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Abstract. We study expectations of powers and correlation functions for characteristic
polynomials of N × N non-Hermitian random matrices. For the 1-point and 2-point
correlation function, we obtain several characterizations in terms of Painlevé transcendents,
both at finite-N and asymptotically as N →∞. In the asymptotic analysis, two regimes
of interest are distinguished: boundary asymptotics where parameters of the correlation
function can touch the boundary of the limiting eigenvalue support and bulk asymptotics
where they are strictly inside the support. For the complex Ginibre ensemble this involves
Painlevé IV at the boundary as N → ∞. Our approach, together with the results
in [49] suggests that this should arise in a much broader class of planar models. For the
bulk asymptotics, one of our results can be interpreted as the merging of two ‘planar
Fisher-Hartwig singularities’ where Painlevé V arises in the asymptotics. We also discuss
the correspondence of our results with a normal matrix model with d-fold rotational
symmetries known as the lemniscate ensemble, recently studied in [14,18]. Our approach
is flexible enough to apply to non-Gaussian models such as the truncated unitary ensemble
or induced Ginibre ensemble; we show that in the former case Painlevé VI arises at finite-N .
Scaling near the boundary leads to Painlevé V, in contrast to the Ginibre ensemble.

1. Introduction and results

The purpose of this paper is to study correlation functions of characteristic polynomials,
of the form

(1.1) R~γ(~z) := E

(
m∏
i=1

|det(GN − zi)|γi
)

where ~γ = (γ1, . . . , γm) are parameters1 and ~z ∈ Cm. In the first instance we take GN to
be a standard complex Ginibre random matrix, that is GN = 1√

N
G where G is an N ×N

matrix of i.i.d. standard complex normal random variables, though we shall also discuss
other examples.

Particular attention will be paid to the cases m = 1 and m = 2, where the average
(1.1) turns out to be intimately related to Painlevé transcendents. These are solutions of a
distinguished class of non-linear second order differential equations, labelled Painlevé I -
Painlevé VI, see for instance [31, Chapter 32]. The relevance of Painlevé transcendents in
random matrix theory arose most famously in the work of Tracy and Widom in connection
with the largest eigenvalue of a Hermitian random matrix [63], building on the earlier
developments of Jimbo, Miwa, Môri and Sato [52]. They are now among the most
important special functions of mathematical physics, and they appear in connection with
reduction of integrable PDEs, models in statistical mechanics, combinatorics and orthogonal
polynomials, to name only a few applications, see [65] for a recent survey, and the text [34].
The characterization of averages involving Hermitian (or unitary) random matrices in

1We often consider the case that ~γ = 2~k where ~k ∈ Nm, though not exclusively.
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terms of Painlevé transcendents has attracted considerable activity in the last decades.
However, the fact that Painlevé transcendents also play an important role in the context
of non-Hermitian random matrices appears to be somewhat less appreciated and will be
the main focus of this work. For the complex Ginibre ensemble, this has been discussed to
some extent in the physics literature: Nishigaki and Kamenev [61] applied methods from
supersymmetry to compute (1.1) when m = 1 and a special case of the m = 2 correlation
function. In subsequent work of Kanzieper [53], in the context of replica field theories, it
was pointed out that the results in [61] imply a relation to Painlevé IV and Painlevé V
transcendents. Here, in addition to studying the general correlations (1.1), we will arrive
at these results via what we believe to be a mathematically more transparent approach,
circumventing the need for supersymmetry techniques. Another advantage of our approach
is its applicability to other classes of planar models, beyond the complex Ginibre ensemble.

In the case of Hermitian (or unitary) random matrices, correlation functions of charac-
teristic polynomials of type (1.1) were studied quite intensively over the last two decades.
The pioneering work of Keating and Snaith [55] demonstrated their importance in modelling
statistical properties of the Riemann zeta function high up on the critical line. For Hermit-
ian random matrices, higher order correlations were studied by Brézin and Hikami [23,24]
in various asymptotic regimes and the importance of determinantal structures was empha-
sized. In the case of non-integer exponents and GUE matrices, Krasovsky [57] applied
Riemann-Hilbert techniques to calculate the corresponding asymptotics. More recently
there has been a resurgence of interest in characteristic polynomials of random matrices
due to their association with log-correlated Gaussian fields [44,46,50,66]. Along these
lines, quantity (1.1) can be interpteted as the multi-point Laplace transform of the random
process φN (z) = log | det(GN − z)| which is asymptotically Gaussian and logarithmically
correlated, see [6,17,62,67]. This is also closely related to the recently studied question of
‘moments of moments’ [10,12,32] (where Painlevé V also arises), albeit in the Hermitian
context. In the present non-Hermitian setting the understanding of (1.1) remains at an
early stage, especially at the level of asymptotic analysis.

Let us now be more precise about the asymptotic regimes under consideration. Under
the chosen normalization of the matrices GN , we have the famous circular law : in the limit
N →∞ the eigenvalues of GN are uniformly distributed on the unit disc in the complex
plane. Our focus will be on large N asymptotics of (1.1) in the microscopic regime, that is
where the points {zi}mi=1 have a separation on the order of the mean eigenvalue spacing

of GN of size 1/
√
N . This is to be distinguished from the macroscopic or mesoscopic

regimes which involve separations at larger scales. The possible microscopic scalings of
(1.1) are then further divided into boundary asymptotics where the zi’s are close to the
boundary of the eigenvalue support (close to the unit circle for the matrices GN ) and bulk
asymptotics where the zi’s are strictly inside the support. The boundary asymptotics,
although interesting in their own right, have an application to the normal matrix model
which we now discuss.

Recall that the normal matrix model is the probability measure on N points λ1, . . . , λN
in the complex plane defined by

(1.2) dP(λ1, λ2, . . . , λN ) =
1

ZN

N∏
j=1

e−NV (λj)
∏

1≤i<j≤N
|λj − λi|2 d2λ1 . . . d

2λN ,

where ZN is a normalization constant, known as the partition function, defined by

(1.3) ZN =

ˆ
CN

N∏
j=1

e−NV (λj)
∏

1≤i<j≤N
|λj − λi|2 d2λ1 . . . d

2λN .

Although the matrix GN is almost surely not normal, its eigenvalue distribution is known
to take the form (1.2) with V (λ) = |λ|2. Therefore, the eigenvalues of the complex Ginibre
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Figure 1. The boundary of the droplet for the lemniscate potential (1.4)

for d = 9 with critical value tc = 1/
√
d. From left to right the plots show

t < tc, t = tc and t > tc.

ensemble can be viewed as the most basic yet non-trivial example of the model (1.2). In
general, the function V (λ) is called the external potential and subject to suitable growth
and regularity conditions, in the limit N →∞ the random points {λj}Nj=1 are supported on
a compact subset of the plane known as the droplet, denoted S. The density of eigenvalues
in S is described by an equilibrium measure coming from weighted potential theory, see [7]
for further background. In the electrostatic interpretation of the model (1.2), quantity
(1.1) can be viewed as a partition function of the form (1.3) subjected to the insertion of
m point charges at locations ~z and strengths ~γ, see [9,59,60].

Recently, there has been interest in studying the model (1.2) corresponding to the class
of potentials

(1.4) V (d)(λ, t) = |λ|2d − t(λd + λ
d
), d ∈ N, t ∈ R,

which are invariant under the d-fold symmetry λ→ λe2πi/d. This model was introduced
by Balogh and Merzi [15] who showed that the equilibrium measure is supported on the

interior of the domain, S = {λ : |λd− t| ≤ tc} where tc = d−1/2. Due to the lemniscate type
shape of S, the random point configuration corresponding to (1.4) has been referred to as
the lemniscate ensemble [8], see Figure 1. When t passes through tc, the topology of the
droplet undergoes a transition from being simply connected to consisting of d connected
components. The case t = tc has been singled out as a model with a non-trivial boundary
singularity (see [8]) and the effect of this singularity on the partition function asymptotics
is of interest (see also Remark 3.7).

In the recent work [18] the orthogonal polynomials for the planar weight e−NV
(d)(λ,t)

have been analysed. Close to the transition t = tc the asymptotics were expressed in terms
of the Hamiltonian of the Painlevé IV system. This followed earlier works [14,59] on the
off-critical cases t 6= tc which were expressed in terms of classical special functions, see
also [13]. A natural question is to look at the partition function associated with (1.4). The
following lemma shows its relation to characteristic polynomials of the Ginibre ensemble.

Lemma 1.1. Let Z(Lemd)
N (t) denote the partition function corresponding to (1.4). Then

we have the identity

(1.5) Z(Lemd)
Nd (t) = e(Ntd)2 c̃N,d

d−1∏
`=0

E
(
|det(GN − t

√
d)|γ`

)
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where

(1.6) γl = −2

(
1− `+ 1

d

)
, ` = 0, . . . , d− 1.

Here c̃N,d is an explicit constant that we give later in Section 3.3.

Notice that double scaling the parameter t close to tc := 1√
d

in (1.5) corresponds

precisely to boundary asymptotics of (1.1) with m = 1. In what follows we will present
the boundary asymptotics in the Ginibre case; consequences for (1.5) are given in Section
3.3. The best result we are aware of for the average in (1.5) holds strictly away from the
boundary and the authors do not comment on the connection with the lemniscate ensemble.

Theorem 1.2 (Webb and Wong [67]). Fix δ > 0 and consider the closed disc D1−δ of
radius 1− δ. Then provided Re(γ) > −2, the following asymptotic formula holds uniformly
for z ∈ D1−δ

(1.7) E (|det(GN − z)|γ) = e
Nγ
2

(|z|2−1)+ γ2

8
log(N) (2π)

γ
4

G(1 + γ
2 )

(1 + o(1)), N →∞,

where G(z) is the Barnes G-function. The expansion (1.7) holds uniformly in compact
subsets of Re(γ) > −2.

We now state our main results.

1.1. Complex Ginibre ensemble: Boundary asymptotics. Our first result ex-
tends the asymptotic expansion (1.7) uniformly to the boundary |z| = 1 and leads to a new
behaviour in the constant term. In order to state our result, recall that a GUE (Gauss-
ian Unitary Ensemble) random matrix is a Hermitian random matrix H whose density

is proportional to e−Tr(H2)/2 with respect to the Lebesgue measure on its functionally

independent entries. We denote by λ
(GUEk)
max the largest eigenvalue of the matrix H, having

size k × k.

Theorem 1.3. Let z belong to the closed disc DR of radius R = 1 + L/
√
N for some

positive constant L > 0. Then for any k ∈ N, the following asymptotic expansion holds
uniformly on DR,

E
(
| det(GN − z)|2k

)
= eNk(|z|2−1)+ k2

2
log(N) (2π)

k
2

G(1 + k)
Fk(
√
N(1− |z|2))

× (1 + o(1)) , N →∞,
(1.8)

where Fk(x) is the distribution function of the largest eigenvalue of a k × k GUE random
matrix,

(1.9) Fk(x) = P(λ(GUEk)
max < x).

Proof. See Section 3.1. �

Remark 1.4. A result of Tracy and Widom characterizes the above GUE probability in
terms of Painlevé transcendents. In particular in [63] we find

(1.10) Fk(x) = exp

(
−
ˆ ∞
x

σ
(IV)
k (t) dt

)
,

where σ
(IV)
k (t) satisfies the Jimbo-Miwa-Okamoto σ-form of the Painlevé IV equation

(1.11) (σ′′)2 + 4(σ′)2(σ′ + k)− (tσ′ − σ)2 = 0

subject to the boundary condition σ(t) = −kt−k2/t+o(1/t) as t→ −∞ (see [38, Equation
4.18]).
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Figure 2. Schematic insertion of a charge near the boundary of distance
on the order of N−1/2 (left), and of two charges z1 and z2 of distance on

the order of N−1/2 from a fixed point z in the bulk of the complex Ginibre
ensemble (right). In both cases N = 1000, and the unit circle is depicted
in red.

We expect that the form of expansion (1.8) also holds more generally when k = γ
2 and

γ satisfies the hypothesis of Theorem 1.2, noting that the above Painlevé characterization
does not require integrality of k. In the later sections, we will provide some heuristic
computations lending support to such an extrapolation to non-integer k. This is based on
the fact that for finite N , the left-hand side of (1.8) can be expressed in terms of a Painlevé
V transcendent for general k = γ

2 , see Section 3.2. The Painlevé IV on the right-hand side
of (1.8) then arises from a rescaling (confluent limit) of this equation. Notice that when
|z| < 1 is fixed inside the unit disc and N is large, we can replace the GUE probability in
(1.9) with 1 and we recover precisely (1.7) with γ = 2k. On the other hand, if we are close

to the boundary with |z| = 1− u/
√
N with u fixed, the GUE probability is not negligible

and converges to Fk(2u). When |z| > 1 + δ with δ > 0 fixed, a different type of expansion
holds, see Appendix A for details.

As we already mentioned, Painlevé IV type objects also appeared in the recent work [18],
which (taking into account relation (1.5)) is likely to be related with our result here, see
Section 3.3. Analogous results on the line are known: the work [19] considers a jump
singularity colliding with the spectral edge of GUE random matrices, which they describe
in terms of Painlevé II.

