theorem there exists a linear functional

ϕ ∈ X ′ and some s ∈ R such that for all α ∈ R and all y ∈ X◦+ we have

ϕ(αz) ≤ s < ϕ(y).

As αϕ(z) ≤ s for all α ∈ R we find that ϕ(z) = 0. Furthermore, since ϕ(αy) > s for all

α > 0 and all y ∈ X◦+ we find that s = 0. Hence ψ = ϕ/ϕ(u) ∈ S(X) and

ψ(x) = ψ(z)− λψ(u) = −λ < 0.

Finally we need the following two results due to Walsh in [66], for the first we will

follow the proof of Walsh, for the second result we will use a variation on the proof of the

first result.

6.2.11 Lemma. Let K ⊂ X be a compact convex set of a locally convex Hausdorff space

X and let f1, f2 : K → (0,∞] be upper-semicontinuous affine functions. If for all positive

g ∈ A(K,X) we have supK
f1
g ≤ supK

f2
g , then f1 ≤ f2.

Proof. Let y be an extreme point of K and let 1{y} be the indicator function of {y}, so

f(x) = 1 if x = y and f(x) = 0 for all x ∈ K \ {y}. We also define 1
1{y}

as the function

for which 1
1{y}

(y) = 1 and 1
1{y}

(x) = ∞ otherwise. This is an affine lower-semicontinuous

function on K, so by Corollary 6.2.8 we can find an increasing net (gα) of positive affine

continuous functions converging to 1
1{y}

. We can now apply Lemma 6.1.6 to find

f1(y) = sup
K
f11{y} = lim

α
sup
K

f1
gα
≤ lim

α
sup
K

f2
gα

= sup
K
f21{y} = f2(y).

So f1(y) ≤ f2(y) for any extreme point y of K. By Choquet’s Theorem [58, Page 14] we

have that f1 ≤ f2.

6.2.12 Lemma. Let K ⊂ X be a compact convex set of a locally convex Hausdorff space

X and let f1, f2 : K → (0,∞] be lower-semicontinuous affine functions. If for all positive

g ∈ A(K,X) we have supK
g
f1
≤ supK

g
f2

, then f1 ≥ f2.

Proof. As f2 is a lower-semicontinuous affine function, by Corollary 6.2.8 we can find

an increasing net (gα) of positive continuous affine functions converging pointwise to f2.

Applying Lemma 6.1.6 gives us

sup
K

f2
f1

= lim
α

sup
K

gα
f1
≤ lim

α
sup
K

gα
f2

= 1,

and thus f2 ≤ f1.
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We can now classify the Busemann points of the Funk and reverse-Funk geometry.

6.2.13 Theorem. [66, Theorem 7.1] Let (X,X+, u) be a complete order-unit space. The

Busemann points of the Funk geometry on X+ are precisely the functions of the following

form:

ξF (x) = log sup
ϕ∈E(X)

ϕ(x)

g(ϕ)
(x ∈ X+)

where g is a weak* lower-semicontinuous non-negative affine function on S(X) with infi-

mum 1 which is not the evaluation map of some x ∈ X+.

Proof. Let ξF be of the above form. By Corollary 6.2.8 there exists an increasing net (fα)

of strictly positive continuous affine functions on S(X) converging pointwise to g. Using

Corollary 6.2.10 we can find a corresponding net (xα) in X◦+ such that fα = fxα |S(X) for

all α, where fxα |S(X) is the restriction of the evaluation map of xα to S(X). Note that for

all x ∈ X◦+ the net ( fxfα ) is decreasing and converges pointwise to (fxg ). By Lemma 6.1.6

and Proposition 6.2.5 we find

lim
α
dF (x, xα) = lim

α
log sup

ϕ∈S(X)

ϕ(x)

fα(ϕ)
= log sup

ϕ∈S(X)

ϕ(x)

g(ϕ)
= log sup

ϕ∈E(X)

ϕ(x)

g(ϕ)
.

In particular limα dF (u, xα) = log supϕ∈S(X)
1

g(ϕ) = 0, as inf g = 1, So iF (xα) converges to

ξ and is almost non-increasing, which by Proposition 6.1.5 shows that ξ is a Busemann

point.

Now let (xα) be an almost geodesic net in X◦+ such that iF (xα) converges to a Buse-

mann point, by scaling if necessary we may assume that for all α we have dF (u, xα) = 0.

For all α we denote fα = fxα . By Proposition 6.1.5 (iF (xα)) is a non-increasing net, so for

all ε > 0 there is an index A such that for all α′ ≥ α ≥ A we have for all x ∈ X◦+ that

sup
ϕ∈S(X)

ϕ(x)

fα′(ϕ)
≤ eε sup

ϕ∈S(X)

ϕ(x)

fα(ϕ)
.

By Lemma 6.2.12 it follows that fα′ ≥ e−εfα. Hence (− log(fα)) is a almost non-increasing

net of weak* continuous functions, so by applying Lemma 6.1.6 we find (− log(fα)) con-

verges pointwise to some weak* upper-semicontinuous function − log(g). It follows that g

is weak* lower-semicontinuous. Furthermore by applying Lemma 6.1.6 again we find for

all x ∈ X◦+ that

ξ(x) = lim
α

log sup
ϕ∈E(X)

ϕ(x)

fα(ϕ)
= log sup

ϕ∈E(X)

ϕ(x)

g(ϕ)
,

which is the required form. Finally note that 0 = ξ(u) = log supϕ∈S(X)
1

g(ϕ) gives that

inf g = 1 and, since ξ is a horofunction, g cannot be the restriction of the evaluation map

of some x ∈ X◦+ to S(X).
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6.2.14 Theorem. [66, Theorem 6.3] Let (X,X+, u) be a complete order-unit space with

state space S(X). The Busemann points of the reverse-Funk geometry on X+ are precisely

the functions of the following form:

ξR(x) = log sup
ϕ∈E(X)

h(ϕ)

ϕ(x)
(x ∈ X+)

where h is a weak* upper-semicontinuous non-negative affine function on S(X) with supre-

mum 1 which is not the evaluation map of some x ∈ X+.

The proof of this result is similar to that of Theorem 6.2.13 and can be found in full

detail in [66].

Finally, to prove Theorem 6.2.3 we will first show that a Busemann point of the Hilbert

geometry is the sum of a Busemann point of the Funk geometry and a Busemann point of

the reverse-Funk geometry. Then we will show which particular combinations of Busemann

points of the Funk and reverse-Funk geometry give rise to a Busemann point of the Hilbert

geometry.

6.2.15 Proposition. Let (X,X+, u) be a complete order-unit space. A net (xα) in (X◦+)

is almost geodesic in the Hilbert geometry if and only if it is almost geodesic in the Funk

and reverse-Funk geometry

Proof. For all α, α′ indices we define

R(α, α′) = dR(u, xα) + dR(xα, xα′)− dR(u, xα′)

F (α, α′) = dF (u, xα) + dF (xα, xα′)− dF (u, xα′)

H(α, α′) = dH(u, xα) + dH(xα, xα′)− dH(u, xα′)

By the triangle inequality R,F and H are non-negative and clearly H = F+R. Now let

ε > 0 and suppose there exists an index A such that for all α′ ≥ α ≥ A we have H(α, α′) <

ε. Since R and F are non-negative, it follows that R(α, α′) < ε and F (α, α′) < ε. In the

same way if there exists an index A such that for all α′ ≥ α ≥ A we have R(α, α′) < ε
2

and F (α, α′) < ε
2 , then H(α, α′) < ε. The result follows by Proposition 6.1.5.

So a horofunction of the Hilbert geometry ξH is a Busemann point if and only if there

is a net (xα) which is almost geodesic and converges to some ξF and ξR in the Funk and

reverse-Funk geometry respectively such that ξH = ξF + ξR. One can show such a net

exists for any g a non-negative affine weak* lower-semicontinuous function and h a non-

negative affine weak* upper-semicontinuous function on S(X) with sup g = inf h = 1 and
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g(ϕ) = 0 if h(ϕ) is finite. To see this, for g and h satisfying the conditions above consider

the following set

C = {(f, f ′) ∈ A(S(X), X ′)×A(S(X), X ′) : f = λf ′ for some λ ∈ (0, 1] and g < f ≤ f ′ < h}.

(6.2.1)

Recall that by Proposition 6.2.9 f and f ′ are evaluation maps for some x ∈ X and as f

and f ′ are strictly positive by Corollary 6.2.10 we have x ∈ X◦+.

6.2.16 Example. Again it might be useful to view C in the context of Example 6.2.4.

Consider the order-unit space (Rn,Rn+, u) where Rn+ = Rn≥0 and u is the constant one

vector. Let y, z ∈ ∂Rn+ with ‖y‖∞ = ‖z‖∞ = 1. Taking g = y and h = z−1 as defined in

Example 6.2.4 we find that

C = {(λx, x) ∈ X ′ ×X ′ : λ ∈ (0, 1] and for all i we have y(i) < λx(i) ≤ x(i) < z−1(i)}.

We can define a partial order on C the following way: (f1, f
′
1) � (f2, f

′
2) if and only if

f1 ≥ f2 and f ′1 ≤ f ′2. We will show that with respect to this partial order C is a directed

set and the net ((f, f ′))f∈C converges to (g, h).

6.2.17 Lemma. Let (X,X+, u) be a complete order-unit space. If g is a non-negative

affine weak* lower-semicontinuous function and h is a non-negative affine weak* upper-

semicontinuous function on S(X) with sup g = inf h = 1 and g(ϕ) = 0 if h(ϕ) is finite

and C is as in equation (6.2.1), then g = inf{f : (f, f ′) ∈ C} and h = sup{f ′ : (f, f ′) ∈ C}.

Proof. Consider X ′ × R equipped with the product topology where X ′ is equipped with

the weak*-topology and R is equipped with the Euclidean topology. Note that by Propo-

sition 5.2.5 we have that

hypo(g)≥0 = {(ϕ, λ) ∈ S(X)× R : g(ϕ) ≥ λ ≥ 0}

and

epi(h) = {(ϕ, λ) ∈ S(X)× R : h(ϕ) ≤ λ}

are closed convex sets. Furthermore hypo(g)≥0 is compact, as hypo(g)≥0 ⊂ S(X) × [0, 1]

and S(X)× [0, 1] is compact. Recall that S(X) is weak*-compact.

Let ψ ∈ S(X) and let λ < h(ψ). The convex hull H = co (hypo(g)≥0 ∪ {(ψ, λ)}) is a

convex compact set which is disjoint with epi(h), as h is affine. So by the Hahn-Banach

separation theorem [33, Theorem 1.2.10] there exists a continuous linear functional σ on

74



Chapter 6: The horofunction boundary of infinite dimensional order-unit
spaces

X ′ × R, strongly separating H and epi(h), i.e. we can find c, s, t ∈ R such that for all

x ∈ H and y ∈ epi(h) we have σ(x) < s < c < t < σ(y). As for all ϕ ∈ S(X) it holds that

σ(ϕ, g(ϕ)) < σ(ϕ, h(ϕ)) we have σ((0, 1)) > 0. Furthermore, the hyperplane σ(ϕ, r) = c

strongly separates H and epi(h). Then σ̂, given by

σ̂(ϕ) =
c− σ((ϕ, 0))

σ((0, 1))

for all ϕ ∈ A where A is the affine hull of S(X), is an affine weak*-continuous function.

As for every θ in the affine hull of S(X) we have θ(u) = 1, it is easy to check that we

can extend σ̂ to a linear functional σ′ on the linear span of A. Using the Hahn-Banach

extension theorem [33, Theorem 1.2.14] we can extend σ′ to a linear functional f ∈ X ′′.

Note that (f |S(X), f |S(X)) ∈ C. Since σ(ϕ, f(ϕ)) = c for all ϕ ∈ A, we find that the

hyperplane {(ϕ, f(ϕ)) : ϕ ∈ X ′} strongly separates H and epi(h). Thus f(ψ) > λ and as

λ can be chosen arbitrarily close to, but not larger than h(ψ), we find that sup{f ′(x) :

(f, f ′) ∈ C} = h(x).

The proof for g goes in the same way, using that hypo(g)≥0 is a compact convex set

and for all (ψ, λ) with g(ψ) < λ the convex hull H = co (epi(h)≥0 ∪ {(ϕ, λ)}) is convex

and closed and hypo(g)≥0 and H are disjoint as g is affine.

6.2.18 Lemma. Let h be a weak* lower-semicontinuous affine function on S(X) bounded

from below. If {f1, . . . , fn} is a finite set of weak* upper-semicontinuous affine functions

on S(X) such that fi < h for all i, then there exists an f ∈ A(S(X), X ′) such that for all

i we have fi < f < h.

Proof. The proof of this lemma is similar to that of Lemma 6.2.17, but this time we may

not assume that the fi are bounded below. For all 1 ≤ i ≤ n we define

hypo(fi)h = {(ϕ, λ) ∈ S(X)× R : fi(ϕ) ≥ λ ≥ inf(h)− 1} ∪ {(ϕ, inf(h)− 1) : ϕ ∈ S(X)}

Note that hypo(fi)h is a weak* compact set disjoint with epi(h). Furthermore, as h is

affine it follows that the convex hull

H = co(

n⋃
i=1

hypo(fi)inf(h)−1)

is convex, compact and disjoint with epi(h). We now find an f ∈ A(S(X);X ′) strongly

separating H and epi(h) in the same way as Lemma 6.2.17.
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6.2.19 Corollary. Let g be a weak* upper-semicontinuous affine function on S(X) bounded

from below. If {f1, . . . , fn} be a finite set of weak* lower-semicontinuous affine functions

on S(X) such that fi > g for all i, then there exists an f ∈ A(S(X);X ′) such that for all

i we have fi > f > g.

Proof. Apply Lemma 6.2.18 to −g.

6.2.20 Lemma. The set C, as defined in equation (6.2.1), is a directed set with respect

to �.

Proof. Let (f1, f
′
1), (f2, f

′
2) ∈ C. By Lemma 6.2.18 there exists an f ′ ∈ A(S(X), X ′) such

that f ′1, f
′
2 < f ′ < h. Now consider the weak* lower-semicontinuous function min(f1, f2)−g

which due to compactness attains it infimum on S(X). As f1, f2 > g this gives that

inf min(f1, f2)−g > 0 and so we can find an ε ∈ (0, 1) such that inf min(f1, f2)−g > ε > 0.

Let δ > 0 such that 0 < δf ′(ϕ) < ε for all ϕ ∈ S(X). It follows that a = g + δf ′ is a

non-negative weak* upper-semicontinuous function on S(X) such that

g, δf ′1, δf
′
2 < a < f1, f2.

As for all ϕ ∈ S(X) for which h(ϕ) is finite we have that g(ϕ) = 0, it follows that

a < δh. Using Corollary 6.2.19 we find a real-valued continuous linear functional b such

that g < a < b < f1, f2, δh. Furthermore note that f ′1, f
′
2 <

a
δ <

b
δ < h hence

(f1, f
′
1), (f2, f

′
2) � (b,

b

δ
)

from which follows that C is directed.

Now we can finally prove Theorem 6.2.3. Recall that we already have classified the

Busemann points of the Funk and reverse-Funk geometry in Theorem 6.2.13 and The-

orem 6.2.14. Moreover we have shown that a horofunction ξH of the Hilbert geometry

is a Busemann point if it is the sum of ξF and ξR, Busemann points of the Funk and

reverse-Funk geometry respectively, such that there exists a net (xα) in X◦+ which is al-

most geodesic with respect to the Funk and reverse-Funk metric and limα iF = ξF and

limα iR = ξR by Proposition 6.2.15.

Proof Theorem 6.2.3. Let g, h satisfy the conditions in the Theorem. We can now define

the set C as in equation (6.2.1). We can now find a net ((gα, hα))α∈C in C by taking
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(gα, hα) = α. By Corollary 6.2.10 there is a net (xα) in X◦+ and λα ∈ (0, 1] such that gα

and hα are the evaluation maps of λαxα and xα respectively.

Fix x ∈ X◦+ and let fx be the evaluation map of x. By definition (gαfx ) and ( fxhα ) are

decreasing nets of functions on S(X), so by Lemma 6.1.6 both (gαfx ) and ( fxhα ) converge

pointwise to some function and by Lemma 6.2.17 it then follows that (gαfx ) and ( fxhα )

converge pointwise to ( gfx ) and (fxh ) respectively.

