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Abstract. In this paper, an angular compounding method to achieve speckle contrast
reduction in optical coherence tomography (OCT) imaging is explored in detail.
The angular compounding approach involves collecting multiple images at di↵erent
angles of incidence, registering the images to correct for induced distortions, and then
incoherently summing the images to reduce speckle. The method was experimentally
demonstrated with a spectrometer-based Master-Slave enhanced OCT instrument
capable of directly generating en-face images. We have investigated the impact of
the angular range and number of averaged frames on the degree of speckle artefact
reduction, as well as the e↵ect on image resolution and sharpness. The minimum
angular step necessary to secure a su�ciently small speckle pattern correlation between
the images has also been determined, and the method has subsequently been validated
on a biological sample (potato cells).
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1. Introduction

Optical coherence tomography (OCT) is a non-invasive, non-contact imaging

technique based on low-coherence interferometry. It is capable of producing cross-

sectional representations of structures in real-time with micrometer resolution, and

penetration depths of 1 to 2 mm in scattering tissue. OCT imaging has found numerous

applications in biology and medicine [1] as well as in other non-biomedical fields such

as non-destructive testing and art conservation [2].

OCT relies on the interference of light back-scattered from the sample with that

propagating over a reference optical path. Due to this, OCT requires a certain degree

of spatial and temporal coherence from the optical source, and, consequently, coherent

detection, which inevitably gives rise to speckle [3]. Speckle phenomena arise when

optical paths of di↵erent light rays scattered from structures within the sample vary in

length on a sub-wavelength scale. The multiple scattered contributions interfere with one

another, resulting in granularity of the intensity distribution [4]. Speckle degrades the

image contrast of biological tissue [5], obscuring features, and in some cases introducing

imaging artefacts which may imply the presence of structures that do not exist [2].

Over the last two decades, a significant number of speckle-reducing methods have

been reported in the literature. These can be grouped into four categories [6, 7, 5],

namely those employing polarisation diversity, spatial diversity, frequency diversity, and

post-acquisition image processing. Most methods reported in the literature are centred

on spatial diversity, with angular compounding (i.e. multiple acquisition of images at

di↵erent angles of incidence, followed by incoherent summation) being the most frequent

implementation [8, 9, 10, 11, 2, 12, 13, 14, 15]. Taking advantage of the interferometric

set-up in an OCT system, Liba et al. [16] have employed a moving di↵user plate in the

reference arm to remotely vary the speckle pattern, achieving good speckle reduction

following incoherent summation. More recently, post-acquisition image processing

methods [17, 18, 19] have become increasingly popular, due to significant improvements

in computing power.

While speckle noise a↵ects both B-scan and en-face (C-scan) imaging, most reports

on speckle reduction techniques in OCT images have focused on B-scans (cross-section or

depth cuts) imagery. This is partly because when employing conventional spectral OCT

processing methods, B-scans are produced quicker than en-face images. This is due to

the fact that conventional (FFT-based) spectral OCT processing requires the whole 3-D

volume of raw data to be FFT-processed prior to obtaining individual en-face cuts, which

have to be software-cut from the full processed volume. To generate a speckle-reduced

en-face image while employing a technique such as angular compounding, several of

these volumes would need to be FFT-processed, followed by en-face image extraction

and subsequent average.

Unlike these conventional OCT data processing methods (which may also require k-

domain re-linearisation and/or dispersion compensation), Master-Slave OCT performs

a comparison operation against pre-recorded/synthesised spectra (called “masks”), with
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each of these comparison operations yielding a constant depth, en-face OCT image. In

other words, it is possible to generate en-face images directly from the acquired raw

spectra, which presents significant time savings, especially if a low number of axial

points is required [20]. Conventional FT-based OCT methods operate in two steps to

deliver an en-face OCT image: firstly, by processing each spectral scan to generate its

corresponding A-scan, and assembling the entire data volume; and secondly, by cutting

from this data volume the desired en-face slice(s). Hence, by introducing complex

Master-Slave OCT processing [21], we can minimise the time required to process the

data volume for each angle value when only a few en-face images are required [22].

This should help to reduce the speckle of en-face images by angular compounding more

feasible, by reducing the total time required to render the final speckle-reduced en-face

image.

