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 Abstract 
 

Unconventional myosins have often been characterised within the cytoplasm of the cell, 

however little work has been done to characterise their role within the nucleus. The first 

nuclear myosin was identified within the 1990s and since then eight types of myosin have 

been found within the nucleus. The first to be found and the one myosin that has been 

heavily characterised is nuclear myosin 1. This myosin has a role in transcription, as well as 

chromatin movement after DNA damage. Myosin VI another myosin recently found in the 

nucleus has also been attributed to stable transcription, and, like nuclear myosin 1 can also 

bind to the RNA polymerase II complex.  

So far, a full length structure of nuclear myosin I is yet to be defined, here in this thesis, using 

typical biochemical techniques, an interaction between the N-terminus of the protein and 

the nuclear localisation sequence has been identified, along with disassociation constants, 

that finally show a direct interaction between DNA and the myosin. As well as this, MVI has 

had another role in the nucleus, which is observed after the induction of double strand 

breaks within DNA. This thesis discusses why MVI is vital for double strand break signalling, 

as cellular biology techniques have shown the lack of γH2AX signalling the motor domain of 

MVI is inhibited. Not only is a working MVI necessary for when signalling DNA damage, this 

thesis has also found direct interactions with histones and their modifiers.  

As both nuclear myosins are involved in transcription, this thesis has looked at how these 

two myosins interact, and looks further into their nuclear import, roles in the DNA damage 

response, and how they are regulated within these roles.  
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Dithiothreitol 

Extracellular matrix 

EGF 

F-actin 

Epidermal growth factor 

Filamentous actin 

FBS Fetal bovine serum 

FISH Fluorescence in Situ Hybridisation 

FRAP Fluorescence recovery after photobleaching 

FRET Fluorescence resonance energy transfer 

GLOX Glucose oxidase 

GO Gene Ontology 

HAT Histone acetyl transferases 

HCS High Content Screening 

HMT Histone methyl transferases 

HR Homologous recombination 

HRP 

IPTG 

Horse radish peroxidase 

Isopropyl-β-D-thiogalactopyronoside 

JACoP Just another colocalisation plugin 

LB Lysogeny broth 
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LC/MS-MS 

MS 

MIC 

MVI 

NaCl 

Liquid Chromatography/ Mass Spectrometry-Mass Spectrometry 

Mass-Spectrometry 

Myosin IC 

Myosin VI 

Sodium Chloride 

NER Nucleotide excision repair 

NHEJ Non-homologous end joining 

PCA Principle component analysis 

PH Pleckstrin homology 

PTM 

PBS 

PCR 

PFA 

Post translational modifications 

Phosphate buffered saline 

Polymerised chain reaction 

Paraformaldehyde 

RNAP RNA polymerase 

SSC Saline-sodium citrate 

STORM 

TBS 

WT 

 
 

Stochastic Optical Reconstruction Microscopy 

Tris-Buffered Saline 

Wild Type 
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 General Myosins 
 

Myosins are motile proteins within a cell that utilise actin to produce movement and tension. 

The myosin superfamily can be divided into 79 classes and can be found throughout the 

eukaryotic evolutionary tree (Kollmar and Mühlhausen, 2017). So far, the study of myosin 

domain architectures and species phlyogenies has identified 7859 myosins within these 

defined classes.  (Figure 2.1).  

 

 

 

One well characterised myosin class is the muscle myosin II found within cardiac and skeletal 

muscles (Eddinger and Meer, 2007; Frontera and Ochala, 2015; Somlyo et al., 2004). The 

research carried out into these motors has provided information on how myosins are able to 

Figure 2.1. The myosin repertoire of eukaryotes 
A) The amount of myosins found within each taxon of the eukaryotic evolutionary branch. 

B) Number of classes identified within each taxon. Taken from Kollmar and Mühlhausen 

(2017).  

 

 

A
 

B
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generate force. This type of force generation requires the turnover of ATP into ADP, allowing 

the myosin to “step” along actin filaments, with the distance each myosin moves with one 

ATP turned over being defined as the step size (Houdusse and Sweeney, 2016). After the 

discovery of muscle myosins, other myosin types began to be identified within the cytoplasm 

and nucleus of cells. Myosins are now known to be responsible for a vast array of cellular 

functions such as actin based protrusions, cargo transport and cell division (Woolner and 

Bement, 2009). It is these non-muscle myosins that have formed the basis of my research.  

 The variation of myosin structures 
 

The diversity of the myosin superfamily is down to small variations within a mostly conserved 

structure (Hartman and Spudich, 2012). The motor domain between myosins of different 

classes shows little variation; all contain an actin binding site closely aligned with an ATPase, 

the site that powers the myosin. A neck region dictates step size and allows binding of 

regulators that are able to manipulate a myosin into open and closed conformations (Burgess 

et al., 2002). This neck domain contains IQ regions that bind to calmodulin (CaM) in a 

regulatory manner. An IQ sequence is defined as, [I,L,V]QxxxRGxxx[R,K], in which a 

hydrophobic amino acid is required at position 1, glutamine at position 2 and basic residues 

at position 6 and 11; X refers to any amino acid residue (Bahler and Rhoads, 2002). 

Depending on the type of myosin, the neck region can contain a varying number of IQ regions 

that are separated by 9-16 amino acids. This separation allows spacing for multiple 

regulatory CaMs to bind. The number of IQ domains defines the number of bound CaMs; 

which will stabilise a long rod conformation and dictate the myosin’s step size (Sakamoto et 

al.,2005). The neck region is then followed by a C-terminal tail domain. This tail domain varies 

completely between different myosins and has evolved for their specific functions. It houses 

the cargo binding domain (CBD), pleckstrin homology (PH), which bind phosphoinositides, 
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and FERM domains, which provide a scaffold for linking membrane to cytoskeleton (Korn, 

2000).  

Some myosins also contain coiled-coil domains. These are often found immediately after the 

IQ regions to allow dimerization, which activates the myosin for step-wise processivity along 

an actin track. In the dimeric form, these myosins function together to share a cargo where 

each myosin head sequentially rotates into the forward position (Yu et al., 2009). The same 

coiled-coil domains also allow for the formation of myosin filaments, where multiple myosins 

can form thick filaments resulting in synchronised contraction such as seen in muscle myosin 

II (Ikebe et al., 2001). 

As discussed, all myosins have some variation of these three structural domains; the motor, 

the neck and tail, and it is this variation that allows a plethora of roles. From this point 

onwards this thesis will focus on two myosins in particular, myosin IC (MIC) and myosin VI 

(MIV) as shown in Figure 2.2.  
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 Myosin IC 
 

 Overview 

MIC is a myosin found abundantly within the cell and is part of the non-conventional myosin 

I family. It functions as a single headed motor, and its roles include linking the actin 

cytoskeleton to the cellular membrane, endocytosis, glucose uptake and transcription 

(Zattelman et al., 2017). The structure of MIC is shown in Figure 2.3. It contains a 

conventional motor domain, a neck region that contains three flexible IQ regions and a tail 

domain, which houses a PH domain. 

 

The general structure of each mammalian myosin taken from (Batters and Veigel, 2016). 

Figure 2.2. Comparitive diagram of mammalian myosins. 
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 MICs cross bridge cycle  

All myosins are specifically adapted to their function through the variation in their motor, 

neck and tail domains. Beginning with the motor domain, the ATP turnover tunes the myosin 

for its function. The ATPase activity of a myosin can be defined by the cross-bridge cycle 

described in Figure 2.4 (Geeves and Holmes, 1999). There are eight states in which the 

myosin can be found in. In the absence of ATP, myosin is tightly bound to actin through the 

actin binding domain (rigor complex). ATP then binds to the ATPase domain creating an acto-

myosin-ATP complex; this complex then disassociates from the actin in a two-step manner, 

which can be defined by the two constants - KS/W, for complex formation and Kdet for 

detachment. Once detached from the actin, the myosin is in a recovery-like state, which 

leads to ATP hydrolysis and the formation of a myosin-ADP-Pi complex which allows 

rebinding to actin (Walklate et al.,2016). With the rebinding of actin, the inorganic phosphate 

leaves the complex, resulting in the power stroke of the myosin pulling on the actin. Once 

this power stroke is complete the change in conformation allows the release of the ADP 

returning the cross-bridge cycle to the initial actin-myosin rigor state complex.  

1 

A blue N-terminus showing a motor domain, followed by three IQ domains shown in yellow and the tail 

domain in green which contains PH domain near the C-terminus. 

Figure 2.3. Schematic diagram of myosin IC. 
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Like most myosins, myosin IC is sensitive to forces applied through cargo binding. These 

forces are able to dictate the cross bridge cycle kinetics of a motor protein. At low forces, 

less than 1pN, ADP release limits the detachment of myosin from actin, however at forces 

above 1pN, the myosin detachment from actin is limited by the binding of ATP. This differs 

from another myosin I isoform, isoform 1B, in which its cross bridge cycle is incredibly 

sensitive to force below 1pN, which allows longer attachment lengths once bound to cargo. 

This type of attachment length can be attributed to myosin 1Bs role as a molecular force 

 Starting from the myo-actin complex (AM), there is the addition of ATP, leading to the detachment of myosin off 

the actin (MT), the hydrolysis of ATP to ADP causing the acto-myosin complex to reform (AMDPi), then the loss 

of the ingorganic phosphate Pi to form the tightly associated myo-actin complex (AMD). Taken from (Walklate et 

al., 2016) 

 

Figure 2.4. The myosin cross bridge cycle. 
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sensor (Greenberg et al., 2012). Yet MIC remains as a stable transporter over a range of 

forces.  

Once again to fully study the function of a myosin, an understanding of its structure and its 

motor domain is required.  

 Regulating MIC through its IQ regions 

IQ regions are contained within the neck of a myosin. This region, as previously described, is 

defined as [I,L,V]QxxxRGxxx[R,K] (Terrak et al., 2003). Whilst all myosins must contain at least 

one IQ motif (Cameron, Liu, and Pihkala, 2013), it can be repeated up to six times leading to 

multiple IQ regions adjacent to each other (Nishikawa et al., 2006). Each IQ region can bind 

to an essential light chain which can act as a myosin regulator such as CaM and CaM-like 

proteins (Houdusse, Silver, and Cohen, 1996). Structurally, an IQ region is comprised of 

amphiphilic seven turn α-helices. These turns can contain phosphorylation sites that once 

again aid in the regulation of myosins (Li et al., 2017).  

The essential light chain, CaM, is a well characterised myosin binding protein that can 

regulate the activity of a specific myosin. It is a small 16.7kDa protein that is highly conserved 

with a simple structure where both the N and C terminus form two EF hand motifs, which 

are helix-loop-helix domains that bind specifically to calcium ions (Denessiouk et al., 2014). 

These two motifs are then joined by a flexible linker which allows the protein to wrap around 

the IQ region (Babu, Bugg, and Cook, 1988). 

In the case of myosin IC, CaM disassociates from the 1st IQ region, in the presence of calcium, 

whilst in the complete absence of calcium, apo-CaM can then bind (Manceva et al., 2007). 

The effect of apo-CaM differs between myosins, with their ATPase activity being inhibited, 

or stimulated, by the addition of calcium. However, this effect should not be seen as an all 

or nothing: with the variation of IQ domain numbers there is also a variation in how many 
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CaMs bind and unbind, depending on calcium concentrations. It is this fine tuning that has 

made MIC highly adapted to its functions. 

 MICs tail domain defines its function 

Within the tail of MIC, is a pleckstrin homology domain (PH). This domain is utilised for the 

transportation of vesicles in and out of the cell for both endo and exocytosis that occurs at 

the cellular membrane (Boguslavsky et al., 2012; Bose et al., 2004). At the membrane, MIC 

binds to phospholipids to aid in insulin stimulated GLUT4 translocation to a cell membrane 

and aids in membrane ruffling (Boguslavsky et al., 2012). This lipid binding role is regulated 

by calcium, where a low concentration of calcium is required, to allow tight binding of apo-

CaM to the IQ region, which frees the PH domain (Lu, et al., 2014). When this PH domain is 

inhibited in zebrafish embryos there is a complete loss of membrane shape, highlighting the 

importance of MIC and its tail (Gupta et al., 2017).  

 

 

 MICs binding partners 

By studying the binding partners of myosins, their roles can be elucidated. These binding 

partners allow the motor to become activated in a specific pathway. As MIC is heavily 

localised at the cellular membrane, the most characterised binding partners that can control 

MICs function are often vesicle related (Hokanson and Ostap, 2006; Kittelberger et al.,2016). 

It is known that MIC binds directly to Neph1, a signalling protein required for fully functioning 

kidney podocytes, to stabilise cell shape, linking MIC to the actin cytoskeleton (Arif et al., 

2016). It also functions as a stabiliser of lipid rafts through its lipid binding properties which 

can then form cell adhesions or allow the recruitment of GTPases for cell signalling 

(Brandstaetter, Kendrick-Jones, and Buss, 2012). Here, it is likely that the binding partners 
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do not change the functionality of the MIC but that the structure of MIC itself dictates its 

role. 

 Myosin VI (MVI) 

 

 MVI structure 

MVI is the only myosin that travels from the barbed end of actin (+) to the pointed end of 

actin (-) (Wells et al., 1999). This reversal of direction makes it vital in cellular exo and 

endocytosis as well as stabilisation of the Golgi-apparatus (Buss, Spudich, and Kendrick-

Jones, 2004). Whilst both MIC and MVI have lipid binding domains within their tails, MVI 

contains an SH3 domain at the N-terminus before the motor, and only two IQ regions, 

compared to MICs three. A coiled-coil region within the neck of MVI allows for dimerization 

in a cargo dependent fashion (Yu et al., 2009), and a convertor region dictates the reversal 

of direction (Ménétrey et al., 2005).  

 

 MVIs cross bridge cycle 

Myosin VI is an example where both ATP turnover and the force of the myosin affect its 

functionality. Optical trapping experiments have shown that up to 2pN of force, MVI has a 

large stepping step size, between 35nm to 27nm, to which ATP concentration has little effect. 

Once a load larger than 2pN is added to the myosin, the myosin stalls. This stalling is down 

This diagram shows the SH3 domain found at the beginning of the motor domain, with the unique convertor 

that is linked with an IQ region. The coiled-coil domain which allows for dimerization and the cargo binding 

domain 

 

 

Figure 2.5. A simplified diagram of MVI. 
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to an increased rate of ADP binding, and a decrease in ATP affinity at the trailing head 

(Altman, Sweeney, and Spudich, 2004). This creates a biphasic myosin that is able to act as a 

transporter when necessary, but at a certain force can also become an anchor, linking the 

actin filament to its cargo. 

The motor domain dictates not only the length of time a myosin can spend on an actin track 

but also the step size it can take and the forces the myosin can withstand. These forces are 

not only external forces deriving from cargo binding, but also internal forces that occur 

during dimerization of two myosin heads, leading to the human-like stepping characteristic 

that myosins display.  

 

 MVIs IQ domains  

All known myosins use their motor domain to travel towards the plus end of actin, except 

myosin VI. Myosin VI contains a small domain between its convertor domain and the IQ motif 

(Ménétrey et al., 2005). This domain provides an additional CaM binding site outside of its 

traditional IQ motif. This small CaM binding motif has been coupled to the convertor domain 

just after the motor domain. It is this small motif that allows the repositioning of the lever 

arm in the opposite direction towards the minus end of the actin. CaM is able to bind to this 

convertor domain independently of calcium concentration, whilst the remaining IQ region 

bind apo-CaM only in the absence of calcium, similarly to MIC (Batters et al., 2016).  

This simple conserved IQ domain controls not only the direction of travel of a myosin, but its 

activity through stabilisation of structure.  

 MVIs tail  

Coiled-coil domains are prevalent within myosins and allow the formation of myosin bundles 

and myosin filaments. These domains have been heavily characterised in the muscle myosin 
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II due to the formation of the myosin filaments by two heavy chains (Dasbiswas et al.,2018). 

This filament formation creates the energy needed to move a muscle. Within a cell, however, 

coiled-coil domains are utilised for myosin dimerization which are then able to create a 

stepping motion required for transportation. This provides MVI with enough energy to 

transport large cargoes throughout the cytoplasm, as well as withhold the large forces placed 

upon it when acting as an anchor (Mukherjea et al., 2014). Non-muscle myosin IIA and IIB 

utilises its coiled-coil domain for complete filamentous formation, like that as seen in the 

muscle myosin; yet these particular filaments can be dynamic along cellular actin (Melli et 

al., 2018). This type of filamentous formation of myosins is yet to be seen in MVI and is 

unlikely to occur.  

Similar to MIC, MVI contains a lipid binding domain within its tail region. One role where it 

utilises this feature is during endocytosis. In this case, MVI is targeted to clathrin-coated 

structures, which are then invaginated when MVI binds to Dab2 - a clathrin-associated 

sorting protein. As well as endocytosis, MVI has a role in exocytosis in neurosecretory cells. 

The myosin binds to secretory granules and tethers them to the cortical actin network linking 

the myosins cargo to its function (Tomatis et al., 2013).  

MVI exists as four different isoforms, all of which differ within the tail region of the protein. 

The four isoforms contain either a short insert, large insert, both inserts, or no inserts 

(Wollscheid et al., 2016) (Figure 2.6). These isoforms provide differing affinities for MVIs 

binding partners and allow a variation of function, whilst maintaining the motor 

characteristics of the protein.  

This variation in the tail and myosin’s structural differences define their functionality. To 

understand how a myosin functions within the cell, the motor domain, the neck region and 

the tail domains must be taken into consideration, for these form the basis of the cargo they 
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bind, the forces they can withstand, the processivity of the motor and the regulation of that 

myosin.  

 MVIs binding partners  

Binding partners are the key to understanding a myosin’s role within a system. In the case of 

MVI there are a multitude of well characterised binding partners, all within distinct cellular 

pathways. During receptor-mediated endocytosis, MVI binds to disabled homolog 2 (Dab2) 

through its WWY motif, positioned between residues 1193 and 1195 (Morris et al., 2002). 

This complex then binds to lipoproteins for signal transduction, where MVI is recruited solely 

by the presence of Dab2. Another binding partner is the tumor necrosis receptor-associated 

factor 6 binding protein (T6BP), a protein involved in NF- κB signalling, which controls 

cytokine dependent cell signalling. MVI binds this protein through another motif found in its 

cargo binding domain: the RRL motif found at position 1108-1110 (Morriswood et al., 2007). 

These two domains have differing affinities within the four isoforms of MVI (Figure 2.6). The 

short insert isoform has a much higher affinity for proteins that bind to the RRL motif, 

compared to the large insert due to slight blocking of the motif by itself (Fili et al., 2019). 

However, further work is required to fully understand the functions of all four isoforms.  

The short insert, the large insert, both inserts and no insert. Within the tail region are the two binding motifs, the RRL 

motif, which binds to GIPC, NDP52 and others, and the WWY motif, which binds to Dab2. Taken from Tumbarello et 

al.,(2012).  

Figure 2.6. The isoforms of MVI exists in four isomers. 
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 Actin inside the cell 
 

 Cytoplasmic actin  

When discussing myosin, the state of actin also needs to be discussed. Actin is a 43kD 

monomer that can oligomerise into polymeric and then filamentous actin. The actin itself 

rotates at each monomer to allow for binding, thus leading to a helical structure. It is this 

helical structure that defines the barbed (+) and pointed (-) ends of actin and is important in 

defining which direction a myosin is travelling (Holmes et al., 1990). In physiological ionic 

strength, actin spontaneously polymerises and does not require any external proteins. Yet, 

in the presence of ATP, actin polymerisation can be accelerated and treadmilling can occur, 

where the actin depolymerisation at the minus end matches the polymerisation at the plus 

end (Chesarone and Goode, 2009). Due to the spontaneous nature of actin filaments, the 

cell is able to control filament formation through the use of cofilin, a protein that promotes 

the disassociation of monomeric actin, and profilin, a protein which aids in the association 

of monomeric actin (Bamburg and Bernstein, 2010). Arp2/3 (actin related proteins) is a 

complex that creates nucleation sites by binding to an actin filament and causing a new 

filament to form at 60° from the original. This forces the actin to polymerise in certain 

directions, thus resulting in rearrangement of the actin cytoskeleton within the cell (Goode 

et al., 2001). To stabilise actin filaments (F-actin) the F-actin capping protein binds to the fast 

growing plus end which then blocks further transfer of actin monomers. If the cell requires 

the actin filaments to be cut, gelsolin and villin, can undertake this process (Friederich et al., 

1999; Sun et al., 1999).  

Actin polymerisation and regulation creates a cytoskeleton within the cell to act against the 

cell membrane to retain the cell’s shape and size (Bezanilla et al., 2015), provide actin tracks 

for myosins to transport cargo (Cramer, 2008) and cellular polarity through the generation 
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of membrane protrusions (Caswell and Zech, 2018). All myosins require actin for their role 

as a motor, and many of them use actin filaments for their function.  

 Nuclear actin  

Once again, whilst discussing nuclear roles for myosins it is always important to understand 

the state of actin within the local environment of a myosin. Nuclear actin was discovered 

long before nuclear myosins (Lestourgeon, et al., 1975); however, the form it takes in the 

nucleus has always been hotly discussed due to the different imaging techniques utilised by 

different labs (Kelpsch and Tootle, 2018).  

This variation in actin formation is down to the observation of actin stress filaments that are 

formed in the nucleus during serum starvation, heat shock, DMSO treatment and other stress 

causing conditions (Serebryannyy, et al., 2016). Interestingly, this journal article, is the only 

time the presence of long actin filaments has been observed in the nucleus; more commonly, 

actin can be found as monomers (Kapoor et al., 2013) and polymeric (Gieni and Hendzel, 

2009) rather than the well characterised filaments observed in the cytoplasm. After labelling 

cells with actin phalloidin, actin rods can be distinguished under stress conditions, but only 

when the cytoplasmic actin is saturated in the image (Belin, Lee, and Mullins, 2015). This 

provides evidence that even though the actin rods are being stained, it is likely that they have 

a distinct structure compared to that of their cytoplasmic counterparts.  

It is generally agreed that the mechanisms that require nuclear actin, use actin as small 

polymeric molecules or monomeric. Actin plays vital roles in transcription (Hofmann et al., 

2004), chromatin organisation and movement (Xie et al., 2018) and is utilised by the human 

cytomegalovirus during nuclear egress of viral capsids (Wilkie, Lawler, and Coen, 2016). In 

transcription, actin co-purifies with RNA polymerase (RNAP) I (Philimonenko et al., 2004), 

RNAPII (Hofmann et al., 2004) and by blocking actin binding through anti-actin antibodies, 

RNAPII transcription is inhibited (Hofmann et al., 2004). Anti-actin antibodies also block 
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chromosome condensation and the actin-related proteins Arp4 and Arp8, along with 

monomeric actin, all bind to the chromatin remodelling complex INO80 (Zhang et al., 2019). 

When studying chromatin movement, Chuang et al., (2006) used a non-polymerisable actin 

mutant actin-G13R, to delay chromatin movement for transcriptional activation, and this 

movement can inversely be enhanced by the F-actin stabilising mutant actin -S14C.  

The different forms of actin all have varying functions and are highly regulated in the nucleus 

by cofilin, Arp proteins and profilin, like cytoplasmic actin. As previously discussed, for a 

myosin to have complete function, actin also has to be present. Therefore, to understand a 

myosin’s function within the nucleus, the state of nuclear actin also has to be taken into 

account. 

A cartoon showing the role actin has in both RNAPI and RNAPII transcription, as well the import complex of actin 

containing cofilin, and the export complex containing exportin 6. Taken from (Kelpsch and Tootle, 2018). 

Figure 2.7. Actin inside the nucleus 
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 Nuclear myosins  
 

So far, cytoplasmic myosins are the most characterised myosins other than muscle myosins. 

A relatively recent field has begun to focus on the role myosins play within the nucleus. This 

field first begun with a single myosin in 1997 (Nowak et al., 1997) . It was first though this 

discovery was through accidental leakage of cytoplasmic proteins into the nuclear extract. 

However, after this, the myosin was discovered to be a MIC isoform, isoform B, referred to 

as nuclear myosin 1 (NM1) (Pestic-Dragovich et al., 2000), and the nuclear myosin field began 

to increase in traction. Now it is known that there are at least 8 myosin families with one or 

two isoforms within the nucleus (de Lanerolle, 2012). Nuclear myosins have been 

characterised within a few fields, with a heavy bias towards transcription and NM1. To fully 

understand how nuclear myosins are involved in a collaborative effort within the nucleus it 

is important to discuss them in a wider picture, rather than focusing on a single myosin. So 

far, the nuclear myosin field have covered a broad range of topics from DNA damage repair 

and transcription to viral infections, as reviewed by de Lanerolle, (2012). The work published 

within these topics are limited and often prescribe an obvious phenotype with a deletion of 

a nuclear myosin. To truly understand nuclear myosins, the regulation and activation, import 

and export control, and their binding partners need to be known. As well as this, if there is a 

specific isoform localised within the nucleus, the properties that differ it from its cytoplasmic 

counterpart need to be discovered.  

 The import and export of nuclear myosins  

Whilst cytoplasmic myosins do not need to cross any membranes, nuclear myosins require 

nuclear localisation signals or binding partners to allow them to cross into the nucleus and 

differentiate from their cytoplasmic roles. Understanding how these myosins are selectively 

transported across the nucleus will then allow the study of the nuclear pool only. As the 

majority of nuclear myosins have cytoplasmic roles, knock-outs and knock-downs have a 
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drastic effect on the cell and often a phenotype observed may be down to a loss of multiple 

pathways in addition to the one being studied. To understand this movement may also open 

a new set of binding partners required for transportation.  

 MIC import and export  

Myosin IC isoforms all contain a nuclear localisation signal embedded amongst the IQ region; 

however, only two of the isoforms, A and B, can be identified in the nucleus (Dzijak et al., 

2012). Interestingly, these isoforms differ in their N-terminal sequence, where NM1 (isoform 

B) contains a unique 16 amino acid sequence that is required for its nucleolar localisation. 

The NLS itself, however, is enough for the myosins to enter the nucleus. With the NLS 

sequence being conserved it is recognised by importin 5, importin 7 and importin β. For 

importin β to recognise this NLS sequence, the IQ regions need to be freely available and so 

CaM must disassociate before the NM1 is imported into the nucleus (Maly and Hofmann, 

2016).  

In another pathway, NM1 may be taken into the nucleus through the phosphoinositide-

dependent pathway that requires the PH domain, found in the tail of all MIC isoforms 

(Nevzorov et al., 2018). This domain allows binding of phospholipids found on vesicles and, 

in this case, NM1 requires no energy to be transported into the nucleus as it simply binds to 

the endoplasmic reticulum and diffuses into the nucleus through the nuclear membrane. 

With the use of fluorescence recovery after photobleaching, GFP tagged NM1 recovers in the 

nucleus after only one minute. This contradicts the previous published hypothesis and 

produces a mechanism for NM1 shuttling, and removes the need for calcium regulated 

import. It is possible both these mechanisms can work in tandem, where the PH domain 

provides basal levels of NM1 and the calcium regulated importin dependent pathway, allows 

the cell to react to an increase in calcium levels.  
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 MVI import and export  

Myosin VI also contains an NLS sequence within the IQ regions of the protein like that of 

NM1. There are also seven other NLS sequences throughout the myosin, which signals are 

relevant is yet to be seen (Majewski et al., 2018), as binding partners can also affect the 

myosin VI distribution throughout the cell (Fili et al., 2017). Myosin VI has four isoforms and 

the nuclear localisation, like that of NM1, is found to be isoform specific. Only with the non-

insert myosin VI do we see nuclear localisation, and this is beginning to be attributed to the 

availability of the protein binding motifs, RRL and WWY, found in the cargo binding domain 

(Fili et al., 2017). These binding domains can bind to two nuclear proteins, hnRNPU, a protein 

responsible for pre-mRNA transport and nucleolin, a nucleolar specific protein. Majewski et 

al., (2018) have attributed these binding capabilities to the shuttling of myosin VI across the 

nuclear membrane. Myosin VI also binds to hormone receptors such as the androgen 

receptor (Loikkanen et al., 2009) and knocking out myosin VI causes a loss of gene expression 

controlled by these receptors. One hypothesis is that myosin VI is responsible for 

transporting these receptors the full distance from membrane to DNA and once bound to 

these receptors it piggy-backs through the nuclear membrane. This hypothesis is yet to be 

tested.  

So far, it seems that there is no one-fits-all mechanism for import and export, and it is 

dependent on the myosin itself. The variation could be due to binding partners, NLS 

sequences, and location of NLS sequence. If more information on these differences is 

available, then experiments can be undertaken to specifically remove nuclear myosins from 

the nucleus, whilst keeping the cytoplasmic pool, thus only interfering with their nuclear 

roles.  

 Function of nuclear myosins 
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 Nuclear myosins in transcription 

Nuclear myosins have been the most characterised within the transcription field. So far NM1, 

myosin VI and myosin Vb have been identified to play a role within transcription (Lindsay and 

McCaffrey, 2009; Philimonenko et al., 2004; Vreugde et al., 2006). The prevalence of nuclear 

myosin research in transcription is due to the vital role they play. With the removal of NM1, 

transcription levels within the cell deplete, and this observation has been repeated with 

myosin VI as well.  

 

 

 NM1’s role in transcription 

NM1 is the most studied of the myosins in terms of transcription. Like actin, as previously 

discussed, NM1 has also been found in complex with all three RNAPs within eukaryotic cells. 

Both chromatin immunoprecipitation (ChIP) and co-immunoprecipitation assays have shown 

that NM1 has a direct interaction with RNAPI and rRNA genes (Sarshad et al., 2013). This 

direct interaction relies on the cargo binding domain of NM1 to bind to the chromatin and 

actin to the motor domain. RNAPI binds actin directly and thus NM1 creates a cross link 

between the RNAPI-actin complex and the DNA itself. As well as binding to RNAPI, NM1 also 

binds to the chromatin remodelling complex WSTF-SNF2h (Percipalle et al., 2006), recruiting 

the complex to the site of rDNA transcription to create the pre-initiation complex. Not only 

is NM1 found within the pre-initiation complex for RNAPI transcription, it has also been 

found directly bound to the DNA through ChIP-seq data at class II promoters for RNAPII 

transcription (Almuzzaini et al., 2015). Similarly, NM1 also interacts with the same WSTF-

SNF2h at RNAPII sites for the opening of chromatin. If actin is not present, these complexes 

dissociate, and so there is a hypothesis that NM1 is able to work as an auxiliary motor for the 



Page | 41  
 
 

polymerases, where small actin polymers are generated rapidly alongside the transcribing 

polymerase. This hypothesis has some backing with NM1 not only being found at the 

initiation complexes but also during elongation and termination of transcription (Ye et al., 

2008).  

 MVIs role in transcription  

MVI also has the potential to be an auxiliary motor or an anchor during transcription. This is 

possible as the cargo binding domain of MVI can bind to DNA, regulated by the binding of 

nuclear dot protein 52 (NDP52). Here the binding of NDP52 causes an unfolding of the 

protein, from its inactive backfolded state to its active state, allowing dimerisation of two 

myosin VI heads. The binding partner is the regulator of the myosins functionality in this 

process. The motor domain binds to the actin bound to the RNAPII complex itself and, like 

NM1, the tail binds to DNA. By inhibiting myosin VI using the small molecule inhibitor TIP, a 

75% reduction of RNAPII transcription in vitro occurs, showing the importance of myosin VI 

as well as the potential for myosin redundancy as not all transcription is inhibited (Fili et al., 

2017; Cook et al., 2018). This redundancy could be, in part, due to NM1 also being found at 

RNAPII sites. One point in discussion is how these two myosins could work together at the 

site of transcription and whether they are both required for complete transcription - from 

pre-initiation to termination. With NM1 binding the SNF2h-WSTF chromatin remodelling 

complex, MVI can also remodel chromatin. MVI has been shown to be responsible for the 

homologous pairing of TNF alleles (Zorca et al., 2015) during transcription, which allows for 

simultaneous expression of genes and requires chromatin rearrangement that is lost after 

knock out of the MVI gene.  

Another myosin that is found involved in RNAPI transcription but will not be studied in this 

thesis is Mysoin Vb, which is found localised within the nucleoli. Here, the molecular motor 

is found co-localised to the RNAPI complex as well as newly synthesised rRNA and co-purifies 
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with actin (Lindsay and McCaffrey, 2009). Once again, we see a molecular motor binding 

directly to an RNAP as well actin, showing the need for actin within the nucleus. Interestingly, 

this interaction is isoform specific where myosin Va, whilst nuclear, is not found in the 

nucleoli, like MVI and NM1 where nuclear and nucleolar localisation is isoform specific.  

 

 DNA damage 
 

To discuss the role of nuclear myosins in DNA damage, it is important to understand the 

types of DNA damage that can occur and the different pathways within a cell that signal and 

repair this damage. By understanding these mechanisms, novel myosin roles can be 

elucidated. 

 DNA damage can take multiple forms depending on the damage inducer. The different types 

of DNA damage are: single stranded breaks (Zhou and Doetsch, 1993);, double stranded 

breaks (Jackson, 2002); base mismatches (Xu, Fu, and Xiao, 2018); insertion-deletion of bases 

(Lee et al., 1995); as well as oxidation (Fleming, Ding, and Burrows, 2017), alkylation (Xu et 

al., 2017) and deamination of bases (Duncan and Miller, 1980). All of these generate a 

Myosin VI utilises a binding partner to dimerise where it then binds to the RNAPII complex through actin. Taken 

from (Fili et al., 2017). 

 

Figure 2.8. MVI within RNAPII transcription. 
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different response within the nucleus and all have different repair pathways. If the cell is 

unable to repair the damage or the damage is prevalent along the chromatin, then 

senescence, where a cell ceases to divide (Venkatachalam, Surana, and Clément, 2017), or 

apoptosis, forced cell death, is induced (Roos and Kaina, 2006). If the cell is unable to control 

the DNA damage, mutations become incorporated in vital regulatory genes, this leads to mis-

regulation of the genome, leading to cellular transformation, where they undertake 

uncontrollable growth and division (Aparicio, Baer, and Gautier, 2014).  

Due to the large variety of damage and repair mechanisms, I will be focussing on double 

stranded breaks (DSBs) within DNA and how they are signalled and repaired. DSBs are 

particularly dangerous to a cell’s genome, as they can lead to a complete shear in the DNA, 

which can then lead to whole genome rearrangements (So et al., 2017). Spontaneous DSBs 

occur during DNA replication, often caused by the stalling of replication forks (Alexander and 

Orr-Weaver, 2016) . 

 It is important to remember that the genome is covered in DNA binding proteins, all of which 

are performing a variety of functions to aid in stability, transcription, replication and 

structure. With all these different proteins being bound to DNA, at any one time, it is likely 

during DNA replication for any of the machinery - the topoisomerase, DNA polymerases, and 

the helicases - to encounter other DNA bound proteins. If an unusual structure occurs in the 

DNA, or a collision between DNA bound proteins occurs, a DSB has the potential to form 

(Pomerantz and O’Donnell, 2008) . However, not only can DSBs form naturally, they can also 

be induced by external sources such as radiation (Vignard, Mirey, and Salles, 2013), for 

example UV and Infra-red, and chemotherapeutics, such as cisplatin (Hu et al., 2016) and 

bleomycin, which have been used in this thesis. In fact, it is this function of 

chemotherapeutics to inhibit DNA replication that leads to the generation of DSBs which 

makes them suitable for cancer treatments.  
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 Signalling double stranded breaks (DSBs) 
 

 Activation of protein kinases  

At the point of damage, a selection of proteins begins to signal to the cell that a damaging 

event has occurred. Phosphatidylinositol-3 kinase-related kinases (PIKK) are responsible for 

the initial signalling of any DSBs. Specifically, it is the Ataxia-Telangiectasia-Mutated protein 

(ATM) (Hartlerode et al., 2015), and the DNA-dependent protein Kinase catalytic subunits 

(DNA-PKcs) (Y. Zhou et al., 2017) that signal a response. However, the proteins responsible 

for first binding to a DSB-end are part of the MRN complex; made up of the MRE11, Rad50 

and NBS1. The MRN complex binds to a free DSB and tethers the broken ends (Lee and Paull, 

2004). If an alternative repair pathway is required, a different complex binds to the damaged 

DNA strands, known as the Ku70/Ku80 complex (Jin, 1997). This threads itself onto the DSB 

and then slides along the break, allowing space for more Ku70/ku80 complexes to slide on. 

This type of collaborative binding provides the scaffold for the repair mechanisms.  

The MRN or Ku70/Ku80 complex once bound recruits ATM to the site of damage through its 

N-terminal domain and causes the activation of ATM. ATM normally resides as an inactive 

dimer, yet under damage the ATM is autophosphorylated on the serine at position 1981 (So, 

Davis, and Chen, 2009). This autophosphorylation causes the disassociation of this dimer, 

resulting in two monomeric active ATM proteins that stabilise the DSB.  

