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Abstract

This thesis aims to develop various statistical methods for analysing the data derived
from genome wide association studies (GWAS). The GWAS often involves genotyp-
ing individual human genetic variation, using high-throughput genome-wide single
nucleotide polymorphism (SNP) arrays, in thousands of individuals and testing for
association between those variants and a given disease under the assumption of
common disease/common variant. Although GWAS have identified many potential
genetic factors in the genome that affect the risks to complex diseases, there is still
much of the genetic heritability that remains unexplained. The power of detecting
new genetic risk variants can be improved by considering multiple genetic variants
simultaneously with novel statistical methods. Improving the analysis of the GWAS
data has received much attention from statisticians and other scientific researchers
over the past decade.

There are several challenges arising in analysing the GWAS data. First, de-
termining the risk SNPs might be difficult due to non-random correlation between
SNPs that can inflate type I and II errors in statistical inference. When a group of
SNPs are considered together in the context of haplotypes/genotypes, the distribu-
tion of the haplotypes/genotypes is sparse, which makes it difficult to detect risk
haplotypes/genotypes in terms of disease penetrance.

In this work, we proposed four new methods to identify risk haplotypes/genotypes
based on their frequency differences between cases and controls. To evaluate the
performances of our methods, we simulated datasets under wide range of scenarios
according to both retrospective and prospective designs.

In the first method, we first reconstruct haplotypes by using unphased geno-
types, followed by clustering and thresholding the inferred haplotypes into risk and
non-risk groups with a two-component binomial-mixture model. In the method,
the parameters were estimated by using the modified Expectation-Maximization al-
gorithm, where the maximisation step was replaced the posterior sampling of the
component parameters. We also elucidated the relationships between risk and non-
risk haplotypes under different modes of inheritance and genotypic relative risk.

In the second method, we fitted a three-component mixture model to genotype
data directly, followed by an odds-ratio thresholding.

In the third method, we combined the existing haplotype reconstruction software
PHASE and permutation method to infer risk haplotypes.



iii

In the fourth method, we proposed a new way to score the genotypes by clus-
tering and combined it with a logistic regression approach to infer risk haplotypes.

The simulation studies showed that the first three methods outperformed the
multiple testing method of (Zhu, 2010) in terms of average specificity and sen-
sitivity (AVSS) in all scenarios considered. The logistic regression methods also
outperformed the standard logistic regression method.

We applied our methods to two GWAS datasets on coronary artery disease
(CAD) and hypertension (HT), detecting several new risk haplotypes and recovering
a number of the existing disease-associated genetic variants in the literature.
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1. INTRODUCTION

1.1 Genetic problems

In the past decades, much attention has been paid to complex diseases such as coro-
nary artery disease (CAD) and hypertension (HT), which are potentially caused by
both genetic and environmental factors. The genetic factors are often attributed
to genetic variants (or polymorphisms), the sites where genetic alleles are varying
across individual genomes. It is well-known that although genetic variants can have
undetectable marginal effects on the risk of a complex disease, they may have a
significant effect as a group due to interactions between variants. Therefore, simul-
taneously considering disease-associated variants can help us detect risk variants and
develop medicines for curing the diseases. Multi-locus genotypes and haplotypes are
commonly used to account for the interactions among the variants. Before the com-
pletion of Human Genome Project, due to the limitation of biological technology,
researchers were only able to focus their studies on a small proportion of regions
in genome. After the completion of Human Genome Project, with developments
in single-nucleotide polymorphism (SNP) genotyping technology, genome-wide asso-
ciation studies (GWAS) have become a feasible and powerful approach to uncover
genetic variants with much better resolution by examining hundreds of thousands
of SNPs distributed across the whole genome. Most of the existing genome-wide
association studies are based on the hypothesis of common disease/common variant
(CDCV). Despite the number of genetic variants identified, a large proportion of
heritability has not been explained. Rare variants are believed to play an important
role in the missing heritability. Studying rare variants and pinpointing the causal
alleles accurately provide both opportunities and challenges to modern statistics.

1.2 Statistical challenges

One of early GWAS projects is theWelcome Trust Case Control Consortium (WTCCC)
study on seven complex diseases including CAD and hypertension. In the project,
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more than 5 × 105 SNPs of more than 14000 unrelated cases (diseased individu-
als) and 3000 unrelated shared controls (non-diseased individuals) were employed
to find disease-associated variants for each disease. Significant progress has been
made recently on analysing the WTCCC data (e.g., Kang et al., 2008; Zhu et al,
2010). Various statistical screenings based on odd ratio, logistic regressions, χ2 and
Fisher’s exact tests have been conducted to identify the disease-associated SNPs of
several complex diseases (Weir, 2005; Zhu et al., 2010; Burton et al., 2007).

Despite of this progress, analysing SNP data still faces a number of challenges
related to the problems of missing data, low minor allele frequency, long distance
correlation between SNPs, multiple test adjustments, and population substructures,
data quality control, and among others. For example, in fitting a logistic regression
model to genotypes, a large number of degrees of freedom will be involved, which may
cause model over fitting. In contrast, fitting a logistic model to the corresponding
hyplotypes is better because haplotypes have a lower dimensionality than genotypes.
Unfortunately, as the haplotypes cannot be observed directly, they are required to
infer from the unphased genotype data (Stephen, 2001). There are several software
which can be used to reconstruct haplotypes from the unphased genotypes such as
PHASE (Stephen, 2001) and the Expectation-Maximization (EM) (Excoffier and
Slatkin, 1995). The disadvantage of using inferred haplotypes is uncertainty associ-
ated with the above haplotype reconstructing process. In fact, the uncertainty may
result in underestimating the variation in the data, inflating the type I error.

A closely related issue is the sparsity of genotype/haplotype distributions and
high-dimensionality of genotypes/haplotypes, where the counts are often concen-
trated on a few ones out of a large number of genotypes/haplotyeps. To address the
issue, researchers have proposed variety of clustering-based methods. In these meth-
ods, haplotypes/genotypes are divided into several subgroups or clusters based on
their association with a disease. We assume that the haplotypes/genotypes within
the same subgroup have the same risk probability of random effects (Templeton et
al., 1987; Molitor et al., 2003; Zhu et al., 2010; Morris, 2005; 2006). Such methods
are usually implemented via two or more stages: In the first stage, haplotypes or
genotypes are grouped, while in the second stage the risk haplotypes are detected
by using various test statistics, such as Z-tests and odd ratio tests. An alternative
way is to fit a logistic regression model to clustered haplotypes rather than SNPs
(Huang et al., 2011).

Modern statistics faces many challenges in analysing the GWAS data, which are
summarised as follows.
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1. Finding the causal SNPs of a disease can be difficult as these SNPs may be
highly correlated with each other. This means even if we find that a SNP is
associated with a disease, the risk may come from other SNPs nearby.

2. Considering multiple-SNP regions can give rise to the problem of high di-
mensionality of genotypes/haplotypes. Yet, inference on risk variants may be
difficult and inaccurate due to rarity of some haplotypes/genotypes.

3. Haplotype-structures are unknown in the real data as we observed SNP data
in terms of genotypes only. Therefore, inferring their structures by using sta-
tistical methodology such as PHASE may result in reconstructing uncertainty
as pointed out before.

4. Non-diseased individuals (controls sample) in the real data come from different
sub-populations, which will increase the false positive rate. Moreover, some
of the SNP genotypes are of very low frequencies. As a result, significant
differences between genotypes counts derived from different sub-populations.

5. Mode of inheritance can result in an increase of false discovery rate. For
example, a dominant mode can inflate type I error and recessive model can
inflate type II error when the genotype relative risk (GRR) or the sample size
is small.

1.3 Contributions of the thesis

This thesis aims to address the above challenges by considering a group of SNPs
simultaneously. I will find the evidences about their associations with a disease of
interest on the basis of both haplotypes and genotypes.

The contributions of this thesis are as follows: (1) I develop prospective mix-
ture models for clustering haplotypes and genotypes and for identifying risk hap-
lotypes. (2) I propose a new logistic regression model for genotypes. (3) I put
forward a permutation-based approach for identifying risk haplotypes. A large sim-
ulation studies have been conducted for the above methods and models under both
prospective and retrospective settings. The proposed methods and models have
been applied to the WTCCC data on CAD and hypertension, identifying a few
more disease-associated haplotypes than in the literature.
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1.4 Arrangement of the thesis

In Chapter 2, some genetic and statistical background are introduced and a lit-
erature review on the topic is conducted. In Chapter 3, a novel two-component
haplotype mixture model is proposed for clustering haplotypes and is applied to
the simulated and real data sets on CAD and hypertension (HT). In Chapter 4, a
novel three-component genotype mixture model is developed for detecting disease-
associated haplotypes with applications to the simulated and real data sets. Two
papers based on Chapters 3 and 4 have been submitted to two journals. In Chapter
5, a new permutation-based method is introduced and illustrated by applications to
the simulated and real data sets. In Chapter 6, a new logistic regression model is
proposed and evaluated by its applications to the simulated and real data sets. In
Chapter 7, a conclusion is made for this thesis. In particular, a brief discussion on
the quality of the results and on the advantages and disadvantages of the proposed
methods are presented. The potential future work is also pointed out.



2. BACKGROUND AND LITERATURE REVIEW

Population association studies are a key tool in determining genetic variants which
affect the susceptibility to a complex disease. These variants can be produced by
genetic drift, natural selection, mutation and recombination. The difference of an
allele at a variant site in population groups reflects its associations with certain
human trait. The higher the difference is, the more likely the genetic variant is
associated with the trait.

Here, we focus on SNPs and their relationships to a disease and develop some
statistical methods for this purpose. I start with an introduction to the background,
followed by a literature review on the existing methods.

2.1 Single-Nucleotide Polymorphism (SNP)

Since a long time ago, geneticists have used phenotypes, protein sequencing, elec-
trophoresis and microsatellites in order to detect the genetic differences across indi-
viduals in terms of the deoxyribonucleic acid (DNA) sequences. After new biotech-
nologies such as Microarrary Gene Chip being invented, detecting single-base dif-
ferences has become possible in experiments under various biological conditions or
different phenotypes (Kwok, 2003). Since then, the term of single-base differences
in DNA amongst individuals has been known as single-nucleotide polymorphism
(SNP) (and pronoun snip), see Figure (1.2). Each gene (or segment) in an entire
DNA sequences often contains multiple SNPs.

As probable as it may seem, it has been proved beyond doubt that variations
in genes may contribute to certain diseases. This can be seen from two aspects of
genetic variants. Firstly, any disorder in DNA sequence can result in differences in
gene regulations which in turn result in some diseases. Secondly, provided that some
of chromosomes’ genes are coded for specific proteins, any variations in their SNP
alleles may cause differences in their functions and their expressions (Balding et al.,
2007).
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Fig. 2.1: The image from http://www.dnabaser.com/articles/SNP/SNP-single-nucleotide-
polymorphism.html shows a segment of diploid DNA with one SNP

Tab. 2.1: Different sequences of two DNA segments of five individuals at the same positions on a
chromosome pair. The segments comprise three SNPs at three loci coloured by different
colours. Each SNP involves two alleles which are vary across individuals. The sequence
of the three alleles at the same segment is called haplotype. Each pair of haplotypes is
called genotype.

Individuals chromosomes DNA segment with 3 loci haplotypes genotypes

Individual 1 chromosome 1 ...ACCTGTAATCGGGTCA... TAT genotype 1
chromosome 2 ...ACCGGTATTCGGGCCA... GTC

Individual 2 chromosome 1 ...ACCTGTAATCGGGTCA... TAT genotype 2
chromosome 2 ...ACCTGTATTCGGGTCA... TTT

Individual 3 chromosome 1 ...ACCGGTATTCGGGCCA... GTC genotype 3
chromosome 2 ...ACCGGTATTCGGGCCA... GTC

Individual 4 chromosome 1 ...ACCTGTAATCGGGTCA... TAT genotype 4
chromosome 2 ...ACCTGTAATCGGGTCA... TAT

Individual 5 chromosome 1 ...ACCTGTAATCGGGTCA... TAT genotype 5
chromosome 2 ...ACCGGTATTCGGGTCA... GTT

The position of a SNP on a chromosome is so called locus (plural loci). Most
of which are based on pair of alleles within a diploid chromosome. Each pair is so
called genotype, whereas each allele is so called haplotype. The extension of the
notion leads to multi-locus studies by which more than one locus is conducted for a
study. A commonly way for detecting SNPs (or haplotypes) underlying a particular
disease is to consider groups of individuals under different conditions or traits (Weir,
1996).

In the following, I will introduce some basic ideas on population genetics.
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2.1.1 Genotype/haplotype frequencies and their estimation

Suppose that we have a sample of genotype observations on a binary locus with
alleles C and T for N individuals in a sample with counts n1, n2 and population
frequencies p1, p2, respectively. The possible genotypes for this locus will be CC, CT
and TT. Let the genotype counts denoted by N1, N2, N3 with population frequencies
q1, q2, q3. The counts of these genotypes are random variables following multinomial
distribution (Weir, 1996).

Pr(N1, N2, N3) = N !
N1!N2!N3!

qN1
1 qN2

2 qN3
3 ,

whereas the distribution of alleles C and T is binomial, which can be written as

Pr(n1, n2) = (2N)!
n1!n2!

pn1
1 p

n2
2 .

We can then derive the relationship of genotypes and haplotypes counts(or frequen-
cies) as follows:

n1 = 2N1 +N2 and n2 = 2N3 +N2, (2.1)

N = N1 +N2 +N3, n1 + n2 = 2N.

Similarly,
p1 = q1 + 1

2q2, p2 = q3 + 1
2q2, (2.2)

where
q1 + q2 + q3 = p1 + p2 = 1.

However, in many cases, the population frequencies of genotypes as well as their
alleles are unknown, so we may use their sample counts to estimate them by

p̂1 = n1

2N and q̂1 = N1

N
. (2.3)

The above model and estimation can be easily extended to the case of multiple-
locus genotypes/haplotypes, where a multinomial model is required.

Many other methods have been introduced to estimate population frequencies
such as Maximum Likelihood Estimation (Weir, 1996; Excoffier and Slatkin, 1995;
McLachlan and Peel, 2003). We will use some of them in the upcoming chapters.
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2.1.2 Hardy-Weinberg Equilibrium

The relationship between the frequencies of the genotypes and their haplotypes
is important as far as association with diseases is concerned. Therefore, Hardy
(1877-1947) and Weinberg (1862-1937) independently formulated what is now called
Hardy-Weinberg model in 1908. The mathematical relationship between the fre-
quencies of the single-locus genotypes and haplotypes can be described by:

q1 = p2
1; q2 = 2p1p2; q3 = p2

2,

for a given SNP on a chromosome with two alleles C and T. Hardy-Weinberg Equilib-
rium (HWE) can be applicable only when some assumptions hold in the population
(Hartl and Clark, 1997). These assumptions include that (1) the individuals under
study should be diploid; (2) no overlapping exists amongst generations; (3) muta-
tion is not important; (4) alleles under study are not affected by natural selection;
(5) migration is trivial; (6) the size of population is large; (7) individuals are mated
randomly; and (8) SNPs are biallelic (involve two alleles only). If any of these
assumptions is not true, we then say the population under Hardy-Weinberg disequi-
librium, by which the alleles of a particular locus or the haplotypes of multi-locus
regions are not under random mating (Weir, 1996 ). The mathematical relationship
between genotypes and alleles frequencies is given by

q1 = p2
1 +DC ; q2 = 2p1p2 − 2DC ; q3 = p2

2 +DC ,

which implies
DC = q1 − p2

1,

where DC is called disequilibrium coefficient. The MLE of DC is

D̂C = q̂1 − p̂2
1.

The expected value of this estimation can be calculated by the formulas

E(D̂C) = DC + 1
2N [p1(1− p1) +DC ],

and
V ar(D̂C) = 1

N
[p2

1(1− p1)2 + (1− 2p1)2DC −D2
C ].

The latter formula can be simplified by using Fisher variance approximation

D̂C ∼ N(E(D̂C), V ar(D̂C)),
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provided the sample size is relatively large. Hence, under the null hypothesis H0 :
DC = 0, the following statistics

z = D̂C − E(D̂C)√
V ar(D̂C)

is distributed as standard normal. We can use this as a test statistic to find out
whether a population is under HWE or not. This is equivalent to testing the null
hypothesis H0 : DC = 0. Additionally, there are two more tests which can be
used for the same purpose, namely, Fisher exact test and likelihood ratio test. The
HWE can be extended to the case of multiple-locus genotypes/haplotypes in terms
of random mating.

HWE is an important assumption in testing the association between the frequen-
cies of the haplotypes and the phenotypes under the null hypothesis of no association
between them. If the association is found, the proportion of genotypes (or haplo-
types) in cases will then differ significantly from the ones in controls. Furihata,
Ito and Kamatani (2006) found a method, which is so called likelihood-based algo-
rithm PENHAPLO, to test the association when the HWE assumption was invalid
in cases.

2.2 Mode of inheritance

Mode of inheritance refers to the way that genetic variants affect the probability
of being diseased. It can be determined by a function that is so called penetrance
by which the conditional probability of being affected, given a specific genotype.
There are several modes which can be defined according to the relationships between
haplotype risks and genotype risks. For simplicity, we consider a single-locus with
two alleles (or haplotyopes). Let allele D be the risk allele and N be the non-risk
allele. The possible genotypes will be DD, ND and NN. We can then define the
penetrance functions as follows:

f0 = P ( affected |NN), f1 = P ( affected |ND) and f2 = P ( affected |DD)

Let λ denote the genotypic relative risk (GRR), so that

λ = P ( affected |DD)
P ( affected |NN)
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Hence, modes of inheritance can be defined as follows (Hartl and Clark, 1997):

1. Dominant model: The risk of getting disease will increase in amount of λ,
given the individual’s genotype is type ND or DD.

f2 = f1 = λf0.

2. Recessive model: The risk of getting disease will increase in amount of λ, given
the individual’s genotype is only type DD.

f2 = λf0, f1 = f0.

3. Multiplicative model: The risk of getting disease will increase in amount of λ,
given the individual’s genotype is type DD and in amount of

√
λ, given the

individual’s genotype is type ND.

f2 = λf0, f1 =
√
λf0

The notation can be easily extended to the case of multiple-locus genotypes/haplotypes
(Hartl and Danial, 1997).

2.3 Maximum likelihood method

The maximum likelihood method is the most common method for estimating param-
eters in a parametric model. Let us consider the locus we mentioned in Section 2.1.1.
The likelihood function can be written as

L(pc) = (2N)!
n1!n2!

p1
n1(1− p1)(n2),

where
2N = n1 + n2 and p1 + p2 = 1.

The log-likelihood function can be written as

logL(p1) = c+ n1 log p1 + n2 log(1− p1),

where c is a constant.
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On equating
∂ logL(p1)

∂p1

to zero and solving the equation, we have

∂(p1)
∂p1

= n1

p1
− n2

1− p1
= 0

⇒ p̂1 = n1

2N .

Similarly, we have

p̂2 = n2

2N .

2.4 Finite mixture model

Let n1, n2, ..., nJ denote a random sample of size N , where nj, 1 ≤ j ≤ J is a
d-dimensional random vector with probability density function f(nj; θ) on <d. Sup-
pose that nj can be classified into k subgroups based on the similarity and the
dissimilarity of these observations. This can easily be conducted by using the mix-
ture model given by

f(nj; θ) =
k∑
i=1

πif(nj; pi),

where θ = (π1, ..., πk−1; p1, ..., pk)T , and k is the number of components in the model,
0 ≤ πi ≤ 1 is the mixed weights and ∑k

i=1 πi = 1.

The likelihood of θ given data n can be calculated by

L(θ|n) =
J∏
j=1

k∑
i=1

πif(nj; pi), (2.4)

The log likelihood can be written as

l(θ|n) =
J∑
j=1

log
k∑
i=1

πif(nj; pi), (2.5)

The above likelihood in the equation 2.5 is called the incomplete likelihood. To
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formulate the complete one, we need to define group membership indicators. For
simplicity, let us assume that k=2 when we are interested in finding the risk and
non-risk haplotypes. The haplotypes can be denoted by {Hj, 1 ≤ j ≤ J}, and
θ = (π, pr, pTr), where pr, pr refer to risk and non-risk haplotype group, respectively.
With that, group membership indicators can be defined by Ijr and Ijr̄,

Ijr =

 1, Hj in the risk group
0, otherwise

, Ijr̄ =

 1, Hj in the non-risk group
0, otherwise

for 1 ≤ j ≤ J . Set I = {(Ijr, Ijr̄)T : 1 ≤ j ≤ J}.

To this end, the log-likelihood in the equation 2.5 can be written as

l(θ|n, I) =
J∑
j=1

{
Ijr log(πf((n0j , n1j)T |pr)) + Ijr̄ log((1− π)f((n0j , n1j)T |pr̄))

}
, (2.6)

where nj = n0j + n1j.

Calculating the maximum likelihood estimation of θ can be difficult analytically.
Therefore, some of iterative methods can be employed to calculate the ML estima-
tors numerically. A common way is by employing Newton raphson method or EM
algorithm.

2.4.1 Newton-Raphson algorithm

Given the incomplete likelihood in the equation 2.5, Newton-raphson method can be
used to find the ML of θ. To illustrate the basic idea behind it, let S(n; θ) denote the
score and M(θ; n) denote (Fisher) information matrix of the log-likelihood in 2.5,
where θ = (π, pr, pr̄). We then have

S(n; θ) = ( ∂l
∂π
,
∂l

∂pr
,
∂l

∂pr̄
)T ,

and

M(θ; n) =


− ∂2l
∂π2 − ∂2l

∂π∂pr
− ∂2l
∂πpr̄

− ∂2l
∂π∂pr

− ∂2l
∂p2
r
− ∂2l
∂pr∂pr̄

− ∂2l
∂π∂pr̄

− ∂2l
∂pr∂pr̄

− ∂2l
∂p2
r̄

 .
By Taylor’s theorem, we can expand the derivative of the log-likelihood around θ(t).
This gives

S(n; θ) ≈ S(n; θ(t))− (θ − θ(t))M(θ(t); n).
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Solving the above equation gives

θ(t+1) = θt +M−1(θ(t); n)S(n; θ(t)).

We repeat these steps until getting convergence to certain values (McLachlan and
Krishnan, 2008).

2.4.2 EM algorithm

EM algorithm is an iterative method to find ML of θ by maximising the log-likelihood
in (2.6). This algorithm can be performed in two steps: expectation step and
maximization step (McLachlan and Peel, 2000a).

Given the current value θ(t) = (p(t)
r , p

(t)
r̄ , π

(t))T and the data n, we first calculate
the current log-likelihood l(θ(t)|n). Then, in the E-step, we calculate the expectation
of the complete-data log-likelihood with respect to I,

Q(θ, θ(t)) = E[l(θ|n, I)|n, θ(t)]

=
J∑
j=1

(τ (t)
jr log(π) + τ

(t)
jr̄ log(1− π))

+
J∑
j=1

(τ (t)
jr log(f((n0j, n1j)T |pr)) + τ

(t)
jr̄ log(f((n0j, n1j)T |pr̄))),

where

τ
(t)
jr = P (Ijr = 1|(n0j, n1j)T , θ(t)) = π(t)f((n0j, n1j)T |p(t)

r )
π(t)f((n0j, n1j)T |p(t)

r ) + (1− π(t))f((n0j, n1j)T |p(t)
r̄ )

,

τ
(t)
jr̄ = P (Ijr̄ = 1|(n0j, n1j)T , θ(t)) = π(t)f((n0j, n1j)T |p(t)

r̄ )
π(t)f((n0j, n1j)T |p(t)

r ) + (1− π(t))f((n0j, n1j)T |p(t)
r̄ )

.

In the M-step, we update θ(t) by solving the partial derivatives equations

∂Q

∂π
= 0, ∂Q

∂pr
= 0, ∂Q

∂pr̄
= 0.

We obtain

π(t+1) =
∑J
j=1 τ

(t)
jr

J
, p(t+1)

r =
∑J
j=1 τ

(t)
jr n1j∑J

j=1 τ
(t)
jr (n1j + n0j)

, p
(t+1)
r̄ =

∑J
j=1 τ

(t)
jr̄ n1j∑J

j=1 τ
(t)
jr̄ (n1j + n0j)

.

An important use of this algorithm is to classify the data n into risk and non-
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risk groups. Based on τ (t+1)
jr and τ (t+1)

jr̄ , the estimated risk and non-risk haplotype
clusters can be defined by

S(t+1)
r = {Hj : τ (t+1)

jr > τ
(t+1)
jr̄ }, S

(t+1)
r̄ = {Hj : τ (t+1)

jr ≤ τ
(t+1)
jr̄ }.

We will show how this algorithm works practically in our approach as we use it
to estimate parameters of interest.

2.5 Multi-locus haplotype inference

A sequence of the alleles at different loci on a chromosome is so called haplotype.
As each locus is based on two alleles, the possible number of different haplotypes
resulted from k SNPs will be 2k. Haplotypes-based studies are more important than
studying SNPs as the latter do not account for the joint behavior of SNPs very well
when they are highly correlated to each other. However, we might find evidence
of association for one haplotype or many by conducting simultaneous analyses of
multiple SNPs that may jointly provide such evidence.

The functional aspects of protein are identified by a sequence of amino acids,
corresponding to DNA variations on a haplotype (Clark, 2004). However, in most
(if not all ) of these studies, haplotypes are generally unknown. Therefore we need
to infer them by using available or known genotype data by using some programs
such as PHASE (Stephens et al., 2001) or fastPHASE (Scheet and Stephens, 2006)
which implement a bayesian framework to phase estimation.

2.5.1 Haplotype reconstructing

Excoffier and Slatkin(1995) proposed a method to reconstruct haplotypes. As-
sume that a sample of n diploid individuals are observations from a population.
Let G = (G1, G2, ....., Gn) denote the genotypes for these individuals, and H =
(H1, H2, ...., Hn) the unknown haplotype pairs that produced G, whereHj = (H1j, H2j).
Let h = (h1, h2, ...., hk) denote all possible haplotypes that can result in G and
p = (p1, p2, ....., pk) be the unknown population frequencies of h. Thus, we can write
the maximum likelihood function as follows

L(p|G) = P (G|p) =
n∏
i=1

P (Gi|p).
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Under HWE,

P (Gi|p) =
mi∑
j=1

P (Hj
i1)P (Hj

i2),

where mi = 2ti−1, and ti is the number of heterozygots in the genotype Gi. To
clarify this point, suppose we have a set G consists of 4 individuals genotypes such
as

G = {(2, 1, 0, 2)T , (1, 1, 0, 0)T , (1, 0, 0, 1)T , (0, 2, 2, 1)T},

where 0, 1 refers to homozygots and 2 refers to heterozygots (Zhang et al., 2005).
In this genotype, there are two heterozygots in this genotype which means it can
be decomposed into 4 possible ways. In addition, there are 8 different haplotypes
that can result in G. Therefore, the possible different haplotypes will be h = {h1 =
(0, 1, 0, 0), h2 = (1, 1, 0, 1), h3 = (0, 1, 0, 1), h4 = (1, 1, 0, 0), h5 = (1, 0, 0, 1), h6 =
(0, 0, 0, 1), h7 = (0, 1, 1, 1), h8 = (0, 0, 1, 1)}, and the 4 possible ways, namely assign-
ments, that we can decompose G into are as follows

H1 = {(h1, h2), (h4, h4), (h5, h5), (h6, h7)}

H2 = {(h1, h2), (h4, h4), (h5, h5), (h3, h8)}

H3 = {(h3, h4), (h4, h4), (h5, h5), (h6, h7)}

H4 = {(h3, h4), (h4, h4), (h5, h5), (h3, h8)}

We use the EM algorithm to estimate the parameters pi’s. We define an indicator
vector Z = (Z1, Z2, ......, Zn), where Zi = (Zi1, Zi2, ...., Zimi),

zij =

 1, if haplotype pair (Hj
i1, H

j
i2) consistent with Gi

0, otherwise
(2.7)

Hence, the complete likelihood can be written as

L(p,Z,G) =
n∏
i=1

mi∏
j=1

[P (Hj
i1)P (Hj

i2)]Zij ,

and the log-likelihood can be written as

logL(p,Z,G) =
n∑
i=1

mi∑
j=1

Zij log[P (Hj
i1)P (Hj

i2)].

As we know that EM algorithm can be done through two steps:
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E-Step:
Q(θ, θ(t)) = E[logL(p,Z|G)|p(t)]

=
n∑
i=1

mi∑
j=1

Ẑij[P (Hj
i1)P (Hj

i2)].

We can calculate Ẑij by using the conditional expectation,

Ẑij = E[Zij|p,G, p(t)] = P (Zij = 1|p,G, p(t))

= P (Gi|Zij = 1, p, p(t))P (Zij = 1|p(t))
P (Gi|p)

=
1
mi

[(P (Hj
i1))

(t)(P (Hj
i2))

(t)]
P (Gi|p)

=
1
mi

[(P (Hj
i1))

(t)(P (Hj
i2))

(t)]∑mi
j=1 (P (Hj

i1))
(t)(P (Hj

i2))
(t) .

