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Abstract— Record linkage can be used to support current and 
future health research across populations however such
approaches give rise to many challenges related to patient 
privacy and confidentiality including inference attacks. To 
address this, we present a semantic-based policy framework
where linkage privacy detects attribute associations that can lead 
to inference disclosure issues. To illustrate the effectiveness of the 
approach, we present a case study exploring health data 
combining spatial, ethnicity and language information from 
several major on-going projects occurring across Australia. 
Compared with classic access control models, the results show 
that our proposal outperforms other approaches with regards to 
effectiveness, reliability and subsequent data utility. 

Keywords-record linkage; association rules; policy composition; 
semantic web technology

I. INTRODUCTION

In the biomedical arena, the secondary use of electronic 
health records (EHRs) for research purposes can accelerate 
new discoveries including optimized medication and 
treatments, improved surgical procedures, through to 
population profiling and health benchmarking. Record linkage 
has been recognized as a key technique underpinning
healthcare and public health research at the state and national 
levels, as it allows access to and use of cross-jurisdictional data 
such as hospital admissions data, treatment reports, 
prescriptions and death reports. Record linkage has been 
applied in numerous diverse projects, e.g. exploring the 
correlation between obesity and socio-economic status in 
Canada [1], understanding lung cancer treatment and the 
mortality of aboriginal people in the New South Wales (NSW) 
[2] amongst many other examples etc. Although anonymisation 
and confidentiality are essential considerations for biomedical 
data management, little technical work has been done to 
preserve privacy of linked records in an automated manner, 
which is cognizant of data leakage and potential inference 
risks. With the explosive growth of data, it is increasingly 
difficult to depend solely on stakeholders/ethics committees to 
identify all potential security issues and take measures to 
protect against them. Rather, linkage infrastructures ought to 
be designed to extend static data access requests with more 
dynamic query capabilities, ensuring the linkage risks are 
evaluated and minimized in an automatic manner. This is the 
motivation of this work.

II. RELATED WORK

Technically, access control represents the most commonly 
used technique to regulate security based on the paradigm of
“who can do what upon which resource”. Working in different 
contexts, access control policies have been defined reflecting a
variety of stakeholders’ needs and demands in protecting 
access to their resources and services. For instance, privileges 
are often associated with “roles” and assigned to individuals,
e.g. through Role-Based Access Control (RBAC) systems [3]
that are subsequently used to enforce access control decisions 
through local policies. To improve the applicability of RBAC 
policies [4], Attribute-based access control (ABAC) models
were introduced in complex scenarios. Many of these are based 
on eXtensible Access Control Markup Language (XACML)-
based policies. ABAC models can be used to provide context-
aware access control, e.g. location/temporal-aware services in 
mobile ad hoc networks; purpose-based authorization decisions 
regarding access to medical information; relationship-based 
interactions in social networks, as well as organization-based 
exchange for e-Business purposes [5] [6] [7] [8] [9] [10]. 
However, this black-and-white authorization design is 
inadequate in supporting database system where data queries 
require “middle ground” security. Chaudhuri et al. (2011) 
claimed that “authorizing users to access a subset of the data 
in request” is becoming the mainstream model in most data 
management practices [11]. Niet et al. (2010) proposed 
advanced authorization solutions where privacy rules were 
extended through “Obligation” components that were enforced 
in policy decisions [12]. In this model, resource/user privacy 
preservation was seamlessly deployed in systems built upon 
RBAC/ABAC. 

Policy composition is often necessary when dealing with 
distributed databases as conflicting behaviors can arise among 
policy domains (action/role/resource) of the collaborating 
parties. To tackle this issue, several frameworks have been 
used for policy conflict detection/resolution. For instance, 
Wang et al. (2014) devised a conflicting algorithm through 
building a “purpose tree model” based on the idea that “privacy 
policies are concerned with which data object is used for what 
purpose” [13]. Through matching the “purpose” and 
“obligation”, they were able to identify conflicting policies that 
could be solved by use of obligations. A strategy-based 
approach was proposed including support for Recency-
Override, Specificity-Override and Deny-Override [14]. Since 
the “precedence strategy” may not always be able to resolve 
conflicts issued by hierarchical authorities, conflict graphs can 
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be formed where resolutions are defined in a context-aware 
manner [15]. In addition to authorizing decisions, Lupu and 
Sloman (1999) identified modality conflicts through 
considering both authorized and obliged behaviors [16]. 
Specific to XACML-based applications, a standard resolution 
framework was designed including the conflict-resolution 
strategies such as Permit-/Deny-Override, Only-One-
Applicable and First-Applicable [17]. Inspired by service 
discovery in cloud environments, Lin et al. (2013) proposed a 
policy similarity measurement in XACML. The principle here 
was based on the composition that occurs among similar 
policies and how this can minimize system resources while 
preserving the original purposes to the greatest extent. 
Specifically, policy candidates were decomposed into atomic 
elements e.g. rules, targets and target elements, and the 
similarity measured through a weighted distance aggregation
[18]. For instance, the Jaccard Similarity Coefficient [19] was 
used for attribute closeness measurements [20]. However, 
privacy regulations represented as obligations should also be 
checked for hidden violations to any parties’ requirements.
This is frequently recognized in data linkage systems however 
support is limited in mainstream XACML-based applications. 

It is possible to combine inference control within a formal 
policy framework to seamlessly deploy privacy-preserving 
functions in databases. Inference control techniques are used to 
tackle unintentional data disclosure inferred from access to 
seemingly non-sensitive items, e.g. postcodes or ethnicity. To 
prevent undesirable disclosure arising from such items, 
propagation through standard taxonomies can be checked, as
“reachability” between concepts is considered as a contributing 
factor to privacy compromises [21]. In other words, 
sensitiveness can disperse along with hierarchical or other 
attribute inferences. To further refine inference risk 
management, Costante et al. (2013) showed how to evaluate 
the security cost from aggregated attributes by considering 
potential correlations between them [22]. Considering a users’
personal information may be inferred from seemingly unrelated 
items, e.g. matching user age intervals or their gender with 
preference settings on the Google Ads Preference Manager 
[23], extended inference closures can be identified and 
subsequently used for evaluating potential threats, according to 
the sensitivity level of the inferred items [24]. 