In this publication, we perform a rigorous and quantitative study of the e↵ectiveness

of the angular compounding method in reducing speckle in en-face images obtained using

a spectrometer-based OCT system operating at 840 nm. The method used to vary the

angle of incidence in this report is similar to that reported by Hughes et al. [2] and

Winetraub et al. [14]; however, in this publication, Complex Master Slave OCT was

employed to process the raw data volumes acquired.

The spatial diversity procedure enabled by angle compounding is susceptible to

optical aberrations caused by o↵-axis operation [14], therefore we have also studied

the impact of angular compounding on the image sharpness. We also present average

speckle size measurements over a range of angles of incidence and depth positions within

an homogeneous sample. Finally, in order to reduce the overall time required to obtain

speckle-reduced en-face images, we demonstrate the applicability of the complex Master-

Slave OCT method [21, 23] to produce speckle-reduced en-face images.

2. Materials and Methods

2.1. Speckle quantification

In previous reports [4, 6, 24, 25, 26], the statistical properties of speckle have been

analysed, with a key result being that the speckle distribution p(I) for most samples

follows a Rayleigh distribution, modelled as

p(I) =
I

�2
exp

✓
� I2

2�2

◆
, (1)

where � is the standard deviation of the distribution, and p(I) is defined for the signal

intensity I 2 h0,1).

In this report, for proper speckle noise reduction assessment, speckle visibility is

quantified by the speckle contrast ratio, SCR, which is defined as the standard deviation

�A of the intensity in a given uniform area of the image divided by the mean intensity
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hIiA evaluated over the same area,

SCR =
�A

hIiA
. (2)

From equation (2), smaller values of SCR mean lower speckle visibility contrast. In

other reports [24, 9, 10], an equivalent quantity is used, the speckle signal-to-noise ratio,

which is defined as the inverse of the SCR. When the speckle is fully modelled by a

Rayleigh distribution as presented in Eq. (1), and the illumination beam is assumed to

be polarised, the maximum SCR is calculated to be 0.52.

For N uncorrelated speckle patterns which are then averaged [2], SCR is reduced

to SCRmin, given by

SCRmin =
0.52p
N
. (3)

For the case of angular compounding methods, there can be some degree of

residual correlation between frames. For large N , this leads to a deviation of the

SCR from SCRmin (Eq. (3)), particularly if a small angular range is used in the

compounding procedure. Discussion of the influence of the angular range on the inter-

frame correlation, and hence on the SCR reduction, is deferred to Section 3.

2.2. SD-OCT experimental setup

Fig. 1: Schematic of the spectrometer-based OCT set-up for angular compounding.

RM - reference mirror, A - aperture, L - lens, P - fibre polarizer, DC - directional

coupler (40% object arm), TS - linear translation stage, GS - dual-axis galvo scanner

head, OL - objective lens (f = 42 mm), S - sample, SLD - superluminescent diode

(�0 = 840 nm, �� = 50 nm).

A custom-built spectrometer-based OCT set-up was assembled, which is shown

schematically in Fig. 1. The system uses as an optical source a super-luminescent diode

(SLD) of central wavelength �0 = 840 nm and spectral width �� = 50 nm, yielding a

theoretical resolution of 6.2µm in air. Light from the source is divided between the

sample and reference arms using a 40/60 (40% for object arm) directional fibre coupler

DC. Light reflected from the mirror RM in the reference arm and back-scattered from
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the sample S in the object arm are directed by another fibre to the spectrometer, where

the resulting spectra are detected by a 2048-pixel CMOS camera (Atmel AVIIVA M2

CL) running at an A-line rate of 20 kHz. The maximum system sensitivity (measured

close to z = 0mm, and with 0.5mW of optical power on the sample) was 85 dB, with

⇠ 1.25mm axial range at �6 dB, as shown in Fig. 2.
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Fig. 2: Sensitivity of the OCT system over axial depth z.

The spectra read by the camera are acquired via a CameraLink card (National

Instruments PCIe-1427) and further processed in a personal computer (Dell Precision

T7500, Intel Xeon X5650 series processor, 48 GB RAM) using the complex Master Slave

OCT method [21, 23]. By performing a comparison operation between oncoming spectra

and previously synthesised masks, 200⇥200 px en-face images are obtained directly [22]

at a frame rate of 0.25Hz.