 γH2AX signalling  

γH2AX signalling forms the basis of DSBs signalling. It occurs through the phosphorylation of 

the serine-139 found on the tail of the H2AX histone. This histone is a variant of the H2A 

histone, and is found within 10% of nucleosomes (Rogakou et al., 1998). All three signalling 

proteins, DNA-PKcs and phosphorylated ATMs and phosphorylated Ataxia telangiectasia and 

Rad3 related kinases (ATRs), which are similar to ATMs, are able to phosphorylate this 
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residue once DNA damage is discovered (Wang et al., 2005). This phosphorylation then forms 

a cascade of phosphorylation of H2AX histones that can travel up to 2 Mbp with clusters of 

γH2AX signals forming around the break point (Burma et al., 2001).  

MDC1, a mediator of DNA damage checkpoint 1, recognises these γH2AX sites which in turn 

recruits more MRN complexes to the damage site, leading to an increase in activated ATM 

kinases (Eliezer et al., 2014). This process creates a positive feedback cascade event where 

the occurrence of a repair protein leads to the increase in signalling proteins, which in turn 

upregulates the activation of repair proteins.  

These proteins and post-translational modifications at the site of a DSB decide where a break 

has occurred, how to signal a break and from this then decide how the break can then be 

repaired.  

 Repairing double strand breaks 
 

 Homologous recombination  

To repair DSB, the cell has three main options: homologous recombination (HR) (Morrical, 

2015), HR with single-strand annealing (Ramakrishnan et al., 2018), and non-homologous 

end joining (NHEJ) (Takata et al., 1998). HR is the least error prone of the repair mechanisms 

and relies on the sister chromatid or a homologous chromosome to act as a template to 

repair the DNA. This type of repair only comes within the S and G2 phases of the cell cycle as 

the sister chromatids need to be readily available (Zhao et al., 2017). Once MRN is bound 

and the damage is signalled, the DNA is cut back by the nuclease Artemis, this then releases 

a 5’ end oligonucleotide (Beucher et al., 2009) . The 5’ end acts as the invading strand, acting 

as a primer for the repair filaments moderated by the recombinase, Rad51 (Lu et al., 2018). 

This primer has an identical sequence to that of the target homologue, where Rad51, then 

causes the separation of the double helix and the annealing of one of the ssDNA damaged 
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parts to a complete section of DNA, called the D loop extrusion (Mazloum and Holloman, 

2009). DNA synthesis is initiated and, through the formation of Holliday junctions, the cell 

can repair the DNA without any lasting damage. This type of repair requires movement of 

chromosomes within the nucleus to repair factories, so that the homologous pair can be 

identified and is in close enough proximity to allow Holliday junctions to form (Bugreev, 

Mazina, and Mazin, 2006).  

A variation of HR is when single strand annealing can occur through annealing homologous 

repeat sequences flanking a DSB. This process can be inhibited by the HR activating protein 

Rad51, most likely to force the DNA into HR as single strand annealing causes major deletions 

(Bae et al., 2019). After the ends are resected, the repeat sequences can pair with each other, 

like in HR, thus leaving anything in front of these repeats out of the repair site. DNA ligase III 

then joins the two strands together. The main issue with this repair pathway is that a large 

loss of genetic information occurs, and this repair pathway is often selected against when 

others are available.  

 Non-homologous end joining  

Finally, NHEJ does not require any type of homologous template for repair to occur. This type 

of repair is independent of the cell cycle and for it to be induced requires the Ku70/Ku80, 

and not the MRN complex, to bind to the DSB. The Ku70/Ku80 complexes provide a scaffold 

for the whole repair mechanism. Like all repair processes, first the broken strands are cut, in 

this process the DNAPKcs:Artemis complex has both a 5’ endonuclease as well as a 3’ 

endonuclease, allowing it to cut both parts of the break. If now the two ends are not 

compatible to be ligated, the DNA polymerases λ and μ produce two compatible ends. Once 

ligation can occur, DNA ligase IV and its cofactor XRRC4 are recruited by the Ku70/ku80 

complex and the DNA is repaired (Kurosawa et al., 2013). This type of DNA repair however 



Page | 47  
 
 

causes a loss of genetic material or an insertion of the wrong bases by the DNA polymerases, 

which could in turn have a dramatic effect on the cell.  

 

 

 Irreparable DSB damage 

After the induction of damage, the activated ATM has many downstream effects on the cell. 

Most importantly, the cells enter cell cycle arrest through DNA damage checkpoints. CHEK2 

is phosphorylated by the ATM kinase at threonine-68, which results in the prevention of 

A simple comparison of the proteins required for non-homologous end joining and homologous recombination. 

In NHEJ, the Ku70/80 complex binds to the break, recruits DNApKcs which in turn activates Artemis and the ligase 

IV complex which prepares the ends and allows for ligation. HR however relies on the MRN complex to bind to a 

break, which then acts as a scaffold for other repair proteins to bind, Rad52, Brca2 etc. Then homologous 

recombination occurs. Taken from Renodon-Corniere et al., (2013.) 

Figure 2.9 Diagrams of the DNA damage repair pathways. 
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mitosis. CHEK2 phosphorylation is not only required for mitosis prevention but also for 

stalling the cell in S-phase through its interaction with CDC25 (Einarsdóttir et al., 2006) .  

Both the ATM kinase and CHEK2 can also interact with p53, the well characterised tumour 

suppressor, cell cycle controller and apoptotic marker (Chrisanthar et al., 2008). If the cell is 

unable to repair the genome damage, then p53 becomes activated through phosphorylation 

by ATM and its destabilising protein, Mdm2, which marks the protein for degradation, is 

released from p53 (Kang et al., 2005). The apoptotic pathway then becomes cytoplasmic with 

the release of cytochrome C from the mitochondria, which forms with other proteins, the 

apoptosome, leading to apoptosis of the cell (Leoni et al., 1998) . As p53 can act as a 

transcriptional factor, the activation of the protein leads to a large cascade of activation and 

inactivation of proteins. It is also identified as the most mutated protein within cancerous 

cells, therefore the activating ATM kinase becomes significant to research (R. Zhao et al., 

2000). If it becomes mutated, then there is activation of tumour development genes and a 

repression of tumour repressor genes. If p53 is linked with any of the nuclear myosins then 

it becomes possible these myosins could act in either tumour growth or suppression making 

them a vital cog in the oncogenic machinery. 

 Nuclear myosins in DNA damage 
 

 MVI and p53  

So far, little interaction between DNA damage proteins and nuclear myosins has been 

discovered, except for a regulatory link between p53 and myosin VI (Jung et al., 2006) . The 

gene for MVI can be regulated by p53, where phosphorylated p53 can cause an increase in 

expression of MVI. MVI then binds to p53 and stabilises the protein, inhibiting degradation 

of the protein and allowing it to carry out cell cycle stalling and DNA repair. Interestingly, 

once MVI is bound to p53 there is a negative feedback loop where this complex inhibits 
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further MVI expression. This has been confirmed in RKO, colon cancer cell line, LS174T, 

another colon cancer cell line and H1299, a lung cancer cell line. However, in other cancer 

cell lines such as MCF7, a breast cancer cell line, and LNCaP, a prostate cancer cell line, DNA 

damage causes a reduction in MVI levels. Knock down of myosin VI in RKO de-sensitises the 

cell to DNA damage-induced apoptosis and overexpression of MVI stabilises p53, and so MVI 

could only be used as a therapeutic on certain cell lines and not to treat cancers globally (Cho 

and Chen, 2010). However, these studies do not comment on whether this myosin VI is 

cytoplasmic or nuclear. Further work will allow us to understand if MVI plays a vital role in 

p53 stabilisation, through its cytoplasmic or nuclear interactions.  

 Global chromosome re-arrangements by NM1  

So far, DNA damage and its response at the point of damage has been discussed. However, 

whilst DSBs go under local repair, there is also a global rearrangement of chromosomes, to 

allow for not only the pairing of genes for homologous recombination but also to bring the 

points of damage to a defined location to form repair factories.  

Chromosome territories have been well discussed since the 1950s where it was first defined 

that chromatin was diffuse across the nucleus, with no spatial organisation during 

interphase. However, in 1977, Stack et al. (Stack, Brown, and Dewey, 1977) began to define 

that each chromosome has a specific arrangement within the nucleus. Since then, in 2005 a 

full map of chromosome locations was defined (Bolzer et al., 2005). There are multiple 

reasons why a cell would still maintain organisation of their chromosomes even during 

interphase, as it allows the expression of related genes and the easy compaction of 

chromosomes once entering metaphase. This map has allocated a space each chromosome 

can fill and defined the territory of each chromosome. Now, this theory is common practice 

and it has allowed observations of complete chromatin rearrangement under stimulating 
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conditions such as with the use of hormones (Q. Hu et al., 2008), serum starvation (Mehta 

et al., 2010) and DNA damage (Mehta et al., 2013).  

When these chromosomes move, they have the potential to move great distances from 5-10 

µm to allow for the expression of genes and thus making gene movements cell cycle specific 

(Chuang et al., 2006). Due to the length of movement and the density of nuclear proteins, 

motion cannot be attributed to simple Brownian motion and must be the result of an active 

mechanism. During DNA damage, these long-range movements can also be observed. After 

cisplatin treatment, some but not all chromosomes relocate their territories. So far, it is 

noted that chromosomes 19, 17, 20, and 12 all relocate from the nuclear periphery to the 

nuclear interior or vice-versa. After knocking down NM1 this relocation was not observed, 

and the chromosomes remained in their original territories. This relocation coincides with an 

upregulation of NM1 into the nucleus and the increased amount of NM1 found directly 

bound to chromatin (Kulashreshtha et al., 2016). If the cell is unable to activate γH2AX 

signalling for DNA damage or the ATM is inactivated, this chromosome movement does not 

occur and therefore there must be cross talk between NM1, γH2AX and ATM (Kulashreshta 

et al., 2016). Also, after DSBs occur, NM1 allows for the contact of homologous 

chromosomes providing a template for gene repair (Evdokimova et al., 2018). This 

recruitment also requires ATM, thus making NM1 a key player in the DNA damage response.  

 Chromosome rearrangements by other nuclear myosins 

Myosin V has also been attributed to moving heterochromatic breaks within Drosophila cells 

(Caridi et al., 2018). Heterochromatin consists of satellite repeats and transposons. Due to 

their repetitive nature it is vital the cell can repair any breaks as fast as possible to stop large 

chromatin recombination and the mixing of chromosomes.  

Mre11, the DSB repair protein, recruits not only myosin V but also myosin Ia and myosin Ib 

through the myosin activator Unc45 and the heterochromatin protein 1a (HP1a). After this 
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recruitment long actin filaments form from repair foci to the periphery of the 

heterochromatin domain. This allows the breaks to be transported to repair factories within 

the nucleus (Caridi et al., 2018). Surprisingly, repair foci have also been observed travelling 

along these actin filaments however this movement has not yet been attributed to a myosin. 

Here the myosins are acting as traditional transporters of cargo and not as anchoring 

proteins.  

 The nuclear myosin field  
 

As a relatively new field, there are still many mechanisms that need to be defined. So far, in 

the field, obvious phenotypic results have been attributed to a loss of a nuclear myosin, 

however this should not be used to define a role for the nuclear myosin. The reason for this 

is due to the inability to differentiate between nuclear and cytoplasmic pools of myosins, and 

due to their multiple responsibilities within a cell, a knockdown or knockout can have drastic 

effects on the cell not just within the focus of the experimenter but also on transcription, 

cells susceptibility to DNA damage and the effect on chromatin organisation.  

To further build on the research done so far it is important to tackle the issues of how these 

myosins shuttle between the nuclear membrane allowing researchers to isolate the two 

pools of myosin. Along with this, the binding partners of nuclear myosins, their mechanical 

properties and their differences to their cytoplasmic counterparts all need to be considered. 

The aim of this project is to build on what is known about the roles and regulation of nuclear 

myosins, in particular NM1 and MVI, keeping in mind their already well characterised 

properties within the cytoplasm.  
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 Chemicals and reagents 
 

All chemicals have been purchased from Sigma Aldrich and ThermoFisher, unless specified. 

The antibodies have been purchased from Abcam, unless specified. Bleomycin sulphate 

(Sigma, Cat no.B1141000) was prepared to a stock concentration of 100µM is dH20. Cisplatin 

(Sigma, Cat no. C2210000) was prepared in 0.9% NaCl solution to a stock concentration of 

1mg.mL-1. Ku55933 (Sigma, Cat no. SML1109) was prepared in DMSO, to a stock 

concentration of 5mg.mL-1. Human epidermal growth factor (EGF) (Sigma, Cat no. E9644) is 

dissolved in 10mM acetic acid. Paclitaxel (abcam, 120143) is dissolved to a concentration of 

100mM in DMSO. 

 Recombinant protein expression constructs  

Name 

 

Amino acids Tags Plasmid Origin 

Homo sapien 

NM1 Full length  

1-1044 Histidine x6 pFastBacTM 1  Gifted by N. Fili  

 

Homo sapien 

NM1 tail co-

expressed with 

CaM 

 

698-1044; 1-

148 

Histidine x6  pET21 Kindly gifted by 

M. Zhang 

Xenopus Laevis 

CaM 

1-148 Histidine x6 pET21 Gifted by N. Fili 

Table 3.1. A table of recombinant protein expression plasmids.  
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 Primers  

 

 2.4 Oligonucleotides 

Name Sequence  Modification Origin  

ssDNA15 CCGGGCGGGGGCC

GG 

5’ fluorescein Integrated DNA 

tech. 

ssDNA40 TTAGTTGTTCGTAGT

GCTCGTCTGGCTCTG

GATTACCCGC 

 

5’ Fluorescein Integrated DNA 

tech. 

ssDNA15 GGCCCGCCCCCCGG

CC 

None Integrated DNA 

tech. 

ssDNA40 AATCAACAAGCATC

ACGAGCAGACCGAC

CTAATGGGCG 

None Integrated DNA 

tech. 

Table 3.3. A table of oligonucleotides used. 

Name Sequence (5’ to 3’) Origin 

pUC/M13 Forward 

 

CCCAGTCACGACGGTTGTAAAACG Invitrogen 

pUC/M13 Reverse 

 

AGCGGATAACAATTTCACACAGG Invitrogen 

Table 3.2. A table of primers used. 
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  NM1 peptide 

 

 

 

 

 

 

 

 

 

 

 

 

Name Sequence (aa) Modification Origin 

NM1 wild type 

(WT) 

 

CMRYRASALGSDGVRV N-terminus 

cysteine 

GL Biochem 

(Shanghai) Ltd 

NM1 R2L2 

 

CMLYRASALGSDGVRV N-terminus 

cysteine 

GL Biochem 

(Shanghai) Ltd 

NM1 R4L4 

 

CMRYLASALGSDGVRV N-terminus 

cysteine 

GL Biochem 

(Shanghai) Ltd 

NM1 R2L2-R4L4 

 

CMLYLASALGSDGVRV N-terminus 

cysteine 

GL Biochem 

(Shanghai) Ltd 

Table 3.4. A table of NM1 N-terminus peptides used. 
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 Drug stocks and Antibodies 

Table 3.5. A table of drugs used both stocks and final concentrations. 

 

 

 

 

 

 

 

 

Name Stock concentration 

(mM) 

Final concentration 

(µM) 

Incubation period  

TIP 0.1 25 4 hours, except with 

cisplatin treatments, 24 

hours.  

 

Bleomycin 1 0.5 4 hours  

 

Cisplatin 3.3 25 24 hours restocked every 

4 hours.  

 

Ku55933 12.6 20 4 hours  

 

Paclitaxel 100 0.1 Stated length of apoptosis 

assay. 
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Name Origin and Cat. 

No. 
Use Dilution 

Anti-Myosin Iβ (Nuclear) 
antibody produced in rabbit 

Sigma-Aldrich, 
M3567 

Western Blot, 
Immunofluorescence 

1 in 200, 
1 in 100 

Myosin Ic Antibody 
produced in mouse 

Santa-Cruz, sc-
136544 

Immunofluorescence  1 in 200 

Anti-Lamin β1 produced in 
rabbit 

Abcam, 
ab16048 

Western Blot 1 in 500 

Anti-β-actin produced in 
rabbit 

Abcam, 
ab8227 

Western Blot 1 in 
5,000 

Anti-MVI produced in rabbit  Sigma-Aldrich, 
ABT42 

Western Blot, 
Immunofluorescence 

1 in 500, 
1 in 200 

Anti-phospho-Histone 
H2A.X (Ser139) Antibody 
produced in mouse 

Sigma-Aldrich, 
05-636 

Western Blot, 
Immunofluorescence 

1 in 
1,000, 1 
in 500 

Goat Anti-Rabbit IgG HandL 
(HRP)  

Abcam, 
ab6721 

Western Blot  1 in 
15,000 

Rabbit Anti-Mouse IgG 
HandL (HRP) 

Abcam, 
ab6728 

Western Blot 1 in 
10,000 

Anti-CaM 1/2/3 antibody 
produced in mouse  

Abcam, 
ab2860 

Immunofluorescence 1 in 50 

Anti-Histone H3 (tri methyl 
K9) antibody produced in 
rabbit 

Abcam, 
ab8898 

Immunofluorescence 1 in 500 

Anti-Histone H3 (acetyl 
K27) antibody produced in 
rabbit  

Abcam, 
ab4729 

Immunofluorescence  1 in 500 

Anti-Histone H3 (acetyl K9) 
antibody produced in rabbit  

Abcam, 
ab4441 

Immunofluorescence 1 in 200 

Anti-Histone H3 (mono 
methyl K4) antibody 
produced in rabbit 

Abcam, 
ab8895 

Immunofluorescence 1 in 200 

Anti-Histone H3 (di methyl 
K36) antibody produced in 
rabbit  

Abcam, 
ab9049 

Immunofluorescence 1 in 500 

Goat anti-Rabbit IgG (H+L) 
Highly Cross-Adsorbed 
Secondary Antibody, Alexa 
Fluor Plus 488 

ThermoFisher, 
A32723 

Immunofluorescence 1 in 500  
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 Whole Chromosome paints  

All chromosome paints were purchased from Cytocell (Cambridge).  

 

 

 

 

 

 

 

Goat anti-Rabbit IgG (H+L) 
Highly Cross-Adsorbed 
Secondary Antibody, Alexa 
Fluor Plus 488 

ThermoFisher, 
A32731 

Immunofluorescence 1 in 500  

Goat anti-Rabbit IgG (H+L) 
Highly Cross-Adsorbed 
Secondary Antibody, Alexa 
Fluor Plus 555 

ThermoFisher, 
A32732 

Immunofluorescence  1 in 500 

Goat anti-Rabbit IgG (H+L) 
Highly Cross-Adsorbed 
Secondary Antibody, Alexa 
Fluor Plus 647 

ThermoFisher, 
A32733 

Immunofluorescence, 
specifically STORM 

1 in 250 

Table 3.6. A table of antibodies and their dilutions. 

Cat. No.  Name  

LPP12R Chromosome 12 Whole Chromosome Painting Probe Red  

LPP19G Chromosome 19 Whole Chromosome Painting Probe Green  

Table 3.7. Chromosome paints purchased from cytocell. 
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 Methods 
 

 Bacterial transformation 

Plasmid DNA for the NM1 recombinant tail and CaM were transformed into Escherichia coli 

B21 cells. 3µL of pure plasmid DNA was added to the cells and gently stirred before 

incubating on ice for 30 minutes. The cells were then heat shocked for 45 secs at 42°C and 

allowed to cool on ice for 2 minutes. 200µL of commercial lysogeny broth (LB) was added 

and incubated for 1 hour at 37°C whilst shaking (220rpm). The mixture was then plated onto 

an LB agar plate containing 100µgmL-1 ampicillin and then incubated at 37°C overnight.  

 Bacterial protein expression 

A single colony was chosen from the E. coli transformation that contained the NM1 tail 

plasmid and were grown overnight at 37°C in 100mL of LB containing 100µgmL-1 of ampicillin. 

A 1 in 100 dilution was then added to 1 litre of LB containing 100µgmL-1 ampicillin and grown 

at 37°C at 220rpm. Once the optical density OD595 reached 0.5 the cells were induced with 

1mM IPTG. Cells were then allowed to grow overnight at 18°C. Cells were then collected by 

centrifugation at 4°C at 4000rpm in a JS 4.2 swing bucket rotor (Beckman Coulter) for 20 

mins. The supernatant was then discarded and the cell pellets resuspended in 50mM Tris.HCl 

(pH 7.5), 1mM Dithiothreitol (DTT), 200mM NaCl, 10% (w/v) sucrose. The resuspension was 

frozen at -80°C.  

  Baculovirus bacterial transformation 

Baculovirus transfection and expression followed the protocol provided by the Bac to Bac® 

system (Invitrogen™). Briefly, the plasmid is transformed into DH10Bac™ chemically 

competent cells. 1ng of DNA is added to 100µL of cells at 4°C and allowed to incubate for 

30mins. Cells are then heat shocked for 45 secs at 42°C. Then immediately chilled at 4°C for 

two minutes. 900µL of S.O.C medium provided, was then added and the cells were incubated 



Page | 60  
 
 

at 37°C at 225rpm for 4 hours. Cells were then plated on LB agar plates containing 50µgmL-1 

kanamycin, 7µgmL-1 gentamicin, 10µgmL-1 tetracycline, 100µg-1 Bluo-gal and 40µgmL-1 IPTG. 

The plates were incubated at 37°C for 48 hours and single white colonies were then 

restreaked on LB plates containing the same antibiotics and allowed to grown at 37°C for 24 

hours.  

 Isolation and analysis of recombinant bacmid DNA 

Once suitable colonies had been identified by their white colour, the colonies were picked 

and grown in 100mL LB containing all selective antibiotic except bluo-gal, overnight at 37°C. 

The cells were then collected through centrifugation at 4000rpm for 5 mins. The DNA was 

then isolated using the PureYield™ Midiprep system. Following DNA extraction, PCR analyses 

was undertaken. A PCR reaction contained 100ng of purified DNA, 1X Platinum® Taq 

polymerase buffer, 0.2mM dNTP mix, 0.05mM MgCl2, 1.25µL of each 10µM stock of forward 

and reverse primers, 2.5 units of Platinum® Taq polymerase, made to a final volume of 50µL 

using sterile H2O. The PCR reaction was set up as follows:  

Step Time Temperature Cycles 

Initial Denaturation 3 minutes 93°C 1X 

Denaturation 45 seconds 94°C 30X 

Annealing 45 seconds 55°C 

Extension 5 minutes 72°C 

Final Extension 7 minutes 72°C 1X 

Table 3.8. A table of PCR conditions for baculovirus preparation. 

Gel electrophoresis was carried out using 1% agarose prepared in TAE buffer (40mM Tris-

acetate, 1mM EDTA), and stained with SYBR™Green.  
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 Insect cell transfection and protein expression  

Sf9 insect cells were grown in Sf-900 media to a logarithmic phase of 2x106 cells at 27°C. Cells 

were then plated on a 6-well tissue culture plate, with a total of 2x106 cells per well. 1µg of 

DNA per well was mixed with 8µL of Cellfectin® in Sf-900 media and mixed gently then left 

at RT for 30 minutes. The DNA mixture was then added dropwise to each well and the cells 

were incubated for 72 hours at 27°C. Cells were then observed for infection by the cessation 

of cell growth, a granular appearance and detachment from the cell base. Once this 

phenotype had occurred the medium was collected including the cells which was then 

centrifuged at 500 x g for 5 minutes at 4°C. The supernatant is then collected and stored in 

the dark at 4°C for further amplification of the virus.  

Once a suitable amount of viral stock is created, 1 litre flasks of sf21 cells were prepared at 

a concentration of 1x106
 cells/mL in Spodipan (Lonza) at 27°C at 250rpm and infected with 

virus at a dilution of 1:25mL. The cells and virus mixture was then incubated for 72 hours at 

27°C, after which the viability of the cells were measured. A viability of less than 50% showed 

infection and the mixture was centrifuged at 4°C at 4000rpm in a JS 4.2 swing bucket rotor 

(Beckman Coulter) for 20 minutes. The pelleted cells were then resuspended in 50mM 

Tris.HCl (pH 7.5), 1mM DTT, 200mM NaCl, 10% (w/v) sucrose and stored at -80°C.  

 Full length NM1 purification from Sf21 cells 

Sf21 cells containing the full length NM1 were defrosted, 1µM PMSF, 1µM ATP, 2mM EDTA 

and a protease inhibitor cocktail were added. The solution was then sonicated for 15 seconds 

on, 15 seconds off, for 10 cycles. The slurry was then centrifuged at 20,000rpm at 4°C for 1 

hour in a Beckman Avanti J-26S using a J 25.50 rotor. The supernatant was then loaded onto 

a 5mL His-Trap HP column (GE Healthcare) which had been equilibrated in 50mM Tris.HCl pH 

7.5, 250mM NaCl and 1mM DTT. Once loaded the column was washed by 5 column volumes 

in the equilibration buffer. The proteins were then eluted using the equilibration buffer 
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except an increase of imidazole from 0mM to 400mM stepwise was implemented. The 

elution fractions were then collected and stored at 4°C for SDS-PAGE and western blotting 

analysis.  

 SDS-PAGE analysis  

Polyacrylamide gel electrophoresis was used to analyse the presence and purity of the full 

length NM1. Gels were made using the Bio-Rad minigel system. The resolving section was 

made using 6mL 30% Acrylamide/Bis 20:1, 3.75mL 1.5M Tris.HCl pH 8.8, 150µL 10% SDS 

(w/v), 4.72mL ddH2O, 100µL 10% (w/v) ammonium persulfate, and 5µL TEMED (Bio-Rad). 

The stacking was made with 2mL 30% Acrylamide/Bis 20:1, 1.5mL 1.5M Tris.HCl pH 6.8, 

100µL 10% SDS, 5.4mL ddH2O, 100µl 10% ammonium persulfate and 5µL TEMED. Samples 

for analysis were mixed with 4x NuPAGE™ LDS sample buffer, 0.1mM DDT to make a final 

concentration of protein sample in a 2X loading buffer. To analyse whole mammalian cell 

samples for western blotting, 1x106 cells were mixed with 200µL of a loading buffer 

containing 4x NuPage™ LDS sample buffer, 1xPBS, 1M DTT at a ratio of 2:2:1. The samples 

are then boiled at 95°C for 10 minutes. Gels were then ran at 200 volts for 60 minutes in a 

running buffer containing 25mM Tris, 1.44% (w/v) glycine and 0.1% SDS. The gels were then 

put aside for western blotting or stained with Coomassie brilliant blue R-250 (Bio-Rad) for 30 

mins. The gels were then de-stained at RT for 1-2 hours in 10% (v/v) acetic acid and 50% (v/v) 

methanol.  

  Western blotting  

Once samples had been separated using SDS-PAGE analysis, the gels were incubated with 

the SDS-PAGE gel running buffer supplemented with 1% (v/v) methanol. A single PVDF 

membrane was cut to fit the size of the gel which was first activated in 100% methanol for 

10 secs, rinsed three times with ddH2O and then left at RT for 10-15 mins in Pierce™ 1 step 

transfer buffer. 8 Whatman® filter paper were cut to size and also incubated at RT for 10-15 
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mins in the same transfer buffer. Using a semi-dry Power Blotter system from Thermo the 

samples were left to transfer to the membrane for 12 mins at 25V, 1.3A. Once transferred 

the gel is discarded and the membrane is washed in 20% (v/v) methanol and rinsed 

thoroughly with ddH2O and is then incubated in blocking buffer (0.1% Tween, 5% dried 

skimmed milk powder, 1x TBS) for at least 45 min at RT or overnight at 4°C. After blocking 

the membrane is incubated with the primary antibody specific to the protein of interest 

which is prepared in blocking buffer for 2 hrs at RT. Membrane is then washed thrice with 

washing buffer (10 min each wash) (Washing Buffer: 0.1% Tween, 1% dried skimmed milk 

powder, 1x TBS) followed by incubating with the secondary antibody containing an attached 

horse radish peroxidase (HRP), which is prepared in blocking buffer for 1 hour at RT. The 

membrane was then washed with washing buffer as before (3 times, 10 min each) and finally 

washed with TBS only. It was then imaged using the Pierce™ ECL western blotting substrate 

kit, where 1mL of solution A and 1mL of solution B are mixed and added to the membrane. 

The membrane is then incubated for 1 min at RT and imaged using a G:Box (Syngene) where 

the exposure was adjusted for each membrane.  

 Recombinant protein purification  

 E. coli cells containing the NM1 tail with CaM plasmid, and CaM were defrosted and 

supplemented with 1µM PMSF, if purification with the CaM was required then 5mM EGTA 

was also added. The cells were then sonicated for 5 minutes and centrifuged at 18,000rpm 

at 4˚C for 30 mins in a Beckman Avanti J-26S using a J 25.50 rotor. The supernatant was then 

collected and stored at 4˚C. A 5mL His-Trap HP column (GE healthcare) was equilibrated in 

50mM Tris.HCl pH 7.5, 40mM imidazole, 500mM NaCl, 1mM DTT and 5mM EGTA if 

necessary. The stored supernatant was loaded onto the column and the column was washed 

with the equilibration buffer. The protein was eluted using the same buffer with increasing 

imidazole concentrations from 40mM to 400mM. Fractions were collected and analysed 



Page | 64  
 
 

using SDS-PAGE, those containing the NM1 tail protein, or CaM were carried forward for 

further work.  

 Circular Dichroism  

1 mgmL-1 of NM1 tail with or without CaM were analysed using far UV spectra (190nm-

270nm) measured by a Jasco J715 Circular Dichroism Spectrometer (Jasco Inc.). Spectra were 

taken at 20˚C. 4 readings were taken for each measurement and averaged by the software 

provided. Each sample was measured in 5mM EGTA or prepared with 1mM CaCl2 

For spectra analysis the following equation was used.  

Equation 3.1. Mean residue ellipticity equation 

[𝜃𝜃]𝑀𝑀𝑀𝑀𝑀𝑀= 

𝑀𝑀𝑀𝑀
(𝑛𝑛 − 1)  ×  𝜃𝜃

𝑙𝑙 × 𝑐𝑐 × 10  

Where θMRW is the mean residue ellipticity, MW is the molecular weight of the protein, n is 

the number of amino acids, θ is the degrees in ellipticity, l is the path length and c is the 

concentration.  

 NM1 N-terminal peptide fluorescent labelling  

The N-terminal peptides containing an extra cysteine on the N-terminus were labelled to a 

ratio of 1 fluorescein-5-maleimide (Fisher) to 1 cysteine. 1mg of peptide was solubilised in 

20mM Tris.HCl pH 7.5, 1mM EDTA and 200mM NaCl and mixed with 1M DTT for 20 mins at 

RT. Excess DTT was removed using a PD10 column (GE Healthcare) equilibrated in the 

solubilisation buffer. 1mg of fluorescein-5-maleimide was added to the eluted peptide and 

was left on rotation in the dark at 4°C overnight. Complete labelling was assumed and the 

now labelled peptide was carried forward for further work.  
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 Fluorescence measurements 

All measurements were done in solution. Fluorescein NM1 N-terminal peptide in 20mM 

Tris.HCl pH 7.5, 1mM EDTA and 200mM NaCl was diluted to 100nM and added to 10 wells of 

a 96 well FluoroNunc™ plate. NM1 tail and CaM also in 20mM Tris.HCl pH 7.5, 1mM EDTA 

and 200mM NaCl were serial diluted against the N-terminal peptides. Fluorescence emission 

was measured using a ClarioStar® (BMG Labtech) using an excitation at 495nm and emission 

at 519nm. Fluorescence was then normalised to fluorescein only and the data was fitted 

using the quadratic binding equation; 

Equation 3.2. Quadratic binding equation. 

[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]

=  
([𝑃𝑃𝑃𝑃𝑃𝑃]𝑡𝑡 + [𝑃𝑃𝑃𝑃𝑃𝑃]𝑡𝑡 + 𝐾𝐾𝑑𝑑)−  �([𝑃𝑃𝑃𝑃𝑃𝑃]𝑡𝑡 + [𝑃𝑃𝑃𝑃𝑃𝑃]𝑡𝑡 + 𝐾𝐾𝑑𝑑)2 −  4[𝑃𝑃𝑃𝑃𝑃𝑃]𝑡𝑡[𝑃𝑃𝑃𝑃𝑃𝑃]𝑡𝑡

2  

 

For NM1 tail binding to DNA, first the dsDNA was produced by mixing 100nM of each 

appropriate ssDNA oligonucleotides, one fluorescein labelled, the other not in 10mM Tris.HCl 

pH7.5, 50mM NaCl, 1mM DTT, 1mM MgCl2 and 5mM EGTA if necessary for NM1 with tail 

binding assays. The DNA was heated to 95°C for 10 minutes and allowed to cool for 1 hour. 

The DNA was added to a 96 well plate at a 100nM concentration and the NM1 tail with CaM 

or without CaM was serial diluted into the DNA. Analysis was carried out as done previously 

for NM1 peptide binding. All experiments were carried out in triplicate.  

 Mammalian cell culture 

All cells were maintained at 37°C and 5% CO2. HeLa wells were maintained in MEM Alpha 

media with GlutaMAX (no nucleosides) supplemented with 10% heat inactivated Fetal 

bovine serum (FBS) and a penicillin-streptomycin mix diluted to 50 units mL-1. MCF10A cells 
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were maintained in 50% MEM Alpha media with GlutaMAX (no nucleosides) and 50% Ham’s 

F-12 nutrient mixture, where a 500mL mixture is then supplemented with 5% FBS, 5% horse 

serum, penicillin-streptomycin mix diluted to 100 units mL-1, 50µg Cholera toxin, 5µg insulin, 

20ngmL-1 human EGF and 0.5µgmL-1 hydrocortisone. Removal of cells from cell culture dishes 

was carried out first by washing the cells three times in PBS, then Trypsin-EDTA (0.25%), 

phenol red, was added directly to the cells and incubated at 37°C for 5 mins for HeLa and 20 

mins for MCF10A cells. Cells were then centrifuged at 500 x g for 5 mins at RT and the 

supernatant was discarded and the cells resuspended in their respective growth mediums. 

The table below shows the stock concentrations and final concentrations of drugs that 

supplemented the media for each experiment.  

 MVI knockdown  

Cells were seeded to a 30% confluency in a 24 well cell culture plate in their respective media 

and incubated at 37°C and 5% CO2 overnight. The media is removed and the cells are then 

grown in their respective media without antibiotics. 50nM Human Myosin VI siRNA duplex 

(Ambion) or 50nM All Stars Negative Control siRNA duplex (Qiagen) is then prepared in 50µL 

of Opti-MEM per reaction. Alongside 1.5µL per reaction of lipofectamine-2000 transfection 

reagent is added to 50µL of Opti-MEM. Both are incubated at RT for 10 mins. The siRNA and 

lipofectamine is then mixed at left to stand at RT for 20 mins. The KD mixture is then added 

to the cells dropwise. After 24 hours cells the media was changed to re-introduce the 

antibiotics and any drug treatments that were required. After another 24 hours the cells 

were fixed or collected for further analysis. 
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 RNA-seq sample preparation 

1mL of ice cold TRIzol™ reagent was added to each cell culture. The lysate was then mixes 

using a pipette to homogenise. The mixture was then incubated for 5 mins at RT 0.2mL of 

chloroform was added to the lysis and incubated for 3 mins. The samples were then 

centrifuged at 12,000 x g at 4°C. Once the mixture has separated the colourless aqueous 

phase is collect and placed in a new clean Eppendorf tube. The RNA is then precipitated using 

0.5mL of isopropanol and incubated for 10 mins and centrifuged for a further 10 mins at 

12,000 x g at 4 °C. The supernatant is then discarded and the pellet is washed in 75% (v/v) 

ethanol, vortexed and centrifuged for 5 mins at 7500 x g at 4°C. The supernatant is removed 

and the RNA pellet is air dried for 10 mins. The pellet is then resuspended in 50µL of RNase-

free water containing 0.1mM EDTA and incubated at 55°C for 15 mins to allow the RNA to 

dissolve. The RNA was then quantified using then 260nm absorbance, ensuring the 

A260/A280 ratio was approximately 2, implying the sample is pure. The sample was then 

further purified using the RNeasy kit (Qiagen) where the manufacturers protocol was 

followed exactly. To ensure purity and stability of the RNA, a 1% agarose TAE gel was ran, 

after which it was then stained using SYBR™gold to identifying the two rRNA bands, 28S and 

18S. Once the purity and stability had been measured the RNA was then stored at -80°C and 

shipped on dry ice to Prof. Percipalles laboratory at New York University Abu Dhabi for 

further analysis.  