Similarly, we can calculate [P̂ (Hj
i )](t) as follows

[P̂ (Hj
i )](t) = E(Hj

i |Zij = 1,G, p, p(t))

= P (Gi|Hj
i , Zij = 1, p, p(t))P (Hj

i |Zij = 1, p(t))
P (Gi|p)

= P (Gi|Hj
i , Zij = 1, p, p(t))(P (Hj

i1))
(t)(P (Hj

i2))
(t)

∑mi
j=1 (P (Hj

i1))
(t)(P (Hj

i2))(t) ,

where Hj
i = (Hj

i1, H
j
i2).

M-Step: We use gene count method to calculate the population frequencies as
follows

p̂
(t+1)
` = 1

2

n∑
i=1

mi∑
j=1

xij[P̂ (Hj
i )](t),

where xij = 0, 1, 2 depends on how many times the haplotype h` present in haplotype
pair Hj

i , ` = 1, 2, ...., k.

To this end, we can use the calculated frequencies to choose Ĥ to maximize
P (H|p̂,G). That is, by choosing the most probable haplotype assignment, given
the genotype data. However, within this procedure, it is not clear how best to re-
construct haplotypes. Stephen, Smith and Donnelly (2001) develop a new technique
to reconstruct haplotypes by using Gibbs Sampling, a type of MCMC algorithm.
This method represents constructing a Markov chain H(0), H(1), H(2), .., with sta-
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tionary distribution P (H|G), in light of all possible haplotype reconstructions. The
steps of their algorithm are as follows:

We assign an initial haplotypes reconstruction H(0). We then choose an individ-
ual ,i, uniformly and at random from all ambiguous individuals. We next sample
H

(t+1)
i from P (Hi|G, H

(t)
−i ), whereH−i is the set of haplotypes excluding individual i.

Having done that, we set H(t+1)
j = H

(t)
j for j = 1, 2.., n, j 6= i. We repeat these steps

enough times until we get a convergence. However, the distribution P (Hi|G, H−i)
is not even known for most models, so that Stephens, Smith and Donnelly (2001)
found out it would be helpful to use the constructing full-conditional distribution
for any haplotype pair Hi = (hi1, hi2) that consistent with Gi. That is,

P (Hi|G, H−i) ∝ P (Hi|H−i) ∝ ψ(hi1|H−i)ψ(hi2|H−i, hi1),

where ψ(.|H) is the conditional distribution of a future sampled haplotype, given a
set H of previously sampled haplotypes. This distribution is also not known gener-
ally in many occasions. However, it is known in special case of parent-independent
mutation which means that the type of a mutant offspring and the type of parent are
independent. To improve and fasten the procedure, we calculate ψ(h|H) as follows

ψ(h|H) =
∑
α∈E

∞∑
s=0

rα
r

( θ

r + θ
)s r

r + θ
(P s)αh,

where r is the total number of haplotypes in H, rα is the number of haplotypes
of type α in the set H, E refers to the countable set of types of mutation models,
θ is the scaled mutation rate, s is sampled from geometric distribution, and P is
the(reversible) mutation matrix.

2.5.2 SNP array segmentation

A large number of SNPs can result in sparsely distributed haplotypes with many
rare haplotypes, which makes it difficult to detect their associations with the disease.
Therefore, some statistical approaches are required to handle the rare haplotypes
for complex traits in a population. The existing methods include the two-stage
(or multiple Z-testing) method (Zhu et al., 2010), sibpair and odds ratio weighted
sum statistics (SPWSS,ORWSS) (Feng et al., 2011), and weighted haplotype and
imputation-based test (Li et al., 2010). Detecting the associations of haplotypes
with the disease by using conventional statistics such as chi-square test and odds
ratio test can suffer from the problem of multiple testing adjustment due to the high
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dimensionality of haplotypes. To overcome the above limitation, in this thesis, I first
segmentate the SNP array and then reduce the number of tests by use of clustered
haplotypes/genotypes, rather than individual haplotypes/genotypes.

2.6 Genome-wide association studies

Genome-wide association studies (GWAS) have played an important role in identify-
ing genetic polymorphisms contributing to complex human diseases. With the rapid
pace of developing SNP genotyping technology, a large number of markers (some
times greater than 500000) have been considered by many researchers for a large
number of individuals to investigate the effects of genetic variants on diseases. The
earlier studies have focused on multiple single-locus analyses with an appropriate
adjustment for multiple testing effects (Balding et al., 2007).

The problems of high dimensionality, sparsity problems, and linkage disequilib-
rium can arise from GWAS. In the following sub-section, I will review some existing
methods of detecting rare risk variants.

2.6.1 Case-control studies of SNPs with a disease

Studying contributions of SNPs to a disease can be performed by taking two samples
of individuals from a population: one with the disease(cases) and the other without
the disease (control). For simplicity, assume that the alleles of the suspicious SNP
are {C, T}. But the following tests can be extended to the case of multiple-loci.
We use chi-square to test the null hypothesis of no association between SNP and
disease. To do so, we represent a contingency table of the observed and the expected
genotypes counts for cases and controls (see table (2.2)).

Tab. 2.2: Contingency table of genotypes counts for Cases and Controls. In this table 1, 0 refer
to genotypes counts in cases and controls respectively.

Case Control
Genotype CC CT TT CC CT TT

Observed counts n1
CC n1

CT n1
TT n0

CC n0
CT n0

TT

Expected counts n1[p̃2
C ]1 2n1[p̃C(1− p̃C)]1 n1[(1− p̃C)2]1 n0[p̃2

C ]0 2n0[p̃C(1− p̃C)]0 n0[(1− p̃C)2]0

Observed-Expected n1D̂1
C −2n1D̂1

C n1D̂1
C n0D̂0

C −2n0D̂0
C n0D̂0

C
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. The chi-square test can be calculated by

χ2 =
∑
cases

∑
genotypes

(Observed− Expected)2

Expected
.

We compare the value of the observed test with the tabled one derived from Chi-
square distribution of 2 degrees of freedom. However, if there is any of the classes in
the table with count less than 5, we will then get non-significant value for the test
statistic despite the fact that the SNP could be associated with disease. For this
reason, we need to use a continuity correction of 0.5 in the numerator of chi-square
to overcome such problem (Yates, 1934).

χ2 =
∑
cases

∑
genotypes

(|Observed− Expected| − 0.5)2

Expected

In many cases, some diseases can result from more than one SNP. Therefore, some
statistical methods are needed to detect the association between SNPs and disease
such as multi loci(or haplotype) methods. We will mention some of these methods
in the coming sections.

In addition, we can use Fisher’s exact test to detect the association, most com-
monly, when we have one of the classes has count less than five. We can fit the
contingency table of the genotypic counts in the cases and the controls as shown in
Table 2.3.

Tab. 2.3: The contingency table of genotypic counts of a locus with two alleles C and T in a
case-control sample.

Genotype CC CT TT Total
Case n1

CC n1
CT n1

TT ncase
Control n0

CC n0
CT n0

TT ncontrol
Total nCC nCT nTT N

We calculate the p as follows

p = ncase! ncontrol! nCC ! nCT ! nTT !
N ! n0

CC ! n0
CT ! n0

TT ! n1
CC ! n1

CT ! n1
TT ! . (2.8)

We then need to form all the other samples that follow the prospective and retro-
spective distribution of the observed data in Table 2.3. We calculate {pi} of all these
samples by using 2.8. The fisher’s exact test equal to ∑pi≤p pi.

The significance of this test is determined by pre-defined significant level.
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2.7 Haplotypes clustering

A challenging issue with haplotype-based analyses is the lack of enough phase in-
formation to reconstruct haplotypes as many haplotypes may be consistent with
unphased genotype data. Rarity is another drawback that we need to cope with
when conducting haplotype-based inference. Several methods in the literature have
been proposed based on classifying haplotypes according to some similarities into
several subgroups and assume the haplotypes of each subgroup have the same effect
on disease prevalence in the sample (Templeton et al., 1987; Molitor et al., 2003;
Morris, 2005; 2006). Zhu et al. (2010) have proposed a multiple testing method
to co-classify the haplotypes in selected subsample based on the difference between
P (haplotype|cases) and P (haplotype|controls) in the first stage of his method.

Fitting a logistic regression model to the clustered haplotypes can be more effi-
cient rather than SNPs in measuring their association with a disease (Huang et al.,
2011), as the haplotypes can be more informative than SNPs in terms of underlying
biological relationships with the disease. However, the rarity and high dimensional-
ity are also challenges in the logistic regression-based analyses (Igo et al., 2009) as
they can result in a high degree of freedom that can undermine the estimation of the
parameters. In the following two subsections, we will describe briefly the method of
Zhu et al. (2010) and the method of the standard logistic regression.

2.7.1 Detecting disease-associated haplotypes

Multiple testing method

Zhu et al. (2010) proposed a method to detect the association between disease
and unrelated cases as well as affected sibpairs. This method can be done through
two stages. The former stage represents co-classifying the rare risk haplotypes in
unrelated cases as well as affected sibpairs. The latter stage represents using Fisher’s
exact test to find out whether the co-classifying haplotypes are associated with
particular disease or not.

Assume that we examine the association of haplotypes with a disease. We first
let H = {H1, H2, ......, Hn} be a set of risk haplotypes with corresponding haplotypes
frequencies p1, p2, ......, pn in affected cases and p0

1, p
0
2, ..., p

0
n in controls, and let Hn+1

be the rest of the non-risk haplotypes with the total frequency pn+1 in cases and
p0
n+1 in controls, respectively. We define the cumulative risk haplotype frequency
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p = ∑n
i=1 pi. Let f2, f1, f0 be the three penetrances and defined as follows

f2 = Pr(affected|HiHj),

f1 = Pr(affected|HiHn+1),

and
f0 = Pr(affected|Hn+1Hn+1),

where i, j = 1, 2, ...., n.

We can then calculate the frequency of a rare risk haplotype Hi in cases as
follows:

hi = Pr(Hi|affected) = Pr(HiHi|affected) + 0.5
∑
j 6=i

Pr(HiHj|affected)

=
f2Pr(HiHi) + 0.5∑j 6=i,j≤n f2Pr(HiHj) + 0.5f1Pr(HiHn+1)

Pr(affected)

=
f2Pr(HiHi) + 0.5∑j 6=i,j≤n f2)Pr(HiHj) + 0.5f1Pr(HiHn+1)∑n
i=1

∑n
j=1 f2Pr(HiHi) +∑n

i=1 f1Pr(HiHn+1) + f0Pr(Hn+1Hn+1)

Given the penetrances, we have

hi = Pr(Hi|affected) = f2p
0
i p

0
i + f2p

0
i (p− p0

i ) + f1p
0
i (1− p)

f2p2 + f12p(1− p) + f0(1− p)2

= f2p
0
i p+ f1p

0
i (1− p)

f2p2 + f12p(1− p) + f0(1− p)2 .

Since we study rare risk haplotypes within a family. It is helpful to consider mode
of inheritance. In the multiplicative mode, we assume that

f2 = ηf0, f1 = √ηf0,

which imply

Pr(Hi|affected) =
ηf0p

0
i p+√ηf0p

0
i (1− p)

ηf0p2 + 2√ηf0p(1− p) + f0(1− p)2

=
ηp0

i p+√ηp0
i (1− p)

ηp2 + 2√ηp(1− p) + (1− p)2

=
[√ηp+ (1− p)]√ηp0

i

[√ηp+ (1− p)]2 =
√
ηp0

i√
ηp+ (1− p) .
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In the Dominant mode, we suppose that

f2 = f1 = ηf0,

which imply

Pr(Hi|affected) = ηf0p
0
i p+ ηf0p

0
i (1− p)

ηf0p2 + 2ηf0p(1− p) + f0(1− p)2

= ηp0
i

ηp(2− p) + (1− p)2 .

In the recessive mode, we suppose that

f2 = ηf0, f1 = f0,

which implies

Pr(Hi|affected) = ηf0p
0
i p+ f0p

0
i (1− p)

ηf0p2 + 2f0p(1− p) + f0(1− p)2 = [p(η − 1) + 1]p0
i

p2(η − 1) + 1 .

At stage 1 of this method, the risk set S can be defined as

S = {Hi|hi − h0
i > µ

√
h0
i (1− h0

i )
2N },

where N is the number of cases used for co-classification, µ is a predefined constant
and hi is the frequency of rare risk haplotype Hi in unrelated cases. We can estimate
h0
i from controls, if it is unknown practically. At stage 2, we use the remaining cases

and controls to refine the haplotypes in S by using fisher’s exact test.

2.7.2 Standard multiple logistic regression

Many studies in the literature have used the standard multiple logistic regression
(SL) to analyse the genotype data. In this subsection, we review a standard way
of fitting the logistic regression to the data in order to find the disease-associated
genotypes (David et al., 2000). The multiple logistic regression model can be written
as follows.

log p(Xi)
1− p(Xi)

= β0 +
J∑
j=1

βjxij, (2.9)
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where 1 ≤ i ≤ n, and Xi = (xi1, xi2, ..., xiJ)T , namely the design variables, J is the
total number of genotypes under study and n is the total number of the individuals.
Here, p(Xi) can be calculated by

p(Xi) = eβ0+
∑J

j=1 βjxij

1 + eβ0+
∑J

j=1 βjxij
. (2.10)

Generally, in the logistic regression model, if there are J design variables with J

values, then J − 1 design variables will be needed to allow an automatic adjustment
for the intercept coefficient β0. Therefore, we let xij, 1 ≤ j ≤ J − 1 take 1 if the
genotype Gj is present in the individual i and 0 if not. Let β = (β0, β1, ..., βJ)T

The likelihood equations may be expressed as follows

L(β) =
n∏
i=1

p(Xi)yi(1− p(Xi))(1−yi)

and the log-likelihood can be calculated by

l(β) =
n∑
i=1
{yi log p(Xi) + (1− yi) log(1− p(Xi))}.

On equating the first derivative of l(β) to zero, we find

n∑
i=1

(yi − p(Xi)) = 0

and
n∑
i=1

xij(yi − p(Xi)) = 0

for j = 0, 1, 2, ..., J. Let β̂ = (β̂0, β̂1, ..., β̂J)T denote the solution for these equations.

As each individual will have only one genotypes, the covariances of β̂ will be
zeros, whereas the variances can be expressed as follows:

∂2L(β)
∂β2

j

= −
n∑
i=1

x2
ijp(Xi)(1− p(Xi))

The observed information matrix M(β) will only have the variances of β̂, and the
estimated standard error of the estimated coefficients will be expressed as follows:

ŜE(β̂j) =
[
V̂ ar(β̂j)

]1/2
,
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for j = 0, 1, ..., J. To this end, finding the importance of the exposure variables in
the model needs to perform a test statistics. The most used ones are likelihood ratio
test, Wald statistics. The likelihood ratio test can be written as

ωj = −2 log(L0

Lj
),

where L0 denote the likelihood of the model without jth variable and Lj denote the
likelihood of the model with jth. ωj will follow χ2 distribution with two degree of
freedom, under the hypothesis that the coefficient βj = 0.

Wald’s test statistics can be expressed as follows:

Wj = β̂j/ŜE(β̂j).

Under the hypothesis that the coefficient βj = 0, these statistics will be distributed
as standard normal.

In our later applications of the standard logistic regression to the simulation,
we used the generalized linear model (GLM) package in python. In declaring the
risk genotypes, we find P-value that corresponds each coefficient. If any of them is
less than a specific significant level, we would declare the corresponding genotype is
potentially risk.

The tests that we discussed previously required large samples to insure asymp-
totic normality or χ2 distributions under the null hypothesis that stated there is
no risk haplotypes or genotypes in the samples. The small sample, on the other
hand, can also examine by permutation test based on exact test or hypergeometric
distribution. The latter test can be performed by representing two-way contingency
table of haplotypes or genotypes counts, providing that the row and column margins
are fixed at their observed values under the null hypothesis. The null hypothesis
here assumes independence of the row and column variables. This procedure can
also be applied to case-control samples by permuting the disease status within the
individual and calculating P-value(Manly, 2007).

This test can be extended to more complicated cases. For example, it can be
used to test the three disease modes: recessive, dominant and multiplicative. In
addition, it can be used to calculate empirical P-value for other tests when it is
hard to be calculated analytically. We will propose a permutation test for inferring
disease-associated genotypes in Chapter 5 of this thesis.
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2.8 Study design

Choosing a study design is determined by the nature of objectives of the study.
For example, selecting a convenient design to undertake genetic data-based analysis
is one of the difficulties that researchers need to overcome. Such difficulties can
arise from the biological complexity underlying such a study, such as the rarity and
high dimensionality of genotypes/haplotypes. One of frequently used designs, called
cohort design is based on choosing a random sample that represents subgroup from
the target population. The sample is then divided into sub-samples based on absence
or presence of the genetic factors of interest. Subsequently, the absence and presence
of a disease are measured. The other popular design, called case-control design is
based on selection of two random samples from the target population, representing
the diseased and non-diseased populations respectively. However, in practice the
cost of the cohort design and the low proportion of a particular disease in the target
population force researches to adopt the case-control design (Nicholas, 2003).

In epidemiological studies many issues need to be handled carefully to prevent
the bias in measuring disease-exposure association. They are related to: 1) The
estimated measure of association based on a randomly selected sample from a pop-
ulation of interest; 2) Assessing the uncertainty of estimation the model parameters
in a random sample; 3) Determining whether an observed association in the sample
is replicable in the population. To study these issues, we first choose the population
to which we conduct our estimation and inference regarding disease-exposure associ-
ation. Due to the cost of such analyses, it may be difficult to find a population that
can avoid all these issues. Therefore, we might choose subgroup of the population
that can represent as many as possible features of the population of interest. Let’s
call this subgroup as representative population, the population that we would like
to sample from. The study sample than can be chosen from the representative pop-
ulation such that it comprises actual sampled individuals from the representative
population. For the individuals of the latter sample, we collect data regarding dis-
ease (or any physical trait), exposures or any other factors of interest (e.g. genetic
factors and environmental factors).

In this work, we are studying a binary trait in which an individual is carrying
disease or not. There are several ways of sampling individuals from the represen-
tative population depending on how we scale the exposure variables or the disease
prevalence. We consider only two designs in our work which are the most suitable
designs for studying genetic data in terms of the high cost of providing data in the
reality. To explain how to sample according to these designs, assume we would like
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to study association of a disease (D) with several exposures, say E1, E2, ..., Ek. The
two design for this purpose will be described below.

2.8.1 Prospective studies

The first design is called exposure-based sampling or (cohort design). In this design,
the sampling is undertaking separately for each distinct cohort which may or may
not vary in it’s exposure level from the others exposures. In sampling individuals
according to this design, we first identify k subgroups of the representative popu-
lation based on the presence of each exposure Ei. We then take a random sample
from each subgroup which represents individuals carrying Ei. Finally, we measure
subsequently the absence and the presence of D for individuals in the k samples of
k different exposures.

2.8.2 Retrospective studies

The second design is called disease-based sampling (or case-control design). In this
design, two samples will be selected from the representative population; one repre-
sents the diseased individuals or cases (D) and the other represents the non-diseased
individuals or controls (D). We the subsequently measure for the presence of each
exposure Ei in the cases and the controls.

The most of the genetic data providers are following the case-control design due
to the high dimensionality and the rarity of the genetic factors (e.g. WTCCC data).
In both designs, we represent the measurements in a 2 × 2 contingency table and
carrying the analysis of association of disease-exposure.

2.9 Specificity and sensitivity

An important way to compare the performances of various test statistics is by using
sensitivity and specificity. Consider the below table as the possible outcomes of
examining m haplotypes. So, under the null hypothesis H0 that a haplotype is not
associated with a disease, we assume that V refers to the number of false positives
or type I errors, S refers to the number of true positives, T refers to the number of
false negatives or type II errors, U refers to the number of true negatives and R is
the number of rejected null hypotheses.
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Tab. 2.4: Outcomes when clustering m hypotheses

Hypothesis Accept H0 Reject H0 Total
H0 True U V m0
H1 True T S m1

W R m

.

Hence, we can measure the adequacy of a test statistics by calculating sensitivity
and specificity, that is:

sensitivity = S

S + T
and specificity = U

U + V
.

We are going to use sensitivity and specificity in comparing our methods to the
multiple testing method and the standard logistic regression method.

2.10 Population substructure

Population substructure refers to the characteristics of a population that make ex-
pected allele frequencies vary across individuals in a population. Although popula-
tion substructure is present, the equation 2.3 still leads to unbiased estimation of the
allele frequency, but that would hold only if the sampling from the target popula-
tion is equally likely. However, sample selection can result in unequal probability of
representing all the subjects in the sample. As a consequence, the sample estimate
may be biased if the genotype frequencies may differ significantly over subgroups.
More than that, the distribution of test statistics, which is computed based on al-
lele frequencies and the variance of the estimators, would be affected by population
substructure even though there is no bias.

Population substructure can result from population stratification by which indi-
viduals in a population sub-classified into mutually exclusive strata. In this type of
population substructure the allele frequency for all individual is same, whereas it dif-
fers between strata. Here the strata could be racial, ethnic or geographic subgroups.
Another reason for population substructure could be admixture in a population that
come from the mixing of two populations which have different genetic ancestries.
Take migration as an example, it can lead to large difference in allele frequencies in
the population (Hartl and Clark, 1997).



2. Background and Literature Review 28

2.11 Handling population substructure

Several approaches, in the literature, have been proposed to deal with population
substructure. In this thesis, we mention three types of them.

The first approach is genomic control. Many problematic issues have been ad-
dressed in this approach such as the effect of population admixture on the variance
of the test statistics (Devlin and Roeder, 1999). They proposed the fact that the
variance in the χ2 statistics, which is computed at the null markers, can be empir-
ically estimated rather than focusing on calculating the theoretical variance which
is in many occasions not necessarily to be correct.

The second approach is based on using a model and data on the additional mark-
ers to control for population substructure to infer the latent population structure
and to involve it into the analysis. More to the point, this approach will be more
efficient if the population substructure affects the variance of the test statistics. To
ensure that the approach will work correctly, the model should be based on strong
population admixture in which date is selected from several distinct ethnicities or a
large number of ancestry informative markers (Pritchard et al., 2000).

The third approach is by fitting linear or logistic regression model to data based
on covariates that represent null markers or linear combinations of null markers.
This can be good control of population substructure if the allele frequencies and
disease probabilities differ across subgroups (Chen et al., 2003).



3. HAPLOTYPE MIXTURE MODEL-BASED APPROACH (HM)

3.1 Introduction

The advanced genotyping technology and the availability of a large number of dense
single nucleotide polymorphisms (SNPs) across human genome have enabled the
design of genome-wide association studies (GWAS) for complex diseases.

These studies have progressed from genotyping the SNPs over thousands of case
and control subjects (Hindorff et al., 2009), producing large, high-dimensional geno-
type datasets. The rapid increase in the number of GWAS provides an unprece-
dented opportunity to examine the effects of rare SNPs on disease susceptibility by
the integrative analysis of these data under the assumption that both common and
rare SNPs contribute to the underlying genetic mechanisms of complex diseases(Li
et al. 2010; Zhu et al. 2010).

It is generally believed that jointly analyzing rare SNPs within a region of strong
linkage disequilibrium can be more informative and effective than individual SNP
analysis, as multiple SNPs influence the risk of complex diseases in aggregate (Tzeng
et al., 2005; Morris et al., 2006; Li et al., 2011; Stranger et al., 2011). The multilocus
haplotype, the ordered allele sequences on a chromosome, provides a nature unit of
analysis for capturing linear and non-linear correlations in SNPs (Zhang et al., 2003).

Unfortunately, the multi-locus analysis discussed above can suffer from high-
dimensional problems that are associated with many predictors, some of which are
highly correlated. A popular strategy, suggested by the block-like structure of the
human genome, is to divide each chromosome into a list of genetically meaningful
regions to reduce the dimensions of these genotype data. Direct, laboratory-based
haplotyping to infer the unknown phase are expensive ways to obtain haplotypes. So,
in a typical haplotype-based association analysis, people infer haplotypes together
with their population frequencies in cases and controls from observed genotypes by
using the software such as fastPHASE (Stephens et al., 2001; Scheet and Stephens,
2006). The empirical evidence suggests that the majority of the polymorphism is
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concentrated on a relatively small number of haplotypes while the rest is sparsely
spread over a number of categories. These non-common haplotypes can be rare and
thus hard to assess their disease-susceptibility.

Haplotype clustering offers a promising avenue for addressing the above issue.
Over the past decade, enormous progress has been made in this direction and vari-
ous methods of clustering have been developed on the basis of haplotype similarity
and evolution characteristics (Molitor et al., 2003; Tzeng et al., 2006; Browning,
2007; and references therein). However, none of them except Zhu, (2010) has ex-
plored advantage of the haplotype similarity in terms of their contributions to disease
risks. Zhu, (2010) implemented a method for co-classifying rare risk haplotypes by
performing multiple Z-tests for the significant differences between retrospective hap-
lotype frequencies in cases and controls, on the basis that rare risk haplotypes can
be enriched in cases. There is a thorny issue of false positive when performing a
large number of multiple testing. Moreover, these existing methods are heuristically
motivated and not model-based. As model-based algorithms can often provide a
principled alternative to heuristic-based algorithms in gene microarray studies (Ye-
ung et al., 2001), it is desirable to develop model-based counterparts of the existing
methods mentioned above. Here, to deal with these issues we propose a haplotype
mixture model based on the prospective frequencies, as the exact distribution of
the differences between retrospective haplotype frequencies are hardly derived. The
rationale behind the proposal is as follows. We arrange the haplotype frequencies
derived from a case-control study by a contingency table, where rows stand for the
disease status (case or control) and columns for haplotypes. Then, we can directly
assess whether two haplotypes belong to the same group by their column similar-
ity in the table. Formally, we fit each column by a binomial distribution with the
disease-penetrance as the success probability, inferring the grouping of these columns
through use of binomial mixtures.

The main advantage of the proposed model over the other existing methods is
that it allows the clustering to be directly linked to the disease-penetrances of hap-
lotypes. Moreover, using the estimated prospective haplotype frequencies derived
from a retrospective study to estimate disease odds ratio is known to be asymptoti-
cally consistent even though the disease-penetrance estimators may not be (Prentice
and Pyke, 1979).

We employ the expectation-maximization (EM) algorithm to calculate the max-
imum likelihood estimator for the proposed mixture model. The EM algorithm
can guarantee monotone convergence to a local maximum. On the other hand, it
needs to choose initial values in order to reach a local maximum which is close to
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the global maximum. The existing ways to choose initial values include: multiple
random initializations, initially grouping the data and estimating the corresponding
parameters for each mixture component, and among others. See Karlis and Xekalaki
(2003) for a review. In this Chapter, we propose a new procedure to regularize the
EM algorithm by posterior sampling and compare it to the methods of multiple
random initializations and data partition.

We conduct simulation studies on the proposed clustering method in both prospec-
tive and retrospective design settings, showing that the proposed method can out-
perform Zhu et al.’s approach in most cases. We apply both the proposed method
and Zhu et al’s method to the Coronary Artery Disease (CAD) and Hypertension
(HT) data in the Wellcome Trust Case Control Consortium (WTCCC), identifying
potential risk haplotypes for each pre-specified chromosomal region.

The rest of the chapter is organized as follows. The proposed methodology and
some theory are introduced in Section 3.2. The simulation studies and real data
applications are presented in Sections 3.3 and 3.4. Discussions and conclusion are
made in Section 3.5.

3.2 Methods

Consider a case-control sample with N0 controls and N1 cases, typed at m SNP
markers in a candidate region, yielding unphased genotypes G. The disease status
yi of individual i is set to 1 if affected and 0 if unaffected. Let Hj, 1 ≤ j ≤ J denote
the distinct haplotypes inferred from G. We introduce the following approaches for
identifying risk haplotypes. The former is a variation of Zhu et al. (2010) and the
latter is new.

3.2.1 Multiple testing method (MT)

Following Zhu et al. (2010), a subsample A containing N (a)
0 and N

(a)
1 individuals

are randomly chosen from the controls and cases respectively. These individuals are
used in the screening stage and the remaining forms a validation subsample B to be
used in the validation stage.

Let (r(a)
0j , r

(a)
1j ), 1 ≤ j ≤ J (a) be the respective frequencies of J (a) haplotypes in

controls and cases derived inferred from A. A respective frequencies-based screening
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is then performed, giving an estimated risk haplotype set defined by

S(a) = {Hj : z(a)
j > c0, 1 ≤ j ≤ Ja},

where c0 is a pre-specified constant (c0 = 1 in our later simulations) and

z
(a)
j =

r
(a)
1j − r

(a)
0j√

r
(a)
0j (1− r(a)

0j )/(2N (a)
1 )

.

