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Abstract. Enamel thickness remains an important morphological character in hominin 

systematics and is regularly incorporated into dietary reconstructions in hominin species. 

We expand on a previous study of enamel thickness in mandibular molars by examining a 

large maxillary molar sample of Plio-Pleistocene hominins (n=62), and a comparative sample 

of extant non-human apes (n=48) and modern humans (n=29). 2D mesial planes of section 

were generated through microtomography and standard dental tissue variables were 

measured to calculate average (AET) and relative (RET) enamel thickness. AET was also 

examined across the lingual, occlusal and buccal regions of the crown. This study confirms 

previous findings of increasing enamel thickness throughout the Plio-Pleistocene, being 

thinnest in Australopithecus anamensis and peaking in Australopithecus boisei, with early 

Homo specimens exhibiting intermediate enamel thickness. Agreeing with previous findings, 

2D plane of section enamel thickness is found to be a poor taxonomic discriminator, with no 

statistically significant differences observed between fossil hominins. For fossil hominins, 

modern humans, and Pongo the occlusal region of enamel was the thickest, and lingual 

enamel thickness was greater than buccal. Pan and Gorilla present the opposite pattern 

with enamel being thinnest occlusally. Comparison at each molar position between the 

maxilla and mandible revealed very few significant differences in fossil hominins but some 

evidence of significantly thicker maxillary enamel (AET) in modern humans and thinner 

maxillary enamel in Pan (RET).  

 

1. Introduction 

The thickness and distribution of enamel tissue across tooth crowns are important features 

in assessing taxonomy, phylogeny, and dietary adaptations in fossil primates. Over three 

decades of research has elucidated patterns of enamel thickness variation in fossil hominins, 

and fossil and extant hominoids (Molnar and Gantt, 1977; Martin, 1985; Beynon and Wood, 

1986; Gantt, 1986; Shellis et al., 1998; Schwartz, 2000; Kono, 2004; Smith et al., 2003, 2005, 

2006a; Kono and Suwa, 2008; Olejniczak et al., 2008b, c, d). Whereas naturally broken teeth 

or histological thin-sections have been used in many of these studies, researchers have 

increasingly utilized microtomography to systematically produce homologous mesial planes 

of section in molars (Conroy, 1991; Grine, 1991; Macho and Thackeray, 1992; Spoor et al., 

1993; Schwartz et al., 1998; Martin et al., 2003; Tafforeau, 2004; Olejniczak and Grine, 2006; 



 
 

 
 

Olejniczak et al., 2008a; Smith et al., 2009a, b; 2012a, b, c), leading to more comprehensive 

taxonomic comparisons (see review in Smith et al., 2012a and Skinner et al., 2015). 

This paper is a sequel to a previous study (Skinner et al., 2015) that investigated 2D average 

enamel thickness (AET) and relative enamel thickness (RET) in mandibular molars of Plio-

Pleistocene hominins and extant apes using established protocols (Martin, 1985; Olejniczak 

et al., 2008a). Skinner et al. (2015) focused on temporal trends, metameric variation, the 

regional distribution of enamel across the mesial crown, and investigated the utility of 2D 

enamel thickness data as a taxonomic indicator. Results indicated: 1) a trend in increase in 

enamel thickness from 4 - 2 million years ago, from Australopithecus  anamensis to A. boisei; 

2) a tendency for enamel thickness to increase along the tooth row from first to third molar; 

and 3) a trend for decreasing enamel thickness through time within the genus Homo. 

Furthermore, there were clear differences in enamel thickness between extant apes and 

hominins, but few significant differences within the hominin clade. Finally, the regional 

distribution of enamel across the tooth crown for the majority of extant apes and hominins 

was characterized by thick occlusal enamel, less thick buccal enamel and least thick lingual 

enamel; exceptions to this being Gorilla (with thicker buccal than occlusal enamel) and Pan 

(with thinnest occlusal enamel).  

In this study we extend our analysis of enamel thickness to maxillary molars to: 1) quantify 

2D AET and RET in extant apes and Plio-Pleistocene hominin maxillary molars; 2) assess 

regional distribution of enamel buccolingually across the tooth crown; 3) evaluate whether 

mandibular and maxillary molars exhibit similar enamel thickness characteristics; and 4) 

provide individual enamel thickness measurements for extant apes and fossil hominins for 

use by other researchers.  

