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Abstract   

Novel research in antimicrobials is desperately needed due to high levels of 

antimicrobial resistance. It has been predicted that by 2050 antimicrobial resistant 

bacteria will be the cause of more deaths globally per year than cancer.2 Herein, is the 

study of novel supramolecular self-associating amphiphilic compounds and their 

selectivity towards bacterial membranes. Here model membranes are formed 

mimicking bacterial cells and mammalian cells for comparison. The model membranes 

are termed nanodiscs and consist of lipid bilayers solubilised with a co-polymer.  

Nanodiscs provide an excellent mimetic system for the investigation in binding 

association studies through nuclear magnetic resonance (NMR). This investigation 

determines how different constituents attached to the same molecules affect their 

hydrogen bond donating (HBD) and hydrogen bond accepting (HBA) functionalities, 

through NMR analysis. The HBD/HBA causes membrane disruption and therefore 

shows potential for their use as future antimicrobial agents.  
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1. Introduction 

 Background  1.1.

Novel research to discover new antibiotics has become increasingly important in recent 

years due to antimicrobial resistance rising to dangerously high levels. Increasingly, 

governments around the world are now seeing the lack of new antibiotics as a major 

health issue, which is so serious that it threatens modern medicine. A post-antibiotic 

era, in which common infections and minor injuries can become deadly is a very real 

possibility for the 21st century.1 In 2014 the UK conducted a government review (See 

Figure 1) and predicted that by 2050 the amount of global deaths caused by 

antimicrobial resistant bacteria, could rise to 10 million, this will far exceed those 

attributed to cancer. 1 

 

Figure  1: Deaths attributable to AMR compared to other major causes of death.
2
 

 

Sir Alexander Fleming, in 1945, discovered penicillin and shared his vision as a 

cautionary tale when awarded his Nobel Prize. 3 He  warned against its misuse stating  

“it is not difficult to make microbes resistant to penicillin in the laboratory by exposing 

them to concentrations not sufficient to kill them.” 4 In his account Fleming was referring 

to under dosing, which forms part  the antimicrobial resistance we have today. 
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 Bacteria cell walls 1.2.

Bacteria are prokaryotic living organism that can spread quickly and reproduce, to 

ensure its survival. They can be classified as two major groups, as developed by 

Christian Gram (1884) gram-positive and gram-negative bacteria.5 This classification is 

derived from gram staining, whereby the bacterium maintains the colour of a crystal 

violet stain then it’s gram-positive. Whether or not the bacteria can retain the stain is 

based on the differences between the chemical and physical properties of their cell 

walls. Gram-positive bacteria have a thicker relatively impermeable wall, composed of 

peptidoglycan, which retains the crystal violet on the surface of the cells. Gram-

negative has a thinner peptidoglycan wall, with an overlying lipid-protein bilayer outer 

membrane, this doesn’t retain the violet stain will decolorize and stain red. This 

distinguishes between gram-positive and gram-negative groups by colouring these 

cells red or violet.6  

The cell walls are known as the cell envelope. The cell envelope is a complex 

multilayer structure that allows selective passage of nutrients from the outside, and 

waste products from the inside, it helps them to survive and protects the bacteria from 

the environment that surrounds them.7 Bacterial cell walls are much more complex than 

just the lipid membrane; a large portion of the gram-positive wall is comprised a thick 

layer of peptidoglycan with embedded teichoic acid. Gram-negative bacteria cell walls 

are structurally more complex, they contain a thin layer of peptidoglycan inner 

membrane, and an outer cytoplasmic membrane containing lipopolysaccharide 8 

(Figure 2). This is an essential toxin that protects the cell from the hosts immune 

system and enable them to cross mucosal barriers, spread, and replicate in distant 

organs.9  
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Figure 2: Gram-negative bacteria and gram-positive bacteria.  

 

Bacteria can develop defence systems to resist the effects of the antimicrobials, for 

example they can undergo modifications where they produce enzymes that can 

inactivate the antimicrobial such as β-lactamase. This enzyme inactivates 

some penicillin, rendering them harmless to bacteria.  Another common defence 

system is the acquirement of additional efflux pumps that can remove the toxins of the 

antimicrobials from within the cell, more rapidly than it can enter. These multidrug 

resistance efflux pumps have been observed with Staphylococcus aureus and among 

other bacterium. 10 

 

 Phospholipids in the cytoplasmic membrane 1.3.

Biological membranes form cells that are continuous structures, separating the 

aqueous phases between the inside and outside of the organism. They also enable 

living organisms to produce energy and are relatively impermeable, which enables 

them to be selective towards the substances that enter and leave the cell. They can 

regulate the communication between cells by sending, receiving and processing 

information in the form of chemical and electrical signals.11  

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/effusion
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The three major classes of membrane lipids in the cell membrane are phospholipids, 

glycolipids, and cholesterol. Eukaryotic membranes contain  large amounts of 

cholesterol.12 Phospholipids are the most dominant lipid in the cell membrane; they are 

amphiphilic molecules with hydrophobic tails (”water-fearing”) and hydrophilic head 

groups (”water-loving”) which tends to associate with water. These head groups can be 

charged or neutral. When in an aqueous environment the amphiphilic characteristic of 

the phospholipids, drives the assembly of these lipids into bilayers, where the 

hydrophobic tail of the lipids in each layer is directed inward, and the hydrophilic head 

groups are exposed to the aqueous environment, these bilayers form the cells wall 

barrier.13 14 

The structure of phospholipid head group, determines how they are classified. An 

example of this head group classification is glycerophospholipids, their general 

structure consists of a glycerol phosphate backbone that is ester-linked to two fatty acyl 

chains at the sn-1 and sn-2 positions and a polar head group at the sn-3 position, via a 

phosphodiester bond.15 There is an exception to this rule, with mitochondrial lipid 

cardiolipin (CL), as it contains 4 acyl chains.16  

The most abundant phospholipid in eukaryotic  cells is PC, which makes up 40 to 50% 

of the total cellular phospholipids, the next most abundant phospholipid in is PE, which 

make up ~ 40% of total phospholipids.17 The PE phospholipids are located on the inner 

leaflet of the membrane.18  PC and PE are both structurally related, as they both have 

a phosphate group in their headgroup, (Figure 3). These are classified as zwitterionic 

having a positive charge on the amine and negative charge on the phosphate.19,20 
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Figure 3: PE and PC phospholipid head groups 

 

In bacteria the most abundant zwitterionic phospholipid present is PE. In general 

Gram-negative bacteria have a higher content of PE than Gram-positive bacteria. All 

bacteria also have at least 15% of anionic lipids, which is independent to whether they 

are gram-positive or gram-negative. The most abundant anionic lipids in bacteria are 

phosphatidylglycerol (PG) and cardiolipin (CL). These anionic lipids are targeted by 

cationic antimicrobial agents, which are selective towards bacteria cells,  but not 

against mammalian cells.21 19  

Although structurally related the PC head group is larger than the PE headgroup, due 

to the three methyl groups attached to the amine in PC. This causes sterically hindered 

electrostatic interactions, which interferes with the PC headgroup forming hydrogen 

bonds. This affects the hydration level of PC which is higher than that of PE and 

causes  weaker lipid to lipid interactions in PC.19  
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 Lipid Structures  1.4.

Due to the amphiphilic nature of lipids they assemble in to different structures when 

dispersed in an aqueous environment. The self-assembly occurs due to the hydrophilic 

head groups, which have a preference to interact with water and the hydrophobic tails 

repel water forming a bilayer. Different shaped structures can form which is dependent 

on the shape and the concentration of lipids in solution.22  

Lipids have polymorphic capabilities; they are able to exist as different shapes. Their 

ability to adopt different structures is due to their geometry.23,24 For example micelles, 

(Figure 4)   are formed  where the headgroup  of the lipid is larger than the hydrophobic 

tail, giving an overall inverted conical shape.19 Many molecules such as detergents will 

form spherical structures, with the head groups surrounded by water and the 

hydrophobic tails sequestered in the interior. 22  

The inverse micelle has the opposite formation, and occurs when the tails are bulky 

and the headgroup is relatively small, giving an overall conical shape19(Figure 4), this 

leads to aggregated structures with a negative curvature, such as the inverted 

hexagonal phase (HII).  

Another common structure is the lipid bilayer, where the lipids contain a large head 

group with two hydrophobic tails, such as PC and PE lipids.19 In aqueous solutions they 

adopt a bilayer structure,(Figure 4) by arranging in a parallel orientation, with the 

hydrophobic interactions as the main driving force to form bilayer sheets.22  
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Figure 4: Molecular shapes of lipids. 

 

The lipid structures can assemble in different forms, by changing the conditions of the 

solution, such as the electrolyte concentration, the pH, or temperature. For lipid 

structures to assemble the lipids must first pass from the ordered gel phase, the phase 

transition temperature needed to induce this change in the lipids physical state, for 

each one is different. In the gel phase the hydrocarbon chains are fully extended and 

closely packed, and in the liquid-crystal phase, the hydrocarbon chains are randomly 

oriented and fluid.25 This provides the lipids enough mobility to align correctly and form 

structures such as micelle or a lipid bilayer. 19,22   

The phase transition temperature can be affected by many factors including the 

hydrocarbon chain length and headgroup species, charge and decrease in the order of 

desaturated to mono-unsaturated to di-unsaturated lipids.22 Generally transition 

temperature values increase with the increasing acyl chain. This is due to an increase 

in van der Waals interactions, which in turn requires more energy to disrupt the ordered 

packing.  On the other hand, introducing a cis double bond into the acyl chain produces 

a bend in the chain, which requires much lower temperatures to induce an ordered 

packing arrangement.  The difference in transition temperatures due to headgroup 

 

Micelle

s 

Lipid 

bilayer 

Inverse micelles 
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species can be seen with PE and PC lipids. These both have similar acyl chain lengths, 

but with the smaller PE headgroup the acyl chains are more tightly packed. This gives 

rise to the transition temperature of PE to be around 20 °C higher than that of PC. 22,19 

 

 Antimicrobials  1.5.

The term “antimicrobial” is used to describe substances that have the ability to reduce 

the presence of micro-organisms such as bacteria, fungi, helminths, protozoa and 

viruses. They can be disinfectants, anti-viral, antifungal, antiseptics, and antibiotics.26 

Antibiotics can be derived from living organisms or can be made synthetically. They 

have the ability to be bactericidal agents that kill the microbes or bacteriostatic agents, 

which slow down or stall bacterial growth.26  

Antimicrobials have different modes of action which can either inhibit cell growth or 

initiate cell death. Unlike eukaryotic cells bacteria have structural cell wall containing 

peptidoglycan. Penicillin inhibits the bacteria from forming an intact peptidoglycan cell 

wall.26 This results in a very delicate cell wall that does not support the growth of the 

cell causing it to burst, killing the bacteria.  

Some antimicrobials also selectively eradicate bacteria by affecting their metabolic 

pathways, inhibiting cellular function. The folate metabolic pathway leads to synthesis 

of required precursors for cellular function and are both present in prokaryotes and 

eukaryotes. This pathway has dihydrofolate reductase (DHFR) which is a critical 

enzyme, where micro-organisms folates must be synthesised this is vital for the cells to 

metabolise amino acids and are required for cell division. 27 Another anti-folate target is 

dihyropteroate synthase (DHPS), which is an enzyme absent in eukaryotes. The 

enzyme DHFR is targeted by trimethoprim for antibacterial uses, which contains 

Sulphonamides, such as sulfamethoxazole, this prevents the bacteria from using para-
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aminobenzoic acid for folate biosynthesis.28 Once the enzyme  is inhibited  the bacteria 

can no longer grow.27  

Another mechanism of action is the inhibition of protein synthesis leading to impaired 

growth.  An example of this is the antibiotic is tetracycline that inhibits bacterial growth 

by stopping protein synthesis. Both prokaryotic and eukaryotic cells carry out protein 

synthesis on ribosome structures. But prokaryotic cells have an active uptake 

mechanism that is not found in eukaryotic cells, and this is exploited.  Tetracycline can 

bind in high concentrations to a single site on the 30S ribosomal subunit of bacterial 

ribosomes, this inhibits the binding of aminoacyl-tRNAs stopping protein synthesis. 26,  

Fluoroquinolones such as ciprofloxacin can specifically target and block the ligase 

domain of DNA gyrase (topoisomerase II) in bacteria. These enzymes can relax tightly 

wound chromosomal DNA, which are essential for the replication and repair of the 

DNA. With the inhibition of this enzyme the bacteria is killed, and the human host isn’t 

affected. Ciprofloxacin is bactericidal towards some gram-positive and most gram-

negative bacteria.26  

 

  Antimicrobial Resistance 1.6.