In the validation stage, the S(a) is refined by using the subsample B, where Fisher’s
exact testing is performed for each haplotype in S(a), obtaining a final risk haplotype
set denoted by S(b).

3.2.2 Mixture model-based method

We now describe the mixture model-based approach, which includes two stages. In
Stage 1, we conduct a haplotype grouping by use of the binomial mixtures, while
in Stage 2, we refine the selected risk haplotype set by multiple odds ratio (OR)
thresholding.

Haplotype grouping can effectively reduce the size of candidate risk-haplotypes,
improving the accuracy of multiple thresholding in Stage 2. Note that genetic asso-
ciation studies often assess the overall association between a disease and multilocus-
haplotypes in a population by an association test. However, the clinical relevance
of an association depends on the magnitude of risk conferred to the carriers of
haplotypes. Therefore, an advantage of using OR thresholding over Zhu et al.’s
multiple Z-test screening is that we directly select risk haplotypes based on their
disease-susceptibility. Stage 1 (Grouping). Let Hj, 1 ≤ j ≤ J denote the distinct
haplotypes inferred from G with haplotype counts n0j, 1 ≤ j ≤ J and the total 2N0

in controls, and n1j, 1 ≤ j ≤ J and the total 2N1 in cases respectively. Then, on the
basis of the whole sample, the respective frequencies of the jth haplotype in controls
and cases can be estimated by r0j = n0j/(2N0) and r1j = n1j/(2N1) respectively.
Similarly, the prospective frequencies of the jth haplotype in controls and cases can
also be estimated by p0j = n0j/(n0j + n1j) and p1j = n1j/(n0j + n1j) respectively.

We hypothesize that haplotypes are either risk or non-risk. Under this assump-
tion, the counts n = {(n0j, n1j)T : 1 ≤ j ≤ J} follow the two-component binomial



3. Haplotype mixture model-based approach (HM) 33

mixture,

f((n0j, n1j)T |pr, pr̄, π) = πf((n0j, n1j)T |pr) + (1− π)f((n0j, n1j)T |pr̄),

where pr = P (affected|Hr) and pr̄ = P (affected|Hr̄) are the disease-penetrances of
risk haplotype Hr and non-risk haplotype Hr̄ respectively, and

f((n0j, n1j)T |pr) =
(
n0j + n1j

n1j

)
pn1j
r (1− pr)n0j ,

f((n0j, n1j)T |pr̄) =
(
n0j + n1j

n1j

)
p
n1j
r̄ (1− pr̄)n0j .

The unknown parameter θ = (pr, pr̄, π)T can be estimated by maximizing the log-
likelihood

l(θ|n) =
J∑
j=1

log
(
πf((n0j, n1j)T |pr) + (1− π)f((n0j, n1j)T |pr̄)

)
.

Note that the direct calculation of the above maximum likelihood estimator
(MLE) is not possible. Instead, we calculate it indirectly by the EM algorithm
(McLachlan and Basford, 1988). For this purpose, we introduce the following group
membership indicators Ijr and Ijr̄,

Ijr =

 1, Hj in the risk group
0, otherwise

, Ijr̄ =

 1, Hj in the non-risk group
0, otherwise

for 1 ≤ j ≤ J . Set I = {(Ijr, Ijr̄)T : 1 ≤ j ≤ J}. Then, the so-called complete-data
log-likelihood can be written as

l(θ|n, I) =
J∑
j=1

{
Ijr log(πf((n0j, n1j)T |pr)) + Ijr̄ log((1− π)f((n0j, n1j)T |pr̄))

}
.

Given the current value θ(t) = (p(t)
r , p

(t)
r̄ , π

(t))T and the data n, we first calculate the
current log-likelihood l(θ(t)|n). Then, in the E-step, we calculate the expectation of
the complete-data log-likelihood with respect to I,

Q(θ, θ(t)) = E[l(θ|n, I)|n, θ(t)]

=
J∑
j=1

(τ (t)
jr log(π) + τ

(t)
jr̄ log(1− π))

+
J∑
j=1

(τ (t)
jr log(f((n0j, n1j)T |pr)) + τ

(t)
jr̄ log(f((n0j, n1j)T |pr̄))),



3. Haplotype mixture model-based approach (HM) 34

where

τ
(t)
jr = P (Ijr = 1|(n0j, n1j)T , θ(t)) = π(t)f((n0j, n1j)T |p(t)

r )
π(t)f((n0j, n1j)T |p(t)

r ) + (1− π(t))f((n0j, n1j)T |p(t)
r̄ )

,

τ
(t)
jr̄ = P (Ijr̄ = 1|(n0j, n1j)T , θ(t)) = π(t)f((n0j, n1j)T |p(t)

r̄ )
π(t)f((n0j, n1j)T |p(t)

r ) + (1− π(t))f((n0j, n1j)T |p(t)
r̄ )

.

In the M-step, we update θ(t) by solving the partial derivatives equations

∂Q

∂π
= 0, ∂Q

∂pr
= 0, ∂Q

∂pr̄
= 0.

We obtain

π(t+1) =
∑J
j=1 τ

(t)
jr

J
, p(t+1)

r =
∑J
j=1 τ

(t)
jr n1j∑J

j=1 τ
(t)
jr (n1j + n0j)

, p
(t+1)
r̄ =

∑J
j=1 τ

(t)
jr̄ n1j∑J

j=1 τ
(t)
jr̄ (n1j + n0j)

.

Let err(t+1) denote the absolute distance of l(θ(t+1)|n) to the previous l(θ(t)|n). We
calculate the updated log-likelihood l(θ(t+1)|n) and err(t+1).

Start with the initial value θ(0), we alternatively run the E-step and the M-step
for t = 0, 1, ..., till err(t+1) is less than a pre-specified value d0 (we set d0 = 0.0001 in
our codes). Suppose that the algorithm stops at (t+ 1)th iteration. Based on τ (t+1)

jr

and τ (t+1)
jr̄ , the estimated risk and non-risk haplotype clusters can be defined by

S(t+1)
r = {Hj : τ (t+1)

jr > τ
(t+1)
jr̄ }, S

(t+1)
r̄ = {Hj : τ (t+1)

jr ≤ τ
(t+1)
jr̄ }.

Stage 2 (OR thresholding): We are going to refine the above selected risk haplotype
set on the basis of their odds ratios. Let n0H and n1H be control- and case-counts
of the haplotype H. Let n0r̄ = ∑

H∗∈S(t+1)
r̄

n0H∗ and n1r̄ = ∑
H∗∈S(t+1)

r̄
n1H∗ . The

corrected OR statistic is defined by

ORH = (n1H + 0.5)(n0r̄ + 0.5)
(n0H + 0.5)(n1r̄ + 0.5) .

Then, the risk haplotype set S(t+1)
r is updated by

Ŝr =
{
H ∈ S(t+1)

r : ORH ≥ exp(c1φ(n0H , n1H , n0r̄, n1r̄))
}
,

where

φ(n0H , n1H , n0r̄, n1r̄) =
√

1/(n0H + 0.5) + 1/(n1H + 0.5) + 1/(n0r̄ + 0.5) + 1/(n1r̄ + 0.5)
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and c1 is a pre-specified constant (in our later simulations, we set c1 = 2.6, while in
the real data analysis, invoking the Bonferroni adjustment, we set c1 = 5.3).

The non-risk haplotype set is updated by

Ŝr̄ = Sr̄ ∪ (Sr − Ŝr).

Given the clusters Ŝr and Ŝr̄, the estimators of π, pr, and pr̄ are updated by

π̂ = |Ŝr|
|Ŝr|+ |Ŝr̄|

, p̂r =
∑
H∈Ŝr n1H∑

H∈Ŝr(n1H + n0H) , p̂r̄ =
∑
H∈Ŝr̄ n1H∑

H∈Ŝr̄(n1H + n0H) .

The population frequencies of Ŝr and Ŝr̄ (i.e., P (H ∈ Ŝr) and P (H ∈ Ŝr̄) are
estimated by their retrospective frequencies in controls,

P̂ (Ŝr) =
∑
H∈Ŝr n0H∑

H∈Ŝr∪Ŝr̄ n0H
, P̂ (Ŝr̄) = 1− P̂ (Ŝr).

3.2.3 Example

To apply our method, we choose one example from our simulation whose disease
status is simulated according to multiplicative model. The number of the risk hap-
lotypes is 10. The actual probabilities for

θ = (π, pr, pr) = (0.8846, 0.1154, 0.28218),

and the incomplete log likelihood value is −249.028, given the above values for the
parameters of the model. We applied the mixture model to classify these haplotypes
into risk and non-risk group according to their association with the disease status.
In this method, we use the EM algorithm to maximize the likelihood. The results
of the final iterations corresponding to different sets of the initial values obtained
by the EM algorithm are shown in Table 3.1. In the same table, we also showed
the result of the specificity and the sensitivity that correspond each set of the initial
values.

As it can be seen from Table 3.1, the likelihood value is vary depending on the
initial values that the algorithm starts with. However, the one that is close to the
actual likelihood value can be seen in the row 7 of this table. More than that, the
corresponding parameters estimators in the final iteration are also close to the real
one plus good result for the specificity and sensitivity. In this table, we can clearly
see the problematic issue of the high dimensionality.
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Tab. 3.1: The table shows the first and the last iteration of the EM on Example 3.2.3
starting from different random initial values.

Initial values Final iteration
Rep. π (1− π) pr pr π (1− π) pr pr Inc l(θ) Spec. Sens.
1 0.24902 0.75098 0.34972 0.94064 0.91168 0.08832 0.15292 0.85198 -426.7096 0.0 0.92754
2 0.59258 0.40742 0.18077 0.71109 0.89168 0.10832 0.14929 0.50297 -380.56764 0.11111 0.92754
3 0.02434 0.97566 0.0168 0.65403 0.57707 0.42293 0.10392 0.28041 -244.03129 0.88889 0.63768
4 0.56222 0.43778 0.07759 0.74431 0.8751 0.1249 0.14888 0.49672 -376.40283 0.22222 0.91304
5 0.06436 0.93564 0.36483 0.98282 0.90368 0.09632 0.1529 0.83649 -427.18425 0.0 0.91304
6 0.11409 0.88591 0.39284 0.83895 0.83598 0.16402 0.15292 0.57163 -406.62222 0.0 0.7971
7 0.75457 0.24543 0.11636 0.31322 0.7454 0.2546 0.10523 0.28112 -242.08635 0.77778 0.85507
8 0.71065 0.28935 0.43501 0.11713 0.3119 0.6881 0.30853 0.12025 -256.04382 0.66667 0.66667
9 0.15036 0.84964 0.37186 0.65663 0.78362 0.21638 0.15278 0.41214 -344.93251 0.11111 0.72464
10 0.50194 0.49806 0.53793 0.20123 0.1557 0.8443 0.47222 0.14898 -363.21942 0.22222 0.91304
11 0.74117 0.25883 0.71336 0.38348 0.15892 0.84108 0.52891 0.15292 -403.88364 0.0 0.7971
12 0.83943 0.16057 0.47591 0.01123 0.51767 0.48233 0.24734 0.09528 -253.70363 0.88889 0.47826
13 0.15849 0.84151 0.95281 0.26195 0.04946 0.95054 0.9876 0.15307 -424.34528 0.0 0.94203
14 0.6285 0.3715 0.14724 0.17534 0.64626 0.35374 0.10612 0.25421 -246.51166 0.77778 0.91304
15 0.92719 0.07281 0.60895 0.39665 0.29494 0.70506 0.33568 0.152 -321.05469 0.22222 0.69565
16 0.85725 0.14275 0.93536 0.43433 0.1121 0.8879 0.75424 0.15292 -422.11437 0.0 0.91304
17 0.45401 0.54599 0.39472 0.48626 0.79425 0.20575 0.15031 0.36531 -325.23985 0.22222 0.7971
18 0.52902 0.47098 0.05072 0.58287 0.76284 0.23716 0.12055 0.31215 -257.3879 0.55556 0.84058
19 0.04303 0.95697 0.30131 0.63928 0.71148 0.28852 0.14936 0.41862 -345.23502 0.33333 0.71014
20 0.25866 0.74134 0.17324 0.20927 0.41699 0.58301 0.10381 0.2443 -256.31434 1.0 0.31884

3.2.4 Improving the mixture approach

There are various ways to improve the proposed mixture model such as choosing its
initial values for the EM algorithm by multiple random starts, a grid search, and
the data partition.See Karlis and Xekalaki (2003) for a review. Here, we consider
the three methods to improve Stage 1 above. The first two aim to improve the EM
algorithm by the choice of initial values, while the last one uses the Bayesian poste-
riors to relax the model assumption. Note that in the proposed mixture model, the
haplotypes in each group are assumed to have the same disease-penetrance, which
may not be true in practice. So, to allow for the disease-penetrance variations within
each group, the disease-penetrances of haplotypes within each group are assumed to
follow a prior distribution. Method 1 (random initialization): We randomly choose
i0 initial values (say i0 = 100) of θ and run the EM algorithm in Stage 1 with each
chosen initial value. We take the best one among these runs in terms of maximizing
the log-likelihood. Method 2 (data initial partition): In order to initialize the param-
eters pr, pr̄ and π, we partition the prospective haplotype frequencies p1j, 1 ≤ j ≤ J .
Without loss of generality, we assume that 0 < p1j < 1 for 1 ≤ j ≤ J. Otherwise,
we only select 0 < p1j < 1 in our calculation.

We partition these frequencies into two sets with low and high values respectively,
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by defining

Tr = {k : p1k > (max
j
p1j −min

j
p1j)/2}, Tr̄ = {k : p1k ≤ (max

j
p1j −min

j
p1j)/2}

Set the initial values,

p(0)
r =

∑
k∈Tr p1k

|Tr|
, p

(0)
r̄ =

∑
k∈Tr̄ p1k

|Tr̄|
, π(0)

r = |Tr|
|Tr|+ Tr̄

where |Tr| and |Tr̄| stand for the cardinalities of Tr and Tr̄ respectively. We then
run the EM algorithm in Stage 1. Method 3 (Bayesian regularization): We first
randomly generate i0 (say i0 = 100) initial values at which we calculate the log-
likelihoods, and take the one which attains the maximum as the initial value θ(0) =
(p(0)
r , p

(0)
r̄ , π(0))T for the posterior sampling. Motivated by the Gibbs sampling, we

employ the posterior of θ to improve each iteration of the EM. Here, we draw q(t)
r

and q(t)
r̄ from the posteriors of pr and pr̄ at the iteration t. Start with the initial θ(0)

and set q(0)
r = p(0)

r and q(0)
r̄ = p

(0)
r̄ . At the iteration t+1, given θ(t) = (p(t)

r , p
(t)
r̄ , π

(t))T ,
we have the expected values of Ijr and Ijr̄, say τ (t)

jr and τ (t)
jr̄ . Haplotype grouping can

be defined by

S(t)
r = {Hj : τ (t)

jr > τ
(t)
jr̄ }, S

(t)
r̄ = {Hj : τ (t)

jr ≤ τ
(t)
jr̄ }.

Collapse haplotypes in Sr and calculate the counts of the collapsed Sr in controls and
cases, s0r and s1r. Similarly, collapse Sr̄ and calculate the counts of the collapsed Sr̄
in controls and cases, s0r̄ and s1r̄. Based on these counts, the likelihood functions
of pr and pr̄ can be written as

l(pr|(s0r, s1r)T ) ∝ ps1rr (1− pr)s0r , l(pr̄|(s0r̄, s1r̄)T ) ∝ ps1r̄r̄ (1− pr̄)s0r̄ .

Let pδ1r (1 − pr)δ0 and pδ0r̄ (1 − pr̄)δ1 denote the conjugate priors for pr and pr̄ re-
spectively, with the pre-specified pseudo-counts δ0 and δ1. We expect that a risk
haplotype appears more frequently in cases than does any non risk haplotype. So,
the pseudo-counts should satisfy the constrain δ1 > δ0. They should also be small
compared to the number of cases. In this work, we set δ1 = 8 and δ0 = 2. In
our simulations, we found the results are not very sensitive to the choice of these
constants. After setting the above priors, we then derive the posteriors,

p(pr|(s0r, s1r)T ) ∝ Beta(δ1 +s1r, δ0 +s0r), p(pr̄|(s0r̄, s1r̄)T ) ∝ Beta(δ0 +s0r̄, δ1 +s1r̄)

We draw q(t+1)
r from p(pr|(s0r, s1r)T ) and q

(t+1)
r̄ from p(pr̄|(s0r̄, s1r̄)T ). We update
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the estimates of pr, pr̄ and π by posterior averaging,

p(t+1)
r = 1

t+ 2

t+1∑
k=0

q(k)
r , p

(t+1)
r̄ = 1

t+ 2

t+1∑
k=0

q
(k)
r̄ , π(t+1) = |S(t)

r |
|S(t)
r |+ |S(t)

r̄ |
.

Finally, we repeat the above procedure until the absolute difference between the
estimates of θ in two consecutive iterations is less than a pre-specified value, say
0.0001. In the late section, we show the superiority of Method 3 over the other
two methods by simulations. In light of this, we replace the M-step in the EM by
Method 3 to form a hybrid EM algorithm. In summary, we opt for the following two-
stage hybrid mixture approach for association analysis in the remaining framework:
Stage 1 (Grouping): Use the hybrid EM algorithm to estimate the two-component
binomial mixture model. Stage 2 (OR thresholding): Use the OR statistic to screen
haplotypes further as in the previous section.

3.2.5 Model justification

To make the proposed model identifiable, we need to assume that the disease-
penetrance ratio pr/pr̄ > 1, that is, risk haplotypes are more enriched in cases
than non-risk haplotypes. In this section, under the commonly used inheritance
models, we prove the above hypothesis holds when the so-called relative risk mea-
sure is larger than one. For this purpose, let Sr and Sr̄ denote the risk and non-risk
haplotype sets in the population. Suppose that the disease-penetrance of a genotype
depends only on the number of risk haplotypes contained in that genotype. Then,
we have three types of penetrance:

f0 = P (affected|Hr̄Hr̄), f1 = P (affected|HrHr̄), f2 = P (affected|HrHr),

where Hr ∈ Sr and Hr̄ ∈ Sr̄. Denote the relative risk measures λ1 = f1/f0

and λ = f2/f0. In the following, we show that the haplotype disease-penetrances,
P (affected|Hr) and P (affected|Hr̄) are linear functions of the relative risk measures
of genotypes and the population haplotype frequencies. Note that if an individual
has the haplotype H, his/her genotype can be: HH (homozygous); HHr, Hr ∈ Sr
and H 6= Hr (heterozygous); HHr̄, Hr̄ ∈ Sr̄ and H 6= Hr̄ (heterozygous). Therefore,
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under the Hardy-Weinberg equilibrium, we have

P (affected, Hr) = P (affected, HrHr) + 0.5
∑

H∈Sr,H 6=Hr
P (affected, HrH)

+0.5
∑

H∈Sr̄,H 6=Hr
P (affected, HrH)

= f2P (Hr)P (Hr) + f2P (Hr)
∑

H∈Sr,H 6=Hr
P (H) + f1P (Hr)

∑
H∈Sr̄,H 6=Hr

P (H)

= P (Hr)(f2P (Hr) + f2
∑

H∈Sr,H 6=Hr
P (H) + f1

∑
H∈Sr̄,H 6=Hr

P (H))

= P (Hr)(f2P (H ∈ Sr) + f1P (H ∈ Sr̄)),

where P (Hr), P (H ∈ Sr) and P (H ∈ Sr̄) are the population frequencies of Hr, Sr
and Sr̄. Consequently,

P (affected|Hr) = P (affected, Hr)
P (Hr)

= f2P (H ∈ Sr) + f1P (H ∈ Sr̄)
= f0 {λP (H ∈ Sr) + λ1P (H ∈ Sr̄)} .

In much the same spirit, we can show that

P (affected|Hr̄) = f0 {λ1P (H ∈ Sr) + P (H ∈ Sr̄)} .

The disease-penetrance ratio between risk and non-risk haplotypes,

P (affected|Hr)
P (affected|Hr̄)

= λ1{λP (H ∈ Sr)/λ1 + P (H ∈ Sr̄)}
λ1P (H ∈ Sr) + P (H ∈ Sr̄)

.

We can further show that under the commonly used models of inheritance (multi-
plicative, dominant, and recessive), the haplotype relatively risk (i.e., the disease-
penetrance ratio between the risk and non-risk haplotypes) is larger than one if and
only if the corresponding genotype relative risk is larger than one. The details are
as follows. In a multiplicative model, where λ = λ2

1, we have

P (affected|Hr)
P (affected|Hr̄)

=
√
λ,

which is larger than 1 if and only if λ > 1. In a dominant model, where λ = λ1, we
have

P (affected|Hr)
P (affected|Hr̄)

= λ

λP (H ∈ Sr) + P (H ∈ Sr̄)
,
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which is larger than 1 if and only if λ > 1. In a recessive model, where λ1 = 1, we
have

P (affected|Hr)
P (affected|Hr̄)

= λP (H ∈ Sr) + P (H ∈ Sr̄),

which is larger than 1 if and only if λ > 1. The above results imply that when the
genotype relative risk λ > 1, the individuals carrying the risk haplotype Hr will
have more chance of getting the disease than do non-risk haplotype carriers; when
λ < 1, the individuals carrying Hr have the less chance of getting the disease than
do non-risk haplotype carriers and thus Hr plays a disease-protective role.

3.2.6 Testing for haplotype inheritance modes

In the previous subsection, we develop a theory on the identification of the proposed
model under certain inheritance assumption on hyplotypes. However, the biological
justification for the choice of an inheritance model is seldom available and lack of
a statistical justification for the specific genetic model is customary practice. To
address the issue, we introduce a statistical test as follows. We begin with deriving
non-parametric estimators of the genotype disease-penetrances. Suppose Ŝr and Ŝr̄
are the estimated risk and non-risk haplotype sets obtained from our hybrid mixture
approach.

Let G0 be the set containing the observed genotypes which consist of two hap-
lotypes in Ŝr̄, G1 the set containing the observed genotypes which consist of one
haplotype in Ŝr and one in Ŝr̄, and G2 containing the observed genotypes which con-
sist of two haplotypes in Ŝr. For k = 0, 1, 2, we then calculate the total haplotype
frequencies of Gk in controls and cases, denoted by (n02, n12), (n01, n11), (n00, n10)
respectively. Then the disease-penetrances of genotypes can be estimated non-
parametrically by

f̂0 = n10

n10 + n00
, f̂1 = n11

n01 + n11
, f̂2 = n12

n02 + n12
.

Let A denote the set of the above three inheritance modes: the multiplicative, the
dominant, and the recessive. We assume that genotypes are linked their underlying
haplotype pairs via the Hardy-Weinberg equilibrium. To test for an inheritance
mode, for a ∈ A and k = 0, 1, 2, we first derive a parametric estimator of fk, say
f̂

(a)
k by using the estimators p̂r, p̂r̄, P̂ (Ŝr) obtained in the previous subsection. We
then calculate the statistic

Da = |f̂0 − f̂ (a)
0 |+ |f̂1 − f̂ (a)

1 |+ |f̂2 − f̂ (a)
2 |.
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We calculate the minimum DA = mina∈ADa and record â at which Da attains the
minimum. We expect that DA takes small values when one of modes in A is true.
We can quantitatively justify the significance by use of the following parametric
bootstrap test: We re-sampling genotypes M times on the basis of the estimated
mode â with the estimated penetrances f̂ (â)

k , k = 0, 1, 2. We set M = 100 in
our simulation. Each bootstrap dataset contains the original genotypes (and their
haplotype pairs) but with new sets of case and control counts. We apply the two-
stage hybrid mixture approach to these datasets respectively, obtainingM bootstrap
values DAm,m = 1, ...,M . The empirical p-value ∑M

m=1 I(DA > DAm)/M can be
used to judge the significance of the test. To conclude this section, we now state the
formulas for estimating the disease-penetrances under the three inheritance models.
The proofs are straightforward and thus omitted. We use the notations λ = f2/f0

and λ1 = f1/f0 introduced before.

• Multiplicative model, where λ = λ2
1. We have

λ̂ =
(
p̂r
p̂r̄

)2

, f̂0 = p̂r̄

(
√
λ̂− 1)P̂ (Ŝr) + 1

, f̂2 = λ̂f̂0, f̂1 =
√
λ̂f̂0.

• Dominant model, where λ = λ1. We have

λ̂ = P̂ (Ŝr̄)
p̂r̄/p̂r − P̂ (Ŝr)

, f̂0 = p̂r̄

(λ̂− 1)P̂ (Ŝr) + 1
, f̂1 = f̂2 = λ̂f̂0.

• Recessive model, where λ1 = 1. We have

λ̂ = (p̂r/p̂r̄ − P̂ (Ŝr̄))/P (Ŝr), f̂1 = f̂0 = p̂r̄, f̂2 = λ̂f̂0.

3.3 Simulation studies

In this section, via simulations we will examine the performance of the proposed
methods in terms of the estimated L1 bias and the average of sensitivity and speci-
ficity under various scenarios. Let θ̂ be the estimator of θ, and Ŝr and Ŝr̄ the estima-
tors of the true risk and non-risk haplotype sets Sr and Sr̄ respectively. Then, by the
L1 bias, we mean the L1 distance between θ̂ and θ. The sensitivity and specificity
of Ŝr and Ŝr̄ are defined as sen = |Ŝr∩Sr|

|Sr| and spe = |Ŝr̄∩Sr̄|
|Sr̄| . We take the average

AVSS = (sen + spe)/2 to assess the performance of the haplotype classification
above.
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3.3.1 Performance of the proposed Bayesian regularization

To compare Method 3 (the Bayesian regularization) to Methods 1 and 2 (the ini-
tialization), we simulated 30 genotype datasets on 10 SNPs, each dataset containing
N0 controls and N1 cases was obtained by the following two steps:

In the step 1, we used the software MS (Hudson, 2002) to simulate 2(N0 + N1)
haplotypes with a mutation rate of 2. We randomly chosemr of these haplotypes and
labeled them as risk haplotypes. To save the space, we considered only N0 + N1 =
5000 and mr = 10. The results for other values of N0 +N1 and mr are similar.

In the step 3, the disease states of the above genotypes were simulated from the
multiplicative inheritance model with f0 = 0.1 and λ = 3. Note that the number of
genotypes depends on the mutation rate and was varying across 30 datasets.

We applied the three methods mentioned in Subsection 2.3 to each of these
datasets and recorded their corresponding L1 distances between the estimated and
the true values of θ, the log-likelihoods, the AVSS values, and the CPU-time costs
in seconds. Finally, multiple box-whisker plots of these quantities across the three
methods are presented in Figure 3.1. The results demonstrate that although Method
3 did not give a global maximum of the log-likelihood, it outperformed the other
two methods in terms of estimated biases.

This is not surprising because the log-likelihood in Method 3 have been regular-
ized by the prior. Methods 1 and 3 performed similar and were better than Method
2 in terms of the AVSS. Methods 2 and 3 was much less costly in terms of CPU-time
compared to Methods 1.

Overall, Method 3 was ranked to the first. So, we decided to replace the M-step
in Stage 1 by Method 3 to form a hybrid mixture approach, which was used in the
simulations and real data analysis below.
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Fig. 3.1: Performance of the three modification methods for Stage 1. The figures show
the box-whisker plots of the estimated biases of the parameter θ, the averages
of specificity and sensitivity, the attained log-likelihoods, and time-costs for the
three modifications.

3.3.2 Performance of the proposed hybrid mixture approach

Note that the proposed hybrid mixture method is based on the prospective likeli-
hood model although real data can be from retrospective studies. By the simulations
below, we addressed whether the proposed hybrid mixture approach could outper-
form Zhu et al’ multiple-testing procedure in both prospective (i.e., cohort) and
retrospective (i.e., case-control) studies.

Setting 1 (cohort design): We generated 30 datasets, each with N1 case-
genotypes and N0 control-genotypes. They were obtained by the following steps. In
the first two steps, we adopted the same approach for generating N0 +N1 genotypes
which containedmr risk haplotypes as we did before. In the third step, we simulated
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the disease status of each genotype by sampling from a Bernoulli distribution. The
Bernoulli distribution took f0, or λ1f0, or λf0 as a success probability according to
whether the genotype contained zero, one or two risk haplotypes. We considered the
three inheritance models coded by IM: the multiplicative (IM = 1), the dominant
(IM = 2) and the recessive (IM = 3). Note that the values of (N0, N1) may vary
across different datasets. We considered the scenarios with various combinations of
(N0 + N1,mr, IM, f0, λ), where N0 + N1 = 3000, 5000, mr = 5, 10, 20, IM = 1, 2, 3,
f0 = 0.1, λ = 1, 1.4, 1.8, 2.2, 2.6, 3, 3.4, and 3.8 respectively.