 

2. Materials and methods 

The study sample includes maxillary molars (n= 139) belonging to extant hominoids and 

fossil hominins (Supplementary Online Material (SOM) Table S1 contains a complete list of 

all specimens and includes information about the basis for molar position and taxonomic 

affiliation). Specimens which did not preserve an intact mesial crown, exhibited pathologies 

of enamel growth, or had insufficient radiographic contrast between enamel and dentine 



 
 

 
 

were excluded. Specimens displaying wear that exposed large areas of dentine were 

excluded from the study. Owing to the widely accepted difficulty of assigning sex to many 

fossil hominin teeth, sex was not incorporated as a factor for this study. Extant hominoid 

taxa include Homo sapiens, Pongo, Gorilla, and Pan (note: due to the small sample sizes for 

some molar positions, no sub-generic division was made for non-human ape samples 

although individual data for Pan paniscus and Pan troglodytes are listed in SOM Table S1). 

The fossil hominin sample includes A. anamensis, A. afarensis, A. africanus, A. robustus, A. 

boisei, and Homo sp. 

Fossil hominin specimens derive from collections housed at the following institutions: 

National Museum of Ethiopia, Addis Ababa, Ethiopia; National Museums of Kenya, Nairobi, 

Kenya; University of Witwatersrand, Johannesburg, South Africa; Ditsong National Museum 

of Natural History, Pretoria, South Africa. The hominoid samples derive from the Museum 

für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science (ZMB), Berlin, 

Germany; the Royal Museum for Central Africa (MRAC), Tervuren, Belgium; and the Max 

Planck Institute for Evolutionary Anthropology (MPI), Leipzig, Germany. The modern human 

sample derives from the ‘Francisc J. Rainer’ Anthropology Institute (R), Bucharest, Romania; 

and the Max Planck Institute for Evolutionary Anthropology (M), Leipzig, Germany. 

All enamel thickness measurements were collected from a µCT derived 2D mesial plane of 

section. Specimens were scanned using either a BIR Actis 300/225 FP or SkyScan 1172 

microtomographic scanner with a resultant isometric voxel size of 15-65 mm3. To produce 

the plane of section each molar was first loaded into Avizo (v6.3, www.thermofisher.com) 

and visually rotated into anatomical position. This rotation was conducted in Avizo using the 

trackball in the transform editor module and viewing the molar simultaneously in three 

views. The aim of this rotation is to achieve an orientation that approximates the 

orientation of the molar in occlusion with regard to tilting in mesiodistal and buccolingual 

directions. First, a virtual 2D plane was placed perpendicular to the occlusal plane and 

passing through the tip of the protocone dentine horn. This plane was then rotated to pass 

through the paracone dentine horn. In cases where enamel was missing, reconstructions 

were done using segmentation tools in Avizo to augment sample size of unworn fossil teeth 

for most hominin species (note: our reconstruction of relevant teeth can be evaluated in the 

images in the SOM). Intraobserver error was evaluated by having one of us (A.L.) repeat the 



 
 

 
 

processing sequence for an A. africanus specimen five times over several months and was 

calculated as the average deviation from the mean of five measurements. Values of 2.03% 

for AET and 1.38% for RET are consistent with error rates reported in Skinner et al. (2015).  

On each 2D section four variables were measured including: area of enamel cap (mm2); area 

of coronal dentine (mm2), defined by a line drawn between the most cervical enamel 

extensions; and length of the enamel-dentine junction (EDJ) (mm). The mesial crown section 

was divided into lingual, occlusal and buccal regions by connecting the tip of each dentine 

horn to the cusp tip of the outer enamel surface. All measurements were calculated in 

ImageJ. AET was calculated by dividing the area of the enamel cap by EDJ length. RET, which 

provides a scale free value of enamel thickness, allowing for comparisons of taxa of differing 

tooth and body size, was calculated as AET divided by the square root of dentine area and 

multiplied by 100. For regional AET values, the area for each region was divided by its 

corresponding EDJ length. A Kruskal-Wallis test with post-hoc pairwise comparisons was 

used to test for significance in AET and RET differences between taxa using SPSS 22. The 

same test was also used to test for significance in intra-taxon differences in AET and RET and 

between mandibular and maxillary molars of extant apes, A. africanus and A. robustus --taxa 

for which the sample size is relatively large. 