 RNA sequencing and analysis 

RNA sequencing and analysis was carried out by Tomáš Venit from Prof. Percipalles lab. Total 

RNA extracted from three replicates of WT, MVI KD, MVI KD Cisplatin, Scrambled and 

scrambled cisplatin was analysed. The RNA seq library was prepared by using the TruSeq 

Stranded mRNA Library Prep Kit (Illumina) and sequenced with the HiSEq 2500 sequencing 

platform (performed at the NYUAD Sequencing Center). All of the subsequent analysis, 



Page | 68  
 
 

including quality trimming, was executed using the BioSAILs workflow execution system. The 

raw reads were quality trimmed using Trimmomatic (version 0.36) to trim low quality bases, 

systematic base calling errors, as well sequencing adapter contamination. FastQC was used 

to assess the quality of the sequenced reads pre/post quality trimming. Only the reads that 

passed quality trimming in pairs were retained for downstream analysis. The quality trimmed 

RNAseq reads were aligned to the Homo sapiens GRch38 genome using HISAT2 (version 

2.0.4). The resulting SAM alignment files for each sequenced sample were then converted to 

BAM format and sorted by coordinate using SAMtools (version 0.1.19). The BAM alignment 

files were processed using HTseq-count using the reference annotation file to produce raw 

counts for each sample. The raw counts were then analyzed using the online analysis portal 

NASQAR (http://nasqar.abudhabi.nyu.edu/) in order to merge, normalize and identify 

differentially expressed genes. Differentially expressed genes by at least 2-fold log2(FC)≥1 

and adjusted p-value of <0.05 for upregulated genes and log2(FC)≤-1 and adjusted p-value 

of <0.05 for downregulated genes) between the samples which were then subjected to Gene 

Ontology (GO) enrichment using ShinyGo v0.60 (http://bioinformatics.sdstate.edu/go/). 

Venn diagram was produced by Bioinformatics and Evolutionary Genomics platform 

(http://bioinformatics.psb.ugent.be/webtools/Venn/). 

 MVI co-immunoprecipitation 

Cells were either left untreated or treated with cisplatin for 24 hours in triplicate for each 

condition. They were then washed three times in PBS and then collected using Trypsin-EDTA 

(0.25%), phenol red. Once the cells were detached the solution was centrifuged at 500 x g 

for 5 mins at 4 °C. The supernatant was discarded and the pellet was resuspended in 200µL 

of lysis buffer per 1x106 cells. The lysis buffer contained, 10mM Hepes pH 7.5, 2mM MgCl2, 

25mM KCl, 0.1mM DTT, 0.1mM PMSF, 0.1% (v/v) Triton X-100, 0.1 % (v/v) NP40 and a 

protease inhibitor cocktail. The cells were left to lyse on ice for 1 hour. 0.075mg of protein A 
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agarose beads (Sigma Aldrich, Cat No. PROTAA-RO) were then washed three times and 

equilibrated in lysis buffer, the buffer was then removed and the cell lysis was added to the 

beads and incubated at 4°C for 10 mins, this identified any non-specific proteins that bound 

to the beads. The cell lysis was then removed and placed in a clean tube where the Anti-MVI 

antibody as described previously was added at a dilution of 1 in 100. This antibody and cell 

lysis was left rotating at 4°C overnight. 0.15mg of protein A agarose beads were then added 

to the cell lysis and was left to rotate at 4°C for 2 hours. The beads are then collected using 

a MagRack 6 (GE Healthcare) and the supernatant was removed.  

 MVI Proteomics preparation 

Once the agarose beads were collected from the co-immunoprecipitation NuPage™ LDS 

sample buffer, 1xPBS, 1M DTT at a ratio of 2:2:1 was added to the beads. The beads were 

then boiled at 95°C for 10 mins before being loaded onto an SDS-PAGE gel. The gel was ran 

for 10 mins at 200V and stopped when the dye front had reached the resolving segment of 

the gel. The gel was then stained and destained as previously described leaving a single band 

containing all proteins elucidated from the previous steps. 0.5mL tubes were cleaned with 

100% methanol and left to dry covered in a dust free environment. In a sterile laminar flow 

hood, each band for each sample was cut into 1mm2 segments using a clean scalpel which 

were then placed into the cleaned tubes. The gel segments were then washed with 50mM 

ammonium bicarbonate and acetonitrile in a 1:1 ratio at RT for 15 mins and then centrifuged 

at 500 x g for 1 min, and the supernatant was removed. The gels were then washed in 

acetonitrile, incubated for 15 mins and centrifuged as previously described, and the 

acetonitrile was removed. The gel was then washed in 10mM DTT, 50mM ammonium 

bicarbonate and incubated at 56°C for 30 mins. The gels were centrifuged and the wash 

removed. Acetonitrile was then washed over the pieces to shrink them and then taken off 

and 55mM iodoacetamide in 50mM ammonium bicarbonate was added and the gel pieces 
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were incubated at RT in the dark for 20 mins. The supernatant was removed and the gels 

were washed as previously described in the ammonium bicarbonate-acetonitrile solution, 

ammonium bicarbonate and finally acetonitrile. The gel pieces were then rehydrated in 

digestion buffer (25mM ammonium bicarbonate, 10% acetonitrile and 10ng.µL-1 of 

recombinant trypsin (Sigma Aldrich, EMS0006)). The reaction was incubated on ice for 30 

mins and the supernatant was then removed. The gel pieces were covered in digestion buffer 

without trypsin and left at RT overnight.  

5µl of acetonitrile was added to each sample in digestion buffer and the samples were then 

sonicated in an ultrasonic bath (Thermo) for 15 minutes at RT. The gel pieces were 

centrifuged at 500 x g for 2 mins and the supernatant was collected and stored at 4°C. 50% 

acetonitrile and 5% formic acid were added to the pieces which were then sonicated again 

as before. The gel pieces were centrifuged as before and the supernatant was collected and 

added to the previous supernatant stored at 4°C. This mixture is then vacuum dried using a 

benchtop CentriVap™ (Thomas Scientific) until the protein pellet is dry. 10µL of 10% 

acetonitrile and 0.1% trifluoroacetic acid resuspended the protein pellets. The samples were 

collected and loaded onto the liquid chromatography – mass spectrometry/mass 

spectrometry (LC-MS/MS) apparatus.  

 LC- MS/MS and proteomics analysis 

Each sample, WT-precleared beads, WT-MVI co-immunoprecipitation, Cisplatin-precleared 

beads and Cisplatin-MVI co-immunoprecipitation, were subjected to nanoLCMS: peptides 

were separated on a HSS T3 Acquity column (Waters) 75 μm i.d. x 15 cm (1.8 μm, 100A) using 

an Acquity M-Class UPLC (Waters), elution was performed with a linear gradient from 3 to 

40% B over 40 mins (solvent A = 0.1% formic acid, solvent B = 0.1% formic acid, acetonitrile) 

and the eluate directed via a nanospray source to a Synapt G2-Si (Waters) with data collected 

in UDMSe mode. The mass spec data was imported into a software package from Non-Linear 
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Dynamics called Progenesis QI for and searched against a protein database using an MSe 

Search algorithm with a false detection rate of 4%. Progenesis QI software (Waters) provided 

quality control information and quantification of peptides. The peptides were assigned using 

the following criteria. The human proteome including enolase v5 2017 from UNIPROT was 

used as the reference library with trypsin cleavage being included. The maximum protein 

mass was limited to 500kDa and only a maximum of 1 missed cleavage was allowed. Due to 

the sample preparations the carbamidomethyl modification to cysteine residues and the 

oxidation of methionine residues were accounted for. The peptide mass tolerance was set at 

1 along with the fragmentation mass tolerance at 1. The false discovery rate was set at 4 with 

the minimum of fragments per peptide was required to be above 3 and the minimum 

fragments per protein were required to be above 5. Initially the minimum of peptides per 

allocated protein was set at 1. Further analysis was completed on the allocated proteins, by 

removing any proteins that did not have a 2 fold increase of abundance compared to the 

samples bound non specifically to agarose beads, and proteins that had an ANOVA p value 

of >0.05. All assigned proteins also had to contain at least 1 unique peptide in its assignment. 

Finally protein networks were plotted using STRING V11 (https://string-db.org)  

 Confocal immunofluorescence  

Cells were maintained as previously described however were directly grown on coverslips in 

their required media and drug treatments. The cells were washed three times in TBS and 

fixed with 4% (w/v) paraformaldehyde (PFA) in TBS for 12 mins. The fixed cells were then 

washed three times in TBS. Residual PFA and cell autofluorescence was then quenched using 

50mM NH4Cl for 15 mins. Cells were then washed three times with TBS. Cells were then 

permeabilised and simultaneously blocked for 30 mins with 2% (w/v) Bovine Serum Albumin 

(BSA) in TBS supplemented with 0.1 (v/v) Triton X-100. Without washing the cells were then 

incubated with the designated primary antibody in 2% (w/v) BSA in TBS for 1 hour. The 
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coverslips were then washed three times in TBS. The appropriate fluorophore-conjugated 

anti mouse or anti rabbit secondary was then prepared in 2% (w/v) BSA in TBS and placed 

onto the coverslips, the coverslips were then incubated at RT for 1 hour in the dark. The 

coverslips were washed three times in TBS followed by nuclear staining using Hoechst 33342 

solution (62249) for 10 mins at RT in the dark. The coverslips were then washed three times 

in TBS and once with ddH2O. The coverslips were mounted onto microscope slides using 

Mowiol® 4-88, supplemented with 2.5% (w/v) of the antifading reagent 1,4-

diazabicyclo[2.2.2]octane (DABCO). The slides were incubated overnight at RT and then 

stored at 4°C until imaged. The slides were then imaged using a Zeiss LSM980 with Airyscan 

2 using a 60X oil-immersion objective and analysed using the manufacturer’s software Zeiss 

Black. Colocalisation of NM1 and CaM, was analysed using Just another colocalisation plugin 

(JACoP) (Bolte and Cordelieres, 2006) following the published protocol and then plotted 

using Prism 8, Graphpad.  

 High Content Screening  

High content screening was undertaken by myself at the imaging suite at New York University 

Abu Dhabi under the supervision of Prof. Percipalle and Dr. Venit. Cells were maintained as 

previously described, however they were grown directly onto Corning® 384 well microplates 

at a density of 5,000 cells per well. The cells were grown for 24 hours, followed by the 

necessary treatments. The cells were fixed and immunofluorescence was undertaken as 

described above, due to the cells being grown directly on the plates no mounting of 

coverslips was required. Stained cells in plate were scanned via Cellomics ArrayScan™ XTI 

High Content Analysis (HCS) platform (Thermo Fisher Scientific), with a 20x Objective. 

Compartment Analysis Bio Application software (Cellomics) was applied to quantitatively 

analyse the immunostaining spots in the nucleus based on a mask created using the nuclear 

Hoechst staining. For each experiment, at least 1000 valid single cells per culture well were 
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quantified and at least 10 independent culture wells (10 biological replicates) were analysed, 

fluorescence intensities were then plotted using Prism 8, Graphpad.  

 STORM imaging  

Cells were cultured in 6 well Corning™ Costar™ Flat Bottom Cell Culture Plates (10578911). 

A total of 150,000 cells were plated and allowed to grow for 24 hours in previously stated 

growth conditions. Drug treatments were then undertaken for their respective time courses. 

The cells were fixed and labelled as previously described. Fixed coverslips were then 

transported to The Research Complex at Harwell, Harwell, UK. STORM imaging was carried 

out by myself. A STORM buffer was added onto the coverslips during imaging, this contained 

400µL of a dilution buffer, 100µL of a glucose stock, 5µL of Beta-mercaptoethanol (63689) 

and 10µL of a glucose oxidase (GLOX) solution. The dilution buffer consisted of 50mM NaCl, 

200mM Tris.HCl pH 8.0. The GLOX solution was made in dilution buffer, supplemented with 

0.07mgµL-1 glucose oxidase (G7141) and 5mgmL-1 of catalase (C9322). Imaging was 

undertaken using the following illumination lasers, 642 nm (Vortran), 561 nm, 488 nm 

(Coherent, Sapphire), and 405 nm (Coherent, Cube) and imaged using a Zeiss Elyra 7 

microscope with an EM-CCD camera attached. Imaging was completed as per the 

manufacturer’s instructions, processing of the images and STORM data was undertaken 

using the Zeiss Black software. A minimum of 10 cells were analysed for each condition.  

 Clus-Doc analysis 

The single molecule positions were exported from Zeiss Black and imported into the Clus-

DoC analysis software (https://github.com/PRNicovich/ClusDoC) taken from Pageon et al., 

(2016). The region of interest was determined by the nuclear staining. First the Ripley K 

function was completed on each channel identifying the r max. The r max was then assigned 

for DBSCAN if one channel was being analysed or Clus-Doc if two channel colcalisation was 

being analysed. The clustering size was set to a minimum of 5 molecules within a cluster with 
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a smoothing of a cluster being set at 7nm. All other analyses parameters remained at default 

settings. Data concerning each clusters was exported and graphed using Prism 8, GraphPad. 

 2D-FISH 

Cells were cultured as previously described, where KD and drug treatments were completed 

when necessary. Once all treatments had been completed cells were washed with PBS, which 

was then collected and then removed using Trypsin-EDTA as before. The Trypsin-EDTA cell 

solution was diluted in PBS and then collected and added to the previous PBS wash. The 

collected cells were centrifuged at 500 x g at RT for 10 mins. The supernatant was then 

removed and the cell pellet was resuspended in 5mL of 0.075M KCl and incubated at 37°C 

for 20 mins. 3 drops of the fix solution (3 parts methanol : 1 part glacial acetic acid) was 

added to the samples which were then centrifuged at 500 x g for 10 mins at RT. The 

supernatant was discarded except for 0.5mL, the pellet was resuspended in this supernatant 

to which 5mL of fix solution was added, the samples were then centrifuged at 500 x g for 10 

mins. This process was repeated three times to wash the cells into the fix solution. Finally 

the cells were then centrifuged at 500 x g for 10 mins, the supernatant removed except for 

0.5mL which was used to resuspend the cells.  

A Vysis HYBrite Hybridization System was preheated to 37°C. 10µL of cells in fix solution were 

dropped directly onto a microscope slide followed by 10µl of fix solution only. The slide was 

left to dry at RT and then immersed into 2x saline-sodium citrate solution (SSC) for 2 mins at 

RT without agitation. The slides were then dehydrated in an ethanol series (2 mins in 70%, 

85% and 100% ethanol) at RT. They were then air dried and placed on the hybridisation 

system at 37°C. Cover slips were prepared with 10µL of the necessary chromosome paints 

and placed onto the slides. The coverslips were sealed using rubber cement and placed back 

onto the hybridisation system at 75°C for 2 mins. The samples were left within a hybridisation 

chamber over night in the dark at 37°C. The rubber cement and coverslips were removed 
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and the slides were immersed into 0.4xSSC pH 7.0 at 72°C for 2 mins, without agitation. The 

slides were drained and then placed into 2xSSC supplemented with 0.05% Tween-20 at RT 

for 30 secs. The slides were air dried and 10µl of DAPI (D9542) was placed onto each sample 

and a coverslip was placed and sealed onto the samples. Images were taken using an 

Olympus BX53 with a 40X oil-immersion objective. Approximately 50 nuclei per condition 

were then analysed using the nuclear morphology analysis software, 

(https://bitbucket.org/bmskinner/nuclear_morphology/wiki/Home).  

 Apoptosis assay  

Cells were seeded in a 96 well cell culture dish (Corning) and allowed to grow for 24 hours in 

standard conditions. The RealTime-Glo™ Annexin V Apoptosis assay was utilised to provide 

real time measurements of apoptosis after samples had been treated with their designated 

drugs. The protocol follows the manufacturer’s protocol. Briefly, a 2x Detection reagent is 

produced using the reagents provided in the kit, Annexin V NanoBiT™, CaCl2, Annexin V-

SmBiT and Annexin V LgBiT. This 2x detection reagent is diluted to 1x in the cells growth 

medium supplemented with cisplatin, bleomycin, TIP or Ku55933 at the concentrations 

stated previously. The cells are then incubated at 37°C with 5% CO2 for 7 hours within a 

ClarioStar™ (BMG Labtech) multiplate reader. The multiplate reader was set to measure 

luminescence following the manufacturer’s protocol as well as GFP fluorescence, with an 

excitation of 485nm and an emission of 525nm. These measurements were taken every 10 

mins and were completed in triplicate for each cell growth condition. The graphs were then 

plotted using Excel, Microsoft. 
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Chapter 4.  Properties of Nuclear Myosin 
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 Introduction 
 

Nuclear myosin 1 (NM1) is the most characterised of the nuclear myosins. Whilst this is the 

case, there are still questions regarding to the role of CaM and its interactions with NM1 in 

the nucleus, as well as if NM1 binds directly to the DNA. This chapter will focus on the 

biochemical properties of NM1 to further understand its nuclear functions.  

 Nuclear myosin I 

NM1 is a monomeric processive motor with a unique 16 amino acid sequence at its N-

terminus, a traditional motor domain, a neck region that contains three IQ regions, and 

finally a tail domain which contains a plecktstrin homology (PH) domain (Venit et al., 2013). 

NM1 is an isoform of Myosin IC (MIC). MIC has three isoforms, A, B and C. These three 

isoforms differ through their N-terminal sequences, isoform C is the original single headed 

myosin known as MIC, isoform B is known as NM1 and isoform A, the most recent to be 

discovered and is yet to be characterised (Dzijak et al., 2012). The expression of these 

isoforms is dependent on the cell type and it has been shown that both the C isoform and 

the B isoform can localise to the nucleus. It is important to note that all three of these 

isoforms contain an embedded NLS sequence within their IQ regions and so it is possible for 

all these isoforms to shuttle in and out of the nucleus. However, this NLS sequence does not 

allow any of these isoforms into the nucleolar region (Sielski et al., 2014). NM1 can localise 

to the nucleolar spots to function in RNA polymerase I (RNAPI) transcription, therefore it is 

believed whilst all isoforms are able to enter the nucleus through their NLS sequence, the 

unique amino acids present at the N-terminus allows for NM1 to be the sole myosin IC in the 

nucleolar region (Dzijak et al., 2012).  
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 Regulation of MIC  

For the myosins to be controlled within the cell, their activity needs to be tightly regulated. 

This regulation can come in the form of calmodulin (CaM) interactions with the IQ regions, 

back folding so that binding domains are blocked, and association with binding partners in 

their tail domains. In the case of MIC, apo-CaM can bind to the first two IQ domains through 

the typical CaM-IQ mode, where C-terminal lobes of the CaMs and the CaMs hydrophobic 

pocket links with the hydrophobic side chain found on the isoleucine within the IQ motif. 

Here the CaMs’ N-terminal lobes are closed. The third IQ region of MIC slightly differs due to 

an arginine replacing a glutamine within the motif, yet CaM can still bind resulting in three 

CaMs bound to three regulatory regions (Lu et al., 2014). Apo-CaM binding to these regions 

provides mechanical stiffness to the myosins structure. Once calcium is introduced to the 

system there is a weakening of the CaMs affinity to the IQ regions, where the IQ1 is highly 

calcium sensitive where it is lost in the presence of calcium, whilst the other binding regions 

have significantly lower dissociation rates, which in turn, inhibits actin gliding and increases 

the ATPase of MIC (Adamek, Coluccio and Geeves, 2008). Translating this to its role in the  

All the three isoforms differ at their N-termini through the transcription of upstream exons. Adapted from (Sielski 

et al., 2014)  

Figure 4.1. Representation of the three isoforms of myosin IC. 
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cell, so far myosin IC has been shown to bind to hair cell receptors through its IQ motif which 

is regulated by CaM binding (Cyr, Dumont and Gillespie, 2002) .  

The N-terminal region of myosin IB, a myosin similar to myosin IC, is embedded within the 

hydrophobic pocket found within the motor domain and the lever arm helix. This position is 

then stabilised by interacting with the first CaM light chain (Figure 4.2. Greenberg et al., 

2015) . This positioning of the N-terminal region may provide a platform where the lever arm 

is able to respond to calcium regulation and ATP concentrations. This hydrophobic pocket 

also exists within MIC and so this N-terminal regulation may be possible. Greenberg et al., 

(2015) have shown that the N-terminal region of MIC is able to tune the myosins motor 

A crystal structure showing the N-terminus (green) of apo-myosin IB being embedded at the beginning 

of the neck domain. Where two lysines-10,11 and methionine-14 interact adjacent to the IQ domains. 

Taken from Greenberg et al., (2015) (PDB ID Code 4L79). 

Figure 4.2. A crystal structure of myosin IBs' N-terminus. 
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activity. By removing the N-terminal region, the rate of actin detachment, which is usually 

found to be force sensitive above 2pN, is no longer force sensitive until forces higher than 

5pN. This is also supported by the fact the removal of the N-terminal region slows the rate 

of ADP release and accelerates ATP-induced actin disassociation. Force reversals, where the 

myosin is unable to maintain the post-power stroke conformation, also become more 

regular, showing this region stabilises the post-power-stroke conformation.  

 NM1s import into the nucleus  

There are currently two distinct proposed models NM1 utilises to import itself into the 

nucleus. The first of which requires the NLS embedded within the second IQ region. Here the 

NLS itself and not the unique 16 amino acid N-terminus is required for nuclear localisation 

(Dzijak et al., 2012). As all of the myosin IC isoforms contain this NLS, there is a redundancy 

amongst the isoforms, where NM1 knockout mice that are still able to express myosin IC A, 

show strong nuclear localisation of this protein (Venit et al., 2013). This NLS sequence binds 

directly with importin 5, importin 7 and importin-β1, all well characterised nuclear pore 

complexes that utilise the GTPase Ran nuclear import pathway, however the NM1 does not 

seem to follow this specific pathway.  

The second mechanism for NM1 import, relies on the PH domain found within the tail region. 

This domain allows the myosin to bind to phosphoinositides and so the NM1, can locate to 

the nucleus through a novel phosphoinositide pathway (Nevzorov et al., 2018). Here, NM1 

shuttles between the nucleus and the cytoplasm through its interaction with the 

endoplasmic reticulum, where it is able to diffuse through the nuclear pore complexes in a 

passive manner, even though the myosin is much larger than the characterised molecular 

weight cut off of around 40kDa. They also found no interaction between the myosin and the 

importins as previously published.  
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Whilst these two mechanisms differ, what is generally agreed on is that calcium effects the 

nuclear import of NM1. First by mutating the IQ binding region so that CaM is unable to bind, 

myosin IC has higher nuclear localisation, and by using a calcium ionophore, mimicking a 

calcium increase, nuclear import of NM1 is induced (Maly and Hofmann, 2016). By containing 

the NLS sequence within the IQ region it is postulated that the importins previously 

identified, compete with CaM and by increasing the calcium concentration and so weakening 

the CaM-IQ binding, the NLS becomes free for importin binding. As there is clear evidence 

for both pathways, I would suggest that both these pathways are required, the 

phosphoinositide pathway provides a cell with basal levels of NM1 and the NLS allows for 

rapid nuclear localisation for a cellular stimulus response, such as increase in calcium levels.  

 

NM1 (red) travelling either through the nuclear pore complex that requires the loss of CaM and the binding of 

an importin (purple) and NM1 travelling through the endoplasmic reticulum and diffusing into the nucleus 

through a nuclear pore complex. It is possible that these can occur simultaneously.  

Figure 4.3. A cartoon representation of NM1 nuclear localisation. 
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 NM1s function in the nucleus  

3.1.1.1 Transcription 
 

NM1 has multiple roles within the nucleus, one of its first characterised roles is within 

transcription. NM1 has a role an interaction with RNA polymerases, RNAPI (Philimonenko, 

2004), for rRNA synthesis, and RNAPII (Hoffman et al., 2004) for mRNA synthesis. In RNAPI 

transcription, NM1 binds to the transcription factor TIF-IA and is found with actin alongside 

transcriptionally active RNAPI complexes (Sarshad et al., 2013). Here NM1 binds directly to 

the rDNA, in RNAPII transcription NM1 also binds to the DNA, in both cases the biding has 

only been observed through chromatin immunoprecipitation (Sarshad et al., 2013; 

Almuzzaini et al., 2015). Actin is also found in RNAPII transcription where it binds directly to 

the subunit Rpb6, and it has been shown that NM1 associates with RNAPII with actin acting 

as linker protein between the two. During RNAPII transcription NM1 also acts as a chromatin 

re-modeller protein through its interactions with the B-WICH assembly (Vintermist et al., 

2011). The B-WICH assembly causes the activation of PCAF, a histone acetyl transferase 

which results in the unravelling of heterochromatin to euchromatin and the activation of 

transcription. The interaction between NM1 and this assembly, is directly with SNF2h 

stabilising it’s binding to WSTF. These two roles of NM1, in RNAPII transcription alone, shows 

how important it is not just for the RNAPII machinery but also the organisation of chromatin.  
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DNA damage  

NM1 plays a vital role in the DNA damage response. It is established that chromosomes are 

able to travel long distances within the nucleus by utilising NM1 and with removal of NM1 

from the system long range chromosome movements are not observed (C. H. Chuang et al., 

2006). Interestingly, after the induction of DNA damage using cisplatin, there is movement 

of interphase chromosomes within the nucleus. These mobile chromosomes are able to 

move long distances from the periphery of the nucleus to the interior of the nucleus (Mehta 

et al., 2010). This movement after DNA damage requires both the DNA damage signal γH2AX 

and NM1 (Kulashreshtha et al., 2016). If either the signal does not occur, or NM1 is knocked 

down, then the chromosomes do not move as expected.  

 

This occurs at its C-terminus at the initial stage of rDNA transcription. For transcription to then proceed NM1 

unbinds actin and whilst still bound to DNA binds to the chromosome remodelling complex made up of SNF2h 

and WSTF.  

 

 

Figure 4.4. NM1 binds to RNAPI and DNA. 
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 DNA binding by NM1 

It is thought that NM1 is able to bind to DNA, due to its localisation within the nucleus and 

its role in DNA-based processes, however the question of, does NM1 bind directly to DNA is 

yet to be answered. Within this model, the cargo binding domain of NM1 has been 

implemented to bind DNA, however this has only been hypothesised by ChIP-seq data and 

RNA-seq data where the removal of the C-terminus causes loss of transcription and loss of 

chromatin associated proteins (Almuzzaini et al., 2015). Nuclear myosins binding to DNA is 

not a new concept, as myosin VI (MVI) has been seen to bind directly to DNA through its C-

terminus (Fili et al., 2017). Therefore it is of importance to identify if NM1 does bind DNA 

directly and if so, what are the kinetics of this binding.  

 Aims of this study  

Biochemically NM1 still remains elusive, the full length protein is yet to be purified 

recombinantly, therefore no full structure has been defined. This study aims to understand 

how its N-terminus, like that of myosin IB, interacts with the IQ region. Also DNA binding has 

been implied multiple times but is yet to be seen in vitro. Finally if NM1 does indeed lose 

CaM to enter the nucleus, how does this happen? And does NM1 rebind to CaM once inside 

the nucleus.  

 Results  
 

 Full length NM1 purification requires further optimisation 

To begin the biochemical characterisation of NM1, a recombinant protein must first be 

produced, however the full length NM1 protein is yet to be purified for in vitro analysis. NM1 

expression requires complex folding chaperones and the protein was expressed in the insect 

cell - baculovirus system. Expression was confirmed (Figure 4.5A), however, in the first 

purification most of the protein remained insoluble and so could not undergo further 
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purification (Figure 4.5B). A larger batch of protein expression provided small amount of 

soluble protein which could be isolated. The NM1 was tagged with a 6x histidine tag and the 

5% of protein that was in the soluble fraction was further purified using a nickel column. Due 

to the lack of imidazole, which allowed binding of the protein to the column, in the loading 

buffer there was a large amount of impurities that also bound to the column (Figure 4.5C). 

After elution a small fraction of NM1 could be identified using western blot within an impure 

fraction (Figure 4.5C). Due to the low levels of soluble pure protein I decided it would be 

more efficient in studying the NM1 in terms of its domains which have already been 

published.  
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Figure 4.5. Purification of the full length NM1. 

NM1 is successfully expressed in the baculovirus (A) however it is incredibly insoluble as shown by the 

presence of the protein in the pellet, with little being present in the supernatant (super.) and the elution 

fraction from the column (elut.) (B). After further attempts of purification only a negligible amount of NM1 

can be purified as shown in the western blot as shown by the sequential fractions 1,2,3,4 from the 

chromatogram (C).  
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 NM1 tail construct contains structure  

After attempting to purify full NM1, the NM1 tail containing the three IQ regions and the 

cargo binding domain was purified from E. coli instead. This construct is made from the 

valine-732 position to the leucine-1060 and on the same plasmid there is also the gene for 

CaM, under the same promotor. This construct has previously been used to produce a crystal 

structure of three calmodulins binding to the tail region and so has been heavily 

characterised for stability (Lu et al., 2015). During the initial purification it was only possible 

to purify the NM1 tail without CaM. To understand if the tail domain had structure following 

purification without CaM, circular dichroism was used (Figure 4.6). The structure was then 

determined using K2D3, a protein secondary structure prediction programme (Louis-Jeune 

et al., 2012), which showed that approximately 78% of the structure was α helical and 

approximately 1% of the structure is β sheets. As expected due to the absence of CaM, this 

structure was independent of the calcium levels within the buffer, as the addition of calcium 

led to a minimal change of 1% overall. This however differs from the crystal structure of the 

tail which has defined 44% helical residues and 20% β-sheet. However the K2D3 prediction 

software and circular dichroism is not as sensitive as using the crystal structure, and so the 

constructs were continued for further analysis.  

To purify the NM1 tail with CaM an excess of EGTA was required. This EGTA chelates Ca2+ 

ions thus leaving only apo-CaM and therefore tight binding between the IQ regions and the 

CaM. This construct, co-purified with CaM, also has structure. Using the same analysis 

software in a buffer containing 5mM EGTA, the structure was made up of 78% α helixes and 

1% β sheets similar to that of the NM1 tail on its own (Figure 4.6 C). With the addition of 

calcium altering the confirmation of the NM1 tail, there is a shift in circular dichroism spectra 

and a slight change of structure of 2%. This change in structure of the NM1 tail occurs due to 
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the release of CaM from the tail, caused by the shifting from apo-CaM to calcium bound CaM 

which loosens its binding to the IQ regions of the construct.  

Both tail constructs are stable and the presence of  excess calcium on the tail co-purified with 

CaM can be observed. It is these purified recombinant proteins that have been carried on for 

further studies, which will focus on the role of the N-terminus extension and subsequently 

DNA binding.  

The NM1 tail can be purified with or without CaM (A, B) and there is clear structural change after the addition 

of calcium with the protein purified with CaM (A). Their structures have suitable percentages of α helices and 

β sheets (C).  

NM1 tail with CaM 

NM1 tail only 

Figure 4.6. Circular Dichroism of recombinant NM1 tail. 
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 The N-terminus of NM1 competes with CaM to bind to its own tail 

Attention was first given to understanding how the N-terminus of NM1 may regulate nuclear 

localisation of the protein, in combination with the NLS sequence. Here the N-terminus is 

hypothesised to interact with the NLS sequence found within the IQ regions. To assess this, 

four peptides were designed, the wild type, one with the 2nd arginine replaced with a leucine, 

another where the 4th arginine is replaced with a leucine and the final peptide where both 

arginines had been replaced with leucines (Figure 4.7A). 

These peptides were labelled with a maleimide coumarin dye, 7-Diethylamino-3-((((2-

Maleimidyl)ethyl)amino)carbonyl)coumarin (MDCC) which binds to an extra cysteine residue 

added to the N-terminus sequence. These arginines were chosen as in silico modelling 

completed by our collaborators Percipalle et al., (unpublished), had identified these 

positively charged amino acids necessary for the interaction between the N-terminus and 

the NLS embedded within the IQ region. The binding of the peptide to a protein construct, 

was measured through the increase in fluorescence and was then fitted to a quadratic 

binding equation, as previously described in the Chapter 3.  

Equation 3.2. Quadratic binding equation. 

[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶]

=  
([𝑃𝑃𝑃𝑃𝑃𝑃]𝑡𝑡 + [𝑃𝑃𝑃𝑃𝑃𝑃]𝑡𝑡 + 𝐾𝐾𝑑𝑑)−  �([𝑃𝑃𝑃𝑃𝑃𝑃]𝑡𝑡 + [𝑃𝑃𝑃𝑃𝑃𝑃]𝑡𝑡 + 𝐾𝐾𝑑𝑑)2 −  4[𝑃𝑃𝑃𝑃𝑃𝑃]𝑡𝑡[𝑃𝑃𝑃𝑃𝑃𝑃]𝑡𝑡

2  

Where Pep is the concentration of peptide and Pro is the concentration of protein. Here the 

equilibrium dissociation constants (Kd) have been studied by looking at the NM1 tail with and 

without CaM and the binding of the peptides to CaM itself.  
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The NM1 tail without CaM binds very tightly to the wild type peptide at Kd of 0.03µM ±0.01. 

The CaM has a Kd of 0.2±0.07µM and the NM1 tail with CaM has a weaker Kd of 0.55±0.1µM 

(Figure 4.7 B). All of these bindings are within the nanomolar range and so are likely to occur 

within the nucleus assuming CaM is present, which will be discussed later. These bindings 

show that the N-terminus itself is capable of binding both to the tail region of NM1, as well 

as CaM albeit with different affinities. The capability for the NM1 tail without CaM to bind to 

N-terminus peptide can be disrupted through the two mutated arginines. All three mutated 

peptides, the two single and one double mutations, are unable to have their Kd defined at 

the low concentrations used for the wild type peptide and all the Kds are over 1µM. These 

data show that both arginines are required for the N-terminus to bind to the tail (Figure 4.7 

C).  

Overall, the data shows that the absence of CaM leads to a more stable complex before the 

NLS and N-terminus can combine. This fits with the model that CaM needs to be removed 

for correct localisation into the nucleus. A weaker interaction between the N-terminus with 

the tail bound to CaM also occurs. This suggests that the CaM bound structure is also stable 

but for a yet unknown function.  
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The diagrams represent the NM1 tail (Blue), CaM (Green) and the NM1 tail with CaM. The N-terminus peptide 

binds to the NM1 tail with or without CaM as well as CaM itself. The fluorescence intensity was measured 

using fluorescein labelled peptide at a concentration of 100nM and titrating in the constructs from 0.0005 to 

1.5µM (A). By replacing any of the arginines in this N-terminal sequence all binding is weakened significantly, 

as shown naked tail  (C,D,E). N=3 

Figure 4.7. NM1 tail constructs bind to the N-terminus of NM1. 
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 The tail domain of NM1 has nano-molar affinity for dsDNA 

As discussed previously, it has been suggested by ChIP that NM1 is able to bind DNA through 

its C-terminus, however no biochemical measurements have been undertaken to understand 

if it directly binds dsDNA. By using two double stranded DNA lengths 15bp (dsDNA15) and 

40bps (dsDNA40) both containing a fluorescein dye at their 5’ ends it is possible to undertake 

such binding kinetics by studying the quenching of fluorescein fluorescence. This quenching 

occurs due to the changing of environment by the binding of a protein. This quenching is 

then fitted with using the quadratic binding equation (Equation 3.2).  

The NM1 tail without CaM is able to bind to dsDNA15 with a Kd of 75±33.1nM however the Kd 

is not able to be determined for dsDNA40. When CaM is present the NM1 tail has a similar 

binding affinity for dsDNA15 of 56±21nM. A Kd can also be defined for NM1 tail with CaM 

binding dsDNA40 as 73.6±37.7nM (Figure 4.8). These results now add to the mechanism of 

NM1 binding to DNA where CaM may stabilise the protein enabling DNA bound to a more 

stable NM1. Moreover, direct DNA binding does occur through the C-terminus of NM1.  

 The tail domain of NM1 binds ssDNA as well  

To identify if the binding of the tail domain to DNA is specific to the type of DNA, ssDNA 

substrates 15bp (ssDNA15) and 40bp (ssDNA40) long were also labelled with fluorescein at 

their 5’ end. The binding was overall weaker compared to that of the NM1 tail with dsDNA, 

however it is still in the nanomolar range. NM1 tail without CaM has a Kd 399±145nM for 

ssDNA15 and a Kd 148±69nM for ssDNA40. These binding affinities are similar to that of NM1 

tail with CaM where the binding to ssDNA15 has a Kd 114.6±24nM and ssDNA40 had a Kd 

109.5±72nM (Figure 4.9). These binding affinities imply that NM1 binding to DNA is not 



Page | 93  
 
 

specific to the structure of said DNA and is likely down to electrostatic forces, and that CaM 

may have a stabilising affect on this DNA binding. 