While antibiotic use is rising, the pace at which we are discovering novel antibiotics has 

slowed drastically.2 Research in new antibiotics has diminished over the past decades 

due to the lack of return on the pharmaceutical companies’ investment.29 This is due to 

their short term use and they often become unusable due to the microbes becoming 

resistant to the new drugs. The amount of approved antimicrobials has also declined, 

due to unacceptable side effects and difficulty demonstrating they are not inferior to 

existing drugs already available.30 

Antimicrobial resistance is now one of the biggest threats to global health, food 

security, and development. Microbes can develop a resistance mechanism in various 
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ways, one mechanism is through selective pressure, this occurs naturally when the 

bacteria grows, it can develop mutations in its DNA that result in resistance to certain 

types of drugs. Microbes  present without the resistance mechanism will be inhibited or 

will die, and the ones that carry resistant genes can survive and multiply  by dividing 

over time, which can be hours or just a few minutes, giving a resistant  strain.31   

The misuse of antibiotics through societal pressures has unintentionally helped drive 

this evolution forward with the widespread use, which are sometimes unnecessary.  An 

example of this is when a healthcare provider has prescribed an antibiotic, due to a 

demanding patient, prior to a diagnosis. Also broad-spectrum antibiotics are prescribed 

to patients instead of a specific antibiotic due to incomplete information to diagnose an 

infection. The increased use of antibiotics in hospitals on critically ill patients can create 

an environment where antimicrobial resistant microbes can spread easily. A growing 

number of infections, such as pneumonia and tuberculosis are becoming harder to 

treat as the antibiotics used to treat them become less effective. Antibiotics are also 

misused agriculturally, where antibiotics are added to agricultural feed, as a precaution 

to maintain healthy animals, this promotes drug resistance, which can escalate the 

speed at which bacteria can evolve into superbugs.31  

The organisms posing the most danger are known as “ESKAPE pathogens” which 

include, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 

Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter species, these 

are both Gram-positive and Gram-negative species and have the ability to evade the 

effect of antimicrobial drugs.32 
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 Global action plan on antimicrobial resistance  1.7.

In 2015 The World Health Organization created a five objective global action plan to 

address antimicrobial resistance, which outlines five objectives: 33 The objectives focus 

on developing new antimicrobial drugs and slowing down microbe evolution by 

decreasing the misuse and overuse of the antimicrobial drugs. 

 

The five objectives   

1. Improve awareness and understanding of antimicrobial resistance through effective 

communication education and training. 

2. Strengthen the knowledge and evidence base through surveillance and research 

3. Reduce the incidence of infection through effective sanitation, hygiene and infection 

prevention measures. 

4. Optimize the use of antimicrobial medicines in human and animal health. 

5. Develop the economic case for sustainable investment that takes account of the 

needs of all countries and to increase investment in new medicines, diagnostic tools, 

vaccines and other interventions antimicrobial resistance and to coordinate numerous 

international sectors. 

 

 Membrane mimetics  1.8.

The natural membrane is a complex environment and this has led to an interest and 

need for model membranes for the study and development of the membrane.34 The 

physicochemical properties of the model lipid membranes can be controlled, leading to 

different forms of lipid structures.35 Currently the most utilised models for  cell 

membranes are liposomes, detergent stabilized micelles, bicelle aggregates and disc 

shaped supported lipid bilayers.36  
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Liposomes are small artificial spherical vesicles, consisting of one or more lipid 

bilayers. These can be used for the study of cell interactions and drug delivery. 

Liposomes have different classifications based on size and number of bilayers. 

Unilamellar liposomes are made up of a single phospholipid bilayer sphere. These can 

be further classified into two categories: large unilamellar vesicles (LUV) and small 

unilamellar vesicles (SUV). The multilamellar liposomes have two or more bilayer 

membranes, and have an onion type structure. With many unilamellar vesicles of 

varying sizes within one another, this leads to the multilamellar structure.37 These are 

restricted by use of NMR; however micelles and nanodiscs are not. 

Nanodiscs are self-assembled soluble particles that range from ~10 to 50 nm in 

diameter. 38 They are a useful membrane mimetic system, which consists of a non-

covalent bilayer assembly of phospholipids, wrapped by either a membrane scaffold 

protein (MSP)39 or a copolymer in a belt-like configuration. The MSP is only useful 

when studying proteins; the polymer however self-inserts into membranes and extracts 

membrane patches in the form of a nanodisc 40 (Figure 5). An advantage of polymer 

belted nanodiscs is their modularity where different compositions of phospholipids can 

be incorporated, and these soluble discs can then be studied.38 Nanodiscs are often 

used in NMR spectroscopy in ligand-binding research. This is an important technique 

used within the drug discovery process for the analysis of synthetic compounds and for 

its ability to identify small ligands that bind to a specific target, such as nanodiscs. 

Information about the exact ligand binding mode is needed to improve the design of the 

ligand for its intended purpose.41 

In 2007 Sligar et al 42 developed the new technology termed nanodiscs. Since then the 

first report of a nanodisc library was recognised from E.coli membrane proteins in 2013 

by Marty et al, Where membrane proteins were extracted and incorporated into 

nanodiscs with different loading ratios,43 thus optimising the MSP to lipid ratios, and 

they quantified how efficient the integration was by SDS-PAGE gels.42  
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 Advances in lipid Solubilisation Techniques 1.9.

Due to difficulties associated with structural and functional studies of the complex 

structure of the lipid bilayer, various solubilisation techniques have been developed. 

These techniques consist of a solubilising agent that satisfies the hydrophobic nature of 

the transmembrane segments.  

The first and most common method used for membrane protein solubilisation is the use 

of detergents; these have been successful in extracting the proteins from their native 

lipid environment, and they replace the lipids with detergent molecules. Compatible 

detergents have been developed for specific membrane proteins, including non-ionic, 

sulfonated and  zwitterionic.44 Detergents as solubilising agents have their limitations; 

they tend to be denaturing which can lead to a loss in activity. This denaturing effect is 

partially improved with amphipols, which are a  class of surfactants, containing 

amphiphilic polymers,45 designed to keep membrane proteins soluble in water without 

the need for detergents, but they still denature sensitive proteins. With the side effects 

of the amphipols and detergents, other alternative strategies for solubilisation have 

been developed to better mimic the cellular membrane.46 

In the past few years, the styrene maleic acid (SMA) copolymer has gained attention as 

a detergent-free approach for membrane solubilisation. 47 The amphipathic polymer 

solubilizes intact membrane patches in the form of nanodiscs; these particles are 

referred to as styrene maleic acid lipid particles (SMALPs). 46 The solubilisation of the 

bilayer membrane occurs in three stages. Initially the SMA will bind to the surface of 

the membrane. Next the polymer molecules insert into the hydrophobic core of the 

membrane, driven by the hydrophobic effect. Finally, the membrane is solubilized and 

nanodiscs are formed.47 (Figure 5) The planar lipid bilayers discs formed are suitable 

for experimental studies such as NMR and are an excellent alternative to detergent 

solubilization.48  
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Figure 5: Nanodisc formation 

The SMA polymer has many advantages it extracts the lipids in a water-soluble form, 

reducing disruption to the patch of membrane around them, thus keeping them stable 

as a SMALP complex. 47  

SMALPs can be constructed in different sizes which depend on the molar ratio of 

styrene to maleic acid, the general size of the 2:1 ratio SMALP is around ~10 nm.49 

SMA also has its drawbacks as it is pH sensitive, in acidic conditions below a pH of 6.5, 

50  it will precipitate  and in the presence of  divalent cations, which are  required for 

many applications.51  More recently poly (styrene-co-maleimide) (SMI), a modification 

of SMA has been successful in overcoming these limitations.  SMI forms similar 

nanodiscs in the size range 6 to 12 nm, with comparable efficiency to SMA, and isn’t 

affected by acidic pH or high concentrations of divalent cations.51 

 

  Synthetic Amphiphiles  1.10.

Amphiphilic is a term used to describe a chemical compound that possesses both 

hydrophilic and hydrophobic region linked by covalent bonds. The hydrophobic regions 

facilitate insertion of  molecules into the hydrophobic regions of bacterial lipid 

membranes, which induces membrane disruption.52  
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Detergents are amphiphilic molecules, and can insert their hydrophobic tails into the 

lipid membrane, causing disruption as the concentration of detergent increases.50 

These molecules transform into detergent–lipid–protein mixed micelles which extract 

the membrane-embedded proteins.53 this is one of the most widely used agents for 

membrane protein extraction and stabilisation in experimental studies.  

Research with synthetic amphiphilic compounds, has shown that they can self-

associate in to larger structures, where they form well-defined structures in aqueous 

solutions. The self-assembly of these molecules is the same as phospholipids with the 

formation of non-covalent bond interactions,  these  include, but not limited to  

electrostatics, π−π stacking, charge transfer, and hydrogen bond formations.14  The 

construction of various monomeric units, was explored with different constituents, and 

revealed that these interactions dictated the global solution and solid state properties of 

the formed structures.54,55 

Research into amphiphilic compounds as medicines, has been of increasing interest in 

the recent search for novel antimicrobials.  A recent study of  supra molecular self-

associating amphiphilic compounds was investigated and demonstrated how the 

molecules self-assemble at the molecular level, this  permitted the design and 

formation of over 65 self-associating compounds, which contain hydrogen bond 

donating (HBD) and accepting (HBA) functionalities in the structure.  

The self-associative and physicochemical properties for  over 30 of these self-

associating amphiphilic compounds was investigated for structure–activity relationships 

in the solid, solution and gas phases as well as  antibacterial activity. Here they found 

that the formation of self-associated structures is imperative for delivery of the 

compound to the bacterial cell, resulting in membrane disruption. 56 These compounds 

have a general structure with a hydrogen bond donor group and an acceptor group that 

can self-associate through one or more hydrogen bonds and usually the integration of 

an aromatic moiety. The hydrogen bond donor group is usually urea or thiourea, and 
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the hydrogen bond acceptor group is usually a sulfonate or phosphate moiety, however 

there are many other constituents that have been investigated, with the number of 

possible structures continuously growing.56,54  These structure—activity studies from 

the general structure has shown to increase the antibacterial efficacy and  have shown 

antibacterial activity towards methicillin-resistant Staphylococcus aureus, which is one 

of the  “ESKAPE” pathogens.56  

 

 Research on Antimicrobial activity with mimetic membranes  1.11.

A recent study investigated the associations between designer antimicrobial peptides 

with the phospholipid bilayer. The insertion of the cationic peptides in to the membrane 

altered the organisation and fluidity of the membrane. This created fluid areas in the 

packing of the phospholipids, which led to the delocalization of membrane bound 

proteins, contributing to the cells destruction. This study was conducted on model 

membrane system of Bacillus subtilis, with variations in the phospholipid composition. 

This better explained the implications of using model membranes in experimental 

studies, as these have defined properties, unlike biological membranes, which is often 

disputed. The results indicated that  changing the lipid compositions of the bacterial 

membrane didn’t affect susceptibility to the peptides.57  

In another study by U. Divakara et al 58 in 2016, it was reported that maleic anhydride 

based novel cationic polymers, joined with amide side chains showed antibacterial 

efficacy against many “ESKAPE” pathogens. These polymers interact with the bacterial 

cell membranes by causing membrane depolarization, permeabilization and energy 

depletion. This was achieved by modifying the side amide chains which optimised the 

hydrophobicity of the amphiphilic polymers; this played an important role in selective 

toxicity to bacteria avoiding the mammalian cells.58 
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 Project Aims and Objectives  1.12.

The aim of this project is to study synthetic compound-membrane interactions, aiding 

research in the fight against antimicrobial resistance.  

The synthetic compounds used in this study, are novel Supramolecular Self-

associating Antimicrobials SSAs, these form part of a novel family of amphiphilic 

molecules. The three compounds selected each have unique substituents attached to 

the general structure shown in Figure 6. With R= Chemical substituents, A= anionic 

group, Y= cationic group, X= Oxygen/Sulfonate. It has been hypothesised that these 

create antimicrobial selectivity towards the phospholipid bilayers. 

General structure:  

 

 

 

 

Figure 6:  General molecular structure of first generation amphiphilic molecules.  

It has been confirmed in previous studies that the SSA monomers will self-associate 

through hydrogen bonding. This is significant to the antimicrobial activity of these 

molecules.  Models for the complex include but not limited to; dimer formation through 

the creation of four urea-anion hydrogen bonds and polymerization55,54 as illustrated in 

Figure 7. The complexes formed increase in size, with the increase in concentration of 

the SSA. In this study experiments were not preformed to confirm how the 

concentration affects the structure; however this has been confirmed with previous 

studies conducted by L.White et al. 61 The accuracy of these predicted models form 

part of ongoing studies at the University of Kent. 
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Figure 7:  SSA schematic illustrating self-association  hydrogen bonding motif. 

My aim was to determine which compounds display a stronger binding affinity towards 

different types of phospholipid membranes, comparing those of bacterial and 

eukaryotic cells. The phospholipid bilayers were belted together with an appropriate 

synthetic polymer, which formed disc shaped planar bilayers (nanodiscs). These 

nanodiscs required a lipid composition comparable to bacterium cells and a second 

type of nanodisc comparable to mammalian cells. The resulting nanodiscs were 

characterised, purified and quantified to enable accurate results. The SSAs were 

hypothesised to interact with lipids primarily through the formation of hydrogen bonds 

and electrostatic interactions; these were investigated with NMR 1H analysis.  
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 Chemical Structures    1.13.

 

The SSAs used within this study include:  

 MW 539.478 g/mol 

MW 618.896 g/mol 

MW 604.87 g/mol 

 

Figure 7: Chemical structures, compounds 1-3 + Tetrabutylammonium 

 

These structures have been chosen, as they all contain the same HBA/HBD 

functionalities; including, urea moiety and sulfonate. 

 

1 

3 

2 
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2. Materials and Methods 

 General 2.1.

Compounds 1-3 were obtained from L. White, a PHD student within the J.Hiscock 

Laboratory. Compound 1 MW 539.478 g/mol, compound 2 MW 618.896 g/mol and 

compound 3 MW 604.87 g/mol. SMI2000I resin, MW of 7500 and SMA2000 (poly(styrene-

co-maleic anhydride) SMAnh), MW of 7500, sourced from Cray Valley. E.coli Total 

lipids purchased from Avanti Polar stored at -80 oC. 14:0 PC (DMPC) 1,2-dimyristoyl-

sn-glycero-3-phosphocholine, MW 677.933 purchased from Avanti Polar Lipids, stored 

at -20 oC. Phosphate buffer NaCl 20 mM Na2PO4, 20 mM pH 7.0 and Phosphate buffer 

NaCl 20 mM Na2PO4  20 mM pH 7.4, was filtered and degassed prior to use. All 

solvents and starting materials were purchased from commercial sources or chemical 

stores where available and used as purchased unless stated otherwise. 