In the object arm, the dual-axis galvo scanner head GS (which ensures both x and

y lateral scanning) and collimating lens L are placed on a platform attached to a linear

translation stage TS (Newport Z865A), allowing the lateral position of the imaging beam

on the objective lens OL (Thorlabs LSM04-BB, EFL = 54mm, working distance 42mm)

to be precisely controlled, and thus the incidence angle on the sample S. The optical

power arriving at the sample was measured to be ⇡ 0.5mW; the lateral resolution of the

imaging system (at normal incidence) was measured as 10 µm. Based on a collimated

imaging beam of approximately 3mm, the numerical aperture of the imaging system is

0.028. Assuming a Gaussian beam with an wavelength of �0 = 840 nm, we can estimate

the theoretical 1/e2 spot size, w0 as ⇡ 9.6 µm [27]

w0 =
�0

⇡✓d
, (4)

where ✓d = sinNA ⇡ NA is the beam divergence. The Raleigh range zR =
⇡w2

0

�0
can
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then be calculated [27] to quantify the depth of field DoF = 2zR of the system, which

has been calculated as DoF ⇡ 0.7mm.

An attempt to measure the lateral resolution at non-normal angles of incidence

using a USAF resolution chart printed in a soda lime glass plate was unsuccessful.

When tilting the incident angle, rays are scattered by the edges of the printed features

in the soda lime glass plate, while specular reflections from the middle of the features

are not routed back into the optical system, thus diminishing the overall signal intensity.

Due to this, we have only characterised the lateral resolution of the system at normal

incidence.

2.3. Angular compounding

(a) (b)

Fig. 3: Principle of speckle reduction via angular compounding. (a) Angle of incidence

✓ is related to position d of the translation stage TS (Eq. (5)). (b) Illustration of

reduction in speckle visibility contrast using three patterns obtained using a sample

made of titanium dioxide particles in an epoxy resin (top), and resulting speckle-reduced

image (bottom).

Angular compounding speckle reduction methods require the sample to be imaged

from multiple angles of incidence, ✓, with the resulting frames being incoherently

averaged together to yield a speckle-reduced image. If sequentially-acquired frames at

the same angle of incidence are incoherently averaged together, no significant decrease

in the SCR is observed when compared to a single frame taken at the same depth and

location, as the speckle pattern in all images is roughly the same.

As described above, a translation stage TS attached to a platform (hatchet rectangle

in Fig. 1) containing both the galvo-scanner head GS and the collimating lens was
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employed. Linear movements of TS causes the beam to become o↵-axis in relation to

the objective lens OL. If the displacement of TS from the case where the imaging beam

is aligned with the optical axis is given by d, then the beam has an angle of incidence

onto the sample of ✓ (measured in relation to the normal to the sample), as shown in

Fig. 3. Using the small angle approximation, the relation between angle of incidence ✓

and d is given simply by

✓ = arctan
d

f
⇡ d

f
, (5)

where f is the focal length of the objective lens OL.

The range of angles of incidence �✓, within which N frames are averaged, is given

by �✓ = 2✓. The angular step between adjacent frames, �✓, is given by

�✓ =
�✓

N � 1
. (6)

We also denote ✓max, as the maximum angle of incidence either side of the normal,

�✓max as the maximum angular range, and �✓min as the minimum angular step between

subsequent frames.

When the angle of incidence ✓ is adjusted (through the movement of TS), the speckle

pattern in the image varies. This allows a stack of images to be acquired which captures

the same field of view but with speckle patterns that are decorrelated with respect to

each other (to some degree). By performing an incoherent average of these frames, some

reduction in SCR is achieved, as presented in Section 1. In the next section, attention

will be also devoted to the e↵ect of registration on SCR reduction.

Geometrical aberrations (particularly coma) on the imaging beam are expected

with increasing angle of incidence ✓, with implications on the quality of the en-face

images. To assess this (and since we were unable to characterise the lateral resolution

of the system at non-normal angles of incidence, as described in the previous section), a

2-D CCD camera (Thorlabs DCC1545M) was placed in the focal plane of the objective

lens OL, and the beam spot was imaged for a range of lateral positions determined by

moving the TS (which are correlated with the angle of incidence from Eq. (5)).