1.2. Complex Ginibre ensemble: Bulk collision of two singularities. Consider
the particular case m = 2 of (1.1) and set

(1.12) z1 = z +
u1√
N
, z2 = z +

u2√
N
,

where z is a point in the bulk, i.e. |z| < 1− δ for some fixed δ > 0. That is, we consider the
case of two singularities merging (or colliding) inside the bulk of the spectrum, see Figure
2. The corresponding asymptotics of (1.1) turns out to be related to the LUE (Laguerre
Unitary Ensemble) defined as follows: Let Gk,p denote a rectangular k × p matrix of i.i.d.
independent standard complex normal random variables with p ≥ k. Then the matrix

W = Gk,pG
†
k,p is said to be distributed according to the LUE with p degrees of freedom,
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denoted LUEk,p, though sometimes it is convenient to refer to the parameter α = p− k.
The names Wishart matrix or sample covariance matrix are also in common use, see the

text [36] for further background. The largest eigenvalue of W will be denoted λ
(LUEk,p)
max .

Theorem 1.5. Let k1, k2 ∈ N, where we assume without loss of generality that k1 ≥ k2

and take z1, z2 scaled according to (1.12). Then the following holds uniformly for u1 and
u2 varying in compact subsets of C,

E
(
|det(GN − z1)|2k1 | det(GN − z2)|2k2

)
= ek1N(|z1|2−1)+k2N(|z2|2−1)+

k21
2

log(N)+
k22
2

log(N)

× e−2k1k2 log |z2−z1| (2π)(k1+k2)/2

G(1 + k1)G(1 + k2)
Fk1,k2(N |z2 − z1|2)(1 + o(1)), N →∞,

(1.13)

where Fk1,k2(x) is the distribution function of the largest eigenvalue of a k2 × k2 LUE
matrix with k1 degrees of freedom:

(1.14) Fk1,k2(x) = P
(
λ

(LUEk2,k1 )
max < x

)
.

Proof. See Section 4. �

Remark 1.6. As with Theorem 1.3, the probability Fk1,k2(x) has a characterization in
terms of a non-linear second order differential equation. In the same work of Tracy and
Widom [63] one finds the result

(1.15) Fk1,k2(x) = exp

−ˆ ∞
x

σ
(V)
k2,k1−k2(t)

t
dt

 ,

where σ
(V)
k,α (t) satisfies the Jimbo-Miwa-Okamoto σ-form of the Painlevé V equation,

(1.16) (tσ′′)2 − [σ − tσ′ + 2(σ′)2 + (2k + α)σ′]2 + 4(σ′)2(k + α+ σ′)(k + σ′) = 0.

If we consider a limiting case where the separation |u2 − u1| → ∞ we can replace the
LUE probability with 1. The remaining terms in the asymptotic expansion (1.13) are
consistent with a conjectured formula of Webb and Wong [67] for the global asymptotics of
(1.1) (defined by a separation between z2 and z1 of order O(1)). Indeed, the appearance of
the term −2k1k2 log |z2−z1| should be interpreted as the covariance function of the random
process φN (z) := log | det(GN − z)|. Such logarithmic correlations are widely anticipated
to appear at global or mesoscopic regimes because of the association of φN (z) with the
Gaussian free field [6,62].

We remark that the particular case of (1.13) with k1 = k2 and z = 0 appeared in the
mentioned work of Nishigaki and Kamenev [61] using a technique based on Grassmann
integration, but the terms of order log(N) appearing in (1.13) appear to be absent in [61].
This could be due to their intended application to replica limits which could render such
terms negligible in their context. Finally we remark that a one-dimensional version of
this merging of singularities has been investigated in the context of Toeplitz and Hankel
determinants, with non-integer exponents, and also involves Painlevé V [25,26].

As with Theorem 1.3, we believe that Theorem 1.5 continues to hold when k1 and
k2 are general real numbers such that the left-hand side of (1.13) is finite, with equation
(1.16) defining the extrapolation to such non-integral exponents. To give support to this
we give an example involving (partially) non-integer exponents, as follows.

Theorem 1.7. Let k2 ∈ N and γ be a real number such that γ ≥ k2. Consider the
left-hand side of (1.13) scaled according to (1.12) at the center of the eigenvalue support,
z = 0, with u1 = 0 and set k1 = γ. Then the expansion on the right-hand side of (1.13)
remains true with k1 = γ.
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Proof. See Section 4. �

As we explain in Section 4, Theorem 1.7 can be viewed as an asymptotic expansion for
the m = 1 case of (1.1), with GN replaced by a certain non-Gaussian matrix: the induced
Ginibre ensemble introduced and studied in [33], see equation (4.34).

1.3. Truncated unitary ensemble and Painlevé transcendents. Let M be a
positive integer and consider U(M), the group of M ×M unitary matrices. The CUE
(Circular Unitary Ensemble) is U(M) equipped with the normalized Haar measure dµ(U),
where U ∈ U(M). A truncation of U is simply a sub-block, which by invariance of the
Haar measure we can take to be the upper-left N × N sub-block of U , that we denote
here by T and assume N < M . The eigenvalues λ1, . . . , λN of the sub-unitary matrix T lie
strictly inside the unit disc |λj | ≤ 1 for all j = 1, . . . , N . Their joint probability density

function has been computed by Życzkowski and Sommers [70] as

(1.17) P (λ1, . . . , λN ) ∝
N∏
j=1

(1− |λj |2)M−N−1
∏

1≤i<j≤N
|λj − λi|2.

Using (1.17) the authors showed that statistics of the eigenvalues depend sensitively on the
relative scaling of N and M as M →∞. Roughly speaking, unless N is very close to M ,
the matrix T is expected to have similar spectral characteristics as the Ginibre matrix GN
from the previous sections. However, when M −N = κ = O(1), so that only a constant
order of rows and columns are truncated, one expects new behaviour. This is known as the
weak non-unitarity limit, see [47,56] for further background and applications.

Theorem 1.8 (Boundary asymptotics). Let M −N = κ be a fixed positive integer and
fix k ∈ N. Consider the boundary scaling

(1.18) |z| = 1− u

N
, u > 0.

Then the following asymptotic formula holds
(1.19)

E
(
|det(T − z)|2k

)
= Nk2 G(k + κ+ 1)

G(k + 1)G(κ+ 1)
(2u)−k

2−kκ Fk+κ,k(2u) (1 + o(1)) , N →∞,

where Fk+κ,k(x), as in (1.14), is the distribution function of the largest eigenvalue in the
k × k LUE with k + κ degrees of freedom,

(1.20) Fk+κ,k(x) = P
(
λ

(LUEk,k+κ)
max < x

)
.

Proof. See Section 5. �

Remark 1.9. As in Theorems 1.5 and 1.3, the quantity (1.20) is expressible in terms
of Painlevé transcendents. The results of [63] imply that (1.20) is given by

(1.21) Fk+κ,k(x) = exp

−ˆ ∞
x

σ
(V)
k,κ (t)

t
dt


where σ

(V)
k,κ (t) satisfies the σ-form of Painlevé V (1.16) with parameter α = κ. Via this

representation, our expansion (1.19) can be interpreted for both non-integer k and non-
integer κ.

Compared to Theorem 1.3, an interesting point of departure concerns the change from
Painlevé IV to Painlevé V appearing in the constant term of the asymptotic expansion
(1.19). One notable difference here is that the boundary forms a hard edge: eigenvalues of
T are forbidden from leaving the unit disc and thus a different boundary behaviour can be
expected. Properties of two-dimensional models of type (1.2) with a hard edge have been
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Figure 3. Schematic insertion of a charge z near the boundary in the
truncated CUE ensemble. On the left M = 200 and N = 180, and on the
right M = 2000 and N = 1980. The unit circle is depicted in red.

studied recently [7] and were shown to deviate from the boundary statistics known for the
Ginibre ensemble.

For our final result on the truncated unitary ensemble, we state an analogue of (1.19)
at finite N . In order to state the result, let W1 and W2 be two independent LUE matrices
with p1 and p2 degrees of freedom, both of dimension k. The ratio of LUE matrices

(1.22) J = W1(W1 +W2)−1

has eigenvalues supported on the interval [0, 1]. This set of eigenvalues is known as the
Jacobi Unitary Ensemble, again see [36] for further background. We denote the largest

eigenvalue of J by λ
(JUEk,α,β)
max where α = p1 − k and β = p2 − k is standard notation for

the parameters of the ensemble.

Theorem 1.10 (Truncated CUE and Painlevé VI). Let k ∈ N and |z| < 1. Then we
have the exact identity

(1.23) E
(
|det(T − z)|2k

)
=

CM,N,k

(1− |z|2)k(M−N)+k2
P
(
λ

(JUEk,M−N,N )
max < 1− |z|2

)
,

where

(1.24) CM,N,k := E
(
| det(T )|2k

)
=

k−1∏
j=0

Γ(M −N + 1 + j)Γ(N + 1 + j)

Γ(M + 1 + j)Γ(1 + j)
.

Proof. See Section 5. �

Remark 1.11. Although (1.23) holds for |z| < 1, the general case where z ∈ C is
covered in Proposition 5.1. A result for non-integer k involving U(N) group integrals is
described in Theorem 5.3.

Remark 1.12. As with the previous cases involving GUE and LUE, one also anticipates
a Painlevé representation for the JUE probability on the right-hand side of (1.23). A third
order equation was obtained in the same paper of Tracy and Widom [63], but this was
not expressed in second order form and identified in terms of Painlevé transcendents until
later work [1,20,40,48,68]. These studies show, with a variety of approaches, that for
0 ≤ x ≤ 1,

(1.25) P
(
λ

(JUEk,α,β)
max < x

)
= exp

−ˆ 1

x

σ
(VI)
α,β (t)− b1b2t+ b1b2+b3b4

2

t(1− t)
dt

 ,
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where σ
(VI)
α,β (t) satisfies the Jimbo-Miwa-Okamoto σ-form of the Painlevé VI equation

(1.26) σ′(t(1− t)σ′′)2 −

(
σ′(2σ + (1− 2t)σ′) +

4∏
i=1

bi

)2

+

4∏
i=1

(σ′ − b2i ) = 0,

with parameters

(1.27) b1 = b2 = k +
α+ β

2
, b3 =

α+ β

2
, b4 =

β − α
2

.

This continues to give an interpretation of the right-hand side of (1.23) even when k is
not an integer. We will prove in Corollary 3 that the extrapolation to non-integer k in this
fashion is the correct interpretation.

Remark 1.13. In the limit κ→ 0 the matrix T reduces to a Haar distributed unitary
matrix whose spectrum lies precisely on the unit circle. In that case the asymptotics of order

Nk2 is close to the Keating and Snaith result used to conjecture the corresponding moments
of the Riemann zeta function [55]. In this purely unitary case κ = 0 the association with
Painlevé VI and the boundary scaling in terms of Painlevé V was discussed in [40]. More
recently, Painlevé V arose for boundary asymptotics of derivatives of CUE characteristic
polynomials [11].

1.4. Multiple charges. In this section we state our results for the correlation function
(1.1) for m > 2. At the edge, we found a natural generalization of the GUE type Theorem
1.3 which replaces the probability (1.9) with an object related to non-intersecting Brownian
motion.

Recall that the transition density of a standard Brownian motion on R, leaving from u
and arriving at v is

(1.28) pt(u, v) =
1√
2πt

e−(u−v)2/(2t).

Now consider k non-intersecting Brownian motions on R, leaving from positions (u1, . . . , uk)
at time 0 and arriving at (v1, . . . , vk) at time 1. The probability that all particles belong to
the set E at time t is, up to a normalizing factor, given by the Karlin-McGregor formula
(see [54] or [3, Sec. 7.4])

(1.29) Zt(~u,~v, E) =

ˆ
Ek

det

{
pt(ui, sj)

}k
i,j=1

det

{
p1−t(si, vj)

}k
i,j=1

d~s.

Of particular interest here will be the case E = R+ which corresponds to the probability
that the smallest particle is positive at time t.

Theorem 1.14. Consider the boundary scaling

(1.30) xj = z − uj

z
√
N
, yj = z − vj

z
√
N
, j = 1, . . . , k,

where z is a fixed point on the boundary, |z| = 1, with fixed complex vectors ~u,~v ∈ Ck,
which may contain degeneracies. Then we have the following asymptotic expansion,

E

 k∏
j=1

det(GN − xj) det(G†N − yj)

 = exp

− k∑
j=1

(
√
N(uj + vj)−

u2
j + vj

2

2

)
+
k2

2
log(N)


× (2π)k

k!
F

(edge)
k (~u,~v) (1 + o(1)) , N →∞,

(1.31)
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Figure 4. Schematic insertion of two families of charges (with k = 3) near
the point z = 1 on the boundary in the complex Ginibre ensemble.

where

(1.32) F
(edge)
k (~u,~v) =

Z1/2(~u,~v,R+)∏
1≤i<j≤k(uj − ui)(vj − vi)

.