 

 

 

 

The cartoons depict NM1 tail (blue) with or without CaM (green). NM1 tail can bind without CaM to dsDNA15, Kd 

75± 33.1nM (A), but not dsDNA40 (B). However, in the presence of CaM the NM1 tail (NM1 tailC) can bind both 

dsDNA lengths with a Kd of 56±21nM to dsDNA15 and a Kd of 73.6± 37.7nM to dsDNA40 (C,D). 

Figure 4.8. 4 NM1 tail is able to bind dsDNA. 
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The cartoons depict NM1 tail (blue) with or without CaM (green).NM1 tail can bind ssDNA weaker than that of 

dsDNA. NM1 tail without CaM binds to ssDNA40, Kd 399±145nM (A) and ssDNA15, Kd 148 ±69nM (B). With the 

presence of CaM the is lowered and so the NM1 tailC can also bind ssDNA40, Kd 109.5±72nM (C) and ssDNA15, Kd 

   

Figure 4.9. NM1 tail can bind ssDNA. 

nM 

ssDNA15 ssDNA40 

A B 

C D 
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 NM1 and CaM colocalise within the nucleus  

Nuclear import suggests CaM is not bound to NM1 once inside the nucleus, however these 

data shown, suggests that CaM is required for DNA binding. Therefore it is possible that NM1 

is able to rebind to CaM once it has entered the nucleus. Using confocal microscopy (Figure 

4.10, A), alongside the JACoP analysis software, this study has identified that when an image 

of NM1 is imposed onto CaM, the average Manders’ coefficient is 0.833. Manders’ 

coefficients range from 0, where there is no colocalisation to 1, which is equal to 100% 

colocalisation. This means that the majority of NM1 molecules can be found colocalised to 

CaM (Figure 4.10 B). When CaM is overlapped onto NM1, the average Manders’ coefficient 

is less, at 0.72. This suggests that the majority of CaM is associated with NM1 in the nucleus, 

however there is a portion of the population that is not colocalised to NM1. Overall, this 

provides evidence that after entering the nucleus, NM1 may be able to regain CaM or 

localised near CaM, which most likely regulates its roles within the nucleus, similar to that in 

the cytoplasm.  
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(A) Confocal microscopy of NM1 and CaM within HeLa showing a population of both proteins within the nucleus. 

Scale bar = 10µm. After analysing the images using the colocalisation software JACoP, Manders’ coefficients were 

produced for each nuclei of a cell. When NM1 is overlapped onto CaM the average Manders’ coefficient is 0.833. 

When CaM is overlaid onto NM1 the average Manders’ coefficient is 0.72. N of nuclei analysed = 12. Zooming in 

on the bottom nucleus in image A (C) shows the yellow colour of the overlapping channels of red for Myosin IC 

and green of CaM, scale bar =1µm.  

Figure 4.10. Colocalisation of NM1 and CaM. 

C 
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 Discussion  
 

 The purification of full length NM1 requires further optimisation  

NM1 is yet to be purified as a full-length protein recombinantly and so many biochemical 

techniques such as actin gliding assays and structural techniques such as crystallography 

have yet to be undertaken. Using the baculovirus system the full-length protein has been 

successfully expressed, however its purification became difficult. The largest fraction of 

protein was insoluble, this is most likely due to the PH domain of myosin IC that is required 

for its membrane binding properties. This membrane binding causes the protein to be 

insoluble as these interactions are maintained following sonification and clarification. With 

further optimisation of the purification technique such as the use of detergents, for example 

triton or NP-40, to break down the membrane further, it would be possible to release the 

NM1 into the soluble fraction. However, these detergents would need to be removed for 

further purification of the protein using affinity chromatography. Alternative methods such 

as a mutation in the PH binding domain could also ease solubility of the protein, although 

this method may alter the structure or function of NM1. It may also be that these cells do 

not contain enough CaM, which may lead to aggregation of the protein.  

To introduce further optimisation to the protocol, imidazole concentrations may be altered. 

During this study the full soluble fraction of proteins from the sf21 cells was loaded onto a 

nickel affinity column, knowing the histidine tag would bind, without any imidazole. This 

loading without imidazole leads to higher nonspecific binding of various proteins to the 

column as well the protein of interest, however increased imidazole leads to no binding of 

the NM1. Therefore, the concentrations of imidazole can be altered to reduce nonspecific 

binding.  
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Overall the full-length purification remains unsolved, this study however has shined a new 

light on how to express NM1. This could lead to a better understanding of its functional and 

structural properties and allow for easy in vitro characterisation of the protein. In the interest 

of time, the decision was taken to focus upon the tail domain. 

 Recombinant NM1 tail is a stable construct for in vitro studies 

The motor domain of NM1 has been well characterised, however many of the binding 

capabilities of the tail region have yet to be studied in vitro. Using a construct that has been 

previously published, the NM1 tail including all three IQ regions, was purified and then 

studied for its structure. To understand the effect of CaM binding on the function of the tail 

domain, it was important to understand a structural role the CaM may play in the tail. The 

circular dichroism has shown that the NM1 tail has structure with or without CaM, as well as 

in the presence or absence of calcium. The circular dichroism data matches that of the 

published work when altering the calcium levels of NM1 tail purified with CaM (Lu et al., 

2015). This data also shows that the NM1 tail itself without CaM is unaffected structurally by 

calcium levels. Due to this stability, it was possible to take the recombinant tail onwards for 

further studies with and without CaM.  

 N-terminal – tail interaction provides an explanation for altered motor 
activity  

 

As previously published the N-terminus of myosin IC alters the motor activity of the protein 

(Greenberg et al., 2015). By simply removing the N-terminus the ADP release is slowed and 

the ATP induced disassociation of actin is increased. With this theory and the proof of an 

alternative myosin I, myosin IB having an N-terminal interaction close to the IQ region, I have 

shown that NM1 has this interaction as well. As the N-terminus peptide is able to bind to 

NM1 when CaM is present at a Kd of 0.55µM and can bind CaM itself with a Kd of 0.2µM. As 

CaM regulates the activity of NM1 as well as the N-terminus there is potential for the NM1 
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to backfold around the CaM, where CaM may act as a bridge between the tail and the N-

terminus. This then can explain how the removal of the N-terminus then affects the motor 

activity. 

 The fact the binding of N-terminus peptide is weaker to NM1 tail with CaM than CaM itself 

may be occurring due to the peptide being able to bind both CaM and the tail domain and 

so it is difficult to predict which protein the peptide is binding too. However it does show 

that the interaction between the peptide with CaM or the tail recombinant protein is 

relatively unaffected by the binding of NM1 tail with CaM. This shows that all three are able 

to interact thus providing structural information without the ability to express and purify the 

full length protein.  

 N-terminal regulation may play a role in nuclear import  

The N-terminus of NM1 has been shown to be required for nucleolar localisation of NM1 and 

for the myosin to enter the nucleus the CaM must dissociate from the IQ regions (Dzijak et 

al., 2012). It has been hypothesised that the CaM is blocking the NLS region within the IQ 

domain and so importins are unable to transport the myosin into the nucleus.  

The data shows that the unique 16 amino acid sequence found at the N-terminus of NM1 

binds tightly to the tail domain of NM1 with a Kd of 0.03µM. Whilst we are unable to identify 

the precise location of N-terminal binding we have shown this binding can be disrupted by 

either a single point mutation of the arginine found at position two or the arginine at position 

4 of the N-terminus, showing that both amino acids are necessary for a complete interaction.  

Due to the fact the N-terminus binds tightest to the NM1 tail without CaM but also the N-

terminus binds CaM, as previously stated, there is potential for competitive binding with the 

N-terminus having a preference to bind to the tail directly. This competitive binding could be 
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regulated by the local calcium concentration, as this would aid in the either the IQ region 

being free for N-terminal binding or CaM being bound instead.  

It is likely that once CaM is removed, by high calcium levels, from the IQ regions the motor 

domain folds over and the N-terminus interacts with the NLS region of the tail. This 

interaction may compete with CaM, blocking the CaM from rebinding to the IQ region and 

allowing NM1 to interact with the nuclear pore complexes using its NLS, finally transporting 

it into the nucleus. Once transported some other conformational change must occur to reset 

the folding to then allow CaM to rebind.  

 NM1s ability to bind DNA is potentially regulated by CaM 

Whilst it has been known that NM1 is able to associate with the genome through ChIP-seq 

data (Almuzzaini et al., 2015), the data shown here is the first to provide biochemical 

characterisation for direct binding. The NM1 tail can bind to a variation of dsDNA lengths 

with and without CaM with Kds of 56 to 75nM except for when no CaM is present when the 

NM1 tail is binding to dsDNA40 where the Kd is undefined. In the binding assay it is possible 

that the Kd is not determined due to it not being reached within the system.  

The fact that the NM1 tail is able to bind to dsDNA15 with or without CaM with a Kd of 75nM 

and 56nM respectively shows that the IQ domains do not have an effect on the tail binding 

and it is likely that closer to the PH domain is the DNA binding domain. This binding also 

shows that NM1 must bind to DNA that is at least 15bp long, however the actual length of 

DNA needed for binding could be far below that and so short DNA strands could be used and 

smaller recombinant fractions of just the tail without IQ domains and just the PH domain 

could be used to identify the exact amino acids required for DNA binding.  

The fact that NM1 is able to bind DNA in the nano-molar range and it binds RNAPII through 

actin it is possible that the CaM more affects the binding to actin and RNAPII rather than the 
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DNA binding. However the ssDNA binding affinity was far stronger when CaM was present in 

the system, and the colocalisation has shown that CaM and NM1 are present together within 

the nucleus. 

 DNA binding must occur through electrostatic interactions 

The tail domain not only binds to dsDNA but also ssDNA. These strands are made up of 

guanine and cytosine residues and with no discernible structure. The binding assays have 

shown reduced binding constants with and without CaM compared to that of dsDNA, and all 

are able to be defined with a Kd all above 100nM. The fact that the NM1 tail can bind to both 

substrates, it is likely that the phosphate backbone of the DNA is providing a negative charge 

and the positive charges found in the tail domain, allow an electrostatic interaction thus 

making the sequence of DNA irrelevant.  

 NM1s role and regulation  

The identification of the N-terminus binding the tail domain and CaM provides evidence of 

how NM1 can be imported and why it is important for the protein to have high local calcium 

levels and that the loss of CaM is required. The colocalisation analysis suggests once NM1 

enters the nucleus it is likely that apo-CaM rebinds to the NM1 tail, thus allowing for the 

NM1 to become regulated by CaM once again. It seems as though the presence of CaM may 

affect DNA binding but could also play a classical regulation of the motor domain which may 

help NM1 act as an auxiliary motor to the RNAPII machinery. This DNA binding role also helps 

link NM1 to the chromatin remodelling complexes containing WTSF and SNF2h where NM1 

could potentially bind DNA to allow for the opening of closed chromatin, or move the DNA 

to transcriptionally active areas (Vintermist et al., 2011). This study has shown that whilst it 

is not possible to purify the full length myosin, by using the recombinant tail further 

biochemical and structural characterisation can be undertaken. 
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 The next step in this study would be to purify the full length protein so as to study its 

regulation by CaM and to produce a crystal structure highlighting the embedded N-terminus 

with the IQ regions To further study the gain and loss of CaM, live cell imaging using 

fluorescence resonance energy transfer (FRET) would provide information on the state of 

CaM during transcription and would further confirm the loss of CaM to allow NM1 

translocation into the nucleus.  

  

 

 

 

Figure 4.11. A new model of NM1 regulation. 

NM1 releases CaM allowing the N-terminus of NM1 to bind to the tail domain. This allows 

translocation through the nuclear pores. NM1 then rebinds to CaM in the nucleus where it then 

binds DNA for its role in transcription. 
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Chapter 5.  Myosin VIs’ response to DNA 
damage   
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 Introduction.  
 

To understand further how nuclear myosins can be regulated and to further elucidate their 

roles in the nucleus, a stimulus can be used. Use of a stimulus along with gene silencing 

technology can be availed to identify phenotypic and genotypic responses by the protein of 

interest in a cellular pathway. In this study, double stranded breaks were used to identify 

how a nuclear myosin, in particular MVI, responds to these breaks and if it is required for 

DNA damage. It is already known that NM1 responds to DNA damage and brings about the 

movement of chromosomes after DNA damage (Kulashreshta et al., 2016) and so it is 

possible for MVI to also have a role in the DNA damage response.  

 Myosin VI. 

MVI is commonly found as both monomeric and dimeric and travels along actin filaments in 

the opposite direction to all other known cellular myosins, from the barbed end, to the 

pointed end of actin. This ability to move in reverse means that within the cytoplasm of the 

cell, it is utilised for endocytosis, golgi membrane maintenance and cell migration (Chibalina 

et al., 2009). Its structure follows all other myosins with a globular motor domain, a neck 

region and finally a tail domain for cargo binding. The motor domain allows for a step size of 

30-36nm when the protein is dimeric, as well as the ability for MVI to act as either a 

processive motor at low forces or an anchor at high molecular forces above 2pN (Altman et 

al., 2004). This duality of function between anchor and motor shows that MVIs function can 

be regulated by external forces, cargo binding and other binding partners.  

The neck region contains only one IQ domain as well as the unique insert, thus MVI binds 

two CaMs, that regulate the stability of the protein. The binding partners of MVI, such as 

GIPC (Buss et al., 2001), involved in clathrin coated vesicles and endocytosis, Dab2, involved 

in tumour suppression and cell signalling (Morris et al., 2002), and SAP97, used at cell-cell 
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adhesion sites all define its function (Nash et al., 2010). These studies suggest that the 

binding partners might be involved in regulation of MVI as well as provide evidence of its 

various functions within the cytoplasm.  

 MVI in the nucleus.  

MVI in the nucleus is a relatively new discovery, having been found in 2006, where it was 

associated with newly transcribed mRNA and RNAPII complexes (Vreugde et al., 2006). Fili et 

al. (2017), then took this work further and showed that one of its binding partners NDP52 

activates MVI, allowing it to unfold from its back folded state and then dimerise through the 

NDP52 intermediate. This then creates a mechanism where MVI binds to a DNA binding 

protein, NDP52 as well as the RNAPII complex itself, acting as a potential stabiliser of the 

transcription machinery. Here it is likely due to the large forces the RNAPII complex 

generates, that MVI is acting within an anchoring role rather than that of the cytoplasmic 

transporter it is often characterised as.  

For MVI to enter the nucleus there are multiple putative nuclear localisation signals that have 

been identified, these sites are yet to be experimentally proven and with six sites it is difficult 

to predict if they are all active or if there is one specific site only (Majewski et al., 2018). 

These sites are shown in the table below.  
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Putative Sites Amino acid residues predicted 

by bioinformatic tools 

Location within the MVI heavy 

chain (residues/domains) 

NLS - nuclear 

localization signal 

PRKSKLA 559-566, motor domain 

  RRHK 831-834, IQ motif 

  RKRR 937-940, putative coiled-coil 

domain 

  RRRK 946-949, putative coiled-coil 

domain 

  RKKR 971-974, putative coiled-coil 

domain 

  RRLKVYHAWKSKNKKRN 1116-1132, globular tail domain 

  PQNKKKG 1185-1191, globular tail domain 

NES - nuclear 

export sequence 

LALRI 1012-1016, putative coiled-coil 

domain 

Table 5.1. A Table of MVI nuclear localisation and nuclear export sequences 

There is also one export sequence that has been identified within the coiled-coil domain of 

the MVI. These multiple import and single export sequences allow MVI to shuttle across the 

nuclear membrane, which shows that there are no specific and separate cytoplasmic and 

nuclear pools and the exchange of MVI proteins is much more dynamic.  

This type of dynamic nature is observed when neurosecretory cells are stimulated with KCl 

that leads to a large movement of MVI into the nucleus (Majewski et al., 2018). This 

movement into the nucleus is associated with the increase of cellular transcription levels and 

so it is believed that this movement of MVI, is down to the cell requiring an increase in gene 

Taken from Majewski et al.,(2018) 
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expression. If nuclear export or import is blocked using leptomycin B and ivermectin 

respectively there is no movement of MVI.  

These data suggest that an increase in MVI expression within the nucleus comes after 

stimulating the cell, and also that the MVI shuttles in and out of the nucleus. To fully 

understand other stimulations that may cause MVI nuclear localisation, DNA damage 

inducing drugs have been used in this study.  

 DNA damage inducing drugs. 

This study has used two well characterised drugs, bleomycin and cisplatin, to understand the 

DSB response. 

Cisplatin generates double stranded breaks indirectly through intra and interstrand cross 

linking, which leads to fork stalling during the DNA replication process of the cell cycle (Dasari 

and Tchounwou, 2014). It is a common cancer therapeutic used for the treatment of 

testicular, ovarian, lung, and cervical cancer; where it is directly given to a patient through 

injection into the bloodstream. It is a platinum-based drug covalently bonded to two NH3 

molecules and two Cl atoms. This bonding allows the platinum drug to preferentially bind to 

guanine bases, inter-chelating within the DNA helix, and then blocking the DNA helicase from 

unwinding DNA during replication. This inability to unwind can cause replicative stress which 

generates double stranded breaks within the DNA, that then must be repaired otherwise the 

cell enters apoptosis. Cisplatin not only induces double stranded breaks but also can induce 

the nucleotide excision repair pathways in around 3-5% of the cases where interstrand cross 

linking occurs (Dasari and Tchounwou, 2014). However, this study will focus on the main 

cause of damage through double strand breaks.  

Bleomycin is another drug that has been used in this study. This is also a well-known cancer 

therapeutic used to treat Hodgkin and non-Hodgkin lymphomas, testicular and ovarian 



Page | 108  
 
 

cancers. It is a glycopeptide antibiotic that is produced by Streptomyces verticillus, which 

forcibly breaks double stranded DNA (Dorr, 1992). The bleomycins activity differs from that 

in cisplatin, where the main damage is caused during replication, here the damage can be 

caused at any time during the cell cycle. The damage mechanism starts with the molecule 

first inter-chelating within the DNA, separating the strands, it then, using oxygen and iron 

molecules, generates damaging free radicals that are able to break the double strand open. 

With a half-life of up to 21 hours this was deemed a suitable drug for this study. By using two 

drugs the responses observed would be dependent on the double stranded break of DNA, 

and not down to other side effects of that drug, also by using common cancer therapeutics 

it allows us to further study the effect of MVI nuclear localisation and cancer treatments 

together.  
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 DNA damage and MVI. 

So far little is known about the role of MVI in the DNA damage response, except for its ability 

to interact with the cell cycle inhibitor and tumour suppressor p53 (Jung et al., 2006). It was 

originally thought that expression of MVI is increased after DNA damage and this increase in 

protein levels is dependent on a functional p53, if the cells do not have p53 then MVI 

expression remains constant. It was later found that p53 itself can be found bound to the 

Cisplatin (A) is able to form intrastrand adducts as well as interstrand cross links. Bleomycin (B) creates reactive 

free radicals that lead to DNA cleavage. Taken from Rocha et al., (2017) and Murray, Chen and Chong. (2018) 

A 

B 

Figure 5.1. Mechanism of DNA damage drugs.  
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promotor region of the MVI gene (Chung et al., 2006). Interestingly this study also identified 

the movement of MVI away from membrane ruffles and endocytic vesicles, towards the golgi 

apparatus and into the nucleus.  

MVI has been reported to bind directly to p53, however the actual binding site has not been 

elucidated (Chung et al., 2006). With the knocking down of MVI, p53 stabilisation is also 

reduced after DNA damage, which could be down to the fact that phosphorylation of p53 by 

the DNA damage response protein, ATM or that the golgi apparatus is not stable enough 

without the MVI thus leading to quick breakdown of p53.  

All this work was carried out in RKO, LS174T, and H1299 cell lines, however further work has 

shown that this MVI expression increase due to DNA damage is cell line dependent and that 

MCF7 and LNCaP cell lines (a breast cancer and a prostate cancer cell line respectively) do 

not exhibit an increase of MVI expression after DNA damage and that after DNA damage 

there is in fact a repression of MVI levels (Cho and Chen, 2010). This repression however 

seems to be independent of p53 through another pathway. If MVI is knocked down in these 

cell lines, compared to those that have an increase of MVI expression levels, the cell lines 

become less responsive to DNA damaging drugs. This is important for therapeutic research 

as whilst in some cell lines MVI inhibition will cause great susceptibility to cancer 

therapeutics, in others, it will reduce the therapeutics efficacy.  

For this reason, this study will use two different cell lines, HeLa and MCF10A cells. HeLa cells 

are cervical cancer immortal cell lines that contains, the viral protein E6 which suppresses 

p53 (DeFilippis et al., 2013), and the viral protein E7 which causes DNA aneuploidy (Yaginuma 

et al., 2015) as well as centrosome duplication errors (Duensing and Münger, 2002) leading 

to chromosome instabilities. On the other hand, MCF10A cells are non-cancerous epithelial 

mammary gland cells that will serve as controls in this study with no mutations or defects in 

the DNA damage signalling and repair.  
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 The first stages of the double strand break response. 

To understand how else MVI might be involved in the DNA damage response, it is important 

to fully appreciate the complexity of the first stages of this response.  

Immediately after the double strand break, if the cell is able to complete homologous 

recombination, the MRN complex binds to the break. This binding allows for the resection of 

the DNA from 5’ to 3’ (Paudyal et al., 2017). This complex is made up of Mre11, which houses 

a single strand endonuclease component and the double strand specific 3’ to 5’ exonuclease, 

Rad50 that binds to the DNA and helps the two linear segments of DNA close together. As 

well as these subunits, NBS1, allows for the localisation of this complex, and contains a 

phosphorylation site for the ATM complex (H. Zhou et al., 2017). 

If, the cell is unable to perform homologous recombination due to no template being 

available, the cell then turns to using non-homologous end joining (NHEJ). Here the first to 

bind to the double stranded break are the Ku70/Ku80 proteins that bind to the ends of the 

DNA, blocking the MRN complex, until activation of the DNA dependent protein kinase (DNA-

PKcs) which acts in a similar manner to that of the ATM kinase (Fragkos, Jurvansuu, and 

Beard, 2009). Where it is able to then phosphorylate and activate the downstream proteins 

required for signalling and repair.  

During the scaffold complex formation, to directly repair the broken strands further, 

signalling cascades begin around the DSB. This signalling cascade all relies on the self-

activation of the ATM kinase through automatic phosphorylation. This phosphorylation 

occurs when a dimer of ATM proteins releases and the ATMs become monomers where they 

auto-phosphorylate at the serine-1981 residue (S. So, Davis, and Chen, 2009). From here the 

ATM then phosphorylates the histone variant H2A at the serine-139 position (Burma et al., 
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2001). This phosphorylation can then spread rapidly throughout the chromatin and at 

multiple points of damage providing a signal of a DSB throughout the nucleus.  

Once ATM is activated, a complex and diverse pathway is activated that contains; BRCA1, a 

DNA damage repair and tumour suppressor protein, that can form the BRCA1 associated 

genome surveillance complex (Cortez et al., 1999), p53, the tumour suppressor protein that 

controls cell cycle and apoptotic pathways (Saito et al., 2002), tumour protein 53 binding 

protein 1 (TP53BP1), a protein that alongside BRCA1 decides which route the repair should 

take with the majority being NHEJ or HR (Iwabuchi et al., 1998). Both the DNA-PKcs and ATM 

activate similar pathways in the response to DNA damage.  

With the list of ATM activated proteins being so large, it becomes apparent that MVI may 

have some involvement amongst the cellular response. This study will only focus on the first 

stages of the DSB response and the signallers required rather than that of the whole ATM 

pathway.  
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After DSBs have occurred the two most common repair pathways are the non-homologous end joining 

(NHEJ) and homologous recombination (HR). Taken from Lans, Martejn and Vermeulen, (2012). 

 

 

Figure 5.2. Double strand break response.  
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 High Content Screening (HCS). 

Whilst confocal imaging provides a degree of information about localisation of proteins, due 

to the length of time that is required for each image and the processing alongside it, it is not 

suitable in providing statistical information using large sample sizes. Therefore, HCS is used 

to image and analyse hundreds of images in a short space of time. This method uses a low 

magnification of around 20X to 60X objectives, due to this low magnification multiple images 

of a sample can be taken rapidly providing images of thousands of cells in a short period of 

time using a microplate.  

The images are then analysed with a defined region of interest, and within this region it is 

possible to measure the intensity of a fluorescent signal. By keeping the capture settings the 

same throughout, the relative intensities can be compared and thus provide information on 

the abundance of a protein within your region of interest. Whilst this technique relies on 

equal labelling of samples with primary and secondary antibodies, due to the large sample 

size any minor differences between labelling errors can be discounted.  

This type of imaging provides evidence that what is seen within one cell, can be seen across 

the whole sample within a short timescale.  

 RNA-seq, the method to study transcriptomics. 

As previously mentioned MVI has an involvement in successful transcription within cells. Fili 

et al.,(2017) showed that by inhibiting MVI there is a 75% decrease in total transcription, in 

vitro. With this information in mind it is important to understand that MVI may increase the 

expression levels of DNA damage proteins and thus responsible for the DSB response 

through its interactions with the RNAPII machinery. In this study to understand if this is the 

case, RNA-seq was employed.  
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RNA-seq is the method in which small mRNA transcripts are sequenced and can be aligned 

to identify the cells response to DSBs. This method begins with the purification of the total 

RNA transcripts from the cells either non-treated, or treated with cisplatin for 24 hours. Once 

the RNA is extracted and purified it is then checked for quality through gel electrophoresis 

to identify the 28S and 18S rRNA. Only high quality mRNA is selected and is used to create 

the cDNA library which is subjected to next generation sequencing. Once sequenced the 

genes can be aligned to the known human transcriptome using the De Novo approach and 

then quantitative expression and expression networks can be formed. This type of 

quantification allows the identification of the global effects of cisplatin treatment to cells, 

and the effect MVI KD has on this expression signature.  

 

Figure 5.3. A cartoon to depict the RNA-seq procedure. 
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 Liquid Chromatography – Mass spectrometry, the method to study 
proteomics. 

 

To understand if there is a direct interaction between MVI and any of the DSB proteins either 

required for repairing the break or signalling a break, Liquid Chromatography-Mass 

spectrometry/Mass Spectrometry (LC-MS/MS) was used to identify precisely, a list of 

proteins MVI is interacting with before and after damage.  

This method requires total protein isolation from the treated or untreated cells. Once 

isolated the proteins are then precipitated using immunoprecipitation (IP). Here protein A 

beads, which bind to the heavy chain within the Fc region, with high specificity to 

immunoglobulin G (IgG) antibodies (Skvaril, 1976), can be used to bind specifically the MVI 

antibody used in the study. These beads can be linked with the MVI antibody which then 

binds any MVI in the cell lysate which in turn also precipitates out any protein that directly 

or indirectly interacts with MVI. After IP the eluted proteins along with the MVI are purified 

using 2D gel electrophoresis. The proteins are digested using trypsin which is able to cut 

proteins at carboxyl end of the amino acids, lysine and arginine. Once digested the proteins 

are solubilised out of the gel and then maintained in a solvent. This solvent is then passed 

through a liquid chromatography column that separates these protein peptides depending 

on their affinity for the column. Once eluted the peptides pass through the electrospray 

vaporising them, allowing for ionisation of the peptides, which then collide with the mass 

spectrometer detector differently depending on their mass.  

To provide higher sensitivity for assigning the correct peptides to the correct protein, 

another round of mass spectrometry can be performed. Here another ionisation step occurs 

on a collision photon surface, breaking the parent peptides further into multiple daughter 

ions. These daughter ions then travel through the mass spectrometer again and their weight 
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can be identified. Through this process each protein peptide can have its molecular weight 

detected and then assigned followed by another round of assignment of its daughter ions.  

 

 The aims of this study.  

To fully appreciate how MVI might be involved in the DNA damage response in particular 

DSBs, it is important to investigate how the localisation of MVI changes after DNA damage; 

does the cell utilise MVI to produce mRNA transcripts relating to DNA damage proteins so 

that the cell can respond to the damage? And does MVI itself directly interact with any of 

the DSB signalling proteins or DSB repair proteins?  

 

 

 

Figure 5.4. A cartoon to depict this studies proteomics procedure. 
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 Results  
 

By using a simple work flow of identifying where MVI is after DNA damage and then 

proceeding with transcriptomics and then proteomics, it is possible to identify potential roles 

it may play in the DNA damage response. This study has used both RNA-seq and LC-MS/MS 

proteomics procedures to unveil the potential roles, and also look at MVI signatures globally 

in response to the damage inducing drugs.  

 MVI levels in the nucleus change after DNA damage. 

To understand how MVI changes after DNA damage, HeLa cells were treated with 25µM 

cisplatin for 24 hours or 4 hours of 0.5µM bleomycin. Immunofluorescence was then 

undertaken. It is common that MVI localisation is predominantly within the cytoplasm of 

untreated cells, where it resides around the golgi-apparatus as well as at the cell periphery 

(Figure 5.5). Using immunofluorescence it is possible to identify the nucleus through MVI 

staining due to the low amounts that are present. After treating the cells with cisplatin, the 

amount of MVI found within the nucleus increases. Here, it becomes difficult to distinguish 

the nucleus through the MVI staining. This increase of MVI in the nucleus coincides with the 

appearance of γ-H2AX, the histone modification that signals double stranded breaks, 

showing that the cisplatin treatment is causing direct damage to the DNA.  

HCS has provided statistical data behind these images, where the intensity of MVI increases 

by 50% in the nuclei of HeLa cells and 27% in MCF10A cells. Within HeLa cells there is also a 

27% increase of MVI around the external nuclear membrane but in MCF10A cells there is a 

decrease of 15% (Figure 5.5). This could be due to MVI translocating across the nuclear 

membrane into the nucleus of the cell in both cell lines. These data provide evidence that 

MVI has some response to DNA damage and that either the amounts of MVI increase with 
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DNA damage, or the cytoplasmic pool of MVI moves into the nucleus after damage. These 

images gave purpose into proceeding with the transcriptomics.  

 

 

MCF10A 
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Figure 5.5. MVI moves into the nucleus after DNA damage. 
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 Lipofectamine and scrambled siRNA has an effect on the transcriptomics of a 

cell. 

MVI has been shown to play a role in transcription, where it binds to DNA and has an 

interaction with NDP52 (Fili et al., 2017). It has previously been shown that MVI binds to 

RNAPII during mRNA transcription and by introducing a stress such as DNA damage, one of 

the aims of this study was to investigate if MVI has a role in regulation of DNA damage genes. 

To ascertain if this is in fact the case, RNA-seq was used to identify if any DNA damage 

response genes are affected by the knock down of MVI.  

RNA-seq was performed on RNA extracted from untreated cells, treated with scrambled 

siRNA, or MVI siRNA. After siRNA transfections using lipofectamine, the cells were grown in 

either MEM, or MEM with 25µM cisplatin for 24 hours. MVI transcription levels were first 

checked to ensure the MVI KD was successful (Figure 5.6). The MVI KD was successful, as the 

level of MVI mRNA was significantly reduced by three fold in both the MVI KD and the MVI 

KD treated with cisplatin, whilst all other conditions maintained the normal level of MVI 

transcript.  

There was no increase of MVI expression in HeLa cells after DNA damage in both WT cells 

and those treated with a control siRNA. Therefore the increase of MVI inside the nucleus 

Immunofluorescence (A) shows an increase of MVI within the nucleus after 24 hours of cisplatin treatment. Scale 

bar 10µM. HCS is able to analyse the images using two masks, the ring (nuclear external periphery) and the circle 

(the nucleus) (B). HCS of cells treated with bleomycin for 4 hours, shows an increase of MVI signal both at the 

nuclear periphery and inside the nucleus in HeLa (C). It also shows the decrease of MVI at the nuclear periphery 

and an increase of MVI in the nucleus in MCF10A cells. Significance was calculated using the students T test where 

** p<0.01 and **** p<0.0001. 
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after DNA damage is due to the movement of the cytoplasmic pool of MVI into the nucleus, 

and not due to an increase of total MVI inside the cell.  

Principle component analysis (PCA) showed that out of the triplicates of conditions, the 

majority of them were clustered to each other, this shows that these samples can be carried 

forward for further analysis (Figure 5.6). A PCA plot, is a dimension reduction plot that allows 

the correlation of each sample to be plotted onto a single graph, where samples that contain 

similar gene expression are clustered together. PCA plots are also ranked, where the 

difference in the samples 1st principle component is of greater importance than the 

difference in 2nd principle components. One replicate for cells treated with scrambled siRNA 

and cisplatin was deemed as an outlier due to its large difference in principle component 

score, compared to the other replicates from that condition. This sample was then taken out 

of the dataset and was not analysed any further (Figure 5.6 C).  

Interestingly cells treated with scrambled siRNA and cisplatin behaved different to wild type 

cells treated with cisplatin. This placed the transcriptomics of scrambled siRNA cisplatin 

treated cells significantly distant in terms of PCA score from the no siRNA cisplatin treated 

cells. Therefore the dataset was reduced so that only scrambled siRNA, and MVI siRNA 

treated cells with and without cisplatin were compared, and the wild type samples were 

removed, keeping the focus on the effect of MVI KD and cisplatin treatment to be studied, 

from here when discussing cells treated with scrambled siRNA, I will be referring to these as 

mock samples. 
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MVI expression was first compared between all samples to ensure the KD had worked and to ensure DNA damage 

does not alter MVI gene expression (A). PCA analysis was then carried out between the samples (B) highlighting 

one sample to be an anomaly which was then removed from the data set (C).  

A 

B 

C 

Figure 5.6. PCA analysis of the RNA-seq data. 
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 Cisplatin treatment itself has the largest effect on gene regulation. 

To fully appreciate the amount of genes that were affected from each condition, volcano 

plots have been used to represent the number of genes that were either upregulated or 

down regulated (Figure 5.7). After PCA analysis and the removal of the outliers, stringent 

statistical tests were applied to remove false discoveries as well as any gene changes that 

were not significant. In this study any gene that did not have a >1 log fold change (Fc) were 

removed as well as this, using the p adjusted value, provided any gene that did not have a p-

value less than 0.05 were also removed.  

Cisplatin treated mock HeLa cells generated a dataset with 4107 differentially expressed 

genes compared to the mock cells, which was one of the biggest effects throughout all of the 

conditions. After MVI KD only, there is also a global shift in transcriptomics where 1947 genes 

are affected by the KD. This large difference is expected due to the role of MVI in 

transcription and other cellular processes including binding to p53 which could alter the 

expression of p53 regulated genes (Jung et al., 2006).  

To understand how MVI KD affects the DNA damage response, cells with silenced MVI were 

treated with cisplatin and were then compared to the mock cisplatin condition in the RNA-

seq analysis. This entailed plotting only genes that were expected to increase in transcription 

and instead were suppressed and vice versa. This allows the identification of genes that are 

specifically regulated by MVI during the DNA damage response. Here only 210 genes were 

transcriptionally different compared to that of mock cisplatin sample.  
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n=1816 n=2291 

n=1458 n=489 

n= 191 n= 19 

Figure 5.7. Volcano plots of upregulated and downregulated genes. 
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 Cisplatin treatment alters a diverse set of genes.  

To investigate how MVI may be responsible for the DNA damage response in terms of 

transcription it is important to first look at how cisplatin affects global gene expression. As 

discussed previously cisplatin treatment on mock cells alters 4107 genes. These genes can 

be assigned to different categories based on their molecules function, cellular localisation 

and various biological processes these might belong to. This classification was performed on 

statistically significant, differentially expressed genes from the above mentioned data set 

using Gene Ontology (GO) software, the results of which are represented in Figure 5.8.  

Cisplatin treatment alters various biological processes as expected due to the toxicity and 

mode of action of the drug blocking cell replication, creating double stranded breaks and 

causing a large amount of stress on the cell. The processes that were affected the most by 

cisplatin treatment are - regulation of metabolic processes, regulation of signalling, 

intracellular signal transduction and cell development. These processes come as no surprise 

to be affected by the drug, as the cell requires a change of metabolic state so as to stall the 

cell development through the cell cycle, which it does by intracellular signalling. Interestingly 

the DNA damage biological process does not make up a significant number of genes affected 

by the cisplatin treatment, implying that the majority of the DNA damage response is on a 

protein level which then results in a change of cellular behaviour. This is also expected as a 

gene expression response takes far longer (Figure 5.8).  

The cellular component of the genes with altered expression, are highly associated with non-

membrane bound organelles of which can be ribosomes, the cytoskeleton and 

A total of the upregulated and downregulated are shown. 4107 genes were differentially expressed after 

cisplatin treatment (A) compared to only 1947 genes that are affected by MVI KD (B). RNA samples were then 

compared between the MVI KD cisplatin and cisplatin treated cells, with 210 genes having the opposite 

expression to cisplatin only treatment (C). 
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chromosomes. As this GO term is relatively non-specific it is hard to identify which organelle 

these genes could be associated with, however it is clear that nuclear lumen associated genes 

are also highly affected, therefore the cell is likely responding to the damage through 

differential expression of genes relating to chromosomes and the nuclear envelope. This is 

expected with the formation of repair foci, rearrangement of chromosomes, and retention 

of nuclear integrity after DNA damage.  