 

3. Results 

Table 1 presents the mean and standard deviation of measured and calculated variables for 

each taxon and for each tooth type. Both AET and RET were significantly different 

(p=<0.001) among the study taxa, with post-hoc pairwise comparisons revealing that this is 

predominantly driven by differences between thinly enamelled extant non-human ape taxa 

(i.e., Gorilla and Pan) and more thickly enamelled hominin taxa (Table 2). No differences 

were found among extant non-human apes, while modern humans differed in AET from A. 

robustus (M1, p=0.009; M2, p = 0.024), A. boisei (M1, p=0.009; M3, p=0.019), A. africanus 

(M3, p=0.045), and in RET from A. robustus (M1, p=0.041) and A. boisei (M1,p=0.035). It 

should be stressed that very small sample sizes for many hominins at multiple tooth 

positions prevent meaningful statistical assessment of AET and RET differences.  



 
 

 
 

Figure. 1 displays boxplots of AET and RET results for each taxon and tooth type. A general 

trend is observed from A. anamensis to A. boisei with increasing AET enamel thickness 

throughout the Pliocene from ~4 - 2 million years ago. This pattern is similar for RET with 

the exception of A. afarensis third molars that are similar to those of A. boisei. The Homo sp. 

sample exhibits AET and RET similar to A. robustus. AET for modern humans tends to fall 

below other hominins and above non-human apes, while RET values are similar to A. 

africanus and A. robustus. Pan exhibits the lowest AET values, however, when scaled by 

dentine area Pan has relatively thicker enamel than Gorilla (with Pongo exhibiting the 

highest AET and RET values for extant non-human apes). Regarding metameric variation, 

there is a trend for increasing AET and RET from first to third molars with the exceptions of 

A. robustus, where the second molar AET and RET values are highest, and Gorilla, where first 

molar AET and RET values are higher than in the second molar. 

Table 3 lists the mean and standard deviation of the lingual, occlusal and buccal regional 

measurements for AET for each taxon. Figure 2 shows that fossil hominins, modern humans 

and Pongo have thickest enamel in the occlusal basin as is the case for mandibular molars 

(Skinner et al., 2015). Contrasting with regional patterning across the mandibular molars, 

the lingual rather than buccal side of the crown has the thickest enamel in maxillary molars 

for most taxa. Pan and Gorilla have the thinnest enamel in the occlusal region.    

Using data from Skinner et al. (2015), Figure 3 compares AET and RET between mandibular 

and maxillary molars for A. africanus, A. robustus, H. sapiens, Gorilla, Pan, and Pongo.  

Acknowledging that there are issues of statistical independence (as some individuals 

contribute both maxillary and mandibular molars; see SOM Table S1), pairwise comparisons 

reveal evidence for significantly thicker maxillary molar enamel  in Homo sapiens (AET M2 

[p=0.005] and M3 [p=0.034] and RET M2 [p=0.037]). This is different than the apparent 

trend in the other study taxa, most of which indicate the opposite pattern or a large degree 

of overlap between maxillary and mandibular molars (Table 4). Significantly thicker 

mandibular than maxillary RET are present in A. robustus (M3 [p=0.028]) and Pan (M1 

[p=0.008] and M2 [p=0.054]).  

 

4. Discussion 



 
 

 
 

Maxillary molar enamel thickness trends are similar to those for mandibular molars with an 

increase from A. anamensis to A. boisei, and with early Homo specimens exhibiting relatively 

thick enamel similar to that in A. africanus and A. robustus. As noted in Skinner et al. (2015) 

this is consistent with isotopic evidence for an increase in C4 consumption in australopiths 

(Cerling et al., 2013; Sponheimer et al., 2013; Wynn et al., 2013; Alemseged, 2015; Levin et 

al., 2015). In this study, no statistically significant differences in enamel thickness were 

observed between the Plio-Pleistocene taxa we considered. This could be attributable to 

small sample sizes in a number of species and molar positions, but also related to the high 

levels of variation at each molar type compared to extant taxa (Fig. 1). This variation can in 

turn be explained by a number of factors including spatiotemporal variation, the possibility 

that some of our taxa (e.g., Homo sp.) sample multiple species, and the potential influence 

of molar crown shape/cusp positioning variation and its impact on resultant 2D planes of 

section. Additionally, sexual dimorphism, which can affect dental tissue proportions 

(Saunders et al., 2007), cannot be taken into account due to the difficulty in assigning sex to 

most hominin specimens. Nonetheless, our results are consistent with other large scale 

analyses of hominin enamel thickness (Olejniczak 2008 a,c; Smith et al., 2012a,b; Skinner et 

al., 2015) and suggest that while 2D enamel thickness by itself will be of limited taxonomic 

value at the species level, it can be used as one line of evidence in conjunction with data 

sources when examining taxonomic hypotheses. The data we provide in the SOM will be of 

utility in this respect.  