Furthermore by Lemma 6.2.17 it follows that

lim
α

sup
ϕ∈S(X)

gα
fx

= sup
ϕ∈S(X)

g

fx
and lim

α
sup

ϕ∈S(X)

fx
hα

= sup
ϕ∈S(X)

fx
h

If x = u, then, as for all ϕ ∈ S(X) it holds that ϕ(u) = inf h = sup g = 1, we have

lim
α
dF (u, λαxα) = lim

α
dR(u, xα) = 0.

So for all x ∈ X◦+ we have

lim
α
iF (xα)(x) = lim

α
dF (x, xα)− dF (u, xα) = log sup

ϕ∈S(X)

g

fx

and

lim
α
iR(xα)(x) = lim

α
dR(x, xα)− dR(u, xα) = log sup

ϕ∈S(X)

fx
h
.

Note that as (dF (u, λαxα)) and (dR(u, xα)) converge to 0, and (dF (x, λαxα)) and (dR(x, xα))

are decreasing, (iF (xα)(x)) and (iR(xα)(x)) are almost non-increasing nets. Therefore, by

Proposition 6.1.5, (xα) is almost geodesic with respect to the Funk and reverse-Funk ge-

ometry. By Proposition 6.2.15 ξH is a Busemann point.

Finally suppose ξH is a Hilbert Busemann point. Then there exists an almost geodesic

net (xα) in X◦+ with respect to Hilbert’s metric. By Theorem 6.2.13 and Theorem 6.2.14

there exists a weak* lower-semicontinuous non-negative affine function g on S(X) with

infimum 1 and a weak* upper-semicontinuous non-negative affine function h on S(X) with

supremum 1 such that g and h are not evaluation map of some x ∈ X+ and

lim
α
iF (xα)(x) = log sup

ϕ∈S(X)

ϕ(x)

g(ϕ)
(x ∈ X◦+)

and

lim
α
iR(xα)(x) = log sup

ϕ∈S(X)

h(ϕ)

ϕ(x)
(x ∈ X◦+).

Recall that for all ϕ ∈ S(X) we have

g(ϕ) = lim
α
ϕ(M(u/xα)xα) and h(ϕ) = lim

α
ϕ

(
xα

M(xα/u)

)
.
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so it follows that

log
g(ϕ)

h(ϕ)
= lim

α
log

ϕ(xα)M(u/xα)

ϕ(xα)/M(xα/u)
= lim

α
log(M(u/xα)M(xα/u)) = lim

α
dH(u, xα).

By Proposition 6.1.3 we know that (xα) is not bounded, and thus limα dH(u, xα) diverges

to infinity. Hence for all ϕ ∈ S(X) either g(ϕ) =∞ or h(ϕ) = 0.

6.3 A description of horofunctions

We will now show a similar result for general Funk and reverse-Funk horofunctions of

order-unit spaces. For this we will first consider the horofunction boundary of C(K)+,

the positive continuous functions on a compact Hausdorff space K, which was described

by Walsh in [66]. It is well-known that C(K) equipped with this cone is an order-unit

space with order-unit u the constant 1 function. The dual space of C(K) is known to

be rca(K), the space of all regular finite real-valued Borel measures on K, see Example

1.10.6 in [49]. One can easily see that the positive linear functionals rca(K)+ are all regular

finite positive real-valued Borel measures on K. Then the state space is S(C(K)) = {µ ∈

rca(K)+ : µ(K) = 1}, the probability measures, and the pure states are the Dirac masses,

i.e. measures δx for some x ∈ K such that for all f ∈ C(K) we have δx(f) =
∫
K fdδx =

f(x), hence E(X) = {δx ∈ rca(K) : x ∈ K}. Using this we can state the following result.

6.3.1 Theorem. [66, Proposition 9.1] Let K be a compact Haussdorf space. The horofunc-

tions of the reverse-Funk Geometry of C(K) are precisely the functions of the following

form:

ξR(f) = log sup
x∈K

g(x)

f(x)
(f ∈ C(K)◦+)

where g : K → [0, 1] is an upper-semicontinuous function with supremum 1 which is not

both positive and continuous. Furthermore every horofunction is a Busemann point.

Before we can prove this theorem we will need a few preliminary results. First we need

a variation of the Lesbegue’s monotone convergence theorem by Baranov and Woracek,

see [4, Proposition 2.13].

6.3.2 Proposition. Let K be a compact Hausdorff space and let µ be a regular Borel

measure such that µ is positive, complete and µ(K) <∞. If I is a directed set and (fi)i∈I

is a monotone non-increasing net of upper-semicontinuous function, where fi : K → [0,∞]

for all i ∈ I, then if we set f(x) = infi∈I fi(x) for all x ∈ K we find∫
K
f dµ = inf

i∈I

∫
K
fi dµ.
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6.3.3 Lemma. If K is a compact Hausdorff space and g : K → R is an upper-semicontinuous

function, then g = inf{f ∈ C(K) : f ≥ g}.

Proof. Let f ∈ C(K) be such that f ≥ g and let x ∈ K such that ε = f(x)− g(x) > 0. As

f is continuous and g is upper-semicontinuous there exists an open neighbourhood U of x

such that for all y ∈ U we have |f(x) − f(y)| < ε
4 and g(y) ≤ g(x) + ε

4 . As K is normal,

Urysohn’s lemma gives us there exists a continuous function h : K → [0, 1] , such that

h(x) = 1 and h(y) = 0 for all y ∈ K \ U . Define f̂ : K → R by

f̂(y) = f(y)− ε

2
h(y) (y ∈ K).

Note that for all y ∈ K \ U we have f̂(y) = f(y) ≥ g(y) and for all y ∈ U we have

f̂(y) = f(y)− ε

2
h(y) ≥ f(x)− ε

4
− ε

2
h(y) ≥ ε+ g(x)− 3ε

4
≥ g(y).

So f ≥ f̂ ≥ g. Since f̂ is continuous we find that g = inf{f ∈ C(K) : f ≥ g}.

Finally we need the following result by Walsh which was provided in private commu-

nication with the author.

6.3.4 Lemma. Let K be a compact Hausdorff space. If g : K → R is an upper-semicontinuous

function, then ĝ : S(C(K))→ R given by

ĝ(µ) =

∫
K
g dµ µ ∈ S(C(K))

is a weak* upper-semicontinuous function.

Proof. Let (µα) be a net in S(C(K)) converging to µ in the weak* topology and let

f ∈ C(K) be such that f ≥ g. Then

lim sup
α

ĝ(µα) ≤ lim sup
α

µα(f) = µ(f).

Note that the set I = {f ∈ C(K) : f ≥ g} is a downward directed set. By Lemma 6.3.3

(f)f∈I is a net converging pointwise to g. Applying Proposition 6.3.2 gives us

inf
f∈I

µ(f) = µ(g).

Combining these two results we find

lim sup
α

ĝ(µα) ≤ inf
f∈I

µ(f) = µ(g).

By Proposition 5.2.2 ĝ is weak* upper-semicontinuous.
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We can now prove Theorem 6.3.1

Proof Theorem 6.3.1. Let g : K → [0, 1] be an upper-semicontinuous function with supre-

mum 1 which is not both positive and continuous. We define

ĝ(µ) =

∫
K
gdµ µ ∈ S(C(K)).

Note that ĝ is an affine function on S(C(K)) with supremum 1. By Lemma 6.3.4 ĝ is weak*

upper-semicontinuous. Suppose that ĝ is both positive and continuous. Note that if ĝ is

positive, then for all x ∈ K we have 0 < ĝ(δx) = g(x), hence g is positive. It follows by the

definition of g that g is not continuous. In particular there is an x ∈ K and an ε > 0 such

that for all open neighbourhoods U of x there exists a y ∈ U such that |g(y)− g(x)| > ε.

Consider δx and recall that a weak* neighbourhood basis of δx is given by sets of the form

V = {µ ∈ C(K)′ : |δx(gi)− µ(gi)| < ε̂ for all 1 ≤ i ≤ n}

where n ∈ N, ε̂ > 0 and g1, ..., gn ∈ C(K). Note that, as g1, ..., gn are continuous functions

for all ε̂ there is an open neighbourhood U of x such that for all y ∈ U we have |gi(x) −

gi(y)| < ε̂ for all 1 ≤ i ≤ n. Hence for every set V in the neighbourhood base of δx we can

find a neighbourhood U of x such that δy ∈ V for all y ∈ U . Since there exist a y ∈ U such

that |g(y) − g(x)| > ε we find that |ĝ(δx) − ĝ(δy)| > ε. Thus ĝ is not weak* continuous,

which is a contradiction.

So ĝ is a weak* upper-semicontinuous function on S(C(K)) with supremum 1 which is

not both positive and continuous.

By Proposition 6.2.5 and the fact the the pure states are the Dirac masses we find for

all f ∈ C(K)◦+ that

log sup
x∈K

g(x)

f(x)
= log sup

δx∈E(C(K)))

ĝ(δx)

δx(f)
= log sup

µ∈S(C(K))

ĝ(µ)

µ(f)

which by Theorem 6.2.14 is a Busemann point with respect to the reverse-Funk geometry.

Now let (gα) be a net in C(K)◦+ converging to a horofunction ξR with respect to the

reverse-Funk geometry. By scaling we may assume that sup gα = 1. Note that by Proposi-

tion 5.2.5 (hypo(gα)) is a net of closed subsets of K ×R, so by Mrowka’s Theorem 5.1.10

it has a Kuratowski-Painlevé convergent subsequence. So (gα) has a hypo-convergent sub-

sequence converging to a upper-semicontinuous function g. By Proposition 5.2.10 we have

that sup g = limα sup gα = 1. Thus for all f ∈ C(K)+ we have that gα
f and g

f are upper-

semicontinuous functions and by Lemma 5.2.11 (gαf ) is hypo-convergent to g
f . Therefore
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by Proposition 5.2.10 we find

sup
x∈K

g(x)

f(x)
= lim

α
sup
x∈K

gα(x)

f(x)
.

Hence

ξR = log sup
x∈K

g(x)

f(x)
(f ∈ C(K)◦+).

As ξR is a horofunction it follows that g is not both strictly positive and continuous as

required.

6.3.5 Theorem. [66, Proposition 9.2] Let K be a compact Haussdorf space. The horo-

functions of the Funk geometry of C(K) are precisely the functions of the following form:

ξF (f) = log sup
x∈K

f(x)

h(x)
(f ∈ C(K)◦+)

where h : K → [1,∞] is a lower-semicontinuous function with infimum 1 which is not both

finite and continuous. Furthermore every horofunction is a Busemann point.

Proof. Let ξF be a horofunction of the Funk geometry and let (hα) be a net in C(K)◦+

such that limα iF (hα) = ξF and infx∈K hα(x) = 1. Note that if 1/hα converges to some g ∈

C(K)◦+ with respect to the reverse-Funk metric, then hα converges to 1/g ∈ C(K)◦+ in the

Funk metric, so by taking a further subnet if required we may assume that limα iR(1/hα)

converges to some horofunction ξR in the reverse-Funk geometry. By Theorem 6.3.1 there

is an upper-semicontinuous function g on K with supremum 1 which is not both strictly

positive and continuous such that

ξR(f) = log sup
x∈K

g(x)

f(x)
(f ∈ C(K)◦+).

Note that h = 1/g is a lower-semicontinuous function on K with infimum 1 which is not

both finite and continuous. Furthermore for all f ∈ C◦+ we have

lim
α
iF (hα)(f) = lim

α
iR(1/hα)(1/f) = log sup

x∈K

g(x)

f(x)−1
= log sup

x∈K

f(x)

h(x)
.

One can use a similar method to show that for every lower-semicontinuous function h

on K with infimum 1 which is not both finite and continuous

ξF (f) = log sup
x∈K

f(x)

h(x)
(f ∈ C(K)◦+)

is a Funk horofunction.
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Finite dimensional order-unit spaces for which all Funk and reverse-Funk horofunc-

tions are Busemann points are not rare. In fact, Walsh has shown in [63] that for finite

dimensional order-unit space all horofunctions of the reverse-Funk geometry are Busemann

points and all horofunctions of the Funk geometry are Busemann points if and only if the

pure states are weak*-closed. In Chapter 7 we will show that this is no longer the case

in infinite dimension where even “well-behaved” spaces contain non-Busemann horofunc-

tions. In the remainder of this section we will give a description of the horofunctions of a

general order-unit space using a result due to Kalauch, Lemmens and van Gaans in [34].

Recall that in a partially order vector space X a linear subspace Y ⊂ X is called order

dense if for all x ∈ X we have that x = inf{y ∈ Y : y ≥ x}.

6.3.6 Theorem. [34, Theorem 10] If (X,X+, u) is an order-unit space and ψ : X →

C(E(X)
∗
) is a map from X to the weak* closure of E(X) given by ψ(x) = fx for x ∈ X,

then ψ(X) is order dense in C(E(X)
∗
).

Note that ψ is injective and gauge-preserving. We will use this to show that horofunc-

tions in X are horofunctions in ψ(X).

6.3.7 Theorem. Let (X,X+, u) be an order-unit space. If ξR is a horofunction of the

reverse-Funk geometry, then there exists an upper-semicontinuous function g : E(X)
∗ →

[0, 1] with supremum 1 which is not both positive and continuous such that

ξR(x) := log sup
y∈E(X)

g(y)

y(x)
, (x ∈ X+),

Furthermore g has an affine extension to S(X) if and only if ξ(x) is a reverse-Funk

Busemann point.

Proof. Let (xα) be a net in X◦+ such that (iR(xα)) converges to a horofunction ξR and let

ψ be as in Theorem 6.3.6. By scaling if necessary we may assume that dR(u, xα) = 0. We

will first prove that (iR(ψ(xα))) converges to a horofunction. For this we need to show

that

dR(f, ψ(xα)) = log(M(ψ(xα)/f))

converges for all f ∈ C(E(X)
∗
)◦+.

Let f ∈ C(E(X)
∗
)◦+, then by Theorem 6.3.6 we have f = inf{ψ(b) : b ∈ X and ψ(b) ≥

f}. Note that ψ(b) ≥ f for some b ∈ X implies ϕ(b) > 0 for all ϕ ∈ E(X)
∗
. By the proof

of Proposition 6.2.5 this implies that b ∈ X◦+. Since ψ is Gauge preserving we know that

βb,α := M(xα/b) = M(ψ(xα)/ψ(b)).
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We define β∗α = supψ(b)≥f βb,α and claim that β∗α = M(ψ(xα)/f). Clearly

ψ(xα) ≤ inf
ψ(b)≥f

βb,αψ(b) ≤ β∗α inf
ψ(b)≥f

ψ(b) = β∗αf,

so M(ψ(xα)/f) ≤ β∗α. Now suppose there is some β̂α < β∗α such that M(ψ(xα)/f) ≤ β̂α.Let

(bn) be a sequence in X◦+ such that ψ(bn) ≥ f and

lim
n→∞

βbn,α = lim
n→∞

M(xα/bn) = β∗α.

As E(X)
∗

is compact, by Proposition 6.2.5 we have that for every n there exists a φn ∈

E(X)
∗

such that

βbn,α = sup
ϕ∈E(X)

∗

ϕ(xα)

ϕ(bn)
=
φn(xα)

φn(bn)

Let ε = β∗α − β̂α. For n large enough we find

ψ(xα)(φn) = βbn,αψ(bn)(φn) > (β∗α − ε)ψ(bn)(φn) = β̂αψ(bn)(φn) ≥ β̂αf(φn).

Hence ψ(xα) 6≤ β̂αf , which is a contradiction. So we conclude that M(ψ(xα)/f) = β∗α.

Now all we have to prove is that

lim
α

exp(dR(f, ψ(xα))) = lim
α
M(ψ(xα)/f) = lim

α
β∗α = lim

α
sup

ψ(b)≥f
βb,α

exists. Let (yα)α∈A be a net in E(X)
∗

such that sup
y∈E(X)

∗
ψ(xα)(y)
f(y) = ψ(xα)(yα)

f(yα)
. Such

a net exist as E(X)
∗

is compact. Also by compactness there exists a subnet (yα)α∈B of

(yα)α∈A such that limα∈B yα = y ∈ E(X)
∗

and

lim
α∈B

ψ(xα)(yα)

f(yα)
= lim sup

α∈A

ψ(xα)(yα)

f(yα)
.