 

  Solubilisation of Poly(styrene-co-maleimide) (SMI) 2.2.

SMI2000I polymer was hydrolysed under reflux conditions. SMI resin (25 g) was initially 

ground in a pestle until a fine powder was obtained. The resulting powder suspended in 

HCl (250 mL, 1 M) with anti- bumping granules (0.1 g) and slowly heated to reflux (100 

°C) with constant stirring. Solution refluxed for ~4 hours, until all of the solid SMI 

dissolved, giving a pale yellow colour. Once the solution cooled (20 oC) The SMI was 

precipitated by increasing pH to 8 with the addition of NaOH (5 M), and checked using 

pH paper. The precipitated polymer was centrifuged at 11,000 g for 15 minutes (4 oC), 

the supernatant was removed and the precipitate was washed 3 times with Milli Q 

water (250 mL). The polymer was suspended in HCl (0.6 M) and adjusted to pH 7.4, 

and left in an incubator overnight to dissolve, once completely solubilised the polymer 

was lyophilized and stored at room temperature.  
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 Solubilisation of Styrene-maleic Anhydride (SMAnh)   2.3.

SMA2000 polymer was hydrolysed under reflux conditions. SMA anhydride powder (25 

g) was suspended in NaOH (250 mL, 1 M) with anti- bumping granules (0.1 g) and 

slowly heated to reflux (100 °C) with constant stirring. Solution refluxed for ~4 hours, 

until all of the solid SMA dissolved. Once the solution cooled (20 oC) The SMA was 

precipitated by reducing the pH to below 5 with the addition of concentrated HCl. and 

checked using pH paper. The precipitated polymer was centrifuged at 11,000 g for 15 

minutes (4 oC), the supernatant was removed and the precipitate was washed 3 times 

with Milli Q water (250 mL). The polymer was suspended in NaOH (0.6 M) and 

adjusted to pH 7.4, and left in incubator overnight to dissolve, once completely 

solubilised the polymer was lyophilized and stored at room temperature.  

 

  SMILPs preparation 2.4.

E.coli Total lipid extract (10 mg) was dissolved in methanol and chloroform (1:1 ratio) 

and evaporated under a stream of Nitrogen gas, to a thin lipid film. The resulting lipid 

film was dried for a further 1 hour under nitrogen gas. Next the lipid film was hydrated 

with phosphate buffer (pH 7) (1 mL) sonicated and vortexed vigorously.  SMI (50 mg) 

was added to the opaque lipid solution and incubated for 1 h at 37 °C, giving a 

translucent solution.  

 

 SMALPs preparation 2.5.

E.coli Total lipid extract (10 mg) was dissolved in methanol and chloroform (1:1 ratio) 

and evaporated under a stream of Nitrogen gas, to a thin lipid film. The resulting lipid 

film was dried for a further 1 hour under nitrogen gas. Next the lipid film was hydrated 

with phosphate buffer (pH 7.4) (1 mL) sonicated and vortexed vigorously.  SMA (50 

mg) was added to the opaque lipid solution and incubated for 1 h at 37 °C, giving a 
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translucent solution. DMPC Polar Lipids (10 mg) were prepared in the same way as 

above, and incubated for 1 h at 25 °C, giving a translucent solution.   

 

 Purification  2.6.

Nanodiscs samples (1 mL) were centrifuged at 208000 g for 30 minutes at 4 oC, the 

supernatant was collected and the pellet discarded. The nanodiscs were then dialysed 

overnight against 4 L phosphate buffer ( 20 mM ) pH 7 for SMILPs and pH 7.4 for 

SMALPs with a 50 kDa cut-off dialysis tubing. 

Further purification was achieved by gel filtration chromatography where nanodisc 

samples were concentrated prior to injection, using a centrifugal concentrator with a 

30,000 Da MWCO membrane, centrifuged at 3220 g (20 min) (4oC) to below 400 µl 

and fractionated on a Superdex 200 10/300 GL column (GE Healthcare). With a flow 

rate of 0.5 ml/min, with phosphate buffer pH 7 for SMILPs and pH 7.4 for SMALPs, 

while monitoring nanodisc absorbance at 260 nm. Pump B on the machinery was 

initially washed with deionised H2O and equilibrated in the relevant buffers; all solutions 

were filtered and degassed accordingly to remove any air and small particles present. 

Fractions (0.5 ml) were collected for further analysis. 

 

 RI of Nano discs  2.7.

Nanodiscs were concentrated and purified using a centrifugal concentrator with a 

30,000 Da, MWCO membrane at 3220 g (20 min) (4oC). The refractive index was 

determined by taking the average of three samples of nanodiscs, using a manual 

benchtop refractometer ABBE 5 BS.  Hexane was used as a control with an RI 1.375. 

 

  UV-Vis Quantification 2.8.

Quantification of nanodiscs was carried out through UV-Vis spectrum using 

NanodropOne_AZY1705795. SMA (165 µM) sample was serial diluted 10 times with a 
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variety of different concentrations and each sample measured in a quartz cuvette (0.5 

mL) this was repeated 3 times. Calibration was preformed prior to use with a blank, and 

all spectra were zeroed at 750 nm. The λmax was determined and the averages of all 3 

plotted in excel giving a linear calibration curve. This was then used to quantify the 

concentration of nanodiscs in solution through the straight line equation. 

 

 DLS studies  2.9.

DLS studies were carried out using Anton Paar LitesizerTM 500 and processed using 

KalliopeTM Professional. All vials used for preparing the samples were clean and dry. 

All solvents used were filtered to remove any particulates that may interfere with the 

results obtained. The nanodisc sample sizes were kept to 0.5 mL, and allowed to 

equilibrate for 10 minutes followed by a series of 10 ‘runs’ on each sample to give 

enough data to derive an appropriate average. In some instances, the raw correlation 

data indicated that a greater amount of time may be needed for the samples to reach a 

stable state. For this reason, only the last 9 ‘runs’ were included in the average size 

distribution calculations. 

 

 Zeta Potential Studies  2.10.

Zeta potential studies were carried out using Anton Paar LitesizerTM 500 and processed 

using KalliopeTM Professional. All vials used for preparing the samples were clean and 

dry. All solvents used were filtered to remove any particulates that may interfere with 

the results obtained. The nanodisc samples were measured in an Omega cuvette 0.35 

mL, by a series of 10 ‘runs’ on each sample to give enough data to derive an 

appropriate average.  

 Transmission Electron Microscopy (TEM) Imaging 2.11.

For electron microscopy, a droplet ( 2 μL) of sample was applied to formvar/carbon 

coated 600 mesh copper grids (Agar Scientific) and left for 5 minutes at RT. Excess 
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liquid was aspirated from the grid and a drop of 2 % uranyl acetate (aqueous) was 

applied to the grid an immediately aspirated. Grids were then dried at room 

temperature. Images were recorded on a Jeol 1230 TEM operating at an accelerating 

voltage of 80 kV equipped with a Gatan One View 16 MP digital camera. 

 

 NMR 1H 1D  2.12.

NMR 1H 1D spectra were determined with a Bruker Avance III 600 Hz spectrometer at 

298 K. Data was collected with 32768 points and a spectral width of 16.0242 ppm, 

receiver gain was set to 256, with 128 scans, 4 dummy scans and an acquisition time 

of 1.7 s at 298 K. Water suppression was achieved using excitation sculpting 1D, with 

double pulse field gradient spin echo. All data was processed using Bruker topspin 

3.6.1 software, all spectra were phased, baseline corrected and calibrated to the centre 

of the DSS (4,4-dimethyl-4-silapentane-1-sulfonic acid) peak, with the chemical shifts 

reported in parts per million (ppm) the peak height in intensity [abs], (the absolute peak 

intensity) and Intensity [rel], ( the relative peak intensity). 

 

 NMR 1H CPMG 2.13.

NMR 1H CPMG spectra were determined with a Bruker Avance III 600 Hz spectrometer 

at 298 K. Data was collected with 16,384 points and a spectral width of 16.0242 ppm, 

receiver gain was set to 256, with 128 scans, 16 dummy scans and an acquisition time 

of 0.85 s at 298 K. Water suppression was achieved using pre-saturation Watergate 

block dpfgse_water. The CPMG element used  300 cycles and a delay of 1 ms 

between 180-degree pulses, Data was processed using Bruker topspin 3.6.1 software, 

all spectra were phased, baseline corrected and calibrated to the centre of the DSS 

(4,4-dimethyl-4-silapentane-1-sulfonic acid) peak, with the chemical shifts reported in 

parts per million (ppm), the peak height in intensity [abs], (the absolute peak intensity) 

and Intensity [rel], ( the relative peak intensity). 
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 NMR Titration  2.14.

Stock solutions of compounds 1-3 5000 µM (550 µL) were dissolved in phosphate buffer 

(pH 7.4). Compound 1 (539.478 g/mol) (1.48 mg), compound 2 (618.896 g/mol) (1.70 mg) 

and compound 3 (604.87 g/mol) (1.66 mg). To ensure full solubilisation the compounds 

were sonicated, heated where necessary and vortexed vigorously.  The stock solutions of 

compounds 1-3 were further diluted to 100 µM (550 µL) before adding to an NMR tube (5 

mm). SMALPs were added step-wise to the SSA at varying concentrations starting at 0.01 

µM up to 100 µM. NMR 1H 1D and CPMG spectra were obtained at each step, no extra 

time was given for equilibration. The addition of the SMALPs to the compound gave rise to 

the concentration of compounds 1-3 decreasing during the experiment; this was corrected 

by calculating the increase in volume, (Table 1), which led to a lower concentration of the 

compound at each step and reporting the final result as a molar ratio. The intensity % of 

the peaks chosen was plotted against the molar ratio of compound: SMALP.   

 

Table 1: Molar ratio of compound 1-3 to SMALP 

 

 

SSA (µM) E.coli SMALP (µM) Molar ratio SSA (µM) DMPC SMALP (µM) Molar ratio

100.0 0.0 0.000 100.0 0.0 0.000

99.7 0.2 0.002 99.5 0.2 0.002

99.3 0.4 0.004 99.0 0.4 0.004

99.0 0.6 0.006 98.6 0.6 0.006

98.7 0.8 0.008 98.1 0.8 0.008

98.3 1.0 0.010 97.6 1.0 0.010

97.5 1.5 0.015 96.5 1.5 0.016

96.8 2.0 0.021 95.4 2.0 0.021

95.2 3.0 0.032 93.2 3.0 0.032

93.7 4.0 0.043 91.1 4.0 0.044

93.4 6.0 0.064 90.7 6.0 0.066

93.1 8.0 0.086 90.3 8.0 0.089

92.8 10.0 0.108 89.9 10.0 0.111

92.1 15.0 0.163 89.0 15.0 0.169

91.4 20.0 0.219 88.0 20.0 0.227

90.7 25.0 0.276 87.1 25.0 0.287

87.4 50.0 0.572 82.7 50.0 0.605

84.3 75.0 0.890 78.8 75.0 0.952

81.4 100.0 1.229 75.2 100.0 1.330
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3. Results and Discussion  

  General Structure of Compounds   3.1.

All compounds used in this study form part of a series of novel supramolecular 

amphiphilic antimicrobials. The general structure consists of a hydrogen bond donor 

group and an acceptor group in one molecule that can self-associate through one or 

more hydrogen bonds.  

For this study the interactions between SMALPs and three individual amphiphilic 

compounds were investigated.  

Compound 1: consists of a (trifluoromethyl)benzene aromatic, with a HBD and HBA 

urea moiety, and a HBA sulfonate functionality, with a  TBA  counter cation (Figure  7). 

Compound 2: Consists of 2-phenylbenzo[d]thiazole fluorescent moiety in the para 

position, with HBD, HBA urea moiety and HBA sulfonate functionality, with a TBA 

counter cation (Figure  7).  

Compound 3: Consists of a 2-phenylbenzo[d]thiazole fluorescent moiety in the ortho 

position, with HBD, HBA urea moiety and HBA sulfonate functionality, with a TBA 

counter cation.(Figure  7) 
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  Poly(styrene-co-maleimide) (SMI2000I) 3.2.

SMI2000I was not soluble in a deprotonated form, the method used to solubilise the resin 

was protonation, which formed a soluble salt acid from the Poly(styrene-co-maleimide). 

This involved the use of a reflux setup, which gradually heated the solution to reflux at 

100 °C. Prior to adding the resin to the HCl the resin was ground in a pestle until a fine 

powder to reduce the reaction time. The HCl gave an acidic aqueous environment, 

which led to protonation of the ternary amine, giving a cationic derivative. The 

protonation of the ternary amine group was essential in the polymer becoming water 

soluble.59 (Figure 9) Next the polymer was precipitated by increasing  pH to 8 with the 

addition of NaOH, and washed before undergoing lyophilisation, which resulted in a dry 

white powder.  

 

Figure 8: Reaction schematic for the protonation of SMI. 
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 Styrene-maleic Anhydride (SMAnh) 3.3.