In the event that the vectors ~u or ~v contain degeneracies, the expansion (1.31) continues to
hold by taking appropriate limits in (1.32).

Proof. See Section 3.4. �

To obtain (1.1), we have to merge entries of the vectors ~u and ~v into several distinct
families and eventually take ~u = ~v in the ratio (1.32). In the Brownian motion interpretation,
the confluence of terminal and initial points is well studied and has appeared several times in

the literature. For example, as in [3, Section 7.4] we can consider m families u
(1)
i , . . . , u

(ki)
i

and v
(1)
i , . . . , v

(ki)
i for i = 1, . . . ,m each of which are merged to a single point ai and bi

respectively for each i = 1, . . . ,m with k1 + . . . + km = k, finally setting ai = bi. Thus
we are considering k non-intersecting Brownian motions with ki paths starting at ai and
terminating at bi, leading to

Zt(~u,~v, E) ∼ ck,t(~u,~v)

ˆ
Ek

k∏
j=1

e
−

s2j
2t(1−t)

× det



{
si−1
j e

a1sj
t

}k1,k
i=1,j=1

...{
si−1
j e

amsj
t

}km,k
i=1,j=1

det



{
si−1
j e

b1sj
1−t

}k1,k
i=1,j=1

...{
si−1
j e

bmsj
1−t

}km,k
i=1,j=1

 d~s,

(1.33)

where ck,t(~u,~v) is an explicit and simple to calculate pre-factor that we omit from the
presentation. Although the vectors ~u,~v should be real for this probabilistic interpretation,
the formulae (1.32) and (1.33) continue to make sense for complex values. This block
structure has appeared in the context of multiple Hermite polynomials and the m-component
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KP hierarchy [3, 28, 29]. The latter in principle yields a system of PDEs generalizing
the Painlevé characterization (1.11) to the multiple charge context, thus giving a possible
interpretation of the boundary asymptotics of (1.1) for non-integer {ki}mi=1. The recent
work [60] studied the relation between the planar orthogonal polynomials associated with
(1.1) with non-integer {ki}mi=1 and type II multiple orthogonal polynomials, but only at the
finite N level. It would be interesting to understand if the multiple orthogonality known
to be associated with (1.33) is related.

Finally we discuss the generalization of Theorem 1.5 to multiple charges colliding in
the bulk.

Theorem 1.15. Fix δ > 0 and take z inside the unit disc |z| < 1− δ. Consider points
{xi}ki=1 and {yi}ki=1 centered and scaled

(1.34) xi = z +
ui√
N
, yi = z +

vi√
N
,

for i = 1, . . . , k. Then the following holds uniformly for {ui, vi}ki=1 varying in compact
subsets of C,

E

(
k∏
i=1

det(GN − xi) det(G†N − yi)

)
= exp

(
Nk(|z|2 − 1) +

√
N

k∑
i=1

(zvi + zui) +
k2

2
log(N)

)

× (2π)k/2

G(1 + k)
F

(bulk)
k (~u,~v) (1 + o(1)) , N →∞,

(1.35)

where F
(bulk)
k (~u,~v) is the following integral over the group U(k) of k × k unitary matrices,

(1.36) F
(bulk)
k (~u,~v) =

ˆ
U(k)

eTr(UAU†B) dµ(U).

Here dµ(U) is the normalized Haar measure on U(k) and

(1.37) A = diag(u1, . . . , uk), B = diag(v1, . . . , vk).

Proof. See Section 4. �

The integral appearing in (1.36) is well known in random matrix theory under the
name Harish-Chandra Itzykson Zuber integral, see [51]. As we discuss in Section 4 there
is an explicit formula for this integral. However, in order to obtain (1.1) or the result in
Theorem 1.5, a rather delicate merging procedure is required and the explicit formula is
not always easy to use in this case. We explain how to overcome this in Section 4.

Remark 1.16. A remark about universality: Our proof of the aforementioned results
relies essentially only on local asymptotics of the relevant correlation kernel, either close
to the boundary or in the bulk (in contrast to the approaches in [53, 61] which exploit
the Gaussian structure of the Ginibre ensemble). For the more general model (1.2), the
correlations in the bulk and at the edge are now known to be strongly independent of the
potential V (λ) (universal) up to some restrictions on the regularity of V (λ) and the droplet.
This has been accomplished at the edge in the recent development [49] and for the bulk in [9].
Indeed, considering Theorem 1.3 for example, based on the results in [49] we expect that the
same Painlevé IV object describes the collision of a point charge with the boundary of the
droplet for a broad class of normal matrix models. In a different direction, bulk universality
for correlations of non-Hermitian characteristic polynomials was recently investigated in [4]
where a formula essentially equivalent to (1.35) was derived for a class of independent
entry random matrices.
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To summarize, we tabulate below the results described in this section. Each Theorem
can be viewed as a certain duality mapping the planar problem under consideration to
objects typically encountered in the study of Hermitian or unitary matrices. The last
column indicates the associated Painlevé system.

Microscopic behaviour of the correlation function (1.1)

Planar model m Regime Duality Painlevé

C-Ginibre 1 Finite N LUE V

—”— 1 Edge, N →∞ GUE IV

—”— 2 Bulk, N →∞ LUE V

—”— m > 2 Edge, N →∞ Non-intersecting paths

—”— m > 2 Bulk, N →∞ Itzykson Zuber integral

T-CUE 1 Finite N JUE VI

—”— 1 Edge, N →∞ LUE V

Table 1. The above table summarises the main results of the present work.

The structure of this paper is as follows. In Section 2 we recall some well known facts about
the normal matrix model (1.2) and its relation to determinantal structures and orthogonal
polynomials in the complex plane. Then in Section 3 we compute the 1-point correlation
(object (1.1) with m = 1) at finite N and discuss its relation to Painlevé V for finite N and
Painlevé IV near the boundary, proving Theorem 1.3. These boundary asymptotics are
then used to give a conjecture for the critical asymptotics of the partition function (1.3)
with potential (1.4). Section 4 is devoted to proving the results about bulk asymptotics and
merging of singularities namely Theorems 1.5, 1.7 and 1.15. Finally Section 5 is devoted to
studying the 1-point correlation for the truncated unitary ensemble, its relation to Painlevé
VI and boundary asymptotics in terms of Painlevé V.
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2. Planar orthogonal polynomials and determinantal structures

In this section we set some basic notation for the paper and recall some known facts
regarding the normal matrix model and planar orthogonal polynomials, see e.g. [5,6,14] and
references therein for relevant background. Consider the normal matrix model corresponding
to a weight w(λ) as defined in (1.2), where w(λ) = e−NV (λ) ≥ 0. From the weight w(λ)
we may construct a unique family of degree k monic polynomials pk(λ), k = 0, 1, 2, . . .
satisfying the planar orthogonality

(2.1)

ˆ
C
pk(λ)pj(λ)w(λ) d2λ = δk,jhk

and these polynomials can be used to characterize statistical properties of (1.2). A
distinguished role is played by a function of two variables known as the correlation kernel
of the model, defined by

(2.2) KN (λ1, λ2) =
√
w(λ1)w(λ2)

N−1∑
j=0

pj(λ1)pj(λ2)

hj
.

For example, the k-point eigenvalue correlation functions corresponding to (1.2) are given
explicitly in terms of (2.2),

Rk(λ1, . . . , λk) :=
N !

(N − k)!

ˆ
CN−k

P (λ1, . . . , λN ) d2λk+1 . . . d
2λN

= det

{
KN (λi, λj)

}k
i,j=1

,

(2.3)

where P (λ1, . . . , λN ) is a joint probability density function of the type (1.2) or (1.17). This
identity expresses the fact that eigenvalues of normal random matrices form a determinantal
point process with kernel (2.2). The partition function (1.3) is also expressed in terms of
orthogonal polynomials, via the norming constants in (2.1) we have

(2.4) ZN = N ! det

{ˆ
C
λiλ

j
w(λ) d2λ

}N−1

i,j=0

= N !
N−1∏
j=0

hj .

A simple but very useful fact we will exploit throughout the paper is that if w(λ) is
rotationally invariant, i.e. w(λ) = w(|λ|), then the planar orthogonal polynomials are the
monomials, i.e. pj(λ) = λj for each non-negative integer j.

The kernel (2.2) is also relevant for the computation of our central object of interest
(1.1), as implied by the following result. In what follows, and in the rest of the paper, we
will use the notation

(2.5) ∆(~x) :=
∏

1≤i<j≤k
(xj − xi) = det

{
xj−1
i

}k
i,j=1

to denote the Vandermonde determinant in the entries of the vector ~x, whose dimension
may vary depending on the context.

Theorem 2.1 (Akemann and Vernizzi [5]). Consider the polynomial kernel

(2.6) BN (x, y) :=

N−1∑
j=0

pj(x)pj(y)

hj
= KN (x, y)[w(x)w(y)]−1/2
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and generic complex numbers {xj}kj=1 and {yj}kj=1. The following exact identity holds

E

 N∏
j=1

k∏
i=1

(λj − xi)(λj − yi)

 =

det

{
BN+k(xi, yj)

}k
i,j=1

∆(~x)∆(~y)

k−1∏
j=0

hj+N
(2.7)

where the expectation is taken with respect to (1.2).

The idea behind this result goes back to Brézin and Hikami [23] who developed it in
the context of Hermitian random matrices. In order to reproduce averages of the type (1.1),
we have to merge some of the points {xj}kj=1, {yj}kj=1 which is easily done with L’Hôpital’s
rule and basic facts for differentiating determinants. For example, in the case m = 1 of
(1.1), we have to merge together all points xi → x and yi → y for all i = 1, . . . , k which
gives

(2.8)

det

{
A(xi, yj)

}k
i,j=1

∆(~x)∆(~y)
→

k−1∏
j=0

1

(j!)2

 det

{
∂i+j−2A(x, y)

∂xi−1 ∂yj−1

}k
i,j=1

for any smooth function of two variables A(x, y). This representation also turns out to
be useful for studying asymptotics, as it reduces the analysis to that of the two-variable
kernel (2.6) and its derivatives. In order to calculate (or identify) the determinant on the
right-hand side of (2.8) we will often exploit the following.

Lemma 2.2 (Andréief identity). For a domain D and two sets of integrable functions
{fj(t)}kj=1 and {gj(t)}kj=1 we have

(2.9) det

{ˆ
D
fi(t) gj(t) dt

}k
i,j=1

=
1

k!

ˆ
Dk

det{fj(ti)}ki,j=1 det{gj(ti)}ki,j=1 d~t.

3. The Ginibre case: finite N and boundary asymptotics

In this section we begin by discussing in some detail the object (1.1) with m = 1, that
is the moments

(3.1) R2k(z) = E
(
| det(GN − z)|2k

)
,

where GN is a standard complex Ginibre random matrix. Of interest will be the relation
to Painlevé transcendents at finite N and the asymptotics N →∞. In particular we will
prove Theorem 1.3 and discuss the problem of continuing k off the integers. Then we
apply the obtained results to the lemniscate partition function. Finally, we extend the
considerations to multiple products of characteristic polynomials and prove Theorem 1.14.

3.1. Duality with the LUE. Recall the definition of the Laguerre Unitary Ensemble

from the introduction: form the matrix W = Gk,pG
†
k,p where Gk,p is a k × p matrix of

i.i.d. standard complex Gaussian random variables and we assume p ≥ k. The eigenvalues
t1, . . . , tk of W are all non-negative and have the following well-known joint probability
density function

(3.2) P (t1, . . . , tk) =
1

C
(LUEα)
k

k∏
j=1

tαj e
−tj∆2(~t),

where the normalization constant is given explicitly by

(3.3) C
(LUEα)
k :=

ˆ
[0,∞)k

k∏
j=1

tαj e
−tj ∆2(~t) d~t =

k−1∏
j=0

Γ(α+ j + 1)Γ(j + 2).
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The quantity α = p − k is referred to as the parameter of the LUE and k as the size,
see [36] for further details.

Proposition 3.1 ( [37,61]). The following exact duality identity holds:

R2k(z) =
Nk2/2∏k−1

j=0 j!(j + 1)!

ˆ
[0,∞)k

k∏
j=1

e−
√
Ntj

(
|z|2 +

tj√
N

)N
∆2(~t) d~t(3.4)

= N−NkeNk|z|
2

 k∏
j=1

Γ(j +N)

Γ(j)

P(λ1 > N |z|2)(3.5)

where λ1 is the smallest eigenvalue in the Laguerre Unitary Ensemble with parameter
α = N and size k.

To our knowledge the identity (3.4) first appeared in [61] where it was derived with
Grassmann integration techniques and was then generalized by Forrester and Rains in [37]
using a symmetric functions approach. Similar dualities involving positive definite matrices
have appeared in the work [45], see also [43] for a different generalization, though these
approaches appear to be quite specific to the Ginibre setting. In the following we will give
a different proof using the general formula (2.7).