Finally let (bβ)β∈C be a net in X◦+ such that ψ(bβ) ≥ f and limβ∈C ψ(bβ)(y) = f(y).

As ψ(xα) is continuous and bounded and f is continuous and inf f > 0, we find that for

all ε > 0 that for α ∈ B large enough we have ψ(xα)(yα)
f(yα)

≤ ψ(xα)(y)
f(y) + ε. It follows that for
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all ε > 0 we have

sup
ψ(b)≥f

exp ξR(b) = sup
ψ(b)≥f

lim
α∈A

βb,α = sup
ψ(b)≥f

lim inf
α∈A

βb,α

≤ lim inf
α∈A

sup
ψ(b)≥f

βb,α = lim inf
α∈A

M(ψ(xα)/f) ≤ lim sup
α∈A

M(ψ(xα)/f)

= lim sup
α∈A

sup
y∈E(X)

∗

ψ(xα)(y)

f(y)
= lim sup

α∈A

ψ(xα)(yα)

f(yα)

= lim
α∈B

ψ(xα)(yα)

f(yα)
≤ lim

α∈B

ψ(xα)(y)

f(y)
+ ε

= lim
β∈C

lim
α∈B

ψ(xα)(y)

ψ(bβ)(y)

ψ(bβ)(y)

f(y)
+ ε = lim

β∈C
lim
α∈B

ψ(xα)(y)

ψ(bβ)(y)
+ ε

≤ sup
ψ(b)≥f

lim
α∈B

sup
y∈E(X)

∗

ψ(xα)(y)

ψ(b)(y)
+ ε = sup

ψ(b)≥f
lim
α∈B

βb,α + ε

= sup
ψ(b)≥f

exp ξR(b) + ε

By letting ε tend to 0 we find that limα∈A sup
y∈E(X)

∗
ψ(xα)(y)
f(y) = supψ(b)≥f ξR(b), hence

(iR(ψ(xα))) converges to a horofunction of the reverse-Funk geometry.

By Theorem 6.3.1, for some subnet of (ψ(xα)) and for all a ∈ X+ we know that

lim
α
d(a, xα)− d(u, xα) = lim

α
d(ψ(a), ψ(xα))− d(u, ψ(xα))

= log sup
y∈E(X)

∗

g(y)

ψ(a)(y)
= log sup

y∈E(X)

g(y)

y(a)

where g : E(X)
∗ → [0, 1] is an upper-semicontinuous non-negative function with supre-

mum 1. Since we know the entire net converges we find that

ξR(a) = log sup
y∈E(X)

∗

g(y)

y(a)
.

Finally by Theorem 6.2.14 we find that ξR(a) is Busemann if and only if g is affine on

S(X).

We can achieve a similar result for the Funk geometry.

6.3.8 Theorem. Let (X,X+, u) be an order-unit space. If ξF is a horofunction of the

reverse-Funk geometry, then there exists an lower-semicontinuous function h : E(X)
∗ →

[1∞] with infimum 1 which is not both bounded and continuous such that

ξ(x) := log sup
y∈E(X)

〈y, x〉
h(y)

, (x ∈ X+),

Furthermore h has an affine extension to S(X) if and only if ξ(x) is a Funk Busemann

point.
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Proof. Let ψ be as in Theorem 6.3.6. The proof of this theorem is similar to the proof of

Theorem 6.3.7, using the fact that for any f ∈ ψ(X) we have

f = −(−f) = − inf{ψ(b) ∈ ψ(X) : ψ(b) ≥ −f} = sup{ψ(b) ∈ ψ(X) : ψ(b) ≤ f}.

It should be noted this is not a classification for the horofunctions of the Funk and

reverse-Funk Geometry, but only a description, i.e. not every function of the form given in

Theorem 6.3.7 or Theorem 6.3.8 is a horofunction in the reverse-Funk or Funk geometry

respectively. This also makes it harder to give a meaningful description for horofunctions

in the Hilbert geometry for general order-unit spaces.

For the remainder of this thesis we will work on two things, first we will give an

answer to the question posed in [66] by Cormac Walsh whether there are order-unit spaces

with non-Busemann horofunctions in the reverse-Funk geometry, then we will classify the

horofunctions of the Funk, reverse-Funk and Hilbert geometry of spin-factors and more

generally JH-algebras.
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Non-Busemann horofunctions

7.1 Non-Busemann horofunctions in the reverse-Funk geometry

We will now give a number of examples of spaces with non-Busemann horofunctions in

the reverse-Funk geometry. The first space we will consider is B(H)sa, the self-adjoint

bounded linear maps on a Hilbert space H. Recall that a Banach algebra X is a complete

normed vector space which is an associative algebra such that for all x, y ∈ X we have

‖xy‖ ≤ ‖x‖‖y‖.

7.1.1 Definition. Let X be a complex Banach algebra, we call a map ∗ : X → X,x 7→ x∗

an involution if for all a, b ∈ C and all x, y ∈ X we have

(i) (ax+ by)∗ = ax∗ + by∗,

(ii) (xy)∗ = y∗x∗,

(iii) and (x∗)∗ = x.

We call a complex Banach Algebra X with unit element e and involution map ∗ a

C∗-algebra if for all x ∈ X we have ‖x∗x‖ = ‖x‖2. We call an element x ∈ X self-adjoint

if x = x∗ and we denote Xsa = {x ∈ X : x∗ = x} to be the set of self-adjoint elements.

We call a set A ⊂ X self-adjoint if for all x ∈ A we have x∗ ∈ A. For a C∗-algebra X with

unit e we call the set σ(x) = {λ ∈ C : x− λe has no multiplicative inverse} the spectrum

of x. X has a natural cone, consisting of all self adjoint element with positive spectrum

X+ = {x ∈ X : x∗ = x and σ(x) ⊂ R≥0}.

The following result for the cone of C∗-algebras is well known.

7.1.2 Proposition (Theorem 4.2.6, [33]). Let X be a C∗-algebra with unit and let x ∈ X.

Then the following are equivalent
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(i) x ∈ X+.

(ii) There exists a y ∈ X+ such that x = y2.

(iii) There exists a z ∈ X such that x = zz∗.

7.1.3 Example. Let `∞(C) be the set of bounded complex sequences with coordinatewise

multiplication and involution map ∗ sending a sequence (xn) ∈ `∞(C) to its complex

conjugate (xn). Note that the multiplicative identity is the constant 1 sequence and it is

easy to see that the standard positive cone

`∞+ = {(xn) ∈ `∞(C) : xn ≥ 0 for all n ∈ N}

= {(xn) ∈ `∞(C) : (xn)∗ = (xn) and σ((xn)) ⊂ R+}.

7.1.4 Example. Let H be a Hilbert space and let B(H) be the set of bounded linear

operators on X. B(H) is a C∗-algebra when equipped with the composition as multipli-

cation and the adjoint as the involution map ∗. Note that the identity operator I is the

multiplicative identity and the cone is given by the self-adjoint operators with positive

spectrum, note that the concepts of the spectrum of an operator and the spectrum of an

element of a C∗-algebra coincide. By Proposition 7.1.2 we have

B(H)+ = {A ∈ B(H)sa : σ(A) ⊂ [0,∞)} = {A ∈ B(H)sa : 〈Ax, x〉 ≥ 0 for all x ∈ H}.

Let X be a C∗-algebra with unit e. Any element x ∈ X can be written as x = a + ib

where a and b are self-adjoint by taking a = 1
2(x+ x∗) and b = 1

2i(x− x
∗). Note that for

all 0 6= x ∈ X+ we can define z = x+ ix. For all λ > 0 we have that λx− z = (λ−1)x+ ix

which is not self-adjoint, so λx 6≥ z. It follows that a C∗-algebra is not an order-unit space,

though one can easily check that (Xsa, X+, e) is a real order-unit space.

Though X is not an order-unit space one can still introduce the concept of the state

space. We call a linear functional ϕ ∈ X ′ a state if ϕ is positive and ϕ(e) = 1, as usual we

denote S(X) to be the set of all states of X and we call S(X) the state space of X. We

call the extreme points of S(X) the pure states and we denote E(X) to be the set of all

pure states of X.

This definition may appear confusing with our former definition of states and the state

space on order-unit spaces, but the state space of the C∗-algebra X can be identified

with the state space of the order-unit space (Xsa, X+, e). To see this note that any linear
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functional ϕ0 ∈ (Xsa)
′ can be uniquely extended to a linear functional ϕ ∈ X ′ by

ϕ(x) =
1

2
(ϕ0(x+ x∗)− iϕ0(ix− ix∗)) (x ∈ X),

so the map Φ : Xsa → X ′ given by Φ(ϕ(0)) = ϕ is an isomorphism. As X and Xsa have

the same cone we find that ϕ0 is positive if and only if ϕ is positive, and since ϕ0(e) = ϕ(e)

we find that ϕ0 is a state if and only if ϕ is a state. It follows that Φ(S(Xsa)) = S(X).

Furthermore, as Φ is an isomorphism, we find that for any ϕ,ψ1, ψ2 ∈ Xsa and λ ∈ (0, 1)

that ϕ = λψ1 + (1 − λ)ψ2 if and only if Φ(ϕ) = λΦ(ψ1) + (1 − λ)Φ(ψ2), so ϕ is a pure

state if and only if Φ(ϕ) is a pure state. For more details see [2, Page 51].

7.1.5 Example. Consider `∞(C). It is known that `∞(C) is isomorphic isometric to

C(βN), the continuous functions on the Stone-Čech compactification of N. As βN is a

compact Hausdorff space, we find that the state space and pure states of `∞(C) is identical

to the state space and pure states `∞(C)sa = `∞(R) which by the previous section we

know to be the set of probability measures on βN and the Dirac masses. Since `∞ is an

commutative C∗-algebra we can find a different way of classifying the pure states.

7.1.6 Proposition (Proposition 4.4.1, [33]). Let X be a commutative C∗-algebra, then a

linear fuctional ϕ ∈ X is a pure state if and only if ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ X.

From this it follows that the pure states of `∞ are precisely the multiplicative linear

functionals. The state space and pure states of B(H) are harder to find, we will study the

geometry of the state space and particular the pure states of B(H) later in this section.

The following results can mostly be found as results or exercises in [33] by Kadison

and Ringrose. We have included proofs for the readers convenience. We will first show a

Cauchy-Schwartz type inequality for C∗-algebras.

7.1.7 Lemma. Let X be a C∗-algebra and let ϕ be a positive linear functional on X.

Then for all x, y ∈ X we have

(i) ϕ(x∗y) = ϕ(y∗x) and

(ii) |ϕ(xy)|2 ≤ ϕ(x∗x)ϕ(y∗y).
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Proof. By Proposition 7.1.2 it holds that for all λ ∈ C and all x, y ∈ X we have

0 ≤ ϕ((λx+ y)∗(λx+ y))

= |λ|2ϕ(x∗x) + λϕ(x∗y) + λϕ(y∗x) + ϕ(y∗y)

= |λ|2ϕ(x∗x) + Re
(
λϕ(x∗y) + λϕ(y∗x)

)
+ ϕ(y∗y).

From the above we find Im(λϕ(y∗x)) = −Im(λϕ(x∗y)). Now pick λ ∈ C with |λ| = 1 such

that Re(λϕ(y∗x)) = 0. We find

|ϕ(y∗x)| =
(
Re(λϕ(y∗x))2 + Im(λϕ(y∗x))2

) 1
2 =

(
Im(λϕ(x∗y))2

) 1
2

≤
(
Re(λϕ(x∗y))2 + Im(λϕ(x∗y))2

) 1
2 = |ϕ(x∗y)|.

In a similar way we can show that |ϕ(x∗y)| ≤ |ϕ(y∗x)| which yields (i), as Im(ϕ(y∗x)) =

−Im(ϕ(x∗y)).

For (ii) let λ be such that λϕ(y∗x) = |λ||ϕ(y∗x)|. Then

0 ≤ ϕ((λx+ y)∗(λx+ y)) = |λ|2ϕ(x∗x) + |2λ||ϕ(y∗x))|+ ϕ(y∗y)

hence the quadratic-formula gives us

4|ϕ(y∗x))|2 ≤ 4ϕ(x∗x)ϕ(y∗y)

which gives us (ii).

Let H be a Hilbert space and let x ∈ H be a unit vector. We call ϕx ∈ B(H)′ given by

ϕx(A) = 〈Ax, x〉 (A ∈ B(H))

a vector state. Note that ϕx is linear, ϕx(I) = 1 and by Proposition 7.1.2 we have that

for all A ∈ B(H)+ there exists a B ∈ B(H) such that B∗B = A, so ϕ(A) = 〈Ax, x〉 =

〈Bx,Bx〉 ≥ 0. So ϕx is a state.

7.1.8 Proposition. If H be a Hilbert space, then all vector states of B(H) are pure.

Proof. Let x ∈ H be a unit vector and let ϕx be a vector state. Let Px be the projection

on Cx and let Px⊥ be the projection on (Cx)⊥. Clearly ϕx(Px) = 1 and ϕx(Px⊥) = 0. Let

ψ1, ψ2 ∈ S(B(H)) and λ ∈ (0, 1) such that λψ1 + (1 − λ)ψ2 = ϕx. Note that ψi(Px) ≤
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ψi(I) = 1 hence ψi(Px) = 1. Also note that ψi(Px⊥) = 0. By Lemma 7.1.7 for all A ∈ B(H)

we have

|ψi(APx⊥)|2 ≤ ψi(AA∗)ψi(Px⊥) = 0.

Hence for all A ∈ B(H) we have

ψi(A) = ψi(APx) + ψi(APx⊥) = ψi(APx).

Using this and Lemma 7.1.7 we also find for all A ∈ B(H)

ψi(A) = ψi(A∗) = ψi(A∗Px) = ψi(PxA).

Finally note that for all y ∈ H we have

PxAPxy = 〈y, x〉PxAx = 〈Ax, x〉〈y, x〉x = 〈Ax, x〉Pxy.

Thus

ψi(A) = ψi(PxAPx) = 〈Ax, x〉ψi(Px) = ϕx(A).

Though not every pure state of B(H) is a vector state one can show that the vector

states lie dense in the weak* closure of the pure states.

7.1.9 Theorem (Theorem 4.3.9, [33]). Let X be a C∗-algebra with unit e and let A ⊂ X

be a self-adjoint subspace containing e. If S0 ⊂ S(X) is a subset of the space state of A,

then the following are equivalent:

(i) If x ∈ A and ϕ(x) ≥ 0 for all ϕ ∈ S0, then x ∈ A+.

(ii) For all self-adjoint x ∈ A we have ‖x‖ = sup{|ϕ(x)| : ϕ ∈ S0}.

(iii) co(S0)
∗

= S(A).

(iv) E(A) ⊂ S0
∗
.

7.1.10 Corollary. Let H be a Hilbert space, then for every self-adjoint operator A ∈

B(H)sa we have

‖A‖ = sup{|〈Ax, x〉| : x ∈ H, ‖x‖ = 1}.

Furthermore if S0 is the set of the vector states then S0
∗

= E(B(H)) and co(S0)
∗

=

S(B(H)).
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Proof. Since

B(H)+ = {A ∈ B(H) : 〈Ax, x〉 ≥ 0 for all x ∈ H}

we know that A ∈ B(H)+ if and only if ϕx(A) ≥ 0 for all x ∈ H where ϕx is the vector

state of x. The result now follows from Theorem 7.1.9.

7.1.11 Definition. Let A,B be C*-algebras. We call ϕ : A → B a *-homomorphism if

it is linear, multiplicative, carries the unit to the unit and respects the involution. i.e. for

a, b ∈ A, λ, µ ∈ C and eA and eB the respective unit vectors of A and B we have

(i) ϕ(λa+ µb) = λϕ(a) + µϕ(b).

(ii) ϕ(ab) = ϕ(a)ϕ(b).

(iii) ϕ(eA) = eB.

(iv) ϕ(a∗) = ϕ(a)∗.

One of the advantages of a *-homomorphism is that it send states to states and pure

states to pure states.

