University of

"1l Kent Academic Repository

de Lemos, Rogério (2020) Human in the Loop: What is the Point of no Return?
In: 15th International Symposium on Software Engineering for Adaptive

and Self-Managing Systems (SEAMS 2020). . ACM, New York, USA ISBN
978-1-4503-7962-5.

Downloaded from
https://kar.kent.ac.uk/80988/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/3387939.3391597

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/80988/
https://doi.org/10.1145/3387939.3391597
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Human in the Loop: What is the Point of no Return?

Rogério de Lemos
University of Kent, UK
r.delemos@kent.ac.uk

ABSTRACT

The main goal of any feedback control system is essentially to re-
move humans from the loop. This has always been the goal in the
engineering of control systems. The MAPE-K loop is the embodi-
ment of a feedback control loop in self-adaptive software systems,
but the complete removal of humans from the control loop has not
been thoroughly debated. One of the reasons is that, software sys-
tems are social-technical systems, and as such, humans need to be
considered right from the inception of such systems, otherwise their
deployment is bound to fail. However, as software self-adaptation
progresses, enabling to place higher assurances on the deployment
of these systems to the point humans become dispensable, some
ethical questions need to be raised. Similar questions have been
raised in past when the first automatic systems became intrinsic
to the industrial fabric. The difference between then and now is
that then the impact was confined to portions of the society, but
now the implications are much wider, if we consider, in particular,
software systems that are able to change themselves. If humans are
not aware of those changes, and their implications, humans cease
to be in tune with the system they are operating, and inevitably ac-
cidents will ensue. The point of no return in self-adaptive software
systems refers to the moment in their technical maturity when any
human involvement with the operation of a system is perceived
to create more harm than benefit. Confronted with this situation,
software engineers need start asking themselves some basic ethical
questions. Do we really need to consider humans as an integral part
of self-adaptive software systems? If humans are removed from the
control loop, what kind of assurances will be needed for society to
accept such systems?

CCS CONCEPTS

« Software and its engineering — Abstraction, modeling
and modularity; Software evolution; Software verification
and validation; Software design tradeoffs.

KEYWORDS

self-adaptive software systems, human in the loop, MAPE-K,
resilience, software configuration, assurances

ACM Reference Format:
Rogério de Lemos. 2020. Human in the Loop: What is the Point of no Return?.
In IEEE/ACM 15th International Symposium on Software Engineering for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEAMS 20, October 7-8, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7962-5/20/05....$15.00
https://doi.org/10.1145/3387939.3391597

Adaptive and Self-Managing Systems (SEAMS °20), October 7-8, 2020, Seoul,
Republic of Korea. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3387939.3391597

1 MOTIVATION

The point of no return (PONR) in aeronautical terms refers to the
point on a flight at which a plane is no longer capable to returning
to the point of departure. In general terms, PONR refers to the
critical point at which turning back or reversal is not possible. Ex-
amples of PONR are: setting off an explosion, launching a rocket, or
parachuting from an aircraft. In this paper, we refer to the PONR as
the moment in the technical maturity of self-adaptive software sys-
tems when any human involvement with the operation of a system
is perceived to create more harm than benefit. For example, in an
autonomous vehicle, if a driver interferes with a critical manoeuvre
by braking when faced with a perceived dangerous situation, s/he
may cause a serious accident. This might have happened because
of the inability of the driver to maintain an accurate view of the
actual operational state of the vehicle.

