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Abstract 

 
Myosin is a cytoskeletal motor that uses metabolic energy stored in ATP to do mechanical 

work. Muscle myosin in all mammals consists of a variety of isoforms, each expressed from 

its own gene. All of the striated muscle myosin sequences are highly conserved, but each 

myosin isoform confers distinct contractile characteristics to distinct muscle fibre types. 

How each myosin is tuned for its specific function is not well understood. We combined 

detailed biochemical characterisation with a novel kinetic modelling approach to probe how 

sarcomeric myosin isoforms adapt their mechanochemical cross-bridge cycle to perform 

different functions.  

 

The next question from this was how the sequences of these highly conserved 

isoforms give rise to these contractile differences. Focussing on the β cardiac myosin 

(MyHC-β), we investigated how the sequence of the protein can drive adaptation to 

changes in body mass by altering the rate of ADP-release and velocity of contraction. 

Bioinformatics analysis identified the sequence variants in MyHC-β that directly control its 

velocity and the biochemical validations are presented. This demonstrates how a protein 

can adapt over evolutionary time frames to meet different physiological requirements, which 

remains one of the fundamental questions in structural and molecular biology.  

 

Mutations in the same protein (MyHC-β) are a major cause of the life-threatening 

disease, Hypertrophic Cardiomyopathy (HCM). The specific mechanistic changes to 

myosin function that lead to this disease remain incompletely understood. We hypothesised 

that mutations that result in early onset disease would have more severe changes in 

function than do later onset mutations. Contrary to our hypothesis, no clear distinction was 

observed in the molecular behaviour of MyHC-β between early and late onset HCM 

mutations. One of the existing challenges of a study of this scale is the difficulty in producing 

recombinant myosin protein. This thesis will describe the development of an innovative 

expression system in insect cells which produce C. elegans body wall myosin in a non-

muscle environment. The approach was validated by the biochemical characterisation of 

the resulting protein, which was found to be homologous to human MyHC-β, suggesting it 

could be used as a new model protein to study human disease. 

 

My thesis describes how sarcomeric myosins have fine-tuned their properties to 

give rise to different physiological functions, and how these processes are disrupted in 

diseased-states.  
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Non-publication abbreviations 
 
A-band Anisotropic band 
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AMDPi Actin-myosin-ADP-phosphate complex 

AMT Actin-mysoin-ATP 

ARM Armadillo repeat 

ARVC Arrhythmogenic right ventricular cardiomyopathy 

DCM Dilated cardiomyopathy  

dpc Days post coitum 

DR Duty ratio 

ELC Essential light chain 

EOM Extraocular muscle 

F-actin Filamentous-actin 

G-actin Globular-actin 

HCM Hypertophic cardiomyopathy 

HMM Heavy meromyosin 

I-band Isotropic bands 

IHM Interacting heads motif 

kobs Observed rate constant 

L50 Lower 50 kDa subdomain of myosin 

LECA Last eukaryotic common ancestor 

LMM Light meromyosin 

sS1 Short subfragment 1 of myosin 

S1 Subfragment 1 of myosin 

S2 Subfragment 2 of myosin 

MDPi Myosin-ADP-phoshphate complex 

MT Myosin-ATP complex 

MUSICO Muscle Simulation Code 

MyBP Myosin-binding protein 



3 
 

MyBP-C Myosin-binding protein C 

MyHC Myosin heavy chain 

MyHC-emb Myosin heavy chain embryonic 

MyHC-EO Myosin heavy chain extraocular 

MyHC-IIa Myosin heavy chain IIa 

MyHC-IIb Myosin heavy chain IIb 

MyHC-IId Myosin heavy chain IId 

MyHC-peri Myosin heavy chain perinatal 

MyHC-α Myosin heavy chain alpha 

MyHC-β Myosin heavy chain beta 

PMSF Phenylmethylsulfonyl fluorid 

Pyrene N-(1-pyrenyl)-iodoacetamide 

RLC Regulatory light chain 

SRX Super-relaxed state 

TnC Troponin-C 

TnI Troponin-I 

TnT Troponin-T 

TPR N-terminal tetratricopeptide 

U50 Upper 50 kDa subdomain of myosin 

UCS UNC-45/CRO1/She4p 

UNC-45 Uncoordinated mutant-45 

  



4 
 

1. Introduction 
 
 
Preface 
 
Understanding the relationship between protein structure and function remains a primary 

focus in many fields of biology, including (but not limited to) genetics, molecular biology, 

biochemistry and cell biology. The discovery of the motor protein myosin and the 

fundamental mechanism underlying muscle contraction many decades ago led to a surge 

in research to characterise its mechanochemical activity. Underlying this activity is the 

protein’s highly conserved structure, of which we now know many details. The functional 

repertoire of myosin is very diverse - but how has the protein been engineered to enable 

this? This is a question that remains unanswered. The sequence differences between 

muscle myosin isoforms can be very small, yet there exists a plethora of functions that the 

family can perform. Whilst the sequences contain all the genomic information necessary 

for a protein to perform its function, studying these sequences alone does not yield insights 

into how myosin isoforms are able to adapt their behaviour to suit the functional demands 

of the muscle in which they exist. The differences tend to manifest themselves on a 

biochemical or functional level, indicative of a mechanism of ‘fine-tuning’ of the highly-

conserved myosin protein, which most likely occurs on a molecular level. Gaining a deeper 

understanding of this process of fine-tuning of myosin class II isoforms is the basis for the 

studies undertaken in this thesis. 
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1.1 General properties of myosin  

 
1.1.1 Myosin 

 

Myosin is a ubiquitous and multifunctional motor protein that converts the energy generated 

from the hydrolysis of ATP to power movement. The myosin superfamily comprises 35 

different sub groups, 13 of which have been identified in humans (Odronitz and Kollmar 

2007). Figure 1.1 demonstrates the myriad of known myosin groups. Myosins are involved 

in a wide range of cellular processes including cargo interactions, actin-based projections, 

membrane compartments, cell division, and what this thesis will predominantly focus on, 

muscle contraction. 

 
Figure 1.1 The number of myosins per class. Exact numbers are given in brackets. Figure 
from (Odronitz and Kollmar 2007). 
 

Myosins are structurally related, actin-based molecular motors which can exist 

either as a single or a double headed dimer. They move towards the plus-end of actin 

filaments, with the exception of myosin class VI, which are directed towards the minus-end 

(Park et al. 2007). They have a conserved myosin ATPase cycle, even across different 

families (Sellers 2000). The enzymatic activity of these motors is coupled to structural 

changes associated with track interactions, to produce motile movement. 

 

Myosins share a common structure comprised of head, neck and tail regions, as 

shown in Figure 1.2. The head domain is composed of the motor domain, so-called 

because it contains the sites for catalytic activity, and the lever arm. The motor domain 
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contains the nucleotide- and actin-binding sites. The neck region contains a variable 

number of IQ motifs, which are units of 23 amino acids with the sequence IQXXXRGXXXR 

that serve as a binding site for calmodulin, or calmodulin-like proteins such as myosin light 

chains (Bähler and Rhoads 2002). The binding of light chains stabilises the lever arm and 

allows for some regulation of the myosin protein. Some myosin classes have a cargo 

binding domain at the C-terminal end, to facilitate intracellular transport of vesicles or 

organelles – myosin V is an example (Masters, Kendrick-Jones, and Buss 2016).  

 

 

 
Figure 1.2. Schematic of the organization of the typical myosin molecule. All myosin 
sequences contain a motor domain with conserved elements able to bind ATP as well as 
more variable regions involved in actin binding. The sequence of the tail region is more 
variable, depending on the myosin class, but can contain coiled-coil sequences for 
dimerization. The most C-terminal regions can play a role in targeting the myosin to specific 
cargos in the cell for certain myosin classes. Figure adapted from (Sweeney and Houdusse 
2010). 
 

 

1.1.2 Sarcomeric myosin 

 

Myosins were traditionally termed conventional or unconventional. Class II myosins make 

up the conventional myosins, and are responsible for muscle contraction. Class II myosins 

are hexameric protein complexes, composed of 2 heavy chains, 2 essential light chains 

(ELC) and 2 regulatory light chains (RLC). The 2 heavy chains form a dimer, with the motor 

domain found at the N-terminal part. The IQ motifs on the heavy chains facilitate binding of 

the essential and regulatory light chains. The C-terminal region of the heavy chain forms a 

rod-like coiled-coil structure. Proteolytic digestion of the myosin dimer with the enzyme 

papain can generate heavy meromyosin (HMM) and light meromyosin (LMM) (Figure 1.3) 

(Kominz et al. 1965). The HMM fragment consists of the 2 globular head domains, the 2 

neck regions, and a short portion of the coiled-coil tail, leaving the remaining coiled-coil 

portion of the tail in the LMM fragment. HMM interacts with many components of the 

sarcomere, predominantly with actin in the thin filament. The head and tail portions of HMM 

can be separated by further digestion with α-chymotrypsin to generate subfragment 1 (S1) 
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and subfragment 2 (S2) (Gergely, Gouvea, and Karibian 1955; Mihalyi and Harrington 

1959). The S1 is a monomeric motor domain; the remaining dimeric neck region makes up 

S2.  

 
Figure 1.3. Schematic representation of cleavage products of a myosin molecule to generate 
HMM and LMM. HMM can be further digested with α-chymotrypsin to generate subfragment 
1 (S1) and subfragment 2 (S2). Figure from (Hooper and Thuma 2005). 
 

 

 1.1.3 Structure of class II myosin 

 

The first crystal structure of an S1 molecule was obtained in 1994 for chicken skeletal S1, 

in what is now termed the post-rigor state of the cross-bridge cycle (Rayment et al. 1993). 

Since then, more high-resolution crystal structures have become available of myosin in 

different nucleotide-bound states, yielding insights into structural changes that the myosin 

motor is subjected to during the cross-bridge cycle (see section 1.15, Figure 1.12). To note, 

all residue numbers hereafter in this section are referring to the chicken skeletal S1 

structure. 
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Figure 1.4. Crystal structure of a chicken skeletal myosin motor domain in a post-rigor 
complex.  The lower 50 kDa subdomain is shown in green, the upper 50 kDa subdomain in 
blue, the converter domain in cyan and the essential and regulatory light chains in yellow. 
Figure from (Mansson, Rassier, and Tsiavaliaris 2015). 
 

S1 can be proteolytically digested into 3 fragments, which are named by their 

apparent molecular weights; a 25 kDa N-terminal domain, a central 50 kDa and a 20 kDa 

C-terminal domain (Mornet et al. 1979) (see Figure 1.4). The central 50 kDa fragment is 

composed of the upper 50 kDa and lower 50 kDa subdomains (U50 and L50, respectively). 

The U50 and L50 subdomains are separated by the central beta sheet and surrounding 

alpha helices, which together form a 4-5 nm deep cleft, extending from the nucleotide 

binding site to the actin-binding site. The actin- and nucleotide-binding sites are therefore 

on opposite sides of the seven-stranded β-sheet and are separated by 40–50 Å (Geeves, 

Fedorov, and Manstein 2005). The central β-sheet is composed of 7 strands, 6 of which 

are found in the U50 subdomain, and 1 from the L50 subdomain (Figure 1.5).  
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Figure 1.5. Topological map of the myosin motor domain. Helices are shown as circles, β 
strands are shown as triangles. The N-terminal SH-3-like β barrel is coloured yellow, the U50 
subdomain in pink, the L50 subdomain in green and the converter domain in blue. Figure 
from  (Geeves, Fedorov, and Manstein 2005). 
 

The L50 subdomain contains a major portion of the actin-binding site. The U50 

subdomain contains the nucleotide binding pocket, which is made up of switch 1 and switch 

2 and the P-loop. These switches move relative to one another depending on which 

nucleotide is present during the cross-bridge cycle.  Switch 1 is positioned at the bottom of 

the actin-binding cleft, and communicates between the nucleotide- and actin-binding sites. 

The conformation of this switch determines whether the cleft is in a ‘closed’ or ‘open’ 

conformation. Switch 2 recognises γ-phosphate of a nucleotide bound in the pocket. The 

conformation of switch 2 is dictated by the conformation of the active site. Movement of the 

switch 2 helix forces the SH1-SH2 helices to adjust, causing a 60 degree rotation of the 

converter and lever arm, which generates a 5 nm step size (Koppole, Smith, and Fischer 

2006). 

 

The 20 kDa fragment contains a long alpha helix (residues 648-689) that spans the 

structure from loop 2 to the third strand in the central beta sheet, followed by a turn and a 

broken helix. This broken helix is referred to as the SH1-SH2 as it contains two reactive 

thiols at positions 697 (SH2) and 707 (SH1). The distal end of the SH1 helix forms a hinge 

for the ensuing converter domain (Rayment et al. 1993). 

 

The converter domain is juxtaposed to the lever arm, and is located close to the 

essential light chain binding site (Dominguez et al. 1998). The converter domain acts as a 

fulcrum for the lever arm, and amplifies small conformational changes that occur in the 

active site by as much as 10 times. To do this, the converter domain links to the relay helix, 
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which is found in the L50 subdomain. Switch 2 is at the end of the relay helix, which when 

bound to a γ-phosphate	will cause a twisting and bending of the relay helix, so that the 

distal end goes through a large movement. The distal end is in close contact with the 

converter domain, and so the converter domain moves with it to generate a 5-10 nm 

translation of the tip of the IQ domain. Therefore, the position of the relay helix determines 

the movement of the converter domain. 

 

A number of surface loops are present within the structure to provide physical links 

that mediate conformational changes as a result of actin- and nucleotide-binding. Switch 2 

and the P-loop are involved in nucleotide binding, whilst loop 2, loop 3, loop 4 and the 

cardiomyopathy loop are involved in actin binding (Figure 1.4, 1.5). There are a number of 

important linkers in the motor domain such as the SH1 helix, relay helix and the strut loop, 

all of which are joined by key structural domains.  

 

The cardiomyopathy loop (CM loop) is found at positions 406-416, shown at the top-

right of Figure 1.5. Its sequence is important for correct myosin function (Liu et al. 2005). 

The name comes from the hypertrophic cardiomyopathy causing-mutation found at the 

human 403 residue, which is an arginine to glutamine substitution. This was the first 

missense point mutation to be identified in human β-cardiac myosin (Geisterfer-Lowrance 

et al. 1990). Unconventional myosins can be regulated via this loop due to phosphorylation 

of a serine or threonine (termed TEDS site) by members of the p21-activated kinase family 

(Attanapola, Alexander, and Mulvihill 2009; Fujita-Becker et al. 2005; Novak and Titus 

1998). Phosphorylation at this site stimulates actin-activated ATPase and motor activity; 

motors without a negative charge at this position display low ATPase and motility (De La 

Cruz, Ostap, and Sweeney 2001; Ostap et al. 2002; Fujita-Becker et al. 2005). The CM 

loop forms an antiparallel β-strand that is the major site of interaction of the upper 50-kDa 

motor domain with actin. 

 

Another loop in the motor domain is the strut loop, composed of 4 amino acids at 

positions 590-593 which is found on the surface near the actin-binding site. A single 

insertion or deletion into this loop abolished strong binding to actin, although the motor 

activity in the absence of actin was unchanged, showing the loop is important for actin 

binding (Sasaki, Ohkura, and Sutoh 2000).  
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1.1.4 Structure of the sarcomere 

 

The mammalian muscular system contains 3 types of muscles – skeletal, cardiac and 

smooth. The underlying contractile mechanism is conserved across all 3 types, but they 

differ in their structural ordering and regulation. Smooth muscle is an involuntary, non-

striated muscle. It is present in the walls of hollow organs such as the intestines and the 

bladder, and is controlled by the autonomous nervous system. In contrast, cardiac and 

skeletal muscle have a highly structured appearance when viewed under the microscope. 

The work of this thesis will focus on the skeletal and cardiac muscle systems. 

 

Cardiac and skeletal muscles have a striated appearance, and are composed of 

muscle fibres, which are individually comprised of myofibrils. It is myofibrils that contain 

repeating units of the basic, contractile unit of a muscle cell – the sarcomere. An electron 

micrograph is shown in Figure 1.6 – the alternating light and dark bands are visible which 

are responsible for the striated pattern. A sarcomere is typically 1.5 - 3.2 microns in length 

(Burkholder and Lieber 2001), depending on muscle type and is composed of thin and thick 

filaments.  

 
Figure 1.6. Electron micrograph of a sarcomere from skeletal muscle. The A-band 
corresponds to the region containing overlapping thin and thick filaments, the I-band 
contains just the thin filaments. The Z-disc and M-bands are where thin and thick filaments 
respectively are anchored. (Agarkova and Perriard 2005). 

 

The thin filaments are seen as light bands, or isotropic bands (I-bands). The thin 

filaments are composed predominantly of actin, tropomyosin and troponin. Running 

through the middle of the I-band is the Z-disc, which in Figure 1.6 can be seen as a dark, 

thick line. The Z-disc anchors the thin filaments in the sarcomere. The dark bands, or 

anisotropic bands (A-bands) are composed of overlapping thin and thick filaments. The 

thick filament is composed of mostly myosin, myosin light chains and myosin binding 

 



12 
 

protein-C (MyBP-C). The slightly darker line running through the middle of the A-band 

represents the M-band, which is where thick filaments are anchored. The H-zone 

corresponds to the part of the A-band that contains no thin filaments. The sliding filament 

theory obtained its name due to the phenomenon by which, when viewed under a 

microscope, the thick filaments slide past the thin filaments during contraction, resulting in 

the I-band and H-zone shortening but the A-band remaining the same length (Huxley and 

Hanson 1953). Myosin thick filaments are bipolar with a bare zone halfway along their 

length, where there is antiparallel packing of myosin molecules (Figure 1.7). The myosin 

heads then appear in the two outer parts of the filaments, termed the bridge regions (AL-

Khayat et al. 2013).  

 

 

 
Figure 1.7. Electron micrograph of isolated myosin filaments (M) from the ventricular muscle 
of a human heart. Some actin filaments can be seen in the background, labelled (A). Scale 
bar is 200 nM. Adapted from (AL-Khayat et al. 2013) 
 
 

As well as the major components of the thin and thick filaments, there are a number 

of accessory proteins found within the sarcomere that confer stability on the structure. This 

is fundamental for skeletal and cardiac muscles to function. Titin is one example, which is 

a “giant” protein 1 µM in length, spanning half the length of a sarcomere. It is thought to act 

like a molecular spring, maintaining a continuous filament structure throughout a myofibril. 

The elastic I-band region of titin consists of immunoglobulin sequences with intermittent 

unique regions. Titin’s elastic properties are a result of a region that contains 70% proline, 

glutamic acid, valine and lysine residues (Labeit and Kolmerer 1995). In the A-band, titin 

interacts with MyBP-C and the myosin tail domains, thus linking titin to the thick filaments 

(Houmeida et al. 1995; Soteriou, Gamage, and Trinick 1993). The A-band region of titin is 

composed of super repeats of seven fibronectin III domains and four immunoglobulin 

domains. These domains correspond to the C-zone thick filament repeats and may define 
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the number and position of myosin and MyBP-C (Freiburg and Gautel 1996). Titin has also 

been found to interact with actin (Chung et al. 2011; Nishikawa et al. 2019). 

 

Anchored at the Z-disc is a protein called nebulin. Nebulin has a chain weight of 

around 600–900 kDa and runs along the thin filaments in the I-band from the Z-disc to the 

actin filament tip. Nebulin occurs in many splice isoforms of varying length and this length 

has been shown to determine the length of the actin filaments in the I-band of skeletal 

muscle (Siegfried, Ottenheijm, and Granzier 2011). The thin filament is terminated at the 

end toward the M-band (the pointed end) by the protein tropomodulin (McElhinny et al. 

2001). At the Z-disc, the barbed ends of actin-based thin filaments are cross-linked via α-

actinin (Maruyama and Ebashi 1965).  A schematic of the sarcomere containing thick 

filaments, thin filaments and titin is shown in Figure 1.8.  

 

 

 
Figure 1.8. Schematic representation of the sarcomere. Actin (grey) forms thin filaments with 
tropomyosin (orange) and troponin. Thick filaments are depicted blue. The lateral boundaries 
of the sarcomere are at the Z-disc (yellow). The I-bands surround the Z-disc, and correspond 
to thin filaments with no over-lapping thick filaments. The M-band is shown in purple, and 
constitutes where thick filaments are anchored. The A-band region contains both thin and 
thick filaments, whereas the H-zone contains only thick filaments. Titin (pink) extends the 
length of a half-sarcomere. Figure from (Henderson and Gregorio 2015). 
 
 

Another component of the thick filament is the myosin-binding protein family 

(MyBP). This family consists of myosin-binding protein C (MyBP-C) and myosin-binding 

protein H (MyBP-H). Both are located in the C zone (A-band region containing cross-

bridges) and are restricted to transverse stripes spaced at 43 nm intervals (Bennett et al. 

1986; Craig and Offer 1976). The structure of MyBPs includes a series of immunoglobulin 

and fibronectin type III repeat domains (Flashman et al. 2004). MyBPs interact with the 

thick, thin, and titin filament systems. The highly conserved C-terminal C10 domain of both 

MyBP-C and MyBP-H allows for interaction with myosin tails contributing to the 
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maintenance and stability of the thick filament (Kampourakis et al. 2014; Moos et al. 1975; 

Mouton et al. 2015). Additionally, the C-terminus binds titin and is necessary to localize 

MyBPs to the A-band (Gilbert et al. 1999; Labeit et al. 1992). The N-terminus of MyBP-C 

binds actin filaments, potentially regulating contraction by altering the actin-activated 

myosin ATPase activity (Hartzell 1985; Squire, Luther, and Knupp 2003), while MyBP-C’s 

N-terminal M-motif interacts with the S2 region of myosin (Gruen and Gautel 1999; Starr 

and Offer 1978). Although the precise function is still being elucidated, MyBPs are involved 

in filament assembly and in regulation of contraction (Weith et al. 2012). MyBP-C is thought 

to link the thick and thin filament systems and further regulate cross-bridge cycling by 

displacing tropomyosin and competing with myosin for actin binding (Ackermann and 

Kontrogianni-Konstantopoulos 2011). 

 

The myosin-containing thick filaments interact with the thin filament in a sarcomere 

to produce movement. The thin filament is primarily composed of three proteins; actin, 

tropomyosin and troponin. Actin is one of the major structural elements of muscle. Actin is 

an activator of myosin; in the absence of actin, myosin can hydrolyse ATP, but its presence 

increases the ATPase rate by a factor of 100 for fast adult skeletal isoforms. Vertebrates 

express 3 main actin isoforms – α, β, and γ. α-actin is predominantly expressed in skeletal 

and cardiac muscles during adulthood, whilst γ-actin is expressed in smooth muscles of 

blood vessels and internal organs. Cytoplasmic β- and γ-actin are ubiquitous and have a 

role in the cytoskeleton with expression occurring in all cells in different ratios (Dugina, 

Shagieva, and Kopnin 2019; Garrels and Gibson 1976).  

 

Actin is a highly conserved protein with a sequence identity of 85% between the 

most divergent family members. Over 50 actin binding proteins have been identified in both 

lower and higher eukaryotes (Geeves, Fedorov, and Manstein 2005); distant but 

undisputable prokaryotic homologues of actin have been identified (van den Ent, Amos, 

and Löwe 2001; Jones, Carballido-López, and Errington 2001). Multiple actin monomers 

(globular actin, G-actin) polymerise to form filaments (filamentous actin, or F-actin), which 

forms the backbone of the thin filament. The critical protein concentration (CC, concentration 

of monomers) for actin polymerisation is 0.1 μM – above this concentration G-actin will 

spontaneously form F-actin (Tilney 1976; Vinson et al. 1998).  

 

The first crystal structure of G-actin was achieved in 1990 (Kabsch et al. 1990). 

Figure 1.9 shows the structure of G-actin at atomic resolution (Geeves, Fedorov, and 

Manstein 2005). The monomer consists of two subunits, called the ‘small’ and ‘large’ 

domains. These domains are separated by a central cleft which contains the nucleotide 
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and cation binding site (Gordon, Homsher, and Regnier 2000). Each domain can be further 

subdivided; the small domain contains subdomain 1 and 2, and the large domain contains 

subunits 3 and 4. Two parallel strands of F-actin can form a double helical structure (as 

seen in Figure 1.10). Subdomains 3 and 4 are located internally in the helix whereas 

subdomains 1 and 2 are solvent-exposed as they are located on the surface of the filament, 

where interaction with myosin heads can occur. The helix repeats every 13 actin 

monomers, or every 360 Å (Graceffa and Dominguez 2003). 

 

 
Figure 1.9. Crystal structure of an actin-monomer, or globular actin, showing the 4 
subdomains. An ADP nucleotide and magnesium cations are shown. Figure from (Otterbein, 
Graceffa, and Dominguez 2001). 
 
 

An extended, fibrous molecule called tropomyosin is also found in the thin filament 

with actin (see Figure 1.10). It is composed of two right-handed α-helices, which form a left-

handed coiled-coil structure. The formation of a coiled-coil is energetically favorable as 

hydrophobic interactions of non-polar residues in the two chains stabilize the molecule. 

Tropomyosin can exist either as homo- or heterodimers (Janco et al. 2013). Mammalian 

fast skeletal and cardiac tissues express variable ratios of α- and β-tropomyosin and 

assemble as αα and αβ dimers. ββ heterodimers have low thermal stability, and so are not 

typically found in most muscle tissues (Janco et al. 2013). Tropomyosin molecules extend 

over and interact with seven actin monomers, which together with troponin subunits confer 

regulation of the thin filament. The formation of an extended filament is achieved through 

N-terminal to C-terminal aggregation of the tropomyosin dimer via an 8-11 amino acid 

residue overlap. Tropomyosin spans seven actin monomers on each strand of an F-actin 

polymer (Gordon et al. 2000). Tropomyosin regulates the binding of myosin to actin as a 

result of structural changes in the troponin complex. 
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The troponin complex is composed of three subunits – troponin-C (TnC), troponin-I 

(TnI) and troponin-T (TnT) (Greaser and Gergely 1973), which are named after their 

specific functions in the complex. The positions of these three subunits are shown in Figure 

1.10. TnC consists of two globular regions, which are connected through a long α-helix. 

TnC binds Ca2+ via calcium-binding EF-hand motifs. Binding of calcium to the EF-motif 

leads to conformational changes allowing the N-terminal domain of TnC to interact with TnI 

(McKay et al. 1997). TnI is the inhibitory subunit of the troponin complex and is able to block 

actin.myosin ATPase activity in the presence of tropomyosin (Leavis and Gergely 1984). 