7.1.12 Proposition (Exercise 4.6.22, [33]). Let ϕ : X → Y be a surjective *-homomorphism

between two C*-algebras and let ρ be a linear functional on Y . Then

(i) ρ ◦ ϕ is a state if and only if ρ is a state.

(ii) ρ ◦ ϕ is a pure state if and only if ρ is a pure state.

Proof. We start by proving (i). Suppose ρ is a state. Clearly ρ(ϕ(eX)) = ρ(eY ) = 1 and

ρ ◦ϕ is linear. Also by Theorem 7.1.2 we know that for any positive x ∈ X, there exists a

y ∈ X such that x = y∗y. Hence

ρ(ϕ(x)) = ρ(ϕ(y∗y)) = ρ(ϕ(y)∗ϕ(y)) ≥ 0

which proves that ρ ◦ ϕ is a state. Now suppose ρ ◦ ϕ is a state. Clearly since ϕ is a

*-homomorphism we have 1 = ρ(ϕ(eX)) = ρ(eY ). Let x ∈ Y be positive, again there exists

a y ∈ Y such that x = y∗y is positive. As ϕ is surjective there exists a z ∈ X such that

ϕ(z) = y, we find

ρ(x) = ρ(y∗y) = ρ(ϕ(z∗z)) ≥ 0
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which completes the proof of (i).

Now for (ii) suppose that ρ ◦ ϕ is a pure state and let λ ∈ (0, 1) and ψ1, ψ2 states on

Y such that ρ = λψ1 + (1− λ)ψ2. Then, as ρ ◦ ϕ = λψ1 ◦ ϕ+ (1− λ)ψ2 ◦ ϕ and ρ ◦ ϕ is a

pure state, we have ψ1 ◦ ϕ = ψ2 ◦ ϕ = ρ ◦ ϕ. Since ϕ is surjective we have ψ1 = ψ2 = ρ, so

ρ is a pure state.

Finally suppose ρ is a pure state. Let λ ∈ (0, 1) and let ψ1, ψ2 be states on X such

that ρ ◦ϕ = λψ1 + (1− λ)ψ2. Let x ∈ ker(ϕ), note that ker(ϕ) is a self adjoint subalgebra

as ϕ is a *homomorphism. In particular we find that x∗x ∈ ker(ϕ). By Proposition 7.1.2

we have that x∗x ∈ X+, so ψ1(x
∗x), ψ2(x

∗x) ≥ 0 = ρ(ϕ(x∗x)). It follows that for i = 1, 2

we have ψi(x
∗x) = 0 and by Proposition 7.1.7 we find

0 ≤ |ψi(x)| = |ψi(e∗x)| ≤ ψi(e∗e)ψi(x∗x) = ψi(x
∗x) = 0

So ψ1 and ψ2 are 0 on ker(ϕ). Therefore, for i = 1, 2, we can define a linear functional ψ̂i

of Y by ψ̂i(y) = ψi(x) where y ∈ Y and x ∈ ϕ−1(y). It is easy to verify that for i = 1, 2

we have ψ̂i ◦ ϕ = ψi. By (i) it follows that ψ̂i is a state and, as

ρ ◦ ϕ = λψ1 + (1− λ)ψ2 = λψ̂1 ◦ ϕ+ (1− λ)ψ̂2 ◦ ϕ

and ρ is a pure state, we find that ρ = ψ̂1 = ψ̂2. Hence ρ ◦ ϕ = ψ1 = ψ2, so ρ ◦ ϕ is a pure

state.

Finally before we can show that the pure states of B(H) are not weak*-closed we need

the following results.

7.1.13 Theorem (Theorem 4.3.13(iv), [33]). Let X be a C∗-algebra with unit e and let

A ⊂ X be a self-adjoint subspace of X containing e. If ρ is a pure state of A, then ρ

extends to a pure state of X.

7.1.14 Lemma. Let H be a Hilbert space. If (xn) is a sequence in H converging weakly

to 0, then (xn) is bounded.

Proof. Suppose (xn) is not bounded. Let (xnk) be a subsequence of (xn) such that 4‖xnk‖ ≤

‖xnk+1
‖ for all k and 1

‖xni‖2
〈xnk , xni〉 < 1

2k−2 for all i < k. Note that we can find a

subsequence satisfying the second condition as limn→∞〈xn, xni〉 = 0. Also note that, since

‖
∞∑
k=1

xnk
‖xnk‖2

‖ ≤
∞∑
k=1

1

‖xnk‖
≤ 1

‖xn1‖

∞∑
k=1

1

4k
<∞,
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we have that (
∑n

k=1
xnk
‖xnk‖2

is a Cauchy sequence. Since H is a Hilbert space it converges

to some x ∈ H. Then by the Cauchy-Schwarz inequality we have

〈x, xnk〉 =

k−1∑
i=1

〈xnk , xni〉
‖xni‖2

+ 1 +

∞∑
i=k+1

〈xnk , xni〉
‖xni‖2

≥ −1

2
+ 1−

∞∑
i=k+1

‖xnk‖
‖xni‖

≥ 1

2
−

∞∑
i=k+1

1

4i−k
=

1

6

Hence limn→∞〈x, xnk〉 either does not exist or is non-zero. It follows that (xn) does not

converge weakly to 0.

We will now show that there exists a pure state of B(H) which is 0 on the compact

operators. This pure state can be used to create a state which is not pure, but lies in the

weak* closure of the pure states.

7.1.15 Lemma (Exercise 4.6.57, [33]). If H is an infinite dimensional Hilbert space, then

there exists a pure state ρ of B(H) which is 0 on K ⊂ B(H), the set of compact operators.

Proof. Consider the C*-algebra `∞ with involution (xn)∗ = (xn) and unit e = (1)N. Note

that c ⊂ `∞, the set of converging sequences, is a commutative C*-algebra. Let ρ0 : c→ C

be a linear functional given by

ρ0((xn)) = lim
n→∞

xn. ((xn) ∈ c)

By Proposition 7.1.6 we have that ρ0 is a pure state and by Theorem 7.1.13 we can extend

ρ0 to a pure state ρ on `∞.

Now consider L0 the set of all sequences (un) in H which are weak convergent to 0.

Note that L0 is a vector sequence space. Let (un), (vn) ∈ L0. As (un) and (vn) weakly

converge to 0, by Lemma 7.1.14 we have (‖un‖), (‖vn‖) ∈ `∞. By the Cauchy-Schwarz

inequality we have

|〈un, vn〉| ≤ ‖un‖‖vn‖

so (〈un, vn〉) ∈ `∞. We define 〈·, ·〉0 : L0 × L0 → C by

〈(un), (vn)〉0 = ρ((〈un, vn〉)n∈N) ((un), (vn) ∈ L0).

93



Chapter 7: Non-Busemann horofunctions

Note that, since ρ respects conjugacy, 〈·, ·〉0 is conjugate symmetric. Clearly 〈·, ·〉0 is linear

and, as ρ is positive, 〈·, ·〉0 is semi-positive definite. Thus 〈·, ·〉0 is a semi-inner product and

the corresponding ‖ · ‖0 is a semi-norm.

Now let N0 = {(un) ∈ L0 : ‖(un)‖0 = 0} and define L1 = L0/N0. Then 〈·, ·〉1, given by

〈x +N0, y +N0〉1 = 〈x, y〉0 for all x, y ∈ L0, is an inner product. We denote by ‖ · ‖1 its

associated norm. Let L be the completion of L1, then (L, ‖·‖1) is a Hilbert space. Consider

the linear operator π0 : B(H)→ B(L1) given by

π0(T )((un) +N0) = (Tun) +N0 (T ∈ B(H), (un) +N0 ∈ L1).

Claim: π0 is well-defined and continuous.

Note that for all (un) ∈ L0 we find, as ρ is positive, that

‖(Tun)‖0 = ρ((‖Tun‖)) ≤ ρ(‖T‖(‖un‖)) = ‖T‖ρ((‖un‖)) = ‖T‖‖(un)‖0.

In particular this means that if (un) ∈ N0, then (Tun) ∈ N0, so π0 is well-defined and

‖π0(T )(un +N0)‖1 ≤ ‖T‖‖(un) +N0‖1.

As π0 is continuous we can extend it uniquely to a continuous linear operator π : B(H)→

B(L).

Claim: π is a *-homomorphism with kernel K.

Clearly π is linear, multiplicative and π(I) = IL. Also note that for (un), (vn) ∈ L0 we

have

〈π(T )(un) +N0, (vn) +N0〉1 = ρ((〈Tun, vn〉)) = ρ((〈un, T ∗vn〉))

= 〈(un) +N0, π(T ∗)(vn) +N0〉1

So π(T )∗ = π(T ∗) and therefore a π is a *-homomorphism. Now let T ∈ B(H) such that

π(T ) = 0. Note that this is the case if and only if for all (un) ∈ L0 we have that (Tun) ∈ N0

i.e. limn→∞ ‖Tun‖ = 0 for all (un) ∈ L0. As T is compact if and only if for all sequences

(un) weakly converging to some u we have limn→∞ ‖T (u− un)‖ = 0, see [16, Proposition

VI.3.3], we find that ker(π) = K.

Then by Lemma 7.1.12 we find that ρ ◦π is a pure state on B(H) which is 0 on K.

7.1.16 Theorem (Exercise 4.6.69, [33]). If H is infinite dimensional, then the pure states

of B(H) are not weak* closed.
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Proof. Let x ∈ H with ‖x‖ = 1, let ϕx be its corresponding vector state and let ρ be a

pure state of B(H) which is 0 on K, the set of compact operators of B(H). Such state

exists by Lemma 7.1.15. Consider the state ω = λϕx + (1 − λ)ρ for some λ ∈ (0, 1). We

will prove that ω is the weak* limit of vector states. We know by Corollary 7.1.10 that the

pure states of B(H) are contained in the weak* closure of the set of vector states. Hence

there exists a net of unit vectors (y′α) in H such that the sequence of vector states (ϕy′α)

weak* converges to ρ. Now we know that the sets

{θ ∈ B(H)′ : ‖(ω − θ)Ai‖ < ε for all i = 0, . . . ,m} (ε > 0,m ∈ N, A1, . . . , Am ∈ B(H))

form a neighbourhood basis around ω for the weak* topology. Now let ε > 0, m ∈ N and

let A1, . . . , Am ∈ B(H). Let P be the projection on span(x,A1x, . . . , Amx,A
∗
1x, . . . , A

∗
mx)

and define yα = (I − P )y′α/‖(I − P )y′α‖. Note that

yα ⊥ span(x,A1x, . . . , Amx,A
∗
1x, . . . , A

∗
mx))

for all α. Furthermore, note that P,AiP,A
∗
iP and PAiP are compact operator for all

i = 1, . . . ,m. Also note that

lim
α
‖(I − P )y′α‖2 = lim

α
〈(I − P )y′α, (I − P )y′α〉 = lim

α
〈(I − P )y′α, y

′
α〉

= lim
α
ϕy′α(I − P ) = ρ(I − P ) = 1.

Let zα = λ
1
2x+ (1− λ)

1
2 yα and consider

lim
α
|(ω − ϕzα)Ai| = lim

α
|λ〈Aix, x〉+ (1− λ)ρ(Ai)− λ〈Aix, x〉 − (1− λ)〈Aiyα, yα〉

− λ
1
2 (1− λ)

1
2 〈yα, A∗ix〉 − λ

1
2 (1− λ)

1
2 〈Aix, yα〉|

= lim
α
|(1− λ)ρ(Ai)− (1− λ)〈Aiyα, yα〉|

= lim
α
|(1− λ)ρ(Ai)−

1− λ
‖(I − P )y′α‖2

(〈Aiy′α, y′α〉 − 〈AiPy′α, y′α〉

− 〈y′α, A∗iPy′α〉 − 〈PAiPy′α, y′α〉)|

= |(1− λ)(ρ(Ai)− ρ(Ai)− ρ(AiP )− ρ(A∗iP )− ρ(PAiP ))| = 0.

Hence for α large enough we find

ϕzα ∈ {θ ∈ B(H)′ : ‖(ω − θ)Ai‖ < ε for all i = 0, . . . ,m}.

So ω is contained in the weak* closure of the pure states.
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Note that we need H to be infinite dimensional, as for finite dimensional spaces the

pure states of B(H) are weak* closed. To see this recall the following result.

7.1.17 Proposition. Let H be a Hilbert space. If (xα) is a net of unit vectors in H

converging to a unit vector x in norm, then the vector states (ϕxα) converge in operator

norm to ϕx.

Proof. Let (xα) be an net of unit vectors in H converging to some unit vector x. Let

A ∈ B(H). Consider

|〈Axα, xα〉 − 〈Ax, x〉| ≤ |〈Axα, xα − x〉|+ |〈A(xα − x), x〉|

≤ ‖A‖‖xα‖‖xα − x‖+ ‖A‖‖xα − x‖‖x‖

7.1.18 Corollary. Let H be a finite dimensional Hilbert space. Then the set of pure states

of B(H) is weak* closed.

Proof. Let (xα) be a net of unit vectors inH such that ϕxα converges in the weak* topology.

As H is finite dimensional we can find a norm convergent subnet (xβ) converging to some

unit vector x. By Proposition 7.1.17 it follows that limα ϕxα = ϕx. As by Corollary 7.1.10

the vector states lie dense in the weak* closure of the pure states, it follows that all pure

states are vector states and that they are weak* closed.

For H infinite dimensional we can now show there exists a reverse-Funk non-Busemann

horofunction.

7.1.19 Lemma. Let H a Hilbert space and let y, z ∈ H unit vectors. If Py and Pz are

projections on Cy and Cz respectively, then

Py + Pz ≤ (1 + |〈z, y〉|)I.

Proof. We know that

Py + Pz ≤ r(Py + Pz)I

where r(Py + Pz) is the spectral radius of Py + Pz. We know that

r(Py + Pz) = sup
x,‖x‖=1

〈(Py + Pz)x, x〉
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Let x = x1 + x2 ∈ H with x1 ∈ span(y, z) and x2 ∈ span(y, z)⊥. Consider that

〈(Py + Pz)x, x〉 = 〈(Py + Pz)x1, x1〉.

So the supremum is attained on span(y, z). Note that on span(y, z) we can rewrite Py+Pz

by

(Py + Pz)(ay + bz) =

 1 〈z, y〉

〈y, z〉 1

a
b

 = A

a
b


Hence the spectral radius is the largest eigenvalue of A which is given by the equation

(1− λ)2 − |〈y, z〉|2 = λ2 − 2λ− |〈y, z〉|2 + 1.

This equation has solutions λ = 1± |〈y, z〉|. Hence

r(Py + Pz) = 1 + |〈y, z〉|.

7.1.20 Theorem. Let H be an infinite dimensional Hilbert space. Then there exists a net

of affine functions on S(B(H)) which has non-affine limit in the hypograph topology.

Proof. Let x, ρ and ω = λϕx + (1− λ)ρ be as in the proof of Theorem 7.1.16. Let (yα) be

a net in H such that the net of vector states (ϕyα) converges to ω in the weak* topology

and let Pyα be the orthogonal projections on Fyα. We define θα : S(B(H))→ C by

θα(ψ) = ψ(Pyα).

Note that, since the hypographs of θα are subsets of a Hausdorff space, by Mrowka’s

theorem 5.1.10 we may assume that, by taking a subnet if necessary, (θα) is hypograph

convergent to some θ : S(B(H))→ C. We will now show that θ is not affine.

First note that (ω, limα θα(ϕyα)) is a limit point of (hypo(θα)) as (ϕyα , θα(ϕyα)) ∈

(hypo(θα)) . So

θ(ω) ≥ lim
α
θα(ϕyα) = 1.

Also note that for all states ψ ∈ S(B(H)) we have θα(ψ) = ψ(Pyα) ≤ ψ(I) = 1 we have

that θ(ψ) ≤ 1. In particular we find that θ(ω) = 1 and θ(ρ) ≤ 1.