In the majority of taxa there is a consistent trend for an increase in AET from the first to the 

third molar. This pattern may be related to increasing bite force mesiodistally along the 

tooth row (Macho and Berner, 1993; Schwartz, 2000), in conjunction with other 

morphological features such as zygomatic orientation, and mandibular size and shape and 

moralised premolars (Tobias, 1967; Rak 1983; Teaford and Ungar, 2000; Lucas, 2004; Smith 

et al., 2015). It has been proposed that changing trends in hominin enamel thickness, as 

reported here, could be an adaptation to resist an increasingly hard diet (Cerling et 

al., 2011; Rabenold and Pearson, 2011; Lucas et al., 2013) associated with masticatory 

stresses which lead to longitudinal fractures and tooth failure (Laden and Wrangham, 2005; 

Lucas et al., 2008; Smith et al., 2012b; Barani et al., 2011; Mahoney, 2013; Benazzi et al., 

2013; Strait et al., 2013; Laird et al., 2016); culminating in A. boisei (Smith et al., 2015). 



 
 

 
 

However, these stresses are not always directly correlated with diet (Schwartz, 2000; 

Martin, 2003; Lucas et al., 2013), and become more difficult to assess when there is 

evidence for food processing with tool use (Ungar, 1994; Fragaszy et al., 2004; Constantino 

et al., 2011; Zink et al., 2014; Harmand et al, et al, 2015). The heavy tooth wear observed in 

hominins (d’Incau et al., 2012; Lucas et al., 2013), suggests most species consumed abrasive 

diets throughout hominin evolution (Lucas et al., 1985; Vogel et al., 2008; Cerling et al., 

2011; Rabenold and Pearson, 2011; Strait et al., 2013; Levin et al., 2015; Ungar et al., 2016) 

and increasing enamel thickness along the tooth row may have maintained masticatory 

function throughout life (King et al., 2005; Constantino et al., 2009, 2011; Lucas et al., 2013; 

Glowacka et al., 2016).  

Our analysis of the regional distribution of enamel thickness across the crown is consistent 

with a previous study in non-human apes and humans (Kono, 2004) and with Skinner et al. 

(2015). Whereas mandibular molars tend to have relatively thicker enamel buccally, 

maxillary molars tend to have thicker enamel lingually. This is consistent with expectations 

of both load and attrition experienced by the ‘functional’ cusps in each jaw as they occlude 

(Schwartz, 2000; Benazzi et al., 2013). The relatively thick enamel of Pongo (compared to 

hominins and Pan/Gorilla) combined with a similar hominin-like pattern of enamel 

distribution across the tooth crown may indicate similar adaptations to hard or abrasive 

diets in Pongo ( Kay, 1985; Martin et al., 2003; Smith et al., 2003; Taylor, 2006; Suwa et al., 

2007; Olejniczak et al., 2008d). While this result for Pongo is consistent with the mandibular 

molar data (albeit with roughly equal buccal and lingual thickness), the results for Gorilla 

differ in showing relatively uniform distribution across the maxillary crown versus a much 

thicker buccal side in mandibular molars (but the sample size for Gorilla mandibular first 

molars was only two given difficulties in finding museum specimens with minimal first molar 

wear). Statistical comparisons of AET and RET at each molar position in the maxilla and 

mandible indicate general similarity in absolute and relative enamel thickness for most of 

the study taxa, however there are some exceptions. AET tends to overlap between maxillary 

and mandibular molars at each molar position in all taxa except modern humans. 

Specifically, AET in human maxillary molars tends to be thicker than their mandibular 

counterparts (reaching statistical significance in second and third molars). Examination of 

the crowns of the maxillary molar sample reveals a number of specimens with large 



 
 

 
 

Carabelli’s features, and this may contribute to this finding given that data is collected on a 

2D plane of section that passes through this region of the crown. Figure 3b suggests a 

pattern of RET in which mandibular molars tend to have thicker enamel when scaled for 

dentine area in most of the study taxa (reaching statistical significance in some molar 

positions for A. robustus and Pan). However, as with AET modern humans are exceptional in 

have greater RET in maxillary molars at each position (being statistically significant at M2). 