The FWHM of the beam profile (along the x and y directions) for each angle of

incidence is represented in Fig. 4. As expected, the minimum spot size is achieved at

normal incidence (✓ = 0�). At the maximum measured angle of incidence ✓max = 4.5�,

the FWHM of the beam profile in the x direction increased by approximately twice in

the direction of stage movement. In the y direction, the variations of the FHWM of the

beam profile can be considered as insignificant over the measured angular range.

3. Validation

In order to validate our speckle reduction method, we assessed its performance on a

scattering, homogeneous sample made of titanium dioxide particles suspended in epoxy

resin. The diameter of these particles did not exceed 1µm. In particular, we evaluated

the impact of the acquisition parameters (namely, the angle of incidence range �✓ and
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Fig. 4: FWHM of the beam spot versus angle of incidence ✓ measured along

both the x and y directions.

Fig. 5: Diagram of the processes carried out (blue - angular compounding, green - SCR

metric, pink/orange - sharpness metric). T-scan stands for a transversal scan profile,

and erf is the error function. Other variables are defined in Sec. 3.2.

the number of averaged frames N) on the speckle contrast ratio of the speckle-reduced

image. These results are presented in detail in Section 3.1.

To determine the e↵ect of the aberrations induced by o↵-axis operation, as discussed
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in Section 2.3, we also assessed the impact that the angular compounding procedure

has on the sharpness of the final speckle-reduced image. This was performed using a

scattering line pair phantom printed on card and involved analysing the edge response

function for di↵erent combinations of �✓ and N values, by modelling an error function

on the transverse scan (T-scan) profile taken over a vertically oriented line transition

(within the en-face frame). For this purpose, we devised a sharpness metric (Figure 5,

red-bounded region) which is described in detail in Section 3.2.

3.1. SCR quantification metric and its dependence on �✓ and N

The procedure for computing the SCR metric is schematically represented in the

diagram in Fig. 5 (blue-bounded region). To compute the speckle-reduced images,

stacks of en-face images are acquired for individual angles of incidence (each image

being produced by the CMS algorithm using a specific mask, for a selected depth, and

represented as an intensity map, with the phase information being discarded), within a

range of �✓ 2 [�✓max,+✓max], stepped at an equidistant angular step between images of

�✓min, and with the centre of the interval always corresponding to the case where ✓ = 0�.

Each frame within the stack is then normalised to have the same average intensity.

As the angle of incidence is changed, the imaging plane is modified, and lateral

shifts are observed in the en-face OCT images. Prior to image averaging, these en-

face images need to be registered and aligned. Due to the lack of physical contours in

the titanium dioxide sample, the image registration and alignment was carried out by

means of a custom MATLAB script based on a normalised cross-correlation between

adjacent frames, followed by assessing the average pixel shift between them. If no such

registration procedure is performed, the amount of speckle reduction is actually higher

than one can reach by pure angular compounding, since we are e↵ectively carrying out

spatial averaging. However, to obtain meaningful images and preserve the sharpness of

the physical structures, the registration procedure is indispensable; we have employed

it in both validation studies using the sharpness metric (Section 3.2) as well as when

imaging a biological sample (Section 4), albeit using an intensity-based registration

method in the latter case.

To produce a speckle-reduced image, the mean of N frames is then calculated. The

theoretical SCR reduction is then given by the expression in Eq. (3). This was performed

for di↵erent values of the angular range �✓, which for a total of N frames resulted in an

angular step of �✓ between them, as given by Eq. (6). The speckle contrast ratio (SCR)

was calculated using Eq. (2). During SCR computation it was found useful to take the

largest possible area A in order to obtain su�ciently representative speckle statistics.

Results both with and without registration are shown in Fig. 6. Note the slightly

higher SCR values for the registered case versus the unregistered case, due to the extra

spatial averaging caused by lateral shifts of features in the images. For larger �✓ values,

these di↵erences vanish and the SCR metric approaches the theoretical model from Eq.

(3). This implies complete decorrelation between speckle patterns at this point.
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Fig. 6: En-face SCR reduction for both unregistered and registered images. Theoretical

curves assume fully decorrelated frames.