Proof of Proposition 3.1. Starting with identity (2.7), the weight in the Gini-

bre ensemble2 is w(λ) = e−|λ|
2

and the corresponding planar orthogonal polynomials are
pj(λ) = λj . The norms follow from an explicit integration as hj = πj! and this gives rise
to the usual Ginibre finite N kernel

(3.6) BN+k(x, y) =
1

π

N+k−1∑
j=0

(xy)j

j!
=

xN+k

πΓ(N + k)

ˆ ∞
0

e−tx(y + t)N+k−1 dt,

where, for simplicity (and without loss of generality), we have assumed x > 0 and y >
0. The Ginibre kernel has been written in this way to facilitate computing its partial
derivatives, as in (2.8). Since the multiplicative factors in (3.6) drop out of the determinant,
it is enough to calculate det{A(xi, yj)}ki,j=1 where

(3.7) A(x, y) =
1

Γ(N + k)

ˆ ∞
0

e−tx(y + t)N+k−1 dt.

Now we merge the points x1, . . . , xk → x and y1, . . . , yk → y. Differentiating and applying
Lemma 2.2 yields

det

{
∂i+jA(x, y)

∂xi∂yj

}k−1

i,j=0

= cN,k det

{ˆ ∞
0

ti−1e−tx(y + t)N+k−j dt

}k
i,j=1

=
cN,k
k!

ˆ
[0,∞)k

k∏
j=1

e−tjx(y + tj)
N det

{
tj−1
i

}k
i,j=1

det

{
(y + ti)

k−j
}k
i,j=1

d~t

=
cN,k(−1)

k(k−1)
2

k!

ˆ
[0,∞)k

k∏
j=1

e−xtj (y + tj)
N ∆2(~t) d~t,

(3.8)

where

(3.9) cN,k = (−1)
k(k−1)

2

k∏
j=1

1

Γ(N + k − (j − 1))
.

2Here it is convenient to begin with the N -independent weight, to obtain (3.4) the factor of N can be
easily restored at the end of the calculation.
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Collecting the multiplicative factors in (3.6) and the product of norms in (2.7) gives, using
(2.8),

E
(

det(G− x)k det(G† − y)k
)

=

 k∏
j=1

1

(j − 1)!j!

ˆ
[0,∞)k

k∏
j=1

e−tj (xy + tj)
N∆2(~t) d~t,

(3.10)

where we made the change of variables tj → tj/x. As an identity between polynomials
in x and y, (3.10) now holds for any x, y ∈ C. Identity (3.4) follows from the rescalings

x→
√
Nx, y →

√
Ny and tj →

√
Ntj . �

Now we will prove Theorem 1.3.

Proof of Theorem 1.3. As our starting point we consider the duality formula (3.4).

Changing variable tj → tj +
√
N(1− |z|2) for each j = 1, . . . , k transforms the integral to

(3.11) eNk(|z|2−1)

ˆ
(−
√
N(1−|z|2),∞)k

k∏
j=1

exp
(
−
√
Ntj +N log

(
1 + tj/

√
N
))

∆2(~t) d~t.

Now notice that pointwise, we have the limit

(3.12) exp
(
−
√
Ntj +N log

(
1 + tj/

√
N
))
→ e−t

2
j/2, N →∞.

The claim is that in fact the following estimate is uniform provided z stays inside a disc
of radius 1 + c/

√
N for some constant c,

ˆ
(−
√
N(1−|z|2),∞)k

k∏
j=1

exp
(
−
√
Ntj +N log

(
1 + tj/

√
N
))

∆2(~t) d~t

=

ˆ
(−
√
N(1−|z|2),∞)k

k∏
j=1

e−t
2
j/2 ∆2(~t) d~t × (1 + o(1)), N →∞

= Z(GUE)
k P

(
λ(GUEk)

max <
√
N(1− |z|2)

)
× (1 + o(1)), N →∞.

(3.13)

To pass to the final equality we simply recognised the joint density of GUE eigenvalues,
up to a normalization factor given explicitly by

(3.14) Z(GUE)
k :=

ˆ
Rk

k∏
j=1

e−t
2
j/2 ∆2(~t) d~t = (2π)k/2

k−1∏
j=0

(j + 1)!.

Inserting these results into (3.4) proves Theorem 1.3 after recalling thatG(1+k) =
∏k−1
j=0 j!.

It remains to verify the uniform asymptotics in the first equality of (3.13). To this end,
observe that the magnitude of the resulting error in the difference between the two integrals
is largest when z = 0 (since z only enters through the region of integration, and this is

maximized when z = 0). The condition |z| ≤ 1 + c/
√
N ensures that the lower limit of

integration remains bounded from above and permits the multiplicative error bound in
(3.13). Hence the verification of (3.13) reduces to showing that

lim
N→∞

ˆ
(−
√
N,∞)k

k∏
j=1

exp

(
−
√
Ntj +N log

(
1 +

tj√
N

))
∆2(~t) d~t

=

ˆ
Rk

k∏
j=1

e−t
2
j/2 ∆2(~t) d~t

(3.15)
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and this can be proved with a dominated convergence argument, for example using the
pointwise limit (3.12) and the bound

(3.16) −
√
Nt+N log

(
1 +

t√
N

)
= −

ˆ t

0

s ds

1 + s√
N

≤ − t2

2(1 + |t|)
, t > −

√
N.

�

Remark 3.2. The asymptotic expansion in Theorem 1.3 takes a different form if z is
strictly outside the unit disc, see Appendix A. It is natural to ask whether one can write
down expansions which combine these two in a uniform way. When k = 1 the right-hand
side of (3.4) is an incomplete Gamma function and the uniform transition asymptotics are
well studied, see e.g. [22]. However, these make use of a (contour) integral representation
quite different from the right-hand side of (3.4) and as our concern here is more the relation
to Painlevé, we leave this question for future work.

3.2. Reduction to integrals over U(N) for general γ and Painlevé V. As ex-
plained in the introduction, it is interesting to consider extrapolating Theorem 1.3 to
non-integer values of k. We will now consider this problem, starting with the second repre-
sentation (3.5) at finite N . The work of Tracy and Widom [63] implies the representation

(3.17) P(λ1 > x) = exp

ˆ x

0

σ
(V)
k,N (t)

t
dt

 ,

where σ
(V)
k,N (t) satisfies the Jimbo-Miwa-Okamoto σ-form of the Painlevé V equation (1.16)

with parameter α = N . We remark that setting z = 0 in (3.5) shows that the constant
pre-factor is precisely R2k(0), so that with (3.17), equation (3.5) becomes

(3.18) R2k(z) = R2k(0) eN |z|
2k exp

ˆ N |z|2

0

σ
(V)
k,N (t)

t
dt

 .

As k now plays the role of a parameter in the differential equation (1.16), in principle it
can be considered for non-integer values. Starting with the left-hand side of (3.18) for
non-integer k = γ

2 , we now show that the same equation (1.16) with k = γ
2 gives the correct

interpretation of Rγ(z). Via a somewhat different route, this has also been demonstrated
in the work of Kanzieper [53] in a different context. However, as the association of (3.1)
with Painlevé V seems not well known, we will give an alternative proof below. The proof
exploits a Toeplitz determinant identity obtained rather recently in the work [67] where
the identification in terms of Painlevé V did not appear. For completeness, we sketch the
main ideas in [67] which lead to the following.

Theorem 3.3. Let γ > −2 and let dµ(U) denote the normalized Haar measure on the
group of N ×N unitary matrices. Then we have the identity

Rγ(z) = Rγ(0)

ˆ
U(N)

det(U)−
γ
4 |det(I + U)|

γ
2 exp

(
N |z|2Tr(U)

)
dµ(U)

=
Rγ(0)

N !(2π)N

ˆ
[−π,π]N

N∏
j=1

e−
iγθj
4 |1 + eiθj |

γ
2 eN |z|

2eiθj |∆(eiθ)|2 d~θ,
(3.19)

where the constant is

(3.20) Rγ(0) = N−
γN
2

N−1∏
j=0

Γ(γ2 + j + 1)

Γ(j + 1)
.
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Furthermore, we have the representation in terms of solutions of (1.16),

(3.21) Rγ(z) = Rγ(0) eN |z|
2 γ
2 exp

ˆ N |z|2

0

σ
(V)
γ/2,N (t)

t
dt

 .

Proof. Since γ is no longer an even integer, formula (2.7) does not apply. Instead we
apply identity (2.4) and work with the planar polynomials pj(λ) orthogonal with respect

to the weight |λ−z|γe−N |λ|2 with λ ∈ C. Note that we also cannot use the previous trick to
compute pj(λ) because the weight is not radial, although we can assume that z = |z| > 0
without loss of generality. The fundamental idea is to use Green’s theorem to reduce the
planar orthogonality of pj(λ) to orthogonality on a suitable contour, which can then be
deformed to the unit circle. In the present context this idea goes back to [13]. Indeed, we
can write the orthogonality (2.1) in the differential form (k ≤ j):

hjδj,k =

ˆ
C
pj(λ)(λ− z)k|λ− z|γe−N |λ|2 d2λ

= lim
r→∞

ˆ
|λ|≤r

pj(λ)
∂

∂λ
h(λ, λ, z) d2λ,

(3.22)

where

(3.23) h(λ, λ, z) = (λ− z)
γ
2

ˆ λ

z
(s− z)

γ
2

+ke−Nλs ds,

and the roots are defined using the principal branch. Applying Green’s theorem and
writing h(λ, λ, z) in terms of the Gamma function (see [67, Appendix A] for full details)
yields

hjδj,k =
πΓ(γ2 + k + 1)

N
γ
2

+k+1

˛
Σ
pj(λ)λ−k−

γ
2 (λ− z)

γ
2 e−Nzλ

dλ

2πiλ
.(3.24)

The contour Σ is any closed curve encircling the interval [0, z], possibly passing through
z, but no other points of [0, z], and oriented counterclockwise; let us take Σ = zS1 where
S1 is the unit circle. The change of variable λ→ zλ implies that we get norms on the unit
circle of the form

h̃jδj,k :=

˛
Σ
pj(λ)λ−k−

γ
2 (λ− z)

γ
2 e−Nzλ

dλ

2πiλ

=

˛
S1

p̃j(λ)λ−k−
γ
4 |λ+ 1|

γ
2 eNz

2λ dλ

2πiλ
,

(3.25)

where p̃j(λ) is another family of degree j monic polynomials. To get the second equality

in (3.25) we exploited the fact that writing λ = eiθ, with θ ∈ (−π, π) we have the identity

(3.26) λ−
γ
2 (λ− 1)

γ
2 = eisgn(θ)γπ/4λ−

γ
4 |λ− 1|

γ
2 , θ ∈ (−π, π)

and scaled λ → −λ. Now applying (2.4) in reverse we get the expression as a Toeplitz
determinant

Rγ(z) =
N !
∏N−1
j=0 hj

Z(Gin)
N

= N−
γN
2

N−1∏
j=0

Γ(γ2 + j + 1)

Γ(j + 1)

N−1∏
j=0

h̃j

= Rγ(0) det

{˛
S1

λj−i−
γ
4 |λ+ 1|

γ
2 eNz

2λ dλ

2πiλ

}N−1

i,j=0

.

(3.27)

Apart from the simple identity (3.26), the determinant (3.27) is of the same form found in
[67, Lemma 2.5]. The explicit form of the pre-factor Rγ(0) is obtained by applying identity
(2.4), using that the relevant orthogonality weight is radially symmetric. Now (3.19)
follows from Heine’s identity, expressing the above Toeplitz determinant as an integral
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over the unitary group. To arrive at (3.21) we simply observe that the quantities on the
right-hand side of (3.19) have known associations with Painlevé V, see for example [2,
Proposition 4.2] and [39, Eq. (1.46)] where these group integrals appear explicitly and are
identified in terms of solutions of the Painlevé V equation. �

Remark 3.4. We make some observations implied by the above calculation. The
polynomials appearing in (3.25) (orthogonal on the unit circle) have been studied in relation
to Riemann-Hilbert problems in the works [41,42], which involve Painlevé V. We can
therefore make the observation that, as implied by (3.25), up to some explicit constants the
results in [41,42] also apply to the corresponding planar orthogonal polynomials. At the
level of asymptotics, the recurrence coefficients for these polynomials were studied in [30]
using Riemann-Hilbert techniques related to a Painlevé IV parametrix.

Remark 3.5. In the case γ = 2k, the Toeplitz determinant (3.27) can be written as the
generating function of certain combinatorial objects, associated with the longest increasing
subsequence problem [64]. The appearance of such generating functions in the present
context of the complex Ginibre ensemble seems to be a new observation. The equivalence
of (3.19) and (3.4) for γ = 2k implies an interesting duality between averages over the
unitary group and over the Laguerre ensemble of positive definite matrices. This duality
appeared from a different point of view in [39, Proposition 3.9], which contains further
discussion based on hypergeometric functions of matrix argument.