There is some evidence that this pattern holds for Neanderthals (Olejniczak et al., 2008) and 

future studies of Homo specimens between 2.5 million years and 0.5 million years may 

highlight when this departure from the earlier hominin/non-human ape pattern first 

appeared.   

An important caveat with regard to this comparison between maxillary and mandibular 

molars is the 2D nature of the data. Kono (2004) showed that 2D AET values are not an 

accurate estimator for whole crown AET in extant apes and humans. Olejniczak and 

colleagues (2008) demonstrated that 2D and 3D measures of enamel thickness can yield 

different results, with only 3D data highlighting a difference in dentine crown size (and 

associated measures of RET) between Neanderthals and modern humans. Such disparities 

will likely be increased in taxa, such as modern humans, that can exhibit marked reductions 

in the size and height cusps on the distal half of the tooth moving from first to third molars. 

Similarly, hominin taxa with a tendency towards mesiodistally expanded mandibular third 

molars, such as A. robustus, are likely to present different estimates of AET and RET 

between 2D and 3D data. While 3D distribution maps of enamel thickness are more 

frequently being included in studies of endostructural tooth crown morphology, effective 

means of statistically quantifying and comparing such distributions remain elusive 

(acknowledging also the difficulties in reconstructing partially worn crowns in 3D). However, 

a recent analytical approach (Zanolli et al., 2016) that combines Procrustes superimposition 

for consistent alignment and a projection of 3D of enamel distribution onto a 2D plane for 

statistical comparison could provide a means to leverage the taxonomic and functional 

morphological relevance of the enamel cap. 

In conclusion, this study of maxillary molar 2D enamel thickness fills an important gap in 

published data about Plio-Pleistocene hominin teeth. It confirms recognized trends of 

enamel thickness differences through time in the hominin clade, the marked difference 



 
 

 
 

between hominins and non-human apes, and the derived nature of modern human enamel 

thickness. Measures of 2D enamel thickness remain an important, if somewhat simple, 

characteristic of hominin tooth morphology and the data we provide will be useful for alpha 

taxonomy of fragmentary/poorly preserved hominin teeth.   
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Figure Captions 

Figure 1. Box plots of average enamel thickness (left) and relative enamel thickness (right) 

for first, second and third maxillary molars for each taxon. There is a trend for increasing 

AET and RET through time in Australopithecus, Homo species exhibiting intermediate values 

and African apes having both absolutely and relatively thin enamel. 

 

Figure 2. Patterns of regional average enamel thickness for the combined molar sample of 

each taxon. Fossil hominins, humans, and Pongo tend to exhibit the thickest enamel in the 

occlusal basin, while Gorilla and Pan exhibit the thickest enamel on the lingual tooth crown.  

 



 
 

 
 

Figure 3. Boxplots of average enamel thickness (A) and relative enamel thickness (B) 

between maxillary and mandibular first, second, and third molars. Humans are unique in a 

tendency towards absolutely and relatively thicker maxillary than mandibular molars. 
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Table 1. Composition of the study sample and mean and standard deviation (SD) of measured and 
calculated variables for each taxon and tooth position. 
 

Taxon  n Enamel 
Area 
(mm2) 

SD Dentine 
Area 
(mm2) 

SD EDJa 
Length 
(mm) 

SD AET 
(mm) 

SD RET SD BCD 
(mm) 