When TnC interacts with TnI, it dissociates from actin, shifting tropomyosin to allow for 

weak binding of myosin to actin. The calcium state of TnI changes its affinity for binding 

partners based on the binding of calcium to TnC and its subsequent conformational shift 

(Lehman et al. 2001). TnT is the third component of the complex, which anchors the 

troponin complex to tropomyosin (Franklin et al. 2012; Kobayashi, Jin, and de Tombe 

2008). The function of TnT is somewhat controversial. It is thought to organize the 

regulatory complex as a whole, by anchoring TnC and TnI to the thin filament; however TnT 

may also have roles in muscle contraction through regulation of actin.myosin ATPase 

activity, calcium sensitivity, and force generation in the sarcomere (Potter et al. 1995; Willott 

et al. 2010). 

 

 As detailed above, there are a plethora of interactions that occur between the 

numerous proteins of the thin and thick filaments of a sarcomere. These interactions are 

summarized in Figure 1.10. 
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Figure 1.10. Summary of interactions occurring in thick and thin filaments in a striated 
muscle. Muscle contraction is dependent on the interactions between myosin-based thick 
filament via the head domain and actin-based thin filament. The troponin complex, composed 
of troponin T, troponin C and troponin I (TnT, TnC, TnI, respectively) and tropomyosin 
regulate actin.myosin ATPase in a Ca2+-sensitive manner. Thick filament regulator proteins - 
myosin essential light chain (ELC) and myosin regulatory light chain-2 (MLC2v) and MyBP-C 
- regulate myosin activation and function. MyBP-C interactions with actin, the myosin rod 
domain, MLC2v and titin are shown. The magnified, dashed circle highlights MyBP-C 
interacting with MLC2v, the actin- and nucleotide-binding sites in the myosin motor domain, 
and the phosphorylation site found at Ser14/15. Figure adapted from (Sweeney and Houdusse 
2010). 
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1.1.5 ATPase cross-bridge cycle 

 

The fundamental mechanism of muscle contraction was first described by Huxley and 

colleagues in 1954, who put forward the sliding filament theory when they observed 

sarcomere shortening under a light microscope (Huxley and Niedergerke 1953). The sliding 

filament theory was further expanded by Lymm and Taylor as a cycle containing 4 steps 

(Lymm and Taylor 1971). This is summarised in Figure 1.11. Briefly, myosin is bound to 

actin in the rigor complex (free of nucleotide). ATP binds, which leads to very fast 

dissociation of myosin from actin. The hydrolysis of ATP to ADP and Pi leads to formation 

of a stable myosin.ADP.Pi complex, whereupon actin can rebind. This leads to release of 

the products and return to the rigor state. In the last transition, myosin slides past actin in 

a rowing-like stroke – this event is referred to as the powerstroke. 

 

 
Figure 1.11. The Lymm-Taylor actin.myosin ATPase cycle. The binding of ATP to 
actin.myosin (in a rigor complex) leads to dissociation of myosin from actin. Structural 
changes in the lever arm orientation leads to the recovery stroke, followed by ATP hydrolysis. 
Myosin now rebinds actin weakly. Subsequent phosphate release is coupled to the 
powerstroke. Changes in the orientation of the lever arm and ADP release increases the 
affinity of myosin for actin, returning the complex to a rigor state. Figure from (Yu et al. 2007). 
 

 

Todays widely accepted model of the actin.myosin ATPase cycle, also known as 

the cross-bridge cycle, is composed of coupled mechanical and biochemical events, 

converting biochemical energy into movement. Since the Lymm-Taylor model was 

proposed, numerous structures have been characterised for myosin in different parts of the 

cross-bridge cycle. This has provided insight into how the kinetic cycle is related to 
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structural changes in the myosin molecule, as shown in Figure 1.12. The work in this thesis 

is based upon an 8-step cycle, which will be discussed in further detail in section 1.6.2.  

 

 

 

 
Figure 1.12. Actin.myosin ATPase cycle showing the known structural states of Myosin VI in 
the force-generating cross-bridge cycle. The motor domain of Myosin VI is depicted in four 
structural states: Rigor (nucleotide free, on F-actin); Post-Rigor (detached from F-actin, 
bound to an ATP analog); pre-powerstroke (bound to ADP.Pi, representing post hydrolysis 
with ADP.Pi trapped in the active site) and the Pi release state. Figure adapted from (Llinas 
et al. 2015). 
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1.2 Myosin class II isoforms 
 
 1.2.1 Isoform genes 

 

The myosin class II family contain 13 isoforms in humans, which can be divided into three 

groups: smooth, striated and non-muscle. Nine of these 13 isoforms are striated, which this 

thesis will focus on (see Table 1.1). Expression levels vary across species, developmental 

time point and muscle type (Bottinelli and Reggiani 2000; Lu et al. 1999; Toniolo et al. 

2004). ATP turnover and force production vary between different isoforms. Fatigue 

tolerance is also a property of the isoform being expressed (Karatzaferi, Adamek, and 

Geeves 2017). These variations confer unique characteristics to different muscle types, 

and the varied myosin composition within skeletal muscle fibres allows for a wide range of 

contractile velocities and forces among different muscle types.  

 

The relative proportions of isoforms varies between different muscle types (Harridge 

et al. 1996). In humans, adult muscle fibres may contain predominantly one myosin isoform 

(beta, IIa or IId), or they can be found of mixtures of fibre types (beta/IIa, IIa/IId for example 

(Bottinelli and Reggiani 2000)). Early expression patterns define adult fibre types, although 

changes in isoform composition can occur in response to neural, hormonal and mechanical 

factors (Loughna et al. 1990; Pette and Vrbová 1985). A skeletal muscle will have a range 

of mechanical & energy demands exerted upon it – thus, diversity in fibre composition is 

required to meet these demands.  

 

The human MYH genes are highly conserved, sharing 77-95% sequence homology 

when excluding the MyHC-7b (Table 1.2). This is true for both the motor and tail domains 

of myosin isoforms. There is even higher conservation across mammalian species – Table 

1.3 shows the % sequence identity of beta and embryonic isoforms between rat, rabbit, 

human and bovine species. For both isoforms, the sequence homology is 97-98% identical. 
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Gene Protein Abbrev. 
Chromosome 

position 
Class Human Tissue Expression 

MYH2 MyHC-IIa IIa 17 Striated Skeletal muscle post birth 

MYH4 MyHC-IIb IIb 17 Striated Unknown 

MYH1 MyHC-IId IId 17 Striated Skeletal muscle post birth 

MYH6 MyHC-α Alpha 14 Striated Atrial myocardium 

MYH7 MyHC-β Beta 14 Striated Ventricular myocardium and slow skeletal 

MYH3 MyHC-emb Embryonic 17 Striated Embryo skeletal muscle and regenerating muscle 

MYH8 MyHC-peri Perinatal 17 Striated Embryo skeletal muscle and regenerating muscle 

MYH13 MyHC-EO Extraocular 17 Striated Extraocular and specialised muscles 

MYH7b MyHC-7B 7b 20 Striated Unknown 

MYH9 NMMHC-IIa Non-muscle IIa 22 Non-muscle Cytoplasm 

MYH10 NMMHC-IIb Non-muscle IIb 17 Non-muscle Cytoplasm 

MYH11 SMMHC Smooth 16 Smooth Smooth muscles 

MYH14 NNMHC-IIc Non-muscle IIc 19 Non-muscle Cytoplasm 

 
Table 1.1. Summary of myosin class II genes and the proteins they encode. Data in table taken from  (Schiaffino and Reggiani 2011; Lee et al. 
2019).
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Table 1.2. Sequence identities for A) full length, B) motor domain and C) rod domains of 

human class II myosin isoforms. Sequences were obtained from NCBI and alignments were 

performed using NCBI protein BLAST. 

 

 

Table 1.3. Sequence identities between 4 mammalian species for A) MyHC-β and B) MyHC-

emb full length myosin. Sequences were obtained from NCBI and alignments were performed 

using NCBI protein BLAST. 

 

  

  



23 
 

1.2.2 Cardiac isoforms 

 

The myocardium of mammalian hearts contains two cardiac isoforms of myosin; alpha 

(MyHC-α) and beta (MyHC-β). The two cardiac proteins are encoded by the genes MYH6 

and MYH7, respectively, which are found as a gene cluster on chromosome 14 at position 

12. MyHC-α is the major isoform expressed in atrial myocardium in mammals, although a 

small proportion is also expressed in ventricular myocardium (Lompré, Nadal-Ginard, and 

Mahdavi 1984). MyHC-β is the major isoform expressed in ventricular myocardium in 

mammals, although it is also expressed in slow skeletal muscle fibres, such as the soleus 

muscle fibre (Weiss 1996). 

 

The two cardiac myosin genes are differentially regulated during development and 

respond opposingly to various hormonal stimuli, hemodynamic stress and exercise 

(summarised in Table 2). The ratio of expressed isoforms varies between species - larger 

mammals, including humans, express predominantly β-MyHC in their cardiac ventricles 

while small mammals such as rats and mice express predominantly α-MyHC.  

 

 

Stimuli MyHC-α MyHC-β 

­ Triiodothyronine Hormone ­ ¯ 

¯ Triiodothyronine Hormone ¯ ­ 

Exercise ­ ¯ 

Pressure overload ¯ ­ 

Ageing ¯ ­ 

 
Table 1.4. Summary of directional regulation of cardiac MYH6 and MYH7 genes. Adapted from (Weiss 

1996). 

 

 

Defining the properties of cardiac isoforms in detail has been limited by the 

availability of pure samples of the individual proteins. Unlike skeletal myosins, the cardiac 

isoforms are unstable and typically generate small quantities of protein. The recent 

advancements in recombinant human muscle myosin production enabled the kinetic 

characterisation of the two cardiac isoforms (Deacon et al. 2012). This work demonstrated 

that the MyHC-α isoform has a 10-fold faster ADP release rate than the MyHC-β, indicative 

of a fast-type myosin. This is supported by the work of Piroddi et al, who showed that single 

human atrial myofibrils have a five-fold faster rate of tension development after a period of 
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rapid shortening than single ventricular myofibrils (Piroddi et al. 2007). MyHC-α also has a 

~10-fold faster ATP hydrolysis step and exhibits a ~five-fold weaker actin affinity than 

MyHC-β. These kinetic differences distinguish the two isoforms, and confers the contractility 

characteristics of the chambers of the heart in which they are found.  

 

The ratio of cardiac myosin isoforms play a major role in the determination of cardiac 

contractility, as demonstrated by Herron et al, who showed that myocyte fragments 

expressing ~12% MyHC-α developed ~52% greater peak power output than fragments 

expressing 0% MyHC-α (Herron and McDonald 2002). There is evidence to suggest that a 

lower expression of MyHC-α is a hallmark of pathology – healthy human hearts contain 

~10% MyHC-α, but end-stage failing hearts contain no detectable MyHC-α (Miyata et al. 

2000; Nakao et al. 1997).  As will be discussed in section 1.4, both isoforms have been 

implicated in cardiomyopathies.  

 

1.2.3 Developmental isoforms 

 

Humans contain two developmental isoforms, embryonic (MyHC-emb) and perinatal 

(MyHC-peri), which are encoded by the genes MYH3 and MYH8 respectively. Both isoforms 

are found in the developing embryo (along with MyHC-β) (Whalen et al. 1981) and 

regenerating muscles (Sartore, Gorza, and Schiaffino 1982). Their expression is down-

regulated after birth when they are replaced by adult skeletal isoforms (Schiaffino et al. 

2015). The embryonic isoform was characterised in 2016 by Walklate et al, who 

demonstrated it is a slow-type motor with similar kinetic properties to the MyHC-β (J. 

Walklate et al. 2016). For example, both have a slow ADP release rate.  

 

MyHC-peri is predicted to be a fast-type isoform, due to the motor domain sequence 

in the MYH8 gene having considerable sequence similarity with skeletal fast MYH genes 

(Weiss, Schiaffino, and Leinwand 1999). Further supporting this is ATPase data, which was 

collected on the two isoforms by Resnicow et al in 2010, and it was observed that the MyHC-

peri isoform had a Vmax similar to the adult skeletal isoforms, whereas the embryonic isoform 

was slower (Resnicow et al. 2010). The kinetic properties of the perinatal isoform will be 

explored in more detail in chapter 3. 
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1.2.4 Skeletal isoforms 

 

In vertebrates, 3 skeletal myosin isoforms exist, MyHC-IId, MyHC-IIa and MyHC-IIb, 

encoded by the genes MYH1, MYH2 and MYH4 respectively. The sequence homology 

between the 3 isoforms is 91-96% for both the motor and rod domains. Whilst humans 

encode the MYH4 gene and the mRNA has been detected in extraocular and jaw muscles 

(Horton et al. 2001; Horton et al. 2008), MyHC-IIb is not expressed at the protein level in 

humans (Ennion et al. 1995; Smerdu et al. 1994). However, the MyHC-IIb is expressed in 

skeletal muscles of small mammals such as mouse, rat and rabbit. Interestingly, MyHC-IIb 

is expressed in pig, a mammal similar in size to humans (Lefaucheur et al. 1998); this 

suggests the expression of MyHC-IIb is not simply size-dependent. Kinetic characterisation 

has been conducted for these isoforms, which showed all three had similar properties. In 

particular, the ADP release rate was more than 100 s-1 for these isoforms, which is 

characteristic of a fast-type myosin.  

 

1.2.5 Extraocular isoform 

 

Extraocular muscles (EOMs) surround the eye ball and are responsible for stabilization of 

the eye and for several distinct voluntary and reflex movements. There are six EOMs in 

mammals, the contractile properties of which differ significantly from typical skeletal 

muscles. The specific tension (the maximum muscle force normalised with respect to 

muscle cross sectional area) is lower for EOMs than that observed in limb muscles whilst 

also having a very high speed of contraction alongside a relatively high resistance to fatigue 

(Close and Luff 1974; Lynch, Frueh, and Williams 1994; Porter and Baker 1996). 

 

Many fibres in EOMs express multiple class II isoforms, and localise them 

differentially along the length of the fibre (Walro and Kucera 1999; Wieczorek et al. 1985; 

Park et al. 2012). Mammalian extraocular muscles express all nine of striated myosin 

isoforms (Jacoby et al. 1990; Rubinstein, Porter, and Hoh 2004; Zhou, Liu, and Kaminski 

2010), one of which includes MyHC-EO, the protein product of the MYH13 gene. MyHC-EO 

is a specialised isoform of myosin that is specific for extraocular muscle (Sartore et al. 

1987), although it is has also been found to be expressed in laryngeal muscles (Lucas, 

Rughani, and Hoh 1995). It was first categorized as a fast type myosin likely contributing to 

rapid eye movements (Briggs and Schachat 2000; Schachat and Briggs 2002). This was 

supported by the work of Resnicow et al, who demonstrated that a recombinant MyHC-EO 

had an ATPase rate similar to recombinant adult skeletal isoforms (Resnicow et al. 2010). 
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The same construct also had a weak ADP affinity and fast ADP release rate, which also 

matches the properties of adult fast skeletal isoforms (Bloemink et al. 2013). 

 

1.2.6 MyHC-7b 

 

MyHC-7b was first identified by Nagase et al, and the expression profile of the genes 

revealed that MyHC-7b RNA is expressed in cardiac and skeletal muscle, foetal and adult 

brain tissues (Nagase et al. 1998). Low expression levels were also identified in the liver, 

pancreas, spleen, lung, kidney and ovary. MyHC-7b shares the highest sequence homology 

to MyHC-β and MyHC-α (69% and 68% respectively – see Table 1.2). Interestingly, each 

of these myosin genes encodes an intronic microRNA - micro RNAs derived from introns 

can suppress intracellular RNA homologues and regulate the gene function. These intronic 

microRNAs play a role in cardiac stress response, and the MyHC-α and MyHC-7b intronic 

microRNAs also have redundant roles in skeletal muscle fibre-type specification (van Rooij 

et al. 2009; van Rooij, Liu, and Olson 2008). Despite this, MyHC-7b is not detected at the 

protein level in mammalian cardiac or skeletal muscle. The discrepancy between RNA and 

protein expression is due to a splicing event in which the transcript is produced, but 

undergoes some nonsense mediated decay, while the intronic microRNA is still expressed 

(Bell, Buvoli, and Leinwand 2010).  

 

1.2.7 Expression of isoforms 

 

The expression pattern of the two developmental isoforms have been well characterised in 

the mouse and rat models. In mice, MyHC-emb appears 9.5 days post coitum (dpc) and 

MyHC-peri 10.5 dpc (Lyons et al. 1990). In rats, MyHC-emb and MyHC-β are expressed in 

the first muscle fibres to form, so called primary generation fibres (Narusawa et al. 1987; 

Rubinstein and Kelly 1981). Secondary generation fibres express MyHC-emb and MyHC-

peri (Condon et al. 1990). The developmental isoforms disappear at the same time as the 

adult skeletal myosin isoforms (MyHC-IIa, MyHC-IId, and MyHC-IIb) are expressed. In rats, 

the protein is detected a few days after birth (DeNardi et al. 1993) while in mice the 

transcripts can be detected before birth (Lu et al. 1999). The timing of the downregulation 

of the developmental isoforms appears to be dependent on the body muscle at both the 

mRNA and protein level (Agbulut et al. 2003; Lu et al. 1999). 

 

Human muscle developmental pattern of myosin isoform expression has yet to be 

fully elucidated. Figure 1.13 shows in situ hybridisation studies of MYH transcripts in 

developing human skeletal muscle. At week 8 of gestation, primary generation fibre is 
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present in the human skeletal muscle, containing MyHC-emb and MyHC-β (Barbet, 

Thornell, and Butler-Browne 1991; Draeger, Weeds, and Fitzsimons 1987). Secondary 

generation fibres are formed after week 10 and express only MyHC-emb at week 12, MyHC-

peri protein being detected at later stages (Cho, Webster, and Blau 1993).  

MYH3 transcripts account for about 81 % of all MYH transcripts in the human foetal skeletal 

muscle at week 15 of gestation (Racca et al. 2013). At week 16 to 17, a tertiary fibre 

population has been identified, initially composed of adult fast myofibres (Draeger et al. 

1987; Ecob-Prince, Hill, and Brown 1989). In situ hybridization indicates that MyHC-IIa 

transcripts are weakly expressed at week 19 and more strongly at birth, whereas MyHC-IId 

transcripts are barely present at birth but expressed at 30 days after birth. ~95% of human 

skeletal muscle fibres appear to derive from secondary and tertiary fibres and their 

diversification into the fast type IIa or beta lineage occurs before birth, during the third 

trimester of gestation, whereas the differentiation of type IId fibres takes place in the first 

week after birth (Schiaffino et al. 2015). 

 

 

 
Figure 1.13. MyHC transcripts in developing human skeletal muscle. The transcripts were 

revealed by in situ hybridization using probes specific for the following MYH genes: MYH3 

(MyHC-emb, a–d), MYH8 (MyHC-peri, e–h), MYH7 (MyHC-β, i–l), MYH2 (MyHC-IIa m–p), and 

MYH1 (MyHC-IId, q–t). Muscles examined were quadriceps femoris from 9 and 19-week-old 

fetuses and vastus lateralis from 1-day- and 1-month-old newborns. Scale bar = 30 μm. Figure 

from (Schiaffino et al. 2015).  
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1.3 Myosin evolution 
 

1.3.1 Myosin superfamily evolution 

 

Myosins are molecular motors that diversified very early during eukaryotic evolution 

(Thompson and Langford 2002; Richards and Cavalier-Smith 2005). Most eukaryotes rely 

on myosins, and only a few taxonomic groups, e.g., red algae and diplomonad protists 

appear to live without them (Vale 2003).  Prokaryotes do not contain myosin - a shift in 

nucleotide-binding specificity from GTP to ATP is thought to have occurred to form the 

myosin–kinesin ATPase ancestor at the very origin of eukaryotes (Cavalier-Smith 2002).  

 

To understand the class distribution of myosin in different taxa, Odronitz and Kollmar 

compared the genomic analysis of 2,269 myosins found in 328 organisms (Odronitz and 

Kollmar 2007). Based on the myosin class content of each organism and the positions of 

each organism's single myosins in the phylogenetic tree of the myosin motor domains, a 

eukaryotic tree of life was reconstructed, as shown in Figure 1.14. This identified 35 sub 

groups of myosin. They also identified five new classes, class-XX, class-XXI, class-XXII, 

class-XXVIII, and class-XXXV, which are specific to Metazoan species. 13 of the 35 sub 

groups have been identified in humans. The data show that several taxa have evolved 

asynchronously, for example the Mammalia and the Fungi. 
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Figure 1.14. Phylogenetic tree of 1,984 myosin motor domains divided into 35 subgroups. The 

expanded view shows the sequences of myosin class-VI and distribution within taxa. The 

scale bar represents estimated amino acid substitutions per site. Figure from (Odronitz and 

Kollmar 2007). 

 
 

Sebe-Pedros and colleagues followed on from this to demonstrate the diversity of 

myosin proteins in the last eukaryotic common ancestor (LECA) genome (Sebé-Pedrós et 

al. 2014). They showed that LECA possessed a minimum of six myosin paralog families all 

encoding different protein domain architectures (summarised in Figure 1.15). The authors 

also demonstrated that paralogs and domain architectures were continuously generated 

throughout eukaryote evolution, with a significant expansion of myosin abundance and 

domain architectural diversity at the stem of Holozoa, predating the origin of animal 

multicellularity. Their data demonstrated that the myosin gene family underwent multiple 

large-scale expansions and contractions in paralog families combined with extensive 

remodelling of domain architectures. 
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Figure 1.15. The six paralog families found within the LECA genome, and their protein domain 

structures. Numbers indicate the number of IQ domains found within a myosin class. Figure 

adapted from (Sebé-Pedrós et al. 2014). 

 

 

Whilst there is an extensive number of myosin classes, Class I and class II 

myosins were proposed to be the most ancient (Thompson and Langford 2002). As shown 

in Figure 1.1 in Chapter 1.1.1, these two classes contain the highest number proteins per 

class for all 35 sub-groups. Class II contains almost twice as many proteins as class I (617 

versus 381, respectively). Whilst there is a high sequence homology between these two 

classes, a novel glycine residue inserted at position 507 in the Dictyostelium discoideum 

sequence was found to distinguish all class II myosins from other classes (Figure 1.16). 

This demonstrates the potential significance a single amino acid change can have on 

diversifying such a complex protein. 

 

 
Figure 1.16. Multiple sequence alignment from residues 488 – 517 showing the glycine 

insertion at residue 507 specific to class II myosins. Figure from (Richards and Cavalier-Smith 

2005). 
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Another interesting aspect of myosin evolution is the branch which generates 

striated and non-striated muscles. Previous analyses of myosin II proteins in bilaterian 

animals (animals with bilateral symmetry) have recognised two phylogenetic groups; the 

first containing genes expressed in smooth muscle cells and in non-muscle cells, while 

genes of the second group are specifically expressed in skeletal or cardiac muscle cells 

(Hodge and Cope 2000; Sellers 2000). This suggests a gene duplication event gave rise to 

these two distinct phylogenetic groups (Goodson and Spudich 2006; Korn 2000; OOta and 

Saitou 1999). 

 

Steinmetz and colleagues however demonstrated that the gene duplication that 

generated the two groups occurred much earlier than the origin of muscle cells; they showed 

that a muscle protein core set, including a type II myosin heavy chain (MyHC) motor protein 

characteristic of striated muscles in vertebrates, was already present in unicellular 

organisms before the origin of multicellular animals (Steinmetz et al. 2012). Furthermore, 

'striated muscle' and 'non-muscle' myosin orthologues are expressed differentially in two 

sponges (Tethya wilhelma and Amphimedon queenslandica), compatible with a functional 

diversification before the origin of true muscles. Cnidarians and ctenophores possess 

striated muscle myosin heavy chain orthologues but lack crucial components of bilaterian 

striated muscles, such as genes that code for titin and the troponin complex, suggesting the 

convergent evolution of striated muscles (Steinmetz et al. 2012). 

 

1.3.2 Adaptation to body mass in mammals 

 

When studying the structure of myosin, it is known where the changes in sequence occur 

between the different isoforms, but how they alter the behaviour of myosin is harder to 

define. A defining feature of myosin, the rate of muscle contraction, can be controlled in two 

ways. The first is by expression of different combinations of myosin isoforms within a whole 

muscle (Pellegrino et al. 2003). The second process is the adaptation of individual myosin 

isoforms to change in species size to meet physiological demands. The contraction 

parameters of a muscle fibre have to adjust to the size of an organism; as size increases, 

muscle contraction becomes slower to compensate for the greater momentum associated 

with a larger body mass. An example of this is the decrease in heart rate of species as their 

body mass increases; heart rate is correlated with basal metabolic rate and inversely related 

to body size (Savage et al. 2007).  

 

Variations in properties between isoforms are well established, but changes in the 

properties of the same isoforms in different species is less well defined. McGreig et al 
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investigated the evolution of myosin class-II isoforms in mammals to identify if the isoforms 

have adapted to the change in body mass as animals evolved from smaller to larger body 

masses (McGreig et al. 2019). They analysed 730 sequences from 12 class-II isoforms in 

65 mammalian species and found that non-muscle and developmental myosin class II 

isoforms have not adapted to increased species size. Counter to this, there is strong 

evidence for adaptation in the MyHC-β and two adult fast myosin II isoforms, MyHC-IIa and 

MyHC-IIb, motor domains whose sequence divergence is correlated with body mass. Figure 

1.17 shows this relationship for MyHC-emb, MyHC-β, NNM-IIa, MyHC-IIb, NMMHC-IIb, and 

MyHC-IIa isoforms. To note, mammals from three clades were represented. As seen in 

Figure 1.17, the relationship between sequence divergence and body mass is not 

dependent on the clade the species belongs to.  