We will now show that the appearance of Painlevé IV in Theorem 1.3 can be justified
for non-integer exponents k = γ

2 , at least to a physical level of rigour. The idea is to take
the representation (3.21) and rescale the differential equation (1.16) near the boundary,
setting |z|2 = 1 − 2u√

N
with u fixed. First, notice that applying known asymptotics of

the Barnes G-function (see [31, Eq. 5.17.5]), the pre-factor gives the main terms in the
asymptotic expansion of Theorem 1.3:

(3.28) Rγ(0) = N−
γN
2

G(γ2 +N + 1)

G(1 + γ
2 )G(N + 1)

= e−
γ
2
N N

γ2

8
(2π)

γ
4

G(1 + γ
2 )

(1+o(1)), N →∞.

Inserting this into (3.21) and changing variables t = N(1− s/
√
N), we obtain

(3.29)

Rγ(z) = e
Nγ
2

(|z|2−1)N
γ2

8 (2π)
γ
4

G(1 + γ
2 )

exp

ˆ √N
2u

N−1/2σ
(V)
γ/2,N (N(1− s/

√
N))

1− s/
√
N

ds

 (1+o(1)), N →∞.

Now we claim that the function v(s) = −N−1/2σ
(V)
γ/2,N (N(1 − s/

√
N)) has a limit. The

equation satisfied by v(s) is

(
√
N(1− s/

√
N)v′′)2 − [−

√
Nv −N(1− s/

√
N)v′ + 2(v′)2 + (γ +N)v′]2

+ 4(v′)2(N + γ/2 + v′)(γ/2 + v′) = 0.
(3.30)

Equating terms of order N (leading order) in the above equation, we obtain a limiting
equation

(3.31) (v′′)2 + 4(v′)2(v′ + γ/2)− (sv′ − v)2 = 0,

which is precisely the σ-form of Painlevé IV (1.11) of Theorem 1.3 with k = γ
2 . We

do not attempt to justify the interchange of limits involved here, which we expect to
require Riemann-Hilbert techniques, though we note that this is the only step lacking full
mathematical rigour in this general exponent setting.



20 ALFREDO DEAÑO AND NICK SIMM

3.3. Application to the lemniscate ensemble. The partition function of the lem-
niscate particle system is defined by

(3.32) Z(Lemd)
N (t) :=

ˆ
CN

N∏
j=1

e−N(|λj |2d−t(λdj+λj
d
)) |∆(~λ)|2 d~λ, d ∈ N, t ∈ R.

In this section we will discuss this partition function for finite N , its relation to Painlevé
transcendents and asymptotic expansions in the three regimes t < tc, t = tc and t > tc
(recall that tc := d−1/2). We begin, for convenience, by repeating Lemma 1.1 from the
introduction.

Lemma 3.6 (Reduction to Ginibre). We have the identity

(3.33) Z(Lemd)
Nd (t) = e(Ntd)2cN,d(Z

(Gin)
N )d

d−1∏
`=0

E
(
| det(GN − t

√
d)|γ`

)
where

(3.34) γl = −2

(
1− `+ 1

d

)
, ` = 0, . . . , d− 1,

and cN,d = (Nd)!d−N(Nd+2d+1)/2(N !)−d. The partition function for the Ginibre ensemble
(i.e. (1.3) with V (λ) = |λ|2) is

(3.35) Z(Gin)
N = πN

∏N
k=1 k!

N
N(N+1)

2

.

Proof. We give a quick proof based on ideas of [14]. We will abbreviate throughout

(3.36) V (d)(λ, t) = |λ|2d − t(λd + λ
d
).

If pj(λ) are the monic planar polynomials orthogonal with respect to e−N V (d)(λ,t), by the

symmetry λ→ λe2πi/d there must exist a family of monic polynomials q
(`)
j (λ) such that

(3.37) pjd+`(λ) = λ`q
(`)
j (λd).

The change of variables u = λd comes with a Jacobian d2λ = d−2|u|
2
d
−2 d2u and we get

hjd+`δj,k =

ˆ
C
|λ|2`q(`)

k (λd)q
(`)
j (λd)e−Nd(|λ|2d−t(λd+λ

d
)) d2λ

= d−1eNdt
2

ˆ
C
q

(`)
k (u+ t)q

(`)
j (u+ t)|u+ t|γ`e−Nd|u|2 d2u

(3.38)

where the γ` exponents are as in definition (3.34) (note that a factor d−1 is absorbed from

the d-fold rotation). Scaling u→ u/
√
d and using (2.4) twice, we find

(3.39) Z(Lemd)
Nd (t) = (Nd)!

d−1∏
`=0

N−1∏
j=0

hjd+` = e(Ntd)2cN,d(Z
(Gin)
N )d

d−1∏
`=0

Rγ`(t
√
d),

where Rγ(z) is defined in (3.1), see also (3.19). It is also interesting to consider a second
proof going explicitly via the determinant formula in (2.4). We have

(3.40) Z(Lemd)
Nd (t) = (Nd)! det

{ˆ
C
λjλ

k
e−NdV

(d)(λ,t)d2λ

}Nd−1

j,k=0

.

We claim that most of the entries of the above moment matrix are zero due to symmetry.
Indeed, because V (d)(λ, t) is invariant under the rotation λ → λe2πi/d we see that in a
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given d × d sub-block parameterized by j = j′d + `, k = k′d + `′, where ` = 0, . . . , d − 1
and `′ = 0, . . . , d− 1, one has

(3.41)

ˆ
C
λjλ

k
e−NdV

(d)(λ,t)d2λ = e2iπ(j′d−k′d)/de2iπ(`−`′)/d
ˆ
C
λjλ

k
e−NdV

(d)(λ,t)d2λ.

By the constraints on ` and `′, it is impossible for (`− `′)/d to be an integer unless ` = `′.
This shows that our moment matrix in (3.40) consists of d × d diagonal blocks. Since
all these blocks commute one can treat them as scalars and compute the determinant as
for an ordinary matrix of scalars, followed by the determinant of the resulting diagonal
matrix:

Z(Lemd)
Nd (t) = (Nd)!

d−1∏
`=0

det

{ˆ
C
|λ|2`(λd)j(λd)ke−NdV (d)(λ,t) d2λ

}N−1

j,k=0

= (Nd)!
d−1∏
`=0

det

{
d−1

ˆ
C
|u|γ`ujuke−Nd|u−t|2+Nd|t|2 d2u

}N−1

j,k=0

=
(Nd)!d−Nd

(N !)d

d−1∏
`=0

ˆ
CN

N∏
j=1

|uj |γ`e−Nd|uj−t|
2+Nd|t|2 |∆(~u)|2 d2~u,

(3.42)

where we made the same change of variable u = λd as before. Now shifting uj → uj + t

followed by uj → uj/
√
d completes the proof.

�

Combining this result with Lemma 3.6 gives the following:

Corollary 1. The partition function of the lemniscate ensemble given by (3.32)
has an exact representation in terms of solutions of the σ-form of Painlevé V in (1.16).
Specifically, we have

Z(Lemd)
Nd (t) = e(Ntd)2cN,d(Z

(Gin)
N )d

d−1∏
`=0

Rγ`(t
√
d)

= e(Ntd)2−Nt2 d(d−1)
2 cN,d(Z

(Gin)
N )d

d−1∏
`=0

(
Rγl(0) exp

(ˆ t2dN

0

σγ`/2,N (s)

s
ds

))
,

(3.43)

where the constants are given in Lemma 3.6 and (3.20).

In the following, recall that tc = 1√
d
. Combining Lemma 3.6 with Theorem 1.2 gives

an asymptotic expansion of the lemniscate partition function in the sub-critical phase.

Corollary 2. In the sub-critical regime 0 < t < tc with t fixed, we have

(3.44)
Z(Lemd)
Nd (t)

Z(Lemd)
Nd (0)

= e(Ntd)2−Nt2 d(d−1)
2 (1 + o(1)), N →∞.

In the critical phase, based on the previous computations and Theorem 1.3 we can
make a conjecture for the expansion at t = tc.

Conjecture 1. In the critical regime t = tc − τtc√
N

with τ ∈ R fixed, we have

(3.45)
Z(Lemd)
Nd (t)

Z(Lemd)
Nd (0)

= e(Ntd)2−Nt2 d(d−1)
2

d−1∏
`=0

Fγ`/2(2τ) (1 + o(1)), N →∞,

where Fγ`/2(x) denotes the right-hand side of (1.10) with k replaced with γ`/2 in (1.11).
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It seems likely that the proof of Conjecture 1 above will require Riemann-Hilbert
techniques and is postponed to a future investigation. In the super-critical phase t > tc,
by Lemma 3.6 one requires asymptotics in the exterior region outside the circular law
spectrum of the Ginibre ensemble, |z| > 1. This corresponds to Laplace asymptotics of a
random matrix linear statistic with a test function which is smooth on the support of the
equilibrium measure. Indeed, as we explain in Appendix A, combining Lemma 3.6 and the
results of [6,62] suggests that for t > tc fixed, we have

(3.46)
Z(Lemd)
Nd (t)

(Z(Lem1)
N (t

√
d))d

= cN,d

(
t

tc

)N(d−1)
(

1−
(
tc
t

)2
)−κd

(1 + o(1)), N →∞,

where

(3.47) κd :=
1

4

d−1∑
`=0

γ2
` =

d(d− 1)(2d− 1)

6d2
.

Remark 3.7. Asymptotic expansion of the partition function of planar models has
received some attention recently. In the works [16] and [58] a partition function which
includes (1.3) as a special case has been studied (the Coulomb and Riesz gases), but their
asymptotic expansion only gives terms up to order N , while the expansions here (albeit for
specific models) include the constant term. In the physics literature, see [69] for interesting
discussion and conjectures regarding the general form of this constant term.

Remark 3.8. Note that the normalizations Z(Lemd)
Nd (0) and (Z(Lem1)

N (t
√
d))d appearing

in the denominators on the left-hand sides of (3.44), (3.45) and (3.46) involve radial
weights and are simple to calculate explicitly.

3.4. Multiple charges near the boundary.

Proof of Theorem 1.14. Proceeding as in the previous sections, we start with (2.7)
under the microscopic scaling

(3.48) xi = z − ui

z
√
N
, yi = z − vi

z
√
N

for i = 1, . . . , k, where z is a point on the boundary, |z| = 1. The polynomial part of kernel
is

(3.49) BN+k(x, y) =
N

π

N+k−1∑
j=0

(xyN)j

j!
.

By Lemma 9.4 of [21], under the scaling (3.48) we have, for any fixed z ∈ S1, the following
asymptotic formula uniformly in compact subsets of u and v,

(3.50) BN+k(x, y) ∼ N

2π
eN−

√
N(u+v)+uv erfc

(
−u+ v√

2

)
, N →∞,

where erfc(z) := 2√
π

´∞
z e−t

2
dt is the complementary error function. Regarding the other

quantities in (2.7), Stirling’s formula gives
∏k−1
j=0 hj+N ∼ πke−NkN−k/2(2π)k/2 while the

Vandermonde determinants rescale as ∆(~x)∆(~y) = N−
k(k−1)

2 ∆(~u)∆(~v). Defining the error
function kernel

(3.51) Kerf(u, v) := e−
(u−v)2

2 erfc

(
−u+ v√

2

)
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and inserting these results into (2.7), using (2.8), we get the formula

E

(
k∏
i=1

det(GN − xi) det(G†N − yi)

)
∼ exp

(
−
√
N

k∑
i=1

(ui + vi) +
k2

2
log(N) +

k∑
i=1

u2
i + vi

2

2

)

×
(π

2

)k/2 det

{
Kerf(ui, vj)

}k
i,j=1

∆(~u)∆(~v)
, N →∞.

(3.52)

The relation to non-intersecting paths goes via the integral representation

(3.53) Kerf(u, v) = 2
√

2π

ˆ ∞
0

p1/2(u, s)p1/2(s, v) ds

in terms of the Brownian motion transition density

(3.54) pt(u, v) =
1√
2πt

e−
(u−v)2

2t .

Consequently, by Lemma 2.2 we can immediately identify

(3.55) det

{
Kerf(ui, vj)

}k
i,j=1

=
2k(2π)k/2

k!
Z1/2(~u,~v,R+),

and (1.31) follows. �

4. Bulk asymptotics: proofs

The purpose of this section will be to prove our results on bulk asymptotics, namely
Theorems 1.5 and 1.15 which deal with integer charge exponents and Theorem 1.7 which
deals with a particular case of non-integer exponents. The proofs are both based on
formula (2.7) but proceed in different ways, one exploits the Harish-Chandra Itzykson
Zuber integral while the other exploits the exactly solvable structure of the induced Ginibre
ensemble studied in [33]. Our proof of Theorem 1.7 can be interpreted as the computation
of the 1-point correlator for the induced Ginibre ensemble.

Proof of Theorems 1.5 and 1.15. We focus to begin with on the proof of Theo-

rem 1.5. Taking (2.7) as our starting point, with the Ginibre weight w(λ) = e−N |λ|
2

the
usual formulas apply and we have pj(λ) = λj , hj = N−j−1πj!, and the asymptotics

(4.1)

k−1∏
j=0

hj+N ∼ πk (2π)k/2 e−NkN−k/2, N →∞.

The polynomial part of the correlation kernel is

(4.2) BN+k(x, y) =
N

π

N+k−1∑
j=0

(xyN)j

j!
.