SD 

First molar              

A. anamensis  0 - - - - - - - - - - - - 

A. afarensis  0 - - - - - - - - - - - - 

A. africanus 5 30.9 1.7 52.0 8.9 23.2 1.3 1.3 0.1 18.7 2.1 12.5 1.3 

A. robustus 6 41.3 7.8 56.2 10.2 23.6 2.3 1.8 0.2 23.4 2.8 11.9 1.6 

A. boisei  3 46.9 9.3 57.6 9.3 22.0 1.3 2.1 0.4 28.3 6.5 14.1 0.7 

Homo sp. 4 36.2 5.0 46.4 7.5 21.7 1.5 1.7 0.3 25.0 5.5 12.4 0.5 

Homo sapiens 10 23.2 2.4 41.1 2.3 20.7 1.3 1.1 0.1 17.7 1.6 10.6 0.6 

Gorilla  2 27.3 3.3 81.2 4.3 29.9 0.7 0.9 0.1 10.1 1.2 13.6 0.6 

Pan  8 13.0 2.0 36.1 4.9 19.7 1.3 0.7 0.1 11.0 0.9 9.6 0.8 

Pongo  4 18.5 3.9 37.2 8.4 19.8 1.4 0.9 0.2 15.2 1.3 10.2 1.2 

Second molar              

A. anamensis  2 24.5 1.1 42.5 8.6 20.3 1.7 1.2 0.0 18.8 2.6 14.0 0.5 

A. afarensis  1 30.7 - 42.7 - 19.8 - 1.6 - 23.7 - 14.2 - 

A. africanus 9 40.1 4.4 56.2 8.7 23.3 1.7 1.7 0.3 23.3 4.0 15.2 1.3 

A. robustus 6 49.8 6.6 60.6 4.9 23.3 0.9 2.1 0.3 27.5 3.5 14.6 1.2 

A. boisei  1 47.5 - 51.9 - 20.6 - 2.3 - 32.0 - 14.3 - 

Homo sp. 2 25.1 3.3 36.7 7.2 18.9 1.5 1.4 0.1 22.6 2.2 10.6 0.8 

Homo sapiens 10 24.6 3.3 36.2 7.0 18.6 1.7 1.4 0.2 22.8 3.2 10.3 1.2 

Gorilla  7 29.7 6.1 96.6 17.5 31.4 3.0 0.9 0.2 9.7 2.0 15.3 1.6 

Pan  7 15.3 3.8 37.8 9.4 20.6 2.7 0.7 0.1 12.1 1.4 9.6 1.2 

Pongo  3 22.2 4.1 44.5 6.1 20.3 1.0 1.1 0.2 16.5 3.3 11.6 0.4 

Third molar              

A. anamensis  1 34.7 - 51.8 - 21.1 - 1.6 - 22.8 - 13.5 - 

A. afarensis  3 31.0 1.7 52.0 8.9 23.2 1.3 1.3 0.1 18.7 2.1 12.5 1.3 

A. africanus 6 48.8 9.0 67.2 13.8 24.7 2.0 2.0 0.3 24.2 2.8 13.6 2.0 

A. robustus 5 46.9 9.3 57.6 9.3 22.0 1.3 2.1 0.4 28.3 6.5 14.1 0.7 

A. boisei  4 36.2 5.0 46.4 7.5 21.7 1.5 1.7 0.3 25.0 5.5 12.4 0.5 

Homo sp. 4 25.4 5.0 34.5 10.3 17.1 2.9 1.5 0.2 25.7 3.3 9.5 1.6 

Homo sapiens  9 25.9 5.5 34.8 10.9 17.3 3.0 1.5 0.2 26.1 5.0 9.8 1.5 

Gorilla 8 30.5 4.5 84.0 12.4 29.0 1.9 1.0 0.1 11.5 1.3 13.7 1.4 

Pan  3 14.0 2.0 30.8 7.4 19.0 1.1 0.7 0.1 13.4 0.9 8.4 0.3 

Pongo  6 20.8 1.9 35.7 9.0 18.4 1.9 1.1 0.9 19.4 3.1 10.7 0.8 
aAbbreviations: EDJ – enamel-dentine junction, AET – average enamel thickness, RET – relative 

enamel thickness, BCD – bi-cervical diameter. 

 

 



 
 

 
 

Table 2. Pairwise comparisons of AET (bottom left) and RET (top right) between the study taxa (p-
values in bold are significant ≤ 0.05 and shaded cells are non-human ape comparisons). 
 

First Molar A. ana A. afar 
A. 

afri 

A. 

rob 

A. 

boi 

Homo 

sp. 