SMA2000 was not soluble as an anhydride, the method used to solubilise the powder 

was deprotonation, which formed a soluble acid from the SMAah. The method used for 

the hydrolysis of the anhydride to the acid involved the use of a reflux setup, which 

gradually heated the solution to reflux at 100 °C. The NaOH gave an alkaline aqueous 

environment, where the hydroxide ions were consumed. This was by either acting as a 

nucleophile and reacting with the anhydride ring and/or acting as a base deprotonating 

the resulting carboxylic acids (COOH → COO−) that were formed when the anhydride 

ring opened. The deprotonation of the acidic groups was important in the polymer 

becoming water soluble.60 (Figure  10) Next the polymer was precipitated by reducing 

the pH to below 5 with the addition of concentrated HCl. and washed before 

undergoing lyophilisation, which resulted in a dry white powder. 

 

Figure 9: Reaction schematic for the deprotonation of styrene-maleic anhydride.   
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  Nanodiscs 3.4.

There are three types on nanodiscs that were investigated, E.coli SMILPs, E.coli 

SMALPs and DMPC SMALPs. Here E.coli lipids are representing a prokaryotic 

bacterial membrane, with PE as the most abundant lipid present and the DMPC lipids 

represent a eukaryotic mammalian membrane.  

DMPC lipid nanodiscs alone are a simplistic mimetic of the eukaryotic membrane; for 

this preliminary study it’s suitable as a model due to the composition of the outer 

eukaryotic membrane containing predominantly PC lipids. Although PE lipids make up 

~40% of the eukaryotic membrane these are contained within the inner leaflet, and do 

not play a part in the membrane interactions with other compounds such as SSAs, 

hence this allows for the discrimination between the membrane types.   

The difference between the SMILPs and the SMALPs was the copolymer that belted 

the lipid bilayer together. The SMI polymer was cationic and stable under both neutral 

and acidic conditions and the SMA polymer is anionic and only stable under neutral or 

basic conditions. Both of the polymers preformed similarly and were able to solubilise 

the lipid bilayers in to nanodiscs, this was observed through the solution changing 

from a cloudy solution to a translucent solution, upon the addition of the copolymer. 

With the E.coli lipid extract the transition temperature needed to be higher than the 

DMPC lipid extract. This led to a higher incubation temperature; that was a direct 

effect of the E.coli lipids containing PE as its most abundant lipid.61,62 The head group 

of the PC is larger that of PE due to the three methyl groups attached to the amine, 

which PE lipids do not have, this causes sterically hindered electrostatic interactions 

and causes weaker lipid to lipid interactions, hence less energy is required to 

solubilise the membrane.19   
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  Purification of Nanodiscs 3.5.

After the nanodiscs were formed they were purified using various techniques to ensure 

a pure sample of nanodiscs. First the nanodiscs were centrifuged, at 208000 g for 30 

mins at 4 oC, this forced any unbound lipids to the bottom of the sample and only the 

supernatant was collected with the formed nanodiscs. All three samples produced only 

a small amount of insoluble material as a pellet, which was discarded. This indicated 

that the majority of the lipids were bound by the copolymers and in solution.  

Next the nanodiscs were separated from any remaining reagents and low molecular 

weight products, such as free copolymer by dialysis against 4 L phosphate buffer     (20 

mM) pH 7 for SMILPs and pH 7.4 for SMALPs with a 50 kDa cut-off dialysis tubing. The 

conditions for the SMI copolymer were required to be slightly acidic to avoid 

precipitation.  

Further purification was achieved by gel filtration chromatography, which separated the 

nanodiscs by their size. The first eluted particles are the biggest, followed by the 

smaller ones. This is due to the smaller particles spending more time in the pores, 

within the column, where the larger ones cannot fit. The elution of the nanodiscs was 

detected using UV-Vis at 260 nm, which allowed for the identification of aggregates 

containing styrene. The fractions were collected and the size of the nanodiscs analysed 

with DLS prior being mixed together and concentrated back to ~1 mL. This procedure 

assured that in every sample only the fractions containing the correctly assembled, 

homogenous nanodiscs were collected and used for further experiments. Any other 

larger or smaller aggregates that may have still been present were discarded. Fractions 

(0.5 ml) were collected for further analysis with DLS to determine the size of the 

particles.   

DLS is commonly used to detect the particle size of a sample, in an aqueous 

environment. Fractions (0.5 ml) were eluted and collected from ~10 ml to ~20 ml 

depending on UV-Vis detection, each fraction was analysed with DLS in disposable 
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cuvettes of 500 µL to determine the size of particles present. The results of the particle 

size were as expected, particles that eluted at 16.5 ml (Figure 10 a) were  ~100 nm in 

size, and the ones that eluted at 19 ml (Figure 10 b), were ~10 nm in size. Here sample 

a, was discarded and sample b, was stored at 5 oC for further studies. 

   

 

Figure 10: Gel filtration chromatography DLS results. 

 

Average intensity particle size distribution of E.coli SMALPs, in phosphate 

buffer pH 7.4, calculated from 9 DLS runs at 298 K. Error given is the standard 

error of the mean. 

 

a. 

b. 
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 Index of refraction for Nanodiscs  3.6.

A refractometer measures the amount of light that is refracted within a sample. The 

refractive index (RI) of the nanodiscs needed to be established to aid in DLS studies on 

particle size. First the SMILP sample was concentrated in a centrifugal concentrator to 

remove excess PB, to ensure the resulting RI was from the nanodiscs and not the PB.  

The RI was determined by taking the average of three samples of nanodiscs, resulting 

in an average RI of 1.35,(see Table 1) All samples were measured on a manual 

benchtop refractometer. The RI of Hexane is well documented at 1.375 at 20ºC; this 

was used as a control to ensure the results were reliable.  

 

Table 1: Index of refraction for nanodiscs 

Sample Index of refraction 

Hexane 1.375 

Phosphate buffer  pH 7.0 1.335 

SMI copolymer 1.341 

SMILPs sample 1 1.349 

SMILPs sample 2 1.349 

SMILPs sample 3 1.350 

 

 

 

 Optimisation 3.7.

The first nanodiscs investigated were the SMILPs, for their size and stability to 

determine the most viable nanostructure, for the binding association studies. 
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3.7.1.  DLS intensity weighted particle size distribution of SMILPs  

DLS is commonly used to detect the particle size of a sample, in an aqueous 

environment. This technique can be used on a small amount of sample typically 1 mL 

and is non-invasive. This makes it an ideal tool for extensive particle analysis. 

DLS was used to establish the average intensity particle size distribution; this was done 

to determine if the nanodiscs had successfully formed. The first sample of nanodiscs 

measured was the E.coli SMILPs; these formed the majority of particles in solution 

around 10 nm, (Figure 11). This size of nanodiscs formed with SMI was coherent with 

the reported size  in literature which is around ~6 to 12 nm.51  Another peak formed 

around 100 to 1000 nm which may be due be aggregation, or dust particles. The size is 

determined by the contribution of each particle in the distribution, to the intensity of light 

scattered by the particle.63 

 

Figure 11: Average intensity particle size distribution of E.coli SMILPs. 

 

Average intensity particle size distribution of E.coli SMILPs, in phosphate buffer 

pH 7.0, calculated from 9 DLS runs at 298 K. Error given is the standard error of 

the mean. 
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3.7.2. DLS number weighted particle size distribution of SMILPs  

The number weighted distribution is useful in determining the number of particles of a 

certain size in solution. The same set of DLS data used in plotting, Figure 12, also 

reports the average number weighted particle size distribution.  

All of the particles in solution were within the size range of ~5 nm to 12 nm, with no 

sign of larger aggregates,(Figure 12). This is due to the number contribution from the 

larger aggregates is so small (<0.001%) that it is no longer considered relevant and not 

displayed. This further confirms that the peak on Figure 11, of 100-1000 nm is from an 

anomaly within the sample.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Average number weighted particle size distribution of E.coli SMILPs.  

 

Average number weighted particle size distribution of E.coli SMILPs, in phosphate 

buffer pH 7.0, calculated from 9 DLS runs at 298 K. Error (standard error of the mean) 
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3.7.3. DLS correlation function data 

The correlation function gives information about the signal-to-noise ratio as well as on 

the presence of dust particles or aggregate. The degree of similarity between the 

signals is processed; a strong correlation indicates that the data is consistent and 

therefore reproducible.  

The correlation data for the SMILPs is from the same data set as the particle size 

distributions. All of the 9 runs were all consistent and therefore the data collected 

regarding the size of the particles is credible, (Figure 13).  

 

Figure 13: Correlation function data for E.coli SMILPs. 

 

The correlation function data for E.coli SMILPs was calculated from 9 DLS runs at 

298 K 

3.7.4. TEM Imaging of SMILPs  

The next step to investigate the formation of nanodiscs is to visualise them using TEM. 

After experiencing precipitation within the sample, storage conditions were 

investigated. The SMILP sample was divided in half and stored in different 

environments overnight. One was stored at 4oC and the other at RT. The sample 

stored at 4oC became slightly cloudy, indicating that the structures were disassembling.  

Images were taken of both samples for comparison. The spherical shapes in Figure 14, 



45 
 

were from the sample stored at 4oC and not believed to be nanodiscs, as the solution 

was slightly cloudy due to precipitation. The presence of formed nanodiscs in Figure 15 

is questionable. 

Negatively stained uranyl acetate TEM image showing results from E.coli SMILPs 

(Figue 14)  sample stored at 4oC, Visual evidence of nanodiscs was questionable  

Scale bar =100 nm 

 

 

 

 

 

 

 

Figure 14: TEM image showing results from E.coli SMILPs.  

Negatively stained uranyl acetate TEM image showing results from E.coli SMILPs 

sample stored at RT. (Figur 15)  Visual evidence of nanodiscs was questionable.  

Scale bar =100 nm     

 

Figure 15: TEM image showing results from E.coli SMILPs. 
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3.7.5. Viability of SMILPs 

SMILPs were formed successfully, however the nanodisc samples were found to be 

unstable and precipitated upon storage (4 0C) over a short period of time (~24 hours). 

Further storage conditions were investigated, such as RT, which slightly increased the 

longevity on the nanostructures. TEM images were acquired; however the identification 

of nanostructures was questionable within the images. It was also determined that the 

SMILPs were precipitating during the purification stage causing impairment to the 

Superdex 200 10/300 GL column.  Alternative purification techniques were also 

investigated, however due to the instability of the nanodiscs, the copolymer SMI was 

substituted with SMA and SMILPs were not used any further in this study. 

 

3.7.6.  Conclusion 

In literature SMI copolymer is  deemed to be a a more versatile copolymer in forming 

nanodiscs. This is due to the SMI not being affected by acidic pH or high 

concentrations of divalent cations.  

The nanodiscs in this study were formed in a neutral environment, with no divalent 

cations present, however this polymer was investigated  due to  comparable efficiency 

to SMA. 

Although the SMI has a similar thermodynamic driving force for the formation of 

nanodiscs, it was found in a study that SMI had slightly larger negative free energy 

change upon interaction with the lipids, 51 when being compared with SMA. This  

indictes a less favorable self-assembly for SMI and may of contributed to the unstability 

of the SMILPs.  
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  SMALP Results and Discussion 3.8.

3.8.1. UV-Vis Quantification  

Nanodiscs are often quantified by the protein encapsulated within the structure; 

however in this study the nanodiscs didn’t contain any protein and so a new method 

was formulated to quantify the amount of discs in solution.  

A calibration curve is a common method for determining the concentration of a 

substance in an unknown sample by comparing the unknown to a set of standard 

samples of known concentration. 

First SMA (165 µM) was serial diluted 10 times, and the resulting absorbance at λmax 

(260 nm) was plotted against the concentration, giving a linear calibration curve (Figure 

16). This was then used to determine the concentration of the purified SMALP 

samples, by detecting the amount of SMA present. The SMALPs were diluted 1:10 

dilution prior to obtaining the absorbance value; this was due to a high absorbance 

reading with the original sample, which fell outside of the instrument's linear range. The 

final concentration was determined using the straight line equation. 𝑦 = 𝑚𝑥 + 𝑐 

 

Figure 16: Calibration curve for SMA in PB. Error given is the standard error of the mean. 

The concentration of SMA relates directly to the concentration of nanodiscs in solution. 

In literature previous studies have shown that one SMA chain will form one nanodisc.64 
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The length of the SMA polymer chain depends on the styrene to maleic acid ratio. The 

SMA used in this research was a 2:1 ratio with a molecular weight of 7500 g/mol, this 

gives a polymer chain length of ~24 monomeric units. For the purpose of this research 

the assumption was made that one SMA polymer chain produces one nanodisc. 

 

3.8.2. DLS average intensity particle size distribution 

The average intensity particle size distribution is a well-known technique for the 

determination of particle size. This technique is the most accurate to determine the size 

of the SMALPs as it measures hydrodynamic diameter as  particle diffuses within a 

fluid.65 DLS was used to establish the average intensity particle size distribution to 

determine if the SMALPs successfully formed. The E.coli SMALPs intensity distribution 

resulted in two peaks, one around 10 nm, that indicates that the nanodiscs have 

formed and another 100 nm, indicating that another larger particle may be present, 

(Figure 17).  In this set of results the size of DMPC SMALPs were also investigated, 

and resulted in two peaks, one around 10 nm, that indicates that the nanodiscs have 

formed and another smaller one around 100 nm,(Figure 18). This as previously 

mentioned may be due to aggregation, or dust particles.  

 
Figure  17: Average intensity particle size distribution of E.coli SMALPs (326.6 µM). 
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Figure 18: Average intensity particle size distribution of DMPC SMALPs (412 µM). 

 

The results from the average intensity particle size distribution of E.coli SMALPs (326.6 

µM) and DMPC SMALPs (412 µM) was suspended in phosphate buffer pH 7.4, and 

calculated from 9 DLS runs at 298 K. Error given is the standard error of the mean. 