For each scenario, we applied both the hybrid mixture method and the multiple
testing method to 30 datasets and calculated their AVSS values respectively. For
each of the three inheritance models, we plotted the means of these AVSS values over
30 datasets against λ. In the plots of the figure 3.2, the red and the blue solid curves,
showing means of the AVSS values (i.e., the values of (specificity and sensitivity)/2))
over 30 datasets, were plotted against the values of λ for the hybrid mixture method
and the multiple testing method respectively. The two red dash curves are one
standard error up and down from the red mean curves. Similarly, the two blue dash
curves are one standard error up and down for blue mean curves. The plots in the
columns from the top to the bottom are for the cases where there were 5, 10, and
20 risk haplotypes in the underlying haplotypes. While from the left to the right,
the plots represent recessive, dominant and multiplicative mode of inheritance. The
sample size of the cases and the controls altogether for each plot is 5000. The plots
are based on different modes of inheritance. Similarly for the figure 3.3 except the
considered sample size is 3000. On the cohort data, the hybrid mixture method
performed substantially better than the multiple testing method in all the scenarios
defined above.
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Fig. 3.2: Performances of the proposed hybrid mixture method and the multiple testing
method on the cohort-design data with multiplicative or dominant or recessive
inheritance models with sample size N = 5000..
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Fig. 3.3: Performances of the proposed hybrid mixture method and the multiple testing
method on the cohort-design data with multiplicative or dominant or recessive
inheritance models with sample size N = 3000..
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Setting 2 (case-control design): We generated 30 datasets, each of which
were simulated by the following two steps. Step 1, to generate N1 case-genotypes,
we first drew 2N1 haplotypes by the software MS with mutation rate of 2, of which
mr haplotypes were labeled as risk haplotypes. We then randomly paired these
haplotypes to form N1 case-genotypes. Let Gj, 1 ≤ j ≤ J be all the different geno-
types contained in the N1 cases and r1j, 1 ≤ j ≤ J be the retrospective frequencies.
These case-genotypes formed three groups according to the number of risk haplo-
types which each genotype contained: Each genotype in Groups 0, 1 and 2 contained
two non-risk haplotypes, only one risk-haplotype, and two risk haplotypes respec-
tively. Step 2, we generated N0 control-genotypes, which also had genotypes Gj,
1 ≤ j ≤ J but with population retrospective frequencies q0j, 1 ≤ j ≤ J . We first let
q0j, 1 ≤ j ≤ J depend on the pre-specified constant d by

q0j =


r1j(1− d/r1g2), Gj belongs to Group 2
r1j(1− 0.5d/r1g1), Gj belongs to Group 1
r1j(1 + 1.5d/r1g0), Gj belongs to Group 0

where r1gk = ∑
Gj∈ Groupk r1j for k = 0, 1, 2,, and d ≥ 0 is a parameter to reflect

the effects of risk haplotypes on genotype frequencies. We simulated N0 control-
genotype counts from the multinomial model MN(N0, (q01, ..., q0J)T ) and calculated
the corresponding retrospective frequencies r0j, 1 ≤ j ≤ J . We considered the
cases where mr = 5, 10, 20, and d = 0, 0.05, 0.1, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35
respectively.

For each dataset, the cumulative genotype frequencies of Groups 0, 1, and 2 in
controls are r1g0 + 1.5d, r1g1 − 0.5d, and r1g2 − d respectively, whereas the corre-
sponding frequencies in cases are rg0 , rg1 and rg2 respectively. This implies that due
to the impacts of risk haplotypes, the cumulative frequencies of Groups 2 and 1 in
cases have been increased compared to those in controls. The odds ratios between
Groups 2 and 0 and between Group 1 and Group 0, (1 + 1.5d/rg0)/(1− d/rg2) and
(1 + 1.5d/r1g0)/(1 − 0.5d/r1g1), are larger than one. Similarly, the odds ratio be-
tween the risk haplotype group and the non-risk haplotype group can be expressed as
(1+1.25d/(r1g0 +0.5r1g1))/(1−1.25d/(r1g2 +0.5r1g1)). All these ratios are increasing
in d.

We applied the hybrid mixture method and the multiple testing method to
these case-control data. In the figure 3.4, The plots in the columns from the left
to the right are for the scenarios, where the underlying number of risk haplotypes
mr = 20, 10, and 5. The top row stands for the cases, where (N0, N1) = (3000, 2000),
while the bottom row stands for the cases, where (N0, N1) = (2000, 1000). In these
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plots, the red and the blue solid curves show mean curves of the AVSS values over
30 datasets as functions of d = 0, 0.05, 0.1, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35 for the
hybrid mixture method and the multiple testing method respectively. The dash
curves are one standard error up or down from the mean curves. The results again
demonstrate that the hybrid mixture method can be more powerful than the multiple
testing method in detecting risk haplotypes.
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Fig. 3.4: Performances of the proposed hybrid mixture and the multiple testing method
on the case-control data.

3.3.3 Performance of the proposed inheritance mode test

For each of the three inheritance models, we generated 30 datasets. Each dataset
was simulated as follows. Following the cohort design, we first simulated N0 + N1

genotypes, where the underlying haplotypes contained mr = 10 risk-haplotypes and
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followed the Hardy-Weinberg equilibrium. We then simulated their disease status
by use of the inheritance models with f0 = 0.1 and λ = 1, 1.4, 1.8, 2.2, 2.6, 3, 3.4,
and 3.8 respectively as we did in the previous subsection.

For each dataset, we calculated DA and the optimal mode â. We generated
100 parametric bootstrap samples of the genotype frequencies based on the mode
â and calculated the corresponding values of the inheritance testing statistic, D(k)

A ,
k = 1, ..., 100. Based on these values, we obtained the empirical p-value.

We calculated the success rates by counting how many times that â is the true
mode over the 30 datasets for each λ. These success rates and the empirical p-
values are displayed in Figure 3.5. In this figure, the plots in the columns from the
left to the right are for the dominant, the multiplicative and the recessive models
respectively. The top row shows the box-whisker plots of the empirical p-values
(based on 100 bootstrap samples) against for the inheritance test statistic Dmin
over 30 datasets, while the bottom row shows the success rate of identifying the
true inheritance mode against over 30 datasets. The results indicate that the success
rates are increasing as λ is increasing. The box-whisker plots in Figure 3.5 show
that almost all the empirical p-values are above 0.20, suggesting that almost all the
tests are not significant. Therefore, the bootstrap test has a very high power in
finding the true inheritance modes in the data.
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Fig. 3.5: Performances of the proposed test for inheritance patterns.
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3.4 Quality control of haplotypes

The aim of this section is to choose a threshold for the p-values derived from the chi-
square tests for the association of the population sub-structures with risk haplotypes.

We used Setting 2 in the simulation to generate 30 datasets for each of the
following scenarios. For each d in {0, 0.05, 0.1}, we considered 6 scenarios.

Scenario 1: (N0, N1) = (2000, 3000),mr = 5.

Scenario 2: (N0, N1) = (2000, 3000),mr = 10.

Scenario 3: (N0, N1) = (2000, 3000),mr = 20.

Scenario 4: (N0, N1) = (1000, 2000),mr = 5.

Scenario 5: (N0, N1) = (1000, 2000),mr = 10.

Scenario 6: (N0, N1) = (1000, 2000),mr = 20.

For each dataset, we first obtained a haplotype contingency table by using the
software PHASE. We then calculated the p-value of chi-squared test of the asso-
ciation. We ended up with 30 p-values for each scenario. The box-whisker plots
are displayed in Figure 3.6. In this figure, the plots from the left to right are for
d = 0, 0.05, 0.1 respectively. The x-axis was labeled by 6 scenarios and y-axis was
labeled by p-values.
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Fig. 3.6: The box-whisker plots of p-values of the chi-squared tests on 30 datasets which
represent the above six scenarios.
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3.5 Real data analysis

We applied the proposed hybrid mixture approach to the GWAS genotype datasets
on coronary artery disease (CAD) and hypertension (HT) obtained by Affymetrix
500K SNP chips in the WTCCC study (WTCCC, 2007). Each dataset contained
2000 unrelated cases as well as 3000 unrelated controls. The table (3.2) shows the
original format of such data.

Tab. 3.2: The table shows the format of the genotype data format of WTCCC. The first
column represents the SNP id, the second column represents individual id, the
third column represents is the genotype of the corresponding at the correspond-
ing individual and the score column shows the quality of SNPs calling.

SNP SAMPLE GENOTYPE SCORE
rs1234567 WTCCC12345 CC 0.9262
rs1234568 WTCCC12345 TC 0.8650
rs1234569 WTCCC12345 AA 0.9117

The controls came from two sources: 1500 from the 1958 British Birth Cohort
(58C) and 1500 from the three National UK Blood Services (NBS). There were
about 500600 SNPs across the human genome. These data were downloaded from
the WTCCC website. We first pre-processed the data by excluding the SNPs which
meet one of the following criteria: (1) the HWE Fisher test p-value is less than 10−8

in controls; (2) the chi-square test p-value between 58C and NBS is less than 10−8;
(3) the minor allele frequency is less than 1%; (4) the calling score is less than 95%.
After the exclusion, around 4897746 SNPs remained for the analysis. We divided
the genome into regions (or blocks) of 8 SNPs according to their positions on the
chromosomes, obtaining 61218 regions.

Note that the long block will dilute the effects of risk SNPs whereas the short
block will miss interactions between SNPs. The block length of 8 was chosen to
achieve a compromise between the above aspects. Also note that as we excluded the
SNPs with bad callings, the numbers of cases and controls are varying across the
different regions.

For all regions, we first reconstructed the haplotype pairs of genotypes by use
of the software PHASE, to which we applied Stage 1 of the hybrid procedure. It
led to 902909 haplotypes and 961942 haplotypes to be declared as risk haplotypes
at Stage 1 for the CAD and the HT respectively. We then calculated the OR
tests on these haplotypes at Stage 2. At Stage 2, According to the Bonferroni
adjustment, the individual significance level was set at the levels of 0.05/902909 =
5.5 × 10−8 and 0.05/961942 = 5.2 × 10−8 for the CAD and the HT respectively.
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These individual significance levels were then used to determine the thresholding
level c1 in the multiple OR thresholding, which is c1 = 5.3.

After performing the proposed hybrid mixture procedure on the datasets, we
obtained the estimated risk and non-risk haplotype sets, (Ŝr and Ŝr̄), for the CAD
and the HT respectively.

Note that there were two sub-populations in controls. Any estimated risk haplo-
type which is significant in differing two control sub-populations should be viewed as
an artifact. By using this, we made further quality control on the selected haplotypes
by running the chi-square tests on the association of two control sub-populations
with each selected risk haplotype. We eliminated these risk haplotypes whose p-
values for the above chi-square tests were < 30%. Here, 30% was chosen by the
simulations as shown in the figure 3.6, aiming to filter out these artificial risk hap-
lotypes with parameter d ≥ 0.05. From the simulations, we can see that when
d = 0.05, these p-values would be less than or equal to 0.30 most times.

Finally, we calculated the ORs for all the estimated haplotypes and thresholded
them by using the bound

exp(c1

√
1/(n0H + 0.5) + 1/(n1H + 0.5) + 1/(n0r̄ + 0.5) + 1/(n1r̄ + 0.5))

with c1 = 5.3. This gave the final risk-haplotype set as displayed in Tables 3.3, 3.4,
3.5 and 3.6 below. In the tables, each haplotype has been assigned to a physically
closest gene on the basis of the information provided the GWAS catalog and the
genetic information from the British 1958 Birth cohort. See Welter et al. (2014)
and the web page at http://www2.le.ac.uk/projects /birthcohort/1958bc. In the
CAD case, we did rediscover the CAD risk gene CDKN2B and the risk haplo-
type GGTGCCAG found by the previous study (WTCCC, 2007; Zhu et al., 2010).
We also tested the inheritance modes for these risk haplotypes. Taking the gene
CDKN2B as an example, we obtained DA = 0.4087 with â = "dominant mode" and
the empirical p-value of 0.97, suggesting that the hyplotype GGTGCCAG in the
gene followed the dominant inheritance mode.
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Tab. 3.3: The predicted risk haplotypes for CAD by use of the WTCCC data. In the
table, the P-values were derived from the chi-square test of the frequencies of
Hi against the collapsed frequencies of the estimated non-risk haplotypes.

Chr Region SNP range Haplotype P̂ (Hi|case) P̂ (Hi|control) OR P-Value Gene
1 202166400− 202187685 rs6692041− rs1041311 AAATGGGA 0.07815 0.05083 1.95856 2.8× 10−13 LOC284577
1 237650028− 237672617 rs6683639− rs10802930 TCAAATGC 0.05256 0.02763 2.57538 6.1× 10−13 RGS7
3 102073696− 102093722 rs973309− rs4928094 TAACCTTT 0.07591 0.06898 7.73184 5.6× 10−15 ABI3BP
3 142488272− 142537277 rs7643346− rs2871887 CGCCCATC 0.05008 0.03809 11.90617 2.0× 10−15 ACPL2
3 147806667− 147828893 rs17433833− rs17434589 CCGGGGGC 0.03363 0.01291 3.14753 3.2× 10−15 PLSCR5
4 132550− 344051 rs11735742− rs17719492 TGGCACTC 0.05993 0.04793 1.9902 7.6× 10−11 LOC654254
4 4464610− 4499426 rs16835627− rs4234727 TCGAGCAT 0.04072 0.0251 3.92994 1.1× 10−14 ZNF509

CTAAGCAT 0.09413 0.07343 3.10696 1.2× 10−13

4 180659963− 180699763 rs6811556− rs17090633 CCCCCACT 0.01782 0.00755 7.33583 5.5× 10−15 LOC391719
5 157267571− 157303032 rs10071157− rs17055168 GTGAGCAA 0.02135 0.00701 3.93074 4.0× 10−13 CLINT1
7 77725471− 77739291 rs10485891− rs7803705 AACATGCG 0.03652 0.04027 3.67364 6.8× 10−13 MAGI2

AACATGTA 0.01312 0.01117 4.76163 2.1× 10−11

AGTGCACA 0.01312 0.00846 6.27027 1.2× 10−14

7 130749877− 130784667 rs4728224− rs4728225 AGAACCGG 0.14061 0.13197 4.05796 1.0× 10−12 LOC647030
8 104190450− 104202402 rs2515173− rs3019159 GGCCATCT 0.14195 0.08768 2.20746 2.5× 10−27 BAALC
9 22088619− 22120515 rs2891168− rs10965245 GGTGCCAG 0.34939 0.29298 1.90115 2.7× 10−11 CDKN2B
9 77341767− 77366988 rs2889774− rs3780296 ATGAGAGT 0.01936 0.01072 5.31687 5.0× 10−18 GNA14

ATGAAGAC 0.03898 0.03923 2.93116 4.5× 10−13

ATGGAAAT 0.06672 0.042 4.68028 4.9× 10−30

GCGAAGAT 0.14207 0.14656 2.85712 4.9× 10−19

9 131714465− 131751663 rs3012758− rs11243551 CGAATTGC 0.06641 0.04652 2.41478 6.2× 10−13 RAPGEF1
CGAACTGC 0.02448 0.01227 3.36929 4.4× 10−12

10 64409674− 64442476 rs1509952− rs2842286 TTTCTTAC 0.02299 0.0073 9.37291 1.6× 10−16 NRBF2
10 112527724− 112597595 rs17763100− rs1341055 GCCTCCCG 0.07752 0.07383 1.85031 6.2× 10−11 RBM20

ACCTCCCG 0.24688 0.21703 2.00368 6.7× 10−23

10 129835144− 129894934 rs11016102− rs1335014 AAGAACTT 0.02987 0.01529 4.40461 6.2× 10−14 MKI67
11 36361306− 36410807 rs330255− rs331485 GCGATTAA 0.0309 0.00779 4.87953 1.5× 10−21 FLJ14213
11 133079508− 133113640 rs4937817− rs4937826 GTAGTGCC 0.04216 0.02425 2.69929 5.9× 10−17 LOC646522

CCGGCCCG 0.05747 0.04018 2.22186 1.4× 10−15

GTAGCCCG 0.04001 0.02779 2.23683 8.3× 10−12
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Tab. 3.4: The continuation of Table 3.3.

Chr Region SNP range Haplotype P̂ (Hi|case) P̂ (Hi|control) OR P-Value Gene
11 133914862− 133953680 rs12417998− rs10894845 GTTAGCCC 0.12907 0.13389 3.70503 1.4× 10−12 IQSEC3

GTTAATCC 0.09778 0.09576 3.92451 3.3× 10−13

GTCAGCTC 0.06932 0.07079 3.76457 7.6× 10−12

12 24250132− 24288211 rs3922562− rs17412555 CTGTGCCT 0.07253 0.06027 5.51363 6.0× 10−15 SOX5
TCGCGCCC 0.05454 0.03857 6.47638 9.9× 10−17

TCGCGTCC 0.02399 0.01788 6.14651 1.0× 10−12

12 51469295− 51501190 rs17738862− rs876407 CACCCTCG 0.14455 0.13704 2.25981 2.6× 10−13 KRT3
12 127083338− 127105747 rs7960047− rs9668398 GTGCGTCT 0.06573 0.06076 3.67491 2.7× 10−15 TMEM132C
15 37962389− 38014169 rs11633436− rs534757 TTACAACC 0.07798 0.03763 2.66998 3.9× 10−26 EIF2AK4
16 79852394− 79892297 rs6564863− rs11639552 TTCGTTAT 0.02663 0.01053 5.1576 7.7× 10−16 BCMO1
17 29052246− 29089136 rs2046899− rs17783280 AGTCAATC 0.11305 0.0966 2.10899 5.7× 10−14 LOC646202
17 52973696− 53057256 rs17834557− rs3744089 TGGTTAAC 0.05825 0.03915 2.15515 8.7× 10−14 MSI2
18 9649377− 9700554 rs1965881− rs1455587 TCACATGT 0.06243 0.04149 2.15776 6.3× 10−13 RAB31
18 60647495− 60688045 rs1595904− rs17678507 CAGTATAT 0.09403 0.0848 2.55691 1.2× 10−11 C18orf20
18 72313651− 72356779 rs17059443− rs8084536 GCGAGACC 0.08958 0.08373 2.43635 1.0× 10−11 FLJ44313
19 4625799− 4746342 rs11670570− rs1044409 AGCAACCG 0.05419 0.02332 3.3426 6.7× 10−25 DPP9
19 56075162− 56127664 rs187930− rs1654545 ACATGTGA 0.03532 0.02898 7.24575 3.3× 10−13 KLK2
19 58460745− 58519652 rs1978611− rs7408137 AGGTAGTG 0.05628 0.042 1.99812 4.0× 10−12 VN1R4
22 35324014− 35335429 rs7410412− rs12160203 TCCTAGGG 0.44488 0.50199 3.09116 1.6× 10−21 CACNG2

GCCTAGAG 0.03358 0.02891 4.05372 6.2× 10−17
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Tab. 3.5: The predicted risk haplotypes of hypertension by use of WTCCC data. In the
table, the P-values were derived from the chi-square test of the frequencies of
Hi against the collapsed frequencies of the estimated non-risk haplotypes.

Chr Region SNP range Haplotype P̂ (Hi|case) P̂ (Hi|control) OR P-Value Gene
1 1586208− 1753641 rs6603791− rs2272908 AACCCATC 0.03406 0.01973 2.45812 2.7× 10−12 SSU72
1 227569611− 227620956 rs7514972− rs9431663 CGTATAGG 0.03377 0.00926 7.08695 2.8× 10−32 TRIM67
1 227914995− 228040530 rs16854388− rs1655296 CAAGGTAG 0.04372 0.04622 2.90643 1.9× 10−13 TSNAX
1 236986859− 237020204 rs12137158− rs16840310 GCTGTGGG 0.02424 0.01534 2.95857 1.7× 10−11 GREM2

ATTTAGGG 0.08733 0.05437 3.00646 3.0× 10−26

GCTTTGAG 0.0756 0.06745 2.09936 1.1× 10−12

3 101569551− 101696774 rs277640− rs4928098 CCCAGGCG 0.02137 0.00908 6.27332 1.9× 10−13 TOMM70A
3 142488272− 142537277 rs7643346− rs2871887 AGCTCATC 0.17323 0.17868 2.2344 4.4× 10−11 ACPL2
3 142878508− 142912781 rs12485838− rs16851691 GCATAGAG 0.02089 0.00902 5.09818 1.3× 10−13 LOC646730
4 21080985− 21131665 rs1495517− rs358574 GTCGCACG 0.05716 0.04649 7.36766 4.2× 10−13 KCNIP4

GTTGCACG 0.06033 0.04669 7.74264 7.1× 10−14

4 23359572− 23389742 rs10008808− rs1976201 AGTTCTTA 0.03874 0.01347 3.68417 1.5× 10−20 PPARGC1A
5 10695437− 10746687 rs2062200− rs6891527 GTCACACG 0.16002 0.14866 6.18799 2.8× 10−23 LOC651746
5 32084851− 32103155 rs438834− rs10065850 TGCTCCCA 0.02254 0.01065 14.40157 1.6× 10−24 PDZD2
6 139560239− 139612833 rs7765885− rs9495394 GCGCAACG 0.0487 0.01774 4.54602 2.2× 10−35 HECA

ACGAAATG 0.01641 0.00709 3.82046 6.4× 10−12

GTACAATA 0.14141 0.13391 1.75292 4.9× 10−16

6 139693238− 139758634 rs11155050− rs9373237 TTGCGGCT 0.01924 0.00686 5.16669 1.1× 10−14 TXLNB
CTAAGATT 0.25795 0.24508 1.9524 6.6× 10−11

7 48232027− 48237897 rs17729647− rs2362301 AGACTGGT 0.07901 0.07156 3.41729 4.7× 10−15 ABCA13
AGATTGAC 0.03345 0.02897 3.57621 3.7× 10−12

AGATTGGC 0.35755 0.38319 2.88725 3.0× 10−14

7 77695246− 77717237 rs2215379− rs4515471 CTTAAAAA 0.03102 0.01998 4.32524 2.1× 10−21 MAGI2
TCTAAAAA 0.02943 0.01786 4.58962 5.0× 10−22

CTTGGAAA 0.02094 0.01061 5.49009 8.4× 10−21

CCTAGAAA 0.05541 0.05534 2.79199 2.4× 10−16

CCGAAAAA 0.13203 0.13667 2.6926 4.0× 10−21

9 77269212− 77301387 rs17063627− rs7032444 GCGGACAG 0.03393 0.01858 3.58867 1.6× 10−12 GNA14
10 119535731− 119568729 rs4752106− rs10787797 TATTCACA 0.09968 0.06304 2.91842 4.8× 10−19 RAB11FIP2
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Tab. 3.6: The continuation of Table 3.5.

Chr Region SNP range Haplotype P̂ (Hi|case) P̂ (Hi|control) OR P-Value Gene
11 125683058− 125763272 rs2096915− rs7118117 CACACGAG 0.07736 0.04727 2.42988 4.9× 10−12 ST3GAL4
12 27155055− 27179334 rs841636− rs841613 TAAAGGGT 0.05414 0.04075 2.81343 7.5× 10−15 LOC729222
12 112703139− 112738033 rs11066758− rs7137339 GGGGTCCC 0.06128 0.04048 2.52574 2.3× 10−18 RBM19
12 114038450− 114074493 rs1828384− rs35346 TGTACCTG 0.09952 0.10526 3.07564 1.5× 10−11 TBX3

TCCAATTG 0.04718 0.03821 4.01761 2.2× 10−13

13 23708179− 23726596 rs881428− rs2760374 AGAAGTTT 0.12142 0.07922 1.89748 5.7× 10−19 SPATA13
GAAAGCTT 0.2454 0.19993 1.51979 6.8× 10−15

13 70170848− 70209722 rs17087430− rs12876111 CGGGTTAT 0.13996 0.13226 3.39099 3.0× 10−14 ATXN8OS
CGGGTCCT 0.02217 0.01356 5.23473 1.9× 10−14

CGGGTCAT 0.13141 0.13526 3.11367 2.3× 10−12

CGGACTCT 0.04728 0.0398 3.8075 1.9× 10−13

14 21674996− 21704333 rs12050442− rs1894369 GGGGTTAC 0.03075 0.00968 6.13598 8.7× 10−19 TRA@
14 36411583− 36421982 rs10872897− rs2564848 ATCCACTT 0.02299 0.00637 4.45891 8.9× 10−16 SLC25A21

TACCTCCC 0.02712 0.01101 3.05584 1.8× 10−12

16 4881048− 4960784 rs760117− rs9937749 CTTCCCCA 0.0847 0.08126 4.18237 1.8× 10−12 SEC14L5
16 17231173− 17272606 rs754067− rs17277691 CGGACCCT 0.02658 0.02179 3.37015 1.1× 10−11 XYLT1
17 69565860− 69595387 rs7406930− rs8080915 CTGTACGC 0.0413 0.02484 2.54279 8.3× 10−14 RPL38
19 3315188− 3432578 rs758257− rs1860192 GTTTGATT 0.27769 0.23516 1.99935 3.4× 10−28 NFIC
19 8475735− 8540766 rs2967603− rs11259990 CCGCTCTT 0.06824 0.04351 3.23984 2.1× 10−17 ZNF414
19 17595848− 17649789 rs10419511− rs7252308 TTGGTGTG 0.07791 0.05267 2.40001 1.9× 10−23 UNC13A

TTGGTATG 0.04536 0.01971 3.72872 2.3× 10−28

19 38822176− 38857206 rs2059876− rs16968366 CAAATGCG 0.06455 0.05252 2.83486 6.2× 10−20 CHST8
20 10019135− 10038764 rs552048− rs670562 TATGAGGG 0.04043 0.02307 7.32891 4.5× 10−21 ANKRD5

TATAAGAA 0.03726 0.03549 4.39728 2.7× 10−12

TGTGAGGG 0.27299 0.294 3.88507 1.0× 10−13

TGTATGGG 0.19239 0.1808 4.4523 3.1× 10−16

3.6 Discussion and conclusion

The GWAS and sequencing studies have produced a huge amount of high-dimensional
data. Analyzing these data offers many challenges to statistical inference. Several
empirical studies have demonstrated the superiority of SNP region-based association
analysis over single-SNP strategy (see Zakharov et al., 2013 and reference therein).
However, even restricted to a region, we may still obtain many sparsely distributed
haplotypes derived from phasing the genotypes. In the presence of sparsely dis-
tributed haplotypes, haplotype clustering is very useful for performing statistical
analysis on the data. Most of the existing methods of haplotype clustering are
heuristic and not disease-penetrance based. To overcome this drawback, we have
proposed a hybrid mixture model-based approach for grouping and identifying risk
haplotypes. The key ingredient of the approach is a prospective mixture model with
priors. The proposal includes two stages: in the stage 1, one groups haplotypes
and therefore reduce the haplotype sparsity, while in the second stage, one conducts
a two-sample Z-test based screening on the haplotypes derived from the previous
stage. We have also provided a test for genetic inheritance modes.

We have examined the performance of the proposed procedure by a theoreti-
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cal analysis, simulations and a real data analysis. We have showed that under the
Hardy-Weinberg equilibrium, the risk haplotype group is identifiable if genotype rel-
ative risk is not equal to one. Compared to the standard multiple Z-testing method,
the proposed procedure is more efficient in terms of sensitivity and specificity. We
applied our procedures to the WTCCC CAD and hypertension data, rediscovering
some existing risk gene and haplotypes and identifying many more risk haplotypes
than did the multiple Z-test based approach. This is not surprising as the simu-
lations have already demonstrated that the model-based clustering often performs
better than does the multiple Z-test approach.

We note that the proposed method is applicable to address the problem of column
clustering (i.e., collapsing) in analyzing contingency table data.