Traditional policy-based access control applied to databases 
is often too static to satisfy the demands of many dynamic 
distributed applications, which rely on real-time integration of 
data sources or where an access decision depends on the results 
of queries. To support arbitrary linkage, a syntactic XACML 
policy is typically not able to answer requests specified using 
heterogeneous attributes. Furthermore, policy contents should 
be updated to prevent potential policy violations that might 
arise through any newly generated facts. To tackle these issues 
and challenges, existing solutions include semantics-based 
policy formulation and evaluation. Finin et al. (2008) explored 
the Web Ontology Language (OWL) to represent RBAC 
models through role as classes and role as instances [25]. In 
addition, Cirio et al. (2007) considered RBAC expressions
through description logics (DL) to improve the semantic 
understanding needed for many access control scenarios [26].
Priebe et al. (2006) proposed an extended XACML 

architecture where an inference engine was built on a set of 
semantic rules and attribute ontologies [27]. Similarly, Kim 
(2013) applied the Resource Description Framework (RDF) to 
describe attributes that could be used to detect latent conflicts 
during policy aggregation leveraging semantic reasoning [28]. 
In terms of strategy utilization, Kolovski et al. considered 
reasoning aspects [29], while Liu et al. focused on extensibility 
and system scalability [30]. In these works, privacy issues were 
typically considered through obligations used for constraint 
checking and subsequent granting of access. Given that 
inference disclosure can often be detected by reasoning about
association rules and extensible knowledge bases [31], we 
consider the enforcement of privacy-oriented security measures 
including generalization and suppression through associating 
them with policy obligations. The identification of such 
association rules across multiple data resources has not been 
explored and is the focus of this work.

III. RECORD LINKAGE ACCESS CONTROL FRAMEWORK

Record linkage refers to the activity of relating records that 
belong to the same entity across different data sets. Generally, 
record linkage refers to the activity of relating records in a data 
set that refer to the same entity across different data sources. In 
the biomedical field, linkage helps examine and understand 
public health issues typically outside of healthcare 
environments [32]. As a representative example, the Centre for 
Health Record Linkage (CHeReL) provides an infrastructure 
for EHR linkage and management [33]. As shown in Fig. 1,
patients may be registered in multiple databases and thus have 
more than one Source Number (SN) (e.g. the A-01 and B-99). 
Through recognizing records belonging to same individuals, a
central component can uniquely assign “Master Linkage Keys
(MLK)” to data subjects [34]. Data sets may be used (linked) 
by meeting special needs – often related to anonymization 
concerns and ethically-driven research. According to Ritchie 
and Elliot (2015), existing linkage centers mainly rely on the 
Principle Based Model (PBM), i.e. all outputs should be 
evaluated by experienced staff since any pre-defined rules are 
thought to be insufficient to consider the full complexity of 
privacy [35]. For instance, CHeReL can only release datasets 
by obtaining approvals from custodians and ethics committees. 
Similar models have been deployed in Western Australia, 
Victoria, Southern Australia and Queensland [36] [37] [38]
[39]. Undoubtedly, PBM offers maximum flexibility to 
researchers however it leads to a high cost in training 
professionals to assess the privacy risks of each linkage 
request. To avoid this, we propose a hybrid Rule Based Model 
(RBM) that can be used as a filter ruling out illegal requests 
and supporting decisions at the PBM level. Ultimately however 
data linkage should meet any/all overarching privacy needs 
associated with the individual policy rules from the original 
data providers. 

Fig. 2 shows the linkage authorization within a proposed 
infrastructure, including the linkage center (service provider) 
and several EHRs repositories (data owners) during a given 
collaboration. Upon receiving requests such as ReqA(Clinician, 
Read,[SourceID],[Attribute Bag]) the linkage center can locate 
the targeted datasets and subsequently evaluate the access 
request based on composite policies. Since policies are defined 
with heterogeneous information (often with their own 
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namespaces, roles and data attributes), policy composition 
demands the semantic disambiguation of distributed 
knowledge. To achieve this, we build ontologies based on the 
metadata submitted by all of collaborating sites (step 0). The
[SourceID] points to a fixed tabular row and the [Attribute 
Bag] further refines the columns (attributes names) requested 
(step 1). In this case, certain patients in registry D are matched 
(step 2). Through obtaining local policies, the composition 
occurs using the policy ontology (step 3 & 4). Afterwards, the 
center is expected to eliminate policy violations to ensure 
private constraints. This requires that individual policies are 
tested to ensure no explicit/implicit conflicts arise in granting 
permission to the data (step 5). At this stage, relevant metadata 
is used to support semantic reasoning for potential privacy risk 
disclosure of the combined data sets and the individual policies 
that are involved (step 6). Finally, anonymizing measures are 
enforced on data elements to reduce the leakage risks that may 
have been identified (step 7). At the stage of PBM checking, 
individual checkers need to check/evaluate the latent leakage 
specific to the topic and ultimately produce privacy-preserving 
datasets that can be returned to the user (step 8 & 9).

Figure 1. Record linkage in CHeReL.

Figure 2. Example interaction for record linkage access.

A. Basic notions in formulating XACML policy
The scenario presented above requires policy expression 

and composition capabilities. XACML is the natural choice in 
this work. In [31], we demonstrated how XACML policies 
could be formulated and evaluated through reasoning over 
semantic contents. For instance, a pseudo policy (Policy_1) in 
Fig. 3 defines that “EHRs of type-1 diabetes mellitus (T1DM) 
patients can be accessed by people who are authenticated as 
Clinicians who can read the ‘de-identified version’ for the 
specified research purpose”. Policy_1 becomes applicable 
only if the requirements in Tar_a are satisfied. To generalize
this work, we define the abstract XACML semantics as 
follows:

Figure 3. Example XACML policy profile.

Definition-1. In a policy domain Pi, Tar is a set of targets,
Sub is a set of subjects, Act is a set of actions, Res is a set of 
data elements, Con is a set of conditions and A+/A- are two 
types of authorization: Permission and Prohibition. The rules 
for constructing Pi are expressed as Ai

+ (Pi, tari, <subi, acti,
resi>, +, [coni]) and Ai

- (Pi, tari, <subi, acti, resi>, -, [coni])
where tarię Tar, resię Res and optionally, conię Con. As 
noted, in addition to authorization, it is often necessary to 
define obligation rules to refine post-authorization on results. 
For data-centric systems, obligations can act as a final ‘privacy 
filter’ to minimize inference attacks. For instance, informed 
consent is a typical obligation that has to be satisfied prior to 
linkage of EHRs for research purposes. In this case, de-
identification is regarded as a way of supporting anonymizing
measures over health information. Those behaviors are 
legislated by the Privacy Act 1988 (Cth) (Privacy Principle 9,
11 and 12). Therefore, this mandatory operation is defined on 
target resources with an associated effect permit as the trigger 
event, i.e. they are only checked if the authorization check is 
“in principle” allow.

Definition-2. An obligation within a policy domain Pi can 
be expressed as Oi

+ (Pi, tari, <subi, acti, resi>, trii, funi) and Oi
-

(Pi, tari, <subi, acti, resi>, trii, funi) where the combination 
effects within the policy domain act as a “trigger” of functions
used for the operations obliged to do or obliged not to do based 
on the attributes (subject/resources). 