 

3.8.3. DLS Number weighted particle size distribution 

To obtain more detail about the size of the nanodiscs, the number distribution was 

investigated, which reports the smallest size measured in solution. This data is 

supporting information to the average intensity particle size distribution, and is not a 

viable way to measure the size of particles alone.63  

The Number weighted particle size distribution was determined to further investigate 

the particle size of the SMALPs. The same set of DLS data used in plotting Figure 

17/18, also reports the average number weighted particle size distribution as previously 

mentioned. All of the particles in solution were within the size range of ~5 nm to 12 nm, 

(Figure 19/20) which was coherent with the size reported in literature. Both graphs do 

not display the larger aggregates, which were present with the intensity weighted 

graphs. This is due to the number contribution from the larger aggregates was so small 

(<0.001%) that it is no longer considered relevant and therefore not displayed. This 
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further confirms that the peak on Figure 17, of 100-1000 nm was from an anomaly 

within the sample.  

 

Figure 19: Average number weighted particle size distribution of E.coli SMALPs (326.6 µM). 

 

Figure 20: Average number weighted particle size distribution of DMPC SMALPs (412 µM). 

 

Results from the number weighted particle size distribution of E.coli SMALPs (326.6 µM) 

and DMPC SMALPs (412 µM)  suspended in phosphate buffer pH 7.4, and calculated 

from 9 DLS runs at 298 K. Error given is the standard error of the mean. 
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3.8.4. DLS correlation function data 

The correlation function data was determined to establish the uniformity of the sample. 

With the same set of data from used to determine the size.  Correlation data for the 

E.coli SMALPs (Figure 21) shows than the 9 runs were all consistent, and the DMPC 

SMALPs (Figure  22) show only a slight variation in the correlation function, which is 

still considered to be acceptable data. Therefore given the repeatable correlation 

functions, the data collected regarding the size of the particles for both E.coli and 

DMPC SMALPs is credible. 

 

Figure 21: Correlation function data relating for E.coli SMALPs (326.6 µM). 

 

Figure 22: Correlation function data for DMPC SMALPs (412 µM),  
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Results from the correlation function data relating to average intensity weighted particle 

size and the average number weighted particle size for  both E.coli SMALPs (326.6 µM) 

and DMPC SMALPs (412 µM), calculated from 9 DLS runs at 298 K. 

3.8.5. Zeta potential  

 

Zeta potential is a measure of magnitude of charges on nanoparticles and provides 

information about particle stability. The zeta potential relates to charged species 

present at the particles surface, that impairs aggregation and/or precipitation,  higher  

magnitude of potential  increases electrostatic repulsion within the colloidal system. 

The more positive or negative the zeta potential is, increases the colloidal stability, a 

value of +/-30 mV indicates good stability. 
66

 

The zeta potential of the SMALPs was measured to determine the stability of their 

structure. The mean zeta potential for the E.coli SMALPs is -47.66 mV, (Figure 23). 

The mean zeta potential for the DMPC SMALPs is -8.50 mV (Figure 24). This shows 

the stability of E.coli SMALPs to be slightly higher than the stability of DMPC SMALPs, 

due to the increased zeta potential and therefore increased colloidal stability.   

The zeta potential determined for DMPC SMALPs is deemed to be fairly unstable with 

a low mean average. The E.coli SMALPs were more stable with a slightly higher mean 

average. Samples that have low zeta potential are coherent with poor physical stability, 

and are more susceptible to aggregation and/or precipitation. 67  As a result the 

SMALPs were regularly checked with DLS to determine whether or not there were any 

changes to the samples.   
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Figure 23: Zeta potential data for E.coli SMALPs (326.6 µM). 

 

 

Figure 24: Zeta potential data for DMPC SMALPs (412 µM). 

 

The graphs display the results for zeta potential data for E.coli SMALPs (326.6 

µM) with a mean average of -47.66 mV and DMPC SMALPs (412 µM) with a mean 

average of   -8.50 mV, calculated from 10 DLS runs at 298 K.  Error given is the 

standard error of the mean. 
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3.8.6. TEM Imaging of SMALPs 

The next step to investigate the formation of nanodiscs was to visualise them using 

TEM. The negatively stained uranyl acetate TEM results showing images of E.coli 

SMALPs in Figure 25. The image has been enlarged with  red circles, indicating the 

spherical shapes.(Figure 26 ) Visual evidence of spherical structures was observable 

and coherent with the size of reported nanodiscs ~10 nm, this further confirms the 

presence of formed SMALPs. 

 

 

Figure 25:  TEM image of E.coli SMALPs sample. Scale bar =100 nm 

 

 

 

Figure 26: Enlarged TEM image of E.coli SMALPs sample. Scale bar =100 nm 
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TEM results shows images of DMPC SMALPs in Figure 27. The image has been enlarged 

with  red circles, indicating the spherical shapes (Figure 28).  Visual evidence of spherical 

structures was observable and coherent with the size of reported nanodiscs ~10 nm, this 

further confirms the presence of formed SMALPs. 

 

 

Figure 27: TEM image of DMPC SMALPs sample. Scale bar =100 nm 

 

 

Figure 28: Enlarged TEM image of DMPC SMALPs sample. Scale bar =100 nm 
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 NMR Results and Discussion  3.9.

3.9.1. Hydrogen preferential binding mode 

The most abundant lipid component of E.coli lipid extract is PE lipid; it is hypothesised 

that the SSAs can bind to PE SMALPs more than to the PC SMALPs. This is due to the 

unhindered electrostatic interactions of the PE phospholipid headgroups. This is useful 

as the SSAs will have selectively towards bacterial membranes, and not towards 

mammalian eukaryotic cells.  

The electrostatic interactions include hydrogen bonding. The hypothesised HBD and 

HBA headgroup binding modes for SSA with PE, can be seen in, Figure 29. Here the 

SSA can interact with the phospholipid headgroup, through hydrogen bond 

associations to induce antimicrobial activity, causing membrane disruption on the 

surface of the cytoplasmic membrane, which can then lead to cell death.  

The hypothesised HBD and HBA headgroup binding modes for SSA with PC can be 

seen in, Figure 30. The SSA is not able to form all of the hydrogen bonds and interact 

with the phospholipid headgroup. This is due to three methyl groups present that 

sterically hinder the electrostatic interactions;19 this impedes the hydrogen bonding to 

the eukaryotic cell membrane and therefore will not cause membrane disruption to the 

mammalian cells. 
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Figure 29: Hypothesised unhindered HBA and HBD preferential binding modes with SSA: PE 

headgroup. 

              

Figure 30: Hypothesised sterically hindered electrostatic interactions and HBA and HBD 

preferential binding modes with SSA: PC headgroup. 

 

3.9.2. NMR 1H 1D DMPC and E.coli [SMALPs]/ [Compound 1] 

NMR was an ideal technique for observing the interactions between the SSAs and the 

SMALPs.42 To investigate the interactions of 1-3, with phospholipid nanodiscs, 1H NMR 

titration studies with SMALPs were conducted. All of the results for 1H 1D NMR 

comparison show the change in intensity % for compounds 1-3. The concentration of 

the SMALPs (guest) was increased against compounds 1, 2 and 3, (host) (100 µM) 

(550µL) and represented as a molar ratio [ SMALPs]/[Compound 1-3]  which permitted 

comparable results. This technique was based on observing the SSA in its free 
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unbound state, to the SSA-SMALP bound state. This was observed by NMR with the 

resonance frequency which is directly proportional to the strength of the magnetic field 

applied; therefore the electromagnetic frequency signal is the same as the magnetic 

field at the nucleus of the complex being observed. 

To determine the interactions of the SSA to the SMALPs, a series of NMR titration 

studies were performed. The spectra were phased, base line corrected and calibrated 

to the centre of the solvent peak. Within the data the optimal peak to monitor was 

selected and determined. The aromatic peaks of the compounds from the NMR spectra 

were selected, and monitored for peak reduction. This indicates that the compound is 

binding to the nanodiscs, creating larger structures and this causes the peak to 

eventually become very broad and can no longer be detected by NMR. The aromatic 

peaks were deemed to be the most reliable as they did not readily exchange 

hydrogens with the solvent (water), which happens with the N-H group of the molecule. 

Only one peak from the aromatic region from spectra was analysed, it is noted that 

analysing  two or more peaks average intensity, may have produced less noisy more 

reliable data. The spectra of SSA alone does not display any evidence of 

supramolecular complexes formed, this is due to the low concentrations. However with 

the addition of SMALPs the peaks observed become less intense and broader peaks 

appear suggesting that larger supramolecular complexes are being formed, this can be 

seen in the NMR stack plots below. Tables with the full sets of the data collected for the 

1H NMR titration studies and 1H 1D NMR Spectra for compound 1-3 (100 µM) can be 

found in the appendices.  

The first set of results were the change in intensity % against the molar ratio of DMPC 

and E.coli [SMALPs]/ [Compound 1],  (Figure 31). All of the Data for the NMR results 

were plotted in excel. The first point on the graph represents 1H 1D NMR data of the 

SSA in its free unbound state. The plotted graph shows successfully binding to the 

SMALPs; this was confirmed through the decrease in intensity %, which is a direct 
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effect of part of the SSA being in a bound state and no longer detectable by NMR. 

However this drop in intensity was similar for both the E.coli and DMPC compositions, 

this was seen with the plotted data. This indicates that they both have a similar degree 

of association, which was not expected, further investigative methods were required.   

1H 1D NMR graph is for clarification of the lower value molar ratio [SMALPs]/ 

[Compound 1] (Figure 32). The non-uniform data within the results is later discussed.  

 

Figure 31:
 1
H 1D NMR results for DMPC and E.coli [SMALPs]/ [Compound 1] 

 

 

Figure 32: 
1
H 1D NMR results for DMPC and E.coli [SMALPs]/ [Compound 1] zoomed in 
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The concentrations of the molar ratios chosen for the stack plots can be found in Table 

2. Full set of measurements and 1H 1D NMR Spectra for compound 1 (100 µM) can be 

found in the appendices. 

 Due to the concentration of the SMALPS being slightly different the molar ratios also 

differ slightly. The concentration added of SMALPs was consistent however the volume 

was slightly different. In retrospection it would have been better to dilute down or 

concentrate the SMALPs to the same concentrations prior to starting the NMR 

titrations.   

Table 2:: Colour scheme for NMR spectra stack plots with matching molar measurement.  

 

NMR spectra stack plot for E.coli [SMALPs]/ [Compound 1] (Figure 33) arrow indicates 

peak observed at 7.6651 ppm and DMPC [SMALPs]/ [Compound 1] (Figure 34) arrow 

indicates peak observed at 7.6664 ppm.  

 

 

Figure 33:
 1
H 1D NMR spectra stack plot for E.coli [SMALPs]/ [Compound 1]  

Colour E.coli Molar ratio DMPC Molar ratio

Yellow 0.000 0.000

Purple 0.010 0.010

Green 0.108 0.111

Red 0.572 0.605

Blue 1.229 1.330
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Figure 34: 
1
H 1D NMR spectra stack plot for DMPC [SMALPs]/ [Compound 1] 

 

The NMR stack plots coincided with the graphs, displaying that the addition of the 

SMALPs with compound 1 has less self-association than with other compounds 

studied. Further studies would include increasing the concentration of SMALPs added.   

 

3.9.3. NMR 1H 1D DMPC and E.coli [SMALPs]/ [Compound 2] 

The next set of titration results were the change in intensity against the molar ratio of 

DMPC and E.coli [SMALPs]/[Compound 2], (Figure 35)  The first point on the graph 

represents 1H 1D NMR data of the SSA in its free unbound state, the same as in 3.9.2. 

The plotted graph shows successfully binding to the SMALPs; this was confirmed 

through the decrease in intensity %, which is a direct effect of the SSA being in a 

bound state and no longer detectable by NMR, hence only the free unbound SSA is 

detectable.  

As expected the drop in intensity was greater for E.coli than for DMPC SMALPs, this 

was seen with the plotted data. In this experiment the same SSA and the same SMA 

copolymer was present. The only different components were the phospholipids. This 

indicates that the difference in intensity % is directly related to the electrostatic 
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interactions. More precisely the hindered hydrogen bonding, between the SSA and the 

PC lipids due to three methyl groups present that sterically hinders the electrostatic 

interactions, as discussed in 3.9.1. See Figure 36, 1H 1D NMR graph for clarification of 

the lower value molar ratios [ SMALPs]/[Compound 2] which displayed the same trend 

at the lower molar ratio.  

 

Figure 35:
 1
H 1D NMR results for DMPC and E.coli [SMALPs]/ [Compound 2] 

 

Figure 36:
 1
H 1D NMR results for DMPC and E.coli [SMALPs]/ [Compound 2] zoomed in. 

NMR spectra stack plot for E.coli [SMALPs]/ [Compound 2] (Figure 37) arrow indicates 

peak observed at 7.9684 ppm and DMPC [SMALPs]/ [Compound 2] (Figure 38) arrow 

indicates peak observed at 7.9727 ppm. The concentrations of the molar ratios applied 
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in  the stack plots can be found in Table 2 in section 3.9.2. Full set of measurements 

and 1H 1D NMR Spectra for compound 2 (100 µM) are located in the appendices.   