The idea of the proof will be to merge the variables in (2.7) in two distinct groups, the
first group creating a singularity with strength k1 and the second with strength k2 and
k = k1 + k2. It is convenient to first impose the microscopic scaling

(4.3) xj = z +
uj√
N
, yj = z +

vj√
N
, j = 1, . . . , k

and then perform the merging (still keeping N finite)

(4.4) (u1, . . . , uk1)→ (u1, . . . , u1), (uk1+1, . . . , uk1+k2)→ (u2, . . . , u2)
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and

(4.5) (v1, . . . , vk1)→ (v1, . . . , v1), (vk1+1, . . . , vk1+k2)→ (v2, . . . , v2).

Doing this, we can straightforwardly write down the exact identity

E
(
|det(GN − z1)|2k1 | det(GN − z2)|2k2

)
= eNk|z|

2+
√
Nk1(u1z+u1z)+

√
Nk2(u2z+u2z)

×

k−1∏
j=0

hj+N

 Nkπ−kN
k(k−1)

2

× lim
v2→u2,v1→u1

lim
(u1,...,uk1 )→(u1,...,u1),(uk1+1,...,uk1+k2 )→(u2,...,u2)

(v1,...,vk1 )→(v1,...,v1),(vk1+1,...,vk1+k2 )→(v2,...,v2)

det

{
fN+k(ui, vj)

}k
i,j=1

∆(~u)∆(~v)

(4.6)

where we used that ∆(~x)∆(~y) = N−
k(k−1)

2 ∆(~u)∆(~v) and defined

(4.7) fN+k(u, v) = e−N |z|
2−
√
N(uz+vz)

N+k−1∑
j=0

(
N(z + u√

N
)(z + v√

N
)
)j

j!
, f(u, v) = euv

in such a way that limN→∞ fN+k(u, v) = f(u, v) uniformly in compact subsets of u and
v (see e.g. [21, Lemma 9.2] or [22, Proposition 2]). The degenerate limit in (4.6) can be
written as the determinant of a block matrix involving partial derivatives of fN+k(u, v)
with respect to the u and v variables. Indeed, all derivatives of fN (u, v) to any finite order
converge uniformly to the corresponding derivatives of f(u, v) as N → ∞, and thus the
various limiting operations can be interchanged. Therefore, the limit N →∞ of the ratio
of determinants in (4.6) is equal to

(4.8) lim
(u1,...,uk1 )→(u1,...,u1),(uk1+1,...,uk1+k2 )→(u2,...,u2)

(v1,...,vk1 )→(v1,...,v1),(vk1+1,...,vk1+k2 )→(v2,...,v2)

det

{
eui vj

}k
i,j=1

∆(~u)∆(~v)
.

More generally, the same considerations show that

E

(
k∏
i=1

det(GN − xi) det(G†N − yi)

)
= exp

(
Nk(|z|2 − 1) +

√
N

k∑
i=1

(zvi + zui) +
k2

2
log(N)

)

× (2π)k/2
det

{
euivj

}k
i,j=1

∆(~u)∆(~v)
(1 + o(1))

(4.9)

where the asymptotics on the right-hand side are defined by taking a limit if some of the
points in the vectors ~u or ~v coincide. To conclude the proof of Theorem 1.15 we recognise
the right-hand side of (4.9) in terms of the Harish-Chandra Itzykson Zuber integral [51],
which is the exact formula

(4.10)

det

{
euivj

}k
i,j=1

∆(~u)∆(~v)
=

1

G(1 + k)

ˆ
U(k)

eTr(UAU†B) dµ(U),

where dµ(U) is the normalized Haar measure on the group U(k) of k×k unitary matrices,
and A = diag(u1, . . . , uk), B = diag(v1, . . . , vk) are diagonal matrices. The rather intricate
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merging in (4.6) can now be performed directly by creating degeneracies in the diagonal
matrices A and B. For Theorem 1.5 we simply put

A = diag(

k1︷ ︸︸ ︷
u1, . . . , u1,

k2︷ ︸︸ ︷
u2, . . . , u2)

B = diag(

k1︷ ︸︸ ︷
v1, . . . , v1,

k2︷ ︸︸ ︷
v2, . . . , v2)

(4.11)

where eventually we will set u1 = v1 and u2 = v2. This motivates us to split the unitary
matrix U into four sub-blocks. Let us write

(4.12) U =

(
ak1×k1 bk1×k2
ck2×k1 dk2×k2

)
.

Then a direct calculation using the unitarity of U shows that

(4.13) Tr(UAU †B) = u1v1k1 + u2v2k2 − [(u2 − u1)(v2 − v1)]Tr(cc†),

where we abbreviated the matrix c := ck2×k1 . To proceed, we need to know how to project
the Haar measure in (4.10) onto the sub-block c. This turns out to be a well studied
problem (not least because of various physical applications, see [35]). For k1 ≥ k2, the
eigenvalues t1, . . . , tk2 of cc† lie in the unit interval [0, 1] and have the joint probability
density function [27,35]

(4.14) P (t1, . . . , tk2) =
1

C
(JUEk1−k2,0)

k2

k2∏
j=1

tk1−k2j ∆2(~t)

where C
(JUEk1−k2,0)

k2
is a normalization constant for the Jacobi Unitary Ensemble (JUE),

(4.15) C
(JUEk1−k2,0)

k2
:=

ˆ
[0,1]k2

k2∏
j=1

tk1−k2j ∆2(~t) d~t.

Inserting (4.13) into (4.10) and using (4.14), we find

ˆ
U(k)

eTr(UAU†B) dµ(U) = eu1v1k1+u2v2k2 E(e−sTr(cc†)).

=
eu1v1k1+u2v2k2

C
(JUEk1−k2,0)

k2

ˆ
[0,1]k2

k2∏
j=1

tk1−k2j e−stj∆2(~t)d~t,

(4.16)

where we defined the variable s = (u2− u1)(v2− v1). Finally, we express this last integral
as a gap probability in the LUE. For this we specialize to u1 = v1 and u2 = v2 so that
s = |u2 − u1|2 = N |z2 − z1|2. We have

1

C
(JUEk1−k2,0)

k2

ˆ
[0,1]k2

k2∏
j=1

tk1−k2j e−stj ∆2(~t) d~t

=
C

(LUEk1−k2 )

k2

C
(JUEk1−k2,0)

k2

s−k1k2P(λ
(LUEk2,k1 )
max < s).

(4.17)
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The normalization constants here are explicitly known, see equations (3.3), (5.4) and [36,
Chapter 4]. We have

C
(LUEk1−k2 )

k2

C
(JUEk1−k2,0)

k2

=

k2−1∏
j=0

Γ(1 + k1 + j)

Γ(1 + j)

=
G(k1 + k2 + 1)

G(k1 + 1)G(k2 + 1)
,

(4.18)

the numerator of which exactly cancels the denominator in (4.10). Therefore, we get the
following asymptotic formula, uniformly in compact subsets of u1 and u2,

E
(
|det(GN − z1)|2k1 | det(GN − z2)|2k2

)
= ek1N(|z1|2−1)+k2N(|z2|2−1)+

k21
2

log(N)+
k22
2

log(N)

× e−2k1k2 log |z2−z1| (2π)(k1+k2)/2

G(1 + k1)G(1 + k2)
Fk1,k2(N |z2 − z1|2)(1 + o(1)), N →∞,

(4.19)

where Fk1,k2(s) is the distribution function of the largest eigenvalue in a k2 × k2 Laguerre
ensemble with parameter k1 − k2 (equivalently, k1 degrees of freedom):

(4.20) Fk1,k2(s) = P
(
λ

(LUEk2,k1 )
max < s

)
.

This concludes the proof of Theorem 1.5. �

Proof of Theorem 1.7. With the assumptions of Theorem 1.7, the 2-point corre-
lator on the left-hand side of (1.13) simplifies to

E
(
|det(GN )|2γ1 |det(GN − z2)|2k2

)
=

1

Z(Gin)
N

ˆ
CN

N∏
j=1

|λj |2γ1 |λj − z2|2k2 e−N |λj |
2 |∆(~λ)|2 d2~λ

(4.21)

where z2 = u2√
N

and u2 is fixed in the microscopic scaling. By the radial symmetry, we

can assume without loss of generality that u2 > 0 throughout. The point of this proof, in
contrast to the proof of Theorem 1.5, is that γ1 is not constrained to be a positive integer.
We assume that γ1 ≥ k2 > 0 and k2 ∈ N.

We now proceed by viewing (4.21) as a 1-point correlator for the reference weight

w(λ) = |λ|2γ1e−N |λ|2 and apply the techniques of the previous sections. Adapting the proof
of Proposition 3.1, we again have a rotationally invariant weight, implying pj(λ) = λj , but
now the norms in (2.4) are

(4.22) hj =

ˆ
C
|λ|2j+2γ1e−N |λ|

2
d2λ = πN−j−γ1−1Γ(j + γ1 + 1).

Under the microscopic scaling, the points in (2.7) take the form

(4.23) xi =
ui√
N
, yi =

vi√
N
, i = 1, . . . , k

and the product of Vandermonde determinants in the denominator of (2.7) rescale to

∆(~x)∆(~y) = N−
k2(k2−1)

2 ∆(~u)∆(~v). From the explicit formulae for pj(λ) and hj , we get the
polynomial part of the kernel

(4.24) BN+k(x, y) =
Nγ1+1

π

N+k−1∑
j=0

(xyN)j

Γ(j + γ1 + 1)
.
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Defining the functions

(4.25) fN (u, v) := vγ1
N−1∑
j=0

(uv)j

Γ(j + γ1 + 1)
, f(u, v) := vγ1

∞∑
j=0

(uv)j

Γ(j + γ1 + 1)

we first observe that (2.7) and (2.8) give the exact identity

E
(
| det(GN )|2γ1 | det(GN − z2)|2k2

)
=
Z(Indγ1 )

N

Z(Gin)
N

Nk2γ1π−k2u−γ1k22 Nk2(k2+1)/2

×
k2−1∏
j=0

hj+N
1∏k2−1

j=0 (j!)2
lim

u→u2,v→u2
det

{
∂i+j−2fN+k2(u, v)

∂ui−1∂vj−1

}k2
i,j=1

,

(4.26)

where the partition function of the induced Ginibre ensemble is

(4.27) Z(Indγ1 )

N :=

ˆ
CN

N∏
j=1

|λj |2γ1e−N |λj |
2 |∆(~λ)|2 d2~λ = N !

N−1∏
j=0

(πN−j−γ1−1Γ(j+γ1 + 1)).

Now the large-N asymptotics of (4.26) can be derived, exploiting the fact that the conver-
gence fN (u, v)→ f(u, v) as N →∞ is uniform. Furthermore, all mixed partial derivatives
of fN (u, v) converge uniformly to those of f(u, v) and this allows the interchange of the
various limiting operations. Consequently, it suffices to compute the determinant in (4.26)
with fN (u, v) replaced with the limiting kernel f(u, v), for which we have the integral
representation

(4.28) f(u, v) =
1

Γ(γ1)

ˆ v

0
eut(v − t)γ1−1 dt.

The needed partial derivatives of the kernel can be computed using the Leibniz formula
for differentiating under the integral, using that the integrand vanishes at the upper end
point. This gives

∂i+j−2f(u, v)

∂ui−1∂vj−1
=

1

Γ(γ1 − (j − 1))

ˆ v

0
ti−1eut(v − t)γ1−1−(j−1) dt

=
vγ1+i−j(−1)i−1euv

Γ(γ1 − (j − 1))

ˆ 1

0
tγ1−1e−uvt(t− 1)i−1t−(j−1) dt.

(4.29)

By Lemma 2.2,

det

{
∂i+j−2f(u, v)

∂ui−1∂vj−1

}k2
i,j=1

=
vγ1k2euvk2

k2!

k2−1∏
j=0

(−1)j

Γ(γ1 − j)

ˆ
[0,1]k2

k2∏
j=1

tγ1−1
j e−uvtj det

{
(ti − 1)j−1

}k2
i,j=1

det

{
t
−(j−1)
i

}k2
i,j=1

d~t

=
vγ1k2 (uv)−γ1k2 euvk2

k2!

k2−1∏
j=0

1

Γ(γ1 − j)

ˆ
[0,uv]k2

k2∏
j=1

tγ1−k2j e−tj ∆2(~t) d~t,

(4.30)

where we now spot the joint distribution of eigenvalues of the Laguerre ensemble appearing
in (4.30). We have therefore arrived at the determinant identity

(4.31) det

{
∂i+j−2f(u, v)

∂ui−1∂vj−1

}k2
i,j=1

=
vγ1k2 (uv)−γ1k2 G(1 + k2) euvk2

k2!
P(λ

(LUEk2,γ1 )
max < uv).
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It remains just to deal with the constants in (4.26). Writing the constant (4.27) in terms
of the Barnes G-function and applying their asymptotic expansion (see [31, Eq. 5.17.5])
gives,

(4.32)
Z(Indγ1 )

N

Z(Gin)
N

=
1

G(1 + γ1)
e−γ1N+

γ21
2

log(N)(2π)γ1/2 (1 + o(1)), N →∞,

while Stirling’s formula gives

(4.33)

k2−1∏
j=0

hj+N ∼ πk2 (2π)k2/2 e−Nk2N−k2/2, N →∞.