The main reason of somewhat lower SCR reduction for smaller �✓ is due to residual

correlation between speckle patterns. Fig. 7 shows the degree of average correlation of

registered frames versus the angular step �✓. From this plot it is obvious that for an inter-

frame correlation under 10 % the angular step should be approximately �✓uncorr & 0.8�.

By meeting this condition, one can expect to obtain the highest possible SCR reduction,

agreeing with the theoretical model from Eq. (3).

Due to the angular compounding method employed in this study, in which the

angle of incidence is varied, we considered the possibility that the speckle statistics

might not be constant over the angles of incidence and the imaging depths considered.

To explore that possibility, the SCR and the average speckle size for individual frames

were calculated over the angle of incidence ✓ and relative depth z � z0 (with respect to

the approximate depth position of the sample surface, z0).

In order to obtain a value for the average speckle size, we followed the procedure

described in Ref. [28]. By taking the auto-correlation of an image (as shown in the plot

in Fig. 8), it is possible to measure the mean speckle grain radius, s, as the pixel shift

value where the correlation value drops below 1/e. This pixel shift value corresponds to

a radius of roughly 5 µm laterally, or a speckle grain size of 10 µm.

We have repeated this process for di↵erent en-face frames, acquired at di↵erent

angles of incidence, and also at di↵erent imaging depths below the sample surface z�z0,

with the speckle size (taken at 1/e) being constant over the whole range of angles and

imaging depths considered, as shown in Figs. 9(a) and 9(b), respectively. In both cases,

the SCR for individual frames is also consistent, as shown in Figs. 9(c) and 9(d).

As mentioned in Sec. 2.2, the 1/e2 spot size w0 is dictated by the NA of the imaging

system, obtaining w0 ⇡ 9.6 µm. This value, when considering the 1/e width, w0p
2
⇡ 6 µm,
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Fig. 8: Auto-correlation ⇢XX(k) for a

single frame versus pixel shift k.

seems to agree with the measured 1/e speckle sizes plotted in Figs. 9(a) and 9(b). Given

the large DoF of our imaging system (⇡ 0.7mm), it is not expected that the speckle

size and the SCR would vary with defocusing. The axial range of the system used in

this study is dominated by the limited spectrometer resolution, as shown by the plot in

Fig. 2 (where a �6 dB drop in sensitivity is obtained at z = 1.25mm).
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(b) Average speckle size versus relative
depth �z.
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Fig. 9: Speckle metric for the titanium dioxide resin sample for single frames. There is

no dependency of SCR and speckle size (taken at 1/e of the auto-correlation function)

either on the angle of incidence ✓ or the relative depth position below the surface, z�z0.
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3.2. Sharpness metric

Fig. 10: EO resolution chart (red

rectangle) used for sharpness measure-

ments.

Fig. 11: Example en-face image

showing edge transition between a dark

and light line. The black, low-signal

region on the left corresponds to the

dark line, due to the attenuation of

the ink, while the lighter region on

the right corresponds to the white card

background between the lines, which

exhibits speckles.

Fig. 12: Examples of the edge transition after speckle reduction for various

representative angular compounding parameters N and �✓.

The impact of speckle pattern averaging on the image sharpness was investigated

using a Ronchi line pattern embedded in a vinyl laminate Magnifier Quality Resolution

Chart (Fig. 10). A sharpness metric was established by analysing the transition between

a light and a dark line within the pattern (Fig. 11). Examples of the edge transition

for several combinations of N and �✓ values are shown in Fig. 12.

The first four steps of the procedure for evaluating the sharpness metric are shared

with those employed in the evaluation of the SCR metric (Fig. 5). After the speckle-
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Fig. 13: An example of the fitting procedure being applied to a single T-scan profile

(black), its plateaued modification (blue) and fitted error function (red).

reduced image is obtained, T-scan intensity profiles IT along the x direction of the frame

(Fig. 11) are extracted for all y positions in the frame. An example of one such T-scan

(transversal scan) profile IT is shown as the black trace in Fig. 13.

These T-scans are performed over a transition from a light to a dark region within

the Ronchi pattern are then used to estimate the sharpness of the speckle-reduced image.