 

Based on the rate of divergence with body mass, the 12 myosin II isoforms form 

three distinct groups. The first group contains four of the five main adult sarcomeric 

isoforms, with the MyHC-IIb and MyHC-β isoforms showing the greatest mass related 

sequence divergence, followed by the MyHC-IIa and MyHC-IId isoforms. Further, the rate 

of change at the DNA sequence level for the MyHC-β and fast isoforms shows an increase 

in the number of non-synonymous changes, while the rate of synonymous changes remains 

relatively stable with increasing body mass. This implies there has been a specific increase 

in non-synonymous changes. At the other extreme, five of the isoforms (MyHC-7b, MyHC-

emb, MyHC-peri, NMMIIa and NMMIIb) exhibit little divergence of sequence with body 

mass. This result with quite distinct dependence upon mass suggests different selection 

conditions apply to the two groups. This is compatible with the adult muscle myosins 

adapting to the requirements of changes in size whilst the cellular myosins were not 

exposed to this selection pressure. The remaining three isoforms (MyHC-α, MyHC-smooth 

and MyHC-EO) are intermediate between the two groups with a lower rate of sequence 

divergence with body mass. 
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Figure 1.17. Sequence Identity (%ID) vs Mass (kg) for the motor domains of six myosin II 

isoforms; MyHC-emb (EMB), non-muscle A (NMA), non-muscle B (NMB), MyHC-β (β), MyHC-

IIa (2A) and MyHC-IIb (2B). Symbols indicate the clade that each species belongs to; grey 

squares (Euarchontoglires), black triangles (Laurasiatheria) and clear circles (Afrotheria and 

Metatheria). Sequence identity is pairwise to the mouse. Figure from (McGreig et al. 2019). 

 

 
Pellegrino et al showed that for a muscle fibre expressing a single myosin heavy 

chain, the maximum shortening velocity was characteristic of the myosin isoform expressed 

(Pellegrino et al. 2003). As the myosin motor domain contributes to muscle contraction 

velocity, it is hypothesised that the changes in velocity can occur via variation in the amino 

acid sequence of the myosin motor domains for the MyHC-IIa, MyHC-IIb and MyHC-β 

isoforms. Unlike the ventricle tissue in which MyHC-β is expressed, skeletal muscles in 

mammals use their muscles and myosin isoforms in many different ways for different 

purposes. Thus, the selective pressure on a specific myosin isoform in skeletal muscle may 
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be different in each mammal. However, the heart and slow muscle fibres are relatively 

similar in function across mammals and the simple relationship between heart rate and size 

is well established. This makes MyHC-β an attractive protein to study to investigate the 

adaptation of sequence identity to match changes in body mass.  

 

1.3.3 Velocity and ADP-release 

 

The mechanical activity a myosin can perform is an inherent characteristic of the motor, and 

this property varies between myosin types. It was proposed in 2011 by Bloemink and 

Geeves that myosin motors can be classified into four distinct types;  1) Slow, efficient force 

holders; 2) fast, powerful movers; 3) strain sensors and 4) processive/signal transducers 

(Bloemink and Geeves 2011). A defining feature that differs between these types, and 

hence different isoforms, is how the ADP release step affects the overall cycle. This can 

include differences in the thermodynamic and kinetic coupling of actin and ADP binding to 

myosin, different load sensitivity of ADP release step and changes in duty ratio (Nyitrai et 

al. 2006; Nyitrai and Geeves 2004). 

 

Duty ratio (DR) refers to the fraction of time a myosin motor spends strongly bound 

to actin during the cross-bridge cycle. Changes in DR facilitate adaptation of a myosin 

molecule to suit its individual function. For example, fast myosins which work in groups have 

a DR of 0.05-0.1 (O’Connell, Tyska, and Mooseker 2007), whereas processive myosins 

have a DR of >0.7, enabling a single myosin molecule to track along an actin filament and 

drag a cargo (De La Cruz et al. 1999). Other motors can adjust their DR in response to load, 

calcium and magnesium concentration, or phosphorylation states (Adamek, Coluccio, and 

Geeves 2008; Durrwang et al. 2006; Fujita-Becker et al. 2005). The rate constants that 

define detachment and reattachment of myosin to actin govern the DR; detachment of 

myosin from actin is controlled by ADP release from an actin.myosin.ADP complex, or by 

ATP binding to actin.myosin. For fast type myosins, measured ADP-release is typically too 

fast to limit the shortening velocity, and so the rate of cross-bridge detachment after 

completion of the powerstroke limits the maximum shortening velocity of the muscle fibre 

(Iorga, Adamek, and Geeves 2007; Nyitrai et al. 2006). For class III, IV and slow myosins, 

shortening velocity is limited by ADP release (or the isomerisation leading to ADP release) 

(Iorga, Adamek, and Geeves 2007; Bloemink et al. 2007).  

 

It has been shown for some isoforms (although it may be true for all) that 

isomerisation of an actin.myosin.ADP complex is required for ADP release, as described in 

Scheme 1 (Nyitrai and Geeves 2004). Equilibrium between these two states varies for 
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different myosins, both between and within classes. After phosphate release and swinging 

of the myosin lever arm, ADP is retained in the nucleotide pocket which is in a closed 

conformation. A further rotation of the lever arm in the direction of the load the motor is 

bearing is required for the nucleotide pocket to open (Batters et al. 2004; Cremo and 

Geeves 1998; Smith and Geeves 1995). The protein conformational change that drives the 

nucleotide pocket from a closed to open state is termed KCO, and is required to facilitate 

ADP release. The apparent affinity of ADP for actin.myosin and thermodynamic coupling is 

controlled by KCO (Bloemink and Geeves 2011). The apparent ADP affinity, KADP, is typically 

weak (of the order of 100 μM), meaning that KCO is the driver of the ADP affinity, and k+CO 

is rate-limiting for ADP release. Indeed, this constant varies between different myosin 

classes (Bloemink and Geeves 2011; Walklate, Ujfalusi, and Geeves 2016). 

 
Scheme 1. The two-step process of ADP release from an actin.myosin.ADP complex. A = 

actin, M = myosin, D = ADP. 

 

Further highlighting this is the relationship between maximum shortening velocity 

and body mass of a mammal, as seen on a logarithmic plot in Figure 1.18A. The allometric 

equation was fitted to the data points to determine whether maximum shortening velocity 

has scaled with changes in body mass. For IIa, IIb and IId fibres, the allometric coefficients 

were -0.098, -0.041 and -0.048 respectively (Pellegrino et al. 2003). Slow fibres showed a 

steeper decrease of maximum shortening velocity with mass, and had an allometric 

coefficient of -0.175. This suggests that the slow isoform has adapted to changes in body 

mass.  

 

A well-established relationship of sliding velocity (v), the lifetime of a cross-bridge 

(τ) and the working stroke (d) can be defined by τ = d / v (Siemankowski and White 1984; 

Siemankowski, Wiseman, and White 1985). τ can be no greater than d / v without producing 

drag on moving filaments, so 1 / τ is the minimum rate constant (kmin) for any event during 

the attached part of the cycle, i.e., kmin = v / d. From this, the rate constant controlling ADP 

release can be predicted from shortening velocity data, as shown in Figure 1.18B for MyHC-

β. This shows a very close fit between the measured values and the predicted values; the 

two parameters show a high correlation with a slope close to 1, which indicates that the rate 

of ADP release controls velocity. Further, the rate constant controlling ADP release does 
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vary for different myosins (Weiss et al. 2001), highlighting its importance in tuning the 

protein for a specific function.  

 

 
 

Figure 1.18. Relationship between myosin isoform, muscle shortening velocity and the rate 

constant for ADP release. (A) Maximum shortening velocity of muscle fibres expressing a 

single myosin isoform, plotted against the average mass of the species the muscle came 

from. (B) Relationship between the measured rate constant for ADP release from the 

actin.myosin cross-bridge and that predicted from the measured velocity of muscle 

shortening for MyHC-β. Figure from (J Walklate et al. 2016). 
 

 

The relationship between myosin sequence and velocity of contraction remains to 

be elucidated. How MyHC-β has adapted this ADP release step to generate changes in 

contraction velocity in mammals will be considered in Chapter 4. 
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1.4 Cardiomyopathies 
 
Myopathies are muscular and neuromuscular disorders, characterised by muscle weakness 

as a result of dysfunction of the muscle fibre. Myopathies have been reported in five of the 

nine striated MYH class II genes (see table 1.5). As shown in Table 1.5, the highest number 

of mutations reported in a single MYH gene is that of the MYH7 gene. These mutations 

have been implicated in a number of myopathies, including Hypertrophic Cardiomyopathy 

(HCM), Dilated Cardiomyopathy (DCM), left ventricular non-compaction, Laing distal 

myopathy, Scapuloperineal and limb girdle syndromes. More than 300 of these mutations 

give rise to HCM (Buvoli et al. 2008; Colegrave and Peckham 2014; Walsh et al. 2010). 

 

Table 1.5. Summary of myopathies caused by mutations in MYH genes. Table adapted from 

(Marston 2018). 

Gene Protein Myopathy 

No. of 

mutations 
reported 

MYH2 MyHC-IIa 
Inclusion body myopathy, distal and proximal 

myopathy, opthalmoplegia 
15 

MYH3 MyHC-emb 
Distal arthrogryposis types 1, 2A (also known 

as Freeman-Sheldon syndrome), 2B (also 
known as Sheldon-Hall Syndrome), 8 

33 

MYH6 MyHC-α 
HCM, DCM atrial-septal defect, other 

congenital defects 
33 

MYH7 MyHC-β 
HCM, DCM, left ventricular non-compaction, 
Laing distal myopathy, Scapuloperineal and 

limb girdle syndromes 
>800 

MYH8 MyHC-peri Distal arthrogryposis DA7 1 
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1.4.1 Hypertrophic cardiomyopathy 

 

Cardiomyopathies refer to diseases of cardiac muscle. The 3 most common types of 

cardiomyopathy are; dilated cardiomyopathy (DCM),  arrhythmogenic right ventricular 

cardiomyopathy (ARVC), and hypertrophic cardiomyopathy (HCM), which this thesis will 

focus on. HCM is an inherited form of cardiovascular disease, characterised by hypertrophy 

of the interventricular septum, which separates the left and right ventricles (Figure 1.19). 

This hypertrophy impedes the flow of oxygen-rich blood from the heart due a decreased left 

ventricular chamber volume. Patients often present with impaired diastolic dysfunction, 

fibrosis and myocyte disarray (Ho et al. 2002, 2010; Varnava et al. 2000) (Figure 1.20). The 

most common HCM phenotype is also accompanied by non-dilated, hyperdynamic left 

ventricle ejection fraction of less than 65% (Soler et al. 2018). This can lead to adverse 

remodelling with progressive dilation and subsequent thinning of the interventricular 

septum, leading to heart failure which simulates other cardiomyopathies such as restrictive 

or dilated cardiomyopathies (Olivotto et al. 2012).  

 

 
Figure 1.19. Schematic comparison of a healthy (A) and HCM diseased heart (B). Asymmetric 

hypertrophy of the interventricular septum as well as the left ventricular posterior wall and 

apex is present. Figure adapted from (Harvey and Leinwand 2011).  

 
 

HCM is a common cause of sudden cardiac death in young adults and athletes. It is 

currently unclear why the natural history of HCM is so variable; some individuals remain 

asymptomatic throughout life, and others may develop progressive symptoms with or 

without heart failure or experience sudden cardiac death (Fatkin and Graham 2002). 
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Figure 1.20. Examples of histological images of myocardium in A) normal myocardium and 

B) patient with HCM myofibre disarray and fibrosis. Figure adapted from (Yilmaz et al. 2010). 

 

 

The first case of HCM was described in 1958 (Teare 1958). HCM has a disease 

prevalence of 1:500 (Maron et al. 1995), although this figure is now thought to be closer to 

1:200 (Semsarian et al. 2015). Over 50% of cases of HCM are inherited, the most common 

inheritance pattern being an autosomal dominant trait (Poutanen et al. 2006). A large 

number of genetic studies have established that HCM can be caused by mutations in 10 

cardiac sarcomeric proteins (Figure 1.21). Mutations in MyHC-β account for 40% of the 

known mutations (Maron and Maron 2013). 

 

 
Figure 1.21. Schematic representation of the prevalence for each of the 10 known HCM-

causing genes in a cardiac sarcomere. Figure from (Maron and Maron 2013).  
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1.4.2 Early and late onset mutations 

 

The first single point mutation, R403Q, in human MyHC-β of heart muscle was identified in 

1990 as a cause of a particularly malignant form of familial HCM (Geisterfer-Lowrance et 

al. 1990). Since then, a further 300 have been identified, ~65% of which occur in the motor 

domain (Colegrave and Peckham 2014). Offspring of an affected individual have a 50% 

probability of inheriting a mutation and risk for the disease, although sporadic cases have 

been reported due to de novo mutations (Greber-Platzer et al. 2001). 

 

Genetic causation is very complex because HCM typically shows variable 

penetrance and expressivity, even within the same family (Cahill, Ashrafian, and Watkins 

2013; Ingles et al. 2017). The range of ages at clinical diagnosis of HCM is broad; however, 

manifestations before 14 years of age are atypical (Maron et al. 2003). The early age at 

diagnosis and the striking differences between childhood cardiomyopathies from adult-

onset cardiomyopathies in terms of morbidity and mortality indicate distinct causes of these 

pathologic conditions (Maron 2004; Yetman and McCrindle 2005). To investigate this, 

Morita et al in 2008 assessed family medical histories of 84 children diagnosed with HCM 

before the age of 15 (Morita et al. 2008). 33 of these children had a family history of 

cardiomyopathy, 21 of which carried a mutation. 51 children did not have a family history of 

cardiomyopathy, 25 of which carried a mutation. Sequence analysis of the MYH7 gene of 

these children identified nine mutations, five of which were novel. Four of these mutations 

were found in the motor domain.  

 

A similar study from 2009 (Kaski et al. 2009) investigated causes of HCM in 79 

patients diagnosed before or at the age of 13. 42 were found to be mutation positive. Many 

of these mutations were known mutations in MyHC-β, actin, myosin binding protein-C 

(MyBP-C), myosin light chain, TnI and TnT. However, six novel mutations in MyHC-β were 

also identified; among these four were found in the motor domain. Prior to these studies, 

little data was available for the causes of HCM in children, due to the low reporting frequency 

of the disease in children (Colan et al. 2007).  

 

Over 50 mutations have been identified in the converter domain of the MyHC-β 

motor, which suggests this region is a hot spot for cardiomyopathy mutations (Homburger 

et al. 2016). Three such mutations are classically linked with adult-onset HCM, and are 

predicted to be likely-pathogenic - R719W, R723G and G741R (Anan et al. 1994; Enjuto et 

al. 2000; Fananapazir et al. 1993). At present, it remains unclear as to what drives clinical 

symptom progression between the early and adult-onset mutations. 
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It is also important to note what constitutes a disease-causing HCM mutation. A 

mutation can be considered pathogenic, or likely pathogenic, on the basis that the clinical 

data meet the following criteria: 1) presentation of a HCM phenotype (i.e., left ventricular 

hypertrophy) in family members; 2) previously reported or identified as a cause of HCM; 3) 

absent from unrelated controls; 4) protein structure and function is importantly altered (e.g. 

frameshift with truncation); and 5) amino acid sequence change in a region of the protein 

otherwise highly conserved through evolution with virtually no variation observed among 

species, suggesting its importance to basic cellular function (Tester and Ackerman 2011; 

Richards et al. 2008). As shown in Tables 1.2 MyHC-β is a highly conserved protein, and 

Table 1.3 demonstrates the high sequence homology between species. The problem with 

novel mutations is the lack of data to suggest it is disease-causing. Such mutations, when 

reported in only a single individual, may be assigned as VUS (variants of uncertain 

significance). This is true for three of the mutations studied in this thesis; the H251N, P710R 

and V763M mutations.  

 

To address the problem of whether the molecular changes in function of MyHC-β is 

different between early- and late-onset mutations, the work in Chapter 5 aims to elucidate 

the kinetic properties of the cross-bridge cycle of four early-onset mutations (H251N, 

D382Y, P710R and V763M) and three late-onset mutations (R719W, R723G and G741R).  
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1.5 Myosin folding 
 
Correct activity and function of myosin is dependent on precise assembly and folding of the 

protein in the sarcomere. Whilst the components and overall architecture of the sarcomere 

is well established, less is known about the assembly process (Sanger et al. 2006). Myosin 

incorporation into thick filaments is one element of this assembly process that is not well 

understood. So far, it has been shown that folding of the myosin motor domain involves the 

assistance of the general chaperones Heat Shock Protein 70 (Hsp70) and Heat Shock 

Protein 90 (Hsp90) (Du et al. 2008; Etard et al. 2007; Gaiser et al. 2011; Hawkins et al. 

2008; Srikakulam and Winkelmann 2004) and of UCS-domain-containing proteins that 

function as myosin-specific chaperones (Barral et al. 2002; Hutagalung et al. 2002; Kachur 

and Pilgrim 2008; Lord and Pollard 2004; Wesche, Arnold, and Jansen 2003; Yu and 

Bernstein 2003).  

 

 1.5.1 UCS family 

 

The UCS (named after UNC-45 in Caenorhabditis elegans, CRO1 in Podospora anserina 

and She4p in Saccharomyces cerevisiae) family of proteins encompass chaperones that 

are required for the folding, assembly and function of myosin (Lee, Melkani, and Bernstein 

2014). Homologs of UCS proteins can broadly be divided into animal UCS proteins, 

generally referred to as UNC-45 proteins which contain an N-terminal tetratricopeptide 

repeat (TPR) domain (Das, Cohen, and Barford 1998), and fungal UCS proteins which lack 

this TPR domain. Both of these two sub-classes contain the canonical C-terminal UCS 

domain that is required for interactions with myosins. The presence of the TPR domain 

confer different functions of UCS proteins, as demonstrated in Figure 1.22 (Hellerschmied 

and Clausen 2014). Biochemical studies show that the fungal She4 UCS protein serves as 

a ligand for a 27-residue epitope of a yeast myosin V motor domain, which is located in 

close proximity to the nucleotide- and actin-binding sites (Shi and Blobel 2010). This 

suggests that the She4 dimer may physically link two myosin motor domains to determine 

the step size of myosin molecules walking along actin filaments. Contrastingly, TPR-

containing UCS proteins are able to form multi-chaperone complexes with the chaperones 

Hsp70 and Hsp90 (Gazda et al. 2013). TPR-containing UCS chaperones form oligomers 

which can fold myosin and assemble thick filaments (Gazda et al. 2013; Hellerschmied and 

Clausen 2014).  
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Figure 1.22. UCS proteins exert their chaperone activity with or without a TPR domain. On the 

left panel, TPR-containing UCS chaperones form chains to initiate myosin and partner 

chaperone (Hsp70, Hsp90) interactions and assemble thick filaments by arranging myosin 

head domains, as shown for myosin class II filaments. On the right panel, UCS chaperones 

without a TPR domain function as dimers. Interaction with folded myosin can also determine 

the step-size, as shown for the myosin V dimer. Figure from (Hellerschmied and Clausen 

2014).  

 

 

UNC-45 (uncoordinated-45) was originally identified as a result of mutations causing 

structural disruption of thick filaments in body wall muscle in the nematode Caenorhabditis 

elegans (C. elegans) (Epstein and Thomson 1974;Venolia and Waterston 1990). The unc-

45 gene is essential in C. elegans, but missense mutations result in disorganized and 

reduced numbers of myosin-containing thick filaments giving rise to a slow-moving, or 

uncoordinated, phenotype of adult worms (Barral et al. 1998; Ao and Pilgrim 2000). 

Mutations affecting the UCS domain of C. elegans UNC-45 result in paralyzed worms with 

reduced amounts of thick filaments and severe myofibril disorganization (Barral et al. 1998; 

Epstein and Thomson 1974; Hoppe et al. 2004; Venolia et al. 1999), indicating that UNC-

45 is important for myosin maturation and sarcomere organization (Ao and Pilgrim 2000; 

Kachur and Pilgrim 2008). 

 

UNC-45 homologs are present throughout metazoans, including worms, flies, frogs, 

mice and humans (Epstein and Thomson 1974; Etheridge, Diiorio, and Sagerström 2002; 

Price et al. 2002; Geach and Zimmerman 2010; Lee et al. 2011). In vertebrates, two 

homologs of UNC-45 have been identified, with different expression patterns and functions 

(Etheridge et al. 2002; Price et al. 2002); one that is expressed in general cell types (UNC-
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45a) and another that is specific to striated muscle (UNC-45b). UNC-45a is ubiquitously 

expressed and has been implicated in a diverse array of activities from chaperoning the 

progesterone receptor (Chadli et al. 2006; Chadli et al. 2008; Chadli, Felts, and Toft 2008) 

to cell proliferation and oncogenesis (Bazzaro et al. 2007; Price et al. 2002). In zebrafish 

and mice, UNC-45b has been implicated in myogenic processes in skeletal and cardiac 

muscles; when UNC-45b is absent the myosin containing thick filaments in trunk muscles 

are reduced and disorganized (Etard et al. 2007; Etheridge et al. 2002; Price et al. 2002). 

In line with this tissue specificity, abnormal UNC-45b function is associated with severe 

muscle defects resulting in skeletal and cardiac myopathies (Janiesch et al. 2007; Walker 

2001).  

 

1.5.2 C. elegans UNC-45 structure  

 

Gazda et al recently reported the crystallisation of the C. elegans UNC-45 protein (Figure 

1.23) (Gazda et al. 2013). UNC-45 contains a TPR domain that binds Hsp70/Hsp90 partner 

chaperones (Barral et al. 2002; Rajani Srikakulam, Liu, and Winkelmann 2008), a central 

armadillo repeat (ARM) domain of unknown function and a C-terminal UCS domain that 

interacts with the motor domain of myosin (Barral et al. 1998; Barral et al. 2002; Lee Venolia 

et al. 1999). 

 

As shown in Figure 1.23, the TPR domain of UNC-45 is assembled by three TPR 

motifs, each containing two antiparallel α helices. The helices are packed in a curved, right-

handed superhelix featuring a shallow groove at its concave side that is critical to recognize 

and bind specific peptide ligands and to tether partner chaperones (Scheufler et al. 2000).  
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Figure 1.23. Structure of the C. elegans UNC-45 protein. (A) Ribbon model and folding 

topology of UNC-45 illustrating its domain architecture and the used helix nomenclature (TPR: 

green; central: orange; neck: yellow; UCS: grey). Each TPR motif is made of two α helices A 

and B, whereas the ARM repeats are composed of three helices H1, H2 and H3. (B) The central 

domain serves as a scaffolding unit that arranges TPR and UCS domain. The two close-up 

views illustrate the corresponding UNC-45 domain interfaces (polar interactions represented 

as dotted lines). Upper panel: Interface of the central and UCS domains. Lower panel: 

Interface of central and TPR domain highlighting several short-distanced salt-bridges formed 

between Asp62-Lys269, Arg53-Asp279, Lys72-Glu281 and Glu29-Lys277. Figure adapted from 

(Gazda et al. 2013). 

 

The central domain is a flat, rectangular protein ribbon that is structured by helices 

H1, H2, and H3 of ARM repeats 1–5. The consecutive ARM hold the TPR domain in place. 

Interactions with the second functional domain, the UCS domain, are mediated by residues 

located on the H3 side of the central domain. Here, helices 4H3 and 5H3 form a flat binding 

surface to accommodate the loops protruding from ARM repeats. The UCS and central 

domains are connected by the neck domain. The helix pairs of the neck domain adopt a 

super-turn structure. In the slightly open UNC-45 fold, the UCS domain protrudes in a 20° 

angle from the central domain and is situated above the interface of the central and TPR 

domains. The UCS domain itself forms an almost regular right-handed superhelix. The 

parallel packed helices of neighbouring repeats assemble a spiralling scaffold with a long 

shallow groove that is lined by the H3 helices (Figure 1.23A). The UCS domain 

encompasses an extended loop (residues 602–630) that is inserted after helix 10H3 and 

represents one of the most conserved signature motifs of UCS proteins.  
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1.5.3 UNC-45 function 

 

In muscle cells, UNC-45 ensures proper folding of myosin to allow its assembly and function 

in the sarcomere (Ao and Pilgrim 2000; Barral et al. 1998; Etard et al. 2007; Lee et al. 2011; 

Melkani et al. 2011; Price et al. 2002; Srikakulam and Winkelmann 2004). During normal 

development, myosin maturation involves chaperones such as TriC/CCT and Hsp70 

(Srikakulam and Winkelmann 1999, 2004). Data from zebrafish studies suggest myosin 

then forms a complex with UNC-45 and Hsp90 in the cytosol (Etard, Roostalu, and Strähle 

2008).  

 

 The elucidation of UNC-45’s crystal structure (Lee et al. 2011; Gazda et al. 2013) 

suggested that it serves as a scaffold-like protein that can present Hsp90 bound at the TPR 

domain to myosin bound in the surface groove of the UCS domain, with the myosin possibly 

held in place by a binding loop (Fratev, Ósk Jónsdóttir, and Pajeva 2013; Gazda et al. 2013). 

Gazda et al proposed that the UNC-45 multimer establishes a multisite docking platform, 

which can recruit Hsp70 and Hsp90 partner chaperones to perform their activity in a periodic 

pattern on the unfolded myosin substrate. This is summarised in Figure 1.24. It is important 

to note, however, that direct observation of UNC-45 oligomers in vivo has not yet been 

reported. 