Let z be some unit vector with corresponding vector state ϕz. We will show that

θ(ϕz) ≤ λ. As θ is the hypograph limit of θα we have that (ϕz, θ(ϕz)) is a limit point of

(hypo(θα)). Since the set

Xz = {Uε = U × (θ(ϕz)− ε, θ(ϕz) + ε) ⊂ S(B(H))× R : U is a neighbourhood of ϕz}
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is a neighbourhood base of (ϕz, θ(ϕz)) we can define for every Uε ∈ Xz an αUε such that

for all α ≥ αUε we have hypo(θα) ∩ Uε 6= ∅ and |ϕyα(Pz)− ω(P (z))| < ε. Hence for every

Uε ∈ Xz we can fix a ψUε ∈ U such that θαuε (ψUε) ≥ θ(ϕz) − ε. Note that Xz equipped

with the partial order ≤ given by Uε ≤ Vδ if and only if Uε ⊇ Vδ is a directed set. As Xz

is a neighbourhood base of (ϕz, θ(ϕz)) it follows that the net (ψUε) converges to ϕz in the

weak* topology. Hence for all ε > 0 and Uδ big enough we have

ϕz(Pz)− ψUδ(Pz) = 1− ψUδ(Pz) < ε⇔ 1− ε < ψUδ(Pz) ≤ 1.

Furthermore, by Lemma 7.1.19 we have ψUδ(Pz +PyαUδ
) ≤ 1 + |〈z, yαUδ 〉| as Pz +PyαUδ

≤

(1 + |〈z, yαUδ 〉|)I and ψUδ is positive. Hence, for Uδ big enough, it holds that

θαUδ (ψUδ) = ψUδ(PyαUδ
) = ψUδ(Pz + PyαUδ

)− ψUδ(Pz)

≤ 1 + |〈z, yαUδ 〉| − ψUδ(Pz) < ε+ |〈z, yαUδ 〉|.

Finally note that lim supUδ |ϕyαUδ (Pz)− ω(Pz)| ≤ lim supUδ δ = 0. So we find

θ(ϕz) ≤ lim sup
Uδ

θαUδ (ψUδ) + δ ≤ lim sup
Uδ

|〈z, yαUδ 〉|+ δ

= lim sup
Uδ

(|ϕyαUδ (Pz)|)
1
2 + δ = |ω(Pz)|

1
2 = λ|〈z, x〉| ≤ λ < 1.

Thus

θ(ω) = 1 = λ+ (1− λ) > λθ(ϕx) + (1− λ)θ(ρ).

Since λϕx + (1− λ)ρ = ω it follows that θ is not affine.

It now follows immediately from Theorem 6.3.7 and Theorem 7.1.20 that B(H) has a

non-Busemann reverse-Funk horofunction.

One thing to note from our example of a reverse-Funk non-Busemann horofunction in

B(H) is that the proof depended on the fact that the pure states are not weak* closed.

We have already seen that the pure states being weak* closed is a necessary and sufficient

condition for all Funk horofunctions to be non-Busemann for finite dimensional spaces

in [63], so it is not unreasonable to hypothesize this might be a sufficient condition for

reverse-Funk horofunctions in infinite dimensional spaces. This turns out not to be the case.

Let K be a compact Hausdorff space and let C(K) be the space of continuous functions

on K. Consider X = R× C(K) with closed cone

X+ = {(λ, f) ∈ X : ‖f‖∞ ≤ λ}
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and order-unit e = (1, 0). This is a similar construction to that of the spin-factors earlier.

Recall that the dual space of C(K) is rca(K), the set of regular finite real-valued Borel

measures on K. It follows that the dual space of X is given by

X ′ = {ϕα,µ : α ∈ R, µ ∈ rca(K) and ϕα,µ((λ, f)) = αλ+

∫
K
f dµ for all (λ, f) ∈ X}.

For convenience we will denote ϕα,µ as (α, µ).

Recall that for every regular finite real-valued Borel measure µ there exist two unique

positive regular finite real-valued Borel measures µ+ and µ− with disjoint support such

that µ = µ+ − µ−. Using this notation we can see that the positive functionals are of the

form (α, µ) where α ≥ 0 and
∫
K dµ+ +

∫
K dµ− ≤ α. So the state space is given by

S(X) = {(1, µ) :

∫
K
dµ+ +

∫
K
dµ− ≤ 1

and the pure states, E(X), are precisely those elements of the form (1, δx) and (1,−δx),

where δx is Dirac mass of x, i.e.
∫
K f(y) dδx = f(x) for x ∈ K and all f ∈ C(K). As with

C(K), the pure states of X are weak* closed.

7.1.21 Proposition. Let K be a compact Hausdorff space and let C(K) be the space of

continuous functions on K. If X = R × C(K) is an order-unit space with cone X+ =

{(λ, f) ∈ X : ‖f‖∞ < λ} and order-unit e = (1, 0), then the pure states of X are weak*

closed.

Proof. Let ((1, µα)) be a net of pure states converging in the weak* topology to (1, µ) ∈

S(X). Note that we can find a net (xα) in X such that µα = ±δxα . As K is compact,

by taking a subnet if required, we may assume that (xα) converges to some x ∈ K.

Furthermore, by taking a subnet if required, we may assume that µα = δxα for all α or

µα = −δxα for all α. As the proofs are similar we will assume that µα = δxα for all α.

Let λ ∈ R and let f ∈ C(K). As f is continuous we find

(1, µ)((λ, f)) = lim
α

(1, µα)((λ, f)) = lim
α
λ+ f(xα) = λ+ f(x) = (1, δx)((λ, f)).

It follows that µ = δx which proves the result.

We will now use the results obtained in Chapter 6 to show that R×C(K) has a non-

Busemann horofunction. Recall that a point x in a subset A of a topological space X is

called isolated if it has a neighbourhood in X containing no other point of A.
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7.1.22 Theorem. Let K be a compact Hausdorff space and let C(K) be the space of

continuous functions on K. Let X = R × C(K) be an order-unit space with cone X+ =

{(λ, f) ∈ X|‖f‖∞ < λ} and order-unit e = (1, 0). If K has a non-isolated point, then

there exists a non-Busemann horofunction of X in the reverse-Funk geometry.

Proof. Let y be a non-isolated point of K and consider the function g : K → [0, 1] given

by

g̃(x) =


1 if x = y.

0 else.

Note that g is an upper-semicontinuous function with supremum 1 which is not positive

and not continuous, as y is a non-isolated point. Let Ny be the set of neighbourhoods of

y. Since K is normal for every neighbourhood U ∈ Ny we can use Urysohn’s lemma to

find a continuous g̃U : K → [0, 1] for which g̃U (y) = 1 and g̃U (x) = 0 for all x ∈ K \U . By

equipping Ny with the order U ≤ V if and only if V ⊂ U we find, since y is a non-isolated

point, that (g̃U )U∈Ny is a net. We will now show that (g̃U )U∈Ny is hypo-convergent to g̃.

Let (x, r) be a cluster point of (hypo(g̃U ))U∈Ny , note that r ≤ 1 as ‖g̃U‖∞ ≤ 1. If r ≤ 0,

then for all U ∈ NY we have (x, r) ∈ hypo(g̃U ), so (x, r) is a limit point. If 1 ≥ r > 0

and x 6= y, then, since K is Hausdorff, we can find disjoint neighbourhoods U of y and

W of x. For all V ∈ Ny with V ≥ U we have that U × (12r,
3
2r) ∩ hypo(g̃V ) = ∅. This

implies that (x, r) is not a cluster point for r > 0. If x = y, then (y, r) ∈ (x, r) ∈ hypo(g̃U )

for all U ∈ NY , so we have that (y, r) is a limit point. Combining these facts shows that

(hypo(g̃U ))U∈Ny is hypo-convergent to g̃.

Now for all U ∈ Ny we define gU : E(X) → [−1, 1] given by gU (±δx) =
∫
K g̃U d(±δx) =

±g̃U (x) for all x ∈ K.

Claim: gU is hypo-convergent to g where g(δy) = 1 and for all µ ∈ E(X) \ {δy} we

have g(µ) = 0.

To see this first let x ∈ K and let (±δx, r) be a cluster point of (hypo(gU ))U∈Ny , note that

r ≤ 1, as gU ≤ 1. If r ≤ 0, then for all U ∈ NY we have (±δx, r) ∈ hypo(gU ), so (±δx, r)

is a limit point. If 1 ≥ r > 0 and x 6= y then we can find disjoint neighbourhoods U of x

and W of y. By Urysohn’s lemma we can find a continuous function f : K → [0, 1] such

that f(x) = 1 and f(z) = 0 for all z ∈ K \ U . We know that for all ε > 0 the set

U±x,ε = {µ ∈ E(X) : |
∫
K
f d(±δx)−

∫
K
f dµ| = | ± 1−

∫
K
f dµ| < ε}
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is a neighbourhood of ±δx. For all V > W we have hypo(gV ) ∩ (U±x,r × (12r,
3
2r)) = ∅. So

(±δx, r) is not a cluster point of (hypo(gU ))U∈Ny for r > 0 and x 6= y. If 1 ≥ r > 0 and

x = y, then note that, since (δy, r) ∈ hypo(gU ) for all U ∈ Ny and r ≤ 1, we have that

(δy, r) is a limit point for all r ≤ 1. Finally note that for all ε > 0 the set

U−y,ε = {µ ∈ E(X) : |
∫
K

1 d(−δy)−
∫
K

1 dµ| = |1 +

∫
K

1 dµ| < ε}

is a neighbourhood of −δy. For all V > K we have that hypo(gV )∩ (U−y,r × (12r,
3
2r)) = ∅

hence (−δy, r) is not a cluster point of (hypo(gU ))U∈Ny for r > 0. Combining these facts

proves our claim.

By Proposition 5.2.10 and Lemma 5.2.11 we can define ξR : X+ → R which for all

(λ, f) ∈ X is given by

ξ(R)((λ, f)) = lim
U∈Ny

iR((1, g̃U ))((λ, f))

= lim
U∈Ny

log sup
(1,µ)∈E(X)

(1, gu)((1, µ))

(λ, f)((1, µ))

= log sup
(1,µ)∈E(X)

(1, g)((1, µ))

(λ, f)((1, µ))

= log sup
(1,µ)∈E(X)

1 +
∫
K g dµ

λ+
∫
K f dµ

.

Note that ξR is a reverse-Funk horofunction, as g is not continuous and thus ξR 6∈ iR(X).

Moreover as for x 6= y we have

1

2
(1, g)((1, δ+x)) +

1

2
(1, g)((1, δ−x)) = 0 6= 1

2
=

1

2
(1, g)((1, δ+y)) +

1

2
(1, g)((1, δ−y))

and 1
2(1, δ+x) + 1

2(1, δ−x) = 1
2(1, δ+y) + 1

2(1, δ−y) we find that g has no affine extension

to the state space of X, hence by Theorem 6.3.7 ξR is a non-Busemann horofunction of

X.

Finally one can easily find that K has a non-isolated point if C(K) is infinite dimen-

sional.

7.1.23 Lemma. Let K be a compact Hausdorff set. If C(K) is infinite dimensional, then

K has an non-isolated point.

Proof. Suppose K only has isolated points. Then every x ∈ K has a neighbourhood

Ux = {x}. As
⋃
x∈K Ux covers K and K is compact we find that K is finite. But then we

have that C(K) = R|K|, which is a finite dimensional vector space.
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7.2 The horofunction boundary of spin factors

As promised we will now give a classification of the horofunction boundary of spin factors,

see also [15]. Spin factors have multiple incarnations. Besides being order-unit spaces and

Euclidean Jordan algebras, we can view spin factors as hyperbolic spaces.

The study of the geometry of the infinite dimensional real hyperbolic space H∞ has

gained significant momentum since it was popularised by Gromov in [28], see [10], [17],

[18], [43] and [50]. We will work with the following model of hyperbolic space.

Let (H, 〈·, ·〉) be an infinite dimensional Hilbert space and let X = R × H be a spin

factor. Let Q : X → R be the quadratic form,

Q((λ, x)) = λ2 − 〈x, x〉 ((λ, x) ∈ X)

Recall that the spin factor X has cone

X+ = {(λ, x) ∈ X : ‖x‖ < λ}.

Let B : X ×X → R be the bilinear form associated with Q,

B((λ, x), (µ, y)) = λµ− 〈x, y〉 ((λ, x), (µ, y) ∈ X)

Consider the hyperboloid

H = {u ∈ X+ : Q(u) = 1}.

We can define a metric, called the hyperboloid metric, δh on H by

cosh(δh(u, v)) = B(u, v) (u, v ∈ H).

We call H∞ = (H, δh) the hyperboloid model of the infinite dimensional real hyperbolic

space. It is known that on the hyperboloid H the metric δh coincides with a scaled version

of Hilbert metric 1
2dH , see [42, Chapter 2.3]. The disc

D = {(λ, x) ∈ X : λ = 1 and ‖x‖ < 1}

equipped with 1
2dH is known as Klein’s model and is a different model of the hyperbolic

space. We have already seen the finite dimensional version of Klein’s Model in Exam-

ple 2.1.2. We will be using Klein’s model to study the spin factors for the rest of this

chapter.
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For finite dimensional real hyperbolic spaces Hn it is well known that ∂Hn coincides

with the horofunction boundary. In infinite dimensions this is no longer the case. Indeed

we will show that in H∞ the Busemann points correspond to ∂H∞, and that there are

many horofunctions that are not Busemann points. This phenomenon is caused by the

fact H∞ is not proper. In fact, we will prove the following theorem.

7.2.1 Theorem. Let (H, 〈·, ·〉) be an infinite dimensional Hilbert space and let X = R×H.

The horofunctions of X with respect to the Hilbert Geometry are the functions of the

following form:

ξ((γ, y)) = 2 log

(
γ − 〈x̂, y〉+

√
(γ − 〈x̂, y〉)2 − (γ2 − ‖y‖2)(1− r2)
(1 + r)

√
γ2 − ‖y‖2

)
((γ, y) ∈ X◦+)

where either ‖x̂‖ < 1 and ‖x̂‖ < r ≤ 1 or ‖x̂‖ = r = 1. Furthermore, ξ is a Busemann if

and only if r = 1 and ‖x̂‖ = 1, in which case

ξ((γ, y)) = log

(
(γ − 〈x̂, y〉)2

γ2 − ‖y‖2

)
((γ, y) ∈ X◦+).

In terms of δh on the hyperboloid model we get the following reformulation of Theo-

rem 7.2.1.

7.2.2 Corollary. The horofunctions of H∞ = (H, δh) are precisely the functions of the

form

ξ(v) = log

(
B(û, v) +

√
(B(û, v))2 − (1− r2)
(1 + r)

)
(v ∈ H)

where 0 < r ≤ 1 and û ∈ D such that 0 ≤ 1 − r2 < Q(û), or, r = 1 and û ∈ ∂D.

Furthermore, ξ is a Busemann point if and only if r = 1 and û ∈ ∂D, in which case

ξ(v) = log (B(û, v)) (v ∈ H).

To prove Theorem 7.2.1, we will first calculate the gauge functions. We can use these

to classify the horofunctions of the Funk, reverse Funk and Hilbert geometry. The final

results will then further classify the Busemann points.

7.2.3 Proposition. Let H be a Hilbert space and let X = R×H. For all (µ, x), (γ, y) ∈ X◦+
we have

M((µ, x)/(γ, y)) =
γµ− 〈x, y〉+

√
(γµ− 〈x, y〉)2 − (µ2 − ‖x‖2)(γ2 − ‖y‖2)

γ2 − ‖y‖2
.
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Proof. We know that

M((µ, x)/(γ, y)) = inf{β > 0 : (µ, x) ≤ β(γ, y)}

= inf{β > 0 : (γβ − µ)2 ≥ ‖βy − x‖2 and γβ − µ ≥ 0}.

So we have to solve

(γβ − µ)2 − ‖βy − x‖2 = (γ2 − ‖y‖2)β2 − 2(γµ− 〈x, y〉)β + (µ2 − ‖x‖2) = 0,

which has solutions

β± =
γµ− 〈x, y〉 ±

√
(γµ− 〈x, y〉)2 − (µ2 − x2)(γ2 − ‖y‖2)

γ2 − ‖y‖2
.