To this goal, the scaled error function s erf
�
x�l
w

�
+b, where x is a coordinate along the T-

scan profile and s, l, w and b are the scale, shift, width and bias parameters of the error

function, respectively. This function is fitted to the data [29] and its fitted parameter

w is extracted. This describes the width of the transition (a measure of the image

sharpness), whilst the summed squared error (SSE) of the fitting is used to describe the

‘smoothness’ of the transition (e↵ectively another measure of speckle reduction).

Before carrying out the fitting operation, each T-scan profile was modified to present

a flat plateau in the higher intensity side of the profile (covering the paper background

in the card), by setting IT (x � xIT,plat
) = IT,plat, where xIT,plat

is the pixel x coordinate

for which the intensity profile IT first reaches the mean value over the T-scan region

with speckles, IT,plat. An example of a modified profile with the flat plateau is shown

in Fig. 13 as the blue trace. Having this modified profile is important as the residual

speckles in the upper plateau will otherwise a↵ect the fitting operation, while we are

only interested in the transition, and not on the speckles which lie beyond it.

Following the error function fitting operation over all the individual T-scans (an

example of which is shown as the blue trace in Fig. 13), we have taken the mean of all

fitted w values, w(N,�✓), which describes the average ‘slope’ of the transition (its blur).

It was necessary to exclude some unreasonable values of w, (which would otherwise

skew the mean) and include only those values which lie in the interval [0.5, 50] px.

Our reasoning is that, for w < 0.5 px with the sampling rate 1/�x = 1px�1, the
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Fig. 14: Distribution of the normalised mean of the fitted transition width w (N,�✓)

between two lines of the Ronchi pattern, for varying number of averages N (a) and

angular ranges �✓ (b). Values larger than 1 mean wider, thicker transitions than those

measured for when no angular compounding is used.

error function becomes under-sampled; furthermore, we do not expect the transition to

be wider than 50 px if the length of the measured T-scan profiles in Fig. 12 is 100 px.

Therefore, the values excluded refer to T-scan profiles where the error function fit yielded

erroneous values. Figures 14(a) and 14(b) describe the dependencies of w on both the

number of averages N and the angular range �✓ employed in the speckle reduction

procedure. To clarify these results further, parameters w(N,�✓) were normalised to

the case of no speckle reduction (no angular compounding) as

norm{w(N,�✓)} ⌘ w(N,�✓)

w(1, 0�)
, (7)

with w(1, 0�) corresponding to the case where no angular compounding (speckle

reduction) was carried out. From Figs. 14(a) and 14(b) we can see that values of

norm{w(N,�✓)} over N and �✓ are mildly increasing and bigger than 1, which, with

respect to Eq. (7), means that the transition is becoming wider with increasing N or

�✓. In other words, the angular compounding introduces a slight blur to the transition.

Some examples of how the transition is a↵ected after angular compounding (averaging)

for some parameters N and �✓ are shown in Fig. 12.

After averaging of images to achieve speckle reduction, a ‘smoothness’ of the

transition intensity profile can be assessed by the SSE parameter, computed from the

fitting error function calculated during the previous fitting procedure (but without the

flat plateau modification mentioned above). The summed squared error (SSE) expresses

the deviation from the fitted function and it can be used as a measure of variation

(dispersion) of data. We have taken the mean of all SSE values, SSE(N,�✓). Again,
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on the mean calculation we excluded those values of SSEs for which the corresponding

fitted w value did not lie in the interval [0.5, 50]. In Figs. 15(a) and 15(b), SSE(N,�✓)

for a given en-face frame is plotted against the number of averages N and the angular

ranges �✓, where the results were normalised as

norm{SSE(N,�✓)} ⌘ SSE(N,�✓)

SSE(1, 0�)
, (8)

with SSE(1, 0�) corresponding to the case where no angular compounding (speckle

reduction) was carried out. Following Eq. (8), values of the norm{SSE(N,�✓)} lower

than 1 mean a reduction in the intensity fluctuations along the T-scan, and it is evident

from the plots in Figs. 15(a) and 15(b) that with increasing N or�✓ one can attain lower

variations of the pixel values along the direction of each T-scan in the image. These

results are consistent with the SCR metric in Section 3.1, where the SCR is computed

as a normalised standard deviation of the intensity, as shown in Eq. (2).
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Fig. 15: Distribution of the normalised SSE metric calculated for the T-scan intensity

profiles SSE (N,�✓) straddling over two lines of the Ronchi pattern, for varying number

of averages N (a) and varying angular ranges �✓ (b). Values lower than 1 mean better

agreement of data with the fit than observed for no angular compounding.