Homo 

sap. 
Gorilla Pan Pongo 

A. ana   - - - - - - -  - 

A. afar  -  - - - - - - - - 

A. afri - -  0.265 0.131 0.249 0.681 0.065 0.025 0.404 

A. rob - - 0.222  0.546 0.880 0.041 0.007 <0.001 0.056 

A. boi - - 0.095 0.497  0.667 0.035 0.004 <0.001 0.030 

Homo sp. - - 0.322 0.907 0.467  0.103 0.007 0.001 0.060 

Homo sap. - - 0.195 0.009 0.009 0.053  0.064 0.010 0.372 

Gorilla  - - 0.415 0.082 0.037 0.120 0.473  0.736 0.255 

Pan - - 0.0012 <0.001 <0.001 0.001 0.016 0.345  0.240 

Pongo  - - 0.309 0.028 0.013 0.057 0.474 0.223 1.000  

Second Molar 

A. ana   0.607 0.506 .0186 0.212 0.464 0.343 0.089 0.290 0.718 

A. afar  0.700  0.917 0.677 0.525 0.798 0.877 0.062 0.167 0.406 

A. afri 0.281 0.726  0.288 0.338 0.795 0.990 <0.001 0.007 0.202 

A. rob 0.079 0.374 0.263  0.677 0.175 0.214 <0.001 0.001 0.046 

A. boi 0.137 0.340 0.353 0.718  0.259 0.282 0.007 0.026 0.107 

Homo sp. 0.216 0.532 0.613 0.811 0.633  0.868 0.009 0.050 0.250 

Homo sap. 0.603 0.714 0.113 0.014 0.133 0.159  <0.001 0.004 0.74 

Gorilla  0.529 0.361 0.008 0.000 0.029 0.030 0.059  0.336 0.135 

Pan 0.174 0.144 0.000 0.000 0.006 0.004 0.003 0.274  0.452 

Pongo  0.889 0.603 0.146 0.027 0.091 0.135 0.274 0.163 0.585  

Third Molar 

A. ana   0.489 0.833 0.888 0.369 0.302 0.564 0.164 0.348 0.616 

A. afar  0.604  0.420 0.378 0.787 0.641 0.454 0.001 0.021 0.058 

A. afri 0.413 0.87  0.902 0.229 0.215 0.751 0.002 0.064 0.182 

A. rob 0.408 0.673 0.970  0.205 0.136 0.453 0.004 0.090 0.251 

A. boi 0.221 0.313 0.453 0.491  0.832 0.322 <0.001 0.006 0.017 

Homo sp. 0.311 0.484 0.699 0.735 0.785  0.343 <0.001 0.003 0.009 

Homo sap. 0.920 0.169 0.045 0.086 0.019 0.156  <0.001 0.140 0.028 

Gorilla  0.468 0.043 0.002 0.003 <0.001 <0.001 0.030  0.563 0.084 

Pan 0.236 0.016 0.001 0.002 0.006 0.003 0.155 0.376  0.444 

Pongo  0.663 0.130 0.019 0.023 0.004 0.0013 0.129 0.579 0.204  

*Light shading indicates comparisons between hominins and extant non-human apes. Blank cells 
indicate non-significant results. In bold are results with a significant difference between taxa.   
 
 

 



 
 

 
 

Table 3. Regional AET measurements (mean and standard deviation) for the combined maxillary 

molar sample of each taxon. 

Taxon  n Lingual  SD Occlusal SD Buccal  SD 

A. anamensis  3 1.2 0.37 1.26 0.71 0.97 0.31 

A. afarensis  4 1.65 0.18 1.99 0.12 1.36 0.32 

A. africanus 20 1.74 0.29 1.75 0.36 1.29 0.27 

A. robustus 17 1.93 0.26 2.09 0.38 1.58 0.35 

A. boisei  8 2.41 0.51 2.59 0.58 1.90 0.4 

Homo sp. 10 1.90 0.32 2.09 0.33 1.51 0.29 

Homo sapiens  29 1.29 0.33 1.43 0.31 1.22 0.18 

Gorilla  17 0.99 0.23 0.9 0.17 0.93 0.12 

Pan  18 0.75 0.17 0.62 0.08 0.65 0.12 

Pongo 13 1.08 0.31 1.11 0.21 0.92 0.18 

 

 

Table 4. Intraspecific pairwise comparisonsa of AET and RET between mandibular and maxillary molars by molar 
position. 

Taxon AET M1 AET M2 AET M3 RET M1 RET M2 RET M3 

A. africanus ns ns ns ns ns ns 

A. robustus ns ns ns ns ns 0.028 

Homo sapiens ns (0.06) 0.005 0.034 ns 0.037 ns 

Gorilla ns ns ns ns ns ns 

Pan ns ns ns 0.008 0.54 ns 

Pongo ns ns ns ns ns ns 

a Kruskal-Wallis with posthoc pairwise comparisons. 
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