Note though, that

γβ− − µ = γ
γµ− 〈x, y〉 −

√
(γµ− 〈x, y〉)2 − (µ2 − ‖x‖2)(γ2 − ‖y‖2)

γ2 − ‖y‖2
− µ

= γ
(γµ− 〈x, y〉)2 − (γµ− 〈x, y〉)2 + (µ2 − ‖x‖2)(γ2 − ‖y‖2)

(γµ− 〈x, y〉+
√

(γµ− 〈x, y〉)2 − (µ2 − ‖x‖2)(γ2 − ‖y‖2))(γ2 − ‖y‖2)
− µ

=
γ(µ2 − ‖x‖2)

γµ− 〈x, y〉+
√

(γµ− 〈x, y〉)2 − (µ2 − ‖x‖2)(γ2 − ‖y‖2)
− µ

≤ γ(µ2 − ‖x‖2)
γµ− ‖x‖‖y‖+

√
(γµ− ‖x‖‖y‖)2 − (µ2 − ‖x‖2)(γ2 − ‖y‖2)

− µ

=
γ(µ2 − ‖x‖2)

γµ− ‖x‖‖y‖+ |µ‖y‖ − γ‖x‖|
− µ

=
µ‖x‖‖y‖ − γ‖x‖2 − |µ2‖y‖ − µγ‖x‖|

γµ− ‖x‖‖y‖+ |µ‖y‖ − γ‖x‖|
.

We find that if µ‖y‖ < γ‖x‖, then clearly γβ− − µ < 0. If µ‖y‖ ≥ γ‖x‖, then consider

γβ− − µ ≤
µ‖x‖‖y‖ − γ‖x‖2 − µ2‖y‖+ µγ‖x‖

γµ− ‖x‖‖y‖+ µ‖y‖ − γ‖x‖

=
(µ‖y‖ − γ‖x‖)(‖x‖ − µ)

(γ + ‖y‖)(µ− ‖x‖)
= −µ‖y‖ − γ‖x‖

γ + ‖y‖
≤ 0.

Hence we find that M((µ, x)/(γ, y)) = β+.

For all u, v ∈ X+ we can rewrite this result using the quadratic and bilinear forms as

M(u/v) =
B(u, v) +

√
B(u, v)2 −Q(u)Q(v)

Q(v)
.

Note that if u, v ∈ H, then using Proposition 7.2.3 we find

1

2
dH(u, v) =

1

2
log (M(u/v)M(v/u))

= log(B(u, v) +
√
B(u, v)2 − 1) = cosh−1(B(u, v)),

which shows that indeed on X+ the hyperbolic metric δh coincides with Birkhoff’s version

of Hilbert’s metric 1
2dH . We also need the following basic result from functional analysis.
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7.2.4 Lemma. Let (xα) be a net in a Hilbert space H such that xα converges in the weak

topology to some x ∈ H and (‖xα‖) converges to some r ≥ 0. Then r ≥ ‖x‖. Moreover, if

r = ‖x‖, then (xα) converges to x in the norm topology.

Proof. Note that

‖x‖2 = lim
α
|〈x, xα〉| ≤ lim

α
‖x‖‖xα‖ = r‖x‖.

Now suppose that r = ‖x‖. Then

lim
α
‖x− xα‖2 = lim

α
‖x‖2 + ‖xα‖2 − 2〈x, xα〉 = 0.

Using this we can now characterise the horofunctions of the Hilbert geometry of the

spin factor as follows.

7.2.5 Theorem. Let H be an infinite dimensional Hilbert space and let X = R×H. The

horofunctions of X with respect to the Hilbert geometry are precisely the functions of the

following form:

ξ((γ, y)) = 2 log

(
γ − 〈x̂, y〉+

√
(γ − 〈x̂, y〉)2 − (γ2 − ‖y‖2)(1− r2)
(1 + r)

√
γ2 − ‖y‖2

)
((γ, y) ∈ X◦+)

where either ‖x̂‖ < 1 and ‖x̂‖ < r ≤ 1 or ‖x̂‖ = r = 1.

Proof. Let ((1, xα)) be a net in X◦+ such that dH(·, (1, xα))− dH((1, 0), (1, xα)) converges

to a horofunction. By taking a subnet we may assume that (xα) weakly converges to some

x̂ ∈ H as the unit ball is weakly compact and (‖xα‖) converges to some r ≤ 1. Note that

by Lemma 7.2.4, r ≥ ‖x̂‖. Let (γ, y) ∈ X◦+. Using Proposition 7.2.3 we find

M((1, xα)/(1, 0)) = 1 + ‖xα‖

M((1, 0))/(1, xα)) =
1 + ‖xα‖
1− ‖xα‖2

M((1, xα)/(γ, y)) =
γ − 〈xα, y〉+

√
(γ − 〈xα, y〉)2 − (1− ‖xα‖2)(γ2 − ‖y‖2)

γ2 − ‖y‖2

M((γ, y))/(1, xα)) =
γ − 〈xα, y〉+

√
(γ − 〈xα, y〉)2 − (1− ‖xα‖2)(γ2 − ‖y‖2)

1− ‖xα‖2
.
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Hence

i((1, xα))((γ, y)) = log(M((γ, y)/(1, xα))M((1, xα)/(γ, y)))

− log(M((1, 0)/(1, xα))M((1, xα)/(1, 0)))

=2 log

(
γ − 〈xα, y〉+

√
(γ − 〈xα, y〉)2 − (1− ‖xα‖2)(γ2 − ‖y‖2)√
γ2 − ‖y‖2

√
1− ‖xα‖2

)

− 2 log

(
1 + ‖xα‖√
1− ‖xα‖2

)

=2 log

(
γ − 〈xα, y〉+

√
(γ − 〈xα, y〉)2 − (1− ‖xα‖2)(γ2 − ‖y‖2)
(1 + ‖xα‖)

√
γ2 − ‖y‖2

)
.

Taking the limit gives us

ξ((γ, y)) = 2 log

(
γ − 〈x̂, y〉+

√
(γ − 〈x̂, y〉)2 − (γ2 − ‖y‖2)(1− r2)
(1 + r)

√
γ2 − ‖y‖2

)
.

Note that if r = ‖x̂‖ < 1, then ξ = i(1, x̂). So r > ‖x̂‖, if ‖x̂‖ < 1.

Now suppose that a function is of the form as described above. Note that all we need to

do is find a net ((1, xα)) in X◦+ such that (xα) converges weakly to x̂ and (‖xα‖) converges

to r. Then it will give rise to the desired horofunction by the above. If ‖x̂‖ = 1, consider

the sequence ((1, (1 − 1
n)x̂)), clearly this sequence converges strongly to (1, x̂) and gives

rise to a horofunction by the above. If ‖x̂‖ < 1, then let (en) be an orthonormal sequence

in H, which exists as dim(H) = ∞, and consider the sequence ((1, x̂ +
√
r2 − ‖x̂‖2en)).

Note that (x̂ +
√
r2 − ‖x̂‖2en) converges weakly to x̂, since (en) converges weakly to 0.

Also note that

lim
n→∞

‖x̂+
√
r2 − ‖x̂‖2en‖2 = lim

n→∞
r2 + 2

√
r2 − ‖x̂‖2〈x̂, en〉 = r2.

In a similar way we find the horofunctions of the reverse-Funk and Funk geometry.

7.2.6 Theorem. Let H be an infinite dimensional Hilbert space and let X = R×H. The

horofunctions of X with respect to the reverse Funk geometry are precisely the functions

of the following form:

ξ((γ, y)) = log

(
γ − 〈x̂, y〉+

√
(γ − 〈x̂, y〉)2 − (γ2 − ‖y‖2)(1− r2)
(1 + r)(γ2 − ‖y‖2)

)
((γ, y) ∈ X◦+)

where either ‖x̂‖ < 1 and ‖x̂‖ < r ≤ 1 or ‖x̂‖ = r = 1.
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7.2.7 Theorem. Let H be an infinite dimensional Hilbert space and let X = R×H. The

horofunctions of X with respect to the Funk geometry are precisely the functions of the

following form:

ξ((γ, y)) = log

(
γ − 〈x̂, y〉+

√
(γ − 〈x̂, y〉)2 − (γ2 − ‖y‖2)(1− r2)

(1 + r)

)
((γ, y) ∈ X◦+)

where either ‖x̂‖ < 1 and ‖x̂‖ < r ≤ 1 or ‖x̂‖ = r = 1.

Note that the proof of Theorem 7.2.5 also shows that ξ is a Busemann point if ‖x̂‖ = 1.

We can show that these are the only horofunctions that are Busemann points.

7.2.8 Theorem. Let H be an infinite dimensional Hilbert space and let X = R⊕H, let

x̂ ∈ H and ‖x̂‖ ≤ r ≤ 1 and let

ξ((γ, y)) = log

(
γ − 〈x̂, y〉+

√
(γ − 〈x̂, y〉)2 − (γ2 − ‖y‖2)(1− r2)
(1 + r)

√
γ2 − ‖y‖2

)
((γ, y) ∈ X◦+)

be a horofunction. Then ξ is a Busemann point of the Hilbert geometry if and only if

‖x̂‖ = r = 1.

Proof. In Theorem 7.2.5 we already proved that if ‖x̂‖ = r = 1, then ξ is a Busemann

point. Now suppose that ξ is a Busemann point and let ((1, xα)) be an almost geodesic

net such that i((1, xα)) converges to ξ. Combining Proposition 6.1.3 and Theorem 7.2.5

gives us that dH((1, 0), (1, xα)) is not bounded, so limα ‖xα‖ = r = 1. Note that we can

rewrite the horofunction as

ξ((1, y)) = log

(
(1− 〈x̂, y〉)2

1− ‖y‖2

)
. ((1, y) ∈ X◦+)

Now suppose ‖x̂‖ < 1. Let ε > 0 and let A be such that for all α′ ≥ α ≥ A we have

ε+ dH((1, 0), (1, xα′)) ≥ dH((1, 0), (1, xα)) + dH((1, xα), (1, xα′))

As in the proof of Theorem 7.2.5, using Proposition 7.2.3 we find

ε ≥ log

(
(1 + ‖xα‖)2

1− ‖xα‖2

)
− log

(
(1 + ‖xα′‖)2

1− ‖xα′‖2

)
+ 2 log

(
1− 〈xα, xα′〉+

√
(1− 〈xα, xα′〉)2 − (1− ‖xα‖2)(1− ‖xα′‖2)√

1− ‖xα′‖2
√

1− ‖xα‖2

)
.

Taking the exponential we find

e
1
2
ε ≥

1− 〈xα, xα′〉+
√

(1− 〈xα, xα′〉)2 − (1− ‖xα‖2)(1− ‖xα′‖2)
(1− ‖xα‖)(1 + ‖xα′‖)

.
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As this holds for all α′ ≥ α, we can take the limit with respect to α′ to get

e
1
2
ε ≥ lim

α′

1− 〈xα, xα′〉+
√

(1− 〈xα, xα′〉)2 − (1− ‖xα‖2)(1− ‖xα′‖2)
(1− ‖xα‖)(1 + ‖xα′‖)

=
1− 〈xα, x̂〉
1− ‖xα‖

.

Finally, as this holds for all α ≥ A, we can take the limit with respect to α to find

e
1
2
ε ≥ lim

α

1− 〈xα, x̂〉
1− ‖xα‖

=∞,

which is a contradiction.

Using similar arguments we can obtain the same result for the Busemann points of the

reverse-Funk and Funk geometry.

7.2.9 Theorem. Let H be an infinite dimensional Hilbert space and let X = R⊕H, let

x̂ ∈ H and ‖x̂‖ ≤ r ≤ 1 and let

ξ((γ, y)) = log

(
γ − 〈x̂, y〉+

√
(γ − 〈x̂, y〉)2 − (γ2 − ‖y‖2)(1− r2)
(1 + r)(γ2 − ‖y‖2)

)
((γ, y) ∈ X◦+)

be a horofunction. Then ξ is a Busemann point of the reverse Funk geometry if and only

if ‖x̂‖ = r = 1.

7.2.10 Theorem. Let H be an infinite dimensional Hilbert space and let X = R⊕H, let

x̂ ∈ H and ‖x̂‖ ≤ r ≤ 1 and let

ξ((γ, y)) = log

(
γ − 〈x̂, y〉+

√
(γ − 〈x̂, y〉)2 − (γ2 − ‖y‖2)(1− r2)

(1 + r)

)
((γ, y) ∈ X◦+)

be a horofunction. Then ξ is a Busemann point of the Funk geometry if and only if ‖x̂‖ =

r = 1.

Theorem 7.2.1 follows from Theorem 7.2.5 and Theorem 7.2.8.

7.3 The horofunction boundary of JH-algebras

Finally we will classify the horofunction boundary of unital JH-algebras which are a special

class of Jordan algebras.

7.3.1 Definition. Let (X, 〈·, ·〉) be a Jordan Algebra with an inner product which is

associative with the Jordan product, i.e.

〈xy, z〉 = 〈y, xz〉.
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If X is a Hilbert space we call X a JH-algebra. If furthermore X has a unit we call X a

unital JH-algebra.

Note that a finite dimensional JH-algebra is a Euclidean Jordan Algebra and recall

that a Jordan algebra can be equipped with the cone of squares X+ = {x2 : x ∈ X}. It

was observed by Roelands and Wortel that unital JH-algebras can be characterised in the

following way.

7.3.2 Theorem. A unital JH-algebra is a finite direct sum of finite dimensional unital

formally real Jordan Algebras and spin factors.

This result and its proof can be found in [61, Lemma 7.15]. As mentioned in Chapter 4

the finite dimensional unital formally real Jordan algebras are exactly the unital Euclidean

Jordan algebras. It is known by the Jordan-von Neumann-Wigner theorem [56] that the

unital Euclidean Jordan algebras can be classified as finite direct sums of the spaces of

self-adjoint matrices over R, C or the quarternions H, the 3×3-matrices over the octonions

O, or finite dimensional spin factors. We will not require this classification for our purposes

as the horofunction boundary of the unital Euclidean Jordan algebras is fully classified by

Lemmens, Lins, Nussbaum and Wortel.

7.3.3 Theorem (Theorem 5.6 [41]). Let X be a unital Euclidean Jordan algebra with unit

e and cone X+. If we use e as base point, then the following assertions hold:

(i) The horofunctions of the Funk geometry are precisely the functions of the following

form

ξF (x) = dR(x−1, z) (x ∈ X◦+),

where z ∈ ∂X+ with ‖z‖e = 1.

(ii) The horofunctions of the reverse-Funk geometry are precisely the functions of the

following form

ξR(x) = dR(x, y) (x ∈ X◦+),

where y ∈ ∂X+ with ‖y‖e = 1.

(iii) The horofunctions of the Hilbert geometry are precisely the functions of the following

form

ξH(x) = dR(x−1, z) + dR(x, y) (x ∈ X◦+),

where y, z ∈ ∂X+ with ‖y‖e = ‖z‖e = 1 and yz = 0.
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Recall that we have referred to a part of this theorem before in Section 4.2. Combined

with our own classification of the horofunction boundary of the spin factors in Section 7.2

we can find the horofunction boundary of general unital JH-algebras. For this we will first

study the horofunction boundary of finite direct sums of order-unit spaces.

Let {(Xk, (Xk)+, ek) : 1 ≤ k ≤ n} be a set of order-unit spaces and consider

X =

n⊕
k=1

Xk

the direct sum. First note that

X+ =

n⊗
k=1

(Xk)+

is a cone of X. It follows that (X,X+, (e1, . . . , ek)) is an order-unit space. Indeed, for

any x = (x1, . . . , xn) ∈ X we can take M = max{Mk : xk ≤ Mkek} and we find that

Me−x ∈ X+. We denote πk : X → Xk, given by πk((x1, . . . , xn)) = xk for (x1, . . . xn) ∈ X,

to be the linear projections maps onto Xk. Note that if ϕ ∈ S(X) is a state, then as ϕ

is linear and positive on the subspace {x ∈ X : πi(x) = 0 for all i 6= k} we can find

ϕk ∈ S(Xk) and λk ∈ [0, 1] such that
∑n

k=1 λk = 1 and

ϕ(x) =
n∑
k=1

λkϕk(πk(x))

i.e., a state of X is the convex combination of states of Xk. From this it follows that the

pure states are given by

E(X) = {ϕk ◦ πk ∈ X ′ : k ∈ {1, . . . , n}, ϕk ∈ E(Xk)}

i.e., the pure states of X are the composition of a linear projection πk and a pure state

of Xk. We can use this to find the horofunctions of the Funk and reverse-Funk geometry

of X in terms of the horofunctions of the Funk and reverse-Funk geometry of Xk. First

though we will show the following “Pigeonhole principle” for nets.