Both the Definition-1 and Definition-2 provide the 
foundation of the XACML framework. Given demands for 
scalability in distributed systems, hierarchical models such as 
RBAC are often used for policy definition and management.

<Policy Id=Policy_1 Algorithm=deny-unless-permit> 
 <Target Id = Tar_a> 
  <Subject Id=Sub_a AttributeValue =Clinician/> 
  <Resource Id=Res_a AttributeValue =T1DMPatients/> 
 </Target> 
 <Rule Id=Rule_1 Effect=Permit> 
  <Target Id = Tar_b> 

 <Action Id=Act_a AttributeValue =Read/> 
 <Environment Id=Env_a AttributeValue 

=ForResearch/> 
  </Target> 
  </Condition> 
 </Rule> 
 <Obligation Id = De-identification FulfillOnEffect = 
Permit/> 
</Policy> 
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As such, policy composition demands policy extensions that 
can leverage hierarchy-based propagation when reasoning. In 
this paper we are primarily interested in the confidentiality of 
record linkage, hence we assume that access control actions 
refer to “read” operations. 

B. Propagation on Hierarchical Attributes
Hierarchical Role Structure. A role hierarchy (RH) can 

be structured by referring to a standard taxonomy or 
organization structure [40]. Based on the hierarchical model 
policy, propagation can be defined as:

Definition-3. In the policy domain Pi the role hierarchy is 
depicted as RH ::= {rolei, ≤ | i=1…n} where rolei represents
each role name in the hierarchy structure and İ stands for 
relations among these user groups in the role hierarchy.
Therefore, the RH-based propagation of authorization and 
obligation can be expressed as:

శ݊݅ݐܽ݃ܽݎܲ
ோு ∷= ൛ܣ

ା(݈ݎ ݁) → ܣ
ା(݈ݎ ݁)|ܴ݈݁ݎ)ܪ ≤ ݈ݎ ݁)ൟ

షோு݊݅ݐܽ݃ܽݎܲ ∷= ൛ܣ
݈ݎ)ି ݁) → ܣ

݈ݎ)ି ݁)|ܴ݈ݎ)ܪ ݁ ≤ )ൟ݈݁ݎ
ைశ(ష)݊݅ݐܽ݃ܽݎܲ

ோு ∷= ൛ ܱ
ା(ି)(݈ݎ ݁) → ܱ

ା(ି)(݈ݎ ݁)| ܣ
ା(ି)(݈ݎ ݁)

→ ܣ
ା(ି)൫݈ݎ ݁൯, )ݎ݁݃݃݅ݎܶ ܱ) ≡ )ݐ݂݂ܿ݁ܧ ܲ)ൟ

where the condition Trigger(Oi) į Effect(Pi) restricts 
obligation rules to only trigger when matching the associated 
condition. Based on the positive rule shown in Fig. 3, Fig. 4 a) 
describes the propagation where global strategy “Deny-
default” is applied. Given the policy A1(Policy-1, Tar_b 
<Clinician, Read, T1DMPatients>, +), O1(Policy-1, Tar_a
<Clinician, null, T1DMPatients>, +, De-identification), the 
permission can be propagated to any superior roles 
“Specialized Physician” however the subordinate roles like.
“Hospital based dietician” and “Researcher” will be denied by 
default. In addition, when positively evaluating Policy-1,
attached O1 will be executed with De-identification to the 
targeted subject and resource - the Clinician accessing T1MD 
patient records in this case. Such propagation can also occur 
with Permit as the default result. In this case, role hierarchies 
are supposed to reflect the organizational authorities. As a 
result, A2 (Policy-1, Tar_c <Clinical nurse specialist, Read, 
T1DMPatients>, -) in Fig.4 b) should prevent Clinical nurse 
specialist and its subordinate roles reading the diabetes 
database however the Specialized physician will not be 
affected, i.e. they maintain the initial permission [3]. It is worth 
noting that adopting a default strategy in an access control 
system can help overcome possible conflicts in distributed 
systems however Permit-default is not a safe choice since it 
tends to make data access more readily available (and this is 
rarely needed).

a) Role hierarchy-based propagation (Deny-default)

b) Role hierarchy-based propagation (Permit-default)

Figure 4. Propagation with Deny- and Permit-default principles.

Semantically, hierarchical role structure can be formally 
represented through defining transitive predicates seniorTo and 
juniorTo. For example, the role hierarchy in Fig. 4 can be 
expressed as seniorTo(Specialized physician, Clinician), 
seniorTo(Clinician, Hospital based dietician) and 
juniorTo(Hospital based dietician, Clinician) etc. With the 
designated effect, Permit, Policy-1 can be stated with 
assertions including hasPermission(Policy-1, A1) and 
hasObligation_P(Policy-1, O1), which are then attached with 
specific attributes via hasResource(Tar_b, T1DMPatients) and 
hasResource(Tar_a, T1DMPatients). 

Propagation based on role hierarchies can be finally 
expressed via using enforceOn, which is dynamically reasoned 
from semantic rules. For instance, both semantic rule 1-2
define the inner propagation among policy elements while the 
propagation of permission and positive obligation can be 
achieved by rules 3-4. It is noted that Permission and 
Obligation_P are the subclass of Authorisation and Obligation,
inheriting the basic propagation implied in rules 1-2. Likewise, 
reasoning over negative results such as Prohibition and 
Obligation_N relies on the rules 5-6.

1. Authorisation(?a), hasTarget(?a, ?t), hasSubject(?t, ?s)ė
enforceOn (?a, ?s)

2. Obligation(?o), hasTarget (?o, ?t), hasSubject (?t, ?s), ė
enforceOn (?o, ?s)

3. Permission(?p), hasSubject(?t, ?s), hasTarget(?a, ?t), 
enforceOn(?p, ?s), seniorTo(?s’, ?s)ė enforceOn(?p, ?s’)

4. Obligation_P (?o), hasSubject(?t, ?s), hasTarget(?o, ?t), 
enforceOn(?o, ?s), seniorTo(?s’, ?s)ė enforceOn(?o, ?s’)

5. Prohibition(?p), hasTarget(?a, ?t), hasSubject(?t, ?s), 
enforceOn(?p, ?s), seniorTo(?s, ?s’)ė enforceOn(?a, ?s’)

6. Obligation_N (?o), hasSubject(?t, ?s), hasTarget(?o, ?t), 
seniorTo(?r, ?r’) ė enforceOn(?o, ?r')

Previous work introduced a semantic approach to reasoning 
about XACML policies based on heterogeneous attributes from 
different authorities [41]. Dealing with different policy
domains, semantic-based formalization was used to support 
enhanced reasoning capabilities required when making access 
control decisions.