 
Figure 1.24. UNC-45 self-assembles a docking platform for multiple chaperone and myosin 

proteins. Hsp70/90 and myosin bind to specific sites on the TPR and UCS domains of UNC-

45. The UNC-45 multimer confers the proper spacing required to simultaneously fold and 

assembly myosin filaments. Figure from (Gazda et al. 2013). 
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UNC-45 may also have a protective role against in stress response (see Figure 

1.25). UNC-45 prevents heat-induced aggregation of myosin in vitro (Barral et al. 2002; 

Melkani et al. 2010). In fact, UNC-45 relocates from the Z-disks to the myosin-containing A-

bands during stress in zebrafish muscle (Etard et al. 2008). Once myosin successfully 

incorporates into thick filaments, UNC-45 and Hsp90 dissociate from myosin and move to 

the Z-disk for storage. In cases where UNC-45 needs to be cleared, this is accomplished 

by the ubiquitin/proteasome protein degradation system. UNC-45 associates with various 

enzymes such as ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2 and 

ubiquitin ligases E3/E4 (Hoppe et al. 2004). This complex can then transit to the 26S 

proteasome for degradation (Figure 1.25) (Janiesch et al. 2007). 

 
Figure 1.25. Model of UNC-45 chain formation in muscle maintenance. UNC-45 forms tandem 

modules that allow the simultaneous binding of Hsp70/Hsp90 and myosin, enabling the 

folding and assembly of myosin in regular spacing. In the fully developed muscle, monomeric 

UNC-45 might be stored at the Z-disk, which anchors the thin actin filaments of the I-band. 

Under stress conditions, UNC-45 is relocated to damaged myosin filaments of the A-band and 

might assemble into short chaperone chains to maintain the sarcomeric structure. Figure 

from (Pokrzywa and Hoppe 2013). 
 

As detailed above, the C. elegans UNC-45 has been well studied and characterised. 

However, the molecular basis for the activity of UNC-45 is not completely understood. In 

chapter 6, the interaction between the C. elegans UNC-45 and the C. elegans body wall 

myosin will be investigated in a cellular context. It will also deal with the question of whether 

the myosin-folding activity of UNC-45 can be exploited to produce recombinant myosin in a 

non-muscle environment. 
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1.6 Techniques used to probe functional properties of myosin  
 
The work of this thesis is focused on understanding how the kinetic signatures of myosin 

class II isoforms allow them to carry out diverse mechanical functions. To do this, stopped-

flow spectroscopy and a kinetic modelling approach were used.  

 

1.6.1 Stopped-flow spectroscopy 

 

Transient kinetic analysis is a useful tool for deducing the mechanisms of chemical 

interactions and complements traditional steady-state approaches which determine the 

overall behaviour of a reaction. Transient kinetics refers to the time course of a reaction 

before it reaches the steady-state - the concentrations of species change in time according 

to the Law of Mass action, and hence monitoring the progress of a reaction can lead to 

determination of the rate constants of the steps that make up a pathway (Bagshaw 2013b). 

Stopped-flow spectroscopy (hereon in referred to as stopped-flow) is a powerful technique 

used for studying such transient reaction kinetics. A typical stopped-flow spectrophotometer 

is shown in Figure 1.25, and consists of two air-driven drive syringes, mixing and 

observation chambers, a stop-syringe and a recording system.  

 

 

 
Figure 1.26. Schematic setup of a single mixing stopped-flow apparatus. Figure from (TgK 

Scientific 2019). 
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Small volumes (typically 60 μL) of solutions are rapidly driven from the two syringes 

(labelled A and B in Figure 1.26) containing the reactants into a mixing chamber. The 

resultant reaction volume then displaces the previous contents of the observation cell, thus 

filling it with freshly mixed reagents. The solution entering the observation cell is typically ~ 

two milliseconds old. The volume injected is limited by the stop syringe which provides the 

“stopped-flow”; as the solution fills the stopping syringe, the plunger hits a backstop, causing 

the flow to be stopped instantaneously and trigger data collection (Figure 1.27). The 

detectors can measure any optical signal, such as the absorbance or fluorescence of the 

solution, which is monitored as a function of time. It is important to note that the 

concentration of the reactants inside the observation cell is half that of the concentration in 

the drive syringes, as the samples are mixed in a 1:1 ratio in the mixing chamber.  

 

 

 
Figure 1.27. Three phases can be identified in the progression of the stopped-flow reaction. 

First, the old solution from the previous reaction is washed out; second, there is a brief 

continuous-flow phase as new solution passes though the cell; and third, the flow is stopped 

and the reaction profile is measured, which is when the detector is triggered. Figure adapted 

from (Bagshaw 2013a). 

 

There are a number of benefits to using stopped-flow to measure rapid kinetics of 

myosin and the ATP-driven cross-bridge cycle, most notably the kinetic identification of 

reaction intermediates formed throughout the cycle, and their corresponding lifetimes (De 

La Cruz and Ostap 2009). Furthermore, many of the experimentally observed rate constants 

in the cross-bridge cycle occur around the order of several hundred per second, and so 

data collection with millisecond time resolution is required to measure these rate constants. 

Therefore, stopped-flow is invaluable for measuring the kinetics of myosin. 
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1.6.2 Kinetic Modelling 

 

The transient kinetic analysis outlined in 1.6.1 and 2.3 can define a number of biochemical 

events of the actin.myosin ATPase cross-bridge cycle. This cycle is conserved for all 

myosins classes (De La Cruz and Ostap 2004). Unknown parameters of the cross-bridge 

cycle that cannot be determined experimentally, be that because of lack of experimental 

resolution or limited protein sample, can be predicted using kinetic modelling programs. 

Such programs fit multiple kinetic parameters determined from transient kinetics to steady-

state ATPase data. To investigate how such closely related myosin class II isoforms yield 

such a wide range of physiological properties, a modelling program called MUSICO (Muscle 

Simulation Code) was developed by Mijailovich and colleagues (Mijailovich et al. 2017). 

MUSICO simulates ATPase data from experimentally determined cross-bridge kinetics to 

predict the occupancy of the intermediates of the cross-bridge cycle. Within myosin class II 

isoforms, changes in the overall cycling speed and the fraction of the cycle spent in 

intermediate states determine distinct properties of an isoform, tuning it for its specific 

function (De La Cruz and Ostap 2004; Bloemink and Geeves 2011; Heissler and Sellers 

2016). Understanding how each isoform is adapted for its specific role, or how single point 

mutations can alter the behaviour of the motor, requires the contribution of each step in the 

cycle to be defined. This will be discussed in Chapters 3 and 5. 

 

The kinetic modelling approach used in this thesis is based upon an 8-state 

actin.myosin ATPase cycle, as shown in Figure 1.28 (Walklate, Ujfalusi, and Geeves 2016; 

Mijailovich et al. 2017). This is a more detailed description of the cross-bridge cycle, built 

on the Lymm-Taylor model shown in Figure 1.11. In the absence of nucleotide, myosin is 

bound to actin in a rigor complex (A.M). Upon ATP binding to the nucleotide pocket of the 

myosin motor domain, fast, irreversible detachment of myosin from actin occurs as a result 

of a conformational change in the myosin head (Sweeney and Houdusse 2010). This is 

caused by switch 1 closing around the ATP molecule, which pulls the U50 subdomain away 

from the L50 subdomain, opening the actin-binding cleft and resulting in a weaker affinity to 

actin. The subsequent release of actin from myosin leaves ATP bound to myosin (M.T), and 

is followed by switch 2 being brought into close proximity to the bound nucleotide, causing 

the SH1-SH2 helix to rotate and subsequently the converter domain to rotate by 60 degrees 

(Geeves and Holmes 2005). This action is termed the recovery stroke, and is necessary to 

prime the myosin for the power stroke (Muretta et al. 2015). The catalytic activity of myosin 

will then hydrolyse ATP to form ADP and Pi once switch 1 and 2 are closed. A stable 

myosin.ADP.Pi complex is formed (M.D.Pi), which has a higher affinity for actin than the 

M.T complex, meaning that actin is now able to rebind to the L50 subdomain (De La Cruz 
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and Ostap 2004; Heissler and Sellers 2016). This induces another conformational change; 

the 7-stranded central beta sheet twists to bring the U50 subdomain close to the L50 

subdomain, closing the actin-binding cleft.  Next, 2 events occur but the order in which they 

take place is still under debate (Houdusse and Sweeney 2016; Woody et al. 2019). Switch 

2 changes from a closed to open state, which opens the γ-phosphate binding pocket and 

facilitates phosphate release. Phosphate release coincides with the transition of myosin 

from a weakly bound to a strongly bound state with actin. The relay helix rotates, generating 

the power stroke (Sweeney and Houdusse 2010). Movement of the converter domain in the 

same direction as the working stroke opens the nucleotide binding pocket to facilitate the 

subsequent release of ADP, forming either the rigor complex in the absence of nucleotide 

or by displacement with ATP to repeat the cycle.    

 

 

 
 
Figure 1.28. The ATP-driven actin.myosin cross-bridge cycle. Myosin is shown as 2 ellipses 

and a rod; the larger ellipse represents the U50 and L50 domains, the smaller ellipse and rod 

representing the converter domain, lever arm and light-chain binding region. An actin 

polymer is represented by 3 grey circles. The nucelotide-free complex of actin.myosin (AM) 

can bind to ATP (AMT), leading to an isomerisation step (A-MT) with subsequent detachment 

of actin from myosin (MT). Hydrolysis of ATP generates a the myosin.ADP.Pi complex (MDPi). 

Actin rebinds to this complex (AMDPi), leading to phosphate release and the power-stroke 

occur (the exact order is still unknown). The actin.myosin now has a weaker affinity for ADP 

(AM-D), leading to ADP release (AM), completing the cycle. Figure adapted from (J Walklate et 
al. 2016).   
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1.7 Themes 
 
Despite decades of research into myosin, research activity in the field is still as lively, both 

in terms of basic research and disease-therapy focussed studies. There are still a number 

of unanswered questions within the field, one of which is how different myosin isoforms 

meet a wide spectrum of physiological needs whilst having such a high sequence identity. 

The work presented in chapters 3-6 aims to address this question. To do this, this thesis 

has four aims: 

 

1. To understand how human sarcomeric myosins from the class II family adapt their 

mechanochemical ATPase cycle to perform different functions within different 

muscle types. A combination of kinetic data and computer modelling was used to 

predict how myosin class II isoforms change the fraction of time spent in different 

occupancies of the cross-bridge cycle to bring about differences in contractile 

properties, such as economy of ATP usage, duty ratio and shortening velocity.  

 

2. Having identified some of the differences in contractile properties between myosin 

isoforms, the MyHC-β isoform was then used to further investigate how the 

sequence of the protein can drive adaptation to changes in body mass. In particular, 

the sequence changes that drive acceleration in ADP-release rates as body mass 

increases was explored. The relationship between ADP-release and velocity has 

been well documented, so we set out to identify if these sequence changes could 

contribute to the faster heart rates observed in smaller mammals. 

 

3. Having used MyHC-β to probe how the protein adapts to selective pressures, 

attention was then turned to understanding what goes wrong in the 

mechanochemical ATPase cycle of the same isoform during diseased states. More 

specifically, a number of mutations have been identified in childhood patients with 

HCM (early-onset), and it has been hypothesised that the effect of the mutations are 

more severe than mutations found in adults with HCM (or late-onset mutations). 

Stopped-flow was used to characterise kinetic parameters of the cross-bridge cycle 

for four early-onset and three late-onset HCM mutations. The mechanochemical 

cycle was then further explored using MUSICO, to try to understand the different 

contractile properties between the two groups of mutations. 
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4. One of the main problems with studying human cardiac disease, such as HCM, is 

the lack of available samples to study muscle function in health and disease. 

Recombinant expression systems currently enable myosin and its associated 

disease-causing mutations to be produced, but protein yields are limited and the 

method is very technical. Folding and assembly of myosin is critical for correct 

functioning of the protein, so using insights into the UNC-45 chaperone that is 

responsible for myosin folding we attempted to improve the current expression 

systems to purify sarcomeric myosins.  

 

 The overarching theme of this thesis is the aim to understand at a molecular level, 

how myosin can fine-tune its properties to allow such a diverse range of functions to be 

achieved, and how this is disrupted during diseased states. 
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2. Materials and Methods 
 
2.1 Materials 
  

2.1.1. Chemicals, Hardware and Software 

 

All reagents and chemicals were supplied from Melford laboratories, Sigma-Aldrich or Fisher 

chemicals, except for those listed in Table 2.1. 

 
Table 2.1 List of chemicals, hardware, software and apparatus used throughout this thesis. 
Chemical/Hardware/Software/Apparatus Supplier/Address 

Nucleotides (ATP, ADP) Roche 
Pyrene Molecular Probes 

EDTA free protease inhibitor tablets Roche 
Stopped-flow SF-61 DX2 TgK Scientific, UK 

LED light sources Ocean Optics 
Optical filters Schott, Germany 

Temperature controlled water baths K20, Haake, Germany 
Cary UV-50 spectrophotometer Varian, Germany 

Quartz cuvettes Hellma, Germany 
Eppendorf 5415R centrifuge Eppendorf, Germany 
Beckman J-26 XP centrifuge Beckman, USA 

Beckman Optima Ultracentrifuge Beckman, USA 
AKTA FPLC GE Healthcare, UK 

HisTrap 1 mL columns GE Healthcare, UK 
Sepharose 500 ml column GE Healthcare, UK 

IX71 Microscope Olympus 
Microscope slides and coverslips Thermo Scientific 

Weighing scales Sigma-Aldrich 
pH meter Sigma-Aldrich 

Pipettes, pipette tips Gilson, USA 
Unicorn GE Healthcare, UK 
Cary UV Varian, Germany 

Kinetic Studio TgK Scientific, UK 
Origin Studio OriginLab Corporation 
Methamorph Molecular Devices, USA 

MUSICO Mijailovich lab  
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2.1.2 Buffers  

 
Buffers used throughout this thesis are described in Table 2.2.  
 
 
Table 2.2 List of buffers used in this thesis. All buffers were prepared at room temperature. 
Where applicable, pH was adjusted using 1 M HCl and 1 M KOH. 
 

Buffer Ingredients pH 

Standard stopped flow 25 mM KCl, 5 mM MgCl2, 20 mM MOPS, 1 mM 
NaN3 

7.0 

Acetone-actin powder 
resuspension 

10 mM NaHCO3, 10 mM NaCO3, and 0.1 mM 
CaCl2   7.5 

Actin depolymerisation 10 mM Tris, 0.5 mM ATP, 0.2 mM CaCl2, 1 mM 
DTT  8.0 

F-actin 100 mM KCl, 2 mM MgCl2, 10 mM Tris, 1 mM 
ATP 

7.5 

Lysis Buffer 
20 mM Imidazole, 100 mM NaCl, 50 mM Tris, 1 x 
EDTA free protease inhibitor, 3 mM ATP, 0.5% 

Tween-20, 1 mM DTT  
 7.4 

HisTrap Buffer A 50 mM Tris pH 7.0, 500 mM NaCl, 0.05 % Tween-
20, 1 mM DTT,  7.0 

HisTrap Buffer B 50 mM Tris pH 7.0, 500 mM NaCl, 0.05% Tween-
20, 1 mM DTT, 1 M Imidazole 7.0 

Guba-Straub 100 mM KH2PO4, 50 mM K2HPO4, 300 mM KCl 6.6 

S1 digestion buffer 125 mM KCl, 10 mM KPi (pH 6.2), 2 mM EDTA, 2 
mM DTT  6.5 

Myosin storage 500 mM KCl, 10 mM KPi, 1 mM DTT, equal 
volume of glycerol  7.0 

5X SDS-PAGE sample 
buffer 

10% SDS, 0.05 % Bromophenol Blue (w/v), 10%  
2-mercaptoethanol, 40% glycerol (w/v), 0.625 M 

Tris base 
6.8  

In vitro motility assay 
buffer 

25 mM imidazole, 25 mM KCl, 4 mM MgCl2, 1 mM 
EGTA, and 1 mM DTT  7.0  
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2.2 Protein preparation 
 

2.2.1 Rabbit psoas and rat soleus myosin and S1 preparation 

 

The psoas muscle was extracted from the back and leg muscles of two rabbits, which were 

dissected immediately post mortem and stored on ice. After removing all fat and ligaments, 

the muscle was minced and left to stir in 3 L of Guba-Straub for 30 minutes at 4 °C. This 

was then centrifuged at 5,000 RPM for 30 minutes. The supernatant was used for the 

myosin preparation while the pellet was used to purify actin (section 2.2.2). 

 

Rabbit myosin was prepared by the method of Margossian and Lowey (Margossian, 

Lowey 1982). The supernatant was filtered through a cheese cloth to remove large parts of 

unhomogenised muscle, and subsequently through homogenised filter paper to remove fat. 

The filtrate was added rapidly to 30 L of cold water and left overnight at 4 °C to allow the 

myosin to precipitate. The water was siphoned off and the precipitated myosin centrifuged 

for 45 minutes at 5,000 RPM. The pellet was re-suspended in 1 L 0.5 M KCl and the 

overnight precipitation repeated. The precipitated myosin was centrifuged for 20 minutes at 

12,000 RPM. Myosin could either be stored in -20 °C by dissolving the pellet in myosin 

storage buffer and storing in 50% glycerol, or further digested to produce S1 fragments. 

 

Fresh myosin or myosin from a glycerol stock was allowed to precipitate in a large 

volume of distilled water overnight. The supernatant was siphoned off and the remaining 

precipitate centrifuged for 45 minutes at 5,000 RPM. The pellets were dissolved in the rabbit 

S1 digestion buffer. The mixture was warmed to 23 °C and 0.1 mg Chymotrypsin per mL of 

solution was added and left to stir at 23 °C for 10 minutes. To stop the digestion, 0.5 mM 

phenylmethylsulfonyl fluoride (PMSF) was added and the solution left to stir for 10 minutes. 

The digested myosin solution was dialysed against 5 mM KPi pH 6.5 for 12 hours. After 

dialysis, the solution was centrifuged for 1 hour at 12,000 RPM and the S1 was then purified 

by anion-exchange chromatography on a DEAE-sephacel column (500 mL gel bed volume), 

which had been equilibrated with 50 mM Imidazole pH 7.0. A KCl gradient of 0-250 mM KCl 

was used to elute the S1 which resulted in a peak with an absorbance at 280 nm. The 

fractions with high S1 content were checked for purity on a 4-12% Bis-Tris SDS-Page gel. 

UV spectroscopy was used to determine the final concentration of the S1 using the 

extinction coefficient ε1% = 7.9 cm-1 and a molecular weight of 115 kDa. 3% sucrose (w/v) 

was added, before the solution was drop frozen in liquid nitrogen, and stored at -20 °C. 

Once defrosted, the S1 was stable at 4 °C for 4-6 weeks. 
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 Rat soleus muscle was purified using the same method as for rabbit psoas S1 

outlined above, with some modifications. The soleus muscle was dissected from the calf 

muscle of male rats immediately post mortem. Minced muscle was left to stir in 100 ml of 

Guba-Straub. Myosin was precipitated using 250 ml of cold dH20 for 1 hour. Digested 

myosin was purified using a 20 ml gel bed volume DEAE-Sephacel column. After purification 

the S1 was stored at 4 °C and used within 5 days. 

 

2.2.2 Rabbit actin preparation 

 

The pellet obtained from the first centrifugation from the myosin extraction which contained 

the actin and thin filament proteins was dissolved in 5 L of buffer containing 4% NaHCO3 

and 0.1 mM CaCl2. This was left to stir at 4 °C for 30 minutes. The solution was then filtered 

through a cheese cloth, and the filtrate discarded. The residue from the filtration step was 

re-suspended in 1 L of acetone powder resuspension buffer. At room temperature, 10 L of 

water was added, stirred for 1 minute and the filtration step repeated. The residue was 

dissolved in 2.5 L cold acetone and left to stir for 20 minutes. This was filtered through 

cheese cloth and the filtrate discarded; this step was repeated a further three times until the 

residue became fibrous. The residue was then dried between two pieces of blotting paper 

for 48 hours and was sieved to form a fine powder, which can be stored at -20 °C.  

 

F-actin preparation was performed as described by Lehrer and Kerwar (Lehrer and 

Kerwar 1972), with modifications. 3 g of acetone powder was dissolved in 500 mL of cold 

actin acetone-powder resuspension buffer and left to stir for 30 minutes. Using a double 

layer of cotton cloth, the mixture was filtered under vacuum. The filtrate, which contained 

the actin, was centrifuged for 1 hour at 30,000 RPM. In order to polymerise the actin, the 

concentration of KCl and MgCl2 were increased to a final concentration of 100 and 2 mM, 

respectively. This was left to stir for 1 hour, followed by centrifugation for 3 hours at 30,000 

RPM. The pellet was dissolved into depolymerising buffer, homogenised, and dialysed for 

12 hours against 4 litres of depolymerisation buffer. Centrifuging the actin the next day at 

30,000 RPM for 1 hour removed any remaining filamentous actin. Using UV spectroscopy 

the actin concentration was determined using the extinction coefficient ε1% = 11.04 cm-1 and 

molecular weight of 42 kDa. This was then either drop-frozen in liquid nitrogen and stored 

at -80 °C, or used to prepare pyrene-labelled actin. 

 

Preparation of pyrene actin labelling is based on the method by Criddle et al (Criddle, 

Geeves, and Jeffries 1985). Actin was polymerised at room temperature by increasing the 

concentration of KCl and MgCl2 to a final concentration of 100 and 2 mM, respectively, and 
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was left to stir for 1 hour. The actin was diluted to 1 mg/ml. N-(1-pyrenyl)-iodoacetamide 

(pyrene; 5 mg/mL dissolved in dimethylformamide) was added stepwise to the F-actin 

solution while stirring to a final concentration of 1% (w/w) pyrene. The solution was stirred 

at room temperature for 18 hours in the dark and then centrifuged at 8,000 RPM for 1 hour 

to remove residual pyrene. The labelled actin was then pelleted by centrifugation at 30,000 

RPM for 3 hours. The actin pellet was dissolved, homogenised and dialysed overnight 

against standard stopped-flow buffer. The labelled actin was assayed by actin content 

(extinction coefficient ε1% = 11.04 cm-1 and molecular weight of 42 kDa) and pyrene content 

(extinction coefficient at 280 nm ε1% = 10.59; at 344 nm ε1% = 23.3). The final concentration 

of labelled actin was usually 100-200 μM and the efficiency of labelling was typically 80-

95%. 

 

When the concentration of actin is below 1 μM, F-actin will spontaneously 

depolymerise. To prevent this in stopped-flow assays, the F-actin was stabilised by the 

addition of phalloidin (Kurzawa and Geeves 1996). An equimolar stock of 10 μM actin and 

phalloidin (from Amanita phalloides) was incubated over night at 4 °C and remained stable 

for 4-5 days.  

 

 2.2.3 C2C12 cell protein expression and purification 
 

Shuttle plasmids containing the coding regions of the human MYH7 gene were constructed 

upstream of a 6x-Histidine tag. For the rat-human chimera studied in Chapter 4, the coding 

region was Met1-Ser843. For the HCM mutations studied in Chapter 5, a shorter S1 (sS1) 

was used, with translation terminating after ELC-binding IQ domain at Arg808. Using the 

pAdEasy kit (MP Biomedicals), the plasmids were used to construct recombinant 

replication-deficient adenovirus that expressed MYH7, as described by Resnicow and 

colleagues (Resnicow et al. 2010).  

 

To generate the rat-human chimera clone, a pUC19 plasmid containing the human 

β-myosin motor domain gene was digested with NsiI and NgoMIV to excise DNA encoding 

for residues 310 – 599 of the human β-myosin. This region was replaced with a 

complementary pair of synthetic oligos encoding for the same region, but with nine amino-

acid substitutions (Ala326Ser, Ser343Pro, Leu366Gln, Ile421Ala, Thr424Ile, Ala430Ser, 

Arg434Lys, Phe553Tyr, Pro573Gln). The HCM mutations were created using site directed 

mutagenesis to produce the His251Asn, Asp382Tyr, Pro710Arg, Arg719Trp, Arg725Gly, 

Gly741Arg, and Val763Met mutants. All clones were confirmed by sequencing. HEK293 

cells were used to amplify the viral particles, and the cell lysates were clarified using 



59 
 

caesium chloride gradients with the concentrated virus being stored in a glycol buffer at -20 

°C. 

 

For the culturing of C2C12 cells, 4-layer Nunc™ cell factory systems (Thermo 

Fisher) were used to increase culturing capacity. After the cells were seeded into these 

factories and had reached full confluency, they were differentiated from myoblasts to 

myotubes by addition of Differentiation Media, containing Dulbecco's Modified Eagle 

Medium, 2% Horse serum, 1X Pen/Strep and 1X L-Glutamine. The cells were incubated for 

3 - 4 days, after which the surface area in the factories were covered in myotubes and ready 

to infect. The myotubes were infected with 1 × 106 – 1 × 108 plaque forming units of 

adenovirus and incubated for 5 days in infection media containing Dulbecco's Modified 

Eagle Medium, 5% Fetal Bovine Serum, 1X Pen/Strep and 1X L-Glutamine. The cells were 

harvested by lifting off the surface with trypsin and collecting in a buffer of 30 mM HEPES, 

15 mM KCl, 135 mM NaCl, 2 mM EDTA, 60 mM sucrose, 0.2% Pluronic F-68 (cell 

membrane stabilizer from Sigma), at pH 7.5 and 4 °C. The cells were then pelleted at 4,000 

rpm at 4 °C for 30 min and fast-frozen in liquid N2. 