4. GENOTYPE MIXTURE MODEL-BASED APPROACH (GM)

4.1 Introduction

The advanced genotyping technology has made it possible to conduct genome-wide
association studies (GWAS) on complex diseases in recent years (Hindorff et al.,
2009; Stranger et al., 2011). Genome-wide association studies systematically an-
alyze genetic variation across the genome by its effects on phenotypic traits. The
early landmark study using these technologies was the Wellcome Trust Case Control
Consortium (WTCCC), which reported genetic association results for over 500,000
single nucleotide polymorphisms (SNPs) in seven disease sample sets of 2000 indi-
viduals each and 3000 control individuals (WTCCC, 2007). Most of these studies
were based on the so-called common-disease-common-variant hypothesis that the
variants being sought are common to many individuals with the disease. To date,
these studies have identified hundreds of signposts associated with disease. But the
search for causative variants derived from them has been remarkably less successful,
with only a handful of causative variants discovered in follow-up sequencing studies.
Many of the variants found have had only a weak effect on the risk of disease and
therefore explained only a small proportion of the risk. Moreover, the signals in
these studies might not always be pointing to a few common genetic variants but
instead to many rare variants, each of which causes relatively few cases (Robinson,
2010; Li et al., 2010). The rapid increase in the number and the volume of GWAS
provides an unprecedented opportunity to examine effects of rare variants on disease
susceptibility. This also gives rise to a challenging problem of search for multiple
variant sets in a high-dimensional genotype space. A popular strategy, suggested
by the block-like structure of the human genome, is to segment each chromosome
into a list of genetically meaningful regions. The multilocus haplotype, the ordered
allele sequences on a chromosome, provides a unit of analysis for capturing linear
and non-linear correlations among variants (Schaid et al., 2002; Zhang et al., 2003;
Greevenbroek et al., 2008; Li et al., 2011). Unfortunately, haplotypes are often
unknown and sparsely distributed. Many existing procedures suffers from the prob-
lem caused by sparsely distributed genotypes. Direct, laboratory-based haplotyping



4. Genotype mixture model-based approach (GM) 60

to infer the unknown phase are expensive ways to obtain haplotypes. So, people
prefer to infer haplotypes from observed genotypes by using the computational soft-
ware such as PHASE (Stephens et al., 2001; Scheet et al., 2006). To deal with
the haplotype distribution sparsity, a number of haplotype clustering methods have
been developed in literature (Molitor et al., 2003; Tzeng et al., 2006; Browning and
Browning, 2007; Zhu et al., 2010, and references therein). However, computational
inferred haplotypes may contain both true and false haplotypes, resulting in a high
false discovery rate of risk haplotypes.

Here, to deal with the above issue we propose a finite mixture model for directly
clustering genotypes on the basis of their prospective frequencies. The rationale
behind the proposal is as follows. We arrange the genotype frequencies derived from
a case-control study by a contingency table, where rows stand for the disease status
(case or control) and columns for genotypes. Then, we can directly assess whether
two genotypes belong to the same group by their column similarity in the table.
Formally, we fit each column by a binomial distribution with the disease-penetrance
as the success probability, inferring the grouping of these columns through use of
three-component binomial mixtures. The main advantage of the proposed model
over the other existing methods is that it can avoid haplotyping-error effects on
grouping rare haplotypes. Moreover, using the estimated prospective frequencies
derived from a retrospective study to estimate genotype (and haplotype) disease
odds ratio is known to be asymptotically consistent even though the prospective
frequency estimators may not be (Prentice and Pyke, 1979).

We employ the expectation-maximization (EM) algorithm to calculate the max-
imum likelihood estimator for the proposed mixture model. The EM algorithm can
guarantee monotone convergence to a local maximum. On the other hand, it needs
to choose initial values in order to reach a local maximum which is close to the global
maximum. The existing methods for initialization include: multiple random initial-
izations, initially grouping the data and among others (Karlis and Xekalaki,2003). In
this Chapter, we propose a new initialization procedure by grouping the estimated
genotype frequencies. We conduct simulation studies on the proposed method in
both prospective and retrospective design settings, showing that our method can
outperform Zhu et al.’s approach in most cases. We also apply both the proposed
method and Zhu et al’s method to the Coronary Artery Disease (CAD) and Hy-
pertension (HT) data in the Wellcome Trust Case Control Consortium (WTCCC),
identifying potential risk haplotypes for each pre-specified chromosomal region.

The rest of the chapter is organized as follows. The proposed methodology is
introduced in Section 4.2. The simulation studies and real data applications are
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presented in Sections 4.3 and 4.4. Discussions and conclusion are made in Section
4.5.

4.2 Methodology

Consider a case-control sample with N0 controls and N1 cases, typed at m SNP
markers in a candidate region, yielding unphased genotypes G. Suppose that G
contains distinct genotypes Gj, 1 ≤ j ≤ J∗ with counts N0j, N1j in controls and
cases respectively. To tackle the issue of extremely rare genotypes, we first collapsed
these genotypes by defining the set

Gc =
{
Gj|N0j = 0 or N1j = 0 or N0j +N1j

N0 +N1
≤ 0.005, j = 1, ..., J∗

}
,

where we say that Gj is extremely rare if its prospective frequency is less than
0.05%. With a slight abuse of notation, we still denote these non-extreme genotypes
as G1, ..., GJ−1 with accounts N0j, N1j, 1 ≤ j ≤ J − 1, and the set Gc by GJ with
the collapsed account N0J and N1J in controls and cases respectively. We write
N = {(N0j, N1j) : 1 ≤ j ≤ J} and rewrite G = {G1, ..., GJ}. Then, the prospective
frequencies of Gj in the controls and cases can be estimated by

p̂0j = N0j

N0j +N1j
, p̂1j = N1j

N0j +N1j

respectively. Let H2 denote all haplotype pairs reconstructed from G by using the
software PHASE (Stephens and Donnelly, 2003).

4.2.1 Two-stage procedure

We introduce the following two-stage approach for finding risk haplotypes. In Stage
1, genotypes are clustered and risk genotypes are derived, whereas in Stage 2 the
odds ratio thresholding is employed to infer risk-haplotypes. As the reconstructed
haplotypes may contain errors, to avoid the effect of hapolotying errors on clustering,
we co-classify genotypes instead of the inferred haplotypes in Stage 1. The details
are given below.

Stage 1 (Genotype clustering): We assume that haplotypes can be annotated
by two categories: risk and non-risk, where non-risk category include both neutral
and protective risk haplotypes. As each genotype consists of a haplotype pair, the
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observed genotypes can be clustered into three categories according to the numbers
of risk haplotypes which they have. In light of the above fact, we fit the following
three-component binomial mixture model to the genotype account data:

f((N0j, N1j)T |θ) = π0f((N0j, N1j)T |q0) + π1f((N0j, N1j)T |q1) + π2f((N0j, N1j)T |q2),

where θ = (q0, q1, q2, π0, π1)T with 0 ≤ qν ≤ 1, 0 ≤ πν ≤ 1, ν = 0, 1, 2, π0+π1+π2 = 1,
and

f((N0j, N1j)T |qν) =
(
Nj
N1j

)
qN1j
ν (1− qν)N0j , ν = 0, 1, 2;Nj = N0j +N1j.

The (incomplete) likelihood of θ given data N can be calculated by

L(θ|N) =
J∏
j=1

f((N0j, N1j)T |θ).

We use the so-called expectation-maximization algorithm (McLachlan and Basford,
1988) to calculate the maximum likelihood estimator (MLE) θ̂. To this end, we
introduce the following complete log-likelihood

l(θ|N, I) =
J∑
j=1

2∑
ν=0

Iνj log
[
πν f((N0j, N1j)T |qν)

]
,

where I = {(I0j, I1j, I2j)T : 1 ≤ j ≤ J} and (I0j, I1j, I2j)T are unknown group
membership indicators defined by

Iνj =

 1, if Gj in the group ν
0, otherwise

ν = 0, 1, 2.

The EM algorithm consists of two steps.

E-Step: Given the current estimator θ(t) and the data, the conditional expecta-
tion of the complete log-likelihood can be calculated by

Q(θ, θ(t)) = E
[
l(θ|N, I)|N, θ(t)}

]
=

J∑
j=1

2∑
ν=0

τ
(t)
νj log

[
π(t)
ν f((N0j, N1j)T |q(t)

ν )
]
,

where the expectation is taken with respect to the distribution of I and the estimated
posterior probability of the j-th genotype being in the group ν, τ (t)

νj admits

τ
(t)
νj = P (Iνj = 1|(N0j, N1j)T , θ(t)) = π(t)

ν f((N0j, N1j)T |q(t)
ν )∑2

ν=0 π
(t)
ν f((N0j, N1j)T |q(t)

ν )
.
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M-Step: We update the current estimate θ(t) by maximizing Q with respect to
θ. This is equivalent to solving the following equations

∂Q

∂πν
= 0, ∂Q

∂qν
= 0, ν = 0, 1, 2,

subject to π0 + π1 + π2 = 1. For ν = 0, 1, 2, we obtain the updated estimate θ(t+1)

via

π(t+1)
ν =

J∑
j=1

τ
(t)
νj /J, q(t+1)

ν =
∑J
j=1 τ

(t)
νj N1j∑J

i=1 τ
(t)
νj Nj

.

The existing EM theory suggests that the value of the log-likelihood function at
the updated estimate is not decreasing in the sense that l(θ(t+1)|N) ≥ l(θ(t)|N). We
alternatively repeat the E- and M-steps until l(θ(t+1)|N) − l(θ(t)|N) is less than a
pre-specified number η, say η = 0.0001.

Note that if the j-th genotype is not risk to the disease, then X = (N0j +N1j)p̂1j

approximately follows a binomial distribution B ∼ f((N0j, N1j)T |q̂0). In light of
this fact, the risk-genotype group (which consists of genotypes with at least one risk
haplotype) can be estimated by

Gr = {Gj : p̂1j > wj, j = 1, ..., J},

where
wj = q̂0 + µj

√
q̂0(1− q̂0)/(N0j +N1j)

satisfying

P (X ≥ (N0j +N1j)wj) < ε, (4.1)

where ε is a pre-specified constant. In the simulation studies later, around 100
different genotypes will be involved in each dataset. Using the Bonferroni correction,
we set ε = 0.05/J so that the total probability of type I errors involved in the
thresholding is less than 0.0005. Similarly, in the real data analysis section below,
we will use the Bonferroni correction to set a different value of ε.

Stage 2 (haplotype thresholding): We introduce the following approach for
identifying risk haplotypes. Let H2

a be all haplotype pairs corresponding to Gr,
which are derived from H2 directly by taking advantage that Gr is a subset of G.
Let Ha = (h1, ..., hK)T be all the distinct haplotypes in H2

a with counts n0k and n1k,
k = 1, ..., K in controls and cases respectively. The subset Ha − {hk} represents
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non-risk background with controls and cases counts

n0r̄ =
∑

ht /∈Ha

n0t, n1r̄ =
∑

ht /∈Ha

n1t,

respectively. Note that Ha may contain non-risk haplotypes when Gr carries geno-
types of a risk haplotype paired with a non-risk haplotype. For example, in the
so-called dominant inheritance mode, risk haplotypes are often paired with non-risk
haplotypes in producing genotypes. Therefore, to find risk haplotypes, we need to
further threshold Ha. It is well-known that the prospective frequency-based pen-
etrance estimators with case-control data can be biased. However, the odds ratio
estimator based on the prospective frequencies is asymptotically unbiased (Prentice
and Pyke, 1979). So, we use the odds ratio to judge whether a haplotype is risk
or not. Here, non-risk haplotypes are defined as haplotypes which are neutral or
protective to the disease. The technical details are described as follows.

We calculate the odds ratio between hk and Ha − {hk} by

ORk = (n1k + 0.5)(n0r̄ + 0.5)
(n0k + 0.5)(n1r̄ + 0.5) ,

where adding 0.5 to the OR for the continuity correction. Then, the risk haplotype
set Hr is calculated by

Hr = {hk ∈ Ha : ORk ≥ exp(c1φ(n0k, n1k, n0r̄, n1r̄))} , (4.2)

where c1 is a pre-specified constant and

φ(n0k, n1k, n0r̄, n1r̄) =
√

1/(n0k + 0.5) + 1/(n1k + 0.5) + 1/(n0r̄ + 0.5) + 1/(n1r̄ + 0.5).

4.2.2 Example

In applying the three components binomial mixture model to the previous example
that we discussed briefly in Example 3.2.3, we found that the incomplete log likeli-
hood taken a value of -392.224 at the true parameter values θ = (π0, π1, π2, q0, q1, q2) =
(0.6980, 0.2370, 0.0650, 0.096, 0.23, 0.319) which we set in the simulation. However,
when we applied the EM algorithm to the above example starting from different sets
of initial values, we found out that the EM algorithm converged to different values.
Table 4.1 shows the initial iteration and the final one resulted from applying the
EM algorithm.
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Tab. 4.1: The table shows the random initial values and the estimated ones of the final iteration when applying the EM algorithm to genotype
data.

Initial values Final iteration
Iter. π0 π1 π2 q0 q1 q2 π0 π1 π2 q0 q1 q2 Inc l(θ)
1 0.10105 0.69669 0.20226 0.43202 0.0484 0.70173 0.11658 0.76562 0.11779 0.27226 0.09459 0.89773 -358.76387
2 0.42563 0.50748 0.06689 0.42673 0.23196 0.10098 0.24941 0.54845 0.20214 0.49366 0.19009 0.07287 -437.84477
3 0.12049 0.3183 0.56121 0.89382 0.02339 0.11772 0.09249 0.2709 0.63661 0.9868 0.01428 0.15767 -361.48989
4 0.30887 0.05712 0.63401 0.91955 0.38633 0.15956 0.10226 0.04521 0.85252 0.97709 0.30794 0.11812 -360.85976
5 0.95638 0.02541 0.01821 0.59947 0.92822 0.51645 0.74782 0.02295 0.22923 0.15748 0.99659 0.13786 -416.1461
6 0.00043 0.78261 0.21695 0.3443 0.56379 0.12384 0.01466 0.36751 0.61784 0.29292 0.49687 0.11017 -446.93735
7 0.05152 0.13456 0.81392 0.75908 0.06098 0.73824 0.01825 0.68415 0.2976 0.7367 0.13292 0.59515 -477.64734
8 0.95643 0.0365 0.00707 0.49998 0.13264 0.10433 0.61282 0.30248 0.0847 0.32042 0.13339 0.06955 -474.33923
9 0.52399 0.30245 0.17355 0.3381 0.62554 0.50207 0.77443 0.13569 0.08987 0.13567 0.77644 0.2548 -397.65649
10 0.69936 0.03294 0.2677 0.12468 0.05317 0.84755 0.8265 0.06215 0.11135 0.14809 0.01116 0.95643 -369.26013
11 0.09258 0.16839 0.73903 0.56329 0.10294 0.78082 0.07161 0.69889 0.2295 0.30735 0.11685 0.74198 -398.54006
12 0.30666 0.34839 0.34494 0.30907 0.53513 0.85531 0.70726 0.18957 0.10317 0.13458 0.20015 0.93332 -387.73741
13 0.5981 0.03963 0.36227 0.0876 0.58177 0.79732 0.83928 0.02774 0.13298 0.11774 0.31716 0.90498 -372.95683
14 0.33234 0.4426 0.22506 0.50312 0.97698 0.54127 0.67259 0.08882 0.2386 0.13597 0.98438 0.13037 -412.80278
15 0.8683 0.06662 0.06508 0.3814 0.09615 0.84624 0.62512 0.32542 0.04946 0.23372 0.09276 0.98886 -366.4288
16 0.4205 0.23499 0.34452 0.11028 0.09444 0.12736 0.3988 0.22865 0.37254 0.1158 0.07779 0.22624 -468.20586
17 0.97859 0.0168 0.00461 0.5732 0.52413 0.93077 0.82498 0.16072 0.0143 0.14704 0.14153 0.99938 -422.67232
18 0.77082 0.12206 0.10711 0.59657 0.89334 0.26974 0.39596 0.0493 0.55474 0.23223 0.9788 0.13442 -384.29741
19 0.0154 0.01736 0.96724 0.32966 0.94419 0.70633 0.45034 0.01507 0.53459 0.13532 0.99714 0.26353 -402.36242
20 0.52574 0.32263 0.15163 0.80129 0.01057 0.66451 0.16505 0.70215 0.1328 0.80318 0.09466 0.27857 -374.0017
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As it can be seen from Table 4.1 that the convergence is not really accurate in
terms of the distance of the estimated parameter and the true ones underlying the
model. The incomplete likelihood value is not a global maxima because it is less
than the likelihood value at the true parameters. In fact there are two main reasons
for that is we start from random initial values and there are many rare genotypes.
We cope with these issues by proposing two ways of setting the initial values for EM
algorithm.

4.2.3 EM algorithm initialization

Choosing initial values for the EM algorithm is an important step in finding a
maximum of the likelihood. There are various ways to do that such as random
initialization and data partition. See Karlis and Xekalaki (2003) for a review. Here,
we consider the following two methods to initialize the EM algorithm.

Method 1 (random initialization): We randomly choose i0 initial values (say
i0 = 100) of θ and run the EM algorithm with each chosen initial value. We take
the best one among these runs in terms of maximizing the log-likelihood.

Method 2 (data partition): We first exclude the outlying frequencies in {p̂1j},
which have values of 0 or 1, to obtain robust means of a partition. Then, letting
c = (max{p̂1j}−min{p̂1j})/3, we partition the frequencies into three sets as follows:

S0 = {p̂1j; p1j ≤ min{p̂1j}+ c},

S1 = {p̂1j; min{p̂1j}+ c ≤ p̂1j < min{p̂1j}+ 2c},

and
S2 = {p̂1j; p̂1j > min{p̂1j}+ 2c}.

Note that the prospective frequency is increasing in the number of risk hap-
lotypes which it carries. So, we expect that S2, S1 and S0 mainly contain the
frequencies corresponding the sets of genotypes with two risk haplotypes, with one
risk haplotype, and with no risk haplotypes respectively. We choose the following
initial values for estimating qν and πν , ν = 0, 1, 2:

q0
ν =

∑
p1j∈Sν p1j

|Sν |
, and π0

ν = |Sν |
m

,

where |Sν | denotes the cardinality of Sν , 1 ≤ j ≤ m and m is equal to J minus the
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excluded outliers in {p̂1j}.

4.2.4 Multiple testing method

To compare the proposed method to the multiple testing procedure of Zhu et al.
(2010), we briefly describe their procedure as follows. In their procedure, a subsam-
ple A containing N (a)

0 and N (a)
1 individuals are randomly chosen from the controls

and cases respectively. These individuals are used in the screening stage and the
remaining forms a validation subsample B to be used in the validation stage. Sup-
pose that there are K different haplotypes inferred from A by using the PHASE.
Let (r(a)

0k , r
(a)
1k ), 1 ≤ k ≤ K be their respective frequencies in controls and cases

respectively.

Screening stage: We perform a respective frequencies-based screening by cal-
culating an estimated risk haplotype set as follows:

S(a) = {hk : z(a)
k > c0, 1 ≤ k ≤ K},

where c0 is a pre-specified constant (c0 = 1 in our later simulations) and

z
(a)
k = r

(a)
1k − r

(a)
0k√

r
(a)
0k (1− r(a)

0k )/(2N (a)
1 )

.

Validation stage: The S(a) is refined by performing Fisher’s exact test based
on subsample B for each haplotype in S(a). This gives a final risk haplotype set
denoted by S(b).

4.3 Simulation studies

In this section, via simulations we will examine the performance of the proposed
methods in terms of the estimated L1 bias and the average of sensitivity and speci-
ficity under various scenarios. Let θ̂ be the estimator of θ, and Hr and Hr̄ the
estimated true risk and non-risk haplotype sets respectively. Let Tr and Tr̄ be the
true risk and non-risk haplotype sets. Then, by the L1 bias we mean the L1 dis-
tance between θ̂ and θ. By the sensitivity and specificity of Hr and Hr̄, we mean
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the positive discovery rate and the negative discovery rate:

sen = |Hr ∩Tr|
|Tr|

and spe = |Hr̄ ∩Tr̄|
|Tr̄|

.

We take the average AVSS = (sen+spe)/2 to assess the performance of a haplotype
classification procedure.

4.3.1 Performance of the proposed data partition-based initialization

To compare the proposed data partition-based initialization (Method 2) to the ran-
dom initialization (Method 1), we generated 30 genotype datasets on 10 single nu-
cleotide polymorphisms (SNPs), each dataset, containing N0 controls and N1 cases,
was obtained by the following two steps: In the step 1, we used the software MS
(Hudson, 2002) to simulate 2(N0 + N1) haplotypes with a mutation rate of 2. We
randomly chose mr of these haplotypes and labeled them as risk haplotypes. To
save the space, we considered only N0 + N1 = 5000 and mr = 10. The results for
other values of N0 + N1 and mr were similar. In the step 2, the disease states of
the above genotypes were simulated from the multiplicative inheritance model with
q0 = 0.1 and λ = 3. Note that the number of genotypes depends on the mutation
rate and was varying across 30 datasets.

The comparison was based on the log-likelihood, the run time, estimated bias
and classification error rate (CER). The estimated bias can be calculated by sum all
the absolute values of the differences between θ̂ and the true θ. Note that genotypes
in each dataset could be divided into three (true) groups, say Gν , ν = 0, 1, 2 as we
knew the number of risk haplotypes which each genotype contained in the simulation.
On the other hand, if we pretended that we did not know which haploypes were risk
(therefore, we did not know the group memberships of these genotypes). To infer
their memberships, we fitted a three-component binomial mixture model to each of
30 datasets. By using the estimated posterior probabilities, τνj, ν = 0, 1, 2, of group
memberships derived from the EM algorithm, we assigned the j-th genotype to the
group Ĝν , ν = 0, 1, 2 if τνj = maxt τtj. Here, we labeled three estimated groups
according to the ordered penetrances q̂0 ≤ q̂1 ≤ q̂2. The accuracy of three estimated
groups was evaluated by the CER defined as

CER =
∑
ν

(
1− |Gν ∩ Ĝν |

|Gν |

)
,

where we counted the total number of misclassified genotypes divided by the total
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number of the genotypes. The results were summarized in Figure 4.1 in terms of the
box-whisker plots of the estimated biases, the CERs, likelihood values, and time-
costs over 30 datasets for Methods 1 and 2 respectively. Methods 1 and 2 denote
the random initialization and the data partition-based methods. In this figure, the
panels show the box-whisker plots of the estimated biases in estimating θ, the CERs,
the attained log-likelihoods, and the time-costs for Methods 1 and 2 respectively.
The result shows that Method 2 substantially outperformed Method 1. Therefore,
we decided to initialize the EM algorithm by use of Method 2 in the remaining
simulations as well as the real data analysis below.
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Fig. 4.1: Performance of two initialization methods.

4.3.2 Performance of the proposed two-stage method

Note that the proposed two-stage method is based on the prospective likelihood
model although real data were obtained from retrospective studies. By the simu-
lations below, we addressed whether the proposed method could outperform Zhu
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et al’s multiple-testing procedure in both prospective (i.e., cohort) and retrospec-
tive (i.e., case-control) studies. We used the same ways that we described in the
section 3.3.2 to generate data according to the cohort design and case-control design.

Setting 1 (cohort design): In this design, we considered various combinations
of (N0 +N1,mr, IM, f0, λ), where N0 +N1 = 3000, 5000, mr = 5, 10, 20, IM = 1, 2, 3,
f0 = 0.1, λ = 1, 1.4, 1.8, 2.2, 2.6, 3, 3.4, and 3.8 respectively.

For each scenario, we applied both the proposed method and the multiple testing
method to 30 datasets and calculated their AVSS values respectively. For each of the
three inheritance modes, we plotted the means of these AVSS values over 30 datasets
against λ. In the plots displayed in Figures 4.2, the red and the blue solid curves
show means of the AVSS values (i.e., the values of (specificity and sensitivity)/2))
over 30 datasets are plotted against the values of λ for the proposed method and
the multiple testing method respectively. The two red dash curves are one standard
error up and down from the red mean curves. Similarly, the two blue dash curves are
one standard error up and down for blue mean curves. The plots in the rows from the
top to the bottom are for the cases where there were 5, 10, and 20 risk haplotypes
in the underlying haplotypes and based on different modes of inheritance. The
result represents the sample size of 5000 for cases and controls altogether. Similarly,
in Figure 4.4, the plots showing the results of the same above scenarios but for
sample size of 3000 for cases and controls altogether. The figure shows that on the
cohort data, the proposed two stage method performed substantially better than the
multiple testing method in all the scenarios defined above. The improvement was
achieved by using model-based genotype clustering. This is not surprising, because
Yeung et al. (2001) has already showed that the model-based clustering is often
superior over non-model based clustering.
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(b) N=5000,mr=5,dom
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(c) N=5000,mr=5,mult
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(d) N=5000,mr=10,rece

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Lambda

0.5

0.6

0.7

0.8

0.9

1.0

A
V
S
S

GM
MT

(e) N=5000,mr=10,dom
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(f) N=5000,mr=10,mult
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(g) N=5000,mr=20,rece
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(h) N=5000,mr=20,dom
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Fig. 4.2: Performances of the proposed two-stage method and the multiple testing method
on the cohort-design data with multiplicative or dominant or recessive inheritance
modes with sample size N = 5000.
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(a) N=3000,mr=5,mult
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(b) N=3000,mr=5,rece
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(c) N=3000,mr=5,dom
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(d) N=3000,mr=10,mult
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(f) N=3000,mr=10,dom
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(g) N=3000,mr=20,mult
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(h) N=3000,mr=20,rece
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Fig. 4.3: Performances of the proposed two-stage method and the multiple testing method
on the cohort-design data with multiplicative or dominant or recessive inheritance
models with sample size N = 3000..
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Setting 2 (case-control design):

We applied the proposed two-stage method and the multiple testing method to
these case-control data. The plots in Figure 4.4, the mean curves of the AVSS
values with one standard error up and down were plotted against the d values
{0, 0.05, 0.1, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}. The columns from the left to the right
are for the scenarios, where the underlying number of risk haplotypes mr = 5, 10,
and 20. The top row stands for the cases, where (N0, N1) = (2000, 3000), while the
bottom row stands for the cases, where (N0, N1) = (1000, 2000). The results again
demonstrate that the proposed two-stage method can be more powerful than the
multiple testing method in detecting risk haplotypes. However, the AVSS gain was
decreasing in the number of risk haplotypes mr as well as the underlying odds ratios
of Groups 1 and 2. In particular, the AVSS gain can be negative when there were
many risk-haplotypes presented in the data. This is due to the effect of unbalanced
case and control sample sizes in the finite sample size setting, because our model in
Stage 1 is a prospective model.
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(c) N1=2000, N0=3000,mr=5
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(d) N1=1000, N0=2000,mr=20
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(f) N1=1000, N0=2000,mr=5

Fig. 4.4: Performances of the proposed two-stage method and the multiple testing method
on the case-control data.

4.4 Real data analysis

We applied the proposed permutation method to the GWAS genotype datasets on
coronary artery disease (CAD) and hypertension (HT) obtained by Affymetrix 500K
SNP chips in the WTCCC study (WTCCC, 2007). The datasets are prepared in
the same way we described in 3.5. To reduce the dimension of the genotypes,
we segmented the genome into regions of 8 SNPs according to their positions on
the chromosomes, obtaining 61218 regions and the corresponding genotype datasets
Gk, k = 1, 2, ..., 61218. Note that the long region will dilute the effects of risk SNPs
and can result in many rare genotypes, whereas the short region will miss interactions
between SNPs. The region length of 8 was chosen to achieve a compromise between
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the above aspects by using a pilot study. Also note that as we excluded the SNPs
with bad callings, the numbers of cases and controls are varying across the different
regions.

Note that {Gk : k = 1, ..., 61218} contained 1983537 genotypes in total for the
CAD data and 2097111 genotypes in total for the HT data respectively. The pro-
posed procedure includes two stages. In Stage 1, we obtained the estimated risk
genotypes, while in Stage 2, we further inferred haplotype pairs from the estimated
risk genotypes. In Stage 1, we first fitted a three-component binomial mixture model
to each Gk and then thresholded the genotypes based on the smallest penetrance
in the three components. The thresholding would involve 1983537 tests for the
CAD data and 2097111 tests for the HT data. So in equation (4.1), we set ε =
0.05/1983537 = 2.52× 10−8 for the CAD data and ε = 0.05/2097111 = 2.38× 10−8

for the HT data. In Stage 2, we employed the PHASE to infer the haplotypes
from the risk genotypes derived from the previous stage. This gave rise to 201528
potential risk haplotypes out of 1448586 in CAD data and 213578 potential risk
haplotypes out of 1463838 in HT data. We further conducted the OR thresholding
for these haplotypes. There would involve 201528 tests in the CAD case and 213578
tests in the HT case. By using the Bonferroni adjustment, we set the corresponding
individual test level at 0.05/201528 = 2.48 × 10−7 and 0.05/213578 = 2.34 × 10−7

for the CAD and the HT respectively. These individual test levels were then used to
determine the tuning constant c1 in equation (4.2). This yielded c1 ≈ 5. After per-
forming the proposed two-stage method on the datasets, we obtained the estimated
risk and non-risk haplotype sets, Ĥr and Ĥr̄, for the CAD and the HT respectively.

Finally, we carried out a genome control on the above results by taking ad-
vantage of the fact that there were two sub-populations in controls. The genome
control can eliminate these false haplotypes generated by the PHASE and popula-
tion substructures from the selected list of risk haplotypes. In the genome control,
we run the chi-square tests on the association of two control sub-populations with
each estimated risk haplotype. We eliminated these estimated risk haplotypes with
p-values for the above chi-square tests less than < 30%. Here, 30% was chosen
by the simulations which are shown in Figure 3.6, aiming to filter out false risk
haplotypes.