To specifically understand the expression changes from the RNA-seq data at protein level, 

GO molecular functions were explored. These terms highlighted how there is a major change 

in transcription related genes and signalling genes, such as the 423 genes found in the 

transcription regulatory activity and the 506 genes found in the enzyme binding function 

(Figure 5.9). These fit with expectations as the damage induced by cisplatin is so broad, a 

small localised response would not be suitable.  
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The biological processes (A), the cell component the proteins encoded by these genes (B) and the molecular 

function these proteins have (C) have all been plotted to show the array of genes affected by DNA damage.  

Figure 5.8. GO terms to distinguish gene expressions changed by DNA damage. 
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 MVI KD effects the transcriptome differently to cisplatin treatment. 

To explore if MVI KD with cisplatin treatment regulated similar cellular processes, 

differentially expressed genes that overlapped in both datasets were identified, that were 

upregulated (Figure 5.9 A) and down regulated (Figure 5.9 B). Only 92 genes were 

upregulated and 341 genes were downregulated in both MVI KD treatment and cisplatin 

treatment as compared to 397 genes upregulated and 1117 genes downregulated that were 

unique to the MVI KD. This shows that potentially MVI itself plays in gene regulation, due to 

the large number of genes that become downregulated after KD.  

The difference in genes can be shown by the difference in GO biological processes (Figure 

5.9 D), where the most affected are the developmental processes within the cell and its 

ability to differentiate, as well as cell communication. Regarding how the cell communicates 

with its exterior environment as well as with the extra-cellular matrix. The GO cell 

components also differ, where previously the cisplatin damage perturbed expression of 

genes relating to non-membrane bound organelles, the MVI KD affects genes regarding the 

extracellular region and the plasma membrane (Figure 5.9 E). This links with MVIs role in 

endocytosis regarding receptors on the cell surface. The most significant of GO molecular 

functions, that are affected, are genes responsible for producing proteins related to anion 

binding such as those that bind cyclic AMP, fatty acids, heparin and ATP binding (Figure 5.9 

F). These could be regarding signalling proteins and spread across a large variety of cellular 

pathways.  

It is important to note that the MVI KD does not majorly affect the DNA damage pathways, 

such as double strand break pathways or the p53 pathways. The cell cycle pathway is also 

not one of the major pathway identified to be altered either. 
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 MVI KD with cisplatin treated cells behaves similar to that of cisplatin only 
treated cells. 

 

The MVI KD did not affect the genes that respond to cisplatin treatment. This study 

investigated if, after MVI KD and cisplatin treatment, the genes that are expected to be 

repressed, are still repressed, and those upregulated, are still upregulated, after cisplatin 

treatment only. As previously shown, only 210 genes fit into this category of opposite 

expression, to identify what role these handful of genes play within the cell a similar GO term 

comparison was carried out.  

When these differentially expressed genes are grouped by their GO biological processes 

there is a range of processes that are affected mainly linked to stimuli (139 genes) and cell 

proliferation (49 genes) (Figure 5.10 A). This highlights that those genes that should respond 

to cisplatin and are no longer doing so due to the MVI KD are not significantly grouped under 

the DNA damage response.  

As the stimulus process is the most affected, it is not surprising that once again the cell 

component GO term that contains the most genes in the sample are linked to the 

extracellular regions, 194 genes (Figure 5.10 B). This is also shown by the most number of 

The genes upregulated during cisplatin treatment and genes upregulated during MVI KD were compared 

(A), where there were only 92 genes that were both upregulated in both conditions compared to 2197 

unique genes due to cisplatin treatment and 397 due to MVI KD. The genes downregulated due to 

cisplatin and MVI KD we compared (B) where there were 341 genes that were repressed in both 

conditions and 1473 unique to cisplatin treatment and 1117 unique to the MVI KD. The biological 

processes (C), the cell component the proteins encoded by these genes (D) and the molecular function 

these proteins have (E) have all been plotted to show the array of genes affected by MVI KD.  

 

Figure 5.9. Gene expression changes caused by MVI KD. 
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genes being grouped under receptor activity or regulation, a total of 31 genes (Figure 5.10 

C).  

These data show that both the MVI KD and the MVI KD with cisplatin treatment does not 

greatly effect a single biological process but a variation and that there is no majority of genes 

linked to the DNA damage response and repair pathways. This type of analyses is important, 

as it gives a broad overview to a large set of transcriptomics, it is however still vital that the 

specific pathways are looked into further detail to ensure that the MVI KD cells and the MVI 

KD cells treated with cisplatin do not have expression irregularities of the first responders of 

DNA damage, which would leave downstream DNA damage genes unaffected. 
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The biological processes (A), the cell component the proteins encoded by these genes (B) and the molecular function 

these proteins have (C) have all been plotted to show the array of genes that behaved the opposite of cisplatin 

treatment due to the MVI KD.  

 

Figure 5.10. GO terms to distinguish gene expressions caused by MVI KD with cisplatin treatment. 
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 MVI KD with cisplatin treatment does not affect expression of genes 
required for the DNA damage response. 

 

To further investigate the direct role of MVI in the DNA damage response, the genes that 

were upregulated due to cisplatin, were plotted onto the KEGG p53 pathway (Figure 5.11 A). 

Here a total of 17 genes within this pathway are upregulated after treatment with cisplatin. 

This list includes p21, the cell cycle inhibitor and one of the most activated proteins after 

DNA damage (Cazzalini et al., 2010) , FAS, the cell surface death receptor that leads to 

apoptosis of the cell (Waring and Müllbacher, 1999) and GADD45, found in the DNA damage 

repair pathway (Gartel et al., 2001). It is likely these genes are upregulated so the cell can 

respond to the multiple DSBs and stress caused by the cisplatin, allowing the cell to globally 

adapt to the damage, and attempt to repair the damage or proceed into apoptosis. The 

upregulation of these genes provide a template in which we can analyse those that have had 

their expression changed, due to the MVI KD after cisplatin treatment.  

When the same KEGG p53 pathway is analysed with the genes that have had their expression 

profile altered by the MVI KD with cisplatin treatment, only 5 out of the 17 (Figure 5.11 B) 

were found to be differentially expressed. These include cyclin G which provide a negative 

feedback for the expression of p53 which in turn allows the progression of the cell cycle 

(Ohtsuka et al., 2004) IGFBP3, the insulin-like growth factor binding protein 3 which can lead 

to apoptosis (Shim et al., 2004), and finally thrombospondin 1 (TSP1), a protein which leads 

to the inhibition of metastasis and angiogenesis after DNA damage (Lawler, 2002). 

It is clear that the majority of genes required for the cisplatin response are still expressed at 

the levels they should be, and that the MVI KD does not affect the DNA damage response at 

a transcriptional level as the 5 genes that are affected do not directly influence the first 

stages of the DNA damage response. This has also been proven through the use of classifying 
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these genes using GO terms that also provide the evidence that MVI has no role 

transcriptionally in the DNA damage response.  

The upregulated genes within the p53 pathway caused by DNA damage show multiple genes being affected (A). 

After MVI KD and DNA damage those genes that behaved differently to the normal DNA damage expression 

profile were plotted onto the same pathway (B). This lead to a change of expression after MVI KD of only 5 genes 

(C).  

Figure 5.11. P53 KEGG pathways of the RNA-seq data. 
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 The MVI interactome before treatment, is cell line independent. 

To further understand how MVI reacts to DNA damage within the cell, a proteomics study 

was established. This study was designed to include two different cell lines, cancerous and 

non-cancerous. It is well known that the cervical cancer immortal cell line HeLa has a 

perturbed p53 pathway due to degradation of p53 by E6 (Hoppe-Seyler and Butz, 1993). 

Whilst this degradation allows for the quick and easy growth within laboratory conditions, it 

does make studying the DNA damage response and p53 pathways difficult to undertake 

without knowing if the pathway is behaving similar to that of other cell lines. To ensure that 

the MVI response to DNA damage is conserved and consistent throughout cell lines another 

cell line was also used, the non-cancerous epithelial breast cell, MCF10A. This cell line acts 

as a control where, unless mutated within laboratory conditions, the DNA damage response 

remains unchanged and fully functional.  

During this study the proteomics data was analysed using common cut offs that have been 

previously published (Sennels, Bukowski-Wills, and Rappsilber, 2009). The data shown here 

required protein identification, to contain at least one unique peptide to reduce the false 

discovery rate as well as a minimum two-fold increase of protein discovered compared to 

that of the nonspecific binding of protein to immunoprecipitation beads without antibody. 

It was also required that the ANOVA p value between antibody covered beads and naked 

beads was at least significant to 0.05. All conditions were completed in triplicates.  

It is clear that the MVI interactome is almost identical between the two cell lines when 

untreated, described here as WT cells (Figure 5.12 A). The WT cell lines share 362 protein 

interactions identified, these mainly consisted of proteins that, defined by GO terms, are 

found in both the cytoplasm and nucleus (Figure 5.12 B), as expected, and play a role in cell 

growth and maintenance (Figure 5.12 B). When the cells are not treated with any DNA 

damaging agent, only a small percentage ~2% of proteins were found to be interacting with 
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MVI that are classified to be involved in the DNA repair pathway. These 2% of proteins are 

also found only in the HeLa and not the MCF10A cell line, this could be due to HeLa 

experiencing replicative stress and thus having a small background of DNA damage 

compared to that of the MCF10A cell lines that have a stable genome.  

 The MVI interactome after cisplatin treatment is cell line dependent.  

In WT conditions, the MVI in both cell lines interact with similar proteins, consisting of 

cellular maintenance and growth. After cisplatin treatment, the similarity between the cell 

lines dissipates and the MVI interactions completely differ. When HeLa cells are treated with 

25µM of cisplatin for 24 hours, MVI changes its interactions completely, where 431 proteins 

can be identified that were not observed in the WT HeLa cells figure (Figure 5.12 A).  

This type of global change of MVI interactions can also be seen with the MCF10A cell line. 

Here only 17 MVI interactions remain the same in our proteomics sample and 253 protein 

interactions are unique to the cisplatin treatment (Figure 5.12 A). Only 89 proteins are 

actually shared for the cells to respond to cisplatin treatment in both HeLa and MCF10s. This 

shows that whilst the MVI is responding to DNA damage, each cell line utilises MVI in a 

different manner, as only a small percentage of total protein interactions, be seen in both 

cell lines compared to that of the WT, where nearly all interactions are conserved.  

In this study both cell lines have an increase of MVI interactions with proteins involved in the 

DNA damage response pathways, and, as classified by GO terms, cisplatin treated cells, are 

the only cells that have MVI protein connections within the p53 dependent and independent 

damage checkpoints, as well as DNA repair, including both double strand break repair and 

nucleotide excision repair (Figure 5.12).  

After cisplatin treatment using GO terms, the molecular functions become more associated 

with DNA binding proteins than those without treatment. This is interesting as it is already 
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characterised that MVI plays a role in transcription, however as shown previously MVI has 

no role in transcription of DNA damage genes, and so at protein-protein level MVI is 

interacting not just with RNAPII but also other proteins that are capable of binding DNA that 

do not have a role in transcription.  

By linking the images shown previously with the change of MVI within the nucleus, the fact 

that my RNA-seq data shows MVI silencing does not interfere with the correct transcriptional 

response to DNA damage, the proteomics data shown here shows that this change of MVI 

after DNA damage is down to the protein-protein interactions, and that MVI responds to 

DNA damage by altering its binding partners.  
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A venn diagram to show the similarity of MVI interactions between WT cell lines and the difference in MVI 

interactions after DNA damage between cell lines (A). The MVI binding partners were then specifically defined by 

GO terms, identifying the cellular component (A), the biological processes (B), the biological pathways (D) and 

the molecular function (E) these proteins have, specifically identifying how they change after DNA damage.  

Figure 5.12. A comparison of proteomics between healthy and damaged cell lines. 
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 HeLa MVI interacts with a multitude of DNA damage repair proteins. 

To specifically understand how MVI interactions differ after DNA damage, using the KEGG 

DNA damage pathway, mapped onto the proteomics data, specific proteins required for the 

DNA damage response can be annotated.  

To begin with, the changes within HeLa cells were annotated, all proteins interactions are 

visible and those marked red are part of the DNA damage pathway (Figure 5.13). 

Interestingly from the proteomics data set there a very few connections between the 

proteins and many are independent of each other. Under the GO process of DNA damage 

response within the untreated cells the majority of MVI interactions consist of four 

ubiquitinating proteins; RPL40, Ubiquitin-40S ribosomal protein S27a, Polyubiquitin-C and 

Ubiquitin B. These ubiquitinating proteins are responsible for marking proteins for 

degradation and so whilst they are required for the DNA damage response, they do not play 

an immediate role in signalling DSBs (Figure 5.13). 

One protein can be found to interact with MVI in untreated cells that is identified not only in 

the DNA damage response pathway (Figure 5.13) but specifically the DSB response, is the 

catalytic subunit of DNA polymerase δ. This is an interesting observation as we know MVI 

interacts with RNA polymerase, but there are currently no reports of MVI and its binding to 

DNA polymerases. This polymerase is required for DNA replication and repair due to its 

ability to synthesise DNA from both the leading and lagging strand (Liu and Warbrick, 2006).  

After cisplatin treatment the MVI-protein interactions that can be found within the DNA 

damage repair pathway and specifically the DSB repair pathway differ from untreated cells. 

Within the DNA damage pathway a total of five proteins are found in Table 5.3. Two of these 

proteins, ERCC6 and APEX1, are directly responsible for the nucleotide excision repair (NER) 

mechanism which is required when DNA inter-chelating agents bind to DNA, such as 

cisplatin. The two proteins used in NER found here are, DNA lyase, which is responsible for 
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the excision of inter-chelated nucleotides (Mol, Hosfield, and Tainer, 2000), and ERCC6, 

which wraps DNA around itself to modify the interaction between RNAPII and the DNA 

allowing NER to take place (Beerens et al., 2005).  

Another protein on the list is FANC1, which is involved in the DNA damage response but not 

the DSB pathway. This protein is a ubiquitinated protein that can be found localised to BRCA-

1 DNA damage sites, as well as BRCA-1 repair foci, where multiple DNA lesions are able to 

repaired within a small distance of one another (Castella et al., 2015). This allows cells to 

repair DNA damage simultaneously and as fast as possible to reduce the likelihood of tumour 

enhancing mutations.  

Finally two MVI interacting proteins are found directly at the point of a double strand break 

(Figure 5.14). Rad50 and XRCC5 (Ku80). As previously discussed Rad50 is a major part of the 

MRN complex, which binds to the DSBs and initiates homologous recombination repair. 

Remarkably Ku80 also interacts with MVI, this protein initiates the non-homologous end 

joining, the error prone repair mechanism for DSBs. The Ku80 forms a complex with Ku70 

that binds directly to the ends of DSBs and provides a scaffold for repair.  

This specifically shows that after DNA damage induction in HeLa cells, MVI rapidly switches 

binding partners and is involved in three different repair mechanisms, nucleotide excision 

repair, NHEJ and HR, all of which are required when using the cancer therapeutic cisplatin.  
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Using the analysis software STRING. Proteins that are in the DNA damage response are highlighted red.  

Figure 5.13. Protein network map of MVI interactions in WT HeLa. 
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 Cisplatin causes MVI to interact with chromatin remodelling complexes. 

Whilst MVI clearly interacts with proteins within the first stage of DNA damage, this 

proteomics study has also identified two other proteins of interest MVI binds to by mapping 

out the DNA damage pathway (Figure 5.14), these two proteins are BRG1 and the CREB 

binding protein. These two proteins have roles within chromatin remodelling and histone 

modifications. Specifically, BRG1 is a component of the SW1/SNF chromatin remodelling 

complex. This complex is able to manipulate chromatin so as to signal DNA damage or alter 

the transcription state of the genes within the chromosome. CREB binding protein also plays 

a role in transcriptional regulation, where it acetylates histones for transcriptional activation. 

MVI chromatin interactions is a field that has not been studied, these interactions open up 

an interesting avenue of how MVI may affect chromosome regulation, specifically after DNA 

damage.  

MVI also binds to multiple histones after DNA damage. It has been identified here that MVI 

binds to the histone linker, H1, as well as H2 and H4 (Figure 5.14). It is not clear if there is a 

direct link between H2AX however, these data shows that MVI can not only bind to histone 

modifiers but can also bind to histones themselves, this places them at the site of 

chromosome organisation and potentially chromosome movement which will be discussed 

in Chapter 6 and Chapter 7. 
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Using the analysis software STRING. Proteins that are in the DNA damage response are highlighted red. 
Figure 5.14. Protein network map of MVI interactions in HeLa cells treated with cisplatin. 
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 MVI interacts with the same DNA damage proteins in HeLa and MCF10A 
before DNA damage  

 

As previously stated, the two cell lines do not differ when discussing their MVI interactome. 

This is clear when displaying the proteomics using GO analysis (Figure 5.12). Within the DNA 

damage response pathway, it is clear that the same proteins are binding to MVI. These 

proteins are the ubiquitinating proteins, RPL40, Ubiquitin-40S ribosomal protein S27a, 

Polyubiquitin-C and Ubiquitin B. There is also binding of MVI to the DNA polymerase δ which 

can be found in the specific DSB pathway (Figure 5.15). The fact that the DNA polymerase δ 

binding occurs across both cell lines shows that there could be a common role MVI plays 

when discussing either DSB repair or DNA replication. This highlights an avenue of 

investigation of why MVI interacts with this polymerase, as we do not see this interaction 

after cisplatin treatment in both cell lines (Figure 5.13 and Figure 5.16) it is possible that the 

MVI interaction is not required for DSB repair but more specifically DNA replication. 
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Using the analysis software STRING. Proteins that are in the DNA damage response are highlighted red. 

Figure 5.15. Protein network map of MVI interactions in MCF10A WT cells. 
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 MCF10A MVI does not interact with DSB specific proteins in MCF10A after 
DNA damage 

 

The proteomics data of MCF10A MVI shows in this cell line, multiple DSB proteins are lost 

compared to that of the HeLa cell line, after cisplatin treatment. Both the Rad50 and Ku80 

proteins are not found in the proteomics (Figure 5.16), however the nucleotide excision 

repair protein ERCC6 and the BRCA-1 repair foci protein FANC1 are still identified (Figure 

5.16). This implicates MVI in the formation of repair foci as well as supporting MVIs role in 

the nucleotide excision repair process. As shown previously only 89 proteins are identified in 

both cell lines after cisplatin damage and there are 253 unique proteins to MCF10A after 

cisplatin treatment. This shows that whilst there are similarities of how MVI responds to DNA 

damage, through the NER and repair foci formation, MVIs’ response differs greatly between 

cell lines. This proteomics data provides evidence that MVIs’ response to DNA damage is not 

to regulate the transcription of genes through its interaction with RNAPII, but to act as a 

binding partner to specific DNA damage proteins.  
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Using the analysis software STRING. A DNA damage protein network is not identified however single DNA 

damage proteins are still identified.  

Figure 5.16. Protein network map of MVI interactions in MCF10A cells treated with cisplatin. 



Page | 148  
 
 

 

 

Table 5.2. A table of MVI protein interactions involved in the DNA damage response. 
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 Discussion  
 

To fully understand how MVI responds to DNA damage this study set out to use large sale 

techniques such as RNA-seq and co-immunoprecipitation followed by LC-MS/MS. These 

techniques allow a global response to understand how MVI changes the transcription of the 

cell, and how it changes its binding partners. To investigate further if these changes are due 

to a direct role of MVI in the DNA damage response itself, or due to downstream effects from 

the DNA damage relating more to cell cycle stalling, cell to cell signalling and its known 

function in golgi structure and endocytosis. This study has shown that MVI may play a role 

at the exact point of DNA breaks.  

 The MVI localisation changes observed after cisplatin treatment shows a 

specific protein response to DNA damage. 

 

The amount of MVI present in the nucleus increases after DNA damage. MVI expression is 

very low within the nuclei of normal human cells. This is mainly due to its cytoplasmic roles, 

that require the highest proportion of MVI to aid in endocytosis and cell signalling (Pant et 

al., 2013). It has previously been noted that there is a specific isoform of MVI that provides 

the basal amounts of MVI for nuclear functions (Fili et al., 2017), this isoform is the non-

insert isoform that lacks a large insert of amino acids just before the cargo binding domain, 

and a small insert of amino acids, within the cargo binding domain. 

In this study immunofluorescence has shown that the basal levels of MVI are very low and 

nuclei can be imaged distinctly within the cells. However, after cisplatin treatment the 

nucleus can no longer be determined easily as MVI is diffused across the whole cell body 

including the nucleus. Whilst this is visible, currently the antibody used during the 

immunofluorescence binds MVI isoforms non-specifically and so from this study it is not 

possible to identify which isoforms are causing this change of MVI within the nucleus. Further 
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work is required to identify the specific isoforms which can be found within the nucleus after 

DNA damage and by what mechanism are they entering the nucleus. This is then supported 

by the HCS, which shows an increase of MVI levels within the nucleus, whilst the RNA-seq 

data shows no change in MVI expression after DNA damage.  

This type of MVI movement after a cell is stimulated has been previously reported when 

neurosecretory PC12 cells are stimulated with a high concentration of potassium chloride 

leading to the activation of genes required for the neurosecretory cells to function (Majewski 

et al., 2018). This stimulation however was undertaken to increase transcription and thus 

the increase of MVI found within the nucleus was attributed to the role MVI plays in 

transcription. To identify if this was the case when studying the DNA damage response, RNA-

seq was used to ensure that any transcriptional changes observed due to the movement of 

MVI could be observed at a global scale without bias.  

 Transfections change the transcriptome of cells.  

To ensure that any changes in gene transcription were directly due to the MVI KD or cisplatin 

treatment, both samples, that had no transfection undertaken on them, and a control 

scrambled siRNA that should not affect any transcription were compared. As seen in this 

data, the difference between untransfected cells and cells transfected with scrambled siRNA 

is incredibly large. This could be due to the unexpected side effects of siRNA use. siRNA has 

been commonly used for over 20 years, however it is important to always note that the siRNA 

system itself is a system that is designed by the cell to respond to invasive RNAs and may 

increase the cell expression of genes required for interferon viral defense mechanisms 

(Mongkolsapaya et al., 1999). That is why this study then removed the non-transfected cells 

from our sample group and used the scrambled siRNA transfected cells as our base line for 

gene expression.  
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 DNA damage itself does not change the expression of DNA repair proteins.  

To identify specifically how cells respond to DNA damage on a transcription level, this study 

has identified over 4107 genes that are differentially regulated. This number itself is not a 

surprise due to the major impact cisplatin can have on a cell. It is important to note that 

cisplatin caused DNA damage is a broad and uncontrollable event. The population of cells 

can be highly heterogeneous with some cells having very little damage to their genome and 

many cells having such a large amount the cell begins to enter apoptosis, or are already 

undergoing apoptosis. This produces a broad RNA-profile depending on the stage of each 

cell. 

The RNA-seq data shown here did not have any effect on the expression of the ATM protein, 

required for the signalling of double stranded breaks, nor on the other DNA damage 

signalling proteins, ATR and DNA-PKcs. The p53 also did not have altered expression after 

cisplatin treatment however this can be explained by the p53 expression profile within HeLa 

cells. HeLa cells contain the human papillomavirus type 16 E6 protein that is consistently 

highly expressed. This protein itself marks p53 for degradation thus allowing the cancer 

phenotype of the cell (Oda et al., 2000). This however makes it difficult to conclude anything 

when comparing p53 expression levels before and after cisplatin treatment.  

Whilst the expression levels of p53 cannot be commented on, there is an increase in 

expression of p21, a protein that can be directly activated by p53. p21 was originally 

characterised by its ability to inhibit cyclins and cyclin dependent kinases, which leads to G1/S 

and G2 cell cycle stalling, stopping the cell from DNA replication whilst the genome is 

damaged. However, it is now known that p21 has a direct interaction within the DNA damage 

response, in particular within the nucleotide excision repair pathway and the DSB repair 

pathway (Fei, Bernhard, and El-Deiry, 2002). As well as this, it can also regulate expression 

of DNA damage response genes, by repressing myc which encodes a nuclear phosphoprotein 
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that plays a role in cell cycle progression and apoptosis (Maddugoda et al., 2007). The RNA-

seq that was performed here also saw this reduction in the myc gene, supporting the data 

shown to previously published data.  

It is overall expected that DNA damage does not change the expression of DNA repair 

proteins, as any transcriptional changes would be unlikely based on the time response from 

damage to repair being almost instantaneous versus the transcription and translation lag 

that would delay the damage response.  

 MVI KD does not have the same transcriptional effect as cisplatin treatment. 

MVI has been characterised to have a role in transcription with an interaction with RNAPII 

and DNA (Fili et al., 2017), to identify if MVI KD causes a large scale change in gene 

expression, that may affect genes that are regulated during DNA damage, RNA-seq was 

performed on cells that have only the MVI KD without any DNA damaging drug treatment. 

Out of the total 1947 genes that had their expression change only 433 genes, 22% of total 

genes, shared a similar expression profile than that after cisplatin treatment. With regards 

to GO definitions, the MVI KD effects far more cellular developmental processes and cell 

differentiation than that of cisplatin, with the localisation of proteins that have been affected 

being within the extracellular regions. They also have completely different functions with the 

majority of genes encoding for proteins that undergo anion binding, whereas in the cisplatin 

treatment no proteins affected had anionic binding properties.  

The MVI KD is interesting in itself, as MVI plays a large role in cell-cell adhesions, endocytosis 

at the plasma membrane and intracellular signalling (Chibalina et al., 2009). This RNA-seq 

data may provide evidence for a mechanism linking MVI at the membrane to its role in 

RNAPII transcription, where MVI transports signals such as hormones (Loikkanen et al., 2009) 

This observation linked with MVI movement into the nucleus after stimulation of 

neurosecretory cells using potassium chloride may also help elucidate how exactly MVI is 
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moving into the nucleus, is it being carried through with a cellular receptor or is MVI directing 

the receptor to the nucleus?  

MVI can also be found with cadherin, at cell to cell contacts and is involved in cell adhesions 

(Millo et al., 2004).As we saw a reduction in genes specific to the extra-cellular region, it is 

possible that as MVI is not present to stabilise these junctions, the transcription of junction 

related proteins is not required. Further work is required to fully understand why MVI KD is 

having such a large effect on proteins identified in the extracellular region, and how MVI is 

crossing the nuclear membrane. There are no genes within the p53 pathway that have been 

affected by the MVI KD itself however damage stimulation was required to ensure that these 

genes were still transcribed as expected, after the MVI had been knocked down.  

Interestingly after MVI KD, two of the largest GO processes affected were cell-cell 

communication and regulation of signal transduction. MVI has been attributed to these 

processes, more so, as a protein-protein based interaction. It has been shown that KD of MVI 

leads to an impairment of the exocytosis of secretory granules, and that MVI binds to these 

granules (Tomatis et al., 2013). Yet, this study has identified possible unknown effects of MVI 

KD on the gene expression of signal regulators, therefore whilst MVI can be directly found 

during endocytosis and exocytosis, by using a MVI KD, the effect is much larger on the cell, 

than just losing one protein-protein interaction and rather a global shift of genes related to 

these processes are affected.  

 HeLa cells still transcriptionally respond to DNA damage after MVI KD. 

This study set out to find any DNA damage response genes MVI may play a role in 

transcribing. To identify these genes, after MVI KD cells were treated with cisplatin and the 

RNA-seq data was compared to that of the cisplatin treated only. Any genes that were 

normally upregulated by cisplatin and were instead downregulated in the MVI KD cisplatin 

sample, were noted, as well as vice versa, any gene expected to be down regulated by 
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cisplatin but were instead upregulated in the KD were also noted. This lead to the 

identification of only 210 genes, around 5% of genes out of the 4107 genes that did not 

behave as expected.  

The majority of these genes are involved in the stimulus response or cell proliferation 

processes and are once again located at the extracellular region and not within the nucleus. 

It can be implied that the cisplatin treatment after MVI KD, mainly effects those genes found 

in the MVI KD on its own, as the molecular function of the genes with differentiated 

expression to the cisplatin only cells are involved in receptor regulator activity and receptor 

ligand activity. Once again linking this idea that MVI controls the regulation of receptor genes 

and potentially in a response to stimuli but not the genes required for the DNA damage 

response pathway.  

This type of receptor gene regulation MVI seems to be regulating is supported by analysing 

the p53 KEGG pathway previously used with the cisplatin genes. Here only 5 of the genes out 

of the 17 genes affected by cisplatin have their transcription changed by the MVI KD. One of 

these five genes, PERP that is normally upregulated by cisplatin damage becomes repressed 

by the MVI KD, PERP encodes a p53 apoptosis effector that regulates cell death genes, 

however this protein is actually found at cell-cell adhesions and leads to tumorigenesis when 

adhesion complexes are lost (Attardi et al., 2000). Whilst this plays a role in the p53 pathway 

it is not directly linked to the DNA damage response and MVI most likely effects its 

transcription through its interactions at the cell-cell joins rather than due to MVIs response 

to damage.  

Another of the proteins that have reduced expression following MVI KD and cisplatin 

treatment is IGFBP-3, the insulin like growth factor binding protein 3. Whilst this protein can 

play a role in apoptosis after DNA damage it is mainly found within the extracellular 

environment and at cellular receptors (Ogi et al., 2010). This may explain why its regulation 
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is altered by the MVI KD after cisplatin treatment, due to the capability of MVI to bind to 

receptors. If the MVI is not present at these receptors they may not be enveloped into the 

cell and thus the cell is not stimulated. This once again supports MVIs role in endocytosis of 

cell receptors but also that it is not regulating genes due to the DNA damage response but 

through other mechanisms.  

In fact, three of the genes, PERP, IGFBP3 and TSP1 that were repressed rather than expressed 

after cisplatin treatment in the MVI KD cells are linked with cell-cell adhesions, cell to 

extracellular matrix adhesions and receptor signalling. The only gene that should have been 

upregulated and was not is the cyclin G gene, responsible for cell cycle progression after DNA 

damage. Why this particular gene is affected and no other cyclins, is hard to predict and may 

have to do with MVIs general role in transcription and not its role in the DNA damage 

response.  

 MVI does not have a role transcriptionally in the DNA damage response. 

The RNA-seq data has thrown some light on the role of cisplatin and MVI on transcription. 

Whilst cisplatin causes a global change in transcriptomics to stall the cell within its cycle and 

allow for repair of the DNA or apoptosis to occur, MVI has a much more specific role in the 

regulation of cell adhesion and cell receptor genes, non-specific to DNA damage. There is no 

effect on the expression of the ATM, ATR or DNA-PKcs, damage signalling genes nor any 

genes related to the double strand break response such as any genes found in the MRN 

complex or Ku70/80 genes. This suggests that the proteins immediately responsible for 

repair and damage signalling have an involvement at the protein level first before affecting 

transcription, this is likely due to the long period of time it can take to transcribe and fold a 

working protein that would be able to fix the DNA damage.  

Whilst MVI has a role in general transcription in a cell, however it does not alter the 

transcription of genes involved in DNA damage, especially of those critical for p53 related 
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activity. As the gene levels stay the same, in particular the over expression of p21 and cyclins, 

it shows that at the transcriptomics level MVI does not respond to DNA damage and that the 

change of MVI levels in the nucleus and its response must be at the protein-protein level 

instead.  

 MVI binding partners are similar between cancerous and non-cancerous cell 
lines. 

 

As MVI does not respond to DNA damage transcriptionally, there must be a purpose for its 

localisation to the nucleus. To identify if its response occurs at a protein-protein level, LC-

MS/MS proteomics was carried out.  

The proteomics data shown here identifies only 29 protein interactions unique to HeLa cells, 

the remaining 362 protein-protein interactions occur in both the cervical cancer HeLa cells 

and the MCF10A non-cancerous epithelial cells. This comes as a surprise as MVI amounts 

differ between cell lines and within cancers such as ovarian, prostate and breast. As the 

amount of MVI differs, unique roles of MVI within these cancer cell lines have been identified 

such as in prostate cancer where MVI has been attributed to the co-ordination of cell clusters 

during metastasis (Luo et al., 2004). This may not necessarily mean that MVI does not do this 

in other cancer cell lines or in the clustering of healthy cells as well, and so this proteomics 

has shown whilst maybe the MVI levels differ between cell lines, the binding proteins 

identified are similar. 

The number of proteins is relatively equal between cytoplasmic functions of binding partners 

and nuclear functions of binding partners. This further confirms MVI has a role in both the 

cytoplasm and the nucleus, and whilst this study only focuses on the GO related to DNA 

damage processes, the proteomics study identified expected interactions such as MVI with 

Dab2 and GIBC, well characterised binding partners of MVI for endocytosis. However, there 

are some limitations to this study, the MVI immunoprecipitation cannot distinguish between 
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MVI isomers so any protein-protein interaction identified cannot be attributed to be isomer-

specific. Although LC-MS/MS is a highly sensitive protocol for proteomics, the samples were 

whole cell lysate and not separated by compartment, this means that lower abundant 

interactions such as those found in the nucleus can be hidden by more common interactions. 

It also does not provide a mechanism where MVI may interact with proteins that are able to 

cross between the nuclear membrane.  

 MVI has a role in DNA replication 

As discussed MVI has a role in RNAPII transcription where it potentially acts an anchor to 

stabilise the complex or act as a processive motor. In both cell lines, whether DNA damage 

is present or not MVI interacts with DNA polymerase δ.  

Polymerase δ is required for both DNA replication and chromosome organisation. It is able 

synthesis DNA on both the lagging and leading strands within the Okazaki fragment (Lee and 

Paull, 2004). Within eukaryotes replication protein A (RPA) binds to ssDNA stabilising the 

fragment stopping repairing of the DNA strand. Polymerase δ then binds to the lagging strand 

and begins synthesis of DNA using the lagging strand as template. To then complete the 

synthesis the lagging strand is processed by the polymerase as well as Fen1 and the DNA 

ligase, lig1 (Jin, 1997) .  

As well DNA replication polymerase δ is involved in DNA repair, in base excision repair, 

mismatched-repair, nucleotide excision repair and DSB repair. In the case of base excision 

repair, this polymerase can be utilised to repair methylated DNA caused by methylating 

agents, here it repairs single base adducts 3’ proximal to single stranded breaks (Folias et al., 

2002). In mismatched-repair, where the wrong bases are substituted in or frameshifts occur 

by the polymerase can be reported using the Msh2/Msh6 or Msh2/Msh3 complexes 

(Subramanian et al., 2013). Once reported, the polymerase can bind and reintegrate the 
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correct nucleotide or independent of an exonuclease, Exo-1, it can melt a nicked strand 

identified and then continue with the correct polymerisation (Beerens et al., 2005).  

NER and DSB repair occurs after the use of cisplatin. In NER the polymerase is recruited to 

lesions that can be 25-30bp long to then polymerise the correct strand of DNA. The same is 

reported in the DSB response where after cleaning of and excision of the strands during 

homologous recombination only, polymerase δ becomes activated to polymerase the 

repaired DNA using the undamaged DNA as a template (Lee et al., 2010).  

Overall MVI was found to interact with this polymerase in all of the cell lines and conditions 

undertaken in this study. This implies that the MVI interaction is not necessarily damage 

dependent and MVI could be present at replication forks during DNA synthesis. This would 

be a novel role of MVI within the nucleus that is yet to be characterised. It is possible that 

during normal cell growth, replication stress and miss match occur, and that is why MVI is 

interacting with DNA polymerase δ, if this is the case then MVI may be only binding to this 

polymerase at the points of damage. Further work would be required to identify MVIs role 

with DNA polymerase δ. 

 MVI responds to DNA damage by binding to DNA damage proteins 

MVIs binding partners go through a complete overhaul after DNA damage. Out of the 536 

proteins identified to interact with MVI in HeLa cells after DNA damage, only 16 interactions 

are seen within WT (untreated) cells. Out of the 359 protein interactions identified in 

cisplatin treated MCF10A cells, only 17 were found within WT cells. This shows that the 

response to DNA damage is not just a localised phenomenon but spread throughout the 

whole cell activating or deactivating completely different pathways.  

The data shown here identified that MVI binds specifically to proteins required for NER and 

the DSB response. In particular this study has identified that MVI interacts with both Rad50 
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and Ku80 after DNA damage in HeLa cells. These proteins form the repair scaffold around 

DSBs, Rad50 is directly involved in HR repair that can occur if a template of the damaged 

gene is available (Qi et al., 2015). If the template is not available Ku80 along with Ku70 bind 

to the DSB forcing NHEJ to occur (Jeske and Richter, 2015).  