 

S1 or sS1 was purified from cell pellets as described by Resnicow et al and Deacon 

et al (Resnicow et al. 2010; Deacon et al. 2012). One cell pellet was incubated at 37 °C for 

1 minute before addition of 3 mL of lysis buffer. When the pellet was fully defrosted the 

volume was made up to 18 mL with lysis buffer. The sample was homogenised using a 

glass homogeniser (Fisher Scientific). The cell lysate was centrifuged at 80,000 RPM for 20 

minutes to remove the majority of the cell contents. The supernatant was then filtered 

through a 5 μm Minisart single use syringe filter (Sartorius Stedim Biotech, Germany), and 

the volume was increased to 18 mL using lysis buffer. 5 M NaCl was added to the solution 

to increase the final NaCl concentration to 0.5 M. A HisTrap HP 1 mL nickel column was 

equilibrated with HisTrap buffer A. The recombinant S1 was then eluted using a 0-1 M 

stepped imidazole gradient, eluting from the column at around 350 mM Imidazole using His-

Trap buffer B. The fractions were run on a 4-12% Bis-Tris SDS gel to identify the fractions 

with the highest purity, which were collected and pooled. Samples were dialysed overnight 

into the recombinant S1 stopped-flow buffer. The concentration of the S1 was determined 

using UV spectroscopy (extinction coefficient ε1% = 7.9 cm-1 and a molecular weight of 115 

kDa). Cell pellets weighing approximately 0.6 g derived from 1500-3000 mL would yield 

between 1-2 mL 2-20 μM active S1. S1 proteins were stored at -20 °C with 3% sucrose (w/v) 

and stored at -20 °C. When defrosted all protein preparations were used within 3 days. 
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2.2.4 SDS-PAGE gels 

 

Pre-cast polyacrylamide NuPAGE® 4-12% Bis-Tris Gels (1.0 mm thick, 10 or 15 wells) were 

used to check protein purity after purification. 5x sample buffer containing 2-

mercaptoethanol was added to samples and heated at 90 °C for 10 mins before loading. 

The gels were run in MOPS buffer (50 mL of 20 x NuPAGE® MOPS running buffer (Life 

Technologies) mixed with 950 mL dH2O) at 200 volts for 45 minutes. The gels were 

incubated in Coomassie blue staining solution (1 g Coomassie Brilliant Blue dissolved in 1 

L of: 50% (v/v) methanol, 10% (v/v) glacial acetic acid, 40% (v/v) dH2O). The stained gels 

were transferred to a de-staining solution (7% (v/v) glacial acetic acid, 25% (v/v) methanol, 

68% (v/v) dH2O) 3 times to reveal the protein bands. Proteins of interest were identified by 

comparison with PageRuler™ unstained protein ladder ranging from 10 to 200 kDa 

(Fermentas Life Sciences). 
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2.3 Kinetic measurements 
  

2.3.1 Stopped-flow and Fluorescence  

 

As described in section 1.6.2, stopped-flow spectroscopy was utilised to characterise kinetic 

properties of a number of different human isoforms or mutations. To do this, both intrinsic 

and extrinsic fluorescence was used.  

 

Intrinsic fluorescence is a result of fluorescence from a tryptophan residue at position 

508 (residue position in human MyHC-β sequence).  This residue is found on the end of the 

relay helix which moves relative to the rest of the motor domain during the ATPase cycle. 

Upon ATP binding, the conformational change associated with the recovery stroke causes 

the tryptophan to move, and resulting changes in fluorescence of this residue can be 

monitored. The intensity of this fluorescence varies between myosin isoforms, but for human 

cardiac isoforms a fluorescence change of 10% can typically be observed. Intrinsic 

fluorescence was excited at 290 nm and emission monitored through a WG320 cut off-filter.  

 

Extrinsic fluorescence is the result of a signal change from a fluorophore added to a 

protein of interest. As described in 2.2.2, pyrene can be chemically linked to polymerised 

actin, which attaches via a disulphide bond to a cysteine residue at position 374. Pyrene 

can be excited at 365 nm, but addition of myosin will quench this fluorescence. 

Fluorescence is restored upon myosin dissociation from actin. Pyrene fluorescence was 

excited at 365 nm and emission monitored through a KV399 cut-off filter. Human class II 

myosin isoforms quench pyrene fluorescence by 60 - 65%, and the C. elegans MHC-B 

protein by ~76%. 

 

Stopped-flow experiments were performed to measure transient kinetics of the 

acto.myosin ATP-driven cross-bridge cycle, which are outlined in 2.3.2. To note, all stopped-

flow experiments in this thesis were conducted with the motor domain of myosin proteins 

(S1), rather than full length myosin. 
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2.3.2 Transient Kinetics 

 

The simplest, unimolecular reaction possible is described in scheme 2.1. 

 

A à B 
Scheme 2.1. The rate law of a first order reaction with respect to A, where k is the first order 
rate constant (s-1).  
 

The Law of Mass Action states that the rate at which B is formed is proportional to the 

concentration of A. The rate at which A is lost can be expressed as: 

 

−
𝑑[𝐴]&
𝑑𝑡

= 𝑘[𝐴]& 

 

Integration gives the integrated first order rate law: 

 

−𝑘𝑡 = 𝑙𝑛[𝐴]& − 𝑙𝑛[𝐴], 

 

where [A]t is the concentration of A at time t and [A]0 is the concentration of A at time 0. 

Rearranging the equation gives: 

 

[𝐴]& = 	 [𝐴],𝑒/0& 

 

This equation can be used to describe the enzymatic reactions measured in stopped flow, 

which behave either as single or double exponentials. All single exponential transients from 

stopped-flow measurements were fitted to a single exponential equation: 

 

𝐹 = 𝐴21 − 𝑒/0&4 + 𝑐 

 

whilst all double exponential transients were fitted to a double exponential equation: 

 

𝐹 = 𝐴7(1 − 𝑒/09&) + 𝐴;21 − 𝑒/0<&4 + 𝑐 

 

where F = fluorescence, A = amplitude, t = time, k = rate constant, c = fluorescence offset. 

 

 

  

k 

Equation 2.1 

Equation 2.2 

Equation 2.3 

Equation 2.4 

Equation 2.5 
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There are a number of different types of reactions that can be measured with 

stopped-flow, as summarised in Table 2.3. Each type of reaction is characterised by a 

number of assumptions or conditions, which then determine the definition of the observed 

rate constant (kobs) in the assay. 

 
Table 2.3 Summary of kinetic reactions. 

Reaction Assumptions kobs 
A à B 1st order, irreversible 𝑘 

A+BàAB 
2nd order, 1-step, 

irreversible  
[B]>>[A] 

[𝐵]𝑘 

A+B⇌AB 
2nd order, 1-step, 

reversible  
[B]>>[A] 

[𝐵]𝑘?7 + 𝑘/7 

A+B⇌AB⇌A’B 

2nd order, 2-step, 
reversible 
[B]>>[A] 

Step 1 fast 

𝐾7𝑘?;[𝐵]
1 + 𝐾7[𝐵]

+ 𝑘/; 

 

 

2nd-order 1-step and 2-step reversible reactions are difficult to analyse because they 

involve two variables. The experimental conditions are therefore altered in stopped-flow 

assays to mimic first-order reactions, also known as pseudo-first order. In these conditions, 

one reactant is used in large excess (a minimum of 5-fold) over the concentration of the 

second reactant to ensure the concentration of the first reactant remains constant over the 

time course of the reaction being studied, and so does not become second order. Reactions 

of this type which have been studied in this thesis are described below. 

 

2.3.3 Pseudo-first order reactions 

 

Let us consider a second-order 2 step reversible reaction, as shown below for the ATP 

induced-dissociation of actin.S1 as an example. In a second-order 2 step reversible 

reaction, one of the two steps needs to be faster in order to differentiate the two steps. As 

shown in scheme 2.2, step 1 involves ATP binding to an actin.myosin complex, and the 

second step is the irreversible step of S1.ATP dissociating from actin. 

 
 
 
 
 
Scheme 2.2 – ATP induced dissociation of myosin or S1 from actin. A = actin, M = myosin, T 
= ATP. 
 

A·M + T 
k-1 k-2 
⇌ A·M-T A+ M·T 

k+1 k+2 

à 
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We can make the assumption that step 1 is very fast compared to step 2, and k+2 is very 

small. Therefore: 

 
𝑑[𝑀𝑇]
𝑑𝑡

= [𝐴𝑀𝑇]	𝑘?; 

 

To find the total concentration of AM:  

 

[𝐴𝑀]CDCEF = [𝐴𝑀] + [𝐴𝑀𝑇] + [𝑀𝑇] 

 

Putting AM in terms of AMT and MT: 

 

𝐾7 =
[EGC]
[EG][C]

     which rearranges to   [𝐴𝑀] = [EGC]
H9[C]

 

 

Inserting equation 2.8 into 2.7: 

 

[𝐴𝑀]CDCEF =
[𝐴𝑀𝑇]
𝐾7[𝑇]

+ [𝐴𝑀𝑇] + [𝑀𝑇] 

 

Solving for AMT gives: 

 

[𝐴𝑀𝑇] =
[𝐴𝑀]CDCEF − [𝑀𝑇]

1 + 1
𝐾7[𝑇]

 

 

Inserting into equation 2.6: 

 

𝑑[𝑀𝑇]
𝑑𝑡

= I
[𝐴𝑀]CDCEF − [𝑀𝑇]

1 + 1
𝐾7[𝑇]

J𝑘?; 

 

This can be simplified to: 

 
𝑑[𝑀𝑇]
𝑑𝑡

=
[𝐴𝑀]CDCEF𝐾7𝑘?;[𝑇]

𝐾7[𝑇] + 1
− [𝑀𝑇] K

𝐾7𝑘?;[𝑇]
1 + 𝐾7[𝑇]

L 

 

Integration of the 2nd part of equation 2.12 results in: 

 

Equation 2.6 

Equation 2.7 

Equation 2.8 

Equation 2.9 

Equation 2.10 

Equation 2.11 

Equation 2.12 
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𝑘MNO =
𝐾7𝑘?;[𝑇]
1 + 𝐾7[𝑇]

+	𝑘/; 

 

Where k+2 defines the maximum rate constant, 1/K1 gives the concentration of T to reach 

50% kmax and k-2 is the overall dissociation rate constant. The initial linear part of the 

hyperbola defines K1k+2. 

 

This hyperbola was used to fit the kobs values obtained from stopped-flow transients. 

 
2.3.4 S1 affinity for actin 
 

The method for determining the affinity of S1 for actin was described by Kurzawa and 

Geeves (Kurzawa and Geeves 1996). This is a titration assay in which a fixed concentration 

of actin is preincubated with increasing concentrations of S1. This can then be rapidly mixed 

with ATP in the stopped-flow to induce complete dissociation of S1 from actin. With 

increasing [S1], the amplitude will also increase as more pyrene fluorescence is quenched 

at the beginning of the reaction. Therefore, the amplitude provides an estimate of the fraction 

of actin bound to S1 at increasing S1 concentrations. As the affinity value is close to the 

total protein concentration in the assay, the data cannot be fit with a hyperbola. The 

amplitude was plotted against [S1] and fitted to the physically significant root of the following 

quadratic equation: 

 

𝑎 =
[𝑀] + 𝐾Q + [𝐴]M − R([𝑀] + 𝐾Q + [𝐴],); −

4
[𝑀][𝐴],

2[𝐴],
 

 

where [M] = concentration of free S1 at equilibrium, KD = the actin affinity equilibrium 

constant, [A]0 = concertation of total actin at time 0. 

Equation 2.13 

Equation 2.14 
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2.4 Modelling 
 

Figure 1.28 shows the ATP-drive acto.myosin cross-bridge cycle. The cycle is defined by 

18 rate and 9 equilibrium constants. Each step 𝑖 in the cycle can be defined by: 

 

𝐾V =
𝑘?V
𝑘/V

 

 

where Ki is the equilibrium constant, k+i is the forward rate constant, and k-i is the reverse 

rate constant. Transient kinetics is able to define 13 of these parameters (see Chapter 3). 

Estimates of the remaining unknown parameters can be obtained by fitting the transient 

kinetic data to steady-state ATPase data in a process called global fitting. 

 

Global fitting refers to simultaneous curve fitting using numerical integration to 

simulate kinetic data and calculate the rate of transition between different intermediates in 

a pathway or cycle. A number of kinetic software packages are available to do this, such 

Berkeley Madonna, Dynafit or KinTek, and all work on the same principle. These programs 

allow numerical solving of differential kinetic equations, to simulate the time course of 

kinetically complex systems. This yields insights into the time dependence of reactant 

disappearance or product appearance, as well as the concentration of intermediates in the 

pathway. It is possible to optimise rate constants for steps in the model using best fit 

procedures. During the global fitting process, the rate constants are adjusted iteratively to 

give the best fit to the experimental data. This generates estimates for rate constants that 

cannot be determined experimentally. 

 

Whilst the ATPase cycle in Figure 1.28 can be modelled using any kinetic modelling 

program, the work presented in this thesis was modelled using MUSICO, as described by 

Mijailovich et al (Mijailovich et al. 2017). This programme estimates rate transition constants 

by the Damped Least-Square method (or Levenberg-Marquardt inversion), as set out in 

(Mijailovich et al. 2010). The DLS method is based on the iterative minimisation of the mean-

square error of the model predictions with respect to experimental observations.  This was 

done by minimising the variance between the predicted steady-state ATPase rates over a 

range of actin concentrations, to simulate steady-state ATPase experiments. The model 

parameters are uniquely resolved, and the deviation of the model predictions from the 

experimental observations is represented by the mean-square error, which is an integral 

measure of the accuracy of the model-prediction fit to the observations. Minimization of the 

mean-square function provides the set of parameters that best fit the experimental data 

Equation 2.15 
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using the iterative procedure. The programme also allows varying any one of the fitted 

parameters by ± 20% (the minimum precision of the transient kinetic measurements) to 

estimate the effects on the best fit values of the remaining parameters. This confirms the 

findings of the sensitivity matrix that the parameters are well defined by the fitting procedure. 

This will be discussed in more detail in Chapters 3 and 5. 
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2.5 In vitro motility assay  
 
To measure the velocity of myosin along actin filaments, an in vitro motility assay was 

performed as described in (Adhikari et al. 2016; Aksel et al. 2015). To ensure no inactive 

myosin heads were present during the assay, a ten-fold molar excess of F-actin and 2 mM 

ATP was added to the S1, and incubated for 15 minutes at 4 °C. 50 mM MgCl2 was added 

and incubated for a further 5 minutes. Actin and bound, inactive myosin heads were 

sedimented at 100,000 RPM for 15 minutes at 4 °C. The supernatant, containing active 

myosin heads, was collected and diluted in assay buffer to a final concentration of 1 μM. All 

reagents were dissolved in assay buffer containing 0.1 mg/ml bovine serum albumin 

(ABBSA), unless other stated. 

 

All motility experiments were performed at 20 °C. Glass coverslips were coated with 

0.2% nitrocellulose and air-dried before use. Reagents were sequentially flowed through the 

channels in the following order: 50 μL of 4 μM SNAP-PDZ18  incubated for 3 min; 100 μL 

of ABBSA to block the surface from nonspecific attachments and incubated for 3 min; 50 μL 

of 100 nM 8-residue (RGSIDTWV)-tagged S1 and incubated for 3 min; 100 μL of ABBSA  

to wash any unattached proteins; 50 μL of 30 nM rhodamine-phalloidin-labelled rabbit actin; 

100 μL of an oxygen-scavenging system consisting of 5 mg/ml glucose, 0.1 mg/ml glucose 

oxydase and 0.02 mg/ml catalase; 50 μL 2 mM ATP. Actin filaments were detected using a 

widefield fluorescence imaging system (as described in Johnson et al (Johnson, East, and 

Mulvihill 2014)) with UAPON 100XOTIRF NA lens and QuantEM emCCD camera (Cairn, 

UK). The system was controlled and data analysed using Metamorph software.  
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3. The ATPase cycle of Human Muscle Myosin II 
isoforms: Adaptation of a single mechanochemical cycle 

for different physiological roles 
 

 
Chloe A. Johnson, Jonathan Walklate, Marina Svicevic, Srbolujub M. Mijailovich, Carlos 

Vera, Anastasia Karabina, Leslie A. Leinwand, and Michael A. Geeves 

 

Journal of Biological Chemistry, 2019. 294(39):14267-14278 

 

3.1 Context of research 
 

The data in this publication is a follow up study from two papers utilising the MUSICO 

modelling programme to study the ATP-dependent acto.myosin cross-bridge cycle. 

Mijailovich et al first described the programme, and used it to characterise contractile 

parameters for rabbit MyHC-IIa, human MyHC-a and MyHC-β, and the MyHC-β R453C 

HCM mutation using experimentally defined cross-bridge kinetics (Mijailovich et al. 2017). 

Ujfalusi et al used the same methodology to predict contractile properties of 5 DCM-causing 

and 2 HCM-causing mutations (Ujfalusi et al. 2018). They also extended the analysis to 

predict economy of ATP usage in these mutated motor proteins. Using newly acquired data 

on MyHC-peri, and published data on 5 human class II isoforms (MyHC-IIa, MyHC-IIb, 

MyHC-IId, MyHC-emb and MyHC-exoc), the same approach was used to investigate 

functional properties of human class II isoforms. The human MyHC-a and MyHC-β was also 

re-examined to predict ATP economy. This research provides a comprehensive overview 

of characteristics of the fundamental ATPase cycle for 8 of the 9 striated class II myosins. 

 

3.2 Aims of research 
 

Muscle myosin II isoforms in mammals, including humans, are adapted for a variety of 

functions, which when expressed in a muscle fibre confers distinct contraction 

characteristics to each muscle fibre type. Combinations of different fibre types cooperate to 

produce contractile activity tuned to the functional demands on the muscle. The isoform of 

myosin expressed in a muscle fibre therefore plays a central role in determining the 

contractile properties of muscle fibres. However, the way in which each myosin is tuned for 

its specific function is not understood, so the aim of the research was to understand how 
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human sarcomeric myosins adapt their mechanochemical ATPase cycle to perform different 

functions within different muscle types. Whilst fibres of MyHC-β and the skeletal isoforms 

have been well studied, experimental data on the MyHC-emb, MyHC-peri, MyHC-exoc and 

MyHC-a is limited. The MUSICO approach allowed experimentally defined solution data of 

these isoforms to be modelled to the ATPase cross-bridge cycle. This predicts the 

differences in the fraction of time spent in different occupancies of the cycle. These 

occupancies were then studied to predict the duty ratio and shortening velocities, ATP 

economy and load dependence. This analysis was completed for 8 human class II isoforms.  

 

3.3 Contribution to publication 
 
The initial design of the study arose from discussions between myself and my supervisor, 

Professor Michael Geeves. The study was initially intended to model the MyHC-emb data 

as a follow up study to the (Mijailovich et al. 2017) paper, but after I collated all published 

transient kinetic data on the MyHC-IIa, MyHC-IIb, MyHC-IId, MyHC-emb and MyHC-exoc 

isoforms, the study was extended to include these isoforms. I performed kinetic modelling 

with MUSICO on all isoforms, and performed the analysis on ATP economy. Marina 

Svicevic and Dr Srbolujub Mijailovich assisted me with the error analysis on the modelled 

data. Dr Jonathan Walklate performed transient kinetic analysis on the MyHC-peri isoform, 

which was provided by Dr Carlos Vera and Dr Anastasia Karabina from Professor Leslie 

Leinwand’s laboratory. Professor Geeves and I wrote the first draft of the manuscript, which 

was reviewed by all authors. 

 

3.4 Publication - see below. 
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4. Cardiac/slow muscle contraction velocity has evolved 
to match heart rate with body size through variation in β-

cardiac myosin sequence. 
 
 

Chloe A. Johnson*, Jake E. McGreig*, Carlos D. Vera, Daniel P. Mulvihill, Martin Ridout, 

Leslie A. Leinwand, Mark N. Wass, Michael A. Geeves 

 

* Contributed equally 

 

E-life, under review 

 

4.1 Context of research 
 
Whilst the work in Chapter 3 identified how myosin class II isoforms adapt their 

mechanochemical cycle for different functions, it is still not fully understood how these 

differences arise from the sequence changes of the isoforms. As shown in Table 1.2, the 

isoforms have a high sequence homology. To explore how sequence changes in myosin 

can contribute to different properties of the muscle in which it is found, McGreig et al 

investigated the relationship between muscle contraction and body mass (McGreig et al. 

2019). This is a well-documented relationship; the larger the species, the slower muscle 

contraction. If velocity of contraction is matched to body mass in mammals, then there may 

exist changes in the sequence of myosin to tune its properties to the species size and thus 

give rise to alterations to the physiology of the muscle. The sequences of 12 myosin class 

II isoforms from 65 mammals (ranging from 0.006 – 10,000 kg) were examined, and the 

authors proposed that MyHC-β, MyHC-IIa and MyHC-IIb have adapted to changes in body 

mass. The data in the following manuscript continues this work to focus on the MyHC-β 

isoform, to investigate the relationship between sequence and velocity of contraction. 

 

4.2 Aims of research 
 
For the MyHC-β isoform, the rate of ADP release from an actin.myosin complex is predicted 

to limit contraction velocity (as described in Chapter 1.3.3). We therefore set out to identify 

if the sequence changes found within the motor domain of MyHC-β could contribute to the 

slower contraction observed in larger mammals by a slowing of ADP release, and hence 
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velocity. Using a combination of bioinformatics analysis and biochemical characterisation, 

we set out to identify the sequence changes that drive a change in the rate of ADP-release. 

We identified 14 amino acid changes in the β-myosin motor domain with a strong 

association with species size.  Of these 14 sequence changes, 9 differ between the well-

characterised human and rat MyHC-β.  We introduced these 9 amino acid changes into the 

human MyHC-β, and used stopped-flow spectroscopy and In vitro motility assays to 

experimentally test the computational predictions. This approach aims to address how 

small sequence variations, as seen between myosin class II isoforms, can alter protein 

function. This has wider impactions for our understanding of evolution and the role of 

genetic variation. 

 

4.3 Contribution to publication 
 
Jake McGreig, with supervision from Dr Mark Wass, performed computational research and 

bioinformatics analysis with suggestions from Professor Michael Geeves and myself. 

Professor Geeves and I designed an initial outline for a study which biochemically tests the 

predictions from the computational analysis. When visiting Professor Leslie Leinwand’s 

laboratory to gain experience in producing recombinant myosin, I held extensive 

discussions with both Leslie and members of her lab to gain their support in producing a 

chimera protein using the C2C12 system Leslie’s lab specialises in. With the help of 

Professor Daniel Mulvihill, I planned and performed the cloning strategy of the chimera. 

With Dr Stephen Langers in Professor Leslie Leinwand’s group, I produced the adenovirus 

containing the chimera gene for transfecting C2C12 cells. Dr Carlos Vera grew the 

transfected C2C12 cells expressing both MyHC-β and the chimera protein, and sent to me 

for purification. I purified the two recombinant proteins, as well as the endogenous rat 

soleus MyHC-β. I then designed, performed and analysed the biochemical characterisation 

of all of the proteins. Professor Geeves, Jake McGreig, Dr Wass and myself wrote the first 

draft of the manuscript, which was reviewed by all authors. 

  

4.4 Publication. The manuscript in the format submitted to E-Life is below. 
  



 

97 
 

Cardiac/slow muscle contraction velocity is matched to heart rate and 

body size through variation in β-myosin sequence. 

 
Chloe A. Johnson1*, Jake E. McGreig1*, Carlos D. Vera2, Daniel P. Mulvihill1, 

Martin Ridout3, Leslie A. Leinwand2, Mark N. Wass1, Michael A. Geeves1 

 
1School of Biosciences, University of Kent, Canterbury, UK    
2BioFrontiers Institute and Department of Molecular, Cellular and Developmental 

Biology, University of Colorado Boulder, Colorado, USA 
3School of Mathematics, Statistics and Actuarial Science, University of Kent, 

Canterbury, UK    

 

* Contributed equally to this work. 

 

Key words: evolution, motility, muscle 

 

Address for correspondence: 

Prof M.A.Geeves 

School of Biosciences, 

University of Kent,  

Canterbury  

CT1 7NJ      

UK 

m.a.geeves@kent.ac.uk 

tel 44 1227827597 

 

Dr M.N. Wass 

School of Biosciences 

University of Kent, 

Canterbury 

CT1 7NJ 

UK 

m.n.wass@kent.ac.uk 

tel 44 1227 827626 

 

Prof L.A. Leinwand  

BioFrontiers Institute and 

Department of Molecular, Cellular 

and Developmental Biology,  

University of Colorado Boulder, 

Boulder CO 80309 USA 

leslie.leinwand@colorado.edu 

 



 

98 
 

Abstract 
Heart rate and the maximum velocity of contraction of striated muscle are inversely related 

to species size. As mammals evolve to different sizes, adaptations are required such as 

slower contracting heart and skeletal muscles.   Analysis of the motor domain of β-myosin 

from 67 mammals from two clades identifies 14 sites, out of 800, strongly associated with 

body mass (p<0.01) but not with the clade (p>0.05).  Nine of these sites were mutated in 

the human β-myosin to make it resemble the rat sequence. Biochemical analysis revealed 

that the rat-human β-myosin chimera functioned like the native rat myosin with a two fold 

increase in both motility and in the rate of ADP release from the actin.myosin cross-bridge 

(the step that limits contraction velocity).  Both clades use the same small set of amino 

acids to adjust contraction velocity, suggesting a limited number of ways in which velocity 

can be manipulated. 

 

Introduction 
Proteins adapt and evolve over long time periods tuning their function to the specific needs 

of the organisms in which they are expressed.  Understanding how proteins adapt to 

different physiology is one of the challenges of current molecular and structural biology.  

One approach is to consider a protein expressed as different isoforms within a species 

(paralogues) or in different species (orthologues) where adaptation has taken place.  Such 

a study is easier if a close link can be established between different phenotypes in the 

organism for which a specific protein function is needed.  Striated-muscle myosin motors 

represent a protein family where such evolutionary relationships can be explored. The 

maximum contraction velocity of a muscle, V0, is a key attribute of muscle contraction 1,2. It 

is a parameter which contributes to the Force-Velocity realtionship of a muscle, the power 

output (force x velocity) and the velocity at which power and efficiency are maximum. These 

properties can be  expected to be under selective pressure. The maximum shortening 

velocity of a muscle is a property of the myosin isoform expressed in the muscle 3. The 

maximum shortening velocity varies more than-ten fold among both paralogues and 

othologues of myosin.  In contrast, the maximum force a myosin can generate varies little 

between myosin isoforms.   Maximum velocity is therefore a central parameter that defines 

both the Force-Velocity relationship, power output and the efficiency of muscle contraction.  

Note larger forces can be generated by increasing muscle mass (e.g. through exercise) but 

maximum velocity is an intrisic property of the muscle and the myosin isoform present.  