The operational state of an autonomous vehicle, however, should
not be restricted to the vehicle itself and to the immediate vicinity of
the vehicle, for example, other vehicles, people, obstacles or hazards
in general. It should also refer to the state of the software system
managing the autonomous vehicle. As in any feedback control
system, a stimulus may have different consequences depending on
the system state. In the case of autonomous vehicles, depending
on the architectural configuration of the software, for example,
an action by the driver may lead to different outcomes. Whether
an autonomous vehicle can be sophisticated enough to be able
to handle potential discrepancies between the actual operational
state of the vehicle and the state being perceived by the driver is
huge challenge since what the computational system observes may
be quite different from what a human driver is able to observe.
Moreover, any action from the human driver is based on intent,
and the gap between driver’s intent and a potential reaction from
the autonomous vehicle is huge since the latter is dependent on
the operational state of the software system, and the driver is not
expected to have access to this. Even if both vehicle and driver
are able to observe the same phenomena, the actions taken by the
autonomous vehicle and the human driver may be disparate because
of the differences in their respective decision making processes.
Hence, the conflict between humans and machines. This is not new.
The difference now is that humans may not have any influence
whatsoever on the decisions to be taken by machines. Using a
filming analogy, humans will not be in any supporting role, they
will be mere extras.

In this position paper, we will be looking into the impact that the
operational state of software, that is supported by a feedback control
loop, might have upon the decisions to be taken by the software and
the users of the system in which the software is embedded [2]. The

https://doi.org/10.1145/3387939.3391597
https://doi.org/10.1145/3387939.3391597
https://doi.org/10.1145/3387939.3391597

SEAMS 20, October 7-8, 2020, Seoul, Republic of Korea

focus will be on self-adaptive software systems, which are a class of
systems that are able to manage themselves. In particular, the impact
that structural changes [1], related to architectural configurations of
software, might have upon the human perception of the operational
state of the system in which the software is embedded. Self-adaptive
software systems will be an integral part of future autonomous
systems, and that is the reason for software engineers to start
questioning their role when engineering these type of systems.

2 CONFIGURATION AWARENESS

In order to stimulate the discussion regarding the impact of con-
figurations upon the resilience of systems, in the following, we
look into some accidents from the aeronautical industry, one of the
safest industries. But first, lets analyse the role of fully trained pilot
when faced with an automated system.

John Rushby analysis on the interaction of pilots with cockpit
interfaces has identified mental models as a fundamental guide for
pilots to interact with automated systems. These mental models are
sourced by the instruments on the cockpit as a result of rigorous
training supported by operational manuals [5]. The instruments on
the cockpit interface are there to provide a perspective of reality that
is captured through sensors and gauges. Any discrepancy between
reality and instrumentation, or instrumentation and mental models
may lead to hazardous situations.

In the following, we succinctly describe some aeronautical acci-
dents that clear capture the role of cockpit instrumentation and pilot
mental models. The crash of Air France Flight 447 [6] was blamed
on the pilot because he had lost awareness of the operational state
of the aircraft. The information provided by the instruments was
confusing because one of the sensors, a pitot tube that reads the
velocity of the plane, produced erroneous readings, thus affecting
the auto-pilot. The pilot relative low experience, compounded by
a fully automated cockpit, cause the Airbus 330 to crash into the
Atlantic Ocean on a schedule flight between Rio de Janeiro and
Paris. This is a typical case in which an instrument failure can be
characterised as the initiating event in an accident sequence, how-
ever, other identical aircraft had suffered similar pitot tube failures,
but pilots were able to circumvent them. A distinct aspect of this
accident was that the pilot had other sources of information in the
cockpit for obtaining the operational state of the aircraft, but these
were ignored. The pilot’s mental model of the aircraft operational
state was so inaccurate that all his measures to recover the state
of the aircraft were inconsistent with what the instruments were
showing.

The other two accidents are related to Boeing 737 Max [3]. Both
Lion Air Flight 610 and Ethiopian Airlines Flight 302 accidents were
caused by a malfunction in the flight control system component,
called MCAS (Manoeuvring Characteristics Augmentation System).
The role of MCAS was to push the nose of the plane down when it
perceived the plane to be exceeding its angle of attack limits, which
may lead to an aerodynamic stall. The existence of this component
was unknown to the pilots. No training was provided to the pilots on
how to fly the aircraft when MCAS was activated. So when MCAS
started to interfere with the fight, the pilots could not understand
the behaviour of the aircraft, and all their actions to recover the
flight path were futile simply because they were dealing with an

R.de Lemos

unknown configuration of the aircraft. It has been recognised that
these accidents were no fault of the pilots because none of the
training the pilots had received or manuals available on the cockpit
were of no avail.