4. Biological sample imaging

We further tested the en face speckle reduction method by imaging a biological

sample, in the form of freshly cut potato cells. The procedure for generating angular

compounded images was the same as before (the angular compounding step in the block

diagram in Fig. 5). Now, for the image registration, the intensity-based MATLAB

imregister function was utilised, since the samples considered here are heterogeneous
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in structure. Figs. 16 and 17 show the speckle-reduced en-face images of the sample for

increasing number of averages N and increasing angular range �✓, respectively.

For a fixed angular range �✓ = 4�, increasing the number of averages N (Fig. 16)

tends to improve the speckle reduction, increasing the visibility of the cell structures,

and removing spurious details. Most of the improvement occurs after a small number

of averages, and there is little further benefit observable beyond N = 10. This is in

agreement with the speckle contrast ratio measurement reported earlier.

Conversely, for a fixed N = 10, a larger angular range �✓ (Fig. 17) results in a

lower speckle contrast visibility, while the blur in cell structures increases. This is likely

in part due to a slight tilting of the raw B-scans for larger angles of incidence. The

en-face images from each cube are then slightly out of plane with each other. Since the

sample structure varies in depth, this then leads to blurring of features along both both

lateral and depth directions.

In addition, increased geometrical aberrations are present at larger �✓ values (as

discussed in Section 2.3). Therefore, a trade-o↵ is necessary between the degree of

speckle reduction and the sharpness of structures.

Since the sample employed in the validation analysis carried out in Section 3 was

uniform in depth, no such trade-o↵ was necessary.

5. Discussion and Conclusions

In this report, we have demonstrated speckle reduction in en-face optical coherence

tomography images by means of angular compounding using a custom-designed probe

head. These OCT images were obtained by Complex Master-Slave (CMS) OCT

processing, in conjunction with a spectrometer-based OCT system operating at 840

nm, with an axial resolution of 6.2 µm and a lateral resolution of 10 µm (at normal

incidence). The CMS-OCT processing allows direct rendering of en-face images. This

is highly advantageous in terms of time required by a repetitive process such as the

one employed here, which requires several data acquisition steps, for several angular

orientations of the probe head. Therefore the processing time necessary to display a

speckle-reduced en-face image is reduced in comparison with conventional FFT-based

processing. This is due to the CMS-OCT method removing the need to reconstruct the

entire volume before extracting the en-face images, unlike conventional FFT-based OCT

processing. It also removes the need to perform other operations on each channelled

spectrum acquired such as k -domain linearisation and dispersion compensation.

This study has evaluated the impact of di↵erent combinations of the two free

parameters a↵ecting the angular compounding method (the number of acquired frames

N and the range of angles of incidence �✓) on the e�cacy of speckle reduction.

Specifically, the image sharpness in the transition between two lines of a Ronchi line

pattern was analysed.

To assess the e�cacy of the speckle removal, we used the speckle contrast ratio

(SCR) metric as described previously in the literature [24, 25, 26, 2]. All of these tests
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Fig. 16: Angular compounding for en-face images of a potato sample. Angular range

is fixed to the value �✓ = 4� and the number of averages N increases from the top to

the bottom row. The images in the right column show a zoom on a part of the en-face

frame, centred on a group of cells. With increasing number of averages, the visibility of

the cell structures improves due to speckle contrast reduction.
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Fig. 17: Angular compounding for en-face images of a potato sample. Number of

averages is fixed as N = 10 and angular range �✓ increases from the top to bottom row.

The images in the right column show a zoom on a part of the en-face frame, centred

on a group of cells. With increased angular range, speckle contrast diminishes, but the

sharpness of features also deteriorates, with the cell walls becoming more blurred due

to out-of-plane averaging.
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were carried out on an homogeneous phantom, which yielded the same SCR and speckle

size for the range of imaging depths and angles of incidence studied. It was found

that the speckle in the images become progressively reduced for an increasing number

of acquired frames N . However, after a certain number of averages the improvement

plateaus and there is little or no further benefit to additional averages. This is because,

as N increases for a given total angular range, the step between each image decreases.