7.3.4 Proposition. Let X be a set, let (xα)α∈J be a net in X and let f : X → {1, . . . , n}

be a map. We define Ji = {α ∈ J : f(xα) = i}. Then for some 1 ≤ i ≤ n we have that

(xα)α∈Ji is a subnet of (xα)α∈J .

Proof. To prove this all we need to show is that there is an i ∈ {1, . . . , n} such that for all

α, β ∈ J there is a γ ∈ Ji such that α, β ≤ γ. Suppose this is not true. Then we can find

α1, . . . , αn, β1, . . . , βn ∈ J such that there is no γ ∈ Ji such that αi, βi ≤ γ. However as J

is directed there is a γ ∈ J such that α1, . . . , αn, β1, . . . , βn ≤ γ. Since J =
⋃n
i=1 Ji this is

a contradiction.
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We will now classify the horofunctions of the direct sum space. We will do this in

two steps. We will first classify the set iR(X◦+). Then we further classify which of these

functions are horofunctions.

7.3.5 Theorem. Let {(Xk, (Xk)+, ek) : 1 ≤ k ≤ n} be a set of order-unit spaces and

let
⊕n

k=1Xk be an order-unit space with cone X+ =
⊗

(Xk)+. The horofunctions of the

reverse Funk geometry are precisely the functions of the form

ξR(y) = max
k

ξk(πk(y)) + log(rk) (y ∈ X◦+)

where for all k ∈ {1, . . . , n} we have ξk ∈ iR((Xk)
◦
+) and rk ∈ [0, 1] with maxk rk = 1 such

that for some k we have that rk = 0 or ξk is a horofunction.

Proof. Let e = (e1, . . . , en) be an order-unit of X. Let S(Xk) be the state space of Xk

with respect to ek, and let S(X) be the state space of X with respect to e. Let x, y ∈ X+

and recall that by Proposition 6.2.5 we have

M(x/y) = sup
ϕ∈E(X)

ϕ(x)

ϕ(y)
.

Since the pure states of X are the composition of a projection on Xk for some k and a

pure state of Xk we find

M(x/y) = max
k

sup
ϕ∈E(Xk)

ϕ(πk(x))

ϕ(πk(y))
.

Now let ξR ∈ iR(X◦+) and let (xα) be a net in X◦+ such that (iR(xα)) converges to ξR. By

taking a further subnet if necessary, we may assume that (iR(πk(xα))) converges to some

ξk ∈ iR((Xk)
◦
+) for all k. Fix y ∈ X+ and define zα = M(xα/e)

−1xα. Consider

iR(xα)(y) = dR(y, xα)− dR(e, xα)

= log(M(zα/y))− log(M(zα/e))

= log

(
max
k

sup
ϕ∈E(Xk)

ϕ(πk(zα))

ϕ(πk(y))

)
.

So for each α and y we can find k such that

iR(xα)(y) = log

(
sup

ϕ∈E(Xkα,y )

ϕ(πkα,y(zα))

ϕ(πkα,y(y))

)
.

By Proposition 7.3.4 there exists a ky ∈ {1, . . . , n} such that there is a subnet for which

lim
α
iR(xα)(y) = lim

α
log

(
sup

ϕ∈E(Xky )

ϕ(πky(zα))

ϕ(πky(y))

)
= lim

α
log(M(πky(zα)/πky(y))).
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Note that, since zα = M(xα/e)
−1xα ∈ X◦+, for all k we find that 0 < M(πk(zα)/πk(e)) ≤ 1.

So we may assume that, by taking a further subnet if necessary, that (M(πk(zα)/πk(e)))

converges to some rk ∈ [0, 1] for all k. Furthermore note that, as y ∈ X◦+, we have

dR(πky(y), eky) <∞. So if limαM(πky(zα)/πky(e)) = 0, then

lim
α
iR(zα)(y) = lim

α
dR(πky(y), πky(zα))

≤ lim
α
dR(πky(y), eky) + dR(eky , πky(zα)) = −∞,

which contradicts ξR(y) ∈ R. It follows that rky ∈ (0, 1]. Hence

ξR(y) = lim
α
iR(xα)(y) = lim

α
log
(
M(πky(zα)/πky(y))

)
− log(M(πky(zα)/πky(e))) + log(M(πky(zα)/πky(e)))

= ξky(y) + log(rky)

Now finally note that for the created subnet and for all k we have

ξk(y) + log(rk) = lim
α

log (M(πk(zα)/πk(y)))

= log

(
sup

ϕ∈E(Xk)

ϕ(πk(zα))

ϕ(πk(y))

)

≤ log

(
sup

ϕ∈E(Xky )

ϕ(πky(zα))

ϕ(πky(y))

)

= ξky(πky(y)) + log(rky) = ξR(y).

So we find that

ξR(y) = max
k

ξky(πk(y)) + log(rk)

where for all k ∈ {1, . . . , n} we have ξk ∈ iR((Xk)
◦
+) and rk ∈ [0, 1] with maxk rk = 1.

Now let ξ be of the form

ξR(y) = max
k

ξk(πk(y)) + log(rk) (y ∈ X◦+)

where for all k ∈ {1, . . . , n} we have ξk ∈ iR((Xk)
◦
+) and rk ∈ [0, 1] with maxk rk = 1. Let

(xi,α)α∈Ai be nets in (Xi)
◦
+ such that limα∈Ai iR(xi,α) = ξi and dR(e, xα) = 0. Let A0 = N,

we define the index set

A = A0 ×A1 × . . .×An
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with lexicographical partial order, i.e., for all α, α′ ∈ A we have α ≤ α′ if and only if

α(i) ≤ α′(i) for all 0 ≤ i ≤ n. Note that A is a directed set. Now consider the net (xα)α∈A

in X◦+, where πi(xα) = rixi,α if ri > 0 and πi(xα) = 1
α(0)xi,α if ri = 0.

Note that (xk,α(k))α∈A is a subnet of (xk,α)α∈Ak for all 1 ≤ k ≤ n. Hence for all

1 ≤ k ≤ n, if rk > 0, then

lim
α∈A

iR(πk(xα)) = lim
α∈A

iR(rkxk,α(k)) = ξk

and

lim
α∈A

M(πk(xα)/ek) = lim
α∈A

M(rkxk,α/ek) = rk.

If rk = 0, then

lim
α∈A

iR(πk(xα)) = lim
α∈A

iR

(
1

α(0)
xk,α(k)

)
= ξk.

and

lim
α∈A

M(πk(xα)/ek) = lim
α∈A

M

(
1

α0
xk,α/ek

)
= 0.

We will show that a subnet of (iR(xα))α∈A converges to ξR.

As iR(X◦+) is compact we know there is a subnet (iR(xα))α∈A′ which converges to some

γ ∈ iR(X◦+). Fix y ∈ X◦+. As before, by Proposition 7.3.4 we can find a 1 ≤ ky ≤ n and a

subnet (xα)α∈Â such that

lim
α∈A′

iR(xα)(y) = lim
α∈Â

iR(xα)(y) = lim
α∈Â

iR(xα)(y) max
k

log

(
sup

ϕ∈E(Xk

ϕ(xk,αk)

ϕ(πk(y))

)

= lim
α∈Â

iR(xα)(y) log

(
sup

ϕ∈E(Xk

ϕ(xky ,αky )

ϕ(πky(y))

)
= lim

α∈Â
iR(xky ,αky ) + log(M(xky ,αky /ek))

= ξky + log(rky)

By similar arguments as above we find that

lim
α∈A′

iR(xα)(y) = max
k

ξk + log(rk).

Finally, note that x ∈ X◦+ if and only if for all k ∈ {1, . . . , n} there exist xk ∈

(Xk)
◦
+ such that M(xk/ek) = 1 and r1, ..., rn > 0 such that x = (r1x1, ..., rnxn). Let

z = M(x/e)−1x = x/maxk rk, then, using the above, for all y we find

iR(x)(y) = iR(z)(y) = max
k

iR(zk)(πk(y)) + log(rk)− (max
i

log(ri)).
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So for all functions ξ of the form

ξR(y) = max
k

ξk(πk(y)) + log(rk) (y ∈ X◦+)

where for all k ∈ {1, . . . , n} we have ξk ∈ iR((Xk)
◦
+) and rk ∈ [0, 1] with maxk rk = 1,

we find that ξ ∈ iR(X◦+) if and only if for all k ∈ {1, . . . n} we have ξk = iR(zk) for some

zk ∈ (Xk)
◦
+ and rk > 0.

Theorem 7.3.5 gives rise to some interesting horofunctions. First of all it should be

noted that the functions ξk in Theorem 7.3.5 do not have to be horofunctions for ξ to be

a horofunction, as can be seen from the following example.

7.3.6 Example. Let Y = R × l2 be a spin factor and let X = Y × Y . Let (xn) be a

sequence in X given by

xn = ((1,
1

2
en), (1,

1

2
e1)).

By Theorem 7.3.5 (iR(xn)) converges to some function ξ of the form

ξR(y) = max(ξ1(π1(y)) + log(r1), ξ2(π2(y)) + log(r2)) (y ∈ X◦+

where for k = 1, 2 we have ξk ∈ iR((Xk)
◦
+) and rk ∈ [0, 1]. Note that in this case r1 = r2 =

1. Using Proposition 7.2.3 we find that for all (1, y) ∈ Y ◦+ we have

ξ1((1, y)) = lim
n→∞

log

1− 1
2〈y, en〉+

√
(1− 1

2〈y, en〉)2 − (1− 1
4‖en‖2)(1 + ‖y‖2)

(1 + 1
2‖en‖)(1− ‖y‖2)


= log

1 +
√

1− 3
4(1 + ‖y‖2)

3
2(1− ‖y‖2)


= log

(
2 +

√
1 + 3‖y‖2

3(1− ‖y‖2)

)

By Theorem 7.2.6 we find that ξ1 is a horofunction. Again by using Proposition 7.2.3 we

find that

ξ2((1, y)) = lim
n→∞

log

1− 1
2〈y, e1〉+

√
(1− 1

2〈y, e1〉)2 − (1− 1
4‖e1‖2)(1 + ‖y‖2)

(1 + 1
2‖e1‖)(1− ‖y‖2)


= log

(
2− y(1) +

√
(2− y(1))2 − 3 + 3‖y‖2

3(1− ‖y‖2)

)
= iR((1,

1

2
e1))((1, y)).
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Note that

ξ1((1, 0)) = log(1) ≤ log(2) = ξ2((1,−
1

2
e1)),

hence

ξ(((1, 0), (1,−1

2
e1))) = ξ2((1,−

1

2
e1)) = log(2).

So for certain elements the maximum might appear at a non-horofunction.

In fact, if one of the scalars rk in Theorem 7.3.5 equals zero, then ξk can be a non-

horofunction for all k.

7.3.7 Example. Let X be as in Example 7.3.6 and let (xn) be a sequence in X given by

xn = ((1,
1

2
e1), (n,

n

2
e1)).

Then r1 = 0 and r2 = 1 and limn→∞ iR(xn)(y) = ξ(y) = iR((1, 12e1))(π2(y)).

We can find similar results for the horofunctions of the Funk geometry. The proofs for

these are similar to those for the reverse-Funk geometry, hence will be omitted.

7.3.8 Theorem. Let {Xk : 1 ≤ k ≤ n} be a set of order-unit spaces and let X =
⊕n

k=1Xk

be an order-unit space with cone X+ =
⊕

(Xk)+. The horofunctions of the Funk geometry

on X+ are of the form

ξF (y) = max
k

ξk(πk(y)) + log(rk) (y ∈ X◦+)

where for all k ∈ {1, . . . , n} we have ξk ∈ iF ((Xk)
◦
+) and rk ∈ [0, 1] with maxk rk = 1 such

that for some k we have that rk = 0 or ξk is a horofunction.

Though it is hard to give a classification of the horofunctions of the Hilbert geometry

for general direct sums of order-unit spaces, it is possible for the JH-algebras. For this

we will use the classification of the spin factors in Section 7.2 and the aforementioned

classification of the unital Euclidean Jordan algebras in [41].

Combining these results with the classification of spin factors in Section 7.2 and Theo-

rem 7.3.5 and Theorem 7.3.8, we can classify the horofunctions of the Hilbert geometry of

JH-algebras. To help with the formulation of the result, we will use the following definition.

7.3.9 Definition. Let (X,X+, e) be an order-unit space where the cone X+ is equipped

with Hilbert’s metric. We call a function ξ ∈ iH(X◦+) finite if for all nets (xα) in X+ with

limα i(xα) = ξ we have that dH(e, xα) is bounded. If ξ is not finite, we call ξ infinite.
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Note that in a finite dimensional order-unit space (X,X+, e) all horofunctions are

infinite. One can verify that all ξ ∈ iH(X◦+) are finite.

7.3.10 Lemma. Let (M,d) be a proper geodesic metric space. If (xα) is a net in M such

that limα i(xα) = i(x) for some x ∈M , then (xα) converges to x.

Proof. Fix b ∈M as a base point and let (xα) be a net in M such that limα i(xα) = i(x) for

some x ∈M . Suppose that (xα) has a subnet (xβ)β∈B such that (d(b, xβ))β∈B diverges to

infinity. We define x̂β to be on the geodesic between xβ and b such that d(x̂β, b) = 2d(x, b),

note that, since (d(b, xβ))β∈B diverges to infinity, x̂β exists for β large enough. Also note

that, since X is proper, a subnet of (x̂β) converges to some x̂ ∈M . We find that

−d(b, x) < d(x̂, x)− d(b, x) = i(x)(x̂) = lim
α
i(xα)(x̂) = lim

β∈B
d(x̂, xβ)− d(b, xβ)

≤ lim
β∈B

d(x̂, x̂β) + d(x̂β, xβ)− d(b, xβ) = lim
β∈B
−d(b, x̂β) = −2d(b, x)

which is a contradiction. So (xα) is bounded. Since M is proper we may assume, by taking

a further subnet if required, that (xα) converges to some x̂ ∈M . By Proposition 2.4.6 we

have that i(x) = limα i(xα) = i(x̂).

Finally suppose that x̂ 6= x. Let x′ be on the geodesic between x and x̂ such that

d(x, x′) = d(x′, x̂) = 1
2d(x, x̂). Consider

0 = i(x)(x′)− i(x̂)(x′) = d(x′, x)− d(b, x)− d(x′, x̂) + d(b, x̂) = d(b, x̂)− d(b, x).

So d(b, x̂)− d(b, x) = 0. Consider

0 = i(x)(x)− i(x̂)(x) = d(b, x̂)− d(b, x)− d(x, x̂) = −d(x, x̂) < 0.

Hence (xα) converges to x.

If M is not a proper metric space the result does not need to hold.

7.3.11 Example. Consider X = {0} × [0,∞)∪N>0 × (0,∞) equipped with the metric d

given by

d((n, r), (m, s)) =


|r − s| if n = m.

r + s if n 6= m.

((n, r), (m, s) ∈ X)

X is known as an R-tree. If we take (0, 0) as a base point then for all (m, r) ∈ X we have

lim
n→∞

i((n, n))((m, r)) = lim
n→∞

d((m, r), (n, n))− d((0, 0), (n, n))

= lim
n→∞

n+ r − n = r = i((0, 0))((m, r)).

So ((n, n)) is unbounded, but (i((n, n))) converges to i((0, 0)).
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As a Euclidean Jordan algebra is finite dimensional, the rays of the interior of the cone

equipped with Hilbert’s metric is a proper geodesic metric space. Therefore we have the

following corollary.

7.3.12 Corollary. Let (X,X+, e) be a Euclidean Jordan algebra with closed cone X+

equipped with Hilbert’s metric. If (xα) is a net in X◦+ such that limα iH(xα) = iH(x) for

some x ∈ X◦+ with ‖x‖ = 1, then ( xα
‖xα‖) converges to x. Furthermore, limα dH(e, xα) =

dH(e, x).

A similar result can be obtained for spin factors.

7.3.13 Lemma. Let X = R×H be a spin factor. If ξ ∈ i(X◦+) is finite, then there exists

an 0 ≤ r < 1 ∈ R such that for any net ((1, xα)) in X◦+ such that limα iH((1, xα)) = ξ we

have limα dH((1, 0), (1, xα)) = 1+r
1−r .