The genome control gave the final risk-haplotype set as displayed in Tables 4.2,
4.3, 4.4, and 4.5 below. In the tables, each haplotype has been assigned to a phys-
ically closest gene on the basis of the information provided the GWAS catalog and
the genetic information from the British 1958 Birth cohort. See Welter et al. (2014)
and the web page at
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http://www2.le.ac.uk/projects/birthcohort/1958bc. In the CAD case, we did redis-
cover the CAD risk genes TNIK in chromosome 3, CDKN2B in chromosome 9,
BTG1 in chromosome 12, and A2BP1 in chromosome 16, which were found by the
previous study (WTCCC, 2007; Zhu et al., 2010; Welter et al., 2014). In the HT
case, we also identified a number of variants which were potentially associated with
hypertension. However, we were not able to confirm any existing discoveries in the
literature (Welter et al., 2014). A possible reason is that we set a very stringent
level for the odds ratio thresholding based on the Bonferroni adjustment for multiple
testing. It is well-known that the Bonferroni adjustment is very conservative.

Tab. 4.2: The predicted risk haplotypes for CAD by use of the WTCCC data. In the
table, the P-values were derived from the chi-squared test of the frequencies of
Hi against the collapsed frequencies of the estimated non-risk haplotypes.

Chr Region SNP range Haplotype P̂ (Hi|case) P̂ (Hi|control) OR P-Value Gene
1 17921479− 17955334 rs11203219− rs638425 AATGCCGC 0.04602 0.01388 3.05038 4.1× 10−12 ACTL8
1 75974016− 76018681 rs3806162− rs5745391 TCTATCAA 0.05105 0.01954 3.18049 1.2× 10−12 MSH4
2 49934439− 50000082 rs6736617− rs17039375 CCAAAGGT 0.02347 0.00757 3.08898 6.6× 10−10 NRXN1
2 81387425− 81525659 rs4401229− rs2862499 TTGCTCCA 0.0451 0.02468 2.54951 1.8× 10−12 LOC442021
2 222486954− 222527591 rs16863087− rs2392937 CCAAACGG 0.04059 0.02497 2.09348 4.3× 10−08 LOC402120
2 230201571− 230228527 rs6755403− rs13391903 AGTTTGCC 0.1132 0.04164 2.78377 2.3× 10−08 DNER
2 239420300− 239491966 rs4545955− rs13008279 TTCCAGGA 0.05558 0.02584 2.17494 1.3× 10−12 FLJ43879
2 241821720− 241873661 rs4675991− rs935262 CGGGGTTT 0.03735 0.01659 2.32538 1.4× 10−10 PPP1R7
3 4927181− 5001898 rs17041733− rs11925620 CCTCCTCC 0.04287 0.01795 2.16999 1.2× 10−07 BHLHB2
3 14422977− 14471151 rs4684216− rs9834629 GATGATGC 0.01815 0.00509 3.63785 1.7× 10−09 SLC6A6
3 60586653− 60641652 rs7432576− rs1716739 CTATAAGC 0.15989 0.11374 1.55681 9.4× 10−12 FHIT
3 63365648− 63390235 rs17068494− rs1403700 TCCTTCGG 0.08979 0.04741 2.04072 7.1× 10−09 SYNPR
3 67509601− 67525645 rs9867659− rs17046411 ACGATGTT 0.05192 0.03019 1.95683 5.1× 10−09 SUCLG2
3 103285842− 103325614 rs7623627− rs9844712 GTCCCTAT 0.02744 0.00999 3.15138 1.6× 10−09 NFKBIZ
3 106353367− 106411138 rs16850901− rs9846852 TATCGAGA 0.02931 0.0065 4.87306 7.5× 10−18 ALCAM
3 144925558− 144993828 rs4330252− rs12233446 TGGGATAC 0.02976 0.00733 5.71824 1.8× 10−16 SLC9A9
3 145364476− 145471873 rs9854202− rs3925560 AACGGACT 0.37409 0.29638 2.25725 5.5× 10−34 C3orf58
3 172422863− 172457251 rs954749− rs16856054 TTCTTACT 0.12948 0.08707 1.50219 2.2× 10−08 TNIK
3 192463499− 192526004 rs7644510− rs293871 GACGCGTA 0.04375 0.01075 3.69505 1.3× 10−18 UTS2D
3 197256495− 197339533 rs6583286− rs9834962 TAGACTTA 0.0498 0.02364 2.27577 2.7× 10−10 TFRC
4 3636361− 3700212 rs10025237− rs16844722 GGGGAGGG 0.22491 0.15492 1.65607 1.9× 10−07 FLJ35424
5 120487082− 120547238 rs11956204− rs17514347 ATTGGGAG 0.02739 0.00735 3.8359 1.5× 10−13 LOC728682
5 166764561− 166801933 rs6863935− rs7724862 CTATGTGT 0.09145 0.05448 1.69398 8.7× 10−09 ODZ2
7 4779368− 4930112 rs2942566− rs4320451 CGGGTCAT 0.10433 0.06243 1.66428 5.5× 10−10 RBAK
7 10052046− 10079446 rs10225194− rs11768931 GGTTCGCT 0.04951 0.0245 2.64149 9.4× 10−15 LOC340268
7 34178282− 34260002 rs17169771− rs16878925 AGGTTGCG 0.05229 0.02631 2.71386 3.3× 10−13 AAA1
7 42931717− 42940671 rs2024125− rs2330742 AGTGTAGA 0.09745 0.0513 1.90132 2.0× 10−10 HECW1
7 153564509− 153621369 rs869490− rs6953905 TCGTATCG 0.0667 0.03524 1.93779 6.6× 10−11 LOC653748
8 5482876− 5498858 rs2189889− rs4875607 CGGACCGA 0.07873 0.0533 1.64615 2.4× 10−08 LOC648237
8 17486464− 17509327 rs2705093− rs2588121 CCTGCGAG 0.05925 0.02338 2.67404 1.6× 10−15 PDGFRL
8 38345434− 38449100 rs16887343− rs12677355 ACGTACCT 0.09472 0.05661 1.82381 7.0× 10−13 WHSC1L1
8 104190450− 104202402 rs2515173− rs3019159 GGCCATCT 0.14195 0.08768 1.62006 1.5× 10−08 BAALC
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Tab. 4.3: The continuation of Table 4.2.

Chr Region SNP range Haplotype P̂ (Hi|case) P̂ (Hi|control) OR P-Value Gene
9 22088619− 22120515 rs2891168− rs10965245 GGTGCCAG 0.34939 0.29298 1.52609 1.0× 10−07 CDKN2B
9 74180343− 74241329 rs10114124− rs17081046 GTATTTAT 0.21608 0.13046 1.61055 1.2× 10−07 RORB
9 114777214− 114805868 rs1322060− rs10121268 GAGCCTAA 0.09498 0.06007 1.56664 2.3× 10−08 TNFSF8
9 119506057− 119537035 rs2191675− rs10984648 GTTGGCTA 0.08762 0.03361 2.41642 3.0× 10−16 CDK5RAP2
10 11879196− 11924252 rs6602535− rs11257355 TCTGCCGG 0.1694 0.12811 1.41273 6.4× 10−08 C10orf47
10 11879196− 11924252 rs6602535− rs11257355 TCTGCCGG 0.1694 0.12811 1.41273 6.4× 10−08 C10orf47
10 64409674− 64442476 rs1509952− rs2842286 TTTCTTAC 0.02299 0.0073 4.03039 1.6× 10−09 NRBF2
11 8165969− 8200374 rs4758310− rs11041816 ATAATGGG 0.36298 0.3164 1.3306 1.1× 10−08 LOC644497
11 21323965− 21363331 rs17233214− rs1945444 GGTAACAT 0.08147 0.04232 1.98043 8.6× 10−12 NELL1
11 69213458− 69295251 rs1192923− rs3168175 TCGTGGCA 0.10225 0.05587 1.98038 8.9× 10−14 FGF4

TTGTGGCA 0.05213 0.02803 2.01202 5.6× 10−09

11 83230307− 83256927 rs1878266− rs1878264 TATATTCA 0.03571 0.01807 2.11905 2.5× 10−07 CCDC90B
12 90721177− 90758721 rs10745571− rs17193868 GGGCTATA 0.0351 0.00949 3.88035 1.7× 10−16 BTG1
12 114038450− 114074493 rs1828384− rs35346 TGTACCCT 0.03245 0.01341 2.52817 2.3× 10−07 TBX3
12 127146384− 127182360 rs10847535− rs10773498 TTGTCGCG 0.10562 0.07049 1.50842 1.3× 10−07 TMEM132C
12 129086441− 129129809 rs713149− rs1027557 AAAGCGGT 0.18839 0.11206 1.74867 4.4× 10−14 FLJ31485
13 26845975− 26875430 rs11616513− rs17085553 TACGCACA 0.04431 0.02025 2.30656 7.1× 10−10 MTIF3
13 31414174− 31438047 rs17076954− rs169410 CCTCCCGT 0.30306 0.29469 2.6188 6.9× 10−08 LOC196549
13 48154476− 48209065 rs7330127− rs9562843 ACGATAGA 0.02762 0.0048 5.63922 2.7× 10−10 RCBTB2
14 25140850− 25159405 rs8020556− rs1951062 AGTACATA 0.24934 0.2259 1.41488 3.5× 10−08 LOC401767

AGTAAACT 0.09084 0.02999 3.87615 1.0× 10−41

GCTACATA 0.04608 0.01682 3.50368 3.4× 10−22

14 32591680− 32606647 rs12883961− rs10140504 CATGGGAG 0.03736 0.01879 2.21665 1.1× 10−08 NPAS3
14 65343491− 65401760 rs3924222− rs12896836 TATAACTC 0.0462 0.01904 2.55404 5.2× 10−14 FUT8
15 20592297− 20610835 rs4778334− rs1991922 TAGCCCAT 0.04494 0.01488 2.75061 1.1× 10−12 NIPA1
15 20624103− 21246055 rs7166056− rs8024346 GTGACGTG 0.08093 0.04109 2.10848 2.4× 10−13 NIPA1
15 21610088− 21670901 rs824163− rs7181211 TTTTCAAC 0.22034 0.15435 1.43864 4.9× 10−09 MAGEL2
15 37962389− 38014169 rs11633436− rs534757 TTACAACC 0.07798 0.03763 1.99235 2.7× 10−11 GPR176
15 64637416− 64669062 rs1030986− rs4776800 CACGTCGT 0.04575 0.01594 2.65924 2.2× 10−09 LCTL
15 79193543− 79223619 rs1317059− rs6495541 CTCGGACC 0.02813 0.00459 6.34974 2.2× 10−15 C15orf26
15 90365510− 90400043 rs12906289− rs992838 ACGTAAGG 0.07777 0.02342 3.50153 1.1× 10−26 SLCO3A1
15 91435452− 91473401 rs4778099− rs17526830 GATCCCTA 0.07536 0.04084 1.94917 1.7× 10−09 RGMA
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Tab. 4.4: The continuation of Table 4.3.

16 6155489− 6181184 rs11642397− rs1946127 TTGGGTTG 0.02433 0.00883 2.92587 1.7× 10−07 A2BP1
16 46937666− 47050362 rs11076564− rs8054696 AACGGGCC 0.18717 0.15302 1.62027 1.1× 10−07 LONP2

TGAAGGCT 0.04224 0.02781 2.01195 2.3× 10−07

16 51239337− 51264345 rs3112587− rs4386133 CCTATGAG 0.07702 0.0442 1.68656 7.3× 10−08 LOC643714
16 55207138− 55253047 rs8055724− rs12447986 TTCTCCTC 0.03044 0.01113 2.65805 9.0× 10−09 MT1L
17 73602775− 73670122 rs16970811− rs9909570 CCCACTAG 0.02022 0.00446 4.82821 3.1× 10−13 TNRC6C
17 74629176− 74682195 rs2612793− rs8072667 CGAGGTTG 0.06276 0.03471 1.95026 6.7× 10−09 FLJ21865
18 8212591− 8279839 rs10468776− rs11876033 GGGACAAG 0.02689 0.00982 2.86846 1.7× 10−10 PTPRM
18 8772147− 8782163 rs12606001− rs8084401 TCAGTGAC 0.09539 0.03649 2.66938 1.3× 10−17 KIAA0802
18 60647495− 60688045 rs1595904− rs17678507 CAGCGTGC 0.08119 0.04205 2.1482 6.5× 10−16 C18orf20
19 50064169− 50153836 rs17561351− rs204907 AGGCAGAA 0.05937 0.02583 2.35486 5.1× 10−14 PVRL2
19 52946204− 53026777 rs10402957− rs4427918 CATTCAGC 0.0741 0.04321 1.87681 1.7× 10−11 GLTSCR2
19 59113663− 59296006 rs7257613− rs3760698 CCGGCCGC 0.06977 0.0159 5.01246 2.7× 10−43 CACNG7

CCGGCCAC 0.12473 0.08441 1.69429 6.7× 10−13

20 5265473− 5327486 rs6085111− rs6085143 ACCAATCC 0.04815 0.02744 1.83971 1.3× 10−07 FLJ33544
20 42465269− 42498442 rs3181206− rs6017342 GGCTTCCA 0.12685 0.06245 2.08814 3.0× 10−14 HNF4A
20 44639977− 44681497 rs376438− rs847096 AAGTCTGC 0.09805 0.04784 1.90457 8.8× 10−12 SLC13A3
20 49937544− 50006641 rs6067996− rs6021570 ATTGGACA 0.03133 0.01165 2.82133 2.6× 10−11 SALL4
20 51762764− 51798874 rs4811452− rs4811457 GATGTTCA 0.05611 0.03099 1.87441 1.7× 10−08 ZNF217
20 57707915− 57741702 rs12481511− rs16984986 TGTACCAG 0.0773 0.0427 1.95199 1.2× 10−07 PHACTR3
21 2015127− 13517135 rs2847443− SNPA TACAAGAT 0.10999 0.09446 1.65501 2.4× 10−08 TPTE
22 16871076− 16895136 rs8142200− rs975826 TCGGGAGG 0.03219 0.00253 10.88401 1.8× 10−19 LOC729269
22 31354524− 31372260 rs8139704− rs5749480 CGCTAGGG 0.02584 0.00524 5.07641 3.4× 10−16 SYN3
22 35324014− 35335429 rs7410412− rs12160203 TTTCAAGG 0.17403 0.10746 1.67423 1.3× 10−10 CACNG2
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Tab. 4.5: The predicted risk haplotypes of hypertension by use of WTCCC data. In the
table, the P-values were derived from the chi-squared test of the frequencies of
Hi against the collapsed frequencies of the estimated non-risk haplotypes.

Chr Region SNP range Haplotype P̂ (Hi|case) P̂ (Hi|control) OR P-Value Gene
1 236986859− 237020204 rs12137158− rs16840310 ATTTAGGG 0.08733 0.05437 1.69625 3.4× 10−10 GREM2
4 3700382− 3734797 rs177772− rs12641338 TACCGATT 0.12978 0.08988 1.59997 7.7× 10−12 FLJ35424
4 170032303− 170061525 rs6822949− rs17614553 GAACGGAA 0.0425 0.01579 2.86663 4.8× 10−10 PALLD
6 152700181− 152736079 rs7747166− rs7776399 CGGCTCCC 0.52639 0.49931 3.36065 2.7× 10−23 SYNE1

CGGGTCCT 0.04238 0.03768 3.58962 5.7× 10−14

11 69213458− 69295251 rs1192923− rs3168175 TTGTGGCA 0.05532 0.02803 2.12665 3.4× 10−10 FGF4
12 116500495− 116514298 rs10850852− rs1400593 CTCTCTTC 0.28748 0.26232 2.46528 5.2× 10−17 NOS1
14 21674996− 21704333 rs12050442− rs1894369 GGGGTTAC 0.03075 0.00968 3.28277 1.8× 10−11 TRA@
14 25140850− 25159405 rs8020556− rs1951062 AGTAAACT 0.08475 0.02999 2.94949 6.6× 10−27 LOC401767
14 36411583− 36421982 rs10872897− rs2564848 TACCTCCC 0.02712 0.01101 2.63669 1.4× 10−08 SLC25A21

ATCCACTT 0.02299 0.00637 3.84732 1.3× 10−11

14 36969639− 37032855 rs10132119− rs17106785 CTATGACA 0.01914 0.00402 5.57575 6.1× 10−10 MIPOL1
19 17595848− 17649789 rs10419511− rs7252308 TTGGTATG 0.04536 0.01971 2.16516 1.7× 10−10 UNC13A

4.5 Discussion and conclusion

We are currently at an era of extraordinary growth in the data describing human
genetic variation and its correlation with complex traits. The recent development
of bio-technologies allows an international consortium of geneticists to revolution-
ize genetic research through large scale genome wide association studies (GWAS).
Although these studies have identified hundreds of loci at very stringent levels of
statistical significance across many different human traits, these loci are only able
to explain a small fraction of the population risk. To address the issue, new mod-
els and new hypotheses have been proposed, which pose challenges to conventional
statistics underlying much of our genetic analysis. For example, GWAS analyses
are most commonly performed by testing the association of individual variants with
the disease, ignoring the potential interactions between the variants. It is believed
that the region or gene-based analysis is more powerful in capturing the collective
activity of sets of variants by testing the association of the group instead of each
component individually with the disease.

In this approach, we have adopted the region-based strategy that segments the
genome into 61218 regions with around 8 SNPs each. For each region, a list of
distinct genotypes with their frequencies in cases and controls have been worked
out. The problem facing us is of the sparse distribution of these genotypes. To
circumvent it, people often first infer haplotypes from the genotypes and then cluster
the haplotypes into a number of groups. The association analysis is conducted on
the basis of the inferred groups, for example, by using multiple Z-tests (Zhu et al.,
2010). There is a drawback of the above approach: The in-silico reconstruction of
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haplotypes can generate a proportion of false haplotypes which may hamper the
finding of rare but true haplotypes. We have proposed an alternative two-stage
approach to the association analysis with GWAS data. Our major contribution is
to develop a method for co-classifying genotypes in terms of their penetrances to
the disease. In Stage 1, we cluster the genotypes through a finite mixture model,
followed by estimating the risk genotypes. In Stage 2, we infer the risk haplotypes
from the estimated risk genotypes by using the software PHASE and the odds ratio
thresholding. We have proposed a novel data-partition-based initialization for the
associated EM algorithm.

We have examined the performance of the proposed procedure by simulations
and applications to the CAD and HT data generated from the WTCCC. Compared
to the standard multiple Z-testing method, the proposed procedure has been shown
to be more powerful in terms of sensitivity and specificity for detecting the true
risk haplotypes. In the real data analysis, we have rediscovered some existing risk
gene and haplotypes and identifying many more risk haplotypes than did the mul-
tiple Z-test based approach. This is not surprising as the simulations have already
demonstrated that the model-based clustering can perform better than the multi-
ple Z-test. The Bonferroni adjustment for multiple testing has been applied when
multiple tests or thresholding are involved. We note that the results may be further
improved if we use advanced multiple testing adjustment methods.



5. PERMUTATION APPROACH

5.1 Introduction

Genome-wide association studies (GWAS) have played an important role in de-
tection genetic risk variants since microarray gene chips became more efficient in
screening DNA sequences. The early studies were dealing with SNP data to identify
the risk ones. However, some of these SNP do not provide enough information about
disease prevalence if they are conducted individually for the study. For that rea-
son, considering multi-SNP studies provides more information about diseases. As a
result, the combination of their alleles will form segments of genotypes/haplotypes
that might cause disease.

As the haplotype structures are unknown. We need to infer their structures from
the observed genotypes. Several softwares have been developed for this purpose such
as PHASE (Stephens et al., 2001). Phase employed EM algorithm and Gibbs sam-
pling to infer the most likelihood genotype for each individual in the sample, given
all the possible haplotypes’ pairs that are consistent with the observed genotypes.
There is two way of reconstructing the haplotypes. The first one is by reconstruct-
ing the haplotypes of the cases and the controls separately. The second one is by
reconstructing the haplotypes of the cases and the controls as one sample without
loosing the risk identity of the individuals.

One of the statistical methods to be employed is permutation test which benefits
from the rapid developments in the modern computers to minimise the necessary
run time. Some of these frameworks were proposed to examine the independence in
the distributions for categorical variables by using χ2 test for the contingency table
of observed frequencies (Finos and Salmaso, 2004). More to the point, permutation
tests can also be used to investigate marker-disease association for case-control data
(Zhao et al., 2000).

Permutation test is also commonly used in haplotypes-based studies to detect
the risk haplotypes underlying some diseases by using case-control data. Like many
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statistical techniques, permutation tests may face difficulty in case-control studies
regarding adjustment for confounding variables such as rare variant in the sample
(Epstein et al., 2012).

To cope with these difficulties, we propose a permutation method to detect
disease-risk haplotypes by considering two ways of phasing the haplotypes. The
first one by reconstruct the haplotypes of cases and controls separately, whereas in
the second one, we reconstruct all the haplotypes of both cases and controls samples
altogether.

5.2 Method

The proposed permutation methods can be described by two stages as follows.

Stage 1 (Identifying the potential risk genotypes): Let Gj, 1 ≤ j ≤ J be the
observed genotypes with genotypes counts N0j, N1j, 1 ≤ j ≤ J in controls, cases,
respectively. Let N0 = ∑J

j=1 N0j and N1 = ∑J
j=1N1j. Let Gj = (hj1, hj2) be the

observed haplotype pairs that forms the genotype Gj. We also let H = {hk, 1 ≤ k ≤
K} denote the distinct haplotypes inferred from G, where G = {Gj, 1 ≤ j ≤ J}
with haplotype counts n0k, n1k, 1 ≤ k ≤ K in the controls and cases, respectively,
with total counts n0, n1. Then, the respective frequencies of the genotype Gj in
the controls and cases can be estimated by q0j = N0j/N0, q1j = N1j/N1, respec-
tively. The cases and controls samples are phased by PHASE separately to infer the
haplotypes structure.

We then use PHASE again to reconstruct these haplotypes by consider them as
one sample. In other words, we put the ambiguous genotypes of the cases and the
controls individuals together in the same input file of PHASE. Without loosing the
risk identity of each individual, PHASE can reconstruct these genotypes based on
the information of the whole sample. The advantage of doing so is to allow PHASE
to enrich the disease probability in the second way of reconstruction which results
in significant frequencies for the risk haplotypes in the two ways. Providing there
are risk haplotypes in the samples, finding the significance in the frequencies can be
done by using permutation test.

We then perform the randomization method by swapping the individuals’ geno-
types of the latter sample between cases and controls. To do so, we choose a half
of the individuals in the cases and permute their genotypes with the same num-
ber of the individuals in the controls. We then calculate the new respective fre-
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quencies of the current permutation. Let q∗i0j = N∗i0j/N0, q∗i1j = N∗1j/N1, respec-
tively, where i = 1, 2, 3, ..., I, and I is the total number of the permutations. Here,
N∗i0j, N

∗
i1j, 1 ≤ i ≤ I represent the counts of the genotype j in the new controls and

the new cases, respectively, at the current permutation i. In our later applications
of this method to the simulation and the real data, we choose I equal to 1000. The
average frequencies of I permutations of all the genotypes in the all new controls
and all the new cases can be calculated by q∗0j = (∑I

i=1 q
∗
i0j)/I, q∗1j = (∑I

i=1 q
∗
i1j)/I,

respectively.

As in any permutation technique, we will check for the significance between
the original frequencies and the permuted ones. If any significant different has been
found, the corresponding genotype would be considered as a potential risk genotype.

Under the null hypothesis that there is no significant difference between q∗1j and
q1j the statistic Tj of the genotype j is distributed as standard normal. T can be
calculated as follows:

Tj =
q1j − q∗1j

δj
,

where

δj =

√√√√∑I
i=1(q1j − q∗i1j)2

I − 1 .

To this end, if Tj was larger than a specific threshold, we would consider the corre-
sponding difference q1j−q∗1j significant. Implies that the genotypes Gj is a potential
risk genotypes. We then define the set of the potential risk group as follows:

S = {h : h ∈ {h0j, h1j}, Gj = (h0j, h1j)) , 1 ≤ j ≤ J, Tj > γ},

where γ is a pre-defined threshold and it can be chosen according to the multiple
tests conducted for all the regions under study for the simulation or the real data.

Stage 2: Performing association test to refine the set S

This stage to be used to prevent inflation of type I error. At this stage, we
examine the differences in the frequencies of the haplotypes in the set S in the
controls and the cases to find the potential risk group. Let ` be the number of all
different haplotypes in S. We then refine the above set in terms of their Odd Ratio
tests. Let n0r = ∑

hk /∈S n0k, n1r = ∑
hk /∈S n1k, 1 ≤ k ≤ K denote the cumulative

frequency of all non-detected haplotypes by the first stage in controls and cases,
respectively. The corrected OR statistic for the haplotype hν , 1 ≤ ν ≤ ` is defined
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by
ORν = (n1ν + 0.5)(n0r + 0.5)

(n0ν + 0.5)(n1r + 0.5) .

Then, the risk haplotype set Sr is updated by

Sr = {hν ∈ S : ORν ≥ exp(c1φ(n0ν , n1ν , n0r, n1r))} ,

where

φ(n0ν , n1ν , n0r, n1r) =
√

1/(n0ν + 0.5) + 1/(n1ν + 0.5) + 1/(n0r + 0.5) + 1/(n1r + 0.5)

and c1 is a pre-specified constant and it can be set in the real data analysis according
to Bonferroni adjustment.

5.3 Simulation

In application of this method, we used the same data we generated according to
cohort design and case-control design that we described in 3.3.2.

Application of permutation method to cohort design

We applied our method and the multiple testing method to these datasets. We
compare them in terms of AVSS. As it is shown in the figures that our method
outperformed multiple tests method. In the plots of Figure 5.1, the red and the
blue solid curves, showing means of the AVSS values over 30 datasets, were plotted
against the values of λ for the permutation method and the multiple testing method
respectively. The two red dash curves are one standard error up and down from the
red mean curves. Similarly, the two blue dash curves are one standard error up and
down for blue mean curves. The plots in the columns from the top to the bottom
are for the cases where there were 5, 10, and 20 risk haplotypes in the underlying
haplotypes. The sample size of the cases and the controls altogether for each plot
is 5000. The plots are based on different modes of inheritance. Figure 5.2 shows
the results based on the same scenarios except the sample sizes were 3000. In both
figures 5.1 and 5.2, we can clearly conclude that our method shows some advantages
over multiple testing method. As it can be seen the methods have resulted in AVSS
equal or close to 0.5 when the GRR (λ) equal to 1. This makes sense as we expected
a specificity equal to 0 and sensitivity equal to 1 when λ = 1. This is also one of
the conditions that determine setting the pre-specified constants in the thresholds
of the final stages of our method c1 and multiple testing method (P-value threshold
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for Fisher’s exact test=0.001). The figures clearly demonstrate that as λ value
increased, the AVSS increased of both methods. However, our method showed that
the AVSS is higher than multiple testing in about 0.05-0.10 when λ is greater than
2 in Figure 5.1 that represents figures of datasets of sample size 5000. The striking
results are shown in Figure 5.2 when the datasets of size 3000 as the difference in
the AVSS of our method and the multiple testing method could hit 0.20 in some
figures except in the case where mr = 20 and IM =dom as both methods showed
less power in detecting risk haplotypes.
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(c) N=5000,mr=5,mult
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(d) N=5000,mr=10,rece
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(e) N=5000,mr=10,dom
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(f) N=5000,mr=10,mult
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(g) N=5000,mr=20,rece
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(h) N=5000,mr=20,dom
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(i) N=5000,mr=20,mult

Fig. 5.1: Performances of the proposed permutation method and the multiple testing
method on the cohort-design data with multiplicative or dominant or recessive
inheritance models based on sample sizes of 5000.
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(e) N=3000,mr=10,rece
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(g) N=3000,mr=20,mult
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Fig. 5.2: Performances of the proposed permutation method and the multiple testing
method on the cohort-design data with multiplicative or dominant or recessive
inheritance models based on sample sizes of 3000.
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Application of permutation method to case-control design

We applied the permutation method and the multiple testing method to these
case-control data. The mean curves of the AVSS values with one standard error up
and down were plotted against the d values in Figure 5.3. In this figure, the plots
in the columns from the left to the right are for the scenarios, where the underlying
number of risk haplotypes mr = 5, 10, and 20. The top row stands for the cases,
where N = 5000, while the bottom row stands for the cases, where N = 3000. In
these plots, the red and the blue solid curves show mean curves of the AVSS values
over 30 datasets as functions of d = 0, 0.05, 0.1, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35 for
the hybrid mixture method and the multiple testing method respectively. The dash
curves are one standard error up or down from the mean curves.

In these figures, we can see that the permutation method achieved some ad-
vantages in detecting risk haplotypes compared to multiple testing method in all
conducted scenarios.