Definition-4. Suppose role hierarchies RHx and RHy are 
defined in policy domains Pi and Pj respectively. Using the 
relationship RHx(rolei) į RHy(rolej), propagation can be 
formed across hierarchies as:
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శ݊݅ݐܽ݃ܽݎܲ
ோுೣ, ∷= ൛ܣ

ା(݈݁ݎ)
→ ܣ

ା൫݈ݎ ݁൯|ܴܪ௫(݈݁ݎ ≤ ,(݈݁ݎ ݈ݎ)௫ܪܴ ݁)
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ష݊݅ݐܽ݃ܽݎܲ
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ି൫݈ݎ ݁൯
→ ܣ

݈ݎ)௫ܪܴ|(݈݁ݎ)ି ݁ ≤ ,(݈݁ݎ (݈݁ݎ)௫ܪܴ
≡ ݈ݎ)௬ܪܴ ݁)ൟ

݊݅ݐܽ݃ܽݎܲ
ைశ(ష)
ோுೣ, ∷= ൛ ܱ

ା(ି)(݈ݎ ݁) → ܱ
ା(ି)൫݈ݎ ݁൯|ܣ

ା(ି)(݈ݎ ݁)

→ ܣ
ା(ି)൫݈ݎ ݁൯, )ݎ݁݃݃݅ݎܶ ܱ) ≡ )ݐ݂݂ܿ݁ܧ ܲ)ൟ

For instance, Fig. 5 shows how role hierarchies RH1 and 
RH2 can be linked with equivalence roles Diabetic nurse and
Clinician. By defining rules 7-8, cross-domain authorization
(obligations) can be realized by introducing equivalent 
concepts such as equivalentWith(Diabetic nurse, Clinician).
According to Definition 3 and Definition 4, more authorization 
rules can be identified through semantic reasoning such as A1-
extend (Policy-1, Tar_b <Diabetic nurse, Read, 
T1DMPatients>, +, null) and A1-extend (Policy-1, Tar_b 
<Diabetologist, Read, T1DMPatients>, +, null). As a result, 
the authorization coverage is extended through cross-RH 
propagation rules, which is especially useful in distributed 
environments since it offers far more flexibility and can exploit 
multiple ontologies.

Figure 5. Example propagation cross role hierarchies.

7. Authorisation(?a), enforceOn(?a, ?r), equivalentWith (?r’, ?r) 
ė enforceOn(?a, ?r’)

8. Obligation(?o), enforceOn(?o, ?r), equivalentWith (?r’, ?r) ė
enforceOn(?o, ?r’)

Hierarchical Data Model. As with role relationships,
hierarchical resource profiles are part of the standard grammar 
of XACML [42]. They were originally defined to support the 
exponential growth of resource classes. EHRs are often 
structured as a set of attribute name–value pairs, and thus 
categorical attributes can be modelled according to their 
specificity. Hence policies can be refined by specifying the 
appropriate subset of resources.

Definition-5. In the policy domain Pi, attribute variables of 
resources can be formulated in Data Hierarchies (DH) where
DH ::= {valuei, ≤ | i= 1…n}. Therefore, the propagation on 
hierarchical resources can be formed as:
శ݊݅ݐܽ݃ܽݎܲ

ு ∷= ൛ܣ
ା(݁ݑ݈ܽݒ) → ܣ

ା൫ݑ݈ܽݒ ݁൯|ܪܦ൫ݑ݈ܽݒ ݁ ≤ ൯ൟ݁ݑ݈ܽݒ
షு݊݅ݐܽ݃ܽݎܲ ∷= ൛ܣ

(݁ݑ݈ܽݒ)ି → ܣ
ି൫ݑ݈ܽݒ ݁൯|ܪܦ൫݁ݑ݈ܽݒ ≤ ݑ݈ܽݒ ݁൯ൟ

ைశ(ష)݊݅ݐܽ݃ܽݎܲ
ு ∷= ൛ ܱ

ା(ି)(݁ݑ݈ܽݒ) → ܱ
ା(ି)൫ݑ݈ܽݒ ݁൯|ܣ

ା(ି)(݁ݑ݈ܽݒ)
→ ܣ

ା(ି)൫ݑ݈ܽݒ ݁൯, )ݎ݁݃݃݅ݎܶ ܱ) ≡ )ݐ݂݂ܿ݁ܧ ܲ)ൟ
It is worth noting that the authorization on DH will act on 

the “resource” while the obligation is specific to the function 
arguments. Consider an example with positive 

authorization/obligation applied with overall strategy given as 
deny-default. In this case, access restrictions on ethnicity
information can be achieved through obligation O1(Policy-1, 
Tar_a<null, null, T1DMPatients>, +,generalization(Ethnicity-
1))1. According to the specialty levels, these value hierarchies 
can be specified through isA assertions like isA(3202-Bosnian, 
32-South Eastern European) and isA(32-South Eastern 
European, 3-Southern and Eastern European) etc. With this
obligation, any data view including unit values 3202-Bosnian
can be replaced by the more general forms (e.g. 32-Southern 
and Eastern European). In addition, such a tabular structure 
can be described through using hasPatient, hasAttribute
assertions associated with row/column names, such as 
hasPatient(T1DMPatient, Patient-1) and hasAttribute(Patient-
1, 3202-Bosnian). By reasoning over rules 9 -10 it is possible 
to associate access control rules to database contents. Through 
propagation of hierarchical values, such rules can be 
dynamically executed through reasoning. In this work we focus 
on access to data resources through authorization and data 
privacy preservation through obligations. Therefore, Rule 11
focuses on releasing objects (containing data items) which
implies a general structure of the contents in the database. For 
special privacy requirements, Rule 12 is used to target 
elements, which can then propagate to more specific entities. 
For instance, O1 should be used for ethnical contents such as 
32-South Eastern European and according to the reasoning, 
contents like 3202-Bosnian should be treated in the same way.

9. Authorisation(?a), hasTarget(?a, ?t), hasResource (?t, ?r),
hasPatient(?r, ?p), hasAttribute(?p, ?e)ė enforceOn(?a, ?e)

10. Obligation(?o), hasTarget(?o, ?t), hasResource(?t, ?r)
hasPatient(?r, ?p), hasAttribute(?p, ?e) ė enforceOn(?a, ?e)

11. Permission(?a), Ethnicity(?e), Ethnicity(?e’), isA(?e’, ?e), 
enforceOn(?a, ?e’) ė enforceOn(?a, ?e)

12. Obligation_P(?o), Ethnicity(?e), Ethnicity(?e’), isA(?e’, ?e), 
enforceOn(?o, ?e) ė enforceOn(?o, ?e’)

C. Inference Disclosure Prevention
Policy composition based on propagation assumes that the 

information is stable. However, the ever-increasing amount of 
digital information now available poses threats to privacy 
protection. Linking records from different custodians can cause 
privacy issues since heterogeneous policies for datasets can be 
composed where violations cannot be detected in a timely 
manner. For instance, obligation O1(Policy-1, Tar_a <null, 
null, T1DMPatients>, +, generalization(Postcodes-1)) may not 
be completely enforced by disclosing spatial information, e.g. 
the postcode-Statistical Area (SA1) mapping [53] is available 
to the public and thus may cause inference leakage problems.