 

In mammals, there are 10 different striated muscle myosins, each expressed from a 

different gene; many of which have been shown to have distinct biochemical and 

mechanical properties 3–6. Larger mammals tend to have slower contracting muscles than 
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small mammals where the movement of a larger mass results in slower velocity.  This 

phenomenon is well-established in heart muscle where heart rate is inversely related to 

body mass for a wide range of species 7.   Since velocity of contraction is matched to the 

size of the animal expressing the myosin, then there should be changes in the myosin 

sequence to tune the myosin properties to the species size and correspondingly, to the 

physiology of the muscle.  In a recent study we tested the hypothesis that muscle myosin-

II isoforms from mammals would have adaptations in protein sequence associated with 

mean body mass8.  In this study, of ~730 sequences from 12 myosin-II isoforms from an 

average of 65 mammalian species, there was a strong correlation of the number of 

sequence changes with differences in species mass.  The correlation was strongest in adult 

striated muscle myosins IIa and IIb and β. β-myosin is found in the heart and in slow Type 

I muscle fibers. Here we examine in greater detail the sequence differences within the 

mammalian β-myosin to establish the relationship between sequence and velocity of 

contraction.   

 

The contractile properties of mammalian muscles have been widely studied but detailed 

mechanical and biochemical studies have been completed on only a few species and 

myosin isoforms. Such data are available for Type 1/β-cardiac/slow muscle fibres from four 

species (see Fig 1).  Each of these muscles expresses only the β-myosin isoform (MYH7), 

and each species has a characteristic contraction velocity that varies approximately five-

fold across the set of four muscles. Moreover, it is well established for the β-myosin isoform 

that the contraction velocity is limited by how fast ADP escapes from the actin.myosin cross-

bridge after the working stroke is completed 9.  Data in Fig 1 show that like velocity, the 

ADP release rate constant differs 4-5 fold across the set of four myosins.  Furthermore, the 

measured rate constant for ADP release from the actin.myosin complex, measured using 

the purified β-myosin isoform, is exactly that predicted to limit the contraction velocity 

(based on the detachment limited model of contraction (see Fig 1 legend) 9–11. It is therefore 

expected that this set of myosins will have changes in the amino acid sequence that alter 

the ADP release rate and hence contraction velocity.  

 

Examining the sequences of the 800 amino acid motor domains of the four β-myosins in 

Fig 1 show them to be 96% identical which means there are 49 sequence differences 

among the four, with 34 differences between rat and human.  These differences in 

sequence are scattered throughout the motor domain (see Fig 2 and alignment in Fig S1).   

It seems likely that groups of amino acids and not a single amino acid change determine 

the functional differences between the β-myosins.  If the correlation between body size and 

contraction velocity  is a general phenomenon amongst mammals, as is seen for resting 
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heart rates 7, then a bioinformatics study of β-myosin sequences would be a way to identify 

which sequence changes correlate with size.   We hypothesised that the variation of β-

myosin contraction velocity (and rate of ADP release from the cross bridge) with the size of 

the mammal is due to a subset of the sequence changes observed for different mammals, 

and that these tune myosin velocity to that appropriate for the size of species. Here, we 

examine a set of 67 mammalian β-myosin sequences 8 using a bioinformatics approach to 

identify a group of 12 amino acids which have the strongest association with the size of the 

mammal.  Of these 12 amino acids, nine differ between human and rat β-myosin and we 

test our hypothesis through the construction and subsequent biochemical characterisation 

of a rat-human β-myosin chimera (hereafter referred to as chimera). 

 

Results 
 
The alignment of the β-myosin sequences from four mammals (Fig 2 & Fig S1) 

demonstrates that while the sequences are highly conserved, the 49 sites of variation 

among the species are scattered throughout the motor domain.   High levels of variation 

are found in the N-terminal domain (1-60) and near the surface loops, Loop 1 (near residue 

210) and Loop 2 (near 630).  These loops are known to be hypervariable across the larger 

myosin family23.  The broad distribution of the sequence variants means that an 

experimental approach to define which residue changes are linked to the change in ADP 

release (and hence velocity of contraction) is too complex to consider.  Instead, we used a 

bioinformatics-based approach to identify the residues most likely to be linked to the change 

in velocity of contraction.  

 

Distinguishing between variation due to clade and body mass: 

 

We analysed 67 complete sequences of the β-myosin motor domains from species ranging 

in size from 7g (Brandt’s bat, Myotis brandtiibat) to 42,000 kg (sperm whale, Physeter 

catodon). Of these, about half were Euarchontoglires (32, e.g. rodents and primates) and 

half were Laurasiatheria (30, e.g. bats, ungulates, cetaceans).  We used this set of 

sequences to distinguish between sequence changes that were primarily associated with 

the clade versus those that correlated with the size of the animal (see Methods). A total of 

171 sites were identified where a sequence change occurred.  At the majority of these 

positions, variation occurred in a small number of species and is unlikely to be associated 

with changes in function relevant to body mass, so 119 positions where a sequence change 

was present in less than 10% of the species were excluded.  This included 84 sites where 
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a change occurred in only one species, while changes in two species occurred at 20 sites 

and in three species at four sites.   

 

The remaining 52 sites of variation were analysed to distinguish between changes that 

correlated with clade and those that correlated with body mass (as illustrated in Fig 3 for 

four sites with the remaining plots in Supp Info – Fig S2).  In most cases, only two residues 

were observed at each specific site; in the small number of cases (11 of 52) with multiple 

amino acids, only the two most frequent residues were considered.  The identity of the two 

most frequent amino acids were coded as 0 and 1 and a logistic regression model was 

fitted with log(mass) as the explanatory variable (Fig 3, Fig S2; see methods) to model the 

transition between residues.  Data for four sites are presented in Fig 3 and of the sites 

shown, two had a strong correlation with species body mass (the amino acid common in 

small mammals is given first P343S, I349P; padj ≤ 0.01. Note the adjusted one percent 

significance threshold is p= 9.50x10-4 and the 5% significance threshold is p=9.62x10-4. padj 

will be used to indicate the adjusted significance threshold). Each of the positions has a 

distinct midpoint mass for the transition between the two amino acids (see below).  In 

contrast, I125V has a low association with mass (p = 0.03) and M77L has an intermediate 

association (p= 9.50e-04), however both M77L and V125I have a strong association with 

the clade (Fig 4); L77 and I125 are found almost exclusively in Laurasiatheria.  

 

Overall, only 12 sites had a very strong association with clade (padj ≤ 0.01) and a further 

two were significant at the five percent level (padj ≤ 0.05; Fig 4A). Some of these residues 

occur in two groups; one group of four in the N terminal region below residue 135 (4, 11, 

52, 77, 110, 125) and four residues near surface loop 2 (610, 616, 627, 629).  The remaining 

four are at D208E, E509T, T585I and I684M. Twenty positions were strongly associated 

(padj ≤ 0.01) with body mass and a further four were significantly associated at padj ≤ 0.05 

(Fig 4B). Nine positions were associated with both clade and body mass (Fig 3C), which is 

likely to represent that the very largest mammals (body mass > 500 kg) in the data set are 

all Laurasiatheria (Fig S5). 

 

Twelve of the 24 sites associated with body mass occur in the known hypervariable regions, 

four in the N terminal region (11,15, 52, 65, bold residues also occur in the clade list), one 

in loop 1 (D208E), and a further six  occur in or near loop 2 (607,610,616,627,629, 631)) 

and one at I684M.  The remaining 12 sites (Table 2) group into three sets of four; most with 

padj ≤ 0.01 (coloured in Fig 4 & 5).  Comparing the strength of association between clade 

and body mass, these 12 sites, are strongly associated with body mass but not with clade 

(Fig 4C).  Hence, we propose that these 12 positions are likely to be important in 
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determining the β-myosin velocity of contraction. At eight of the twelve positions only two 

amino acids are observed, one position contains three amino acids, although the third is 

only present once (residue 366). Multiple amino acids (4-7) were observed at the remaining 

three positions. For two of the positions, 421 and 424, this reflects a subset of the species 

from one clade having an alternate amino acid in some of the larger species (see Sup Fig 

S4).  

 

The first group of residues is in a region 331-371 (Orange in Fig 4 and 5) adjacent to the 

exon 7 region of Drosophila myosin II (and the “linker region”).  This region is equivalent to 

one of the four exons in the single myosin II gene of Drosophila which are alternately spliced 

to generate all isoforms of myosin II in Drosophila 24.  We have previously shown 25 that the 

alternatively spliced forms of this region alter ADP release in the Drosophila myosin. The 

second set (426-439; Magenta in Fig 4 and Fig 5) is in a long helix (Helix-O) in the upper 

50 kDa domain that links an actin binding site (the myopathy loop) to the nucleotide binding 

pocket (via switch 2).  The third region (560 - 587; Red in Fig 4 and Fig 5) is in the lower 50 

kDa domain and lies close to loop 3, an actin binding site in the lower 50kDa domain.  

 

Experimental testing of the computational predictions: 

 

We have previously expressed the motor domain of human β-myosin in mouse C2C12 

muscle cells and isolated the protein using His tags attached to the co-expressed human 

light chain.   This is currently the only way to express mammalian striated muscle myosin 

motors but is complex and time consuming and yields just a few mg of protein 6,26,27.  To 

test the hypothesis that the highlighted group of 12 residues are responsible for a significant 

part of the adjustment of ADP release rate constant, we generated a chimeric human-rat β-

myosin motor domain where the nine positions (of the 12) that vary between human and 

rat were replaced with the amino acid present in rat (A326S, S343P, L366Q, I421A, T424I, 

A430S, R434K, F553Y, P573Q – human residue number and amino acid listed first). The 

other three positions are the same in rat and human (354, 576 & 587).  At residue 421 we 

replaced Ile with Ala as present in rat, although Ser is present in most of the smallest 

mammals (See Fig 6). 

 

As shown in Fig 1, the velocity of contraction for β cardiac/Type I slow muscle fibres in rat 

and humans differ by a factor of ~4.  Given that these residues have a range of transition 

masses (see Fig 5 & 6) the hypothesis is that each of these nine residues will contribute a 

fraction of the difference between the rat and human β-myosin ADP release rate constant 
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and hence, velocity.  With all nine residues changed, our prediction is that the differences 

in the rate constant should be large enough to be easily detectable.  

 

The S1 fragment of human β-myosin and the chimera were expressed in C2C12 cells and 

purified with the human essential light chain attached.  Few details of the kinetic 

characterisation of the rat β-myosin S1 have been published 28.  The rat β-myosin S1 was 

therefore purified from rat soleus muscle to use as a comparator for the chimera. The 

supplementary data include the SDS PAGE of all three proteins used in this study and 

demonstrates that all three proteins are pure and contain the appropriate light chains (Fig 

S5). 

 

As a test of the behaviour of the chimeric protein, the ATP-induced dissociation of the 

chimera from pyrene labelled actin was monitored and compared to the recombinant human 

and the native rat S1.  A typical transient is presented inset in Fig 7B and the observed 

amplitude of the signal change was the same for all three proteins.  The similarity of 

observed amplitudes of the pyrene signal changes for the chimera, human and native rat 

proteins indicates that the chimera binds actin and releases it on ATP binding as for the 

human and rat S1. This is consistent with the chimera being a fully folded and active protein.  

A plot of the observed rate constant (kobs) vs [ATP] gives a straight line which defines the 

apparent 2nd order rate constant for the reaction (Fig 7B) and appears the same for all three 

proteins. The observed rate constant of this reaction has been defined for many myosins 

and has two components, kobs = [ATP] K’1k’+2.  The reaction is sensitive to both the affinity 

of ATP for the complex (K’1) and the efficiency with which ATP induced a major 

conformational change in the myosin (k’+2).  This involves the closure of switches 1 and 2 

onto the ATP and the opening of the major cleft in the actin binding site of myosin. The 

absence of any change in K’1k’+2 is consistent with a well preserved nucleotide pocket and 

a preserved communication pathway between the ATP binding pocket and the actin binding 

site.  

 

The affinity of ADP for actin.S1 was measured in a competition assay with ATP (Fig 7C) 

and the affinity of ADP for the rat actin.S1 complex  (14 μM) was 2.3 fold weaker than for 

the human WT protein (6.3 μM).  These values are consistent with published values 29.  The 

chimera was distinct from the human S1 and indistinguishable from the rat S1. To confirm 

this result the ADP release rate constant was measured directly by displacing ADP from 

actin.S1.ADP through addition of an excess of ATP.  The results (Fig 7D) for human and 

rat S1 are again consistent with published values with ADP leaving the rat complex at ~ 2X 

the rate of the human complex (107 vs 59 s-1).  The chimera was indistinguishable from 
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the rat S1. As predicted, the amino acids introduced into the human β-myosin motor domain 

weaken ADP affinity for actin.myosin by accelerating ADP release to make the human β-

myosin S1 behave like the rat β-myosin S1.  

 

Footnote to the inset shown in Fig 7D; a complication of the ADP displacement 

measurement is that ADP displacement from human β-myosin occurs in two phases (fast 

and slow). The fast phase corresponds with ADP released at the end of the normal ATPase 

cycle while the slow phase is a trapped ADP which is released much slower and at a much 

slower rate than the overall cycling.  This is therefore a dead-end side branch of the pathway 

commonly seen in slow muscle & non muscle myosins 14,28,30.  The fraction of ADP trapped 

in this way is characteristic of each myosin.  The rat β-myosin S1 has no apparent slow 

phase, the human has ~10% of ADP released in the slow phase while the chimera has a 

larger fraction (~40%) of the total ADP released in the slow phase.  The role of the 

substituted amino acids in the slow phase requires further study, but the reader is referred 

to the literature for a broader study of this phenomena14,28,30. 

 

Motor activity of the recombinant human β-myosin S1 and the chimera protein was 

measured using an in vitro motility assay (Fig 7A, Supplementary movie 1). This assay 

determines the myosin-mediated velocities of fluorescent actin-filaments moving on a 

nitrocellulose-coated slide surface. The human WT β-myosin moved actin at a velocity of 

0.49 μm.s-1 at 20 °C. Introduction of the nine rat amino acids into the WT protein increased 

the mean filament velocity by almost 2-fold, from 0.49 μm.s-1 to 0.9 μm.s-1 for the chimera, 

which is consistent with the ~ 2 fold increase in ADP release-rate data. Our human S1 

velocity was similar to the 0.612 μm.s-1 value reported by Ujfalusi et al, which was measured 

at 23 °C 31. A similar velocity of 0.378 μm.s-1 was reported for full length human-β myosin 

at 25 °C 3 and  a velocity of 0.624 μm.s-1 for the rat. This gives a rat/human ratio of 1.65, 

very similar to our chimera/human ratio (1.84). Note this data from motility assays gives a 

different ratio of velocities form that taken from muscle fiber contraction velocity data quoted 

in Fig 1. The motility assay was not performed for the rat S1 as we do not have an 

expression system for the protein.  The native rat S1 has only a single light chain and lacks 

a tag to attach the protein to the surface.  The rat protein will not therefore give a valid 

comparable measurement.  However, it is known from the literature (Table in Fig 1 & 

references therein) that the rat protein moves 3-5 times faster than the human protein, 

depending upon the exact measurement conditions. 
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Discussion 
 
Our analysis confirmed our hypothesis that there is a set of sequence changes in the β-

myosin, among mammals, that have a high probability of association with species mass.  

In the 67 species examined, for 52 sites in the motor domain the residue present varied in 

more than six species. Of these 52 sites a set of 24 sequence changes had the strongest 

association with mass (padj<0.05) and little association with clade (padj>0.05).  These sites 

were found throughout the motor domain but we noticed three clusters of four residues (Fig 

4) within the group that would allow a cloning approach to test if these residues do play a 

role in adjusting the velocity of muscle contraction.  Of these 12 residues, nine differ 

between the rat and human β -myosin. We have an expression system for the human 

myosin motor domain and therefore made a human/rat chimera by exchanging these nine 

residues. 

 

The chimera displayed a two-fold weakening of ADP binding to actin.myosin due to a two-

fold acceleration of the rate constant controlling ADP release from the complex.   The two 

fold faster ADP release rate constant, since it is believed to limit contraction velocity, 

predicts a two-fold acceleration of the velocity of muscle contraction and a two-fold 

acceleration of the speed at which actin would move over a bed of myosin.  The motility 

assay confirmed this prediction.  The mutations could have caused a generalised loss of 

nucleotide binding to the protein but a control examining the ability of ATP to bind to 

actin.myosin and displace actin was indistinguishable among the three proteins (Fig 7B). 

 

Thus our bioinformatics approach has successfully identified nine residues with a role in 

modulating the velocity of muscle contraction which have been selected over time to adjust 

the velocity to that required for the slower contraction in human vs rat hearts. 

 

Before considering the sites in the motor domain of myosin where these changes occur we 

should consider the role of the remaining 40 sites. As shown in Fig 4C, 21 sites have no 

apparent association with clade or mass and therefore the functional significance of these 

residue changes remains undefined. Eight sites have a strong association with clade but 

no or only modest association with mass. A further four sites had a strong association with 

both clade and mass. Each of these four sites that have strong association with both mass 

and clade along with the four sites with a strong association with mass, which were not 

made in the chimera, may contribute to the changes in contraction velocity between 

mammals. Our approach here was to establish the principle of the effect rather than 
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delineate the contribution of every sequence change. Thus we focussed on three groups of 

amino acids.  

 

As stated in the introduction making single point mutations in the motor domain is unlikely 

to give sufficient experimental resolution to define the contribution of each residue to the 2-

3 fold changes we were expecting between rat and human.  However, groups of changes 

could possibly define the relative contributions of each of the three groups of residues.  At 

the moment the complexity and expense of expressing the protein in mouse cell lines 

prohibits a larger scale study. 

 

What was unexpected was the finding that a set of 12 residues with the highest correlation 

with mass are predicted to have a narrow mass range over which each sequence change 

is found (Fig 5 & 6).  Additionally, each of the residues has its own distinct midpoint for the 

transition.  This implies that as mass increases, there is a limited number of ways in which 

the ADP release can be modified step-wise and mammals from distinct clades utilise the 

same set and order of sequence changes.   This is illustrated for seven mammals in Fig 6 

where the amino acid present at each of the 12 sites is listed in the order of the mass at 

which the switch occurs between the amino acid for small vs large mammals. The plot 

shows the gradual shift between the two sets of amino acids. Note that the small and large 

Laurasiatheria (bat and cow) differ at every one of the 12 sites as do the small and large 

Euarchontoglires, mouse and human.  In contrast, the mouse sequence is identical to the 

bat, and human sequence is the same as cow at nine of the twelve sites. A similar plot for 

all 67 mammals is include in the supplementary materials (Fig S3) and, in addition to 

demonstrating the same relationships for the larger group of mammals, shows that the 

small number of Metatheria, and Afrotheria fit into the same pattern.  This is consistent with 

the same set of amino acids being selected for, at each site, in each clade. This is an 

example of convergent evolution.   
None of the mutated residues are in direct contact with the nucleotide binding pocket (Fig 

5), thus suggesting that the mutations have allosteric effects.   Four of the changes occur 

in helix-O, a long helix in the upper 50 kDa domain that links the actin binding site 

(cardiomyopathy loop) with switch 2 in the nucleotide binding site. It is therefore in a position 

to influence the communication between these two important functional sites.  However, 

the available crystal structures published from a variety of myosins show this helix to move 

with the whole of the upper 50 kDa domain (e.g. see Fig 7 in M. Bloemink et al., 2014).  The 

other two groups of changes (three residues in the upper 50 kDa domain and two in the 

lower 50 kDa domain) are not close to each other in space.  Understanding how the 

changes (for the most part conservative substitutions) in these regions alter the behaviour 
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of the myosin will require a detailed molecular dynamics study. Seven of the twelve 

positions include amino acid changes that introduce or remove side chains that are capable 

of forming hydrogen bonds, thus it is possible that the sequence changes result in minor 

changes to hydrogen bonding networks in the protein.   None of these sites appear in the 

ClinVar web site as sites of mutations in human β-myosin associated with cardiomyopathies 

or the Genome Aggregation Database (GnomAD) of sites of polymorphisms in humans.  

This means there are three distinct sets of sites of variation in β myosin, the benign 

(changes have no known effect on function) the pathological (where there is a relative mild 

loss of function since the patients typically live into adulthood) and those associated with 

species adaptation which can induce a more significant change in function. 
The results presented here show how a direct link between an organism’s physiology and 

a specific protein sequence allows the exploration of how selection may have adapted 

protein function to match the physiological requirements.  The observation that the same 

set of amino acids have independently changed in two clades suggests constraints on the 

way a protein sequence can adapt whilst maintaining function.  A wider study of muscle 

myosin sequences may show if different isoforms use the same or distinct sets of amino 

acids to adapt to the same selective pressure.  
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Methods 
 

Sequence Analyses: 

Amino acid sequences for the β-myosin motor from 67 different mammalian species were 

aligned using Clustal Omega 12 comprising organisms from the clades Euarchontoglires 

(32), Laurasiatheria (30), Metatheria (4) and Afrotheria (1). The start and end points of the 

motors in Homo sapiens were considered to be residues 1 and 800 (based on UniProtKB 

– P12883).  

 

Statistical analysis: 

For each position in the alignment that had more than one amino acid present, species 

masses were compared between the two highest frequency amino acids at that position 

using the Mann-Whitney U test, a nonparametric two-sample test.  Multiple testing was 

accounted for by applying the Bonferroni correction. To avoid very imbalanced 

comparisons, the analysis was not run if the frequency of the second amino acid was less 

than 10% of the frequency of the most frequent one. Where more than two amino acids 

were present at an alignment position, only the two most frequent amino acids were 

considered. See Fig S3 for details of sites with more than 2 amino acids.  

 

Alignment positions were divided into three groups: those with an adjusted p-value (padj) 

less than 0.01 (with Bonferroni correction applied this is equivalent to a p-value of p= 

9.50x10-04), those with 0.01 < padj  < 0.05 (5% significance threshold equivalent to 

p=9.62x10-4), and those with a padj  >0.05.  In addition, the two highest frequency amino 

acids were coded as 0 and 1 and a logistic regression model was fitted with log(mass) as 

the explanatory variable (Fig 3 & Supplementary Fig 2). In order to overlay these residue 

plots, as the coding of the amino acids as 0 and 1 was arbitrary, it was done in such a way 

that the slope of the fitted logistic regression line was positive (Fig 3). The value of mass at 

which the two amino acids were predicted to be equally likely to occur was estimated from 

the regression line.  

 

For each alignment position, a 2x2 table was constructed classifying the species by amino 

acids present (most frequent and second most frequent) and clade. Fisher’s exact test was 

used to test whether these two factors were associated. The residue and -log10 of the P-

value from the Fisher’s exact test were plotted to identify residues for which the amino acid 

variation was likely to have resulted from clade associated changes. The residue and -log10 

of the p-value from the Mann-Whitney U test were also plotted to determine when residue 

variation was likely attributed to mass changes. Finally, the -log10 p-values obtained from 



 

109 
 

both tests were plotted against each other. For each of these plots, lines at positions of the 

Bonferroni adjusted p-values 0.01, and 0.05 were added to assess the confidence in each 

residues association with mass or clade. 

 

All statistical analyses were run in R 13. 

 

Molecular Biology of the chimera: 

A pUC19 plasmid containing the human β-myosin motor domain gene was digested with 

NsiI and NgoMIV to excise DNA encoding for residues 310 – 599 of the human β-myosin. 

This region was replaced with a complementary pair of synthetic oligos encoding for the 

same region, but with the nine amino-acid substitutions listed (Ala326Ser, Ser343Pro, 

Leu366Gln, Ile421Ala, Thr424Ile, Ala430Ser, Arg434Lys, Phe553Tyr, Pro573Gln). The 

subsequent clone was confirmed by sequencing. This chimera gene was cloned into a 

pShuttle CMV vector to allow recombinant replication-deficient adenovirus production, as 

previously described (Deacon et al 2012). 

 

Protein purification: 

The chimera and the human β-myosin motor domains (known as subfragment 1  or S1) 

were expressed and purified as descried previously 14. Briefly, the adenoviruses were used 

to infect C2C12 myotubes in culture and resulted in overexpression of recombinant myosin 

proteins.  The heavy chains (residues 1-842) were co-expressed in C2C12 myotubes with 

His-tagged human ventricular essential light chain. The recombinant proteins also carried 

the endogenous mouse regulatory light chain (MLC3). This is homologous to subfragment 

1, S1, generated by proteolytic digestion of myosin. For motility assays the heavy chain 

was additionally tagged with an eight residue (RGSIDTWV) C-terminal extension. Cell 

pellets were homogenized in a low salt buffer and centrifuged, and the supernatants were 

purified by affinity chromatography using a HisTrap HP 1 ml column. The proteins were 

then dialyzed into the low salt experimental buffer (25 mM KCl, 20 mM MOPS, 5 mM MgCl2, 

1mM DTT, pH 7.0).  

 

The SNAP-PDZ18 affinity tag used for in vitro motility measurements were purified as 

described in 15,16. SNAP-PDZ18 was expressed through a pHFT2 expression vector, and 

the plasmid transformed into E. coli BL21 DE3 cells. The protein was purified using nickel-

affinity chromatography, and dialyzed in PBS. 
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Actin was prepared from rabbit muscle as described by 17. The actin was labelled with 

pyrene at Cys-374 as described in 18. When used at sub-micromolar concentrations the 

actin was stabilized by incubation in a 1:1 mixture with phalloidin. 

Rat β-myosin S1 was prepared from soleus muscle which was dissected immediately post 

mortem and stored on ice. The muscle was homogenised into Guba-Straub buffer and left 

to stir for 30 minutes. After centrifugation at 4600 RPM for 30 minutes at 4 °C, the 

supernatant was subject to myosin precipitation as described in 19. The resulting myosin 

was digested with 0.1 mg chymotrypsin per ml of solution and left to stir for 10 mins exactly, 

at room temperature. To stop the digestion, 0.5 mM phenylmethylsulfonyl fluoride (PMSF) 

was added and the solution left to stir for 10 minutes. The digested myosin solution was 

dialysed into the low salt experimental buffer overnight (25 mM KCl, 20 mM MOPS, 5 mM 

MgCl2, 1mM DTT, pH 7.0). Precipitated myosin and light meromyosin was pelleted and 

removed via centrifugation at 12,000 RPM for 10 minutes, with the supernatant containing 

the purified soleus S1.  SDS-Gels of the purified protein were run and compared to the 

expressed human β-myosin and chimera S1.  