Eventually, a limit is reached where the speckle patterns are no longer fully de-correlated

between images.

For a fixed number of acquired frames, a higher degree of speckle reduction can

be achieved with a larger angular range �✓, although at extreme angles, the quality

of the imaging beam is degraded significantly by aberrations such as coma. It is also

important to ensure that the frames being averaged are properly registered in order to

avoid loss of resolution. While our initial analysis with unregistered images actually

produced better speckle reduction (i.e. lower SCR), this was due to averaging di↵erent

regions across images, and hence significant image blurring was observed.

We also studied the impact on image quality caused by the angular compounding

method. Due to the specular nature of reflections from resolution phantoms such as

USAF glass targets, it was di�cult to assess the imaging resolution for varying �✓

due to limited light collection at non-normal angles of incidence. Moreover, due to

the thickness of the glass phantom, additional artefacts appeared on the image which

masked the true imaging resolution. Observing the imaging beam output with a 2-

D camera allowed the spot size to be measured; while this does not provide a direct

measurement of the imaging resolution, it did reveal the optical aberrations (primarily

coma) introduced by the beam walk-o↵ needed for the non-normal angles of incidence.

A sharpness metric for the imaging process was devised with a 1 lp/mm Ronchi

pattern printed on an imaging resolution card. Due to the scattering nature of the

target, good light collection was obtained throughout the whole �✓ range. We could

then quantify the step transition between a light and a dark line across each en-face

frame (for di↵erent sets of N and �✓) by fitting an error function to each T-scan in the

frame. Increases in N and �✓ both lead to a broadening of the transition, although

plateaus were observed for constant �✓ and increasing N , which seems to correlate

with the decrease in beam quality observed for increasing �✓. We have also plotted the

standard error of the function fit, which followed the trends already found for the SCR

for increasing N . This is to be expected, as the speckle reduction procedure e↵ectively

smooths the T-scans, bringing their profiles closer to that of the fitted erf model and

therefore lowering the fitting error. This can therefore be thought of an additional

quantification of the degree of speckle reduction.

The biological sample images mirror the findings presented in the “Validation”

section, with one additional point worth noting - both phantoms used are relatively

uniform in depth, whereas the potato sample employed here is not. Since the variation

of the angle of incidence also introduces a depth-dependent tilt in the images, it is

possible to have some out-of-plane components in some of the images, especially those
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acquired at more extreme angles. This is particularly evident when using �✓ values

larger than 6�, as shown in Fig. 17.

Taking into consideration the findings for the imaging system used here, an

intermediate angular range of �✓ ⇠ 3 � 5� is shown to significantly reduce speckle.

Moreover, after 4-6 acquired frames (within that range of angles) the SCR values have

reached a plateau and it is therefore unnecessary to acquire any further frames. The

overall acquisition time can therefore be kept within a reasonable level. With this choice

of parameters, some degree of blurring can still be expected due to a decrease in the

imaging beam quality and any imperfections in the image registration prior to averaging.

Even with an angular range of less than 5�, a non-negligible tilt occurs in the images

acquired at larger angles of incidence. This introduces some loss of resolution in the

speckle reduced image. If reconstructing entire volumes before performing an en-face

cut (as in conventional FFT-based processing) this could be fixed by a registration

procedure which allows for B-scan tilt. However, this is not option when extracting

en-face slices at high-speed using the CMS-OCT technique.

However, as the tilt is simply a fixed geometrical e↵ect which could be measured

in advance, it would be possible to customise the CMS-OCT processing procedure to

correct the tilt. Rather than generating a single CMS-OCT mask to extract points at

the same depth for each pixel in the en-face image, a custom set of masks could be pre-

generated for each angle, designed to extract an oblique plane which would counteract

the tilt. This would then directly correct the angle-dependent tilt without the need to

reconstruct an entire volume and tilt each B-scan.

The results presented here complement the method of angular compounding for

speckle reduction. CMS-OCT processing opens up a faster approach to averaging en-

face images which are directly extracted from the raw unprocessed set of spectra at

higher speed, helping make speckle reduction in en-face imaging a realistic prospect for

applications which require real-time imaging.
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