 

 
Figure 37: 

1
H 1D NMR spectra stack plot for E.coli [SMALPs]/ [Compound 2] 

 
Figure 38: 

1
H 1D NMR spectra stack plot for DMPC [SMALPs]/ [Compound 2] 

 

The NMR stack plots coincide with the graphs, displaying the addition of the SMALPs 

with compound 2. Here self-association can be seen with the peaks becoming broader, 

indicating the nanodiscs were binding to the compound.  
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3.9.4. NMR 1H 1D DMPC and E.coli [SMALPs]/ [Compound 3] 

The last set of 1H 1D titration results was the change in intensity against the molar ratio 

of DMPC and E.coli [SMALPs]/ [Compound 3] (Figure 39). The first point on the graph 

represents 1H 1D NMR data of the SSA in a free unbound state, the same as in 3.9.2. 

The graph shows a clear difference in the binding associations, between the two types 

of SMALPs. These results were as expected with the drop in intensity % was greater 

for E.coli than for DMPC SMALPs, as can be seen with the plotted data. Similar results 

were seen and discussed in 3.9.3 with compound 2, however, it’s noted that the drop in 

intensity % was considerably less, than the previous results with compound 2, 

indicating less electrostatic interactions between the SSA-SMALPs. See Figure 40 for 

1H 1D NMR graph for clarification of the lower value molar ratios [SMALPs]/ 

[Compound 3] which displayed the same trend. 

 

 

Figure 39: 1H 1D NMR results for DMPC and E.coli [SMALPs]/ [Compound 3] 
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Figure 40: 
1
H 1D NMR results for DMPC and E.coli [SMALPs]/ [Compound 3] zoomed in 

 

NMR spectra stack plot for E.coli [SMALPs]/ [Compound 3] (Figure 41) arrow indicates 

peak observed at 8.1372 ppm and DMPC [SMALPs]/ [Compound 3] (Figure 42) arrow 

indicates peak observed at 8.1369 ppm. The concentrations of the molar ratios applied 

in the stack plots can be found in Table 2 in section 3.9.2. Full set of measurements 

and 1H 1D NMR Spectra for compound 3 (100 µM) are located in the appendices.   

 

 

Figure 41: 
1
H 1D NMR spectra stack plot for E.coli [SMALPs]/ [Compound 3] 
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Figure 42: 
1
H 1D NMR spectra stack plot for DMPC [SMALPs]/ [Compound 3] 

 

The NMR stack plots coincided with the graphs, displaying the addition of the SMALPs 

with compound 3. Here self-association can be seen with the peaks becoming smaller, 

indicating the nanodiscs were binding to the compound, resulting in less free SSA 

being detected. 

3.9.5. NMR 1H 1D E.coli SMALPs [SMALPs]/ [Compound (1) (2) (3)] 

The next set of results was a comparison with E.coli SMALPs against compounds 1-3, 

from the titrations in 3.9.2-3.9.4. These were compared to determine how the different 

SSAs bind with a bacterial membrane.  

The results in the graph, (Figure 43) display the change in intensity % for each 

compound when interacting with the SMALP. All of the SSAs had a change in peak 

intensity from the NMR spectra. This peak reduction and broadening, indicates 

electrostatic binding interactions. Compound 1, had the least amount of change in 

intensity %, up to ~20% drop, compound 2, displayed the greatest decrease in intensity 

with a decrease of around 95%, and compound 3, had a change in intensity % up to 

60% drop. The differences between compounds 2-3 were as expected, due to the 2-

phenylbenzo[d]thiazole on 3 in the ortho position, hindering the HBA/HBD groups 

between the urea and the phosphate. In 2 the 2-phenylbenzo[d]thiazole is in the para 
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position, allowing for unhindered HBA/HBD interactions. Finally 1, has a trifluoromethyl 

in the para position, this compound was expected to display similar associations as 2 

with unhindered HAD/HBD. However this data indicates that the trifluoromethyl did not 

contribute to SSA-SMALP binding, in the same way as 2-phenylbenzo[d]thiazole. See 

Figure 44, 1H 1D NMR graph for clarification of the lower value molar ratios E.coli 

[SMALPs]/ [Compound (1) (2) (3)] which displayed the same trend.  

 

Figure 43:
 1
H 1D NMR results for E.coli [SMALPs]/ [Compound (1) (2) (3)] 

 

 

Figure 44: 
1
H 1D NMR results for E.coli [SMALPs]/ [Compound (1) (2) (3)] zoomed in 
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 3.9.6. NMR 1H 1D DMPC [SMALPs]/ [Compound (1) (2) (3)] 

The next set of results was a comparison with DMPC SMALPs against compounds 1-3, 

from the titrations in 3.9.2-3.9.4. These were compared to determine how the different 

SSAs bind with a mammalian membrane. The results in the graph, (Figure 45) display 

the change in intensity for each compound when interacting with the SMALP. All of the 

SSAs had a change in intensity with a similar pattern to the results discussed in 3.9.5, 

however these decreases in intensity, were not as high as the ones with E.coli 

SMALPs due to hindered interactions of the PC phospholipid headgroup, as previously 

discussed.  

Compound 1, has the least amount of change in intensity of ~20%, compound 2, 

displayed the greatest decrease in intensity with a decrease of around 70%, and 

compound 3, has a change in intensity of ~30%. The difference in results between 1-3, 

follows the same trend as in 3.9.5 and has been previously discussed. 

See, Figure 46, 1H 1D NMR graph for clarification of the lower value molar ratios 

DMPC [SMALPs]/[Compound (1)(2)(3)] which shows that 1 and 3 had a similar 

decrease in intensity, indicating higher concentration of SMALPs may have been 

needed to establish the differences in binding. 

 

Figure 45:1H 1D NMR results for DMPC [SMALPs]/ [Compound (1) (2) (3)] 
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Figure 46: 
1
H 1D NMR results for DMPC [SMALPs]/ [Compound (1) (2) (3)] zoomed in 

3.9.7. NMR 1H CPMG DMPC and E.coli [SMALPs]/ [Compound 1] 

The last experiment was CPMG NMR, with the aim to further investigate the 

interactions of 1-3, with phospholipid nanodiscs. With CPMG NMR the spin-spin T2 

relaxation time is measured and applied to a series of spin-echo pulse elements. The 

T2 relaxation is caused by transient magnetic fields due to molecular motion. This 

detects the interactions of the ligand with the nanodisc, these interactions cause de-

phasing as the protons can no longer be completely refocused. This decay in signal 

indicates successful ligand binding interactions. In practice, a CPMG spectrum of the 

SSA sample was taken and compared to the CPMG spectrum of the ligand with the 

SMALPs sample. The more the signal decays the more the compound-SMALP 

interactions were occurring. This was indicated by broadening and reduction in the 

peak signals.68,69 

To determine the interactions of the SSA to the SMALPs, the aromatic peaks of the 

compounds from the NMR spectra were selected, and monitored for peak reduction, for 

reasons previously discussed. This indicates that the SSA was interacting with the 

nanodiscs, similar to the 1H NMR experiments. However this experiment was different 

as the peak reduction on the NMR spectra relates to all of the SSA that has interacted 

with the SMALP, and not just the bound in real time. This was measured through the 
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change in T2 relaxation time, which is a result from successful binding within the 

sample.68 

All of the results for 1H CPMG NMR comparison show the change in intensity % for 

compound 1-3 (host) at 100 µM, the concentration of  SMALPs (guest) was increased 

the data was represented as a molar ratio [ SMALPs]/[Compound 1-3] PB/5 % D20 

solution (298 K). Tables with the full sets of the data collected for the CPMG NMR 

titration studies are located in the appendices. 

The first set of CPMG results show the change in intensity % against the molar ratio of 

DMPC and E.coli [SMALPs]/ [Compound 1],  (Figure 47).  The first point on the graph 

represents CPMG NMR data of the SSA with no SMALPs.  The plotted graph shows 

successfull interactions with to the SMALPs; this was confirmed through the decrease 

in intensity. Here there was a clear difference in the interactions with the higher 

concentration of SMALPs, with the E.coli SMALPs interacting more than the DMPC 

SMALPs, as can be seen with the plotted data. On examination of the lower molar ratio 

there is little difference between the E.coli binding and the DMPC SMALPs, however 

the E.coli has a more consistent interactions with the compound. Graph 1H CPMG NMR 

for clarification displaying the lower value molar ratios for [SMALPs]/ [Compound 1] 

(Figure 48). 

 

Figure 47: 
1
H CPMG NMR results for DMPC and E.coli [SMALPs]/ [Compound 1]  
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Figure 48:
 1
H CPMG NMR results for DMPC and E.coli [SMALPs]/ [Compound 1] Zoomed in 

 

NMR spectra stack plot for E.coli [SMALPs]/ [Compound 1] (Figure 49) arrow indicating 

peak observed at 7.6698 ppm and DMPC [SMALPs]/ [Compound 1] (Figure 50) arrow 

indicating peak observed at 7.6797 ppm. The concentrations of the molar ratios included 

in the stack plots were from 0 (yellow) to 1.229 (blue) for E.coli and 0 (yellow) to 1.330 

(blue) for DMPC, full set of molar ratios included can be found in Table 2 in section 3.9.2. 

 

 

Figure 49: CPMG NMR spectra stack plot for E.coli
 
 [SMALPs]/ [Compound 1] 
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Figure 50: CPMG NMR spectra stack plot for DPMC [SMALPs]/ [Compound 1] 

 

The NMR stack plots coincide with the graphs, displaying the addition of the SMALPs 

with compound 1. Here self-association can be seen with the peaks becoming smaller, 

indicating the nanodiscs were binding to the compound, resulting in a reduced amount 

SSA being detected. 

 

3.9.8. NMR 1H CPMG DMPC and E- coli [SMALPs]/ [Compound 2] 

The next set of titration results were for 1H CPMG NMR comparison showing the 

change in intensity for compound 2 (host) at 100 µM (Figure 51) The graph below 

shows that initially the differences in binding, was E.coli interacting and binding more 

than the DMPC SMALPs, but the PC SMALP intensity decreased  much faster and with 

lower concentrations, of ~0.05 molar ratio. This represents that compound 2 was 

binding to SMALPs even at low concentrations leading to a rapid decay in the 

electromagnetic signal. These results were not coherent with the 1H 1D NMR results 

discussed in 3.9.3 as in the previous studies, where the DMPC SMALP results 

continued to have a lower drop in intensity % than the E.coli, however this measured 

just the bound state resulting in broader peaks and the CPMG measured the T2. Here 

the DMPC SMALPs have interacted with the SSA, however these electrostatic 
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interactions may be weaker binding than with E.coli SMALPs, further studies were 

needed.   

 

 

Figure 51:
 1
H CPMG NMR results for DMPC and E.coli [SMALPs]/[Compound 2] 

NMR spectra stack plot for E.coli [SMALPs]/ [Compound 2] (Figure 52) arrow indicates 

peak observed at 7.961 ppm and DMPC [SMALPs]/ [Compound 2] (Figure 50) arrow 

indicates peak observed at 7.9730 ppm. 

 

 The concentrations of the molar ratios included in the stack plots for compound 2, are 

located in Table 3, the full set are located in the appendices. 

Table 3: Colour scheme for NMR CPMG stack plots with matching molar measurement for 
compound 2. 

 

 

 

 

Colour E.coli Molar ratio DMPC Molar ratio

Yellow 0.000 0.000

Purple 0.004 0.004

Green 0.006 0.006

Red 0.010 0.010

Blue 0.015 0.016
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Figure 52: CPMG NMR spectra stack plot for E.coli
 
 [SMALPs]/ [Compound 2] 

 

 

Figure 53: CPMG NMR spectra stack plot for DPMC [SMALPs]/ [Compound 2] 

 

The NMR stack plots coincided with the graphs, displaying the addition of the SMALPs 

with compound 2. Here self-association was seen with the peaks becoming broader 

and less intense, indicating the nanodiscs were binding to the compound.  

 

3.9.9. NMR 1H CPMG DMPC and E.coli [SMALPs]/[Compound 3] 

The last set of results for 1H CPMG NMR were a comparison showing the change in 

intensity for compounds 3 (host) at 100 µM) (Figure 54) 
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The graph shows a clear difference in the interactions, between the two types of 

SMALPs, with an increased decay in the SSA peak intensity, when interacting with 

E.coli. These results were as expected with the drop in intensity, greater for E.coli than 

for DMPC SMALPs, as can be seen with the plotted data and were coherent with the 

1H 1D NMR results with 3. How the compounds interact with the SMALP has been 

previously discussed with similar results 9.3-9.4. See Figure 55, for 1H CPMG NMR 

graph for clarification of the lower value molar ratios [SMALPs]/[Compound 3], which 

displayed the same trend. 

 

Figure 54:
 1
H CPMG NMR results for DMPC and E.coli [SMALPs]/[Compound 3] 

 

Figure 55: 
1
H CPMG NMR results for DMPC and E.coli [SMALPs]/[Compound 3] Zoomed in 
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NMR spectra stack plot for E.coli [SMALPs]/ [Compound 3] (Figure 56) arrow indicates the 

peak observed at 8.1372 ppm and DMPC [SMALPs]/ [Compound 3] (Figure 57) arrow 

indicates the peak observed at 8.1369 ppm. The concentrations of the molar ratios 

included in the stack plots were from 0 (yellow) to 1.229 (blue) for E.coli and 0 (yellow) to 

1.330 (blue) for DMPC, full set of molar ratios included can be located in Table 2 in 

section 3.9.2. 

 

 

Figure 56: CPMG NMR spectra stack plot for E.coli
 
 [SMALPs]/ [Compound 3] 

 

Figure 57: CPMG NMR spectra stack plot for DPMC [SMALPs]/ [Compound 3] 
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The NMR stack plots coincided with the graphs, displaying the addition of the SMALPs 

with compound 3. Here self-association was seen with the peaks becoming broader, 

indicating the nanodiscs were binding to the compound, with the E.coli: compound 3, 

the peaks ~ 7.5 ppm became so broad they can no longer be detected. 