Now inserting (4.33), (4.32) and (4.31) into (4.26) gives the formula

E
(
|det(GN )|2γ1 | det(GN − z2)|2k2

)
= eu

2
2k2−(γ1+k2)N+

γ21
2

log(N)+
k22
2

log(N)

× e−2k2γ1 log(u2/
√
N) (2π)

γ1+k2
2

G(1 + k2)G(1 + γ1)
P(λ

(LUEk2,γ1 )
max < u2

2) (1 + o(1)) , N →∞,

(4.34)

which is precisely of the form (1.13), with k1 = γ1 and z = z1 = 0. �

5. Truncated CUE: finite N and boundary asymptotics

The purpose of this section is to prove analogous results for the 1-point function as
obtained in Section 1.2. Therefore, we consider the moments

(5.1) R2k(z) = E
(
| det(T − z)|2k

)
where T is an N ×N truncation of a Haar distributed unitary matrix of size M ×M . We
begin by showing that (5.1) is expressible in terms of solutions of Painlevé VI via a duality
with the Jacobi Unitary Ensemble. Then we will study the boundary asymptotics and show
that they are expressed in terms of Painlevé V. This will prove Theorems 1.10 and 1.8. As
in Section 1.2, we also investigate the continuation of Theorem 1.10 off the integers, that
is we will prove that setting k = γ

2 in (1.23) and (1.25) gives the correct interpretation of
(5.1). Along the way, we will study planar orthogonal polynomials associated to the weight

(5.2) w(λ) = |λ− z|γ(1− |λ|2)M−N−1, |λ| ≤ 1.

5.1. Duality with the JUE. We begin by deriving the analogue of identity (3.4).
Recall the construction of the Jacobi Unitary Ensemble (JUE): take two independent k-
dimensional LUE matrices (Wishart matrices) W1 with parameter α and W2 with parameter
β and form the ratio J = W1(W1 +W2)−1. The eigenvalues t1, . . . , tk of J lie in the unit
interval [0, 1] and have the joint probability density function

(5.3) P (t1, . . . , tk) =
1

C
(JUEα,β)
k

k∏
j=1

tαj (1− tj)β ∆2(~t),

where the normalization constant (see e.g. [36, Chapter 4]) is given explicitly by

(5.4) C
(JUEα,β)
k :=

ˆ
[0,1]k

k∏
j=1

tαj (1− tj)β ∆2(~t) d~t =
k−1∏
j=0

Γ(α+ j + 1)Γ(β + j + 1)Γ(j + 2)

Γ(α+ β + k + j + 1)
.
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Proposition 5.1. Consider the expectation with respect to the truncated unitary
ensemble measure in (1.17) with κ = M −N . Let x and y be any complex numbers and let
k ∈ N. We have

E
(

det(T − x)k det(T † − y)k
)

=
1

C
(JUEκ+N,0)
k

ˆ
[0,1]k

k∏
j=1

tκj (1 + (xy − 1)tj)
N ∆2(~t) d~t.

(5.5)

Proof of Proposition 5.1, Theorem 1.10 and Theorem 1.8. Compared with the
Ginibre case in Proposition 3.1, the main difference here is that we now work with the
weight w(λ) = (1 − |λ|2)κ−1 supported on the disc λ ∈ D. As before the corresponding
orthogonal polynomials are pj(λ) = λj but now the normalizations are

(5.6) hj :=

ˆ
D
|λ|2j (1− |λ|2)κ−1 d2λ = π

j!Γ(κ)

Γ(j + κ+ 1)
.

The polynomial part of the kernel follows as

BN+k(x, y) =
1

πΓ(κ)

N+k−1∑
j=0

Γ(j + κ+ 1)(xy)j

πj!

= xN+kΓ(N + k + κ+ 1)

π Γ(κ)Γ(N + k)

ˆ ∞
0

(tx+ 1)−(N+k)−κ−1(t+ y)N+k−1 dt,
(5.7)

where for now (and without loss of generality) we will assume that x and y are positive
reals. The integral representation (5.7) follows e.g. from Euler’s integral representation
for the hypergeometric function [31, 15.6.1]. Its advantage here is that we have separated
the x and y variables in the integrand. Indeed, considering the function

(5.8) A
(κ)
N+k(x, y) :=

Γ(N + k + κ+ 1)

Γ(N + k)

ˆ ∞
0

(tx+ 1)−N−k−κ−1(t+ y)N+k−1 dt,

we can directly calculate the derivatives required on the right-hand side of (2.8):

∂i+j−2A
(κ)
N+k(x, y)

∂xi−1∂yj−1
=

Γ(N + k + κ+ i)(−1)i−1

Γ(N + k − (j − 1))

×
ˆ ∞

0
ti−1(tx+ 1)−N−k−κ−1−(i−1)(t+ y)N+k−1−(j−1) dt.

(5.9)

By Lemma 2.2 we get

det

{
∂i+j−2A

(κ)
N+k(x, y)

∂xi−1∂yj−1

}k
i,j=1

= eN,k,κ

ˆ
[0,∞)k

det

{
tj−1
i (tix+ 1)−N−k−j−κ

}k
i,j=1

det

{
(ti + y)N+k−j

}k
i,j=1

d~t

= (−1)
k(k−1)

2 eN,k,κ

ˆ
[0,∞)k

k∏
j=1

(tjx+ 1)−N−κ−2k(tj + y)N ∆2(~t) d~t,

(5.10)

where

(5.11) eN,k,κ :=
(−1)

k(k−1)
2

k!

k∏
j=1

(
Γ(N + k + κ+ j)

Γ(N + j)

)
.



30 ALFREDO DEAÑO AND NICK SIMM

To obtain the third line in (5.10) we made use of the determinant identities

det

{
(ti + y)k−j

}k
i,j=1

= (−1)
k(k−1)

2 ∆(~t),

det

{
(tj−1
i (tix+ 1)−k−j

}k
i,j=1

=

k∏
j=1

(tjx+ 1)−2k∆(~t).

(5.12)

After sending tj → tj/x for each j = 1, . . . , k in (5.10) and some further standard manip-
ulations, we arrive at the identity

det

{
∂i+j−2A

(κ)
N+k(x, y)

∂xi−1∂yj−1

}k
i,j=1

= (−1)
k(k−1)

2 eN,k,κ x
−k(N+k)

ˆ
[0,1]k

k∏
j=1

tκj (1 + (xy − 1)tj)
N ∆2(~t) d~t.

(5.13)

Inserting these results into formula (2.7) gives

E
(

det(T − x)k det(T † − y)k
)

=

∏k−1
j=0 hj+N∏k−1
j=0(j!)2

xk(N+k) 1

(πΓ(κ))k
det

{
∂i+j−2A

(κ)
N+k(x, y)

∂xi−1∂yj−1

}k
i,j=1

=
1

C
(JUEκ+N,0)
k

ˆ
[0,1]k

k∏
j=1

tκj (1 + (xy − 1)tj)
N ∆2(~t) d~t.

(5.14)

To obtain the last line above we inserted (5.13) and identified the pre-factors as

(5.15)

∏k−1
j=0 hj+N∏k−1
j=0(j!)2

(−1)
k(k−1)

2

(πΓ(κ))k
eN,k,κ =

1

C
(JUEκ+N,0)
k

.

Initially we assumed x > 0 and y > 0, but since (5.14) is an identity between polynomials in
x and y, it holds on the whole complex plane. This proves Proposition 5.1. Now Theorem
1.10 follows by setting x = y = z and the change of variables tj → tj/(1− |z|2) (assuming
|z| < 1) which expresses the right-hand side of (5.5) as the distribution function of the
largest eigenvalue in the Jacobi Unitary Ensemble. The explicit form of the constant in
(1.24) follows by setting x = y = 0 in (5.5). For the boundary limit, note that if |z| = 1− u

N
and κ = M −N is fixed, we have the limit

lim
N→∞

ˆ
[0,1]k

k∏
j=1

tκj

(
1 +

(
−2u

N
+
u2

N2

)
tj

)N
∆2(~t) d~t

=

ˆ
[0,1]k

k∏
j=1

tκj e
−2utj ∆2(~t) d~t

=
G(2 + k)G(κ+ k + 1)

G(κ+ 1)
(2u)−k

2−kκFk+κ,k(2u)

(5.16)

where Fk+κ,k(x) is the distribution function of the largest eigenvalue in the Laguerre
Unitary Ensemble with parameter κ. To complete the proof of Theorem 1.8 it is enough
to note that the constant in Proposition 5.1 has the asymptotics

(5.17) C
(JUEκ+N,0)
k = G(1 + k)G(2 + k)N−k

2
(1 + o(1)) , N →∞.

�
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Remark 5.2. In the limiting case κ → 0 and x = y = 1, the right-hand side of
(5.5) becomes completely explicit and re-derives the exact formula for moments of the
characteristic polynomial of a Haar distributed unitary matrix due to Keating and Snaith
[55].

5.2. Planar orthogonal polynomials and reduction to integrals over U(N).
We now consider the quantity (5.1) with k = γ

2 and γ a general real parameter up to the
integrability constraint γ > −2. As with the Ginibre case, this average over non-Hermitian
matrices can be reduced to an integral over the unitary group.

Theorem 5.3. Let γ > −2 and let dµ(U) denote the normalized Haar measure on the
group of N ×N unitary matrices. Then we have the identity

Rγ(z) = Rγ(0)

ˆ
U(N)

det(U)−
γ
4 |det(I + U)|

γ
2 det(I + |z|2U)κ+ γ

2 dµ(U)

=
Rγ(0)

N !(2π)N

ˆ
[−π,π]N

N∏
j=1

e−
iγθj
4 |1 + eiθj |

γ
2 (1 + |z|2eiθj )κ+ γ

2 |∆(eiθ)|2 d~θ
(5.18)

where the constant is

(5.19) Rγ(0) =
N−1∏
j=0

Γ(γ2 + j + 1)Γ(j + κ+ 1)

Γ(j + 1)Γ(γ2 + j + κ+ 1)
.

Furthermore, we have the exact representation in terms of the Jimbo-Miwa-Okamoto σ-form
of Painlevé VI:

(5.20) Rγ(z) = Rγ(1) exp

(ˆ 1

|z|2

h(t)− e′2t+ 1
2e2

t(1− t)
dt

)
,

where h satisfies the equation

(5.21) h′(t(1− t)h′′)2 + (h′(2h− (2t− 1)h′) + b̃1b̃2b̃3b̃4)2 =
4∏
j=1

(h′ + b̃2j )

with parameters

b̃1 =
κ+N

2
, b̃2 =

κ+ γ +N

2
,

b̃3 =
−κ+N

2
, b̃4 = −N + γ + κ

2
.

(5.22)

In (5.20), e2 (respectively e′2) is the elementary symmetric polynomial of degree 2 in

(b̃1, b̃2, b̃3, b̃4) (respectively in (b̃1, b̃3, b̃4)) and the constant Rγ(1) is explicit, see equation
(5.37).

Proof. By rotational symmetry the function Rγ(z) only depends on |z|, so without
loss of generality we assume z > 0 throughout this proof. We will again start from
orthogonal polynomials in the complex plane and apply the Green’s theorem trick to
reduce the planar orthogonality to contour orthogonality over the boundary of the unit
disc. We proceed in a similar vein to the proof of Theorem 3.3. Let pj(λ) denote the
monic degree j polynomials satisfying the planar orthogonality (k ≤ j)

(5.23) hjδj,k =

ˆ
D
pj(λ)λ

k|λ− z|γ(1− |λ|2)κ−1 d2λ.

The goal is to obtain an analogue of the Ginibre identity (3.24). First, using the or-

thogonality to replace λ
k

with (λ − z)k, the orthogonality (5.23) is easily written in the
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differential form

(5.24) hjδk,j =

ˆ
D
pj(λ)(λ− z)

γ
2
∂

∂λ
h(λ, λ, z) d2λ,

where

h(λ, λ, z) :=

ˆ λ

z
(s− z)

γ
2

+k(1− λs)κ−1 ds

= (λ− z)
γ
2

+k+1(1− λz)κ−1

ˆ 1

0
s
γ
2

+k(1− s)κ−1 ds.

(5.25)

In the following we denote the above integral (a particular case of the Euler beta integral)
by

(5.26) cγ,k,κ :=

ˆ 1

0
s
γ
2

+k(1− s)κ−1 ds =
Γ(γ2 + k + 1)Γ(κ)

Γ(γ2 + k + κ+ 1)
.

Now we apply Green’s theorem to (5.24) resulting in the boundary integral

(5.27) hjδk,j =
1

2i

˛
S1

pj(λ)(λ− z)
γ
2 h(λ, λ, z) dλ.