Proof. Let ξ ∈ i(X◦+) be finite and let ((1, xα)) in X◦+ be a net such that limα iH((1, xα)) =

ξ. By taking a subsequence if necessary we may assume that (xα) converges weakly to some

x ∈ H and (‖xα‖) converges to some 0 ≤ r ≤ 1. Note that, if limα ‖xα‖ = 1, then by

Proposition 7.2.3 we have

lim
α
dH((1, 0), (1, xα)) = lim

α

1 + ‖xα‖
1− ‖xα‖

=∞,

so r < 1. Furthermore, by Proposition 7.2.3 for all (γ, y) ∈ X◦+ we have

ξ((γ, y)) = lim
α
iH(xα)((γ, y))

= lim
α

2 log

(
γ − 〈xα, y〉+

√
(γ − 〈xα, y〉)2 − (1− ‖xα‖2)(γ2 − ‖y‖2)
(1 + ‖xα‖)

√
γ2 − ‖y‖2

)

= 2 log

(
γ − 〈x, y〉+

√
(γ − 〈x, y〉)2 − (1− r2)(γ2 − ‖y‖2)
(1 + r)

√
γ2 − ‖y‖2

)

so ξ is uniquely determined by x and r, hence for every net ((1, yα)) in X◦+ such that

limα iH((1, yα)) we have that (yα) weakly converges to x and (‖yα‖) converges to r. It

follows that

lim
α
dH((1, 0), (1, yα)) = lim

α

1 + ‖yα‖
1− ‖yα‖

=
1 + r

1− r
.

We can now classify the Hilbert horofunction boundary of JH-algebras.

117



Chapter 7: Non-Busemann horofunctions

7.3.14 Theorem. Let X = ⊕ni=1Xi be a JH-algebra. The horofunctions of the Hilbert

geometry are precisely the functions of the form

ξH(z) = max
i

[ξR,i(πi(z)) + log(ri)] + max
j

[ξF,j(πj(z)) + log(sj)],

where ξR,i ∈ iR((Xi)◦+) and ξF,i ∈ iF ((Xi)◦+) such that ξR,i + ξF,i = ξH,i ∈ iH((Xi)◦+),

ri, si ∈ [0, 1] such that maxi ri = maxi si = 1 and precisely one of the following conditions

is satisfied:

(i) For all i ∈ {1, . . . , n}, if ξH,i is finite, then we have min(ri, si) = 0.

(ii) For all i ∈ {1, . . . , n} we have that ξH,i is finite, ri > 0,

si = lim
α

exp(dH(ei, xα,i)− dH(eI , xα,I))
rI
ri

where I = argmaxj{limα dH(ej , xα,j)− log(ri)} and ξH,k is a horofunction of Xi for

some k.

Proof. We will first show that the horofunctions of the Hilbert geometry are always of

this form. Let ξH be a horofunction and let (xα) = ((xα,1, . . . , xα,n)) be a net in X◦+ such

that limα iH(xα) = ξH . First note, as iH(xα) = iR(xα) + iF (xα), that horofunctions of the

Hilbert geometry are the sum of a horofunction of the Funk geometry and the reverse-Funk

geometry. Since Theorem 7.3.5 and Theorem 7.3.8 give a description of the horofunctions

of the Funk and reverse-Funk geometry we find that

ξH(z) = max
i
ξR,i(πi(z)) + log(ri) + max

j
ξF,j(πj(z)) + log(sj),

where ξR,i ∈ iR((Xi)◦+), ξF,i ∈ iF ((Xi)◦+) and ri, si ∈ [0, 1] such that maxi ri = maxi si = 1.

Recall from the proof of Theorem 7.3.5 that ξR,i = limα iR(πi(xα)) and ξF,i = limα iF (πi(xα)),

hence ξR,i + ξF,i = ξH,i ∈ iH((Xi)◦+). Now all we have to do is show that ξH satisfies con-

dition (i) or condition (ii). Suppose ξH does not satisfy condition (i), i.e., there exists

some j such that ξH,j is a finite horofunction and rj , sj > 0. We will show that ξH satis-

fies condition (ii). Recall that by the proof of Theorem 7.3.5 and Theorem 7.3.8, and by

Lemma 7.3.4 we have

rj = lim
α

‖xα,j‖ej
‖xα‖e

= lim
α

min
i

M(xα,j/ej)

M(xα,i/ei)
= min

i
lim
α

M(xα,j/ej)

M(xα,i/ei)

and

sj = lim
α

M(ej/xα,j)

M(e/xα)
= lim

α
min
i

M(ej/xα,j)

M(ei/xα,i)
= min

i
lim
α

M(ej/xα,j)

M(ei/xα,i)
.
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Note that, as ξH,j is finite, we have that

lim
α

log(M(xα,j/ej)M(ej/xα,j)) = lim
α
dH(xα,j , ej) <∞.

Suppose there exists some k such that ξH,k is not finite, then, since

lim
α

log(M(xα,k/ek)M(ek/xα,k)) = lim
α
dH(xα,k, ek) =∞

we have that M(xα,k/ek)M(ek/xα,k) diverges to infinity. Since by assumption rj , sj > 0,

we find

0 < rjsj = min
i

lim
α

M(xα,j/ej)

M(xα,i/ei)
·min

i
lim
α

M(ej/xα,j)

M(ei/xα,i)
≤ lim

α

M(xα,j/ej)M(ej/xα,j)

M(xα,k/ek)M(ek/xα,k)
= 0.

So ξH,i is finite for all i ∈ {1, . . . , n}.

Suppose there exists some k such that rk = 0 or sk = 0. Then for some I and J we

have that

0 = rksk = lim
α

M(xα,k/ek)M(ek/xα,k)

M(xα,I/eI)M(eJ/xα,J)
= lim

α

exp(dH(xα,k, ek))

M(xα,I/eI)M(eJ/xα,J)
.

As exp(dH(xα,k, ek)) ≥ 1 we find that M(xα,I/eI)M(eJ/xα,J) tends to infinity. Hence,

since M(xαj/ej)M(ej/xα,j) is finite we find

0 < rjsj = min
i

lim
α

M(xα,j/ej)

M(xα,i/ei)
·min

i
lim
α

M(ej/xα,j)

M(ei/xα,i)
≤ lim

α

M(xαj/ej)M(ej/xα,j)

M(xα,I/eI)M(eJ/xα,J)
= 0.

So ri, si > 0 for all i ∈ {1, . . . , n}.

Finally, as rk > 0 for all k ∈ {1, . . . , n}, by Lemma 7.3.4 there is an I such that for all

k ∈ {1, . . . , n} we have

sk = min
i

lim
α

M(ek/xα,k)

M(ei/xα,i)
= lim

α

M(ek/xα,k)

M(eI/xα,I)

= lim
α

exp(dH(xα,k, ek))(rk‖xα‖e)−1

exp(dH(xα,I , eI))(rI‖xα‖e)−1

= lim
α

rI
rk

exp(dH(xα,k, ek)− dH(xα,I , eI)).

So ξH satisifies either condition (i) or condition (ii).

For the second part of the proof, we will show that any function of this form is a

horofunction of the Hilbert geometry. Let ξH be of the form above. For every i ∈ {1, . . . , n}

we can be in one of the following three cases:

• Case 1, there is a xi ∈ Xi such that iH(xi) = ξH,i.
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• Case 2, Xi is finite dimensional and ξH,i is a horofunction in which case we can use

Theorem 7.3.3.

• Case 3, Xi is infinite dimensional and ξH,i is a horofunction in which case Xi is a

spin-factor and we can use the results of Section 7.2.

For each case we will define a sequence (yi,m) in (Xi)
◦
+ such that limn→∞M(yi,m/ei) = ri

and limm→∞
1
m2M(ei/yi,m) = si, and if ri > 0 we have limm→∞ iR(yi,m) = ξR,i and if

si > 0 we have limm→∞ iF (yi,m) = ξF,i. Then we can define the sequence (ym), given

by ym = (y1,m, . . . , yn,m) for all m ∈ N. Using the same arguments as in the proof of

Theorem 7.3.5 we find

lim
m→∞

iH(ym) = iF (ym) + iR(ym) = max
i
ξR,i + log(ri) + max

j
ξF,j + log(sj).

For each case we have to consider 4 scenarios; ri, si > 0, ri = si = 0, ri > 0 = si and

si > 0 = ri. Note that if ξH,i is finite and ri, si > 0, then ξH satisfies condition (ii), hence

si = lim
α

exp(dH(ei, xα,i)− dH(eI , xα,I))
rI
ri

where I = argmaxj{limα dH(ej , xα,j)− log(ri)}. By Lemma 7.3.12 and Lemma 7.3.13 we

find that si is uniquely determined by ri, rI , ξH,i and ξH,I , so we only have to consider

the scenarios ri > 0, si > 0 = ri and ri = si = 0.

For case 1, let xi ∈ Xi such that iH(xi) = ξH,i. Note that by Lemma 7.3.12 and

Lemma 7.3.13 ξH,i is finite. If ri > 0 we define

yi,m =
rixi
‖xi‖ei

.

If si > ri = 0 we define

yi,m = M(ei/xi)
xi
sim2

.

Finally, if si = ri = 0 we define

yi,m =
1

m
xi.

For case 2, note that if Xi is finite dimensional, then it is a finite dimensional Euclidean

Jordan algebra with unit ei ∈ (Xi)
◦
+, and thus by Theorem 7.3.3 we know that there are

y, z ∈ ∂(Xi)+ with ‖y‖ei = ‖z‖ei = 1 and y • z = 0 such that for all x ∈ (Xi)+ we

have ξF,i(x) = dR(x−1, z) and ξR,i(x) = dR(x, y). Let {c1, . . . , ck} be a Jordan frame
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such that y =
∑p

j=1 λjcj and z =
∑q

j=p+1 µjcj with 1 = λ1 ≥ λ2 ≥ . . . ≥ λp > 0 and

1 = µp+1 ≥ µ2 ≥ . . . ≥ µq > 0. If ri > 0 = si we define

yi,m =

p∑
j=1

riλjcj +
k∑

j=p+1

1

m
cj ∈ (Xi)

◦
+.

If si > 0 = ri we define

yi,m =

p∑
j=1

1

m
cj +

q∑
j=p+1

1

m2siµj
cj +

k∑
j=q+1

1

m
cj ∈ (Xi)

◦
+.

If ri, si > 0 we define

yi,m =

p∑
j=1

riλjcj +

q∑
j=p+1

1

m2siµj
cj +

k∑
j=q+1

1

m
cj ∈ (Xi)

◦
+.

Finally if ri = si = 0 we define

yi,m =
k∑
j=1

1

n
cj .

For case 3, we know thatXi is a spin-factor R×H. By Theorem 7.2.6 and Theorem 7.2.7

we know that there exist 0 < r ≤ 1 and a ŷ ∈ H with ‖ŷ‖ ≤ r such that

ξR,i((1, x)) = log

(
1− 〈ŷ, x〉+

√
(1− 〈ŷ, x〉)2 − (1− r2)(1− ‖x‖2)
(1 + r)(1− ‖x‖2)

)

and

ξF,i((1, x)) = log

(
1− 〈ŷ, x〉+

√
(1− 〈ŷ, x〉)2 − (1− r2)(1− ‖x‖2)

1 + r

)
.

Let (dm) be an orthonormal sequence of H, note that (ŷ+
√
r − ‖ŷ‖2dn) converges weakly

to ŷ and (‖ŷ +
√
r − ‖ŷ‖2dn‖) converges to r. We can now define the yi,m for finite and

infinite ξH,i, as limm→∞M(yi,m/ei) and limm→∞
1
m2M(ei/yi,m) are harder to compute for

the spin factors we will show the calculation for ri, si > 0 where ξH,i is infinite. The other

limits can be solved in similar fashion. If ξH,i is finite we define yi,m as follows:

If ri > 0 we define

yi,m =
ri

1 + r
(1, ŷ +

√
r − ‖ŷ‖2dm).

If si > 0 = ri we define

yi,m =
1

m2si
(1, ŷ +

√
r − ‖ŷ‖2dm).

Finally if ri = si = 0 we define

yi,m =
1

n
(1, 0).
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If ξH,i is infinite, then r = 1 and we define yi,m as follows:

If ri > 0 = si we define

yi,m =
(1 +m)ri

2m
(1, (1− 1

1 +m
)(ŷ +

√
1− ‖ŷ‖2dm)).

If si > 0 = ri we define

yi,m =
1

msi
(1, (1− 1

1 +m
)(ŷ +

√
1− ‖ŷ‖2dm)).

If ri = si = 0 we define

yi,m =
1

m
(1, 0).

Finally if ri, si > 0 we define

yi,m =
1 + risim

2

2sim2
(1, (1− 2

1 + risim2
)(ŷ +

√
1− ‖ŷ‖2dm)).

We will now show that for this case limm→∞M(yi,m/ei) = ri and limm→∞
1
m2M(ei/yi,m) =

si. By Proposition 7.2.3 and, since (‖ŷ +
√
r − ‖ŷ‖2dn‖) converges to 1, we have

lim
m→∞

M(yi,m/ei) = lim
m→∞

1 + risim
2

2sim2

(
1 + ‖(1− 2

1 + risim2
)(ŷ +

√
1− ‖ŷ‖2dm)‖

)
= lim

m→∞

1 + risim
2

2sim2

(
1 +

risim
2 − 1

1 + risim2
‖ŷ +

√
1− ‖ŷ‖2dm‖

)
= lim

m→∞

1 + risim
2

2sim2

(
1 +

risim
2 − 1

1 + risim2

)
= lim

m→∞

1 + risim
2

2sim2

2risim
2

1 + risim2
= ri

and

lim
m→∞

1

m2
M(ei/yi,m) = lim

m→∞

1

m2

2sim
2

1 + risim2

(
1

1− ‖(1− 2
1+risim2 )(ŷ +

√
1− ‖ŷ‖2dm)‖

)

= lim
m→∞

2si
1 + risim2

1

1− risim2−1
1+risim2

= lim
m→∞

2si
1 + risim2

1 + risim
2

2
= si.

For (ym) defined as above we find

lim
m→∞

iH(ym) = max
i
ξR,i + log(ri) + max

j
ξF,j + log(sj).

Note that the proof of Theorem 7.3.14 depends on the fact we can approach horo-

functions in spin factors and unital Euclidean Jordan algebras with sequences instead of

nets.
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[22] J. Faraut and A. Korányi. Analysis on symmetric cones. Oxford Mathematical

Monographs. Oxford University Press, New York, 1994.

[23] J.M.G. Fell. A Hausdorff topology for the closed subsets of a locally compact non-

Hausdorff space. Proc. Amer. Math. Soc., 13:472–476, 1962.

124



Bibliography

[24] P. Fitzpatrick and H.L. Royden. Real analysis, 4th edition. Prentice Hall, Upper

Saddle River, N.J., USA, 2010.

[25] S. Gaubert and G. Vigeral. A maximin characterisation of the escape rate of non-

expansive mappings in metrically convex spaces. Math. Proc. Camb. Phil. Soc.,

152(2):341–363, 2012.

[26] S. Gouëzel and A. Karlsson. Subadditive and multiplicative ergodic theorems. To

appear in J. Eur. Math. Soc.

[27] M. Gromov. Hyperbolic manifolds, groups and actions. In Riemann surfaces and

related topics: Proceedings of the 1978 Stony Brook conference (State Univ. New York,

Stony Brook, N.Y., 1978), volume 97 of Annals of Mathematical Studies, pages 183–

213. Princeton Univ. Press, Princeton, N.J., 1981.

[28] M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory

Vol. 2, volume 182 of London Math. Soc. Lecture Note Ser. Cambridge Univ. Press,

Cambridge, 1993.

[29] A. W. Gutiérrez. The horofunction boundary of finite-dimensional `p spaces. Colloq.

Math., 155:51–65, 2019.

[30] A.W. Gutiérrez. The metric compactification of Lp represented by random measures.

Ann. Funct. Anal., to appear, 2019.

[31] A.W. Gutiérrez. On the metric compactification of infinite-dimensional `p spaces.

Canadian Math. Bull., 62(3):491–507, 2019.
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