 

3.9.10. NMR 1H CPMG E.coli SMALPs [SMALPs]/[Compound (1)(2)(3)] 

The next set of results displays a comparison with E.coli SMALPs against compounds 

1-3, from the titrations in 3.9.7-3.9.9. These were compared to determine how the 

different SSAs bind with a bacterial membrane.  

The results in the graph, (Figure 58) display the change in intensity for each compound 

when interacting with the SMALP. All of the SSAs had a  change in peak intensity from 

the NMR spectra. This peak reduction and broadening, indicates electrostatic 

interactions and self-associations between the SSA and SMALPs. Compound 1, has 

the least amount of change in intensity % of ~ 40%, compound 2, displayed a rapid 

decay of the signal, indicating binding and the formation of supramolecular complexes. 

Compound 3, had a change in intensity % of ~95%. The differences between 

compounds 2-3 were as expected, and were coherent with the 1H 1D NMR data, in 

3.9.6 how the compounds interacted with the SMALPs has been previously discussed 

with similar results 3.9.3-3.9.4. See Figure 59, for 1H CPMG NMR graph for clarification 

of the lower value molar ratios [ SMALPs]/[Compound (1)(2)(3)]. 
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Figure 58: 
1
H CPMG NMR results for E.coli [SMALPs]/[Compound (1)(2)(3)] 

 

 

Figure 59: 
1
H CPMG NMR results for E.coli [SMALPs]/[Compound (1)(2)(3)]Zoomed in 

 

3.9.11. NMR 1H CPMG DMPC [SMALPs]/[Compound (1)(2)(3)] 

The last comparison was results for 1H CPMG NMR showing the change in intensity for 

each compound 1-3, against PC SMALPs from the titrations in 3.9.7-3.9.9.  

The results in the graph (Figure 60) show a clear difference in the interactions between 

the compounds, with compound 2, showing a larger decrease in intensity %.  These 

results follow trend with the results in 3.9.10, however in this set of results the change 
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in intensity % was smaller than with the E.coli results. This was expected and coherent 

with the rest of the NMR analysis within this study. How the molecular structures, 

influence the interactions has been previously discussed in 3.9.5. See Figure 61, for 1H 

CPMG NMR graph for clarification of the lower value molar ratios [ 

SMALPs]/[Compound (1)(2)(3)]. 

NMR results were coherent with this hypothesis as the results for both the 1H CPMG 

and 1H 1D, exhibit a more interactions towards the E.coli SMALPs when compared to 

the binding with the DMPC SMALPs with compound 2-3. The only exception was NMR 

1H 1D with compound 1, where the binding appeared to be similar, however this was 

an anomaly when compared to the rest of the data. Further investigation was needed 

at higher concentrations and/or more scans to improve the signal to noise ratio to 

determine the HBD and HDA binding modes in more depth. 

 

Figure 60:
 1
H CPMG NMR results for DMPC [SMALPs]/[Compound (1)(2)(3)] 
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Figure 61:
 1
H CPMG NMR results for DMPC [SMALPs]/[Compound (1)(2)(3)] zoomed in 

 

3.9.12. Secondary binding modes 

The NMR titration results displayed that some of the plotted intensity results were non-

uniform, and did not always follow trend. This could be due to many factors, the 

simplest one could be a mixing error, or the sample may have needed more time to 

equilibrate, as no extra time was given, however this can have repercussions as the 

compounds antimicrobial activity may be time dependant, leading to a sample with only 

the compound and disassembled nanodiscs. The non-uniform data may also have 

been improved by analysing the average of more than just one aromatic peak, again 

further studies were needed. 

A hypothesis for the non-uniform intensity results can be due to multiple interactions 

with secondary hydrogen binding sites of the SMALPs. The secondary site includes the 

hydrogen bond donating of the urea moiety of the compound.  

An example of this is with the PE SMALPs, where adding the SMALPs to the 

compound; the sulfonate moiety will primarily bind to the amine.  Once most of the 

primary binding sites are full, causing   complete saturation of the binding site, 38 then 

the compound will start to bind in other places. These include HBD/HBA interactions 

with the urea moiety and phosphate as seen in Figure 29. These contribute towards the 
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secondary weaker binding sites.  With the addition of more SMALPs the compound will 

be attracted to the new primary binding sites and will momentarily be free in solution, 

resulting in non-uniform data with an increase in intensity.   

The PC SMALPs with the amphiphilic compounds also exhibit some non-uniform data, 

this can be attributed to other non-covalent bond interactions which have been 

described in literature and include electrostatics, π−π stacking, charge transfer and 

hydrogen bond interactions.70 These interactions not only occur with the compound-

SMALP binding but also with compound self-association.  

3.9.13. SSA structure-activity 

In the literature previous studies with self-associating amphiphiles have revealed that 

changing compound composition affects antimicrobial action. All of the self-associating 

molecules in this study, were synthesised from the same general structure as seen in 

the literature, with urea oxygen in the hydrophobic region, sulfonate in the hydrophilic 

region and with TBA as a counter cation. Keeping these functionalities the same 

focused this study on the modifications of the constituents attached to the benzene ring 

only. Compound 2 and compound 3 with 2-phenylbenzo[d]thiazole displayed more 

interactions towards the E.coli SMALPs, the position of this R group played an 

important role, with the 2-phenylbenzo[d]thiazole in the para position resulted in 

enhanced activity when compared to the ortho position. This change in activity is 

directly related to the 2-phenylbenzo[d]thiazole hindering the hydrogen bond donating 

functionality of the urea oxygen when in the ortho position. This reveals that   urea is 

vital for hydrogen bonding and therefore vital for antimicrobial activity.  

When comparing selectivity towards the bacterial membranes and mammalian 

membranes, the results have shown that the compounds will interact and accumulate 

on the surface with the bacterial membranes more intensely than the mammalian 

membranes. This was seen through the 1H 1D NMR studies, where nearly all of the 

compounds displayed a greater change in intensity with E.coli SMALPs, indicating that 
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the compounds were binding to the SMALP. These compounds will also aggregate on 

the surface of the E.coli SMALP due to their self-associating properties; this was 

observed with similar self-associating molecules in literature, where they found that 

self-associated structures is imperative for effective drug delivery to the bacterial cell.56 

The 1H CPMG results displayed the same pattern as the 1H 1D study, with the 

broadening and reduction in the intensity of the signals, with increasing SMALP to 

compound interactions. The resulting peaks in this experiment were much smaller than 

with the 1H 1D study, this was due to the signal decay upon the interaction of the 

SMALPs with the compound. 68  

The PC SMALPs resulted in fewer binding interactions, which as previously mentioned 

may be due to electrostatic interactions other than the phospholipids headgroup with 

the sulfonate. This was not favourable due to the three methyl groups attached to the 

amine, leading to electrostatic hindrance. However weaker binding interactions were 

still observed, these are thought to be insufficient to disrupt the structure of the 

mammalian membranes.  
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4. Overall Conclusions 

In conclusion, this preliminary research investigated the binding interactions between 

supramolecular self-associating molecules, and the cell membrane. The model 

membranes were formed with a SMA co-polymer that solubilises a patch of 

phospholipid bilayers in to nanodiscs.  This allowed for the formation of nanodiscs with 

different lipid compositions, mimicking the bacterial cells and mammalian cells. The 

nanodiscs were characterised through DLS, TEM and quantified. The binding 

associations between three self-associating compounds and the model membranes 

were investigated through 1H 1D and CPMG NMR analysis. The results indicate that 

the compounds structure affects the binding with the nanodiscs.  The compounds were 

all identical with the same HBD/HBA functionalities, with the only one different 

constituent attached to a benzene ring. This verified that the change in binding 

observed towards the model membranes was a direct result of the constituent. The 

position of the constituent affected the hydrogen bonding, thus affecting its 

antimicrobial properties. The results reveal that that the all three compounds exhibit 

selective binding towards E.coli, when compared to the binding of mammalian cells. 

This shows potential for their use as future antimicrobial agents, aiding in the fight 

against antimicrobial resistance.     

Further work  

In this study only three compounds were investigated, which form part of a family of 

over 65 molecules.  Further work would include the binding studies with other 

amphiphilic compounds against E.coli and against other bacterial strains. Further work 

with the compounds presented in this study would include fluorescence anisotropy 

binding studies, on the fluorescent molecules compound 2 and compound 3 and 

confocal microscopy to visualise the compounds interacting with the nanodiscs, which 

will help determine if the compounds are bacteriostatic or bactericidal. Both of these 

methods of investigation were initialised but due to time constraints were not realised.  
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6. Appendices  

NMR  spectra for compounds 1-3  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: NMR 
1
H 1D of Compound 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: NMR 
1
H 1D of Compound 2 
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Figure 3: NMR 
1
H 1D of Compound 3 

 

Table displaying concentrations used in NMR titrations 

Table 2: Molar ratio of compounds 1-3 to SMALP 

 

SSA (µM) E.coli SMALP (µM) Molar ratio SSA (µM) DMPC SMALP (µM) Molar ratio

100.0 0.0 0.000 100.0 0.0 0.000

99.7 0.2 0.002 99.5 0.2 0.002

99.3 0.4 0.004 99.0 0.4 0.004

99.0 0.6 0.006 98.6 0.6 0.006

98.7 0.8 0.008 98.1 0.8 0.008

98.3 1.0 0.010 97.6 1.0 0.010

97.5 1.5 0.015 96.5 1.5 0.016

96.8 2.0 0.021 95.4 2.0 0.021

95.2 3.0 0.032 93.2 3.0 0.032

93.7 4.0 0.043 91.1 4.0 0.044

93.4 6.0 0.064 90.7 6.0 0.066

93.1 8.0 0.086 90.3 8.0 0.089

92.8 10.0 0.108 89.9 10.0 0.111

92.1 15.0 0.163 89.0 15.0 0.169

91.4 20.0 0.219 88.0 20.0 0.227

90.7 25.0 0.276 87.1 25.0 0.287

87.4 50.0 0.572 82.7 50.0 0.605

84.3 75.0 0.890 78.8 75.0 0.952

81.4 100.0 1.229 75.2 100.0 1.330
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NMR 1H 1D Data Tables 

 

 

Table 2: NMR 1H 1D Data Table reporting each peak used to determine the change in 
intensity, and the corresponding molar ratio for E.coli [SMALPs}/[Compound 1] 

 

E.coli [SMALPs]/[Compound 1] 

Peak    Actual    Change in  Change in  

Name Molar Ratio  Intensity ν(F1) [ppm] Intensity Intensity (%) 

1 0.000 244736.26 7.6651 0.00 100 

2 0.002 241098.97 7.6654 -3637.29 99 

3 0.004 243217.25 7.6654 -1519.01 99 

4 0.006 242727.78 7.6652 -2008.48 99 

5 0.008 234072.01 7.6652 -10664.25 96 

6 0.010 196846.70 7.6649 -47889.56 80 

7 0.015 217040.73 7.6652 -27695.53 89 

8 0.021 211948.38 7.6652 -32787.88 87 

9 0.032 204340.75 7.6650 -40395.51 83 

10 0.043 229346.12 7.6654 -15390.14 94 

11 0.064 214958.92 7.6654 -29777.34 88 

12 0.086 214903.08 7.6656 -29833.18 88 

13 0.108 214127.42 7.6654 -30608.84 87 

14 0.163 208837.77 7.6648 -35898.49 85 

15 0.219 223973.19 7.6649 -20763.07 92 

16 0.276 195888.98 7.6653 -48847.28 80 

17 0.572 209213.67 7.6650 -35522.59 85 

18 0.890 202843.75 7.6648 -41892.51 83 

19 1.229 201124.88 7.6645 -43611.38 82 
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Table 3: NMR 1H 1D data table reporting each peak used to determine the change in 
intensity, and the corresponding molar ratio for DMPC [SMALPs}/[Compound 1] 

 

DMPC [SMALPs]/[Compound 1] 

Peak    Actual    Change in  Change in  

Name Molar Ratio  Intensity ν(F1) [ppm] Intensity Intensity (%) 

1 0.000 237445.73 7.6664 0 100 

2 0.002 254662.36 7.6654 17216.63 107 

3 0.004 204817.79 7.6653 -32627.94 86 

4 0.006 214667.22 7.6656 -22778.51 90 

5 0.008 200555.42 7.6651 -36890.31 84 

6 0.010 190162.27 7.6652 -47283.46 80 

7 0.016 190693.14 7.6652 -46752.59 80 

8 0.021 192061.3 7.6653 -45384.43 81 

9 0.032 215845.3 7.6654 -21600.43 91 

10 0.044 196390.48 7.6652 -41055.25 83 

11 0.066 227421.84 7.6655 -10023.89 96 

12 0.089 196359.63 7.6653 -41086.1 83 

13 0.111 183757.97 7.6653 -53687.76 77 

14 0.169 183014.91 7.6653 -54430.82 77 

15 0.227 196913.95 7.6652 -40531.78 83 

16 0.287 202091.28 7.6647 -35354.45 85 

17 0.605 200134.72 7.6644 -37311.01 84 

18 0.952 207774.38 7.6634 -29671.35 88 

19 1.330 196581.38 7.663 -40864.35 83 
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Table 4: NMR 1H 1D data table reporting each peak used to determine the change in 
intensity, and the corresponding molar ratio for E.coli [SMALPs}/[Compound 2] 

 

E.coli [SMALPs]/[Compound 2] 

Peak    Actual    Change in  Change in  

Name Molar Ratio  Intensity ν(F1) [ppm] Intensity Intensity (%) 