 

Stopped flow: 

Kinetic measurements for S1 of chimera, human β-myosin and rat soleus myosin were 

performed as described previously 5,14,20. Solutions were buffered with 25 mM KCl, 20 mM 

MOPS, 5 mM MgCl2, 1 mM DTT at pH 7.0, and measurements were conducted at 20 °C 

on a High-Tech Scientific SF-61 DX2 stopped-flow system. Traces were analysed in Kinetic 

Studio (TgK Scientific) and Origin. 

 

In vitro motility assay: 

Motility assays were performed essentially as described previously 16,21. Briefly, flow 

chambers were constructed with coverslips coated with nitrocellulose mounted on glass 

slides. Reagents were loaded in the following order: 1) SNAP-PDZ18 affinity tag; 2) BSA to 

block the surface from non-specific binding; 3) S1 of human β-myosin or the chimera with 

an eight amino acid C-terminal affinity clamp; 4) BSA to wash the chamber; 5) rhodamine-

phalloidin-labelled rabbit actin; 6) an oxygen-scavenging system consisting of 5 mg/ml 

glucose, 0.1 mg/ml glucose oxydase and 0.02 mg/ml catalase 7; 2 mM ATP. Partially 

inactivated myosin heads in S1 preparations were removed by incubating with a 10-fold 

molar excess of actin and 2 mM ATP for 15 minutes, then sedimentation at 100,000 RPM 

for 15 minutes. Supernatant was collected containing active myosin heads. All solutions 

were diluted into 25 mM imidazole, 25 mM KCl, 4 mM MgCl2, 1 mM EGTA, 1 mM DTT, pH 

7.5. Actin filaments were detected using a widefield fluorescence imaging system 

(described in 22) with UAPON 100XOTIRF NA lens (Olympus) and QuantEM emCCD 



 

111 
 

camera (Photometrics). The system was controlled and data analysed using Metamorph 

software (Molecular Devices, Sunnyvale, USA). Assays were performed at 20 °C and were 

repeated with three fresh protein preparations, with at least three movies of 30 second 

duration, recorded at a rate of 0.46 sec per frame. Individual velocities were determined 

from motile filaments that demonstrated a smooth consistent movement over 10 frames 

(4.6 sec). 100 individual measured velocities were used to calculate the mean velocity for 

each recombinant myosin.  
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Tables 
 
Table 1. Comparison of ATP and ADP binding parameters of native rat S1, and the C2C12 

cell expressed human β-myosin and chimera S1. Errors reported are SEM, except for 

motility which is the HWHM of the normal distribution.  

 Rat 
native 

S1 
Chimera S1 Human S1 

Chimera/Rat 
ratio 

Chimera/Human 
ratio 

ATP binding 
to A.S1 
(µM-1s-1) 

5 ± 0.16 4.5 ± 0.2 4.4 ± 0.3 0.9 1.02 

ADP affinity 
to A.S1 

(µM) 
14 ± 0.09 14 ± 0.14 6.1 ± 0.7 1 2.3 

ADP release 
from 

A.S1.ADP 
(s-1) 

107.2 ± 

7.3 
100.7 ± 4.2 59 ± 3.3 0.94 1.71 

Motility 
(μm.s-1) 

 

NA 

 

0.90 ± 0.221 

 

0.49 ± 

0.129 

 

 

NA 

 

1.84 

 
Data are from three separate preparation of protein from either different cell pellets 

(expressed protein) or different soleus muscles from the rat. Experimental conditions were 

25 mM KCl, 20°C. 
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Figures: 
 

 
 

slow/β 
myosin 

Measured Predicted τ (sec) 

 k-ADP (s-1) V0 

(µm/sec/half 
sarcomere) 

τADP = 1/k- 

ADP (msec) 
τVo = d/V0 

(msec) 
Ratio 

τADP/ τVo 

Rat 119 1.42 8.4 7.04 1.19 
Rabbit 63 0.67 15.9 14.9 1.06 
Human 30* 0.33 33 30.3 1.08 
Cow 27 0.27 37 37.0 1.00 
Experimental data was collected at 100 mM KCl and 12 °C. 
k-ADP values for bovine, rabbit and human are from Deacon et al 14, the rat from 
this study. NB the value for human k-ADP at 12 °C was estimated from an 
Arrhenius plot of values between 20 and 10 °C 32. These values are consistent 
with rat and porcine β-HMM data carried out at 100 mM KCl and 15 °C 33. Vo data 
for rat, rabbit & human are from Pellegrino et al 3, bovine from Toniolo et al 34. 

 
Figure 1. The relationship between the predicted and measured parameters for four 
slow/beta cardiac myosin isoforms. Figure adapted from (Nyitrai & Geeves, 2004). In 

terms of the actin myosin cross bridge cycle the dominant model proposes that the 

maximum velocity (V0) is limited by the lifetime of the strongly attached force holding state 

(τ) the “detachment limited model” (V0 = d/τ   where d is the working stroke of the cross 

bridge; assumed here to be 5 nm (Siemankowski, Wiseman, & White, 1985). For the 

mammalian, β-cardiac/slow-muscle myosin isoform, it is well established that τ is defined 

by the rate constant controlling ADP release k-ADP = 1/τ (see table below). Thus, values of 

k-ADP measured using myosin motor domains isolated from β-cardiac/slow muscle of a 

mammal, predict remarkably accurately the maximum shortening velocity of a muscle fibre 

taken from the same tissues. 
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Figure 2. Distribution of sequence variations for the β-myosin sequences listed in 
Figure 1.  The sequence which is ~96% conserved was divided into blocks of 30 residues 

and the number of sites within that group showing a change is plotted.  The maximum 

number is six residues in region 1-30 reflecting the high degree of identity among the four 

sequences.
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Figure 3. Residue-mass transition plots. Binomial regression mapping the 

transition of the most frequent amino acid at positions in the motor region of β-

myosin to the second most frequent amino acid at that position. The residue 

numbering is that of the human β-cardiac myosin, as oppose to the alignment 

position. The blue squares are Euarchontoglires, and the triangles are 

Laurasiatheria. The P-value with each plot arises from a test of the null hypothesis 

that amino acid type is unrelated to mass. 
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Figure 4. Residue mass change association with mass, clade, and each other. The 

association of each residue with clade (A), mass (B), and the association of the P-values 

of clade vs mass (C) are plotted. The significance of the P-values is shown with the 

Bonferroni adjusted lines drawn onto the plots (blue and grey). The three groups of residues 

investigated are highlighted in orange, purple and red, and labelled with the human residue 

numbering in each plot. 
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Figure 5. Location of residues switched in the chimera. Structure of human β-myosin 

(PDB:ID 4DB1). The actin-binding site is highlighted in brown, exon 7 in blue, the nucleotide 

binding site in marine blue, and the converter region in yellow. The three groups of residues 

investigated are highlighted and labelled in orange (326, 343, 349, 366), purple (421, 424, 

430, 434), and red (553, 569, 573, 580) in each plot, and those that were switched are in 

bold and underlined. 
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Figure 6. Residue mass transition plots. Overlapping binomial regression mapping the 

transition of the most frequent amino acid at positions in the motor region of β-myosin to 

the second most frequent amino acid at that position.  The amino acids (AA) that occur 

most frequently and second most frequently are at the extremes of the y-axis. The groups 

of residues investigated are highlighted and labelled in orange (326, 343, 366), purple (421, 

424, 430, 434), red (553, 573), and black (349, 569, 580) which show the three groupings 

of the nine residues changed in the chimera, and the three additional residues predicted to 

transition as a result of mass changes respectively.  The table below shows the residues in 

seven species across each of the twelve positions, sorted by the mid-point of the transition.  

The related table for all 67 species is provided in Table S3. 
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Figure 7. Stopped-flow analysis of the chimera, rat and human β-S1 proteins. A. 

Histogram of in vitro velocity of 100 rhodamine-labelled-phalloidin actin filaments moving 

over human β-S1 or chimera S1. The solid line shows the data fitted to a single Gaussian 

curve. The mean velocity for the human β-S1 was 0.49 ± 0.028 μms-1 and for the chimera 

0.90 ± 0.015 μms-1. B. The effect of ATP concentration on kobs for ATP-induced dissociation 

of pyrene-actin.S1. The gradient generates a second order rate constant of ATP binding; 

the values for the 3 proteins are highlighted next to the plot. Inset shows an example 

transient of 50 nM pyrene actin-chimera S1 mixed with 20 µM ATP, resulting in a 

fluorescence change of 26 %. C. Plot of kobs dependence on [ADP] for the ATP induced 

dissociation of pyrene-actin.S1. 50 nM pyrene-actin.S1 was mixed with 10 µM ATP and 

varying [ADP] (0-100 µM). Numbers indicate the values of ADP affinity for acto.S1, kADP, for 

the 3 proteins. D. To measure k+ADP, ADP is displaced from pyrene-actin.S1.ADP complex 

by an excess of ATP. 2 mM ATP was mixed with 250 nM S1 which was pre-incubated with 

500 nM pyrene-actin and 100 µM ADP. k+ADP values for the 3 proteins are given 7D. Inset 

showing data on a longer log time scale showing the slow phase components of the 

transients. The average values from 3 independent measurements for experiments shown 

in B, C and D are summarised in table 1. 
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Supplementary Information 
 

Cardiac/slow muscle contraction velocity is matched to heart rate and 

body size through variation in β-myosin sequence. 
Chloe A. Johnson1*, Jake E. McGreig1*, Carlos D. Vera2, Daniel P. Mulvihill1, 

Martin Ridout3, Leslie A. Leinwand2, Mark N. Wass1, Michael A. Geeves1 

 
CONTENT: 

Figure S1. Multiple sequence alignment of rat, rabbit, human and bovine β-cardiac 

myosin. 

Figure S2. Residue-mass transition plots. 

Figure S3. Distribution of amino acids at twelve positions 

Figure S4. Highly variable residue mass vs amino acid frequencies. 

Figure S5. SDS-PAGE of the three protein preparations. 

Figure S6. Frequency of organisms at different mass levels. 
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Supplementary Figure 1. Multiple sequence alignment of rat, rabbit, human and 
bovine β-cardiac myosin. 
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Supplementary Figure 2. Residue-mass transition plots. Binomial regression mapping 

the transition of the most frequent amino acid at positions in the motor region of β-myosin 

to the second most frequent amino acid at that position. The residue numbering is that of 

the human β-myosin, as oppose to the alignment position. The black squares are 

Euarchontoglires, and the triangles are Laurasiatheria. The P-value with each plot indicate 

the probability that the transition of the amino acids is not a result of change in mass. 
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Supplementary Figure 3. Distribution of amino acids at twelve positions. This table 

shows the amino acids that occurs in each of the twelve residues, those predicted to be 

assocaited with mass and that are of interest, in each species, sorted by mass. Yellow 

background is the predominant amino acid in small mammals. Blue background is the 

predominant amino acid in large mammals. The clades Laurasiatheria, Euarchontoglires, 

Metatheria, and Afrotheria are represented by the letter L, E, M and A respectively. 
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Supplementary Figure 4. Highly variable residue mass vs amino acid frequencies. 

Residues which had more than two sites of variation, with the third most frequent amino 

acid being close in frequency to the second most common amino acid. The black squares 

are Euarchontoglires, and the triangles are Laurasiatheria. The residue numbering is that of 

human β-cardiac myosin. 
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Supplementary Figure 5. SDS-PAGE of the three protein preparations. A. Recombinant 

human β-S1 with 2 light chains. B. Native rat β-S1 and recombinant chimera S1 with 2 light 

chains. 
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Supplementary Figure 6. Frequency of organisms at different mass levels. Plot to 

show the counts for organisms from each clade at different mass levels. Pink, dark, yellow, 

blue and purple shows organisms from the clades Afrotheria, Euarchontoglires, 

Laurasiatheria, and Metatheria clades. 
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5. Myosin motor domains carrying mutations implicated in 
early or late onset hypertrophic cardiomyopathy have 

similar properties 
 
 

Carlos D. Vera*, Chloe A. Johnson*, Jonathan Walklate, Arjun Adhikari, Marina Svicevic, 

Srboljub M. Mijailovich, Ariana C. Combs, Stephen J. Langer, Kathleen M. Ruppel, James A. 

Spudich, Leslie A. Leinwand, and Michael A. Geeves 

 

* Contributed equally 

 

Journal of Biological Chemistry, 2019. In press. 

 

5.1 Context of research 
 
As described in section 1.4, research into HCM has been extensive since the first identification 

of a single point mutation in MyHC-β (Geisterfer-Lowrance et al. 1990). The collaboration 

between University of Colorado and University of Kent has contributed to the effort in 

understanding the molecular basis of the disease. The expertise of the Leinwand laboratory in 

recombinant myosin production has been coupled with the experience of the Geeves laboratory 

in rapid kinetic techniques, who are able to measure kinetic properties of myosin to a high 

precision using limited quantities of protein. Two well-known HCM-causing mutations, R453C 

and R403Q, were investigated in Bloemink et al and Nag et al, respectively (Bloemink et al. 

2014; Nag et al. 2015). The development of MUISCO in 2017 lead to the kinetic characterisation 

using stopped-flow spectroscopy being complemented by kinetic modelling. This was 

conducted for 5 DCM-causing mutations in the MyHC-β motor domain (Ujfalusi et al. 2018). 

This is a follow up study, using the same approach to investigate the functional effects of seven 

HCM-causing mutations. 
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5.2 Aims of research 
 
Single point mutations have been identified in the MyHC-β motor domain in both adolescent 

(early-onset) and adult (late-onset) patients with HCM. We hypothesised that the effect of 

mutations is more severe in patients with early-onset HCM compared to late-onset HCM.  Why 

disease progression is triggered earlier in life in the early-onset patients has yet to be 

elucidated. Stopped-flow spectroscopy was used to characterise kinetic parameters of the 

cross-bridge cycle for four early-onset and three late-onset HCM mutations. The 

mechanochemical cycle was then further explored using MUSICO, with the aim of 

understanding if the mutations have altered contractile properties (such as duty ratio, ATP 

economy, load dependence or shortening velocity) that may give rise to pathology.  

 

5.3 Contribution to publication 
 
Dr Carlos Vera, Dr. Stephen Langers, and Ariana Combs from Professor Leslie Leinwand’s 

laboratory cloned the sequences of all seven mutations, grew the viruses, transfected and grew 

the C2C12 cells. C2C12 cell pellets were shipped to Dr Jonathan Walklate and myself for 

purification. I designed, performed and analysed stopped-flow experiments for six of the seven 

mutations (all except H251N, which was characterised by Dr Walklate). Dr Vera made two trips 

to the University of Kent to assist with stopped-flow experiments and learn the technique; I 

supervised and mentored him during his training. I performed kinetic modelling of the transient 

kinetic data using MUSICO, with assistance from Marina Svicevic and Srboljub Mijailovich on 

the error analysis. Dr Arjun Adhikari, Dr Kathleen Ruppel and Professor James Spudich kindly 

provided motility and ATPase data. Dr Vera, Professor Leinwand, Professor Michael Geeves 

and myself wrote the first draft of the manuscript, which was reviewed by all authors. 

 

5.4 Publication – see below. 
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6. Molecular features of the UNC-45 chaperone critical for 
binding and folding muscle myosin. 

 

 

Doris Hellerschmied, Anita Lehner, Nina Franicevic, Renato Arnese, Chloe Johnson, Antonia 

Vogel, Anton Meinhart, Robert Kurzbauer, Luiza Deszcz, Linn Gazda, Michael Geeves, Tim 

Clausen 

 

Nature Communications, 2019. In press.  

 

6.1 Context of research 
 

The Clausen lab at the Institute for Molecular Pathology are a structural biology laboratory, with 

expertise in protein folding. The extensive knowledge and experience of myosin biochemistry 

in the Geeves lab fostered the collaboration between the two groups.  

 

The folding and assembly of the striated muscle myosin relies on the specific chaperone 

UNC-45. The study presented in the following manuscript continues the work of Gazda et al, 

who resolved the crystal structure of the C. elegans UNC-45 protein and identified the 

organisation of UNC-45 in tandem oligomers to facilitate thick filament formation and stability 

(Gazda et al. 2013). Their work also described the mechanism of UNC-45’s interaction with the 

co-chaperones Hsp90 and Hsp70. The following paper describes the expression of a C. 

elegans skeletal myosin (UNC-54, or MHC-B) in insect cells when co-expressed with the C. 

elegans chaperone UNC-45. This work makes possible the probing of the role of UNC45 and 

other co-chaperones in myosin folding. 

 

6.2 Aims of research 
 

The aim of this research was 2-fold. Firstly, to produce sarcomeric myosin using baculovirus 

vectors and insect cells (High Five cells).  The reason for this being that protein yields are 

currently limited by the C2C12 expression and purification system which was used to produce 

recombinant myosins described in Chapters 3-5. This worked aimed to investigate if 

recombinant myosin could be produced and folded in a non-muscle environment if co-

expressed with the UNC-45 chaperone. The second aim of the research was to show the direct 
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effect of the temperature sensitive-mutations on the myosin folding activity of UNC-45. Using 

the insect cell/baculoviral system, a mutational analysis of UNC-45 was conducted. Crystal 

structures of the temperature sensitive mutations were generated to uncover the molecular 

basis of the temperature-sensitivity, with a focus on the flexible myosin-binding UCS domain. 

This could advance the understanding of the folding mechanism of this chaperone.  

 

6.3 Contribution to publication 
 

My contribution to this manuscript was with regards to aim 1. I worked closely with Renato 

Arnese from the Clausen lab when he visited the University of Kent. Together, we conducted 

the initial biochemical activity of the purified MHC-B. We did this through single turnover 

experiments and F-actin co-sedimentation assays. The manuscript was received by Nature 

Communications, who recommended a more thorough biochemical characterisation of the 

purified MHC-B protein to confirm that the protein is active. I then completed this through 

stopped-flow spectroscopy. I designed, performed and analysed the stopped-flow 

characterisation of the MHC-B protein. For this publication I provided figure 3d, supplementary 

figure 3, and supplementary table 1. These were added to the following revised manuscript.  

 

6.4 Publication – See below for the revised manuscript which was accepted by Nature 

Communications. 
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7. Discussion 
 

 

As described in Chapter 1.7, the aims of this thesis were part of an effort to understand the 

mechanism by which the properties of myosin can be modulated to achieve a multitude of 

functions. With a focus on class II myosins, this was achieved by looking at different 

contraction characteristics between class II isoforms, the way in which MyHC-β myosin can 

modulate ADP release and velocity, and how single point mutations can disrupt myosin 

function. To improve the current methodology to produce recombinant myosin that allow us 

to answer such questions, we also attempted to address if the myosin chaperone UNC-45 

could be utilised to increase protein yields, and characterised the MHC-B myosin from the 

body wall of C. elegans. The extent to which this work has successfully addressed these 

problems will be discussed below, chapter by chapter. 

 

7.1 The ATPase cycle of Human Muscle Myosin II isoforms: Adaptation of a single 

mechanochemical cycle for different physiological roles 

 

The first aim of this thesis was to predict how human sarcomeric myosins may adapt their 

mechanochemical ATP-driven cross-bridge cycle to perform different functions within 

different muscle types. The physiology of a muscle is determined by the muscle fibres 

present, which typically express a single myosin isoform. Chapter 3 demonstrated that all 

isoforms studied have unique fractional occupancies of the states in the ATPase cycle, and 

the balance between the different molecular events in the cycle can be altered to produce 

a range of mechanical activities. 

 

 The work presented in Chapter 3 is the first of its kind, combining data from multiple 

groups and applying a novel modelling approach to predict how parameters of the cross-

bridge cycle govern the major physiological characteristics of a muscle fibre. Some key 

conclusions from this work include the finding that each isoform has a unique relationship 

between the ATPase cycling rate and the three significant events in the cycle (phosphate 

release, ATP hydrolysis and ADP release). Interestingly, whilst being a developmental 

myosin, the MyHC-peri isoform shared similar characteristics with the fast skeletal isoforms 

rather than the MyHC-emb isoform. Our results additionally demonstrated that the slow 

isoforms are more economical at holding loads. This allows the slow isoforms to sustain 

force and velocity when contracting for longer periods compared to the fast isoforms. Taken 
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together, these findings reveal distinct characteristics between different sarcomeric myosin 

isoforms. 

 

One of the parameters that is predicted from the modelling approach is the rate 

constant of ATP hydrolysis. The rate and equilibrium constants that control this step 

precedes the entry into the M.D.Pi state (see Figure 1.28). The rate of ATP hydrolysis, along 

with phosphate release, is thought to control the rate of force development (Sleep, Irving, 

and Burton 2005). To determine the rate and equilibrium constant of ATP hydrolysis, 

previous assays in our laboratory use a combination of quenched-flow spectroscopy and 

High Performance Liquid Chromatography (HPLC) (Bloemink et al. 2007). This assay 

measures the time dependence of phosphate production using a quench-flow apparatus; 

myosin is mixed with ATP, aged for a specified time, and then quenched with acid, which 

denatures the myosin and stops the ATPase reaction. Phosphate that was sequestered in 

the active site in the M.ADP.Pi state is also measured. Phosphate, along with ADP and ATP 

nucleotides can be then be quantified using HPLC. The limitation of using this assay with 

the human proteins generated from C2C12 expression and purification is the large quantity 

of protein required. The assay generally uses 2 mg for one experiment, which is double the 

1 mg of protein generated from one batch of culture of C212 cells.  However, the parameter 

has been measured in other species for the MyHC-β and MyHC-IIa isoforms. MyHC-β from 

bovine masseter muscle has a rate constant of 18 s-1 (Bloemink et al. 2007), from rabbit 

21.6 s-1 (Iorga, Adamek, and Geeves 2007), and from porcine 24.5 s-1 (Stein, White, and 

Annis 1989). This agrees well with the modelled human value of 12.5 s-1. MyHC-IIa from 

rabbit had a rate constant for ATP hydrolysis of 131 s-1 (Ritchie et al. 1993); our model 

predicts the human fast skeletal isoforms to have values 92.8-125.2 s-1. This demonstrates 

the accuracy of the model to predict unknown parameters, therefore we applied the model 

to other isoforms (such as the perinatal and extraocular isoforms) for which this parameter 

has not been reported. 

 

Another parameter predicted from the modelling is the rate constant of phosphate 

release. This is a significant part of the cycle, as it precedes the force-holding, strongly 

attached AMD state. The work of White et al and Heeley et al estimated Pi release to be 

75–77 s−1 for rabbit skeletal S1 (White, Belknap, and Webb 1997; Heeley, Belknap, and 

White 2002). The modelled human IIa isoform was predicted to be 44.5 s-1. Whilst the 

measured value is almost double our predicted value, it should be noted that it was obtained 

at different ionic strength to our solution data. The salt dependence of this parameter is not 

known. However, measurements performed at identical salt conditions to our experiments 

on porcine MyHC-β S1, which has a sequence identity to human MyHC-β of 95%, estimates 
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phosphate release to be 17 s−1. This compares well with our estimate of 15.95 s−1 (Liu et al. 

2015), further highlighting the precision of the model. 

 

To constrain our model further, we could measure the rate constant or equilibrium 

constant of ATP hydrolysis. Classically the method to measure this constant used 

radioactively-labelled nucleotides. Other methods that have the sensitivity to measure 

nucleotides at low concentrations could be explored. In 2017, Olaffson et al described the 

combination of HPLC with mass spectrometry to measure deoxyribonucleoside 

triphosphate concentrations in tissues and isolated cells (Olafsson et al. 2017). The assay 

successfully separated and quantified down to the femtomole level dCTP, dTTP, dATP, and 

dGTP nucleotides. If this resolution could be applied to ATP and ADP nucleotides, it may 

present an attractive method to measure the rate constant of ATP hydrolysis. My initial 

studies (not presented in this thesis) have investigated the use of NMR spectrometry. Guo 

et al reported the use of one-dimensional proton NMR spectroscopy to measure the ratios 

of different nucleotides, which can then be used to infer information about ATPase and 

kinase activities (Guo et al. 2014). The authors also claim that the technique can directly 

monitor ATP turnover. I performed initial experiments testing this method and proof-of-

concept measurements were successful. Optimising this method is an area that could 

enhance the current scope of our modelling approach, and may also have implications for 

the work described in Chapter 5, as will be discussed in section 7.3. 

 

The modelling conducted with MUSICO in this thesis is not reflective of the 

sarcomere environment in which actin and myosin are found. The larger aim of MUSICO is 

the development of an accurate multiscale model of a contracting sarcomere  (Mijailovich 

et al. 2016). Such complex modelling would require the combination of single molecule force 

measurements, muscle fibre data, motility assays and transient ATPase kinetics. The 

modelling performed in Chapter 3 does not take into account regulatory proteins such as 

tropomyosin and troponin, thin filament regulation, Ca2+ sensitivity or thick filament 

regulation (such as myosin binding to MyBP-C and titin, phosphorylation of RLC). However, 

whilst the modelling approach used here is simple, and does not fully exploit the capabilities 

of the MUSICO programme, the basics of the ATPase cycle have to be understood before 

progressing to more complex models. To obtain a highly constrained model, the ATPase 

cycle should be well-defined, which the data in Chapter 3 achieves.  

 

To fully understand the mechanical behaviour of a muscle fibre, the force-velocity 

relationship needs to be defined. When studying the in vivo mechanics of a muscle, 

maximum shortening velocity is not the most relevant parameter. Muscles contracting in 
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vivo do not shorten at their maximum shortening velocity, but rather at the velocity at which 

power output is maximal (i.e. the optimum performing conditions for a muscle) (Bottinelli et 

al. 1996). The force generated by a muscle is a function of its velocity; power = force x 

velocity. The force of a muscle defines the velocity at which power output is maximal. 