Definition-6. Suppose a set of values associated with 
explicit mappings across DH is expressed as:

ܴ ܸ൫݁ݑ݈ܽݒ, ݑ݈ܽݒ ݁൯ ∷= ൛ܪܦ௫(݁ݑ݈ܽݒ) ∘ ݑ݈ܽݒ௬൫ܪܦ ݁൯| ∘∈ ൟܴܧ

where Explicit Relation (ER) refers to the set of explicit 
mappings in the policy domain. Based on such auxiliary 

                                                          
1 Function generalization(Ethnicity-1) is to prevent the access to the unit
values in the Ethnicity column.
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knowledge, it is possible to realize authorization propagation 
cross the hierarchical resources with obligations formed as:

݊݅ݐܽ݃ܽݎܲ
శ(ష)
ுೣ, ∷= ቄܣ

ା(ି)(݁ݑ݈ܽݒ)

→ ܣ
ା(ି)൫ݑ݈ܽݒ ݁൯|ܴ ܸ൫݁ݑ݈ܽݒ, ݑ݈ܽݒ ݁൯,∘

∈ ൛ܣ
ା(ି), →௨௧௦௧ൟቅ

݊݅ݐܽ݃ܽݎܲ
ைశ(ష)
ுೣ, ∷= ቄ ܱ

ା(ି)(݁ݑ݈ܽݒ)

→ ܱ
ା(ି)൫ݑ݈ܽݒ ݁൯|ܴ ܸ൫݁ݑ݈ܽݒ, ݑ݈ܽݒ ݁൯,∘

∈ ൛ ܱ
ା(ି), →௧ൟቅ

Conditions such as ∘∈ ቄܣ
ା(ି), →௨௧௦௧ቅ and ∘∈

ቄ ܱ
ା(ି), →௧ቅ refer to the predicate ∘ specified in the 

semantic rules indicates the authorization/obligation 
propagation. Fig. 6 shows an example of cross-DH
propagation. A good practice in formulating pragmatic domain 
knowledge is to reuse well-known RDF vocabularies such as 
FOAF [43], SKOS [44], GeoName [45], vCard [46] or Dublin 
Core [47]. Domain experts should only devise new terms only 
if existing vocabularies are not sufficient to express the 
required concepts. For instance, geographical concepts 
Postcode-4117 and SA1-31103131212 are associated by the 
inclusive relations dc:isPartOf and dc:hasPart. Through 
formulating semantic rules for obligation enforcement, it is 
possible to propagate operations to related contents. Suppose 
the obligation is defined to enforce one-level generalization 
(e.g. Postcode-4117 ė Postcode-411*). Through reasoning 
Rule 13, security measures can be enforced by replacing the 
unit content with a more aggregated level (e.g. SA2-
311031312). Since record linkage should allow data sets to be 
combined arbitrarily, implied relations can be identified across 
data models based on value distributions in linkage sets. 

13. Obligation(?o)_P, Postcode(?p), SA(?s), hasPart(?p, ?s), 
enforceOn(?o, ?p) ė enforceOn(?o, ?s)

Figure 6. Associated vocabularies with semantic predicates.

Privacy may be threatened by arbitrary linkage where 
inferences can unintentionally arise. Instead of directly 
defining policies, the priority is dealing with implicit 
associations that give rise to undesirable inference channels 
that contribute to latent disclosure leaks. For instance, Chinese 
children (0-14) are rarely diagnosed with T1DM and thus the 
appearance of 6101-Chinese is much lower than the average 
[48]. Considering arbitrary combinations of linkage requests, 
special attention should be given to data value distributions. 
Utilizing mining of association rules, potential associations 
among heterogeneous variables can be found from evolving 
data corpora. In this case, personal attributes in the linkage set 
need to be evaluated with specific attribute combinations and 

overlapping sizes. Such relations are not limited to single 
domains and in most cases, they can be used to bridge concepts 
across domains. Data-centric propagation can subsequently be 
specified as follows. 

Definition-7. Suppose a set of unit-level variables 
associated with implicit mappings across DHs is expressed as:

ܴ ܸ൫݁ݑ݈ܽݒ, ݑ݈ܽݒ ݁൯ ∷= ൛ܪܦ௫(݁ݑ݈ܽݒ) ∘ ݑ݈ܽݒ௬൫ܪܦ ݁൯| ∘∈ ൟܴܫ

where the Implicit Relation (IR) refers to the inference channel 
impacts on policy decisions. Using auxiliary knowledge, it is 
possible to realize authorization propagation across sources 
with obligations formed as:

݊݅ݐܽ݃ܽݎܲ
శ(ష)
ுೣ, ∷= ቄܣ

ା(ି)(݁ݑ݈ܽݒ)

→ ܣ
ା(ି)൫ݑ݈ܽݒ ݁൯|ܴ ܸ൫݁ݑ݈ܽݒ, ݑ݈ܽݒ ݁൯,∘

∈ ൛ܣ
ା(ି), →௨௧௦௧ൟቅ

݊݅ݐܽ݃ܽݎܲ
ைశ(ష)
ுೣ, ∷= ቄ ܱ

ା(ି)(݁ݑ݈ܽݒ)

→ ܱ
ା(ି)൫ݑ݈ܽݒ ݁൯|ܴ ܸ൫݁ݑ݈ܽݒ, ݑ݈ܽݒ ݁൯,∘

∈ ൛ ܱ
ା(ି), →௧ൟቅ

Considering privacy, such associations are produced at the 
trusted party where the linkage is conducted. Once pairwise 
values satisfy the propagation formula, they should be assigned 
bi-directional associations formed as DHx(valuei) ∘

DHy(valuej). Different from explicit mappings from domain 
knowledge, such implicit relations are effective for ad hoc and 
evolving data linkage scenarios.