This opens the discussion: Why is MVI there? What role does it play? And how is this 

interaction regulated? It is possible that this interaction occurs due to the presence of the 

polymerase δ at these sites and so MVI is interacting with the repair proteins so as to initiate 

strand synthesis. It also could be due to MVI being present at repair foci where it has these 

interactions. This study shows that MVI interacts with FANC1, a protein that is localised at 

BRCA-1 repair foci (Renodon-Corniere et al., 2013). Repair foci occur when there are multiple 

points of damage that can be repaired simultaneously so it is interesting that MVI is binding 

to a protein that is present at these repair foci. It could be that MVI is using its anchoring 

ability to maintain and stabilise these repair foci through FANC1, Ku80 and Rad50.  

Another protein identified during this proteomics is the CREB binding protein, whilst 

characterised as a histone acetylase it also acetylates proteins directly involved in the DNA 

damage response. An example of this is CREB binding protein acetylating Ku70, after DNA 

damage. This acetylation however does not increase DNA repair, but depletes it due to 

acetylated Ku70 having a lower affinity for DNA (Subramanian et al., 2013). It has been 

hypothesised that this reduces DNA repair thus promoting apoptosis of the cell.  

Both Rad50, Ku80 and the CREB binding protein were identified from the HeLa proteomics 

however MVI was not observed to have an interaction with either of these proteins within 

the MCF10A cell line. This may be due to a dynamic binding of these proteins or that HeLa 

cells have different repair mechanism as compared to MCF10A as in the MCF10A, MVI was 

still found bound to the NER protein ERCC6. This protein wraps DNA around itself to allow 

for the repair of the DNA followed by transcription by RNAPII (Beerens et al., 2005). In this 



Page | 160  
 
 

case NER is used to repair transcriptional stress and so the MVI interaction here could be 

linked with the previously published data of MVI involved in RNAPII transcription.  

 MVI may play a role in chromatin reorganisation after DNA damage  

As well as HeLa MVI, interacting with Rad50 and XRCC5, it has also been shown to bind to 

the chromosome remodelling complex BRG1 and the histone acetylase the CREB binding 

protein.  

Here the MVI-BRG1 binding may be MVI responding to DNA damage by changing the 

chromatin layout within the nucleus or by rearranging chromatin to from repair foci. It is 

likely that the latter is the case as recently BRG1 itself promotes chromatin remodelling 

around the sites of DNA damage and can directly interact with the DSB signaller the histone 

modification γ-H2AX (Kwon et al., 2015). As well as direct binding to the signaller, BRG1 aids 

in double stranded break repair by replacing RPA1 at sites of damage with Rad51 for 

homologous recombination repair (Qi et al., 2015). Whether or not the MVI here is 

facilitating in the repair, the rearrangement of chromosomes or aiding with the interaction 

of Brg1 and γH2AX is yet to be elucidated and would require further work.  

The CREB binding protein is able to acetylate histones to allow for the activation of particular 

genes local to that histone. This may link MVI back to its transcriptional activity and may 

allow for the transcription of downstream proteins affected by DNA damage. Due to MVI 

binding to both the proteins discussed here as well as FANC1 it is possible to hypothesise 

that if MVI is responsible for stabilising transcription complexes, then its anchoring 

properties may also anchor repair factories.  

 MVI responds to DNA damage at a protein-protein level and not by 

regulating transcription  
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To understand if MVI and how MVI responds to DNA damage, a change in transcription would 

be expected as MVI interacts directly with RNAPII and so the hypothesis begun with MVI may 

change the expression of DNA damage repair genes. This hypothesis has been rejected due 

to the RNA-seq data showing that whilst a few genes have defective transcription after MVI 

KD and cisplatin treatment, majority of genes for specific DNA repair proteins remain the 

same.  

This rejection lead to the second hypothesis to explain why MVI localisation changes after 

DNA damage. This hypothesis was that MVI binds directly to DNA repair proteins which can 

now be accepted as the proteomics identified specific DNA repair proteins as well as proteins 

that are able to rearrange chromosomes and construct repair factories or foci. These 

interactions however seem to only occur in the HeLa cell line and not within the MCF10A cell 

line. This comes as a surprise as whilst p53 is dysfunctional within HeLa, MCF10A cells exhibit 

a normal response to DNA damage. This difference however might be down to the stringent 

conditions used through the proteomics analysis or through sample preparation. To continue 

to observe any differences of MVI roles between the cell lines during the DNA damage 

response, both cell lines were carried on for further studies.  

As MVI binds directly to DNA repair proteins, it can be predicted that MVI is involved in the 

immediate response to DNA damage rather than the longer process of transcription, making 

it a vital component to study within the response to build on the mechanisms that currently 

exist. 
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Chapter 6.  MVI involvement in DSB 
signalling  
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 Introduction  
 

It is now established that MVI responds to DNA damage by altering its binding partners and 

its localisation within the cell. Whilst DNA damage protein interactions have been identified 

and MVI doesn’t alter the transcription of DNA damage proteins, the definitive role MVI 

actually plays within DNA damage is yet to be elucidated.  

 Histones and their modifications 

Histones are proteins responsible for regulating DNA transcription (Sterner and Berger, 

2000), chromosome organisation (Luger et al., 1997), the DNA damage response (Li et al., 

2018) and DNA replication (Madamba, Berthet and Francis, 2017). They are able to have such 

a commanding role on the DNA, through their formation of nucleosomes, which consist of 

an octamer of histones. The histones found in the octamer are two H2A, two H2B, two H3 

and two H4 histones, there can also be the H1 histone which alters the packing of the DNA 

but is not classified along with the other histones as part of the core complex (Takizawa et 

al., 2018).  

The nucleosome is able to wrap a strand of DNA approximately 146bp long around its core 

with an additional 86bp long DNA that acts as a linker strand until the next nucleosome. 

Whilst the DNA directly wraps around the octamer of histones, the actual regulatory role of 

histones is found within the long tail regions of the histones, that contain a large amount of 

amino acids that are readily available for post translational modifications (PTMs) (Arnaudo 

and Garcia, 2013). The modifications on these tails correspond specifically to the unwinding, 

or winding of DNA around the nucleosome that can suppress or activate gene expression. 

This change occurs by the PTMs, leading to a change in conformation of a histone and thus 

a change in affinity to the DNA it is bound to (Fenley et al., 2018). As well as this, these PTMs 
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can then act as signallers that other proteins are able to recognise, signalling a specific 

pathway within the cell (Bannister and Kouzarides, 2011).  

Due to the vast range of PTMs that can be undertaken on these histones, this study will only 

focus on some of the most well characterised PTMs of these N-terminal tail domains. For a 

long period of time, the general rule of PTMs was that acetylation of histones meant there 

was gene activation within that area, and methylation is responsible for gene repression. 

However there is now more evidence that depending on the number of methyl groups added 

to the tail, the signal changes (Pinskaya and Morillon, 2009).  

Acetylation of lysine-9 on the H3 histone is a well characterised PTM and is responsible for 

the activation of gene transcription and elongation (Gates et al., 2017), whilst the triple 

methylation of the very same lysine (H3K9me3) is associated with gene repression and the 

binding of the heterochromatin protein 1A (HP1A). This condenses the DNA from 

euchromatin, DNA that is freely available, to tightly compact DNA, known as 

heterochromatin (Gessaman and Selker, 2017). Other acetylation PTMs, such as that found 

on the lysine further along on the H3 histone, H3K27ac, is also linked with transcriptional 

activation of genes. This PTM can be found at either side of transcriptional start sites, and 

thought to direct the transcriptional machinery towards a gene (Rennie et al., 2018).  

Within DNA damage there also some alternative PTMs on different histones that are changed 

after DNA damage has been identified. The three so far to have been characterised are the 

single methylation of the lysine-20 on H4, H4K20me, and the double methylation of the 

lysine-36 on the H3 histone, H3K36me2, and the DNA damage signaller γH2AX. There is an 

increased level of H4K20me modification, 500bp, before and after a site of DNA damage 

which seems to be associated with the DSB NHEJ repair pathway, whilst the H3K36me2 

amounts decrease +/- 500bp of the site of damage. This modification is specifically 

associated with the HR pathway of DSBs (Thomas Clouaire et al., 2018). Whilst these PTMs 
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are specific to repair pathways one histone modification is central to the DNA damage 

response pathway and that is γH2AX.  

 

 γH2AX signalling. 

Often when studying DNA damage, particularly when using external stimuli such as UV, drugs 

or oxidative stresses, the presence of γH2AX, and the amount of γH2AX can be used as a 

readout of damage in terms of localisation and amount (Ivashkevich et al., 2012).  

γH2AX is a single phosphorylation of a serine-139 residue of the unique H2A histone variant 

H2AX. This variant makes up around 10-12% of the H2A histones within the nucleosome. This 

histone is a variant of its H2A parent by the motif SQ[E/D]Φ where Φ is a hydrophobic 

residue, which changes the affinity the histone has for DNA. It is the amino acid motif 

however, that is responsible for its role in DNA damage signalling (Song et al., 2007). Due to 

the H2AX abundance being limited, it is possible that the integration of H2AX is either 

All of the known histone modifications that can lead to an activation (green and blue) or inactivation 

(orange) of gene expression and regulation. Taken from Dai and Wang, (2014). 

Figure 6.1. The current map of histone modifications. 
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random or directed, the random distribution would provide an H2AX variant as 1 in every 4.3 

nucleosomes within a cell, which would be close enough for a DNA damage signal to travel 

along the chromatin (Iacovoni et al., 2010).  

The serine-139 found within this unique motif can become phosphorylated by the three 

kinases that can be activated during DSBs, the ATM kinase (Burma et al., 2001), the ATR 

kinase (Ward and Chen., 2001), and DNA-PKcs (An et al., 2010). At first, the phosphorylation 

only occurs within the immediate location of the break, highlighting that particular region 

for repair, this signal can then spread across the chromatin similar to that of a chain reaction 

(Savic et al., 2009). MDC1 is able to bind, recruiting the repair complex MRN, through its 

interaction with the MRN subunit Nbs1. Once the MRN complex is recruited a positive 

feedback loop is formed leading to further activation of the ATM kinase and thus further 

phosphorylation of H2AX histones (Paull et al., 2000). This signalling is associated with the 

stabilisation of DNA damage repair proteins and complexes rather than having a direct 

involvement in the repair itself. Due to its ability to only signal DSBs, monitoring this reaction 

pathway and identifying the amount of γH2AX signals allows this study to identify if MVI plays 

a role in the signalling of DSBs.  

 DSB repair foci  

As the signalling of γH2AX spreads across distinct areas within the nuclei, repair foci begin to 

form following the formation of the repair machinery. The formation of a repair foci, requires 

the γH2AX as this brings together and stabilises the repair proteins such as MDC1, 53BP1 and 

BRCA1 (Nakamura et al., 2010). RAD51 however can still be found at points of damage and 

can form slight repair foci without γH2AX signalling, however this isn’t identified until hours 

after the induction of DSBs. Once a repair foci is formed, the protein copies increase rapidly 

where it has been noted that MDC1, 53BP1, RAP80 are in their thousands and BRCA1 is in its 

hundreds.  
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The reason for this vast copy number is most likely so the cell can amplify the response to a 

DSB. If a few DSBs occur within the DNA, the effect on the DNA can be hugely detrimental, 

due to the amount of DNA the cell is required to monitor, it is likely the repair foci act as a 

beacon to ensure the cell cycle is stalled. If a single ATM is activated at a break point, the 

signalling cascade it is involved in, especially the activation of p53 would be limited, by 

creating a beacon, and a plethora of positive feedback loops, a single DSB can cause the 

whole cell cycle to become restricted. With each protein further increasing the number of 

active ATM proteins, there is also an increasing amount of downstream repair proteins. 

When studying the formation of DSBs and how the cell responds to a DSB, it is important not 

just to study the first response to the break but the signalling undertaken by γH2AX and the 

formation of repair foci. As shown in the previous chapter, MVI has interactions with proteins 

responsible within all three of these stages of repair.  

 

30 minutes after irradiation of cells with 2 Gy, repair foci are identified using CSLM with high density of γH2AX 

foci (A) corresponding with the γH2AX activator DNA-PK (B,C). Taken from Sisario et al., (2018).  

 

 

 

Figure 6.2. An example of visible repair foci. 
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 2,4,6-triiodophenol (TIP) the small molecule inhibitor of MVIs motor domain. 

During this study to identify the activity of MVI within the DNA damage response a small 

molecule inhibitor has been utilised. This small molecule is able to bind within the motor 

domain of MVI, in the region of amino acids 1-816. The binding of this molecule, causes a 

threefold inhibition of the maximum actin activated ATPase of the motor domain, which 

occurs in a biphasic manner, due to the two binding sites available for TIP binding (Heissler 

et al., 2012).  

It has been shown that this inhibition of the motor domain results in a deactivated MVI that 

is unable to undertake regular vesicle fusion with the plasma membrane, at only a working 

drug concentration of 5µM, having the same phenotypic result as if a MVI KD had been 

undertaken on the cells.  

The TIP inhibitor has also been utilised when studying MVIs ability to bind to RNAPII for 

transcription. Here, TIP inhibition of MVI had a similar effect of inhibiting transcription by 

70% to that of the MVI KD in vitro (Fili et al., 2017; Cook et al., 2018). This study highlighted 

that the motor activity of MVI is required for transcription.  

Overall TIP as a drug inhibits MVIs motor activity, which can be used to maintain MVI levels 

within a cell, but identify if the motor domain of MVI is important for its role in a particular 

mechanism. To know if the motor domain is important for the MVI responce to DNA damage, 

this study has also employed the use of TIP, at previously described concentrations of 25µM.  
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 Ku55933 an ATM inhibitor. 

To coincide with inhibiting MVIs motor activity, this study has also used a characterised ATM 

inhibitor, 2-morpholin-4-yl-6-thianthren-1-yl-pyran-4-one (Ku55933). This inhibitor is an ATP 

competitor which binds directly within the nucleotide binding pocket. Within the DNA 

damage response Ku55933 only inhibits ATMs activity, and not the other DNA damage 

signallers, ATR and DNA-PKcs (Savic et al., 2009). Once inactivated the cells are unable to 

phosphorylate the downstream effectors of DNA damage such as p53 and BRCA1, as well as 

phosphorylate the H2AX histone. In this case the ATM inhibitor has been utilised as a positive 

control, in which cells treated with DNA damaging agents bleomycin and cisplatin but unable 

to respond, can be observed alongside cells that have been treated with the MVI inhibitor.  

 Confocal microscopy 

This technique uses the traditional immunofluorescence method in which a primary antibody 

is selected specifically for the protein of interest and a secondary is selected for the species 

of antibody as well as its fluorescent properties.  

During this study, to gain a better understanding of where MVI localises, a more precise type 

of microscopy is necessary. Common microscopy techniques involve the use of widefield 

microscopy. This simply uses a fluorescence light source with filters to fit the excitation and 

emission of the fluorophore which then illuminates the whole sample non-specifically and 

allows for an image to be taken. However wide field itself causes high background signal that 

means that the resolution is very low and specific localisation of proteins is hard to predict.  

To avoid this high background signal, confocal laser scanning microscopy (CSLM) can be 

implemented instead. Here rather than the whole sample being illuminated, a pinhole design 

specifically illuminates the sample. This means only the sample within the point of view is 

illuminated. The pinhole also reduces the scattering of light from the fluorophore (Jung et 
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al., 2015). Light scattering commonly reduces the resolution causing an image to become 

blurry, however the pinhole design reduces the scattering of each fluorophore and by 

combining this with a scanning laser, that specifically illuminates a small section of sample at 

a time reduces the background further.  

Whilst the use of this microscopy technique allows for co-localisation studies and high- 

resolution imaging, it is unable to define the localisation of a single molecule which is where 

other microscopy techniques can employed. 

 Stochastic Optical Reconstruction Microscopy (STORM) 

STORM imaging provides single molecule imaging with an incredibly high resolution. All 

microscopy techniques are restricted by the resolution of an image, this resolution can be 

defined by Abbes criteria (Neice, 2010); 

Equation 6.1 Abbes resolution criteria 

𝑑𝑑 =
𝜆𝜆

2𝑁𝑁𝑁𝑁
 

Where d, is the resolving power, λ, is the wavelength and NA is the numerical aperture of 

the microscope. This equation stipulates that to resolve two points of emission there is a 

limit to the resolution. To obtain a resolution that allows for single molecule imaging i.e. a 

resolution of single nm, a single signal that produces enough photons that is at least 200nm 

from another similar emitting molecule is required. As this type of separation of molecules 

is rare to find within a biological sample, especially within a single cell, the fluorophores are 

required to be switched “on” and “off” (van de Linde and Sauer, 2014).  

This switching relies on how fluorescence emission works. Fluorescence emission is 

produced by a molecule when electrons in their stable state become excited by a photon at 

the correct wavelength. Once excited there is a small change in energy down through the 
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excited states, this process is called internal conversion and vibrational relaxation. After this, 

the electron returns to its stable state and it is this loss of energy that produces fluorescent 

photons. This process of excitation and emission takes within the picosecond range, and so 

current camera technologies will identify a single emission of fluorescence. To obtain blinking 

of a fluorophore, the fluorophore has to be forced into its dark state, this dark state occurs 

when the electrons are excited they transfer not immediately back to their stable state but 

progressively down through alternative systems. This is known as intersystem crossing (van 

de Linde and Sauer, 2014).  

To encourage an electron to travel into this dark state, a reducing agent is required, 

commonly β-mercaptoethanol (BME) is used, to enhance the dark state lifetime and to avoid 

photobleaching of a fluorophore, an oxygen scavenger such as glucose oxidase (GOX) is used 

to keep the fluorescent molecule in the dark state. This dark state however is not infinite and 

eventually the electrons will return to their stable state and become re-excited thus causing 

a cyclic motion of fluorescence on and then off. This blinking provides that 200nm distance 

between fluorescent signals at a single time.  

Once a signal is identified a point-spread function is applied to that signal (von Tiedemann et 

al., 2006). This function fits a gaussian function, where a fluorescent signal is brightest within 

the centre of the signal and the fluorescence decreases around this point. By applying this 

fitting alongside the subtraction of any surrounding signal through the blinking properties, it 

is possible to identify a single molecule within approximately 1nm to 20nm depending on the 

amount of photons collected from that point.  

This technique allows for the complete mapping of single molecules within a cell and the 

identification of any co-localisation between molecules if the signals are within 10nm of each 
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other. It also allows a quantitative measure, as it is possible to count individual molecules 

within a region of interest. 

 

 

 

 

 

 

A Jablonski diagram showing the direction of electron energy changes from S0 the stable state to S1 the excited state 

and the transfer of energy down the intersystem states into the dark non fluorescent state and back to the stable 

state. Taken from Microscopy U, Nikon (2019). 

Figure 6.3. A simplified Jablonski diagram. 
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 Cluster analysis with degree of colocalization (Clus-Doc) 

In addition to using STORM to identify single molecules, further analysis is required to 

identify the number of molecules, whether or not these molecules cluster together, the 

density of these clusters and the area of these clusters. 

To complete this analysis, the data provided by STORM imaging allocates a single molecule 

to have an x and y coordinate. This is directly inputted into the Clus-Doc software which is 

then able to identify the Ripley K function to provide an average of clustering across the 

region of interest (Pageon et al., 2016).  

The work flow of the analysis software Clus-Doc, and the data output at each stage. Taken from Pageon et al., 

(2016). 

Figure 6.4. A work flow of Clus-DoC. 
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The Ripley K function is as defined as: 

Equation 6.2. Ripley K function 

𝐾𝐾�(𝑡𝑡) =  𝜆𝜆−1�
𝐼𝐼(𝑑𝑑𝑖𝑖𝑖𝑖 < 𝑡𝑡)

𝑛𝑛
𝑖𝑖≠𝑗𝑗

 

Where dij is the Elucidean distance between the ith and jth points in a data set of n points, t is 

the search radius, λ is the average of density of points and I is the indicator function. 

Once the Ripley K function is defined for each data point, they are then processed through 

the DBSCAN algorithm which segments these points into clusters. This identifies if one 

species of molecules are clustered or separated from each other.  

 A degree of colocalization (DoC) score is then defined for each data point, where the search 

for other points within a certain radius is identified and can define the local density around 

each molecule. With each molecule being provided with a surrounding density score. These 

data can be partnered with a second species, i.e the second image channel and then overlaid.  

Overall this process not only provides the clustering of molecules within a single channel, the 

location of these clusters and scores the clusters, but it allows for both channels to be 

overlaid on top of each other, providing information of protein-protein localisation and 

protein cluster-protein cluster localisation. This type of information is important to obtain 

when discussing protein clusters such as those found within repair foci of DSBs.  
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 Studying apoptosis  

After DNA damage, cells have the potential to enter apoptosis. If the MVI motor domain is 

required for the cell to respond to DNA damage, then by inhibiting it, a change in apoptosis 

signals may occur. This type of change can be measured through the exposure of 

phosphatidylserine at the outer cellular membrane. This protein is normally embedded on 

the inner leaflet of the plasma membrane, however as a cell undergoes apoptosis, 

scrambalase, a translocating enzyme, flips the phospholipid to the outer surface of the cell 

which in a mammalian organism, would lead to macrophage engulfment of the cell (Mariño 

and Kroemer, 2013).  

 

Clus-Doc begins with identifying clustered proteins using a defined radius (A). After this clustering analysis 

colocalisaion of clusters are then defined between two channels (B). Taken from Pageon et al., (2016). 

Figure 6.5. A comparison of clustering analysis and colocalisation analyses. 
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This presentation of phosphatidyl serine allows for the measurement of apoptosis. To 

measure the abundance of this molecule, a fluorescently labelled protein, annexin V, can be 

utilised as a reporter, where annexin V binds to this phosphatidyl serine, changing its 

conformation leading to an increase of fluorescence (Kapty et al., 2012) . This is a common 

protocol where the reagents can now be purchased commercially.  

 The aims of this study 

Now that it is know that MVI localisation changes throughout the cell in response to DNA 

damage and that whilst it does not change the transcription of DNA damage response genes 

it does change its interactions, so that MVI interacts directly with DNA damage response 

proteins after damage. To identify the role it may have in the DNA damage response and in 

particular DSBs, microscopy techniques have been implemented to identify if the MVI co-

localises with DSBs, if it has an involvement in the DNA damage signalling the repair of DNA 

damage, and if the MVI is found within the repair foci, or alters the apoptosis pathway of the 

cell.  
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 Results  
 

 MVI inhibited HeLa, respond to DNA damage. 

After identifying that MVI binds to DNA damage, and DSB proteins through studying the MVI 

interactome, the next step was to observe how cells respond to damage if MVI is perturbed. 

As it has previously been shown that the motor activity of MVI is needed for transcription 

(Fili et al., 2017), and so it may be required for the DNA damage response.  

HeLa cells were first grown in non-treated media (WT), media treated with cisplatin; 

bleomycin, TIP, and Ku55933 (ATM inhibitor) (Figure 6.6). The cells showed background DNA 

damage in the WT HeLa cells, which is likely due to replicative stress placed on the cells and 

their innate chromosome instability. The DNA damaging drugs, cisplatin and bleomycin 

worked as expected, as shown by the increase of γH2AX signals, and the formation of γH2AX 

foci. The TIP treatment itself does not cause any further damage than the background seen 

under normal growth conditions. Therefore MVI perturbation does not preclude the cells to 

damage. As expected, cells treated with the ATM inhibitor, showed no γH2AX signals at all, 

which is once again expected as there is no damage to cause the phosphorylation of the 

H2AX histone.  
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When HeLa cells have been treated with a combination of the TIP inhibitor and DNA 

damaging drug, or Ku55933 and DNA damaging drug there are no changes in the expected 

phenotype (Figure 6.7). The samples are still able to signal DNA damage after the MVI motor 

domain has been inhibited. Whereas, agreeing with previously published work, the cells are 

Damage is observed through the increase of γH2AX signal. HeLa cells show no damage by the two 

inhibitors used during this study. Scale bar =10µm 

Figure 6.6. Confocal microscopy of HeLa cells with single treatments. 
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unable to signal DNA damage using γH2AX when Ku55933 has been used, as this inhibits the 

ATM, and so the phosphorylation of the histone.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Damage is observed through the increase of γH2AX signal when MVI has been inhibited by TIP. The Ku55933 

inhibitor functioned as expected and inhibited γH2AX signalling after DNA damage. Scale bar =10µm. 

Figure 6.7. Confocal microscopy of HeLa cells with double treatments. 

The western blot shows an increase in γH2AX levels within all of the samples treated with a DNA 

damaging agent. However the MVI levels are not consistent. 

 

Figure 6.8. A western blot of DNA damage proteins in HeLa. 
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When using the MVI inhibitor TIP, the HeLa cells do not activate their DNA damage response, 

as is expected, as the TIP itself should not create any DSBs. When cells have been treated 

with both the TIP and the DNA damaging agents, the cells were still able to produce the 

γH2AX signal, as well as produce repair foci seen by clustering of the γH2AX.  

As expected the ATM inhibitor Ku55933 is capable of inhibiting the DSB response caused by 

cisplatin and bleomycin. The inhibitor here shows reduced γH2AX after treatment with DNA 

damaging agents (Figure 6.7).  

To compliment the microscopy western blots were performed. There are increases in γH2AX 

signals when cells are either treated with bleomycin and cisplatin compared to the WT γH2AX 

amount. When using a DNA damaging agent with TIP there are similar increases in the 

western blot, which agrees with the images (Figure 6.7).  

As well as this MVI amounts increase in all conditions compared to the WT. As shown in the 

RNA-seq data the expression profile of MVI does not change after DNA damage, this suggests 

that after DNA damage MVI becomes far more stable, possibly through its interactions, 

inhibiting degradation of the protein. Even the TIP treatment itself causes an increase of MVI 

amounts within the sample, which could be due to to the inability of the cell to mark it for 

degradation due to the motor domain being blocked by the presence of the inhibitor, 

however further experiments would be required to understand this mechanism.  However 

this would require further work to fully quantify the amounts. Due to the variability of this 

western blot, especially within the amounts of MVI between samples, high content screening 

was further undertaken within this study to provide statistical measurements. 
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 The motor activity of MVI is required for DNA damage signalling in MCF10A 
cells. 

 

As the HeLa cells showed no difference in DNA damaging signalling when the motor 

capabilities of MVI had been inhibited, this study then looked at the non-cancerous, 

genomically stable cell line to ensure that both responded in a similar manner. Firstly, 

MCF10A cells respond similar to HeLa, as, when there is DNA damage an increase of γH2AX 

occurs, and once again using TIP and Ku55933 does not causes γH2AX signalling (Figure 6.9).  

 

As expected there is an increase of γH2AX signals after cells are treated with cisplatin and bleomycin. Whilst the 

inhibitor treatments, TIP and Ku55933 do not cause DNA damage alone. Scale bar =10µm. 

Figure 6.9. Confocal microscopy of MCF10A cells with single treatments. 
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If however, the cells are treated with a combination of the DNA damaging agents and TIP, 

then the cells lack the γH2AX signal for DSBs (Figure 6.11).  

When cells are treated with both TIP and a DNA damaging agent, the cells exhibit little γH2AX staining. The 

Ku55933 with DNA damaging agents, also show less γH2AX compared to DNA damaging drug treatments on their 

own. Scale bar = 10µm 

The western blot shows that there are basal levels of γH2AX within the WT and TIP treated cells, after DNA 

damage drugs are used there is an increase of γH2AX. Yet when a DNA damaging agent with TIP was used 

there was no increase in γH2AX signal. However there is large variation in the western blot within MVI.  

Figure 6.11. Confocal microscopy of MCF10A cells after double treatments. 

Figure 6.10. A western blot of DNA damage proteins in MCF10A cells. 
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This lack of γH2AX, was then checked using western blot. After cisplatin and bleomycin 

treatment, the intensity of the γH2AX bands increase. When the TIP inhibitor has been used 

the amount of γH2AX reduces to basal levels (Figure 6.10). This agrees with the images that 

after treating cells with a DNA damaging agent and TIP there is a reduction of γH2AX 

signalling. Once again the MVI levels varied between samples, therefore due to this variation 

and the fact the proteins amounts are not quantifiable using western blot, HCS was utilised 

further on in this study (Figure 6.10).  

 MVI is capable of entering the nucleus of HeLa cells after TIP treatment. 

To further understand if MVI is required for DNA damage signalling in both the HeLa and 

MCF10A cell lines, and due to the western blot variation, HCS was utilised. This type of 

screening using immunofluorescence ensures any observations made during confocal 

microscopy is happening across the whole sample and most importantly is quantifiable. It 

also allows for the identification of localisation of proteins. When studying the localisation 

of MVI, a mask was created that contained the whole nucleus known as the circle mask. Once 

this mask had been designed to fit suitable nuclei, a second mask was created. This mask was 

designed to identify if the population in the immediate area on the external side of the 

nuclear membrane has a change in MVI signal intensity as done in the previous chapter 

(Figure 6.12). This would allow for the comparison of MVI population inside the nucleus and 

at nuclear membrane.  

γH2AX signals were analysed in a different manner. As the γH2AX signals for DSBs are always 

nuclear the circle mask was designed to fit the majority of the nucleus, leaving only the 

periphery of the nucleus to be mapped using the ring mask (Figure 6.12 B). This type of 

analyses shows if there is any preference for the histone modifications to reside at the 

nuclear periphery, often where euchromatin can be found, or within the nuclear centre, 

favoured by heterochromatin formation. Once all the masks had been designed the 
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fluorescence intensity of each mask was measured globally, with any imaging variables fixed, 

to allow for direct comparisons between samples. 

In the HeLa cell line, there is no distinguishable difference of the DNA damage response with 

and without the use of TIP. When cells are treated with the motor domain inhibitor of MVI, 

less MVI can be found at the external side of the nuclear membrane, however the amount 

of MVI found within the circle mask, the nucleus, remain at the basal level. As expected after 

treatment of HeLa cells with bleomycin both the amount of MVI within nucleus increases by 

2.4 fold. This data confirms the observations previously made about the MVI responding to 

DNA damage. However with the addition of TIP the levels of MVI still increase within the 

nucleus after DNA damage similar to that of drug treatment on its own by 3.1 fold.  

The γH2AX levels follow the same pattern as the MVI levels, where there is an increase after 

bleomycin treatment, by 2.8 fold, and when the cells are treated with both the inhibitor and 

drug also by 2.8 fold. Interestingly there was no preference of γH2AX localisation either at 

the nuclear periphery or interior showing that the damage occurring is not specific to 

euchromatin or heterochromatin and the formation of repair foci can occur across the whole 

of the nucleus rather than at specific locations. Albeit, based upon 2D analysis.  

 

 

 

 

 

 



Page | 185  
 
 

 

HCS analysis allows the making of masks defined as ring and circle. When studying MVI localisation 

the ring was placed just outside of the nucleus whilst the circle was the entire nucleus (A). When 

studying γH2AX localisation the nuclear periphery was analysed using the ring and the nuclear 

interior was analysed using the circle (B). The amount of fluorescence intensity was measured with 

fix capture settings and compared between conditions. Here MVI increases alongside γH2AX levels 

in both bleomycin treatments (C). Each data point is an average of 1,000 nuclei and the conditions 

were compared using an ordinary one-way ANOVA with Sidaks multiple comparisons test. ****** 

signify a p<0.0001 and ** signify a p<0.001. N=2 

Figure 6.12. HCS of HeLa cells. 

Cytoplasm 
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 MCF10A cell line requires MVI for phosphorylation of H2AX. 

After observing a lack of H2AX phosphorylation after TIP treatment, as shown in the confocal 

images, HCS was employed to ensure the observations could be supported statistically. Like 

with the HeLa samples, two masks were created the ring and circle, using the exact 

parameters used for the previous analysis. To fully fit the nuclei, a mask is created that uses 

the hoescht DNA dye signal, for the formation of a mask that has a round score of above 0.6. 

This means as many of the nuclei are quantified allowing for their diverse shapes. The ring, 

which can be classified as the nuclear periphery is so designed that from the masks periphery 

a 0.1µM edge is created. In the case of MVI this ring was created 0.1µM away from the 

hoescht mask, whilst in the case of histone modifications this ring was created 0.1µM inside 

the hoescht mask. This allows some separation of signals from being in the case of MVI on 

the outside of the nucleus and for histone modifications, residing near the nuclear periphery.  

The first observation is similar to that found in HeLa, where after bleomycin treatment for 

four hours, there is a significant increase of MVI within the nucleus by 1.3 fold and a 

significant reduction of MVI surrounding the nucleus. Interestingly the TIP treatment 

reduced the amount of MVI within the nucleus and the surrounding area by 0.3 fold. The 

amount of γH2AX directly corresponds with the amount of MVI inside the nucleus. Where 

drug treatment increases the amount of γH2AX, 2.1 fold, and this coincides with the increase 

of MVI (Figure 6.13). Whilst the fold increase of MVI is lower than that of in HeLa, the average 

intensities in the WT conditions differ in HeLa and MCF10A, 2493 A.U and 4636 A.U 

respectively, suggesting that MCF10A cells maintain a higher basal level of MVI within their 

nuclei.  

If there is however little MVI inside the nucleus and the motor domain is inhibited there is 

the same amount of γH2AX signal found as the basal level within the WT cells. Therefore it 



Page | 187  
 
 

is proven that the motor domain of MVI is vital for the phosphorylation of H2AX and the 

formation of γH2AX signalled repair foci.  

Once again there is no preference of the γH2AX signals to be found within the nuclear 

periphery or interior with both masks identifying the same fluorescence intensities within 

both regions. Implying the damage is occurring throughout the genome and there is no 

preference for the formation of repair foci (Figure 6.13).  
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The amount of fluorescence intensity was measured with fixed capture settings and compared between 

conditions (A). Here MVI increases significantly after bleomycin treatment, however when MVI is inhibited with 

TIP and then treated with bleomycin the cells there is no significant increase in γH2AX. Each data point is an 

average of 1,000 nuclei and the conditions were compared using an ordinary one-way ANOVA with Sidaks 

multiple comparisons test. ****** signify a p<0.0001. N=2 

Figure 6.13. HCS analyses of MCF10A cells. 
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 MVI inhibition causes a greater change to DNA damage histone 
modifications than damage itself. 

 

If in MCF10A cell lines MVI is involved in the phosphorylation of H2AX histones, then it could 

be involved in the two other histone modifications found related to the DNA damage 

response, the double methylation found on lysine-36 of the H3 histone (H3K36me2) and the 

single methylation found on lysine-20 on histone H4 (H4K20me). Previously published work 

identified an increase in H4K20me and a reduction of H3K36me2 surrounding DSBs (Thomas 

Clouaire et al., 2018).  

In both cell lines however this study identified that both modifications increase after 

bleomycin treatment (Figure 6.14. and Figure 6.15). Using HCS at a 20X magnification as well 

as drugs that cause DSBs randomly, it is hard to predict if these modifications sit +/- 500bp 

of a DSB.  

Within HeLa cells (Figure 6.14) the H3K36me2 modification became more abundant after TIP 

treatment compared to bleomycin treatment, with an average intensity increasing from 

5869 to 8848. Cells that were treated with both the drug and TIP had similar amounts of 

H3K36me2 modifications, than the TIP treatment on its own, with average intensities being 

9495 and 8848 respectively. This shows that the MVI has a larger role in regulating this 

histone modification than DNA damage itself. Following the masking of the images with the 

ring and circle using the same dimensions as the γH2AX analyses, it is clear there is no specific 

localisation of these modifications, either within heterochromatin or euchromatin and these 

modifications can occur spread throughout the nucleus. These data suggest MVI may have a 

wider role in chromosome organisation and chromatin remodelling which will be discussed 

in Chapter 7. 

Whilst TIP has the largest impact on H3K36me2 modifications, when studying the H4K20me 

modification, its observed that bleomycin causes a similar increase of modification to that of 
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TIP and TIP bleomycin treatment, with average intensities being 8708, 8286 and 10197 

respectively, with the WT having an average intensity of 5042. So whilst there is an increase 

in methylation on lysine-20 compared to the WT there is no difference between TIP and 

bleomycin. Once again there is no difference of localisation within the nuclei of this signal, 

where it is found to be spread across the entirety of the nucleus.  