To simplify this orthogonality further, we recall that we can form linear combinations on
both sides of (5.27) without altering the orthogonality. Indeed, defining

(5.28) cp,k(z) :=

(
p

k

)
zp−k

cγ,p,κ
cγ,k,κ

we multiply both sides of (5.27) by cp,k(z) and sum from k = 0 to k = p for some p ≤ j.
On the right-hand side this leads to the sum

(5.29)

p∑
k=0

cp,k(z)(λ− z)kcγ,k,κ = λ
p
cγ,p,κ

and the analogue of identity (3.24) follows,

hjδk,j :=

ˆ
D
pj(λ)λ

k|λ− z|γ(1− |λ|2)κ−1 d2λ

= π
Γ(γ2 + j + 1)Γ(κ)

Γ(γ2 + j + κ+ 1)

˛
S1

pj(λ)λ−k|λ− z|γ(1− zλ)κ
dλ

2πiλ
.

(5.30)

The same reasoning that led to (3.27) gives, in this context, the Toeplitz determinant
expression

Rγ(z) =
N !

Z(tCUE)
N

N−1∏
j=0

hj =
N !

Z(tCUE)
N

N−1∏
j=0

(
π

Γ(γ2 + j + 1)Γ(κ)

Γ(γ2 + j + κ+ 1)

)

× det

{˛
S1

λj−i|λ− z|γ(1− zλ)κ
dλ

2πiλ

}N−1

i,j=0

,

(5.31)

where Z(tCUE)
N is the normalization constant for (1.17) which can be calculated explicitly

(see e.g. [70]). This yields the form of the constant pre-factor

(5.32)
N !

Z(tCUE)
N

N−1∏
j=0

(
π

Γ(γ2 + j + 1)Γ(κ)

Γ(γ2 + j + κ+ 1)

)
= Rγ(0),

an identity which follows from computing Rγ(0) via (2.4) and formula (5.6) with j → j+ γ
2 .
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Making appropriate changes of variables and deformations of the contour, the integrals
inside the determinant can be written in the equivalent form

(5.33)

˛
S1

λj−i|λ− z|γ(1− zλ)κ
dλ

2πiλ
= (−z)j−i

˛
S1

λj−i λ−
γ
4 |1 + λ|

γ
2 (1 + z2λ)κ+ γ

2
dλ

2πiλ
,

where we used identity (3.26). Now (5.18) follows from the same considerations given in
the proof of Theorem 3.3. The association of the group integrals in (5.18) with Painlevé VI
has been studied by Forrester and Witte, for example see Equations (1.6), (1.21), (1.34)
and Proposition 13 in [40], from which identity (5.20) follows. �

Corollary 3. The identity (1.23) can be extended to any real k = γ
2 > −1 by

continuing the integer valued parameters in the equation (1.23). Equivalently, the Painlevé
characterization (5.20) reduces to the one in (1.23) when γ = 2k.

Proof. First notice that identity (1.23) can easily be written
(5.34)

R2k(z) = R2k(0) exp

−ˆ 1

1−|z|2

σ
(VI)
κ,N (t)− (b1b2 − kκ− k2)t+ b1b2+b3b4

2 − kκ− k2

t(1− t)
dt

 .

Regarding identity (5.20), some simple changes of variables casts it in the form

(5.35) Rγ(z) = Rγ(0) exp

(
−
ˆ 1

1−|z|2

h(1− t) + e′2t− e′2 + 1
2e2

t(1− t)
dt

)
.

Now it is straightforward to show that h(t) solves equation (5.21) if and only if h(1 − t)
solves (1.26) replacing everywhere k with γ

2 and identifying b1, . . . , b4 in terms of α = κ
and β = N , see (1.27) and (5.22). It remains to observe the simple identities

(
b1b2 − kκ− k2

)
|k= γ

2
= −e′2(

b1b2 + b3b4
2

− kκ− k2

) ∣∣∣∣
k= γ

2

=
1

2
e2 − e′2

(5.36)

and so the characterization (1.23) remains true for any real values k = γ
2 with k > −1. �

Remark 5.4. As with the Ginibre case, the identity (5.30) implies that the planar
orthogonal polynomials are expressible in terms of certain polynomials orthogonal on the unit
circle. These polynomials have been characterized in terms of fundamental objects associated
with the Painlevé VI system, see [42]. Discrete N-recurrences for the group integrals in
(5.20) were derived in [41]. As before, identities (5.18) and (5.5) (with x = y = |z|) imply
a duality between averages over the CUE and the JUE, which has been discussed in the
context of generalized hypergeometric functions in Section 3.3 of [40]. Its appearance here is
a new manifestation of the duality arising from computing an average of truncated unitary
matrices in two different ways. Interestingly, averages of this type have been shown to arise
in last passage percolation and the Ising model, see Section 5.3 of [40].

Remark 5.5. The constant Rγ(1) in (5.20) can be computed explicitly from (5.18) by
setting z = 1 and reinstating the absolute value (see e.g. identity (3.26)). This leads to the
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Morris integral evaluation,

Rγ(1) =
Rγ(0)

N !(2π)N

ˆ
[−π,π]N

N∏
j=1

e
iκθj
2 |1 + eiθ|γ+κ|∆(eiθ)|2 d~θ

= Rγ(0)

N−1∏
j=0

Γ(1 + κ+ γ + j)Γ(1 + j)

Γ(1 + κ+ γ
2 + j)Γ(1 + γ

2 + j)

=
N−1∏
j=0

Γ(κ+ j + 1)Γ(κ+ γ + j + 1)

Γ(κ+ γ
2 + j + 1)2

,

(5.37)

where we used (5.19). Writing this in terms of Barnes-G functions and inserting their
asymptotic expansion (see [31, Eq. 5.17.5]) gives

(5.38) Rγ(1) = N
γ2

4
G(κ+ γ

2 + 1)2

G(κ+ 1)G(κ+ γ + 1)
(1 + o(1)), N →∞,

which is consistent with the limit u→ 0 of (1.19) with k = γ
2 .

5.3. Painlevé VI to Painlevé V scaling heuristics. Starting from the identity
(1.23), we consider the boundary scaling |z|2 = 1− 2u

N in the weak non-unitarity limit, so
that κ := M −N is fixed. A change of variable t→ t/N in (1.25) gives the characterization

(5.39) P
(
λ

(JUEk,κ,N )
max <

2u

N

)
= exp

−ˆ N

2u

σ
(VI)
κ,N ( t

N )− b1b2 t
N + b1b2+b3b4

2

t(1− t
N )

dt


Defining the centered and scaled function

(5.40) v(t) = σ
(VI)
κ,N

(
t

N

)
− b1b2

t

N
+
b1b2 + b3b4

2

it is easily shown that v satisfies the equation

N3

(
v′ +

b1b2
N

)
t2
(

1− t

N

)2

(v′′)2

−
(
N(N − 2t)(v′)2 + (2vN + (b1b2 − b3b4)N − 2b1b2t)v

′ + 2vb1b2
)2

+N4
4∏
i=1

(
v′ +

b1b2 − b2i
N

)
= 0.

(5.41)

Now dividing both sides of (5.41) by N4 and, using the explicit form of the N -dependent
parameters b1, . . . , b4 in (1.27) (recall that α = κ and β = N), the limit N →∞ gives the
equation

(5.42) (tv′′)2 −
(
2(v′)2 − tv′ + (2k + κ)v′ + v

)2
+ 4(v′)2(v′ + k)(v′ + κ+ k) = 0,

which is precisely the σ-form of Painlevé V (1.16) with parameter α = κ. Thus

(5.43) lim
N→∞

P
(
λ

(JUEk,κ,N )
max <

2u

N

)
= exp

(
−
ˆ ∞

2u

v(t)

t
dt

)
.

Clearly these scaling heuristics are consistent with Theorem 1.8.
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Appendix A. Relation to central limit theorems and the Gaussian free field

In this appendix we will discuss the asymptotic expansion in Theorem 1.3 when z is
in the exterior region |z| > 1 + δ where δ > 0 is fixed. As with the proof of Theorem 1.3,
we take the duality 3.1 as our starting point. In particular, rescaling equation (3.4) via

tj → tj
√
N for each j = 1, . . . , k gives the identity

(A.1) E
(
|det(GN − z)|2k

)
=

Nk2∏k−1
j=0(j!(j + 1)!)

I
(2k)
N (z)

where

(A.2) I
(2k)
N (z) :=

ˆ
[0,∞)k

k∏
j=1

e−Nφ(tj)∆2(~t) d~t

and

(A.3) φ(t) = t− log(|z|2 + t).

For |z| > 1 fixed, the function φ(t) achieves its minimum at t = 0, the endpoint of
integration. We have,

(A.4) φ(t) = −2 log |z|+ t(1− |z|−2) +O(t2), t→ 0.

Therefore by classical saddle point arguments we get the approximation

I
(2k)
N (z) ∼ |z|2Nk

ˆ
[0,∞)k

k∏
j=1

e−Ntj(1−|z|
−2) ∆2(~t) d~t

= |z|2NkN−k2(1− |z|−2)−k
2
k−1∏
j=0

j!(j + 1)!

(A.5)

where we used the Selberg integral type formula (see e.g. [36, Chapter 4])

(A.6)

ˆ
[0,∞)k

k∏
j=1

e−tj ∆2(~t) d~t =
k−1∏
j=0

j!(j + 1)!.

Now inserting (A.5) into (A.1) we obtain the asymptotic expansion

(A.7) E
(
| det(GN − z)|2k

)
= e2Nk log |z|−k2 log(1−|z|−2) (1 + o(1)) , N →∞.

The expansion (A.7) could also be arrived at from the global fluctuation theory of
smooth linear statistics studied in [6,62]. In this sense, we have the interpretation

(A.8) E (| det(GN − z)|γ) = E(eγLN [fz ])

where

(A.9) LN [fz] := log |det(GN − z)| =
N∑
j=1

fz(λj), fz(λ) := log |λ− z|,

and if |z| > 1, fz(λ) is a smooth function of λ on the eigenvalue support. In fact consider
a general linear statistic

(A.10) LN [f ] :=
N∑
j=1

f(λj)

where λj are the N eigenvalues of the complex Ginibre random matrix GN . Then for
sufficiently smooth f , it holds that

(A.11) E(eγLN [f ]) = eNγm1(f)+ γ2

2
m2(f) (1 + o(1)) , N →∞,
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where the asymptotic mean is

(A.12) m1(f) =
1

π

ˆ
D
f(λ) d2λ

and the asymptotic variance is given by

(A.13) m2(f) =
1

4π

ˆ
D
|∇f(λ)|2 d2λ+

1

2

∞∑
k=−∞

|k||f̂(k)|2

where f̂(k) = 1
2π

´ 2π
0 f(eiθ)e−ikθ dθ. The gradient squared term in (A.13) is associated with

Gaussian free field fluctuations, again see [62] for discussion about this. In the particular
case of fz(λ) = log |λ− z|, |z| > 1, the mean and variance can be computed explicitly from
these formulae as m1 = log |z| and m2 = −1

2 log(1 − |z|−2). Setting k = γ
2 then shows

the agreement between (A.7) and (A.11), leading to expansion (3.46). On the other hand
when |z| ≤ 1 or z is too close to the boundary, fz(λ) lacks smoothness on the support of
the eigenvalues and the asymptotic expansion (A.11) takes a more complicated form, as
Theorems 1.2 and 1.3 demonstrate.
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ensemble of random matrices and quantum operations. J. Phys. A, 45(7):075203, 31, 2012.

[34] A. S. Fokas, A. R. Its, A. A. Kapaev, and V. Y. Novokshenov. Painlevé transcendents. The Riemann-
Hilbert approach, volume 128 of Mathematical Surveys and Monographs. American Mathematical
Society, Providence, RI, 2006.

[35] P. J. Forrester. Quantum conductance problems and the Jacobi ensemble. J. Phys. A, 39(22):6861–6870,
2006.

[36] P. J. Forrester. Log-gases and random matrices, volume 34 of London Mathematical Society Monographs
Series. Princeton University Press, Princeton, NJ, 2010.

[37] P. J. Forrester and E. M. Rains. Matrix averages relating to Ginibre ensembles. J. Phys. A, 42(38):385205,
13, 2009.

[38] P. J. Forrester and N. S. Witte. Application of the τ -function theory of Painlevé equations to random
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equations. eprint = arXiv:1904.07518, 2019.
[66] C. Webb. The characteristic polynomial of a random unitary matrix and Gaussian multiplicative

chaos—the L2-phase. Electron. J. Probab., 20:no. 104, 21, 2015.
[67] C. Webb and M. D. Wong. On the moments of the characteristic polynomial of a Ginibre random

matrix. J. London Math. Soc., 118(5):1017–1056, 2018.
[68] N. S. Witte, P. J. Forrester, and C. M. Cosgrove. Gap probabilities for edge intervals in finite Gaussian

and Jacobi unitary matrix ensembles. Nonlinearity, 13(5):1439–1464, 2000.
[69] A. Zabrodin and P. Wiegmann. Large-N expansion for the 2D Dyson gas. J. Phys. A, 39(28):8933–8963,

2006.
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