Definition-8. For linkage set D constructed by linking
datasetA and datasetB, the association rules like ItemsetA ė
ItemsetB holds if the following conditions are established:

|(ݐ݁ݏ݉݁ݐܫ)ܴ|
หܴห

≥ ݏ݉

|(ݐ݁ݏ݉݁ݐܫ)ܴ|
หܴห

≥ ݏ݉

ݐ݁ݏ݉݁ݐܫ)ܴ| ∪ |(ݐ݁ݏ݉݁ݐܫ
หܴห

≥ ݏ݉

and the association rule formed as ItemsetA →ItemsetB having 
the confidence value satisfying:

ݐ݁ݏ݉݁ݐܫ)ܴ| ∪ |(ݐ݁ݏ݉݁ݐܫ
|( ݐ݁ݏ݉݁ݐܫ)ܴ| ≥ ݉ܿ

Here |R(x)| returns the number of records where the 
variable x appears. Minimum support (ms) is defined by the 
linkage domain to filter out item sets that are not necessary to 
explore associations. In addition to statistical significance, the 
strength of associations can be evaluated using local 
confidence levels, such as minimum confidence required by 
dataset B (mcB). For instance, a subset of attributes from two 
different registries is shown in the Fig. 7 where the “language 
spoken at home” is 2201-Greek and “ethnicity” is 3205-Greek.
The numbers in the parenthesis refers to the co-occurrences
and the respective appearances in the datasets. As defined, the 
dependence of 2201-Greek to 3205-Greek is 100% (42/42) 
while only 8.4% (42/500), i.e. only 8% of Greek people speak 
Greek at home, but of all those that do, they have an ethnicity 
of Greek. Given a minimum confidence of 0.8, the inference 
from 2201-Greek to 3205-Greek is accepted for further 
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evaluation of policies specified with the language and ethnical 
variables. Specially, the Rule 14 is defined to reason about 
obligation enforcement along with such associated variables.

14. Obligation_P(?o), Language(?l), Ethnicity(?e), ir(?l, ?e), 
enforceOn(?o, ?e) ė enforceOn(?o, ?l)

Figure 7. Mining associations cross vocabularies (Language → Ethnicity).

Any disclosure incurs a privacy cost. As such a key goal for 
privacy preservation is to minimize privacy loss while 
maintaining a given level of utility. To evaluate a privacy-
awareness policy framework, certain metrics need to be 
defined to quantify such indicators. Instead of using 0/1 to 
signify whether data should be disclosed or not, we propose a 
refined method by taking distinctive “specialness” into 
consideration. For data linkage, it is necessary to measure the 
significance of results to local datasets, e.g. the percentage of 
patients falling in the linkage set is a key measure. 

Definition-9. For records shared by party A and B, the 
Overlapping Rates (OR) can be computed by:

ܱܴ = |ோಲ∩ோಳ|
|ோಲ|

ቀܱܴ = |ோಲ∩ோಳ|
|ோಳ|

ቁ

where |Rn| refers to the number of source records while |Rn∩
Rm| counts the size of the resultant data set of linkageA-B. On 
this basis, the privacy cost can be computed by:

ܥܲ =
ܱܴ ∙ ∑ △ ܮ ⋅ [݁݃ܽݐ݊݁ܿݎ݁]

ୀଵ

ܰ
ቆܲܥ =

ܱܴ ∙ ∑ △ ܮ ⋅ [݁݃ܽݐ݊݁ܿݎ݁]
ୀଵ

ܰ
ቇ

Here Ni refers to the number of local attributes; ∆Lx
represents the differences between “expected specialness” and 
“resultant specialness” and percentagex refers to the proportion 
of related records in the overlapping set (linkage). It is noted 
that PC can be computed once all associations are identified 
and applied.

IV. CASE STUDY-TYPE-1 DIABETES ANALYTICS

A. Background
To demonstrate the benefits of this approach, we consider a 

linkage scenario involving two major projects currently 
ongoing involving the University of Melbourne. To promote 
and understand public health in Victoria, the Department of 
Health and Human Services (VicHealth –
https://www.vichealth.vic.gov.au/) undertakes a survey 
involving 25,000+ Victorians with regards to their overall 

health, work-life balance, drinking and smoking habits and 
basic demographics. VicHealth aggregates results using 
standard geospatial regions, typically local government areas 
(LGAs) or statistical local areas (SLAs). It is noted that 
arbitrary aggregation using unit level data is also possible using 
geo-spatial privacy technologies as described in [49]. Thus, the 
unit-level point-based data (respondents’ addresses) can be 
aggregated to Statistical Area levels (SA1-SA4), e.g. the 
people in an SA1 that live within a given distance of a park or 
a bottle shop [53]. Fig. 8 shows the VicHealth data aggregated 
at the SLA level for Greater Melbourne showing the amount of 
monies spent per week (in dollars) on alcohol for given SLAs. 
The darker colors on the choropleth map reflect an increase in 
alcohol spends. The actual data is shown in tabular format also 
(aggregated at the SLA level).

The Australian Diabetes Data Network (ADDN –
www.addn.org.au) has established a national type-1 diabetes 
platform for Australia. This facility comprises (at present) over 
13,000 patients from major diabetes centers across Australia as 
shown in the Fig. 9. A rich range of information on these 
patients is available including their demographic details, their 
treatments and visit information. This system includes both 
pediatric and adult patient data and supports the Australian 
Diabetes Society (ADS) and Australian Pediatric Endocrine 
Group (APEG).

Figure 8. SLA-based alcohol spending patterns across Greater Melbourne.

Figure 9. Diabetes patient recruitment in ADDN.

Fig. 10 shows a fragment of the ADDN data dictionary. 
Prior to data exchange/linkage, repositories submit their data 
schema, which is abstracted from (wherever possible) 
standardized sources. Both the language [50] and ethnicity [51] 
hierarchies are standard taxonomies defined by the Australian 
Bureau Statistics (ABS – www.abs.gov.au). Geographic 
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classifications such as Postcodes [52] and Statistical Area level 
[53] (SA1-SA4) codes have been defined by the Australian 
Statistics Geography Standard (ASGS). Different from 
categorical attributes, numeric and other variables can require 
ad-hoc transformations. For instance, patient ages can be 
constructed based on exact values (age = 6) or based on 
intervals (0 < age < 5 years). For quantification, values such as 
0, 13,

2
3, or 1 can be attached to capture the local specificity of 

different concept clusters where the unit level is recognized as 
“1” and “0” refers to empty [54]. Through this, the 
granularities of different clusters can be used to understand the 
effect when measuring “inference channels”.

Figure 10. Quantified hierarchical variables.

Both ADDN and VicHealth can deal with health-related 
data with standardized information wherever possible, e.g. 
geospatial data. In this case study we assume that there exists a 
set of patients that have type-1 diabetes in ADDN that were 
also involved in the VicHealth survey. The individual identity 
of the patients should obviously not be disclosed, but 
importantly the danger of potentially identifying an individual 
should also be protected against. To demonstrate how a given 
policy violation can be detected from these two data rich 
resources, we select EHRs from ADDN (2000) and VicHealth 
(2500) with 1000 shared patients (respondents) existing in both 
registries with completely different attributes. After cleaning 
the incomplete records, the remaining 996 records were used as 
inputs to the analysis. Table I shows the attributes and sources 
of knowledge used. These data models and sources build upon 
standards and ontologies.