The MCF10A cell lines (Figure 6.15) behaves identical to that of the HeLa, where there is an 

increase of H3K36 double methylation after bleomycin treatment, of 344 A.U, however there 

is a larger increase of this modification after cells have been treated with TIP and TIP with 

bleomycin of 1696 A.U and 1555 A.U respectively, with the two TIP treatments not being 

significantly different from each other. H4K20me levels also increase after bleomycin 

treatment by 475 A.U, however TIP can cause a similar increase of 698 A.U, and the TIP with 

bleomycin treated cells have no significant difference in the amount of single methylation on 

H4K20 than the other drug conditions. Overall there is no preference of localisation of these 

signals as shown by the same amount of fluorescence being identified in both masks. This 

impact on DNA damaging histone modifications, shows that the impact MVI has on γH2AX 

signalling within MCF10A cells, has a broader effect when it comes to a global response to 

damage and chromatin remodelling.  
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The amount of fluorescence intensity was measured with fix capture settings and compared between conditions 

(A). Each data point is an average of 1,000 nuclei and the conditions were compared using an ordinary one-way 

ANOVA with Sidaks multiple comparisons test. ****** signify a p<0.0001. N=2 

Figure 6.14. HCS analyses of DSB histone modifications in HeLa. 
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The amount of fluorescence intensity was measured with fix capture settings and compared between conditions 

(A). Each data point is an average of 1,000 nuclei and the conditions were compared using an ordinary one-way 

ANOVA with Sidaks multiple comparisons test. ****** signify a p<0.0001. N=2 

Figure 6.15. HCS analyses of DSB histone modifications in MCF10A cells. 



Page | 193  
 
 

 Using Clus-DoC for data analysis on MCF10A cells. 

There is a clear difference of how MVI responds to DNA damage between the cell lines with 

MCF10A cells requiring a functioning motor domain of MVI to produce γH2AX signals and 

HeLa not, due to this difference the next study focused solely on the MCF10A cell line. To 

understand if MVI can be found at sites DNA repair, STORM imaging was carried out and then 

analysed using the Clus-Doc analysis software (Pageon et al., 2016). This study has already 

shown that MVI responds to DNA damage by changing its protein-protein interactions, and 

by using the motor domain inhibitor TIP, the MCF10A cells are unable to import MVI into the 

nucleus and signal DNA damage using γH2AX. To gain insight into why MVI is required, the 

next step is to identify where MVI is found precisely within the nucleus, its organisation and 

if it is found colocalised with γH2AX after DNA damage.  

The process of analysing STORM data is shown in Figure 6.16. Firstly cells are imaged using 

epifluorescence, this allows identification of a cell without the need of high power lasers. 

The cells are then imaged following the STORM technique under HiLo illumination, allowing 

the identification of single molecules, the nucleus is then specified within the Clus-DoC 

analysis software. Once the region of interest has been determined, the software provides 

an average Ripley K result for each single molecule as shown in figure 5.2.11 C. This provides 

information of the average radius of a cluster of molecules with the maximum amount of 

molecules within that radius. If a Ripley K value of less than 0 occurs, each single molecule is 

functionally separate and they deliberately do not cluster. If the Ripley K value is 0 there is 

complete random clustering and if it is above 0 then the molecules have a tendency to cluster 

(Stoyan and Stoyan, 1994). Once all of the single molecules have been mapped (Figure 6.16 

D), clusters, that contain a minimum of five molecules, are then plotted (Figure 6.16 E). From 

this data it is possible to learn if the molecules cluster, the size of the cluster and how many 
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molecules can be identified in one cluster. As an example a histogram of the number of MVI 

molecules in a single cluster within the nucleus has been shown in Figure 6.16 E.  

STORM and cluster analysis was performed on MCF10A cells. Cells are first imaged using epifluorescence (A) and 

the nucleus is defined. STORM imaging is then completed (B) and the average Ripley K function is defined for all 

molecules (C). Maps of all molecules are then produced followed by a cluster map, where the high absolute 

cluster densities are marked red and molecules with low density are blue (D). The clusters can then be binned by 

        

 

Figure 6.16. A workflow of Cluster analyses. 
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 MVI forms larger clusters after DNA damage in MCF10A cells 

MVI molecules are equally likely to cluster before and cisplatin damage. The Ripley K function 

has shown that MVI is likely to have a clustered formation rather than a random distribution 

around the nucleus (Figure 6.17). DNA damage itself does not change MVIs probability of 

clustering compared to WT cells as shown by a similar maximum r value of 100.  

Whilst the likelihood of clustering is unaffected the Ripley K value itself does not provide any 

detailed information on the clusters themselves. The number of MVI clusters after DNA 

damage reduces significantly compared to the WT cells, with the average number of clusters 

of MVI in a WT nucleus being 442, and after DNA damage the average number of clusters is 

reduced to 87. Whilst the number of MVI clusters reduces after DNA damage, the clusters 

that do exist are larger with an average of 51 molecules, compared to undamaged cells that 

contain on average 22 molecules. This shows that whilst the number of clusters is reduced 

there are overall larger clusters. This is supported by the increase of the actual size of clusters 

where before damage, MVI clusters within the nucleus, on average have an area of 2008nm2, 

whereas after DNA damage this area increases significantly to an average of 3266nm2.  

This data shows that DNA damage causes a reduction in the number of MVI clusters inside 

the nucleus, however this reduction is due to the increase of cluster size and the number of 

molecules within a cluster, showing that MVI molecules are likely to aggregate together and 

it is possible this aggregation is required for correct DNA damage signalling. As this study has 

shown MVI has multiple roles within the nucleus, this switch of clustering could be MVI being 

diverted from its role in transcription to repair sites. It is known activated ATM inhibits 

transcription (Jang et al., 2010), this could allow this switching of roles to take place, freeing 

the MVI from the transcription machinery.  
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STORM and cluster analysis was performed on MCF10A cells. An average of Ripley K functions was calculated per 

molecule per cell which identifies the likelihood of molecules clustering (A). This can be defined by the maximum 

radius between two molecules (B), which shows no variation of MVIs chance of clustering after damage. The 

number of clusters drop significantly after DNA damage (C) however the number of molecules in these clusters 

increase (D) along with the total area of the clusters (E). A students T-test was carried out to confirm significance 

where ** represents p<0.01 and **** p<0.0001. N=2 

Figure 6.17. The effect of cisplatin on MVI nuclear clustering. 
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 Clus-DoC provides information on the colocalization of protein clusters in 

MCF10A cells 

To identify if MVI is colocalising with γH2AX or if it can be found within repair foci, Clus-DoC 

analyses was completed on the nuclei of cells as before, however this time both channels 

were taken into account and analysed.  

Firstly the software overlays each channel, allowing for the visualisation of MVI and γH2AX 

single molecules (Figure 6.18 A), next each molecule is defined if it is within a cluster or not 

(Figure 6.18, B and Figure 6.18 C), similar to that shown when studying just MVI clusters. The 

two channels are then overlaid onto each other providing information of the amount of MVI 

clusters that colocalise with γH2AX clusters (Figure 6.18 D) and vice versa the clusters of 

γH2AX that colocalise with MVI clusters (Figure 6.18 E).  

This type of analysis will provide information on how MVI and γH2AX interact with each other 

and if they have any colocalization at all.  
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 STORM and cluster analysis was performed on MCF10A cells. The clusters of both MVI (green) and γH2AX (red) 

can be mapped onto each other (A). Then the clusters are defined by their normalised scores 1 is highly clustered, 

0 is no clustering for MVI(B) and γH2AX (C). Finally the two cluster maps can be overlaid and scored where 1 is 

colocalisation and -1 is functional separation. This is done where MVI is overlaid onto γH2AX clusters (D) and 

γH2AX is overlaid onto MVI clusters (E).  

Figure 6.18. A work flow of DoC analyses. 
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 γH2AX clusters vary within the nucleus in MCF10A cells.  

As discussed previously the phosphorylation of the H2AX histone on the serine-139 occurs 

as close to the point of a DSB as possible, from this point the signal then spreads along other 

H2AX histones spread throughout the chromatin (Firsanov, Solovjeva and Svetlova, 2011) . 

With cisplatin causing nonspecific DSBs there can often be overlapping of these distal signals 

as well the formation of large repair foci which can be seen by the large clustering of γH2AX 

signals (Figure 6.19).  

It has been observed that cisplatin treatment leads to clustering of γH2AX molecules in small 

clusters of around five to ten molecules, this clustering does not imply large formation of 

repair foci but small signals at the points of damage, however whilst the majority of γH2AX 

is found at these small clusters, there are some clusters that can be far larger with some as 

large as 1000 molecules in a cluster (Figure 6.19).  

The area of these clusters differ significantly as well, the clusters can range from an area of 

approximately 5nm2 to the largest being observed as large as approximately 1µm2 which is a 

substantial part of the nucleus. Finally the number of clusters observed between nuclei vary 

after cisplatin treatment. This can be expected as depending on the drug uptake of the cell 

and the cell cycle stage it is in, can affect the damage caused by cisplatin. On average a nuclei 

has 18 clusters of at least 5 γH2AX molecules, however cells were observed to have up to 60 

clusters of γH2AX, it is possible that nuclei with this larger amount of γH2AX would be at the 

beginning of apoptosis.  
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 MVI clustering increases around areas of dense γH2AX in MCF10A cells  

To identify if MVI clusters and γH2AX clusters colocalise the two channels were analysed 

using Clus-DoC which provides a degree of colocalisation (DoC) score. If this score is above 0 

then there is definite clustering of the two proteins, if the score is 0, then there is no 

clustering between the two protein clusters and if the score is less than 0 then the clusters 

are functionally separate to each other (Pageon et al., 2016) .  

When the clusters of MVI are overlaid onto the γH2AX clusters the average DoC score is 0.147 

showing that on average the clusters of MVI are deliberately apart from γH2AX clusters and 

is not due to random distribution of clusters (Figure 6.19). The same can be said when the 

γH2AX clusters are overlaid onto MVI clusters where the average DoC score is -0.121, where 

on average the clusters are within an area that MVI is not.  

However whilst the DoC scores are below 0 for both proteins, if each cluster is looked at 

individually then more information can be obtained. The average number of MVI clusters 

that colocalise with γH2AX clusters is significantly smaller than the number of MVI clusters 

that do not colocalise, with an average of 9 and 46 clusters per nuclei respectively. This shows 

that the majority of MVI clusters are not found near γH2AX. There is however no significant 

difference between the number of γH2AX foci that overlap with MVI clusters and those that 

don’t, with an average of 3 and 12 clusters respectively (Figure 6.19).  

The number of molecules of MVI within clusters that are categorised as colocalised with 

γH2AX clusters is significantly higher than the number of molecules in non-colocalised 

clusters, with an average of 287 molecules and 45 molecules respectively. The average 

number of molecules of γH2AX that colocalises with MVI however does not significantly 

differ between colocalised clusters and non-colocalised clusters, with an average of 332 and 

59 molecules respectively. This shows that there are a similar amount of molecules in clusters 

that do colocalise with MVI than do not, yet there are more MVI molecules per colocalised 
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cluster. This is interesting as when there is colocalisation between the two proteins the 

clusters of MVI are far larger, compared to when MVI clusters are on their own there are far 

less molecules.  

This is supported by the fact that colocalised clusters of MVI have a much larger area on 

average than those that are not colocalised, their areas on average are 11766nm2 compared 

to the non-colocalised MVI cluster area being 3687nm2. The same can be observed with the 

average size of γH2AX foci. When γH2AX clusters are found with MVI nearby there area on 

average is 14705nm2 compared to the average size of non-colocalised clusters being 

2762nm2. This shows that the two protein only colocalise when the clusters are of a large 

enough size, and when there are small clusters of either proteins they are kept functionally 

apart from each other (Figure 6.19). This implies MVI is part of multi break foci, creating 

repair factories, around the points of damage, but not at the diffuse γH2AX signals, as shown 

in Figure 6.19. 
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STORM and cluster analysis was performed on MCF10A cells. γH2AX clusters were analysed and the number of 

molecules in a cluster (A), the size of these clusters (B) and the number of clusters have been calculated (C). The 

DoC score of MVI overlaid on γH2AX clusters and vice versa showed no difference between overlays with the 

mean being less than 0, thus the majority of clusters do not colocalise (D). The number of MVI clusters were 

calculated (E) showing a significant number non-colocalised clusters. There is similar amount of γH2AX clusters 

that do or do not colocalise with MVI clusters (F). There are more molecules of MVI in clusters that colocalise with 

γH2AX that do not (G) and there is no difference in the number of molecules found in the γH2AX clusters that 

either colocalise with MVI clusters or not (H). There is a significantly larger area of MVI clusters (I) that colocalise 

with γH2AX clusters as well as a significantly larger clusters of γH2AX that colocalise with MVI clusters (J). All data 

was tested with the students T-test where **** p<0.0001, ** p<0.001 and *p<0.05. N=2 

Figure 6.19. Violin plots showing the colocalisation of MVI and γH2AX. 
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Points of damage labelled with γH2AX move into repair foci where clusters of MVI can be found, which stabilise 

repair factories for simultaneous repair of DNA.  

Figure 6.20. A cartoon depicting MVI inside repair foci. 
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 Studying apoptosis requires further work 

During microscopy and HCS, visual inspection showed that HeLa displayed high cell death 

when treated with TIP and a DNA damaging agent. To provide statistics to this observation, 

the RealTime-Glo™ Annexin V apoptosis kit (Promega, Cat no.JA1011) was used. This kit 

provides a real time readout of cellular apoptosis, whereas the cells present their 

phosphotidylserine, fluorescently tagged annexin V binds and its fluorescence increases. 

Here, this study found no difference in apoptosis between any samples, including when using 

the apoptotic inducer, paclitaxel. All of the samples produced a similar hyperbolic curve 

where there is an exponential increase of apoptotic signal at time point 240 minutes after 

drug treatment until a plateau at time point 325 minutes (Figure 6.21). After visual inspection 

of the samples, the paclitaxel treated cells showed high cell death compared to the untreated 

sample, yet this was not detected whilst using the kit. This assay requires further work to 

Fluorescence measurements measured following the manufacturers’ protocol. Cells were incubated in 5% CO2 at 

37°C before drug induction, each drug was diluted into the appropriate medium at t=0 mins. There was no 

significant difference between each condition, and so it the apoptosis kit did not work. Error bars = SD.  
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Figure 6.21. Apoptosis report of HeLa cells.  
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ensure the fluorescent readout matches the observations made for each condition and that 

the kit is working correctly.  

 Discussion 
 

This study has focused on the particular role MVI may play in the DNA damage response and 

how this role may be regulated. It builds on the data previously shown that whilst MVI 

doesn’t affect the transcription of DNA damage response proteins, it does bind directly to 

certain repair proteins. Also previously discussed is that MVI localisation changes, where it 

moves into the nucleus due to DNA damage. This study has attempted to build on this 

information and understand exactly why MVI would move into the nucleus and change its 

binding partners after DNA damage.  

 MVI motor domain inhibitor TIP prevents nuclear localisation of MVI. 

In this study it has been identified that the motor domain is vital for the movement of MVI 

into the nucleus within MCF10A cells, however not necessarily in HeLa cells. When MCF10A 

cells were treated with TIP for a 24 hour period there is a clear loss of MVI inside the nucleus 

as shown by the HCS. This highlights the motor domain of MVI as a potential regulator of 

nuclear localisation. Published work has shown that MVI has seven nuclear localisation 

signals, however no work was undertaken to identify which of these signals are responsible 

for the movement of MVI into the nucleus. One such NLS identified is the PRKSKLA amino 

acid sequence found at positions 559-566 within MVI (Majewski et al., 2018). These amino 

acid residues are found directly within the motor domain. It is possible that the TIP inhibitor 

is blocking this site for recognition of nuclear importins.  

It has been shown recently that the nuclear isoform of MVI, the non-insert isoform, is able 

to back fold (Fili et al., 2017). This back folding ability inactivates the MVI until a suitable 

binding partner binds, the MVI then folds open and the protein can then dimerise with a 
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binding partner as the mediator (Fili et al., 2017). It is possible that TIP itself interferes with 

this back folding mechanism, where MVI may need to be in the folded confirmation to be 

able to cross the nuclear membrane and that the TIP, inhibits this backfolding keeping the 

MVI stuck in its open state restricting the localisation of MVI.  

Interestingly MVI localisation within HeLa does not seem to be impacted by the presence of 

TIP, as shown by the confocal microscopy and the use of HCS. This may provide more 

information on the mechanism of MVI translocation. As discussed previously HeLa have high 

chromosome instability and contain the E6 viral protein that marks p53 for degradation  

(DeFilippis et al., 2003). It is known that MVI interacts with p53 around the nuclear periphery 

particularly at the golgi apparatus (Jung et al., 2006), it is possible that MVI is able to move 

into the nucleus due to this loss of a binding partner and the motor domain is not necessarily 

required for the crossing of MVI into the nucleus, but the movement along actin filaments 

from the cell periphery towards the nucleus. The previous proteomics showed very little 

variation between cell lines of untreated cells MVI binding partners so it is possible that TIP 

inhibiting the motor domain of MVI is causing a knock on effect of other proteins required 

for nuclear movement that HeLa cell lines do not require.  

Further work is required to get a complete grasp on nuclear localisation of not only MVI but 

other nuclear myosins as well. Currently it is hypothesised that MVI moves across the nucleus 

through the same importins required for NM1 movement into the nucleus, yet no binding 

partners or mechanism has been observed within a cell (Majewski et al., 2018). 
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 MCF10A cells rely on nuclear MVI to signal DSBs. 

Confocal imaging, western blotting and HCS have all shown that cells treated with TIP and 

then treated with either cisplatin or bleomycin are completely unable to produce the correct 

γH2AX signalling. As expected, after treating both lines with bleomycin and cisplatin there 

was an increase of γH2AX signal due to the induction of DSBs by these drugs, however after 

treatment with TIP, HeLa is still able to produce γH2AX foci yet MCF10A cells cannot. This 

could be due to the TIP not affecting the nuclear localisation of MVI within HeLa whilst 

inhibiting nuclear movement of MVI in MCF10A cells. It does also introduce a new 

mechanistic step into the recognition of DSBs and the activation of the ATM kinase that is 

responsible for the phosphorylation of H2AX after a DSB occurs.  

The DSB response is a well-known response where the MRN complex, consisting of Mre11, 

Rad50 and Nbs1 bind to a break. These proteins are the first responders to DSBs where they 

bind to the DNA at the precise location of the break and then begin to repair the break. 

Whilst this is occurring it has been shown that Nbs1, the protein responsible for nucleotide 

dependent DNA binding and ATP-dependent unwinding of the DNA (Paull and Gellert, 1999), 

causes the autophosphorylation of the ATM kinase which then in turn monomerises and 

phosphorylates the H2AX histone as well as p53, Brca1 and other cell cycle checkpoint 

proteins (Difilippantonio et al., 2005). In this study γH2AX signalling is lost without MVI, this 

implicates MVI within the first stages of DSB response. MVI might have a role between the 

activation of the ATM kinase and it phosphorylating H2AX. This allows the hypothesis that 

MVI is in some way interacting with the MRN complex and is regulating either the 

autophosphorylation of ATM or the phosphorylation of H2AX.  

It is possible that MVI is required to stabilise the MRN complex on the DSB through its ability 

to act as an anchor when bound to actin when high forces are applied (Altman, Sweeney and 

Spudich, 2004). The high forces could be introduced by the large repair complex binding to 
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myosin or through the forces required to pull the two broken strands together. It may also 

be acting as a transporter within the nucleus where it locates, binds to a component of the 

MRN complex and then move this binding partner towards a point of damage. Further work, 

such as live cell imaging of MVI movement would be required to understand if it is acting as 

an anchor as described in transcription or as a motor.  

Another theory is that phosphorylation of γH2AX occurs however the phosphorylation itself 

is not stable without MVI. Live cell imaging would provide information if this is the case, as 

the γH2AX signal would be incredibly brief.  

 MVIs motor is required to regulate histone modifications.  

Previous work has shown that specifically two histones respond to DNA damage the 

H3K36me2 modification and the H4K20me1 (Clouaire et al., 2018). In both the HeLa and 

MCF10A cell lines these modifications were increased by the induction of damage by 

bleomycin. Yet the increase observed was higher when MVI is inhibited by TIP. This increase 

must be due to MVI interacting with histone modifiers directly as it occurs both in the TIP 

and TIP with bleomycin treatments, and in both cell lines, even though HeLa cells have a 

functional DNA damage response after TIP treatment.  

How MVI may be interacting with these protein is still yet to be defined. Similar to the MRN 

complex, discussion above, MVI could be acting as an anchor for histone methylaters 

providing support for the reaction to occur or by working as a transporter within the nucleus. 

Further work to understand if MVI is affecting global histone modifications or just those that 

have been attributed with DNA damage would be required. It is known that the methylation 

of histones causes the activation of gene expression (Zhang and Reinberg, 2001), so the role 

MVI is playing here may not be down to DNA damage but down to a transcription regulatory 

process. It is known that NM1 binds to the B-WICH complex that regulates chromatin 
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modifications around the activation of rDNA transcription (Sarshad et al., 2013). It is possible 

that MVI may be playing a similar role.  

 MVI can be found at γH2AX repair foci. 

To identify if the loss of γH2AX signalling is because the H2AX histone has a colocalisation 

with MVI, STORM imaging was utilised. This provided precise single molecule colocalisation 

analysis. After DNA damage there was an increase in MVI clustering which coincided with an 

increase of cluster size and the number of molecules within a cluster. As no γH2AX signalling 

occurs if there is no DNA damage it is impossible to identify the difference in clustering 

before and after DNA damage, however what can be seen is two distinct types of clusters, 

those that co-localise with MVI and those that do not.  

The clusters of γH2AX that do not colocalise with MVI have equal number of molecules and 

equal occurrence than those that do colocalise however the area they take up within the 

nucleus is significantly smaller than the clusters that do colocalise with MVI. These large 

clusters of MVI and γH2AX, may be a product of MVI switching its role from transcription to 

a role in DNA repair.  

Interestingly the fact that there is an increase in cluster size between the MVI clusters 

colocalised to γH2AX clusters to those that are not imply that MVI is most likely in small 

clusters that provide a function within the nucleus and the large clusters provide a function 

within the DNA damage response. The fact that only large clusters of MVI and large clusters 

of γH2AX can be found together may implicate MVI as a stabiliser of repair factories. This 

would rely on the motor protein acting as an anchor once again to hold together multiple 

points of breaks and multiple scaffolds together. Unfortunately due to the lack of γH2AX 

signals after inhibiting the MVI motor domain it is not possible to comment on the exact 

mechanism. The HeLa cells may be a more suitable cell line to identify if MVI clusters 
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colocalising to γH2AX clusters is a product of a functioning motor domain, or due to a MVI 

binding partner being embedded within these repair foci.  

Whilst it was observed the HeLa cells have increased cell death when treated with a DNA 

damaging agent and TIP, the apoptosis assay did not provide any further information. Such 

as, how TIP with drug treatment affects the cells ability to enter apoptosis rather than stalling 

its cell cycle. This would require more time and further work to optimise the conditions 

necessary for assay to work.  

Overall MVI plays a vital role within the DSB repair signalling process and cells that have an 

inhibited motor domain show a significant phenotype. During this study however it is not 

possible to distinguish if the role MVI plays inhibits the whole DNA damage response process 

along with cell cycle inhibition and an activation of apoptosis or it only impacts the γH2AX 

signalling, and the cells are able to repair the DNA with or without MVI.  
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Chapter 7.  Linking the roles of NM1 and 
MVI in the nucleus  
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 Introduction  
 

So far this study has focused on further characterising NM1, as well as identifying the 

importance of MVI in the DNA damage response. Both these myosins are able to cross the 

nuclear membrane, and their protein levels within the nucleus can be enhanced after stimuli 

(Maly and Hofmann, 2016; Majewski et al., 2018). Whilst the structure of these two myosins 

differ, both are able to act as transporters. So far it is known that both these myosins are 

involved within transcription and now DNA damage, how they may work together is still yet 

to be defined.  

 Chromosome territories. 

Originally it was believed that during interphase, chromosomes were not defined within the 

nucleus and they were free to move. However as time has progressed it has become 

apparent that each chromosome within an interphase cell actually has a designated region 

known as a chromosome territory (CT) (Cremer and Cremer, 2010). Fluorescence in Situ 

Hybridisation (FISH) has opened up this field of CTs, as each chromosome has been able to 

be individually mapped. 3D FISH has then shown full spatial organisation (Bolzer et al., 

2005)(Sehgal et al., 2015) It has been shown that these CTs can be adjusted depending on 

the transcriptional activity of the chromosome, the replication timing and the GC content of 

each chromosome (Mahy et al., 2002) . Whilst CTs are defined it does not mean they are the 

same globally in a cell line, for example it is not possible to predict which chromosome would 

be adjacent to another, and currently there is no theme of genes consistently identified on 

the periphery or interior of CTs (Heride et al., 2010). These territories are also able to 

intermingle, which allows for long rearrangements and organisation within a 3D space 

(Szczepińska et al., 2019). However to ensure chromosomes do not become entangled and 

to potentially slow down the movement of chromosomes, it is vital that chromosomes are 
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able to form attachments to the nuclear envelope (Kinney et al., 2018). This information does 

however, provide evidence that an interphase nucleus is highly organised and relies on the 

large pool of post-translational modifiers for histone management,, as well as chromatin 

remodelling complexes found within a mammalian cell .  

 

 

 

 Histone modifications shape chromatin 

Histone modifications, as discussed previously, are post translational modifications that 

occur on the “tails” of histones (Zhang and Reinberg, 2001). Often these modifications can 

signal other proteins towards the DNA or change the affinity the histone has for DNA, either 

by loosening its grip on the DNA or tightening it. This process allows for gene expression to 

be tightly regulated by allowing the DNA to be accessed by the polymerase complexes. The 

histones that have been studied here, revolve around the transcriptional landscape, as this 

is the specific difference between heterochromatin (Volpe et al., 2002), tightly packed often 

unreadable DNA, and euchromatin, consisting of transcriptionally active genes (Collins et al., 

2004). 

Each chromosome has been painted with a different colour and then plotted in 3D space. Adapted from 

Bolzer et al., (2005). 

Figure 7.1. A generalised map of chromosome territories. 
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Histone acetyltransferases (HATs) are responsible for the acetylation of histones often linked 

with gene activation (Lee and Workman, 2007). H3K9ac and H3K27ac are both found either 

side of active genes (Creyghton et al., 2010), and can be acetylated by the CREB-binding 

protein when gene expression is required (Yuan et al., 2013). To ensure a gene is 

transcriptionally repressed methylation occurs on the histone tails (Curradi et al., 2002). One 

such methylated histone is H3K9me3, which is regulated by SUV39H1 and SUV39H2 which 

methylate the tail three times on the same lysine. This modification in turn, activates the 

heterochromatin protein 1 (HP1) which causes the chromatin to compact and become 

inaccessible (Schuhmacher et al., 2015; Maison et al., 2016).  

 Actin has a direct interaction with chromatin organisers 

Whilst the types of actin found within the nucleus is still heavily debated, it is agreed that 

the presence of β-actin within the nucleus is a definite (Kelpsch and Tootle, 2018). To 

understand how nuclear myosins may play a role in the organisation of chromosomes, it is 

necessary to keep in mind the state of actin in the nucleus. The requirement for actin in 

chromosome organisation has already been well characterised, where it has been found to 

bind directly to chromatin remodelling complexes (Kapoor et al., 2013; Schubert et al., 2013). 

Mammalian cells contain multiple chromatin restructuring complexes, two common 

complexes are the SWI/SNF remodelling complex, BRG1. Other proteins that bind to these 

complexes and allow for the functionality of these proteins are grouped together, known as 

BAFs, BRG or BRM associated factors.  

It has been found that the 53kDa BAF subunit can be defined as an actin related protein (Arp) 

and that not only does actin bind to this subunit but actin itself is a subunit of the complex 

(Rando et al., 2002). If actin polymerisation is blocked using latrunculin B, then the whole 

BRG1 complex including the 53kDa BAF subunit and actin, are unable to bind to chromatin 

(Nishimoto et al., 2012)  
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Actin has also been identified in other roles; as part of the INO80 remodelling complex used 

in histone translocation for transcription, within the SWR1 complex, which is involved in DSB 

repair (Kapoor et al., 2015) where it is required for the replacement of H2A histones (Wu et 

al., 2009) with H2A.Z to activate transcription and finally actin is found in the NuA4 complex 

(Doyon et al., 2004), which is an acetylator of the H4 histone modifier, which is necessary for 

DSB repair and cell cycle control. Within these complexes actin often plays a stabilising role, 

however if actin is present on these complexes, then there is potential for the binding of a 

nuclear myosin.  

Following DSBs, INO80 is recruited to γH2AX through its interaction with actin (Kapoor et al., 

2015), also during this recruitment the NuA4 complex acetylates H2AX histones which in turn 

leads to an increase of the SWI/SNF (BAF) histone modifier which increases the amount of 

γH2AX signals surrounding the DSB (Jha, Shibata and Dutta, 2008). Here, all three complexes 

require their Arps for their recruitment and so it is known that at points of damage, actin is 

present.  

As both chromatin regulatory complexes and actin are found at the points of damage, it is 

more than likely nuclear myosins, can also be found within these regions due to their high 

affinity to actin.  
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Ino80 first identify γH2AX due to the actin present at a DSB. This recruits NuA4 to cause a spread of γH2AX signals. 

If the repair is HR then SWI/SNF is also recruited, if not the repair follows the NHEJ pathway. Taken from Klages-

Mundt et al., (2018). 

Figure 7.2. Chromatin remodelling complexes in DSBs. 
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 NM1 binds directly to chromatin remodelling complexes.  

As discussed previously NM1 plays a vital role in transcription. Within RNAPI transcription 

NM1 binds directly to a chromatin remodelling complex that contains SNF2h and WSTF, 

known as B-WICH (Percipalle et al., 2006). It is hypothesised that this interaction, allows for 

the recruitment of B-WICH to the points of rDNA transcription, which then changes 

chromosome organisation for the successful transcription. Not only does NM1 bind to SNF2h 

and WSTF in RNAPI transcription but also in RNAPII transcription (Almuzzaini et al., 2015). 

This binding allows for the recruitment of these subunits to transcriptionally active sites that 

in turn employ histone acetyl transferases (HATs) to acetylated local histones such as lysine-

9 on the H3 histone (H3K9ac). This provides stability to the site of transcription and ensures 

the DNA is loosely wrapped around the nucleosomes. This is evidence of a nuclear myosin 

being involved in multiple steps of transcription, where it provides a clear pathway for the 

progression of the RNAP complexes along previously compacted DNA.  

 Nuclear myosins are involved in long-range chromatin movements.  

It has been shown that nuclear myosins can organise specific areas of chromatin to allow for 

transcription, NM1 has also been implicated in the long-range movement of chromosomes 

(Chuang et al., 2006). During interphase, chromatin was imagined to be relatively static, and 

only during cell division was DNA moved with intention. However more recently Chuang et 

al., (2006) observed chromatin moving 5µm with a velocity of 0.1-0.9µm/min which is larger 

and faster than can be explained by simple Brownian motion. This movement has been 

attributed to the formation of F-actin, which NM1 is able to the bind along with the DNA and 

travel along these filaments.  

Not only is movement of DNA required during general cell maintenance, it is also observed 

after DSB induction with the use of cisplatin. Overall, in human dermal fibroblasts (DHFs) five 

different chromosomes have been shown to move, these are chromosomes; 19, 17, 20, 12 
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and 15. Here these chromosomes move either from the nuclear periphery towards the 

nuclear interior, or vice versa (Mehta et al., 2013). These translocations require γH2AX 

signalling, and once a DSB is signalled, it is hypothesised that NM1 moves the chromosomes 

to allow for the formation of repair foci and the matching of homologous chromosomes. 

Inhibition of NM1s motor domain removes all capability for the cell to rearrange these 

chromosomes (Kulashreshta et al., 2016). Whilst this work has showed that inhibiting γH2AX 

signals also stops the movement of chromosomes, there is no mechanism provided of how 

does γH2AX signalling regulate NM1s activity and how is the direction of movement decided.  

Myosin V another myosin that can be found inside the nucleus, has also been attributed with 

movement of heterochromatic breaks (Caridi et al., 2018). Filamentous actin is formed at the 

location of a DSB through activation of the Arp2/3 proteins, it then linearises towards the 

nuclear periphery towards repair foci. The myosin activator Unc45 and myosin V as well as 

NM1, can all be found at the site of damage and removal of either myosin causes a depletion 

in heterochromatin transportation along actin filaments (Caridi et al., 2018). If the 

movement is inhibited in some way, then the γH2AX signals persist continuously until an 

alternative repair mechanism to homologous recombination is utilised. This study however 

did not comment on the redundancy between these two myosins and hints that both 

myosins are required for transport. How these myosins are able to communicate between 

each other and why two different myosins are required is still unknown. This does however 

provide evidence for the first time in the nucleus that myosins are able to cooperate.  
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 Myosin I and MVI cooperate within the cytoplasm of the cell.  

If MVI and NM1 are to work together within the nucleus, it is interesting to identify any other 

cellular activities where both these type of myosins can be seen together. During 

phagocytosis, a whole host of myosins are required for the completion of this process; 

myosin I, 2, 5, 7, 9b and 10 all play a role (Papadopulos et al., 2013). During the invagination 

of clathrin coated vesicles both MVI and myosin I are necessary (Derwerchin et al., 2014). 

This study utilised the virally infected macrophages to then study the internalisation of 

antibodies at the cell membrane.  At the cell periphery when an antigen is recognised myosin 

I allows for invagination occurs, following this, the vesicle needs to pass through the cortical 

actin corridor. Here myosin I does not transport the vesicle but MVI binds and carries the 

cargo along the network of actin filaments. Once the vesicle is through the actin filament 

The arp2/3 complex and myosin V or NM1 bind to a DSB and the Unc45 activates the myosins causing directed 

movement of the heterochromatin towards the euchromatin region at the nuclear membrane for repair. Taken 

from Caridi et al., (2018). 

Figure 7.3. Acting and myosins translocating DSBs. 
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MVI disassociates from the vesicle, leaving myosin I and a microtubule motor to then 

transport the vesicle to the microtubule organising centre.  

MVI is most likely utilised here for its ability to travel along actin from the pointed end to the 

barbed end to travel through the cortical corridor, where myosin I is incapable of this 

movement. This provides some evidence for the two myosins being utilised within one 

mechanism, however having two different functions. Whether or not this could be so in the 

nucleus is yet to be determined.  

 

 Using Fluorescence in Situ Hybridisation (FISH) for studying chromosome 
locations. 

 

One method used here to study the locations of chromosomes before and after damage is 

FISH. To study whole chromosome locations fluorophores are attached to a group of specific 

DNA sequences that are unique to each chromosome. These fluorescently labelled 

sequences are hybridised onto the samples. In interphase cells if the karyotype of the cell is 

a regular diploid, two signals should be apparent per chromosome paint and in interphase 

cells these signals are spread throughout the chromosome territory (Bishop, 2010).  

To analyse the images obtained, and provide information on the chromosome location, 

whether it is at the nuclear periphery, in an intermediate state or within the nuclear interior, 

a nuclear morphology analysis software was used. This software designates a location of a 

fluorescence signal within the nucleus, by dividing the nucleus into subshells. The number of 

subshells can be decided and the amount of signal detected in each subshell depicts the most 

common location of a chromosome (Skinner et al., 2019).  

This analysis allows chromosome movements to be mapped without the use of live cell 

technology and any nonspecific DNA stress caused by DNA dyes. 
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 The aims of this study.  

So far NM1 has been further characterised biochemically, and MVI has been studied 

concerning its role in DNA damage. As both myosins have been found at the points of active 

transcription, it could be possible that they also both function within the DNA damage 

response. It is known NM1 regulates chromatin organisation in both normal and damaged 

cells, this study sets out to investigate if the same is true for MVI by using high content 

screening, and FISH techniques. If both myosins do truly share roles within the nucleus, 

STORM microscopy will identify any colocalising molecules.  

 Results 
 

 HeLa and MCF10A cells modify their histones differently after DNA damage 

It is known that NM1 is able to bind to the B-WICH complex for transcriptional activation of 

genes (Vintermist et al., 2011). There is yet to be a study if MVI is required for histone 

modifications other than the γH2AX modifications, and DNA damage modifications as shown 

in Chapter 6. To understand if MVI alters the chromatin landscape similar to that of NM1, 

HCS was once again utilised.  

Firstly the DNA damage drug bleomycin, led to an increase of intensity by 584 A.U, in the 

transcriptional repressor histone modification H3K9me3 (Figure 7.6) which in turn leads to a 

decrease in acetylation of the same lysine (H3K9ac), by 1051 A.U, which could mark 

transcription activation within the MCF10A cell lines (Figure 7.5). The HeLa cells lines 

responded in an opposite fashion where this lysine has an increase in acetylation by 1847 

A.U (Figure 7.5), which could increase transcriptional activity, and the triple methylation on 

the same lysine residue is actually no different to the non-treated cells (Figure 7.6). This 

shows that whilst the MCF10A cell lines are responding as expected to DNA damage by 
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possibly reducing transcription, the HeLa in turn react in the opposite manner, where 

acetylation of histones increases.  

There is however no difference between the cells lines in H3K27ac signals , as after bleomycin 

treatment, there is reduction of this signal in both MCF10A and HeLa cells (Figure 7.5), 544 

A.U and 669 A.U respectively, compared to the non-treated cells.  