The main difference between the two methods in their performance is the sample
sizes that were considered. In our method, we considered all the cases and the
controls to perform the first stage of our method, whereas in the multiple testing
method, only subsets of the cases and the controls were considered at the first stage,
which could result in loosing some of risk haplotypes in the first place.
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Fig. 5.3: Performances of the proposed permutation method and the multiple testing
method on the case-control data.

5.4 Real data analysis

We applied the proposed permutation method to the GWAS genotype datasets on
coronary artery disease (CAD) and hypertension (HT) obtained by Affymetrix 500K
SNP chips in the WTCCC study (WTCCC, 2007). The datasets are prepared in the
same way we described in 3.5. The whole genome resulted in 1983537 genotypes in
total for the CAD data and 2097111 genotypes in total for the HT data. We used the
total number of the genotypes to apply Bonferroni correction to the threshold of the
permutation test. Given that we use a rejection level 0.05 for each genotype in all
regions, the corrected rejection level for all the genotypes would be 0.05/1983537 =
2.52 × 10−8, 0.05/2097111 = 2.38 × 10−8 for CAD data and HT data, respectively.
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Therefore, we use z-test threshold equal to 5.5 for the CAD and HT genotypes. The
permutation test in the first stage of our procedure result in 1433 potential risk
haplotypes in CAD data and 430 potential risk haplotypes in HT data.

Note that there were two sub-populations in controls. We applied further fil-
tering on the regions to exclude the ones that have significant differences in the
haplotypes frequencies within the two sub-control samples. The exclusion criterion
was based on calculating chi-square p-value. Any region resulted in p-value less than
0.30 was excluded from the suspicious regions. This criterion was concluded from
the simulated case-control samples when the risk factor d is less than 0.15 as we
found out that the p-values for most of the 30 datasets are greater than 0.30, see
Figure 3.6.

Note that the declared risk haplotypes at the end of the second stage should also
meet this criterion. Toward this end, the chi-square p-value of the frequencies in
the two sub-control samples of each potential risk haplotype should be greater than
0.30. Otherwise the haplotype would be eliminated.

At the final stage, we used odds ratio test to refine the groups of the potential risk
haplotypes. We calculated the ORs for all the estimated haplotypes and thresholded
them by using the bound

exp(c1

√
1/(n0H + 0.5) + 1/(n1H + 0.5) + 1/(n0r̄ + 0.5) + 1/(n1r̄ + 0.5)),

with c1 = 4, 3.6 for CAD data and HT data, respectively, according to the corrected
rejection levels 0.05/1433 and 0.05/430 for CAD and HT, respectively. This gave
the final risk-haplotype set as displayed in Tables 5.1, 5.2, 5.3 below.

In these tables, each haplotype has been assigned to a physically closest gene on
the basis of the information provided in the GWAS catalog and the genetic infor-
mation from the British 1958 Birth cohort http://www2.le.ac.uk/projects /birthco-
hort/1958bc. In the CAD case, we did rediscover the CAD risk gene CDKN2B and
the risk haplotype GGTGCCAG found by the previous study (WTCCC, 2007; Zhu
et al., 2010).
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Tab. 5.1: The suspicious regions for coronary artery disease of WTCCC data detected by
permutation method.

CAD
Chr Region SNP range Haplotype P (Hi|case) P (Hi|control) OR P-Value Gene
1 3910010− 3932838 rs4654522− rs10915469 CGACGGCC 0.04238 0.01861 3.09933 4.5× 10−16 hCG2036596
1 1902751− 37450147 rs6673253− SNPA CAACGGAT 0.05116 0.03019 2.33902 3.0× 10−14 LOC728431
1 202166400− 202187685 rs6692041− rs1041311 AAATGGGA 0.07815 0.05083 1.72409 4.3× 10−09 LOC284577
1 225406446− 225425470 rs4654697− rs10916399 TTGTAAAA 0.06155 0.03524 1.85056 8.1× 10−10 RHOU
1 227569611− 227620956 rs7514972− rs9431663 CGCGTAGG 0.05807 0.0297 2.06768 2.2× 10−12 TRIM67
1 239380743− 239454253 rs2491826− rs7533316 AGCTCACG 0.09857 0.07858 1.63864 7.4× 10−08 CEP170
1 240360846− 240438647 rs12083813− rs472276 CAACATAG 0.01905 0.00712 2.94026 2.1× 10−08 AKT3
2 3789586− 3821960 rs7576476− rs12618184 GCTTACAG 0.03451 0.01119 3.14706 3.1× 10−15 LOC442006
2 rs2314703− 3942429 SNPA − 1841609 CACGCCGT 0.02055 0.00552 3.78775 3.3× 10−11 LOC442006
2 49934439− 50000082 rs6736617− rs17039375 CCAAAGGT 0.02347 0.00757 3.09136 2.7× 10−10 NRXN1
2 81525887− 81577090 rs1011364− rs17020239 GGATGTGC 0.03758 0.0202 1.96428 1.3× 10−07 LOC442021
3 2557255− 2599938 rs6787604− rs2619566 AAGGACGA 0.07666 0.04763 1.64989 3.1× 10−08 CNTN4
3 14422977− 14471151 rs4684216− rs9834629 GATGATGC 0.01815 0.00509 3.67773 8.7× 10−10 SLC6A6
3 73461569− 73510299 rs7647311− rs3845868 AGGCGCGG 0.03876 0.01161 3.98169 6.9× 10−23 PDZRN3
3 197256495− 197339533 rs6583286− rs9834962 TAGACTTA 0.0498 0.02364 2.17213 2.5× 10−11 TFRC
4 3636361− 3700212 rs10025237− rs16844722 GGGGAGGG 0.22491 0.15492 1.62473 6.4× 10−15 FLJ35424
4 167440772− 167457521 rs9995087− rs17047336 GGACGCAG 0.03434 0.01139 3.12327 8.2× 10−14 TLL1
5 124765522− 124843518 rs4836190− rs13187198 TGAAGGCA 0.04275 0.02795 2.02205 2.0× 10−09 LOC644659
5 157267571− 157303032 rs10071157− rs17055168 GTGAGCAA 0.02135 0.00701 3.09771 9.0× 10−10 CLINT1
5 166764561− 166801933 rs6863935− rs7724862 CTATGTGT 0.09145 0.05448 1.63602 8.8× 10−09 ODZ2
7 77695246− 77717237 rs2215379− rs4515471 TCTAAAAA 0.03291 0.01786 2.04961 1.7× 10−07 MAGI2

CTTGGAAA 0.03609 0.01061 3.77003 7.3× 10−19

7 153371858− 153449397 rs6464391− rs1861139 CGGGTAGA 0.04119 0.02159 2.31998 1.7× 10−11 LOC653748
8 71022178− 71086937 rs7836791− rs388511 TACAGAAG 0.02204 0.00555 3.68611 4.1× 10−11 SLCO5A1
9 22088619− 22120515 rs2891168− rs10965245 GGTGCCAG 0.34939 0.29298 1.40724 3.2× 10−13 CDKN2B
9 74180343− 74241329 rs10114124− rs17081046 GTATTTAT 0.21608 0.13046 1.66562 4.0× 10−17 RORB
9 77341767− 77366988 rs2889774− rs3780296 ATGGAAAT 0.06672 0.042 1.69537 1.2× 10−07 GNA14
9 119506057− 119537035 rs2191675− rs10984648 GTTGGCTA 0.08762 0.03361 2.8056 1.8× 10−28 CDK5RAP2
9 135269746− 135320703 rs731533− rs7870302 TGTCTCCC 0.03175 0.01296 2.57076 9.3× 10−11 OLFM1
10 11879196− 11924252 rs6602535− rs11257355 TCTGCCGG 0.1694 0.12811 1.57916 1.3× 10−12 C10orf47
10 14795325− 14817082 rs2688827− rs12246518 ATGACCGC 0.34815 0.32333 1.71018 4.1× 10−09 FAM107B
11 8165969− 8200374 rs4758310− rs11041816 ATAATGGG 0.36298 0.3164 1.34831 2.8× 10−08 LOC644497

GCTGTAGA 0.05243 0.02741 2.24619 7.5× 10−12

11 36361306− 36410807 rs330255− rs331485 GCGATTAA 0.0309 0.00779 4.20172 5.6× 10−18 FLJ14213
11 69213458− 69295251 rs1192923− rs3168175 TCGTGGCA 0.10225 0.05587 2.24141 5.7× 10−21 FGF4
11 83230307− 83256927 rs1878266− rs1878264 TATATTCA 0.03571 0.01807 2.24283 6.3× 10−09 CCDC90B
11 99383206− 99391536 rs3911286− rs10501939 TTAGATAT 0.03303 0.01472 2.21561 9.3× 10−09 CNTN5
11 112952870− 113015533 rs4936278− rs12577253 CCTCGTGC 0.05824 0.03474 1.75496 1.9× 10−08 DRD2
11 129102667− 129124330 rs532427− rs691197 ACCGCGGA 0.08519 0.05612 1.73953 2.1× 10−11 TMEM45B
11 133079508− 133113640 rs4937817− rs4937826 CCGGCCCG 0.05747 0.04018 1.89429 5.6× 10−10 LOC646522

GTAGCCCG 0.04001 0.02779 1.90705 9.3× 10−08

GTAGTGCC 0.04216 0.02425 2.30133 8.2× 10−12

12 5619429− 5628923 rs11063791− rs454704 TACATAAA 0.02897 0.0124 2.50152 8.0× 10−10 TMEM16B
12 112703139− 112738033 rs11066758− rs7137339 ACGGTCAC 0.02681 0.01286 3.14709 1.5× 10−12 RBM19
12 116500495− 116514298 rs10850852− rs1400593 CTCTCTTT 0.14523 0.12089 3.21401 8.3× 10−21 NOS1
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Tab. 5.2: Continuation of Table 5.1.

CAD
Chr Region SNP range Haplotype P (Hi|case) P (Hi|control) OR P-Value Gene

CTCTCTTC 0.28034 0.26232 2.85847 1.5× 10−19

13 108372995− 108432811 rs4773010− rs3842945 AGAGACCC 0.27486 0.19222 1.59282 1.3× 10−21 MYO16
14 25140850− 25159405 rs8020556− rs1951062 AGTAAACT 0.09084 0.02999 3.36068 1.2× 10−37 LOC401767
14 53221435− 53244046 rs1563719− rs210351 AGATAGGT 0.15385 0.10566 1.56278 1.2× 10−12 BMP4
14 65343491− 65401760 rs3924222− rs12896836 TATAACTC 0.0462 0.01904 2.70766 1.1× 10−16 FUT8
15 20624103− 21246055 rs7166056− rs8024346 GTGACGTG 0.08093 0.04109 1.90364 2.7× 10−12 NIPA1
15 21729952− 21760003 rs4778264− rs9796712 TGATAGGG 0.03064 0.00783 3.91789 2.2× 10−16 MAGEL2
15 37962389− 38014169 rs11633436− rs534757 TTACAACC 0.07798 0.03763 2.31448 1.1× 10−18 GPR176
16 55207138− 55253047 rs8055724− rs12447986 TTCTCCTC 0.03044 0.01113 2.89551 1.5× 10−09 MT1L
16 79852394− 79892297 rs6564863− rs11639552 TTCGTTAT 0.02663 0.01053 3.15992 2.7× 10−10 BCMO1
17 27921023− 27963104 rs225215− rs17780520 GGGTTAAC 0.0205 0.00465 4.05617 2.7× 10−11 MYO1D
17 74629176− 74682195 rs2612793− rs8072667 CGAGGTTG 0.06276 0.03471 1.82966 4.4× 10−09 FLJ21865
18 8212591− 8279839 rs10468776− rs11876033 GGGACAAG 0.02689 0.00982 2.94852 1.7× 10−11 PTPRM
18 2291328− 22715430 rs3974646− SNPA TGCGGAGT 0.05382 0.02751 1.98739 2.3× 10−10 AQP4
18 32033296− 32083366 rs8095718− rs8082899 CAAAACCA 0.0592 0.04484 1.65827 1.7× 10−07 MOCOS
19 6641966− 6717213 rs3745566− rs7248911 TAAGCTAC 0.02312 0.00521 4.97801 1.0× 10−14 C3
19 15365766− 15477256 rs7257156− rs6512039 AAGCGCGG 0.08169 0.05278 1.69741 1.1× 10−09 AKAP8L
19 17595848− 17649789 rs10419511− rs7252308 TTGGTATG 0.04657 0.01971 2.8095 1.1× 10−17 UNC13A
19 18225800− 18277972 rs10417536− rs4808781 CTCCGCAA 0.04034 0.02211 1.94095 6.7× 10−08 LOC729966
19 52946204− 53026777 rs10402957− rs4427918 CATTCAGC 0.0741 0.04321 1.81613 4.1× 10−10 GLTSCR2
20 5604763− 5643174 rs8118780− rs805726 CCGTAGTA 0.05455 0.03836 1.76976 1.3× 10−08 C20orf196

CTTTAGTA 0.01801 0.00794 2.81211 2.7× 10−08

CTTTAGTG 0.01698 0.00777 2.7096 1.6× 10−07

20 6055964− 6078025 rs6117090− rs3897509 AGGCCGCA 0.09945 0.05857 1.89101 9.9× 10−13 C20orf42
AAGCCGAA 0.03039 0.01269 2.66015 1.2× 10−09

20 51996013− 52017348 rs12480336− rs6013853 CACCGATC 0.02844 0.01511 2.17303 1.5× 10−07 BCAS1
20 55607831− 55637003 rs17498081− rs17414380 CAATGTCC 0.02768 0.01127 2.6821 1.2× 10−09 TMEPAI
22 16871076− 16895136 rs8142200− rs975826 TCGGGAGG 0.03219 0.00253 12.43113 5.4× 10−28 LOC729269
22 35324014− 35335429 rs7410412− rs12160203 GCCTAGGG 0.1967 0.14314 1.46774 4.7× 10−11 CACNG2

Tab. 5.3: The suspicious regions for hypertension of WTCCC data detected by permuta-
tion method.

HT
Chr Region SNP range Haplotype P (Hi|case) P (Hi|control) OR P-Value Gene
2 39199834− 39248354 rs6758330− rs10184046 CGCCAAAA 0.03665 0.00147 26.83195 1.3× 10−31 SOS1
4 17856580− 17878437 rs11941617− rs1503880 GTATTTGT 0.0584 0.00019 236.45945 1.2× 10−73 LCORL
6 107236669− 107248636 rs3121432− rs2354550 TGATTGTC 0.07759 0.00247 35.82646 6.5× 10−82 QRSL1
10 30990752− 31024312 rs16931828− rs7078126 AGTGTTGC 0.47318 0.47676 1.45455 1.0× 10−08 LOC645954

AACGTTGT 0.06589 0.00314 29.93248 3.1× 10−79

AGCTCTGC 0.24167 0.24983 1.41785 1.2× 10−06

GGCGCCGC 0.10573 0.10377 1.49364 4.1× 10−06

11 55290776− 55324792 rs11825590− rs17501618 GCCTGTGT 0.04351 0.00947 4.47895 4.1× 10−22 OR5D14
11 121093256− 121139818 rs92061− rs4936651 AATGCTGG 0.86672 0.79508 2.49843 1.4× 10−30 SORL1
18 73486971− 73493301 rs1553419− rs4890980 TTGGGTTC 0.03825 0.00893 4.49948 2.9× 10−21 LOC728864

5.5 Discussion and conclusion

One of the important issues in population genetics is population substructure.
Therefore, we proposed a permutation method to overcome such issues and suc-
cessfully detect the risk-haplotypes. In this method, the haplotypes have been re-
constructed in two different ways. The first one is by reconstruct the haplotypes of
the cases and the controls samples separately. The second one is by reconstruct both
samples altogether to stratified the samples and overcome the issue of substructure.
We then permute the disease status in the sample, where the cases and the controls
were reconstructed altogether.
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Our framework has been applied to the simulation and the real data. In the
simulation, we compare the results to the multiple testing method of (Zhu et al.
2010). The figures show that our method outperformed the multiple testing method
in all scenarios of cohort and case-control designs. The both methods showed less
AVSS in detecting risk haplotypes in the case of mr = 20 of the cohort design
or case-control design discarding the sample size and the mode of inheritance. The
reason behind that is the fact that if the number of the risk haplotypes in the sample
is close or equal to the number of the non-risk haplotypes, large number of non-risk
haplotypes could be detected as risk ones or large number of risk haplotypes could
be detected as non-risk. This due to the fact that the genotypes involving risk and
non-risk haplotypes would be more than the others under HWE. This can disinflate
specificity or sensitivity and decrease AVSS.



6. CLUSTERING-BASED LOGISTIC REGRESSION

6.1 Introduction

Genome wide association studies have played an important role in identifying genetic
risk variants for complex disease. Many of which have employed statistical methods
to examine the association of a disease and genetic factors. Several successes have
been achieved by some studies to identify risk SNPs, genotypes and haplotypes.
Some of which have proposed clustering methods to classify the variants into several
groups depending on the degree of association between these variants and diseases
(Binder et al., 2012; Huang et al., 2011).

One popular way of clustering methods is fitting the logistic model to case-control
samples to detect the risk variants. The popularity of the logistic regression became
remarkable as, (1) the log-odds ratios can easily interpret the coefficients in the
model, (2) in the case-control samples, the odds ratios for the disease probabilities
can be estimable (Breslow et al., 2000).

Many studies were employing the logistic regression by considering SNPs, which
are close or far from each other in their physical distance, as covariates for the model
and classifying them into risk and non-risk variants (Kang et al., 2008). However,
logistic regression models are very sensitive to the high density of SNPs and the
linkage between them within candidate genes (Byng et al., 2003). Other than that,
confounding variables can result in false association with disease, specially in the
case-control studies (Breslow et al., 1988). However, there are some limitations in
fitting a logistic model for SNPs data when it comes to examining the covariates’
effect on the response variables. In fact, as the number of SNPs considered for
the study increased, the number of the covariates in the model would be increased.
That might lead to many rare covariates in the model, given small samples sizes.
Therefore, many researchers in favour of considering the reconstructed haplotypes
or the genotypes in fitting the logistic regression in case-control studies.

Conducting haplotypes-based studies in fitting the logistic model can be more
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superior as the biological relationships between disease and haplotypes can be more
interpreted than in SNPs studies (Huang et al., 2011). However, some difficulties
are still common in such studies such as the haplotypes structure, high dimension-
ality and the high number of degrees of freedom (Igo et al., 2009). Thus, fitting the
logistic regression to the genotypes can be alternative solution for consideration of
the haplotypes. The only problems that we need to account are the rare variants
and the high dimensionality. For example, but not limited to, applying the standard
logistic regression can be disadvantageous in estimation of the model’s parameters
and lead to no significant association between the response variables and the expo-
sure variables. One possible reason is that we using the standard way of scoring
the exposure variable by 1 if they are present in an individual or by 0 if they are
not. Yet, the model will equally be affected by the exposure variables whose scores
are same. As a result, no significant coefficient can be found when calculating the
maximum likelihood estimation.

More to the limitations, the study design is also real challenge as far as the
standard logistic regression is concerned. Therefore, undertaking cohort design or
case-control design can be tricky in the way that we give weights to the model’s
covariates. In the cohort design, for instance, the unknown parameters in the model
can be estimated by the maximum likelihood function in terms of the parameters
vector. Yet, the estimated parameters can be used to estimate the conditional
probability of the disease status variable for each exposure variable. However, the
maximum likelihood function needs to be extended when the data come from a strat-
ified simple random sample (Chambless and Boyle, 1985). On the other hand, in the
case-control design, when the sampling is conditionally performed on the outcome
variables, odds ratios can easily obtained and adjusted from the estimated slop co-
efficients (Breslow, 1996). Furthermore, unlike cohort studies, sample stratification
can fix the binary outcome variables in a case-control study.

Therefore, we proposed a new method to handle the above issues by using the
logistic regression on the genotypes data. In this method, we use a new way of
scoring the exposure variable base on their probabilities, given cases and controls.
We also model all the genotypes as they represent one exposure variable.
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6.2 Method

6.2.1 Clustering-based logistic method(CL)

Let Gj, 1 ≤ j ≤ m be individuals’ genotypes with counts N0j, N1j, 1 ≤ j ≤ m

in controls, cases, respectively. Let N0 = ∑m
j=1N0j and N1 = ∑m

j=1N1j. Let
Hj = {(hj11, hj12), (hj21, hj22), ..., (hjε1, hjε2)} be the observed haplotype pairs that
are consistent with Gj. If that is the case, the counts N0j, N1j, 1 ≤ j ≤ m rep-
resent the frequencies of one haplotype pair in Hj in controls, cases, respectively.
We also let hk, 1 ≤ k ≤ K denote the distinct haplotypes inferred from G, where
G = {Gj, 1 ≤ j ≤ m} with haplotype counts n0k, n1k, 1 ≤ k ≤ K in the controls,
cases, respectively, with total counts 2N0, 2N1. We also let yi, 1 ≤ i ≤ N denote
the disease status of N individuals, where N = N0 + N1. and yi is equal 1 if an
individual is affected and 0 otherwise.

We developed the following approach to detect the potential risk genotypes in
the sample following by the detection of the potential risk haplotypes.

Stage 1 (Identifying the potential risk genotypes):

Let R be the set of the collapsed rare genotypes and it can be define as following:

R = {Gj| N0j = 0 or N1j = 0 or N0j +N1j∑J
j=1(N0j +N1j)

≤ 0.005 , 1 ≤ j ≤ m},

with collapsed counts N0J in controls and N1J in cases, respectively. The remaining
genotypes will be indexed by j, where 1 ≤ j ≤ J − 1.

We define dj to be the difference between the estimated probabilities P̂ (Gj|cases)
and P̂ (Gj|controls). Thus

dj = log P̂ (Gj|cases)− log P̂ (Gj|controls), 0 ≤ j ≤ J

In our method (CL), we use two levels of collapsing the genotypes to enrich
the probability of being diseased in the sample. The first one is, as we mentioned
above, collapsing the rare genotypes. In the second level, we undertake a further
collapsing for all the genotypes including the first level collapsed group based on
dj. The logic behind that is to let the estimated p(xi) = E(Y = 1|xi), which is
always biased in a case-control samples, depends on the perspective frequencies that
are supposed to be unbiased in the case-control samples. Note that we have to
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pay more attention to the case-control design as it the only design that mimics the
real data of WTCCC. Therefore, to proceed the second collapsing, we use K-means
method, which is proposed by (Lloyd, 1957), to classify these genotypes into several
groups based on their djs. Before going further, let’s describe K-means clustering
in Python briefly.

K-means clustering:

The way we are describing here is a simple implementation of Lloyd’s algorithm
for performing k-means clustering in python that we used in the applications of our
method. The role of K-means is to classify the genotypes into several groups based
of the values of {dj}.

Let (z = [J/2], where [α] is the largest integer less than α, denote the initial
number of clusters. Let these clusters denoted by At, 1 ≤ t ≤ z. Then z values will
be chosen by random assignation from the set {dj} to represent the initial centroids,
say ct, 1 ≤ t ≤ z. The algorithm will repeatedly perform the following two steps
until reaching the convergence:

(1) The clusters will be updated by adding to them all values of dj that are
closest to the centroids of these clusters in distance

At = {dj : ‖dj − ct‖ ≤ all ‖dj − c`‖, ` = 1, 2, ..., t− 1, t+ 1, ..., z} .

(2) Provided a set of clusters, the centroids are recalculated by averaging all
points belonging to a cluster.

ct =
∑
dj∈At dj

|At|
, 1 ≤ t ≤ z

Once the convergence is achieved, the final number of clusters are not necessarily
to be equal to z. Usually, it is less than or equal the initial number, which means
this is another level of collapsing the genotypes to ensure that disease probability
has been well-enriched in the sample. Let ν, ν ≤ z be the final number of clusters
after reaching the convergence.

Assigning K-means centroids as weights to xi:

We then assign the centroid ct to all the individuals whose genotype is Gj if
dj ∈ At. Let xi ∈ {c1, c2, ..., cν} be the covariate value corresponding to yi. We



6. Clustering-based logistic regression 98

use the logistic regression to estimate the probability of being diseased given the
centroid ct. Let p(x) = P (Y = 1|X = x). The logistic regression model can be
written as

log p(x)
1− p(x) = β0 + β1x. (6.1)

p(x) can be calculated by

p(x) = eβ0+β1x

1 + eβ0+β1x
(6.2)

To this end, if yi is value that Yi takes and ct is the value that Xi takes, then the
expression for p(x) given in the equation 6.1 can be used to calculate the conditional
probability of Yi = yi given Xi = ct when yi = 1. Similarly, the quantity 1 − p(ct)
gives the conditional probability P (Yi = yi|Xi = ct) when yi = 0.

Hence, for those pairs (xi, yi), where yi = 1, the contribution to the likelihood
function is p(xi), and for those pairs where yi = 0, the contribution to the likelihood
function is 1− p(xi). Therefore, the contribution to the likelihood function for the
pair (xi, yi) can be expressed as

p(xi)yi [1− p(xi)]1−yi .

Assuming that the observations are assumed to be independent, we calculate the
likelihood function by

L(β) =
n∏
i=1

p(xi)yi [1− p(xi)]1−yi ,

and the log likelihood function by

logL(β) = l(β) =
n∑
i=1
{yi log [p(xi)] + (1− yi) log [1− p(xi)]}.

On equating ∂l
∂β

to zero and solving for β, we find MLE of the parameter vector.
In fact there are many computational packages available in R or Python (e.g. glm)
that can be used to find MLE. We calculate p(ct),1 ≤ t ≤ ν by using (6.2).

The hypothesis here is that no association between the genotype Gj and disease
is equivalent to dj = 0. Therefore, given the estimated coefficients of the model β0

and β1, we can estimate p(0) by ( 6.2). Here, p(0) will be considered as non-risk
background probability. We then calculate the odds ratio that correspond ct, 1 ≤
t ≤ ν by
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Wt = p(ct)(1− p(0))
(1− p(ct))(1− p(0)) . (6.3)

In light of this, we define the potential risk group which represents all the po-
tential risk genotypes is defined as

S = {h;h ∈ {h0m, h1m}, Gj = (h0m, h1m); dj ∈ At, 1 ≤ j ≤ J, Wt > T},

where T is predefined threshold.

Stage 2 (OR thresholding): In the real data and the simulation, we need to refine
the subset of the potential risk haplotypes obtained at stage 1 to prevent the inflation
of type I error. The reason behind that the disease prevalence of a genotype can due
to only one risk haplotype under the assumptions of the modes of inheritance. We
are going to refine the above selected risk haplotype set on the basis of their odds
ratios. Let ` be the number of all different haplotypes in S. Let n0r = ∑

hk /∈S n0k,
n1r = ∑

hk /∈S n1k, 1 ≤ k ≤ K denote the cumulative frequency of all non-detected
haplotypes by the first stage in controls and cases, respectively. The corrected OR
statistic for the haplotype hν , 1 ≤ ν ≤ ` is defined by

ORν = (n1ν + 0.5)(n0r + 0.5)
(n0ν + 0.5)(n1r + 0.5) .

Then, the risk haplotype set Sr is defined by

Sr = {hν ∈ S : ORν ≥ exp(c1φ(n0ν , n1ν , n0r, n1r))} ,

where

φ(n0ν , n1ν , n0r, n1r) =
√

1/(n0ν + 0.5) + 1/(n1ν + 0.5) + 1/(n0r + 0.5) + 1/(n1r + 0.5)

and c1 is a pre-specified constant (in our later simulations, we set to value that
result in specificity equal to 0 and sensitivity equal to 1 when there is no risk in the
sample( e.g. λ = 1 in the cohort design, d = 0 in the case-control design) while in
the real data analysis, invoking the Bonferroni adjustment to set it’s value.

6.2.2 Standard multiple logistic method

The standard multiple logistic regression (SL) has been mentioned in details in the
section 2.7.2. In the SL, we set the independent variables xij in the equation (2.9)
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equal to 1 if the individual i has the genotype Gj, and zero otherwise. The dependent
variable yi would be 1 if the individual i is affected and zero if not. We then use
GLM package to declare the potential risk genotypes based on their corresponding
p-values. We noticed is always resulting in specificity equal to 0 and sensitivity
equal to 1 for all scenarios of both study designs, except two cases in the case-
control design where mr = 5, 10. This could due to the high dimensionality of the
genotypes and their rarity.

We overcome this drawback by using the same collapsed genotypes set R defined
in our method. We achieved a good improvement on the performance of SL as
showed in the simulation below.

6.3 Simulation

In application of this method, we used the same data we generated according to
cohort design and case-control design that we described in Section 3.3.