The last accident case clearly shows the need for configura-
tion awareness of the system by their human operators. The same
configuration awareness is crucial when humans interact with self-
adaptive software systems - if there is the need to do so. In other
words, the rationale behind the decisions that a system might take
by itself should be explainable to a human. However, complications
may arise. For example, let us assume that a self-adaptive software
system, which is a component of an autonomous systems, is able
to adapt its architectural configuration through several distinct
adaptations. If there is a situation in which that software system is
not able anymore to take care of itself and raises an exception to a
human operator, in other words, it has reached a boundary condi-
tion of failure, what actions is a human administrator able to take if
the state of the system has evolved to the point that is impossible to
establish the trajectory of its operational state? Hence the point of
no return, depending on the degree of “selfness” (not the degree of
adaptability) that a self-adaptive software system might have, the
operational state of the system might become sufficiently obscure
for any human involvement.

3 WHAT THE FUTURE WILL BE ASKING US?

Going back to the motivation example, some key questions that
may be raised. What will be needed in terms of assurances that
will provide the confidence for removing all forms of instrumen-
tation and control from autonomous vehicles, including steering
wheels and pedals? ! In a scenario in which all the vehicles are
autonomous, what role should be given to drivers that may have
different degrees of training and awareness while interacting with
an autonomous vehicle? The point of no return will happen when
the risk of empowering the driver with the controls of their vehi-
cles will excel the risk of completely removing the human from the
control loop [4].

In terms of self-adaptive software systems, what assurances need
to be provided (to certification bodies) by software engineers that
their self-adaptive software system is safe and secure (or resilient)
to be an integral part of an autonomous system.

REFERENCES

[1] Jesper Andersson, Rogério de Lemos, Sam Malek, and Danny Weyns. 2009. Mod-
eling Dimensions of Self-Adaptive Software Systems. In Software Engineering for
Self-Adaptive Systems. Springer, 27-47.

[2] D.Dérner. 1997. The Logic of Failure: Recognizing and Avoiding Error in Complex
Situations. Addison-Wesley Pub.

[3] Jack Nicas, Natalie Kitroeff, David Gelles, and James Glanz. 2019. Boeing Built
Deadly Assumptions Into 737 Max, Blind to a Late Design Change. The New York
Times (2019). https://www.nytimes.com/2019/06/01/business/boeing-737-max-
crash.html [accessed: 23.01.2020].

[4] Ashley Nunes, Bryan Reimer, and Joseph Coughlin. 2018. People must retain
control of autonomous vehicles. Nature 556 (04 2018), 169-171. https://doi.org/
10.1038/d41586-018-04158-5

[5] John Rushby. 2001. Modeling the Human in Human Factors. In Computer Safety,
Reliability and Security, Udo Voges (Ed.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 86-91.

[6] Jeff Wise. 2011. What Really Happened Aboard Air France 447. Popular Mechanics
(2011). https://www.popularmechanics.com/flight/a3115/what-really-happened-
aboard-air-france-447-6611877/ [accessed: 23.01.2020].

Voice commands might be available, but that is different discussion.

https://www.nytimes.com/2019/06/01/business/boeing-737-max-crash.html
https://www.nytimes.com/2019/06/01/business/boeing-737-max-crash.html
https://doi.org/10.1038/d41586-018-04158-5
https://doi.org/10.1038/d41586-018-04158-5
https://www.popularmechanics.com/flight/a3115/what-really-happened-aboard-air-france-447-6611877/
https://www.popularmechanics.com/flight/a3115/what-really-happened-aboard-air-france-447-6611877/