 Nuclear MVI is responsible for correct histone modifications  

When DNA damage free cells, are treated with the MVI motor domain inhibitor TIP, the 

histone landscape is affected in both MCF10A cells and HeLa cells (Figure 7.5 and Figure 7.6). 

Here the TIP treatment itself causes a significant decrease in both H3K9ac, by 1973 A.U in 

MCF10As and 1488 A.U in HeLa, and H3K27ac, by 1556 A.U in MCF10As and 644 A.U, and a 

significant increase of H3K9me3, by 1190 A.U in MCF10As and 5400 A.U in HeLa. The changes 

seen in the TIP treatment compared to that of WT cells, shows that the inhibition of the 

motor domain of MVI and most likely its nuclear localisation is responsible for the control of 

histone modifications. 

After treating MCF10A cells with a DNA damaging agent as well as TIP, the cells are unable 

to respond appropriately with the effects of DNA damage on histone modifications being 

masked by the inhibition of MVI. This would be expected as TIP treatment on its own would 

impact histone modifications due to the direct role of MVI in transcription. It is clear that the 

simple loss of MVI has a far greater influence compared to that of the bleomycin. The 

MCF10A cells after both drug and TIP treatment remain, with a reduction in H3K9ac, by 1998 

A.U and H3K27ac by 1536 A.U respective to untreated cells (WT). 

TIP also has an effect on the HeLa cell lines as after WT cells have been treated with TIP there 

is a significant reduction in H3K9ac -by 1488 and H3K27ac - by 644.9 A.U and a significant 

increase in H3K9me3 levels – by 5400 A.U. Yet, when the cells are treated with both 
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bleomycin and TIP the cells still respond to the DNA damage by increasing their H3K9ac to 

an average intensities of 6151 A.U, but not to the levels seen with just bleomycin treatment, 

where cells have an average intensity of 6436 A.U. This shows once again how the different 

cell lines utilise MVI for their response to DNA damage. Compared to the MCF10A cells who 

lose their histone modification response when MVI is inhibited, the HeLa cells are still able 

to respond to. It is clear the NM1 is not the only nuclear myosin involved in histone 

modifications.  
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MCF10A and HeLa cells were treated with bleomycin, TIP or bleomycin and TIP. The fluorescence intensities were 

measured where each data point is a minimum of 1000 nuclei. MCF10A cells had a global decrease after 

bleomycin and TIP treatments of H3K9ac (A,B) and H3K27ac (C,D). HeLa had an increase of H3K9ac (E,F) and 

H3K27ac (G,H) which were both reduced after TIP treatment but then increased again after TIP with bleomycin 

treatment. The SD is shown and significance was calculated using ordinary one-way ANOVA with Sidaks multiple 

comparisons test, where * p<0.05, ** p<0.01, **** p<0.001. N=2 

MCF10A and HeLa cells were treated with bleomycin, TIP or bleomycin and TIP. The fluorescence intensities were 

measured where each data point is a minimum of 1000 nuclei. MCF10A cells had a global increase after 

bleomycin and TIP treatments of H3K9me3 (A,B). HeLa had no change of its H3K9me3 after DNA damage 

however it does increase after TIP and bleomycin with TIP treatments again after TIP with bleomycin treatment 

(C,D). The SD is shown and significance was calculated using ordinary one-way ANOVA with Sidaks multiple 

comparisons test, where, **** p<0.001. N=2 

B D 

A C 

Figure 7.5. HCS of acetyl histone modifications. 

Figure 7.6. HCS of methyl histone modifications. 
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 HeLa chromosome territories differ to human dermal fibroblasts 

It is already published that NM1 is required for the rearrangement of chromosome territories 

after DNA damage, and this rearrangement requires the γH2AX signalling pathway 

(Kulashreshtha et al., 2016). As MVI inhibits the γH2AX signals within MCF10A cells, HeLa 

cells were utilised, as they still produce γH2AX without MVI, to study if MVI is also required 

for chromatin rearrangements after damage.  

2D FISH alongside the analysis software, nuclear morphology analysis, has allowed the 

mapping of chromosome territories within one focal plane of a HeLa nucleus. Previously 

published work involving human dermal fibroblasts identified two chromosomes that move 

after DNA damage, these are chromosome 12 and chromosome 19 (Mehta et al., 2013), 

which move from the periphery to the interior and the interior to the periphery of the 

nucleus, respectively. However after completing the analysis of WT HeLa cells which contain 

a heavily unstable karyotype, this study has found that both chromosome 19 and 

chromosome 12 are more commonly found within the interior of the nucleus and not at 

opposite localisations (Figure 7.7,A).  

Whilst the locations differ to that observed in human dermal fibroblasts, the response to 

DNA damage is the same. After cells have been treated with cisplatin, the chromosome 

territories of 12 and 19 both have a preference for the periphery of the nucleus rather than 

the interior. This shows the HeLa cells are responding to the DNA damage through whole 

chromosome territory reorganisation (Figure 7.7,B).  
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 MVI is required for CT organisation both before and after DNA damage  

To understand if MVI is required for normal chromosome organisation, a MVI KD was 

performed on cells which were then separated for RNA-seq analysis and FISH. Both 

chromosome 12 and 19 had their locations mapped using the nuclear morphology analysis 

software. After MVI KD there is a larger percentage of chromosome within the nuclear centre 

than that of the nuclear periphery as shown in Figure 7.7 C. After treating MVI KD cells, with 

cisplatin for 24 hours there is no shift of these chromosome territories towards the nuclear 

periphery (Figure 7.7 D). This shows that without MVI the HeLa cells are unable to move the 

chromosome territories as expected due to the DNA damage, as the HeLa cells still produce 

the γH2AX signals after DNA damage, it must be solely down to the loss of MVI these 

chromosomes are unable to move.  
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Figure 7.7. 2D FISH of whole painted chromosome 12 (blue) and 19 (pink). 

C 

In mock cells, both chromosomes (images; green and red respectively) remain within the interior of the nucleus, after 

cisplatin treatment these then shift away from the nuclear interior (B). After MVI KD the chromosomes become 

concentrated in the nuclear interior (C) and after cisplatin damage with a MVI KD the chromosomes remain relatively 

in the centre of the nucleus (D). N for each condition = 50.  

D 
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 Neither NM1 or MVI nuclear clustering is affected by TIP  

As it is now established MVI is required for correct histone modifications as well correct 

chromosome territory organisation, it is possible that these two myosins can affect the 

functionality of each other. To study this hypothesis, STORM microscopy alongside Clus-DoC 

analysis has provided information on how TIP can effect MVI, and how this may in turn 

impact upon NM1 within the nucleus of HeLa cells. Within HeLa cells Figure 7.8, shows that 

both MVI and MIC staining, which is able to stain the three isoforms of the protein, MIC A, 

MIC B (NM1) and MIC C, are found all throughout the cell and within the nucleus. The nuclear 

levels of each protein is far lower than observed at the plasma membrane of the cell.  

After treating HeLa cells with TIP, the amount of clusters and the number of molecules within 

them, is unchanged. As well as this, the area of these clusters also remains unchanged, 

therefore the TIP treatment itself does not affect MVIs ability to cluster within the nucleus. 

NM1 also follows the same pattern that after TIP treatment its ability to clusters, the number 

of molecules within a cluster and the overall size of these clusters remains the same.  

This implies that NM1 is acting independently of MVI and that its ability to enter the nucleus 

and cluster together does not rely on the motor activity of MVI agreeing with the results 

shown in Chapter 6. 
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Confocal imaging shows where MVI and all myosin IC isoforms including NM1 are located (A). Scale bar 10µm. 

Using STORM and Clus-DoC analysis the number of clusters, the number of molecules found inside these clusters 

and the area of the clusters were calculated for MVI (B) and NM1 (C). A students T test was used and found all to 

be not significantly different (ns) before and after TIP treatment. N=3 n=10 

 

A 

B 

C 

Figure 7.8. NM1 and MVI clustering analysis. 
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 MVI and NM1 clusters are often segmented 

As previously shown, the clusters of both MVI and NM1 can be superimposed onto each 

other and then each cluster can be scored by their colocalisation, their DoC score. If the DoC 

score is closer to -1 the two signals are functionally separate from each other, meaning the 

cell is specifically segmenting the two proteins, if the score is +1 the clusters colocalise 

completely together. When MVI clusters are overlapped onto NM1 clusters, the mean DoC 

score -0.1533 and when NM1 is overlapped onto MVI the mean DoC score is -0.1292 (Figure 

7.9 A and B). This shows that the average MVI cluster is found not only not colocalised, but 

functionally separate from NM1 clusters.  

After TIP treatment the MVI clusters have increased DoC scores with an average of -0.11, 

and so are more likely to colocalised with NM1 however the average score is still below 0, 

therefore it is likely all the clusters except a few are kept apart from NM1. TIP treatment has 

no effect on the overlap of NM1 clusters onto MVI clusters, once again showing that the 

MVIs functionality does not affect NM1s likelihood to be found adjacent to a MVI molecule.  

The number of clusters found colocalised is significantly lower than the clusters that do not 

colocalise with each other, as well as the number of molecules found in these clusters and 

their areas (Figure 7.9 D). Once again, TIP has no effect on the size of these clusters or the 

number of molecules found in them. This confirms that these two proteins are both able to 

form clusters however, these clusters are kept functionally separate from each other.  

The amount of NM1 molecules within nuclei is far less than MVI with an average of 984 and 

8106 molecules respectively, and the average number of both NM1 and MVI molecules are 

similar after TIP treatment, 983 and 6527 respectively.  
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E 

STORM imaging and Clus-DoC analysis was used to identify the degree of colocalisation between MVI overlaid on 

NM1 (A) and NM1overlaid on MVI (B). The number of clusters that colocalised (C) was calculated alongside the 

number of molecules in these clusters and the area of MVI (D) and NM1 (E). The total no. of molecules in the 

nucleus is shown both before and after TIP (F) A normal ANOVA supplemented with Sidaks multiple comparions 

test is shown where ns is not significant or where **** is when p<0.001. N=3 n=10 

 

 

 

 

 

Figure 7.9. Clus-DoC analysis of the colocalisation of MVI and NM1 clusters. 

F 
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 Discussion 
 

This study set out to identify if MVI and NM1 are linked in their roles within the nucleus. Both 

myosins within the cytoplasm can be used as transporters, and have been shown to 

colocalise at the cell periphery for endocytosis (Derwerchin et al., 2014). Within the nucleus, 

it is now known that both myosins are required for RNAPII transcription through their 

interactions with the polymerase complex itself (Fili et al., 2017; Almuzzaini et al., 2015), and 

in NM1s case its ability to interact with the histone modification complex B-WICH (Vintermist 

et al., 2011). If the two myosins are present at transcription sites, it is possible that the two 

myosins may also be linked within the DNA damage response.  

 Scientific research is cell line dependent 

Often within scientific research, when an observation is made, it is quickly forgotten, in which 

cell line this observation relates to. It is assumed that if the role of protein is identified in one 

cell line, then it is the same for others. The same can be said about treatments to mammalian 

cells, if a cisplatin treatment causes a cell to produce a phenotype, it is often assumed this is 

the case for other mammalian cell lines. It is clear from the changes in histone modifications 

in this study that, both HeLa and MCF10A cells have a different response to bleomycin 

treatment. With HeLa increasing acetylation modifications whilst MCF10A cells are reducing 

these modifications, there needs to be more emphasis of context within cell biology research 

on the type of cell being used.  

Immortal cancer cell lines have their limitations within laboratory research. They are indeed, 

easy to maintain, simple to manipulate and are well characterised, but they also have their 

downsides. They are not homogenous between laboratories, depending on the age and 

source of the cells, effects their genome, which could lead to unique phenotypes that other 
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laboratories do not observe. They also behave very differently to normal mammalian cells 

that are very difficult to maintain and perturb.  

This study has shown how inhibiting MVI inhibits γH2AX in MCF10A cells and not HeLa, 

therefore, it is always of great importance to take into account cell lines and mutations when 

discussing an experimental result. 

 NM1 and MVI may both play a role in transcription regulation  

It is published that NM1 allows the chromosome landscape to shift allowing for the 

progression of transcription from initiation to elongation (Almuzzaini et al, 2015). It does this 

by first binding to the RNAPII complex and actin, whilst bound to actin it then switches to 

bind to a histone modifier, which allows the correct modifications for transcription to occur.  

Using HCS this study has followed gene activation through acetylation of the lysine-9 and 

lysine-27 on the H3 histone. Within MCF10A cells after bleomycin treatment the cells reduce 

these signals which may cause a repression of gene expression. When the MVI motor domain 

is inhibited and the MVI can no longer enter the nucleus the levels of H3K9ac and H3K27ac 

reduce significantly, more than seen after DNA damage. If both TIP and bleomycin 

treatments are undertaken together in MCF10A cells, these reductions are the same as TIP 

treatment only. 

 This shows that the cells may have a greater response transcriptionally to MVI inhibition 

than DNA damage, which was also been observed in the RNA-seq data. It is possible that the 

full role of MVI within transcription is yet to be elucidated, and that whilst it is seen MVI 

binds to the RNAPII complex, it may also act similar to NM1 where once RNAPII transcription 

has begun it is then recruited to a histone modifying complex to allow for further gene 

activation. It may also be that because KD of MVI changed the transcriptome of the cell, as 

shown in the RNA-seq data, the cell is responding to the fact it is unable to undergo 
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transcription, by reducing gene activation, focusing its resources on the most vital of genes. 

This can be observed through the increase of triple methylations found on lysine-9 of the H3 

histone. Due to the increase of this signal, it is not possible to comment if MVI controls these 

methylations in a repressive way, or that due to MVI unable to carry out gene activation the 

cell automatically signals gene suppression.  

 HeLa cells do not require functioning MVI for their histone response to DNA 
damage 

 

HeLa cells responded to DNA damage in an opposite fashion to the MCF10A cells, where 

originally the acetylated histones were reduced due to bleomycin treatment, in HeLa cells 

increase of acetylation occurred. This may provide information of the HeLa cell’s ability to 

survive within the stressful environment of tumour growth, as well some cancers ability to 

become resistant to chemotherapeutics, as these changes in modifications may increase 

gene expression, through activation, the cell could be producing proteins vital to their 

survival.  

After TIP treatment, the cells respond similar to that of MCF10A cells where it is observed 

acetylation is reduced and methylation is increased. This once again shows MVI may have 

some regulation over global gene expression changes within HeLa. This study is unable to 

produce a mechanism, as further work is required to fully understand if this is linked with 

MVIs ability to bind RNAPII or it acts independently of RNAPII and binds solely to histone 

modifiers.  

After treating the cells with both the DNA damaging agent bleomycin and TIP, the HeLa cells 

respond to the DNA damage as though the MVI is not inhibited. This study sees a 

readjustment of histone signals so that there is once again an increase of H3K9ac and a 

reduction of H3Kme3, which may coincide with gene activation. This suggests that either the 

MVI is not required for the DNA damage response within HeLa, which has been shown by 
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the cells ability to still produce γH2AX signals after cisplatin and TIP treatment, or there is an 

alternative mechanism for MVI to be recruited into the nucleus, that does not require a 

functioning motor domain. Once again, this study has shown that a cells response to DNA 

damage is completely dependent on the cell line and that by comparing a non-cancerous cell 

line to a cancerous one, may identify the differences in their survival after DNA damage.  

 MVI is required for CT relocations after DNA damage  

It is already known that NM1 has an ability to relocate CTs after DNA damage (Kulashreshtha 

et al., 2016), in a mechanism that relies on γH2AX signalling. This movement of chromosomes 

most likely allows for the formation of repair foci as well as the matching of chromatin to 

allow for homologous recombination, and thus the repair of a DSB. This study set out to 

identify if CT relocation may also be dependent on MVI. It is known that after DNA damage, 

actin filaments can form within the nucleus, and that by inhibiting this formation, movement 

of chromatin does not occur and heterochromatic breaks are unable to repaired (Caridi et 

al., 2018). This information provides a mechanism for how NM1 is able to transport such a 

large cargo by utilising strong actin tracks. MVI on the other hand travels along actin in the 

opposite direction to all other myosins, where it travels from the barbed end to the pointed 

end. 

In this study a movement of two chromosomes, chromosome 12 and 19, which have been 

shown to move after DNA damage, were analysed before and after DNA damage. It is clear 

that these two chromosomes begin within the interior of the nucleus and after DNA damage 

move towards the nuclear periphery, whilst the positions of these chromosomes differ from 

previously published work it is likely that the HeLa cells have chromosome differences 

compared to normal human dermal fibroblast cells. This movement of chromosomes does 

not occur after DNA damage if the MVI motor domain inhibitor TIP is used alongside cisplatin. 

Therefore, MVI is required for chromosome movement just as NM1 is required.  
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It is likely MVI is required for its capability to travel in the opposite direction along actin 

filaments. Currently little characterisation work has been completed on these actin filaments 

within nuclei after DNA damage. It is unknown if the direction of filament formation occurs 

in a structured fashion, or randomly from the points of damage. It is likely NM1 transports 

chromosomes along these filaments in one direction and MVI may be recruited to transport 

these chromosomes in the opposite direction. However as discussed previously MVI 

becomes an anchor when a high force load is applied to it (Altman et al., 2004), how the cell 

stops MVI becoming an anchor, when bound to such a large cargo as chromatin cannot be 

commented on, it is possible that a large cluster of MVI molecules would be able to move 

this cargo. By utilising multiple types of myosin for this movement of chromosomes, the cell 

can control direction of chromatin movement along actin filaments. It is also necessary to 

broaden the research into multiple chromosomes and multiple cell types, to identify if they 

undergo the same changes observed here.  

 NM1 and MVI are kept apart from each other  

Using STORM imaging and a clustering and colocalisation analysis software, Clus-DoC, this 

study has been able to characterise if the two myosins are found together within a nucleus 

or functionally separate from each other. Currently there is no commercial antibody 

developed in mice, that is specific to the NM1 protein, therefore an antibody that recognises 

all three myosin IC isoforms has been utilised and the nucleus has been specifically 

highlighted as the region of interest.  

Both NM1 and MVI are capable of clustering within the nucleus and neither are affected by 

the use of TIP. There are however, differences between MVI and NM1. MVI forms more 

clusters compared to that of NM1, and these clusters contain more molecules as well, being 

far larger. This could be related to their functions within the nucleus, where MVI can act as 

an anchor. This anchoring property may allow MVI molecules to cluster together to maintain 
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transcription factories or to cluster other proteins together, compared to NM1 that acts as a 

transporter and may need less than five molecules within a mechanism to perform its 

function, such as in transcription where it may act as an auxiliary motor. There are far less 

NM1 molecules within the nucleus compared to MVI, this may explain why the co-

localisation events of NM1 is so rare.  

After studying the co-localisation of these two molecules, it was found that the majority of 

MVI clusters do not overlap with NM1, and no NM1 clusters overlap with MVI clusters, along 

with this information a clustering score was provided, which determined that the clusters of 

these two proteins are deliberately separate. This separation may occur due to the two 

myosins being able to travel along actin filaments in different directions and thus need to be 

located at either end of the filaments to then allow transportation. It may also be to inhibit 

any cross talk between the myosins, as this study has found both myosins are involved in the 

DNA damage response and previous work has shown both to be involved in transcription. 

Therefore, it is possible the cell does not want the functions of these two myosins to be 

mixed. Finally, MVI is yet to be identified within the nucleolus of cells whereas NM1 is vital 

for the rDNA transcription, this may lead to clustering of MVI outside of the nucleoli yet in 

the nucleus and NM1 only clustering specifically within the nucleoli.  

As discussed, both proteins have been linked with RNAPII transcription and both have been 

found to interact with the polymerase complex itself, therefore there should be some 

colocalisation of molecules, it is important to state that the analysis software here focused 

on the colocalisation of clusters that contained a minimum of five of each protein, therefore 

any small colocalisation between single molecules has not been identified and would require 

further work.  
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The TIP within this study has no effect on the colocalisation between the proteins and their 

clusters, therefore a functioning MVI motor domain is not required for the formation of these 

clusters and is most likely binding partners that generate the formation of these groups.  

Overall, this study has found that MVI and NM1 have similar roles within the nucleus; both 

proteins have a role in the post translational modifications of histones, and can alter the 

global transcription activity of both MCF10A cells and HeLa cells. MVI has a similar role in the 

reorganisation of chromosome territories both before and after damage like NM1, which 

may be linked with the myosins ability to change histone modifications. Finally whilst these 

two myosins have similar roles, if there are groups larger than five molecules of one myosin 

then it will not colocalise with the other myosin, leading to the hypothesis that these two 

proteins have similar roles but may act in opposite manners within a mechanism, further 

work would be required to fully understand the relationship between the two myosins.  
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Chapter 8. General Discussion   
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 Summary  
 

Both NM1 and MVI are structurally different, and their roles within the cytoplasm are 

different, with only one observation of the two myosins working together (Dewerchin et al., 

2014). Often NM1 is found in a monomeric state (Manceva et al., 2007), whilst MVI can form 

dimers (Hasson 2003), NM1 also acts solely as a transporter (McIntosh and Ostap, 2016), 

whilst MVI is a transporter when bound to low load bearing cargo, or an anchor when under 

high molecular forces (>2pN) (Chuan et al., 2011). Whilst these myosins behave differently 

to each other, within the nucleus their roles seem to be intertwined during DNA damage.  

 Myosin self-regulation aids its nuclear localisation 
 

This thesis has focused on the ability of myosins to enter the nucleus to perform specific 

functions within the nucleus. Currently within the nuclear myosin field there is some 

discussion as to how NM1 and MVI are able to enter the nucleus, including experiments that 

show shuttling of nuclear myosins (Maly and Hofmann, 2016), as well as cells pooling nuclear 

myosins (Nevzorov et al., 2018), so that NM1 is maintained within the nucleus, without losing 

it back to the cytoplasm.  

NM1 has been proposed to move into the nucleus through two different mechanisms, one 

utilising its phosphoinositol binding capabilities (Nevzorov et al., 2018), where it first enters 

the golgi apparatus and then uncontrollably diffuses through the nuclear pore complexes. 

The second mechanism requires the specific NLS found embedded within the flexible neck 

region of the myosin, specifically the second IQ region. Here a loss of CaM is required for the 

NM1 to travel through importin beta, importin 5 and importin 7. Meanwhile MVI contains 

seven NLS sites and one predicted NES site, where ivermectin, an inhibitor of α/β-mediated 

nuclear importers blocks the import of MVI, following the rule of controlled import of nuclear 

myosins (Maly and Hofmann, 2016).  
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This study identified a folding capability of NM1 that may aid in its nuclear import by 

inhibiting the binding of CaM to the IQ region and thus allowing the NLS sequence to be 

identified by importins, moving the myosin into the nucleus. By using well understood 

biochemical techniques and recombinant protein purification, it is clear the N-terminus of 

NM1 can bind to the neck and tail region of itself, which may regulate its ability to transport 

into the nucleus. MVI is also capable of self-regulation through folding (Fili et al., 2017), and 

with one NLS being identified within the IQ domain of the protein (Majewski et al., 2018), it 

is possible it may act in the opposite manner, where a folded confirmation is unable to enter 

the nucleus due to the blocked NLS, however so far only the non-insert isoform is found in 

the nucleus and this is unable to back fold. Therefore a myosins structure plays an important 

role in its ability to become nuclear. 

 MVI is vital to the DNA damage response 
 

This thesis has focused on the unknown roles of MVI in the nucleus, by comparing the already 

characterised roles of NM1 after DNA damage.  

It is known MVI is able to respond to certain stimuli (Majewski et al., 2018) by localising into 

the nucleus, and DNA damage can now be added to the growing list. An increase of MVI in 

the nucleus observed through HCS and confocal imaging can be attributed to MVI 

localisation, as there is no change of MVI gene expression, after cisplatin treatment, this 

would be reasonable as the cell would wish to respond to the DNA damage rapidly. If the 

response was transcriptionally based there would be a minimum lag time before the cell 

could respond.  

This lag time also correlates with the KD of MVI having little effect on the expression of DNA 

damage proteins found at the start of the DNA damage response, thus implying MVIs role in 

transcription is not relevant to the immediate response. Therefore, protein-protein 
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interactions drive the MVI response leading its nuclear recruitment. During the proteomics 

study within this thesis, MVI was found to bind multiple DNA repair proteins, and within HeLa 

it was found specifically bound to Rad50, a subunit of the MRN complex that repairs DNA, 

which also plays a role in ATM activation (Lee and Paull, 2004). Interestingly MVI was found 

to bind not only DSB repair proteins, but others found within base excision repair and 

nucleotide excision repair. This opens up the idea that MVI is not specifically responding to 

DSBs, but is used globally to repair multiple types of damage, the remit of this thesis did not 

extend as far as other repair mechanisms, however the data provides enough evidence for 

further work to be carried out.  

A significant discovery has been the necessity of MVI nuclear localisation to signal DSBs 

through the phosphorylation of the H2AX histone in MCF10A cells. This phosphorylation 

event occurs, due to the auto-phosphorylation of the ATM kinase at the point of a DSB, which 

then phosphorylates the H2AX histone (Firsanov et al., 2011). As shown when the motor 

domain of MVI has been inhibited in MCF10A cells using TIP, the MVI is unable to translocate 

into the nucleus and there is no γH2AX signalling. This lack of γH2AX places MVI at the very 

beginning of DSB signalling. 

So far multiple activations of ATM have been identified, all of which must occur rapidly for 

the accumulation of ATM around sites of damage. One such activation of ATM is through the 

Rad50 subunit of the DSB repair complex, MRN. Here, both the coiled-coil domain and zinc 

hook found on Rad50, whose conformation changes are ATP driven can cause ATM activation 

(Limbo et al., 2018). Interestingly, in the proteomics presented in this thesis, Rad50 was one 

protein found bound to MVI. Another method of ATM activation, which may occur previous 

to this step, is the acetylation of the ATM dimer (inactive ATM), at lysine-3016 (Sun et al., 

2007). This acetylation however can be blocked by the acetylation found on lysine-9 on the 

H3 histone (Meyer et al., 2016). This thesis identified a change in H3K9me3 amounts after 
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both TIP treatment and DNA damage, and could put MVI within this step of ATM activation. 

Other activations of ATM occur after the first signal of DSBs is initiated, and contribute to the 

spread of signal and stabilisation of repair foci.  

So why the movement of MVI? MVI is always present in the nucleus, however this has been 

prescribed to its role in transcription and its interactions with RNAPII (Fili et al., 2017). It is 

possible the cell is simply recruiting more MVI into the nucleus to provide enough MVI to 

regulate transcription, as well as being present at sites of DNA damage. DNA damage itself 

may switch MVI from its role in transcription, to a role in DNA damage, thus resulting in the 

change of multiple small clusters of the protein, to a reduced amount of clusters of larger 

size. It may however have a binding partner within the cytoplasm of the cell in which it is 

responsible for translocating into the nucleus after a DSB, or its binding partners movement 

into the nucleus, brings with it MVI. There are multiple proteins found within the DSB 

signalling and repair, that can be found within the cytoplasm of the cell, however due to the 

rapid response necessary for repair, these cytoplasmic proteins can often be found 

downstream of γH2AX signalling, such as p53, BRCA1, NFκB (Bennetzen et al., 2018). ATM is 

also found in the cytoplasm, but is yet to be characterised in terms of DSBs but for its role in 

controlling reactive oxygen species (Kozlov et al., 2016). So it is possible that MVI is required 

to transport a key protein into the nucleus, for γH2AX signalling. 

Finally, what is signalling MVI to move into the nucleus after DNA damage? One possible 

signal for the recruitment of MVI is ATM itself. MVI has three identified phosphorylation sites 

within its structure, and so far one site in particular has been characterised in its role within 

the motor domain (Yoshimura et al., 2001). Threonine-405 within MVIs motor domain, when 

phosphorylated, weakens MVIs ability to bind actin. Therefore one such theory is activated 

ATM crosses the nuclear membrane into the cytoplasm where it would normally 

phosphorylate p53 and other downstream proteins, and as well as this, it phosphorylates the 



Page | 248  
 
 

motor domain of MVI. MVI then rapidly dissociates from cytoplasmic actin and is now freely 

available to move into the nucleus where it then plays a role in γH2AX signalling. For this 

hypothesis to be proven, the phosphorylated ATM would need to be followed after induction 

of DSBs. This would identify if the loss of γH2AX is down to a loss of phospho-ATM in the 

nucleus or the loss of γH2AX signalling only and the remaining cellular response to DNA 

damage still continues.  

 Nuclear myosins play a significant role in chromosome organisation 
 

As discussed previously, NM1 directly influences histone modifications during transcription 

where it binds directly to the Snf2h/WSTF complex which forms the B-WICH chromatin 

remodelling complex (Almuzzaini et al., 2015). This complex in turn recruits the histone 

acetyltransferase (HAT) Set1/Ash2 to maintain H3K9 acetylation and H3K4 tri-methylation 

for active transcription. As well as this, NM1, is able to move chromatin territories large 

distances across the nucleus after DNA damage, and this movement is strictly controlled by 

γH2AX signalling (Kulashreshta et al., 2016). This movement of chromatin, allows the cell to 

undergo homologous recombination with sister chromatids as well the formation of repair 

foci. 

This thesis provided data that not only MVI affects γH2AX signalling but also by inhibiting its 

motor domain in both MCF10A and HeLa cell lines, the levels of H3K9ac, H3K9me3, H3K27ac, 

H3K36me2 and H4K20me are all affected. This global response to a loss of MVI within the 

nucleus shows that MVI plays a larger role within the nucleus than first thought. Whilst NM1 

interacts with the HAT Set1/Ash2, MVI must interact with a larger pool of HATs and histone 

methyl transferases (HMTs). Using the HCS approach here, a phenotype has been identified, 

however little else can be further elucidated. The proteomics did see MVI binding directly to 

BRG1, which can be found associated with transcriptional repressors and activators, as well 
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as histones themselves, which may explain why it is vital for such a broad array of histone 

modifications.  

Finally like NM1, MVI is required for the relocation of chromosome territories after DNA 

damage, in this scenario it is likely the MVI is acting as a transporter similar to NM1 that is 

able to move large pieces of chromatin across large distances for the organisation of 

homologous recombination and the formation of repair foci.  

 DNA damage response is cell line dependent 
 

This thesis has identified a clear difference between the cervical cancer cell line, HeLa, and 

the non-cancerous breast cell line, MCF10A, and how they respond to DNA damage. It is clear 

that the motor domain of MVI is vital for MCF10A to signal damage through γH2AX however 

a functioning motor domain within HeLa was not. This difference highlights not just the 

importance of MVI, but the need to study cellular responses in a cell line specific manner.  

Gene expression analysis of HeLa cells, has shown that out of the large set of over-expressed 

genes compared to normal human cell lines, the DNA repair pathway contains the most 

(Frattini et al., 2015). Interestingly each DNA repair pathway contained at least one 

aberrated component, yet the cells were still able to contain and repair the damaged sites. 

This highlights the flexibility and redundancy that has been created through this highly 

mutated cell line. 

HeLa also contain the E6 protein from oncogenic HPV type 18 which directly represses the 

activity of p53 (Hoppe-Seyler and Butz, 1993) as discussed previously in certain cell lines, MVI 

interacts with p53 and is able to stabilise the activated phospho-p53 allowing the cell to 

respond to cell stresses whilst in others, MVI expression reduced p53 stabilisation and 

expression (Cho and Chen, 2010). It is possible that by inhibiting the motor domain of MVI 

using TIP, in turn the supressed p53 is reactivated or further repressed. This variation in p53 
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response makes understanding the mechanism as to why exactly the two cell lines behave 

differently difficult, especially as HeLa, with a non-functioning p53, and debilitated damage 

repair pathway, is still able to repair and divide after DNA damage and the inhibition of MVI.  

 Improving research practices  
 

The nuclear myosin field is currently at a turning point, with the general agreement of actin 

within the nucleus, the possible forms it may take, and the identification of 8 types of 

myosins within the nucleus (de Lanerolle, 2012), it is vital that the research undertaken is 

thorough. Published work to this point have often identified a phenotype after KO or KD of 

a nuclear myosin without understanding the full mechanism of its role. It is easy to observe 

NM1 or MVI at transcription sites but far harder to assign a function. To do this, biophysical, 

biochemical and cellular chemistry are all required. Myosins can only function within their 

biophysical restraints: are they able to withhold a force? Are they kinetically viable? Do their 

structures allow for that binding confirmation? These questions then need to link with the 

biochemistry, is it possible to have a myosin and another protein interacting? And finally the 

cellular biology, where are the myosins located within the nucleus? These questions provide 

a basis of where to begin however all nuclear myosins have cytoplasmic counterparts, so by 

removing a myosin from a system, you not only affect the role that is being studied but the 

cytoskeleton, endo- and exocytosis, transcription, chromatin organisation. This is why in this 

thesis, both RNA-seq and proteomics provided a base of understanding of the cells behaviour 

before drawing any conclusions.  

Finally this thesis highlighted the importance of cell lines when studying cellular biology. It is 

far too common practice within research that if a mechanism has been discovered in one cell 

line, it would be observable in most other cell lines. However here, this has clearly not been 

the case. The difference of MCF10A cells requiring MVI and HeLa not for γH2AX signalling, 
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highlights how each cell line needs to be analysed as its own separate class if the resources 

allow it.  

 Further work 
 

To fully understand the function of MVI in the DNA damage response, further work would 

need to be carried out by using live cell imaging techniques and infra-red radiation. This 

would make it possible to track MVI from the cytoplasm to the nucleus in real time to gain a 

better understanding of how it is signalled into the nucleus. As well as this, further work into 

the phosphorylation sites of MVI may provide further information, therefore using 

biochemical techniques in vitro, it could be possible that ATM itself can directly 

phosphorylate MVI. Further work is required to understand the relationship between NM1 

and MVI, if DNA damage is caused, do the two proteins then colocalise or are they 

functionally independent of each other during the DSB response? Fluorescence recovery 

after photobleaching (FRAP) measurements would allow the visualisation of the myosins as 

they move into the nucleus, and so this will provide further information on the shuttling 

status of both proteins before and DNA damage. Finally more cell lines will need to be studied 

to understand the broad role MVI and NM1 play within the nucleus, specifically comparing 

genomically stable cell lines to cancerous cell lines, for therapeutic advances.  
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ANOVA 
(P) 

Q 
VALUE 

MAX FOLD 
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POWER CONDITION NORMALISED 
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SAMPLE 1 

SAMPLE 
2 
 

SAMPLE 
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UBA52 10 7 32.0367 0.0003
8 

0.02097
9 

3.37924429
3 

1 HeLa WT 8666.052 
 

10718.0 9346.06 
 

RPS27A 15 4 63.7867 0.0336 0.24654 43.0229991
9 

0.66661
8 

HeLa WT 4471.88
6   

472.916 
 

12672.1 

UBC 1 1 6.347 0.0270
7 

0.22111
2 

8.41491889
3 

0.72363
6 

HeLa WT 1100.448 
 

5016.16 
 

943.473 
 

UBB 7 3 30.2928 0.0111
2 

0.14827
7 

5.95842265
7 

0.90810
2 

HeLa WT 6487.459 
 

6621.91 10593.5 
 

POLD1 9 4 39.7908 0.0498
6 

0.28971
3 

5.47682753
6 

0.55765
6 

HeLa WT 774.8179 
 

294.781 1559.32 
 

RAD50 12 2 5.1811 0.0828 0.42244
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29.2727612
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0.42004
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HeLa Cis 118.2932 
 

1859.11 
 

986.837 
 

XRCC5 11 3 76.7765 0.1704
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0.49485
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2.13890843
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0.25168
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72710.1 
 

APEX1 4 4 26.2618 0.0023
6 

0.14062
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2.74889797
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0.99831
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HeLa Cis 94600.04 
 

78196.0 75821.7 

FANC1 4 2 20.8731 0.1466
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0.48173
7 

2.21708661
9 

0.28319
1 

HeLa Cis 6212.764 11755.9 
 

21434.0 

ERCC6 14 3 5.2642 0.3049
7 

0.56171 2.68035955
8 

0.15016
1 

HeLa Cis 3153.796 6857.60 895.267 

SMCA4 8 2 5.1291 0.3739 0.59033
5 

Infinity 0.12224
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HeLa Cis 2375.46 3828.67 2503.58 

CREBBP 4 1 10.505 0.0182
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0.34276
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10.8560468
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0.81738
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HeLa Cis 124873.8 31819.3 21750.8 

PSMD1
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6 4 29.959 0.0044
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0.09290
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6.19501487
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0.98695
9 

MCF10 WT 34938.58 
 

34689.4 24903.5 

Appendix table 1. The progenesis output for the DNA damage proteins, from the mass-spectrometry data as 
shown in table 5.3. 

 