1 0.000 251245.08 7.9684 0.00 100 

2 0.002 234486.59 7.9686 -16758.49 93 

3 0.004 171990.09 7.9682 -79254.99 68 

4 0.006 117466.96 7.9682 -133778.12 47 

5 0.008 195921.41 7.9672 -55323.67 78 

6 0.010 155575.69 7.9639 -95669.39 62 

7 0.015 189914.87 7.9685 -61330.21 76 

8 0.021 138743.94 7.9684 -112501.14 55 

9 0.032 152925.31 7.9703 -98319.77 61 

10 0.043 135405.82 7.9714 -115839.26 54 

11 0.064 107220.88 7.9697 -144024.20 43 

12 0.086 97050.81 7.9688 -154194.27 39 

13 0.108 82492.14 7.9669 -168752.94 33 

14 0.163 74545.23 7.9666 -176699.85 30 

15 0.219 60342.98 7.9669 -190902.10 24 

16 0.276 53912.08 7.9652 -197333.00 21 

17 0.572 39910.31 7.9655 -211334.77 16 

18 0.890 14594.62 7.9621 -236650.46 6 

19 1.229 17832.38 7.9586 -233412.70 7 
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Table 5: NMR 1H 1D data table reporting each peak used to determine the change in 
intensity, and the corresponding molar ratio for DMPC [SMALPs}/[Compound 2] 
 

DMPC [SMALPs]/[Compound 2] 

Peak    Actual    Change in  Change in  

Name Molar Ratio  Intensity ν(F1) [ppm] Intensity Intensity (%) 

1 0.000 193787.45 7.9727 0 100 

2 0.002 194069.8 7.9729 282.35 100 

3 0.004 143133.77 7.9729 -50653.68 74 

4 0.006 151515.98 7.9709 -42271.47 78 

5 0.008 151192.83 7.9716 -42594.62 78 

6 0.010 129608.33 7.9733 -64179.12 67 

7 0.016 118949.76 7.9697 -74837.69 61 

8 0.021 109761.05 7.9694 -84026.4 57 

9 0.032 117818.23 7.9693 -75969.22 61 

10 0.044 93345.38 7.9709 -100442.07 48 

11 0.066 90259.34 7.9675 -103528.11 47 

12 0.089 93874.86 7.965 -99912.59 48 

13 0.111 102988.57 7.9616 -90798.88 53 

14 0.169 87758.78 7.9617 -106028.67 45 

15 0.227 76413.78 7.9599 -117373.67 39 

16 0.287 70673.84 7.9591 -123113.61 36 

17 0.605 64816.16 7.9593 -128971.29 33 

18 0.952 59487.62 7.9592 -134299.83 31 

19 1.330 62444 7.9606 -131343.45 32 
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Table 6: NMR 1H 1D data table reporting each peak used to determine the change in 
intensity, and the corresponding molar ratio for E.coli [SMALPs}/[Compound 3] 
 

E.coli [SMALPs]/[Compound 3] 

Peak    Actual    Change in  Change in  

Name Molar Ratio  Intensity ν(F1) [ppm] Intensity Intensity (%) 

1 0.000 224544.22 8.1372 0.00 100 

2 0.002 199405.38 8.1370 -25138.84 89 

3 0.004 143059.06 8.1372 -81485.16 64 

4 0.006 138289.80 8.1367 -86254.42 62 

5 0.008 139316.47 8.1373 -85227.75 62 

6 0.010 142956.26 8.1371 -81587.96 64 

7 0.015 117296.56 8.1376 -107247.66 52 

8 0.021 112258.34 8.1370 -112285.88 50 

9 0.032 139628.79 8.1378 -84915.43 62 

10 0.043 132393.02 8.1375 -92151.20 59 

11 0.064 135936.83 8.1383 -88607.39 61 

12 0.086 136942.29 8.1387 -87601.93 61 

13 0.108 124746.29 8.1386 -99797.93 56 

14 0.163 131747.38 8.1392 -92796.84 59 

15 0.219 95788.56 8.1389 -128755.66 43 

16 0.276 119442.76 8.1396 -105101.46 53 

17 0.572 103788.25 8.1404 -120755.97 46 

18 0.890 112393.28 8.1421 -112150.94 50 

19 1.229 100548.41 8.1422 -123995.81 45 
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Table 7: NMR 1H 1D data table reporting each peak used to determine the change in 
intensity, and the corresponding molar ratio for DMPC  [SMALPs}/[Compound 3] 
 

DMPC [SMALPs]/[Compound 3] 

Peak    Actual    Change in  Change in  

Name Molar Ratio  Intensity ν(F1) [ppm] Intensity Intensity (%) 

1 0.000 215118.47 8.1369 0 100 

2 0.002 190006.09 8.1371 -25112.38 88 

3 0.004 135703.04 8.136 -79415.43 63 

4 0.006 152144.93 8.1362 -62973.54 71 

5 0.008 149221.8 8.1371 -65896.67 69 

6 0.010 214057.75 8.1375 -1060.72 100 

7 0.016 161672.23 8.1366 -53446.24 75 

8 0.021 130108.61 8.1379 -85009.86 60 

9 0.032 190518.12 8.1382 -24600.35 89 

10 0.044 185307.83 8.1382 -29810.64 86 

11 0.066 180279.04 8.1388 -34839.43 84 

12 0.089 183204.31 8.1392 -31914.16 85 

13 0.111 150270.62 8.1396 -64847.85 70 

14 0.169 188873.94 8.1409 -26244.53 88 

15 0.227 190708.86 8.141 -24409.61 89 

16 0.287 174138.92 8.1416 -40979.55 81 

17 0.605 152823.69 8.1431 -62294.78 71 

18 0.952 156779.75 8.1451 -58338.72 73 

19 1.330 150607.62 8.1474 -64510.85 70 
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NMR CPMG 1H Data Tables 

 
 
Table 8: CPMG 1H Data table reporting each peak used to determine the change in 
intensity, and the corresponding molar ratio for E.coli [SMALPs}/[Compound 1] 
 

E.coli [SMALPs]/[Compound 1] 

Peak    Actual    Change in  Change in  
Nam

e Molar Ratio  Intensity ν(F1) [ppm] Intensity Intensity (%) 

1 0.000 49125.72 7.6698 0.00 100 

2 0.002 46798.57 7.6662 -2327.15 95 

3 0.004 47838.05 7.6656 -1287.67 97 

4 0.006 48164.82 7.6656 -960.90 98 

5 0.008 48358.41 7.6655 -767.31 98 

6 0.010 45111.85 7.6654 -4013.87 92 

7 0.015 45607.79 7.6658 -3517.93 93 

8 0.021 44917.25 7.6656 -4208.47 91 

9 0.032 45663.75 7.6656 -3461.97 93 

10 0.043 45829.32 7.6653 -3296.40 93 

11 0.064 43346.40 7.6661 -5779.32 88 

12 0.086 43040.00 7.6638 -6085.72 88 

13 0.108 42319.02 7.6672 -6806.70 86 

14 0.163 41307.73 7.6655 -7817.99 84 

15 0.219 40019.81 7.6657 -9105.91 81 

16 0.276 37797.88 7.6658 -11327.84 77 

17 0.572 36573.70 7.6647 -12552.02 74 

18 0.890 35506.10 7.6654 -13619.62 72 

19 1.229 31994.81 7.6653 -17130.91 65 
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Table 9: CPMG 1H Data table reporting each peak used to determine the change in 
intensity and the corresponding molar ratio for DMPC [SMALPs}/[Compound 1] 
 

DMPC [SMALPs]/[Compound 1] 

Peak    Actual    Change in  Change in  

Name Molar Ratio  Intensity ν(F1) [ppm] Intensity Intensity (%) 

1 0.000 44679.96 7.6797 0 100 

2 0.002 43407.42 7.6802 -1272.54 97 

3 0.004 41681.4 7.6795 -2998.56 93 

4 0.006 43376.17 7.6797 -1303.79 97 

5 0.008 41991.72 7.6797 -2688.24 94 

6 0.010 38147.11 7.6794 -6532.85 85 

7 0.016 42243.82 7.6799 -2436.14 95 

8 0.021 40493.9 7.6796 -4186.06 91 

9 0.032 42922.45 7.68 -1757.51 96 

10 0.044 38932.61 7.6801 -5747.35 87 

11 0.066 42860.55 7.6801 -1819.41 96 

12 0.089 40607.48 7.6796 -4072.48 91 

13 0.111 38849 7.6799 -5830.96 87 

14 0.169 38803.26 7.6795 -5876.7 87 

15 0.227 38601.51 7.6794 -6078.45 86 

16 0.287 36727.07 7.6792 -7952.89 82 

17 0.605 36451.41 7.6788 -8228.55 82 

18 0.952 33913.05 7.6781 -10766.91 76 

19 1.330 32313.92 7.6776 -12366.04 72 
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Table 10: CPMG 1H Data table reporting each peak used to determine the change in 
intensity and the corresponding molar ratio for E.coli [SMALPs}/[Compound 2]  
 

E.coli [SMALPs]/[Compound 2] 

Peak    Actual    Change in  Change in  

Name Molar Ratio  Intensity ν(F1) [ppm] Intensity Intensity (%) 

1 0.000 31482.46 7.9691 0.00 100 

2 0.002 28355.16 7.9694 -3127.30 90 

3 0.004 15317.93 7.9683 -16164.53 49 

4 0.006 14594.74 7.9684 -16887.72 46 

5 0.008 16301.66 7.9678 -15180.80 52 

6 0.010 14453.92 7.9648 -17028.54 46 

7 0.015 14444.40 7.9687 -17038.06 46 

8 0.021 10556.44 7.9686 -20926.02 34 

9 0.032 6580.84 7.9718 -24901.62 21 
 

 

 

 

Table 11: CPMG 1H Data table reporting each peak used to determine the change in 
intensity and the corresponding molar ratio for DMPC [SMALPs}/[Compound 2] 
 

DMPC [SMALPs]/[Compound 2] 

Peak    Actual    Change in  Change in  

Name Molar Ratio  Intensity ν(F1) [ppm] Intensity Intensity (%) 

1 0.000 34764.07 7.973 0 100 

2 0.002 33394.59 7.9867 -1369.48 96 

3 0.004 23565.93 7.9731 -11198.14 68 

4 0.006 18286.94 7.9711 -16477.13 53 

5 0.008 13483.14 7.9725 -21280.93 39 

6 0.010 9625.65 7.974 -25138.42 28 
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Table 12: CPMG 1H Data table reporting each peak used to determine the change in 
intensity and the corresponding molar ratio for E.coli [SMALPs}/[Compound 3]  
 

E.coli [SMALPs]/[Compound 3] 

Peak    Actual    Change in  Change in  

Name Molar Ratio  Intensity ν(F1) [ppm] Intensity Intensity (%) 

1 0.000 35693 8.1372 0.00 100 

2 0.002 40984.88 8.1387 5291.88 115 

3 0.004 28976.04 8.1373 -6716.96 81 

4 0.006 29516.59 8.1374 -6176.41 83 

5 0.008 27402.12 8.1374 -8290.88 77 

6 0.010 24874.99 8.1375 -10818.01 70 

7 0.015 24335.59 8.1322 -11357.41 68 

8 0.021 21833.54 8.1382 -13859.46 61 

9 0.032 25611.99 8.1373 -10081.01 72 

10 0.043 26520.96 8.1385 -9172.04 74 

11 0.064 3753.56 8.444 -31939.44 11 

12 0.086 22191.14 8.1386 -13501.86 62 

13 0.108 21143.46 8.1381 -14549.54 59 

14 0.163 19381.01 8.139 -16311.99 54 

15 0.219 17861.09 8.1396 -17831.91 50 

16 0.276 17190.13 8.1392 -18502.87 48 

17 0.572 13046.48 8.1411 -22646.52 37 

18 0.890 7271.56 8.1408 -28421.44 20 

19 1.229 3533.98 8.4443 -32159.02 10 

 
 
This set of data had an erroneous point, peak 11 which was excluded from the data 
set, as it doesn’t follow the trend. 
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Table 13: CPMG 1H Data table reporting each peak used to determine the change in 
intensity and the corresponding molar ratio for DMPC [SMALPs}/[Compound 3] 
 

DMPC [SMALPs]/[Compound 3] 

Peak    Actual    Change in  Change in  

Name Molar Ratio  Intensity ν(F1) [ppm] Intensity Intensity (%) 

1 0.000 34707.62 8.1369 0 100 

2 0.002 32767.27 8.1371 -1940.35 94 

3 0.004 27242.74 8.1374 -7464.88 78 

4 0.006 28483.56 8.1372 -6224.06 82 

5 0.008 29194.3 8.1375 -5513.32 84 

6 0.010 33670.99 8.1372 -1036.63 97 

7 0.016 30653.31 8.1376 -4054.31 88 

8 0.021 25814.88 8.1383 -8892.74 74 

9 0.032 31206.2 8.138 -3501.42 90 

10 0.044 29961.19 8.1381 -4746.43 86 

11 0.066 29244.2 8.1391 -5463.42 84 

12 0.089 29969.46 8.1391 -4738.16 86 

13 0.111 25664.57 8.1394 -9043.05 74 

14 0.169 26602.21 8.1403 -8105.41 77 

15 0.227 25146.69 8.1409 -9560.93 72 

16 0.287 24468.79 8.1416 -10238.83 70 

17 0.605 19456.6 8.1431 -15251.02 56 

18 0.952 17005.18 8.1457 -17702.44 49 

19 1.330 13387.22 8.1478 -21320.4 39 

 

 