TABLE I. SAMPLE REGISTRIES AND THEIR ATTRIBUTE INFORMATION

Registry Role hierarchy Variable Source Instance 
VicHealth Admin

Researcher

Age
Language

Statistical area

5-year
ASCL
ASGS

15
36
95

ADDN
Diabetologist

Clinician
Nurse

Postcode
Ethnicity
Gender 

AU Post
ASCCEG

83
38
4

As shown in Fig. 11, both VicHealth and ADDN have 
defined policies based on geospatial distributions that require 
special protection when releasing non-geospatial attributes 
(e.g. Age or Ethnicity). For instance, both VicHealth and 
ADDN prevent geo-spatial leakage based on the number of 
patients within a given postcode, e.g. at least 3 or 5 individuals 
need to be located in the same spatial level for the aggregated 
data to be released. To achieve this, the SA1 codes are 

transformed to more aggregated SA2 level areas when there are 
insufficient numbers of respondents (<3). Similarly, postcodes 
in ADDN can be aggregated before allowing 
disclosure/linkage. In this scenario we consider a clinician 
(ADDN Clinician) requesting to access information related to 
patients existing in both data resources. Based upon the cross-
hierarchy associations between Clinician and Researcher (VH 
Researcher), data elements in the linkage can be released once 
the privacy obligations are successfully completed. With the 
relation VH Researcher į ADDN Clinician, data elements in 
the linkage can be released once the privacy obligations are 
successfully met. Specifically, Fig. 12 shows the composition 
rules for how an ADDN clinician can access the associated 
VicHealth data elements through linkage.

Figure 11. Access patterns in VicHealth and ADDN.

Figure 12. Composing policies by reasoning via role hierarchies

As discussed, just using authorization decisions only raises 
potential inference risks. For instance, it cannot guarantee the
release contains at least 5 records in each postal area as defined 
at ADDN side. In other words, less than 5 individuals in the
postal region should result in no data being released. However, 
disclosing the VicHealth-ADDN linkage data set shown in Fig. 
13 can violate the protection intent since a smaller population 
can be identified from the group, e.g. 6 patients are distributed 
in two SA1 regions, 31103131619 and 31103131212 which 
belong to two postal areas, 4118 and 4117, respectively. Based 
on the geo-spatial concept mappings, the protected zip code
411* will be refined, which can breach the ADDN policy. 
Based on the definition of Rule 12, the obligation enforced to 
generalize 4117 and 4118 as 411* should be propagated to the 
SA1 codes 31103131619 and 31103131212. Consequently, SA 
codes should be generalized until at least 5 patients are located 
in one postal region. In this case, the SA3 code “31103” will be 
released in Linkage_1 to Linkage_6.
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Figure 13. Geospatial privacy of VicHealth-ADDN linkage.

B. Result Analysis
1) Association Rule Distribution

As discussed, based on associations among attributes 
identified via linked datasets, semantic reasoning can be 
implemented to support policy composition in distributed
environments. As shown in Table I, each site collects patient 
details from three different perspectives. Given the principle 
requiring that only one item can be contained in the rule 
head/body, association rules can be evaluated in different 
dimensions. In this case for each attribute, three templates can 
be defined to construct rules. For example, taking ADDN 
variables as the “consequences” gives nine double-attribute 
templates ( ଷܥ

ଵ ∙ ଷܥ
ଵ ). To support association rule mining, we 

implement a process based on Apriori [55] – a mining 
algorithm used to find frequent items from transaction datasets 
and association rules for business purposes. The idea involves 
computing the frequency of item sets and identifying those 
above a “minimal threshold of occurrence” as “large item 
sets”. Instead of Boolean values, categorical attributes with 
related semantic meanings can also be considered. On this 
basis, elements of “large item sets” can be formed as 
association rules if they co-occur in the same records. 
Optionally, such rules can be filtered based on “minimal 
confidence” levels. In this case for linkage scenarios we 
implement processes distinguishing ‘requestor’ and 
‘responder’. 

a) Associations to unit values in Age

b) Associations to unit values in Statistical Area 

c) Associations to unit values in Language
Figure 14. Number of association rules on ADDN items.

As shown in Fig. 14, the rule numbers are plotted with 
increasing support values. As seen, all combinations exhibit a 
downward trend as the minimum support grows, however 
particularities can be found with different combinations. For 
instance, Fig. 14 (a) shows Postcode variables are least 
associated with age variables (number = 6, minimum support = 
0.01) whereas they become the most associated variable when 
it comes to SA codes (number = 10, minimum support=0.01)
whilst Home Language Spoken (number = 7, minimum support 
= 0.01) are shown in Fig. 14 (b) and Fig. 14 (c). It is reasonable 
to expect associations between statistical areas and postcodes 
since explicit mappings exist between spatial extents. The 
results also highlight patients in different age intervals evenly 
distributed however language impacts on where to live in 
Victoria. Such linkage patterns indicate the association from 
ethnicity to statistical areas and languages (minimum support = 
[0.2, 0.7]) in Fig. 14 (b) and Fig. 14 (c). These indicate that 
more than one half of the cohort are featured in such co-
occurrences and thus there is an increased chance for new fact 
identification. Such results are returned to custodians who may 
update the minimal confidence requirement to balance the 
associated external risk and subsequent utility. In addition, data 
providers can define minimum association strengths. Fig. 15 
shows how rules mined in different templates can be filtered by 
increasing minimum confidence levels. When the value is 0.4,
zero associations can be found to any age group. This is due to 
the even distribution of gender variables within other auxiliary 
knowledge, i.e. the “Gender” variables are relatively safe to 
disclose without privacy disclosure risk issues arising.

Based on implicit associations mined from arbitrary 
linkages, further access control rules can be generated through 
data scaling. As shown in Table II, parameters (minimum 
support = 0.1%; minimum confidence = 1.0) are set at both 
extremes to allow minor variations of Ethnicity and Home 
spoken language to be identified. Through computing the 
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frequency and co-existence, identified associations from the 
linkage set may be applied to affect policy decisions in policy 
composition.

Figure 15. Numbers of association rules to Age.