Application of logistic regression method to cohort design

We applied our method (CL) to find the risk haplotypes of the previous datasets.
We compare the results to the standard multiple logistic method (SL) in terms of
AVSS. In the plots of Figure 6.1, the red and the blue solid curves, showing means of
the AVSS values (i.e., the values of (specificity and sensitivity)/2)) over 30 datasets,
were plotted against the values of λ for CL method and SL method respectively. The
two red dash curves are one standard error up and down from the red mean curves.
Similarly, the two blue dash curves are one standard error up and down for blue
mean curves. The plots in the columns from the top to the bottom are for the
cases where there were 5, 10, and 20 risk haplotypes in the underlying haplotypes.
The sample size of the cases and the controls altogether for each plot is 5000. The
plots are based on different modes of inheritance. Similarly for Figure 6.2, but the
sample size considered is 3000 for the cases and the controls altogether. According
to Figure 6.1 and Figure 6.2, our method outperformed the SL in the scenario
where mr = 10, 5 and the disease model is dominant. In the other scenarios both
methods performed quite similar in terms of AVSS values.
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Fig. 6.1: Performances of CL method and SL method on the cohort-design data with
multiplicative or dominant or recessive inheritance models with sample size N =
5000.
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Fig. 6.2: Performances of CL method and SL method on the cohort-design data with
multiplicative or dominant or recessive inheritance models with sample size N =
3000.
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Application of logistic regression method to case-control design

We applied our method (CL) and (SL) method to the case-control samples. The
mean curves of the AVSS values with one standard error up and down were plotted
against the d values in Figure 6.3. In this figure, the plots in the columns from the
left to the right are for the scenarios, where the underlying number of risk haplotypes
mr = 20, 10 and 5. The top row stands for the cases, where (N1, N0) = (2000, 3000),
while the bottom row stands for the cases, where (N1, N0) = (1000, 2000). In these
plots, the red and the blue solid curves show mean curves of the AVSS values over
30 datasets as functions of d = 0, 0.05, 0.1, 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35 for CL
method and SL methods, respectively.

In this figure, it can be seen that the CL method achieved some advantages in
detecting risk haplotypes compared to SL method in the cases where mr = 20, 10.
This can be seen in Figure 6.3(a),(b),(d) and (e) and in Figure 6.3(f). However in
Figures 6.3(c), both CL and SL ended up with quite similar results.
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Fig. 6.3: Performances of CL method and SL method on the case-control data.

6.4 Real data analysis

We applied the proposed CL method to the GWAS genotype datasets on coronary
artery disease (CAD) and hypertension (HT) obtained by Affymetrix 500K SNP
chips in the WTCCC study (WTCCC, 2007). The datasets are prepared in the
same way we described in Section 3.5. As mentioned in the previous chapters, the
whole genome result in 1983537 genotypes in CAD data and 2097111 genotypes in
HT data. Applying the first stage of the method to the CAD and HT data led to
258086 potential risk haplotypes out of 1448586 in CAD data and 265804 potential
risk haplotypes out of 1463838 in HT data. We then calculated the OR tests on
these haplotypes at Stage 2. At Stage 2, according to the Bonferroni adjustment,
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the individual significance level was set at the levels of 0.05/258086 = 1.93 × 10−7

and 0.05/265804 = 1.88× 10−7 for the CAD and the HT respectively.

These individual significance levels were then used to determine the thresholding
level c1 in the multiple OR thresholding, which is c1 = 5. Note that there were two
sub-populations in controls. We applied further filtering on the regions to exclude
the ones that have significant differences in the haplotypes frequencies within the two
sub-control samples. The exclusion criterion was based on calculating chi-square p-
value. Any region resulted in p-value less than 0.30 was excluded from the suspicious
regions. This criterion was concluded from the simulated case-control samples when
the risk factor d is less than 0.15 as we found out that the p-values for most of
the 30 datasets are greater than 0.30, see Figure 3.6. Note that the declared risk
haplotypes at the end of the second stage should also meet this criterion. Toward
this end, the chi-square p-value of the frequencies in the two sub-control samples of
each potential risk haplotype should be greater than 0.30. Otherwise the haplotype
would be eliminated.

Finally, we calculated the ORs for all the estimated haplotypes and thresholded
them by using the bound

exp(c1

√
1/(n0H + 0.5) + 1/(n1H + 0.5) + 1/(n0r̄ + 0.5) + 1/(n1r̄ + 0.5))

with c1 = 5. This gave the final risk-haplotype set as displayed in Tables 6.1, 6.2,
6.3 below. In the tables, each haplotype has been assigned to a physically closest
gene on the basis of the information provided the GWAS catalog and the genetic
information from the British 1958 Birth cohort. See Welter et al. (2014) and the
web page at
http://www2.le.ac.uk/projects /birthcohort/1958bc. In the CAD case, we did redis-
cover the CAD risk gene CDKN2B and the risk haplotype “GGTGCCAG" found by
the previous study (WTCCC, 2007; Zhu et al., 2010). We also tested the inheritance
modes for these risk haplotypes in Chapter 3.
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Tab. 6.1: The suspicious regions for coronary artery disease of WTCCC data detected by
the CL method.

CAD
Chr Region SNP range Haplotype P (Hi|case) P (Hi|control) OR P-Value Gene
1 rs10752991− 183669960 SNPA − 1976175 AAGCGGAC 0.04276 0.02186 2.25033 7.9× 10−10 PLA2G4A
1 241638336− 241689464 rs4658439− rs6428904 GGATCCGG 0.01864 0.00735 4.00348 1.6× 10−09 LOC729761
2 3789586− 3821960 rs7576476− rs12618184 GCTTACAG 0.03451 0.01119 3.08154 4.3× 10−14 LOC442006
2 49934439− 50000082 rs6736617− rs17039375 CCAAAGGT 0.02347 0.00757 3.15172 1.5× 10−10 NRXN1
3 73461569− 73510299 rs7647311− rs3845868 AGGCGCGG 0.03876 0.01161 3.60719 3.8× 10−17 PDZRN3
3 192463499− 192526004 rs7644510− rs293871 GACGCGTA 0.04375 0.01075 9.25792 8.6× 10−31 UTS2D

AGGGTGTT 0.03568 0.02508 3.25235 7.2× 10−11

3 197256495− 197339533 rs6583286− rs9834962 TAGACTTA 0.0498 0.02364 2.18614 3.1× 10−11 TFRC
4 3636361− 3700212 rs10025237− rs16844722 GGGGAGGG 0.22491 0.15492 1.48435 8.7× 10−10 FLJ35424
4 62159638− 62224814 rs335339− rs17090501 AGTAGCGC 0.61988 0.56353 1.26297 5.2× 10−08 LPHN3
4 167440772− 167457521 rs9995087− rs17047336 GGACGCAG 0.03434 0.01139 3.4204 9.6× 10−13 TLL1
4 180659963− 180699763 rs6811556− rs17090633 CCCCCACT 0.01782 0.00755 3.9912 5.4× 10−11 LOC391719
5 166764561− 166801933 rs6863935− rs7724862 CTATGTGT 0.09145 0.05448 1.69398 8.7× 10−09 ODZ2
7 42931717− 42940671 rs2024125− rs2330742 AGTGTAGA 0.09745 0.0513 1.98174 2.5× 10−15 HECW1
7 121502348− 121570029 rs284378− rs1443751 CAGGGTCT 0.03082 0.01538 2.37983 2.0× 10−09 CADPS2
7 153371858− 153449397 rs6464391− rs1861139 CGGGTAGA 0.04119 0.02159 2.02259 1.6× 10−08 LOC653748
8 71022178− 71086937 rs7836791− rs388511 TACAGAAG 0.02204 0.00555 5.35918 1.5× 10−07 SLCO5A1
9 22088619− 22120515 rs2891168− rs10965245 GGTGCCAG 0.34939 0.29298 1.363 2.4× 10−11 CDKN2B
9 74180343− 74241329 rs10114124− rs17081046 GTATTTAT 0.21608 0.13046 1.66562 4.0× 10−17 RORB
9 119506057− 119537035 rs2191675− rs10984648 GTTGGCTA 0.08762 0.03361 4.37262 6.8× 10−51 CDK5RAP2

ATCGACTA 0.06297 0.04219 2.50612 1.8× 10−19

10 11879196− 11924252 rs6602535− rs11257355 TTTGTCGG 0.04949 0.0145 4.39053 1.5× 10−10 C10orf47
10 64409674− 64442476 rs1509952− rs2842286 TTTCTTAC 0.02299 0.0073 5.79388 2.5× 10−12 NRBF2
11 8165969− 8200374 rs4758310− rs11041816 ATAATGGG 0.36298 0.3164 1.3306 1.1× 10−08 LOC644497
11 11959140− 11969776 rs17464087− rs10741565 GTGGTCGT 0.16348 0.13543 1.41928 1.3× 10−08 DKK3

CCGGTCGC 0.10795 0.07913 1.60397 1.8× 10−10

11 129102667− 129124330 rs532427− rs691197 ACCGCGGA 0.08519 0.05612 1.99764 1.6× 10−07 TMEM45B
11 133079508− 133113640 rs4937817− rs4937826 GTAGTGCC 0.04216 0.02425 2.44201 3.9× 10−08 LOC646522
12 5619429− 5628923 rs11063791− rs454704 TACATAAA 0.02897 0.0124 2.54881 7.2× 10−10 TMEM16B
12 129086441− 129129809 rs713149− rs1027557 AAAGCGGT 0.18839 0.11206 1.90461 6.3× 10−11 FLJ31485
13 23708179− 23726596 rs881428− rs2760374 AGAAGTTT 0.11908 0.07922 1.47796 1.2× 10−07 SPATA13
13 108372995− 108432811 rs4773010− rs3842945 AGAGACCC 0.27486 0.19222 1.59284 1.2× 10−21 MYO16
14 25140850− 25159405 rs8020556− rs1951062 AGTAAACT 0.09084 0.02999 3.81326 2.3× 10−42 LOC401767

AGTACATA 0.24934 0.2259 1.39192 3.4× 10−08

GCTACATA 0.04608 0.01682 3.44683 3.9× 10−22

14 53221435− 53244046 rs1563719− rs210351 AGATAGGT 0.15385 0.10566 1.48023 2.3× 10−09 BMP4
14 65343491− 65401760 rs3924222− rs12896836 TACGTCTT 0.05544 0.03704 1.89769 1.2× 10−08 FUT8

TATAACTC 0.0462 0.01904 3.07126 1.1× 10−17

15 20624103− 21246055 rs7166056− rs8024346 GTGACGTG 0.08093 0.04109 2.10848 2.4× 10−13 NIPA1
15 37962389− 38014169 rs11633436− rs534757 TTACAACC 0.07798 0.03763 2.34448 5.0× 10−12 GPR176
16 55207138− 55253047 rs8055724− rs12447986 TTCTCCTC 0.03044 0.01113 2.81792 2.8× 10−11 MT1L
16 63792132− 63847234 rs1862709− rs1423798 CGGAACCA 0.40562 0.36993 4.10819 2.1× 10−12 LOC283867

CGGATACT 0.21037 0.19685 4.00571 3.1× 10−11

CGGATACA 0.08934 0.08462 3.96191 1.4× 10−09

CGAAAATA 0.05187 0.05175 3.76755 8.0× 10−08

Tab. 6.2: The suspicious regions for coronary artery disease of WTCCC data detected by
the CL method.

CAD
Chr Region SNP range Haplotype P (Hi|case) P (Hi|control) OR P-Value Gene
17 27921023− 27963104 rs225215− rs17780520 GGGTTAAC 0.0205 0.00465 4.41157 6.8× 10−10 MYO1D
17 74629176− 74682195 rs2612793− rs8072667 CGAGGTTG 0.06276 0.03471 2.03532 1.9× 10−09 FLJ21865
18 8212591− 8279839 rs10468776− rs11876033 GGGACAAG 0.02689 0.00982 2.62558 3.7× 10−09 PTPRM
18 2291328− 22715430 rs3974646− SNPA TGCGGAGT 0.05382 0.02751 2.23011 3.8× 10−12 AQP4
19 4625799− 4746342 rs11670570− rs1044409 AGCAACCG 0.05419 0.02332 2.70861 5.4× 10−17 DPP9
19 6641966− 6717213 rs3745566− rs7248911 TAAGCTAC 0.02312 0.00521 4.75605 1.8× 10−14 C3
19 17595848− 17649789 rs10419511− rs7252308 TTGGTATG 0.04657 0.01971 3.86284 3.4× 10−09 UNC13A
19 52946204− 53026777 rs10402957− rs4427918 CATTCAGC 0.0741 0.04321 1.78028 3.2× 10−10 GLTSCR2
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Tab. 6.3: The suspicious regions for hypertension of WTCCC data detected by the CL
method.

HT
Chr Region SNP range Haplotype P (Hi|case) P (Hi|control) OR P-Value Gene
1 227569611− 227620956 rs7514972− rs9431663 CGTATAGG 0.03377 0.00926 4.68662 9.6× 10−13 TRIM67
1 236986859− 237020204 rs12137158− rs16840310 ATTTAGGG 0.08733 0.05437 1.97004 1.2× 10−14 GREM2
4 3700382− 3734797 rs177772− rs12641338 TACCGATT 0.12978 0.08988 1.85844 1.8× 10−12 FLJ35424
6 134839318− 134940216 rs17063800− rs228439 GAGGAGTT 0.04494 0.03434 2.29235 3.9× 10−08 HBS1L
6 139560239− 139612833 rs7765885− rs9495394 GCGCAACG 0.0487 0.01774 2.82143 1.6× 10−17 HECA
6 139693238− 139758634 rs11155050− rs9373237 TTGCGGCT 0.01924 0.00686 3.63934 8.1× 10−10 TXLNB
7 77695246− 77717237 rs2215379− rs4515471 TCTAAAAA 0.02943 0.01786 2.39311 6.3× 10−08 MAGI2

CTTGGAAA 0.02094 0.01061 2.86264 2.6× 10−08

11 69213458− 69295251 rs1192923− rs3168175 TTGTGGCA 0.05532 0.02803 2.07485 6.9× 10−10 FGF4
11 125683058− 125763272 rs2096915− rs7118117 CACACGAG 0.07736 0.04727 1.73075 1.2× 10−08 DCPS
12 19808672− 19824536 rs10841340− rs10770543 GTTAATTC 0.06671 0.02861 2.71722 1.4× 10−16 LOC400013
13 23708179− 23726596 rs881428− rs2760374 GAAAGCTT 0.2454 0.19993 1.36157 5.1× 10−09 SPATA13

AGAAGTTT 0.12142 0.07922 1.69995 1.1× 10−13

14 21674996− 21704333 rs12050442− rs1894369 GGGGTTAC 0.03075 0.00968 3.21035 2.3× 10−12 TRA@
14 25140850− 25159405 rs8020556− rs1951062 AGTAAACT 0.08475 0.02999 2.82991 1.3× 10−26 LOC401767
14 36969639− 37032855 rs10132119− rs17106785 CTATGACA 0.01914 0.00402 4.70209 2.3× 10−09 MIPOL1
16 76334152− 76353949 rs11646710− rs9935394 CGGTGGGC 0.01902 0.00855 3.2779 2.4× 10−09 LOC729777
17 6992193− 7158208 rs4558460− rs6503013 TCGCGTCG 0.14256 0.10161 1.49923 1.0× 10−09 LLGL1
18 2291328− 22715430 rs3974646− SNPA TGCGGAGT 0.05186 0.02751 3.30581 2.0× 10−18 LOC440489

TGTAATGT 0.22261 0.21193 1.84357 3.8× 10−10

6.5 Discussion and conclusion

We proposed a clustering-based logistic regression approach to detect disease-risk
haplotypes. In this approach, we started with fitting the model to the genotypes.
The independent variable was scored by the centroids of K-means clusters of the
log ratios dj = ( log P (Gj|cases)/P (Gj|controls)), 1 ≤ j ≤ J . The importance of
K-means here is to collapse the genotypes according to their dj to minimize the
number of independent variable scores. This approach could overcome the limita-
tions of fitting the standard multiple logistic regressions by considering a number of
independent variables less than the number of the genotypes in the sample. We ap-
plied this approach to the genotype data of the two study design. Compared to the
standard method, our approach was quite similar in it’s performance to SL method
in all cohort cases except the one where the mr = 5 with underlying dominant mode
of inheritanc. In contrast, in the case-control design our method CL showed some
advantages over SL method in detecting risk haplotypes in most scenarios.



7. DISCUSSIONS, CONCLUSIONS AND FUTURE WORKS

In this Section, we will give discussions on the pros and cons of the proposed methods
compared to the existing methods, make conclusions for the thesis, and point out
future works.

7.1 Overview of the results of our methods

In this thesis, we have developed four novel methods to detect risk haplotypes for
a disease. These methods have been assessed by applying them to both simulated
datasets with a wide range of scenarios and WTCCC data on CAD and HT.

In the simulations, we generated datasets based on retrospective and prospective
designs. We aimed to detect the risk haplotypes which we pretended that we did
not know. We compared the proposed methods to the multiple testing method(MT)
or the standard multiple regression method in terms of AVSS. Note that in the
target population, disease prevalences were distributed on the basis of underlying
modes of inheritance which were unknown in the population. So, we opted for
population-based designs, where selecting a sample from the target population could
be done by using the so-called cohort design and case-control design, for details
see Section 2.8. In our simulations, we generated the data based on each design
separately. The cohort design was easy for developing tests for mode of inheritance
and for mathematical formulas derivations, whereas the case-control design was easy
for finding the minimum level of the P-value between the frequencies of haplotypes
between cases and controls when there was no risk in the sample.

Zhu et al. (2010) proposed multiple testing method to detect disease-risk haplo-
types. In the application of their method to the simulation, they generated the cases’
genotypes based on different modes of inheritance which were similar to our cohort
design. In their paper, it was mentioned that the numbers of simulated cases and
controls were 1900, 3000, respectively. The key requirement in their co-classification
stage was that the number of cases and the number of controls were randomly chosen
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for co-classification. This was used to reduce the effects of population-substructures
in the sample.

To compare the proposed methods to each other, we plotted their simulated
AVSS in the various scenarios considered before. These plots were displayed in
Figures 7.1, 7.2 and 7.3. It can be seen in Figures 7.1 and 7.2 that the methods HM,
GM and Per outperformed the MT, CL and SL in all scenarios that we considered in
the cohort design and in the case-control design in terms of their AVSS values. The
permutation method had the best performance among all the six methods in the
cohort design. The methods HM and GM were close to each other in their AVSS
values in the cohort design, although both of them outperformed the MT. The
standard multiple logistic method (SL) performed the worst in the cohort design
when the sample size was 5000 and the mode of inheritance was either dominant or
multiplicative as shown in Figure 7.1 (b), (c), (e), (f), (h) and (i). However, in the
recessive model, it performed better than MT as demonstrated in Figure 7.1 (a),
(d) and (g). The CL method showed a better result than did the MT and the SL
in detecting the risk haplotypes in some scenarios. See Figures 7.1 (a), (c) and (g)
and all scenarios shown in Figure 7.2 except that in (i).

The GM and HM outperformed the rest methods in case-control design as shown
in Figure 7.3. The SL method was the worst in its performance in this design. The
Per and CL methods performed better than MT. However, the MT method overtook
the CL method in case-control design when d > 0.25, where d was used to show the
risk difference between risk and non-risk genotypes in the simulations. As it can be
also seen in Figure 7.3, the HM method overtook the GM and Per methods when
d > 0.15
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Fig. 7.1: Performances of all methods on the cohort-design data with multiplicative or
dominant or recessive inheritance modes based on sample sizes of 5000. The
curves show the averages of the AVSS values over 30 replicates in each scenario
for the methods HM, GM, MT, Per, CL, and SL.
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Fig. 7.2: Performances of all methods on the cohort-design data with multiplicative or
dominant or recessive inheritance modes based on sample sizes of 3000. The
curves show the averages of the AVSS values over 30 replicates in each scenario
for the methods HM, GM, MT, Per, CL, and SL.
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Fig. 7.3: Performances of all methods on the case-control data based on sample size 5000
or 3000. The curves show the averages of the AVSS values over 30 replicates in
each scenario for the methods HM, GM, MT, Per, CL, and SL.

In summary, in the cohort design, the permutation method performed better
than all other methods. This showed the benefit of considering reconstructing the
haplotypes/genotypes of the case and control samples altogether to allow PHASE
to stratify the sample. This of course would affect the penetrance probabilities. But
it had no effects on estimating genotype frequencies in cases. In this design, we can
also see that the HM and GM overtook each other when the genotype relative risk
λ was increasing. Their performances were better than those of the MT, CL and
SL methods. Both the MT and CL outperformed the SL, although there were no
significant differences between the performances of the MT and CL. Note that the
results SL was improved by using the idea of collapsing the rare genotypes as we
mentioned in Section 6.2.2. However, its performance was the worst amongst the
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six methods.

In the case-control design, the GM outperformed the others in all scenarios when
the risk was low in the sense that d < 0.15. When d > 0.15, the HM outperformed
all the others as shown in Figure 7.3. In this design, the SL method performed the
worst in all scenarios except the one with the sample size 5000 and the number of
risk haplotypes mr = 5.

As far as real data analyses are concerned, we summarised the results of the
four proposed methods in Table 7.1 and Table 7.2. It can be seen many genes
have been detected as potential risk for coronary artery disease or hypertension.
The differences in detecting these genes by the proposed methods could due to the
difference in their performance. Take HM as an example, at the first stage of this
method, we clustered the haplotypes into two groups. At the second stage, we used
Bonferroni correction to adjust the significant level based on the number of the
haplotypes resulted from the first stage in the whole genome. This number might
be much less than the total number of the haplotypes in the whole genome. In
doing so, we reduced the impact of a multiple testing problem that can inflate type
II error. In the contrast, in the permutation method, we used Bonferroni correction
to adjust the significant level for detecting the risk genotypes at the first stage. This
resulted in detecting less haplotypes than the HM at the final stage due to the strict
significant level we used. This issue would not be a problem in the simulation as
the significant level we used is not very strict.

The most important finding is the genes that have been detected by more than
two methods. One of these genes is CDKN2B. This gene has been detected by all
the proposed methods. It has already been reported in a GWAS catalog as a risk
factor for coronary artery disease. More importantly, the remaining genes need to
be investigated by researchers who are specialist in Biochemistry or Medical genetics
to find the biological association between them and the reported diseases in terms
of their biological functions. In fact, majority of these genes have already been
reported as risk factors for some diseases according to the GWAS catalog, but based
on data provided by different projects worldwide.
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Tab. 7.1: Potential risk genes for coronary artery disease and detection methods

Chr Gene Detection method Chr Gene Detection method Chr Gene Detection method
1 LOC284577 HM, Per 1 RGS7 HM 1 ACTL8 GM
1 MSH4 GM 1 hCG-2036596 Per 1 LOC728431 Per
1 RHOU Per 1 TRIM67 Per 1 CEP170 Per
1 AKT3 Per 1 PLA2G4A CL 1 LOC729761 CL
2 NRXN1 GM, Per, CL 2 LOC442021 GM 2 LOC402120 GM
2 DNER GM 2 FLJ43879 GM 2 PPP1R7 GM
2 LOC442006 Per, CL 2 LOC442006 Per 2 LOC442021 Per
3 ABI3BP HM 3 ACPL2 HM 3 PLSCR5 HM
3 BHLHB2 GM 3 SLC6A6 GM, Per 3 FHIT GM
3 SYNPR GM 3 SUCLG2 GM 3 NFKBIZ GM
3 ALCAM GM 3 SLC9A9 GM 3 C3orf58 GM
3 TNIK GM 3 UTS2D GM, CL 3 TFRC GM, Per, CL
3 CNTN4 Per 3 PDZRN3 Per, CL 4 LOC654254 HM
4 ZNF509 HM 4 LOC391719 HM, CL 4 FLJ35424 GM, Per, CL
4 TLL1 Per, CL 4 LPHN3 CL 5 CLINT1 HM, Per
5 LOC728682 GM 5 ODZ2 GM, Per, CL 5 LOC644659 Per
7 MAGI2 HM 7 LOC647030 HM 7 RBAK GM
7 LOC340268 GM 7 AAA1 GM 7 HECW1 GM, CL
7 LOC653748 GM 7 MAGI2 Per 7 LOC653748 Per, CL
7 CADPS2 CL 8 BAALC HM, GM 8 LOC648237 GM
8 PDGFRL GM 8 WHSC1L1 GM 8 SLCO5A1 Per, CL
9 CDKN2B HM, GM, Per, CL 9 GNA14 HM, Per 9 RAPGEF1 HM
9 BNC2 GM 9 RORB GM, Per, CL 9 TNFSF8 GM
9 CDK5RAP2 GM, Per, CL 9 OLFM1 Per 10 NRBF2 HM, GM, CL
10 RBM20 HM 10 MKI67 HM 10 C10orf47 GM, Per, CL
10 FAM107B Per 11 FLJ14213 HM, Per 11 LOC646522 HM, Per, CL
11 IQSEC3 HM 11 LOC644497 GM, Per, CL 11 NELL1 GM
11 FGF4 GM, Per 11 CCDC90B GM, Per 11 CNTN5 Per
11 DRD2 Per 11 TMEM45B Per, CL 11 DKK3 CL
12 SOX5 HM 12 KRT3 HM 12 TMEM132C HM
12 BTG1 GM 12 TBX3 GM 12 TMEM132C GM
12 FLJ31485 GM, CL 12 TMEM16B Per, CL 12 RBM19 Per
12 NOS1 Per 13 MTIF3 GM 13 LOC196549 GM
13 RCBTB2 GM 13 MYO16 Per, CL 13 SPATA13 CL
14 LOC401767 GM, Per, CL 14 NPAS3 GM 14 FUT8 GM, Per, CL
14 BMP4 Per, CL 15 GPR176 HM, GM, Per, CL 15 NIPA1 GM
15 NIPA1 GM, Per, CL 15 MAGEL2 GM 15 LCTL GM
15 C15orf26 GM 15 SLCO3A1 GM 15 RGMA GM
15 MAGEL2 Per 16 BCMO1 HM, Per 16 A2BP1 GM
16 LONP2 GM 16 LOC643714 GM 16 MT1L GM, Per, CL
16 LOC283867 CL 17 LOC646202 HM 17 MSI2 HM
17 TNRC6C GM 17 FLJ21865 GM, Per, CL 17 MYO1D Per, CL
18 RAB31 HM 18 C18orf20 HM, GM 18 FLJ44313 HM
18 PTPRM GM, Per, CL 18 KIAA0802 GM 18 AQP4 Per, CL
18 MOCOS Per 19 DPP9 HM, CL 19 KLK2 HM
19 VN1R4 HM 19 PVRL2 GM 19 GLTSCR2 GM, Per, CL
19 CACNG7 GM 19 C3 Per, CL 19 AKAP8L Per
19 UNC13A Per, CL 19 LOC729966 Per 20 FLJ33544 GM
20 HNF4A GM 20 SLC13A3 GM 20 SALL4 GM
20 ZNF217 GM 20 PHACTR3 GM 20 C20orf196 Per
20 C20orf42 Per 20 BCAS1 Per 20 PCK1 Per
21 TPTE GM 22 CACNG2 HM, GM, Per 22 LOC729269 GM, Per
22 SYN3 GM



7. Discussions, conclusions and future works 115

Tab. 7.2: Potential risk genes for hypertension and detection methods

Chr Gene Detection method Chr Gene Detection method Chr Gene Detection method
1 TRIM67 HM, CL 1 TSNAX HM 1 GREM2 HM, GM, CL
2 SOS1 Per 3 TOMM70A HM 3 ACPL2 HM
3 LOC646730 HM 4 KCNIP4 HM 4 PPARGC1A HM
4 FLJ35424 GM, CL 4 PALLD GM 4 LCORL Per
5 LOC651746 HM 5 PDZD2 HM 6 HECA HM, CL
6 TXLNB HM, CL 6 SYNE1 GM 6 QRSL1 Per
6 HBS1L CL 7 ABCA13 HM 7 MAGI2 HM, CL
9 GNA14 HM 10 RAB11FIP2 HM 10 LOC645954 Per
11 DCPS HM, CL 11 FGF4 GM, CL 11 OR5D14 Per
11 SORL1 Per 12 LOC729222 HM 12 RBM19 HM
12 TBX3 HM 12 NOS1 GM 12 LOC400013 CL
13 SPATA13 HM, CL 13 ATXN8OS HM 14 TRA@ HM, GM, CL
14 SLC25A21 HM, GM 14 LOC401767 GM, CL 14 MIPOL1 GM, CL
16 PPL HM 16 XYLT1 HM 16 LOC729777 CL
17 RPL38 HM 17 LLGL1 CL 18 LOC728864 Per
18 LOC440489 CL 19 NFIC HM 19 ZNF414 HM
19 UNC13A HM, GM 19 CHST8 HM 20 ANKRD5 HM

7.2 Future work

In this thesis, we have addressed several issues on the GWAS data analysis that
challenge the existing statistical methods. We considered the simple setting where
we put the non disease-risk haplotypes and the disease-protective haplotypes as
one category. From statistical point of view, if protective haplotypes existed in the
population, they would decrease the probability of getting the disease. The proposed
methods can be extended to identify the risk-protective haplotypes by increasing the
number of mixture components in the models.
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