TABLE II. ASSOCIATION ANALYSIS BETWEEN “ETHNICITY” AND 
“LANGUAGE”

Associations between Ethnicity and Language (conf = 1.0)
Frequent items in “Ethnicity”

1103-Australian South Sea Islander; 1202-Kiwi; 2301-Austria; 2306-
West German; 2307-Swiss; 2405-Swedish; 2311-Belgian; 3016-
Spanish; 3203-Bulgarian; 3205-Greek; 3215-Cyprian; 3307-Polish; 
3308-Russian; 4106-Lebanese; 4907-Turkish; 5201-Filipino; 5214-
Singaporean; 6901-Japanese; 7106-South African Indian; 7112-
Pakistani; 7126-Sri Lankan; 8102-American; 9200-East African; 8204-
Chilean;

Frequent items in “Home Language”
1201-English; 1301-German; 1401-Dutch; 1403-Afrikaans; 2101-
French; 2201-Greek; 2302-Portuguese; 2303-Spanish; 3602-Polish; 
4202-Arabic; 4301-Turkish; 4206-Assyrian Neo-Aramaic; 3402-
Russian; 5103-Tamil; 5104-Telugu; 5202-Gujarati; 5207-Punjabi; 5211-
Sinhalese; 5212-Urdu; 6511-Tagalo; 7201-Japanese; 9101-American; 
9304-Maori (New Zealand);

Number of Implicit Associations
Language ė Ethnicity Ethnicity ė Language Bi-direction

14 3 2

2) Policy Performance Evaluation
To achieve policy compliance in linkages, we consider 

XACML as the fundamental framework in which policies can 
be defined and evaluated through a range of different models:

x Model 1. Policies are evaluated without structured data;

x Model 2. Policies are evaluated against hierarchical data 
structures;

x Model 3. Policies are evaluated against hierarchical data 
structures with explicit inferences;

x Model 4. Policies are evaluated against hierarchical data 
structures with both explicit and implicit inferences.

To evaluate access control policies, Paci and Zannone 
(2015) introduced a set of metrics regarding effectiveness and 
efficiency evaluation [21]. Specifically, these metrics are 
defined by comparing the gap between “data with expected 
protection” and “data with resultant protection”. On this basis, 

we introduce an evaluation framework with adjustments 
applicable to dynamic data linkage applications.

Metric-1. Here the policy effectiveness refers to the 
completeness with which users achieve specified (protection) 
goals [56]. To tackle comprehensive concerns related to risk 
detection, protected data in access patterns need to have a 
“ground truth”. In this case, the effectiveness can be evaluated 
by comparing privacy costs caused by policy models 
(Definition 9).

Metric-2. In relation to the effectiveness, efficiency refers 
to the resource utilization in relation to achieving system goals 
[56]. Through transforming data according to the ground truth 
of protection, it is possible to utilize different numbers of rules 
enforced based on Models 1-4. During this process, the more 
statements is required, the less efficient the model is.

Metric-3. Utility is another factor essential to consider. 
With regard to the databases, data utility gains are inversely 
related to “information loss”, which can be measured through 
computing Sum of Square Error (SSE)/Total Sum of Square 
Error (SST) [57]. In this case, n records composed by m
attributes were masked by replacing the original variable ݔ by 
its replacement ݔ

Ą. The SSE can be calculated by aggregating 
variable distances d(ݔ,ݔ

Ą) and level (ݔ) where SST reflects 
the maximal details contained in each attribute (e.g. 0ė1).

Sum of Square Error (SSE)
Total Sum of Squares (SST) =

∑ ∑ ௗ(୶ౠ,୶ౠ
ᇲ )మౣ

ౠసభ

సభ

∑ ∑ ୪ୣ୴ୣ୪(୶ౠ)మౣ
ౠసభ


సభ

(1)

TABLE III. COMPARISON OF POLICY MODELS (MODEL 1-4)

Effectiveness
(Security cost %)

Efficiency
(Rules specified for 

data privacy)

Utility 
Loss

Model 1 4.32% 1024 13.9%
Model 2 4.32% 29

11.4%Model 3 0.156% 28
Model 4 - -

Table III shows the performance of policies defined using 
Data Models 1-4 for linkage. All these indicators are adversely 
affected by the numeric results, i.e. security costs, number of 
statements and information loss. After calculating associations 
between value pairs, the ground truth can be extended by 
adding further knowledge. On this basis, we are able to see that 
the highest security cost through Model 1 and Model 2, is due 
to a lack of semantic mapping between data hierarchies such as 
“SA codes to Postcodes” and “Language to Ethnicity”. 
Therefore, the security cost is measured by calculating the 
PCSA1 and PCLanguage. Through extending the correspondence 
information in Model 3, the disclosure risk of SA1 codes is 
addressed by semantic reasoning while the issues caused by the 
language use remains. In addition, through extending temporal 
associations and enabling semantic reasoning, the expected 
data profile can be realized using Model 4.

Based on existing knowledge and implicit associations in 
Table II, we compare the resources (privacy statements) used 
and their different efficiencies. Due to a lack of propagation in 
Model 1, at least 1024 statements are required to process the 
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SA and Language variables in records (SA1 codes in all 996
records plus language values in 28 of them need processing 
due to the explicit/implicit associations). Through using 
hierarchical structures in Model 2, the SA code generalization
can be realized by adding one more statement such as 
generalization(SA-1) from the ADDN side (29 statements in 
total). When it comes to Model 3, the manual operation on SA1 
codes is not necessary for the knowledge extension and 
obligation propagation leveraging explicit mappings. Since 
Model 4 includes both types of relations, no additional rule for
enforcement is demanded.

Through calculating the SSE/SST and noting that a higher
result implies less useful data results, we compare the utility of 
protected data through different policy models. In this stage, 
data samples are divided into two groups: data processed 
with/without data hierarchies based on the aggregation and 
suppression techniques. In the suppression case, the distance 
between masking and original attributes can only take binary 
values, i.e. 0 if they are equal and 1 otherwise. The result 
shows that knowledge-based aggregation maintains a higher 
overall utility level.

V. CONCLUSION

In this paper, we present a semantic approach to compose 
security policies for privacy-demanding record linkage. 
Through analyzing privacy issues in typical scenarios, we 
present a framework where inference control can be delivered 
through reasoning about knowledge models and associated 
semantic rules. We show how dynamic correlations among 
various attributes generated through arbitrary linkages can 
increase the possibility of policy violations. To tackle this, we 
propose it is necessary to calculate the associations between 
pairwise attributes by counting the occurrence and co-
occurrence of data items in overlapping data sets. We show 
how improved performances in terms of effectiveness,
efficiency and utility can be achieved by enriching auxiliary 
data models. Based on the results, we conclude that specifying 
policies based on structured data can minimize the loss of 
information while reducing the risk of privacy disclosure when 
semantically composing policies. When more types of 
associations are considered, improved security performance 
and minimizing risk disclosure can also be achieved. For future 
work, we intend to explore the reconciliation of conflicting 
disclosures including policy negotiation based on attribute 
types/values that can constitute a key step towards resolving 
privacy leakage in large-scale distributed systems.
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