Currently, our data is on single protein, and extrapolating solution biochemistry to muscle 

fibre data is beyond the scope of the model. However, of note is the work of Fenwick et al, 

who used a modelling approach to show how myosin force production is co-ordinated with 

energy utilisation during lengthening and shortening (Fenwick, Wood, and Tanner 2017). 

They report that the fraction of bound cross-bridges increased during slow-velocity 

concentric and eccentric contractions, but that ATP utilization increased during shortening 

transients due to faster cross-bridge cycling. This work demonstrates how contractile 

efficiency and power output are modulated throughout dynamic contractions, which may be 

another way in which myosin can fine-tune its properties.  

 

As with any modelling approach, there are a number of assumptions that are made 

to allow a detailed description of the system to be achieved. For the class II myosins, load 

dependence has only been measured for the human MyHC-β. We applied this load 

dependence to all isoforms studied in our analysis; this is unlikely to be the same between 

the isoforms. This parameter needs to be determined for more isoforms. The recent 

developments in force measurements using single molecule assays will enable this 

(Greenberg, Shuman, and Ostap 2014; Sung et al. 2015). Another assumption in our 

modelling was the effect of temperature on myosin ATPase. The experimental ATPase data 

for the perinatal, extraocular and fast skeletal isoforms were conducted at 37 °C; a Q10 value 

of 1.5 has been reported for the ATPase of MyHC-β (Siemankowski, Wiseman, and White 

1985), and so this value was used to correct value to a temperature of 20 °C. However, it is 

possible that this temperature-dependence is different between isoforms, thus this remains 

a limitation of the data. 

 

One of the limitations of using such an approach as kinetic modelling is the varying 

experimental conditions between different labs if parameters are not all collected within the 

same group. All the assays included in the model in Chapter 5 were completed under the 

same experimental conditions (i.e., ionic strength, temperature). Where possible this was 

also true for the data in Chapter 3, with a few exceptions. Kinetic data for the fast skeletal 

and extraocular isoforms were completed at 100 mM KCl (Deacon et al. 2012), but all other 

data was collected at 25 mM KCl (Nag et al. 2015; Walklate et al. 2016). However, salt 

dependence has been reported for rabbit MyHC-IIa and human MyHC-β kinetics (Mijailovich 

et al. 2017), so we corrected for this difference. Perhaps one limitation is the different tags 
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that have been added to the recombinant myosins as the production process has been 

refined over the last decade. The fast skeletal and extraocular isoforms were purified with a 

GFP-tagged moiety, which was absent in all other isoforms. Bloemink et al demonstrated 

that there were few differences in measured parameters of MyHC-β with and without a GFP-

tag (Bloemink et al. 2013), but the effect of the presence of the GFP-tag on the steady-state 

ATPase rates has not been measured.  

 

All kinetic parameters in the model were collected in solutions containing 25 mM 

salt, and simulations were run assuming this ionic strength. Simulations were performed at 

this ionic strength to allow comparison between stopped-flow and ATPase data, the latter 

of which requires low salt to achieve saturation of the actin-activated ATPase. This is not 

reflective of physiologically relevant salt conditions, but as the modelling is dependent on 

steady-state ATPase parameters, this must be a well-defined parameter. Whilst this may 

not be physiologically relevant, as all isoforms were under the same conditions, a direct 

comparison between them can be made.  

 

As the fundamental ATPase cycle, which the model is based on (Figure 1.28) is 

conserved between myosins, this analysis can be performed for myosins from different 

classes. The work presented in Chapter 3 was focussed on human sarcomeric myosins, 

which contain a wide repertoire of properties alone. Whether the difference in structural 

domains are coupled with changes in mechanochemical cross-bridge cycle properties to 

give rise to different functions between different myosin classes could be explored. A further 

application of the model could be in the use for predicting potential therapeutic agents for 

disease from small molecule screens. If kinetic parameters of disease-causing mutations 

were known, the model could be used to assess if the parameters are restored to WT values 

when in the presence of a potential therapeutic agent.  
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7.2 Cardiac contraction velocity has evolved to match heart rate with body 

size through variation in β-cardiac myosin sequence 

 

The work from Chapter 3 demonstrated some of the different contractile properties of 

different myosin class II isoforms, but the question still remains as to how these differences 

arise from the sequences of myosin. Chapter 4 aimed to address this question by focusing 

on MyHC-β and its adaptation of the rate of ADP-release to control velocity as body mass 

increases through evolution. 

 

The instructions for life are encoded within the DNA sequence of proteins, so we 

analysed the sequences of class II myosins. As described in section 1.3.2, the work of 

McGreig et al demonstrated a correlation in sequence identity with body mass for MyHC-β, 

MyHC-IIa and MyHC-IIb isoforms (McGreig et al. 2019). In this study we focussed on the 

MyHC-β isoform. Velocity data of the MyHC-IIa and MyHC-IIb isoforms are only available 

for a few species, whereas heart rates have been recorded for a large cohort of mammals. 

To be clear, heart rate is not solely a function of myosin composition within the heart; it is a 

function of very many inter-species variables. These variables exist at the protein, 

anatomical and physiological levels. However, the maximum shortening velocity, which is 

one of the parameters that defines the force-velocity relationship of a muscle, is a property 

of the myosin isoform expressed. We therefore propose MyHC-β can be used to probe 

adaptation of contraction velocity with increasing body mass. 

 

MyHC-β is expressed both within slow skeletal muscle and the ventricles of large 

mammals, including humans. The endogenous rat protein which was used as a control in 

Chapter 4 was obtained from the soleus muscle, not cardiac tissue. Cardiac muscle contains 

an abundance of fibroblasts and other cell types, which makes purifying cardiac MyHC-β 

less efficient. One consideration is that different post-translational modifications (PTMs) 

may occur in cardiac and skeletal muscle. To understand the effects of PTMS such as 

phosphorylation, serine to aspartate mutations can be introduced into a protein to mimic the 

phosphorylated states. Kampourakis and colleagues recently reported the limitations of 

generating and studying such mutations (Kampourakis et al. 2018). They found three Ser-

Asp mutations in cardiac MyBP-C did not reproduce the same effects as tris-

phosphorylation of these sites Protein Kinase A. This is likely due to the additional negative 

charges introduced with phospho-mimetic mutations. It can therefore be misleading to 

interpret the effects of phosphorylation sites in a protein using such an approach. Whilst the 

full extent of the effect of PTMs on MyHC-β is currently unknown, it is unlikely that such 

modifications generate significant alterations to the rate of ADP-release or maximum 
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shortening velocity. Bloemink et al demonstrated that the ADP release rate was not 

significantly different between MyHC-β from bovine masseter and cardiac muscles. 

Therefore, rat MyHC-β purified from soleus muscle is expected to have the same kinetic 

properties as that of cardiac MyHC-β. 

 

The sequence changes introduced into the MyHC-β were found in three distinct 

clusters of the motor domain. Whether all three of these regions contribute equally to the 

changes in ADP release, and hence velocity, or if they all work in unison is not yet defined. 

As shown by the table in Figure 6 in Chapter 4, the rate of ADP release is modified step-

wise. It is therefore unlikely that a single one of these residues is the sole determinant of 

the change in the rate of ADP release and velocity between the rat and human MyHC-β. 

Instead, we predict that each of the nine residues will contribute a fraction of the difference 

in the measured parameters. What would be interesting is whether 3 locations in the motor 

domain are also responsible for the adaptation to body mass in the MyHC-IIa and MyHC-

IIb isoforms, or if these isoforms vary alternate regions of the motor domain to suit their 

physiological requirement. It should be noted that any changes made to the sequence of 

the motor domain are likely to be subtle; to alter the function of the protein in a positive 

manner without exerting any negative consequences requires a careful balance of tuning 

the ADP-release rate whilst maintaining motor function. 

 

Whilst the work in Chapters 3 and 5 were completed with sS1, the WT human MyHC-

β and chimera proteins in Chapter 4 were extended S1 molecules. These S1 constructs 

contained 2 IQ domains, and so were purified with the endogenous mouse essential and 

regulatory light chains. Deacon et al demonstrated no significant difference in kinetic 

parameters between sS1 and S1 (Deacon et al. 2012).  

 

The velocity value for human MyHC-β obtained in Chapter 4 was 0.49 ± 0.129 μm.s1. 

A similar experiment in Ujfalusi et al reported a motility of 0.612 ± 0.21 μm.s-1 (Ujfalusi et al. 

2018), although this value was obtained at 23 °C (compared with our experimental condition 

of 20 °C). It has been reported previously that the effects of salt, pH and temperature can 

alter velocity values (Homsher, Wang et al. 1992). Higher temperatures can increase motility 

by a factor of 4 over 10 °C, as shown by Sheetz et al (Sheetz, Chasan, and Spudich 1984). 

Moreover, the construct used in Ujfalusi et al was sS1 with only single light chain, compared 

to the S1 construct with two light chains used in this study. Lowey et al showed that light 

chain content can affect velocity (Lowey, Waller, and Trybus 1993a). Indeed, in skeletal 

muscle removal of both light chains slowed velocity by a factor of 10, but reconstitution of a 

single light chain restored velocity only to an intermediate level (Lowey, Waller, and Trybus 
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1993b).  Other studies have also shown the importance of light chain content on velocity 

(Fewell et al. 1998; Matthew et al. 1998; Toepfer et al. 2013; Kim et al. 2019). Thus, the 

differences in temperature and light chain content may account for the differing velocity 

values.  

 

Velocity values for human MyHC-β are also reported in Chapter 5, which were 

collected by the Spudich group. They report a range of velocity values; data in Table S8 

show that values range from 0.579 to 0.858 μm.s-1 between different protein preparations. 

This suggests there is variability between protein preparations. In this study, all 

measurements were completed from 3 independent protein preparations from different cell 

pellets. Despite this, all cell pellets were transfected with the same adenovirus stock, and 

were grown simultaneously in the same incubator, resulting in growth under identical 

conditions. This reduced the variability we observed in our measurements. To note, the 

errors are larger in our velocity values as the errors from the Spudich laboratory represent 

Standard Error of the Mean (SEM), whereas we report Half Width at Half Maximum 

(HWHM). This is to account for the distribution of the velocity values around the mean.  

 

The site of cleavage by chymotrypsin is found after the first IQ domain; therefore, 

the chymotryptic-digested rat soleus myosin contained 1 IQ domain and hence 1 light chain. 

As the light chain content differs from the recombinant human MyHC-β and chimera 

proteins, and because light chain content affects motility as outlined above, a direct 

comparison of motility cannot be made between the recombinant proteins and the native rat 

soleus S1. Whilst a motility assay was not performed for the native rat protein, studies in 

the literature indicate that rat myosin moves 3-5 times faster than the human myosin (the 

absolute value varies depending on conditions of the experiment) (Pellegrino et al. 2003). 

Velocity data has been reported for rat and human fibres. However, comparison of velocity 

data from muscle fibres does not directly correspond to values obtained with single protein. 

It is thought that the orientation of the myosin on the surface will contribute to this (Homsher, 

Wang et al. 1992). Indeed, the presence of the C-terminal extension on the MyHC-β and 

chimeric proteins tether the myosin to the surface resulting in a uniform attachment of 

proteins to the coverslip and stable geometry, which is not the case for fibre data. Whilst the 

absolute values cannot be directly compared, the ratio of rat-human motility is comparable 

to our chimera-human ratio. 

 

The motility assay was performed under unloaded conditions. It would be interesting 

to measure the load-dependence of the chimera protein with harmonic force microscopy 

(Sung et al. 2015). Both load-dependence and the step-size of human MyHC-β have been 
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measured, although we would not expect to see a difference in these parameters in the 

chimera protein. The force-velocity relationship defines the mechanical performance under 

various loads as a function of maximum force and maximum velocity.  For individual muscle 

myosins the maximum force is a property of a myosin isoform but is largely invariant 

amongst different orthologues.  Maximum shortening velocity of a single myosin type, 

however, does vary among orthologues. This would suggest that the load-dependence of 

the chimera protein would be equivalent to the human MyHC-β, although this remains a 

prediction and has not been experimentally determined. 

 

Figure 5 in Chapter 4 shows the location of the residues changed in the chimera 

protein. Interestingly, none of the changes were found in the converter domain, which, as 

described previously, is a hot-spot for cardiomyopathy-causing mutations. This suggests 

that mutations introduced into this domain are not well-tolerated. Whilst none of the residues 

have been reported in ClinVar (a database that reports human variations and phenotypes, 

with supporting evidence), a study from Robert-Paganin et al reported two of the residues 

as sites with reported disease-causing mutations (Robert-Paganin, Auguin, and Houdusse 

2018). This study was a comprehensive analysis of 178 reported HCM-causing mutations 

which aimed to categorise the mutations based on the effects on the motor. At residue 349, 

a methionine to threonine substitution has been reported in a single adolescent by Jeschke 

et al (Jeschke et al. 1998). The authors predict that this mutation leads to altered motor 

function. Similarly at residue 434, an arginine to threonine substitution is predicted to likely 

effect both motor function and stability. However, like the 349 residue, this mutation has 

only been seen in one patient (Wang et al. 2014). It is therefore hard to predict whether the 

mutations are clearly causative of HCM; the two mutations could be normal variants in the 

population. 

 

This study may have wider implications on the field of evolutionary biology. One of 

the fundamental challenges in current molecular and structural biology is to understand how 

a protein can adapt, over evolutionary time frames, to different physiological requirements. 

To begin to understand this, we must grasp how DNA sequence variation alters protein 

function. This is pivotal to our understanding of evolution and the role of genetic variation. 

Now with the availability of the genomes of different species and many individual human 

genomes, it would be possible to use this approach for any measurable phenotype.  

 

As shown in Figure 1.16, point mutations can have long-reaching effects on protein 

function, both locally and globally. Of the ~800 amino acid motor domain, 9 amino acid 

substitutions were sufficient to alter properties of the motor such that the behaviour of the 
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protein was altered to match that of a different species. Physiologically, multiple mutations 

are not well tolerated within the myosin protein. Table 1.5 demonstrates the sheer number 

of mutations identified in MyHC-β. Just single amino acid substitutions are sufficient to 

cause HCM. The molecular mechanisms underpinning the cause and progression of this 

disease are incompletely understood. Chapter 5 aimed to address this and is discussed in 

more detail below.  
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7.3 Myosin motor domains carrying mutations implicated in early or late onset 

hypertrophic cardiomyopathy have similar properties 

 

Chapter 5 described a large-scale study on seven well-known heart HCM-causing mutations 

to identify the molecular changes in the MyHC-β motor that give rise to either early or late 

onset disease. This work is the key for understanding disease progression and identifying 

potential therapeutic targets for HCM. We initially hypothesised that early onset mutations 

would be more severe in their properties compared to late onset. Interestingly, we disproved 

our original hypothesis. 

 

Whilst no clear distinction was observed between early and late mutations, a pattern 

of behaviour was observed based on the location of the mutation within the motor domain. 

As discussed previously, the converter domain is a hotspot for HCM mutations, and is critical 

for the swing of the myosin lever arm during force production. All three late onset and two 

of the four early onset mutations studied in Chapter 5 are located in the converter domain. 

These five mutations showed some distinct characteristics which were not observed in the 

two non-converter domain mutations. For example, all converter domain mutations had a 

lower actin-activated ATPase rate, a lower duty ratio, and a lower AMD state. As stated in 

Chapters 3 and 5, the AMD state represents the ADP-bound myosin head in a force-

producing state bound to actin. A decrease in the AMD population will result in a decrease 

in the population of myosin heads strongly bound to actin in a force-producing state, 

suggesting a decrease in the ensemble force. Recent data shows that the myosin intrinsic 

force is little affected by adult-onset HCM converter mutations (Kawana et al. 2017). Taking 

together, these results suggest there exists a more complex mechanism by which mutations 

alter myosin activity or its regulation, leading to HCM pathology.  

 

Recently, a hypothesis has been proposed that suggests the number of myosin 

heads in a sequestered state in cardiac filaments is altered during disease. Myosin can form 

an auto-inhibited state, termed the interacting-heads motif (IHM). It has been reported that 

when myosin filaments disassemble, the tail folds into three segments and the heads bend 

back and interact both with each other and with the folded tail (Lee et al. 2018). The activity 

of the two heads are highly inhibited; the so-called blocked head is prevented from binding 

to actin through its interaction with the other free head. The free head, in turn, has its 

ATPase activity inhibited by binding to the blocked head. It has been suggested that these 

head–head and head–tail interactions may be the basis of the super-relaxed (SRX) state of 

myosin (Stewart et al. 2010). 
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The work of Cooke and colleagues first hypothesised that myosin exists in three 

states with different nucleotide turnover lifetimes; active (1 s-1), disordered relaxed (~ 30 s-

1) and super relaxed (150 s-1 in cardiac muscle fibres, ~ 300 s-1 in skeletal muscle fibres). 

The super relaxed state (SRX) of myosin was first identified in single nucleotide turnover 

experiments on permeabilized, relaxed skeletal muscle fibres, which showed a biphasic 

decay in fluorescence intensity. The authors postulated that there exist two subpopulations 

of relaxed cross-bridges (disordered relaxed and super-relaxed) with ATP-turnover rates 

that differ by approximately a factor of 10. The two subpopulations were also observed in 

experiments performed on rabbit ventricular muscle fibres (Hooijman, Stewart, and Cooke 

2011).  Intriguingly, the proportion of SRX can be fully abolished in skeletal fibres upon 

activation of myosin heads, although this is not observed in cardiac muscle fibres (Hooijman, 

Stewart, and Cooke 2011). This suggests a subset of myosin molecules remain in the SRX 

even during activation of the muscle and thus may slightly reduce the total metabolic rate 

of working cardiac muscle. It should be noted that the definition of the SRX is the state of 

myosin with an extremely slow ATPase turnover rate; it is not defined as a folded-back state 

of myosin.   

 

Both SRX and IHM are becoming increasingly discussed in the field. It has been 

suggested that hypercontractility may arise from an increase in the number of functionally 

accessible heads in the sarcomere for interaction with actin (Trivedi et al. 2018; Spudich 

2019). It has been observed that a number of HCM-causing mutations are located close to 

the junction of the myosin S2 tail and the IHM. One of these mutations occur in an area of 

the “free” myosin head termed the cardiomyopathy loop, while others occur in the region of 

the S2 rod with which this loop interacts (Alamo et al. 2008). Mutations near this interface 

may destabilise the ordered structure of the thick filaments thereby reducing the proportion 

of SRX. Spudich and colleagues have also hypothesised how the number of available 

myosin heads available to interact with actin may lead to hypercontractility (Nag et al. 2017). 

They reported that myosin contains a relatively flat surface on the S1 domain which is a hot-

spot for HCM mutations (Spudich 2015; Homburger et al. 2016). This surface has a 

positively charged cluster of arginine residues, all of which when mutated are causative of 

HCM (Homburger et al. 2016). This cluster was suggested to act as a binding interface for 

MyBP-C and the proximal S2 region of myosin (Spudich 2015; Spudich et al. 2016). The 

authors suggested that such binding interactions could sequester myosin heads in an ‘off-

state,’ thereby regulating the number of myosin heads functionally accessible for interaction 

with actin. A primary effect of HCM mutations could be to weaken such associations, 

causing an increase in the number of heads available to bind to actin, thereby explaining 

the hypercontractility observed in HCM patients. 
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It is currently beyond the scope of our kinetic measurements to predict the number 

of myosin heads that may exist in the SRX. Similarly, the MUSICO programme does not 

take into account the proportion of myosin in a sequestered state. However, as discussed 

in 7.1, the ability to measure the K3 parameter would be crucial for elucidating the equilibrium 

between myosin heads in active and relaxed stated. The myosin heads in the SRX would 

exist in the pre-stroke state, with ADP and Pi in the nucleotide pocket, before interaction 

with actin accelerates the ATPase activity releasing the heads out of the SRX. A shift in 

either the rate or equilibrium constant of this state could alter the amount of myosin that is 

able to form the SRX. Studies mentioned above indicate that HCM mutations may weaken 

the IHM, which would result in an increased number of active myosin heads. Measuring the 

K3 parameter would test this hypothesis.  

 

The stopped-flow experiments described were performed with sS1 protein (the 

myosin motor domain with a single IQ domain and myosin ELC). This means that head-

head and head-tail interactions of the IHM cannot occur, and their effects not observed. To 

address this, work should now focus on performing experiments with HMM. The presence 

of the S2 region would provide the myosin head with a platform to fold onto, and the dimeric 

structure would bring the two S1 heads into close proximity to interact. Adhikari et al have 

recently performed ATPase and in vitro motility experiments for 5 HCM mutations with 

HMM-like two-headed molecules (Adhikari et al. 2019). This is the first study to describe 

functional parameters of HCM mutations using HMM-like constructs. The H251N, D382Y 

and R719W mutations studied in Chapter 5 were included in the Adhikari study. They found 

that the mutations do indeed decrease the level of SRX and make more heads available for 

interaction with actin.  

 

The stopped-flow experiments were performed with homogenous solutions of 

protein. Whilst this is not representative of the mixture of protein found in patient muscle 

fibres, this is required to understand the fundamental parameters of mutated protein. None 

of the mutations studied in Chapter 5 have been reported in homozygous patients, 

suggesting that homozygous mutations are incompatible with life. Patients will contain a 

mixture of both WT and mutated protein in their cardiomyocytes. As both genes are co-

dominantly expressed, an equimolar ratio of WT and mutated protein would be expected. 

However, a study by Tripathi et al found that the ratios of five different HCM-causing MyHC-

β mutations showed an allelic imbalance at both the mRNA and protein level (Tripathi et al. 

2011). Two of the mutations included in the study included R719W and R723G, which were 

analysed in Chapter 5. Both of these mutations accounted for 2/3 of total MYH7 mRNA 

transcripts. It has been suggested that this is due to increase splicing efficacy, as the 
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mutations are located at hairpin structures at intron-exon boundaries (Tripathi et al. 2011). 

The kinetic properties of a myosin solution containing a combination of WT and mutated 

protein is yet to be elucidated. 

 

As mutations are found in many regions within the motor domain, it is unlikely there 

is one single mechanism by which mutations cause disease. The question as to how the 

large number of reported mutations lead to the same phenotype remains a valid question. 

Robert-Paganin et al recently classified HCM and DCM mutations in MYH7, based on the 

resulting effects on the motor (Robert-Paganin, Auguin, and Houdusse 2018). The 

classification of the seven mutations studied in this thesis are summarised in Table 7.1. All 

3 late onset mutations were described as destabilising the sequestered state destabilized 

due to effect on IHM contacts. All seven mutations had different resulting impairments on 

the protein. This again highlights that it is unlikely there exists a common mechanism for 

disease progression that arises from the presence of these mutations alone. The prediction 

of the H251N and the three late onset mutations affecting motor function is consistent with 

our observations. Whilst the Robert-Paganin study was comprehensive, many of the 

mutations included in the analysis are reported as VUS. This is true for the H251N, P710R 

and V763M early onset mutations that we characterised. Thus, caution must be taken to 

describe these mutations as causative of disease. 

 

The study of MyHC-β and its role in HCM has changed the field of myosin research 

from one of basic science to a relevant subject for clinical study. However, the field remains 

limited by the lack of protein in order to conduct large-scale studies on the molecular basis 

of disease and therapeutic target design. We attempted to address this issue in Chapter 6, 

as will be discussed below. 
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Mutation 
Early or  

late onset? 
Predicted effect of mutation Resulting impairment 

H251N Early 
Sequestered state destabilized due to effect on IHM  

contacts. Motor function altered 

Interaction with U50 linker within the transducer. May affect 

 the motor transitions and the stability of the PPS state 

Involved in stabilisation of the IHM motif 

D382Y Early 
Sequestered state destabilized by direct effect on IHM 

 without impairment in motor activity 

Surface – no effect on motor function  

(unless the tyrosine side chain gets buried and  

allosterically changes this actin-binding interface) 

P710R Early 
Sequestered state destabilized due to effect on PPS  

stability or off state formation. Motor function altered 

Alters the transitions of the SH1 helix and the stability of the  

primed lever arm –likely alters motor function 

PPS stability affected 

V763M Early 
Protein stability likely altered as well as motor function 

 possible effect on the off state if the PPS stability is altered 

Destabilisation of the converter fold 

Would affect function and the stability of the sequestered state 

R719W Late 
Sequestered state destabilized due to effect on IHM 

 contacts. Motor function altered 

Modifies the top-loop conformation 

Small effect on compliance 

R723G Late 
Sequestered state destabilized due to effect on IHM 

 contacts. Motor function altered 

Change in top-loop conformation 

Change in lever arm compliance 

G741R Late 
Sequestered state destabilized due to effect on IHM 

 contacts. Motor function altered 

No major effect on the compliance of the lever arm 

Destabilised the converter at the top loop 

 

Table 7.1 Classification of the seven mutations studied in Chapter 6. PPS – pre-powerstroke. Data from (Robert-Paganin, Auguin, and Houdusse 

2018).
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7.4 Molecular features of the UNC-45 chaperone critical for binding and folding 
muscle myosin 

 

The fourth aim of this thesis was to improve the current recombinant myosin expression and 

production system. The importance of UNC-45 in myosin folding has been utilised to 

produce recombinant myosin over the past two decades. Winkelmann and colleagues 

demonstrated that muscle myosin requires a muscle environment to fold into a functional 

molecule (Srikakulam and Winkelmann 1999; Chow et al. 2002; Srikakulam and 

Winkelmann 2004). As shown by Price et al, skeletal muscle UNC-45 is expressed 

specifically in cardiac and skeletal muscle (Price et al. 2002). The current system to produce 

recombinant myosin uses an immortalised mouse myoblast cell line, called C2C12 

(Resnicow et al. 2010). The C2C12 cell line differentiates rapidly upon hormonal treatment, 

forming contractile myotubes and produces characteristic muscle proteins. As the protein is 

being produced in a muscle environment, all necessary chaperones and folding factors are 

present to enable fully folded motor domain to be extracted.  

 

The work of the Winkelmann and Leinwand labs revolutionised the field, as it 

became possible to study single myosin class II isoforms for the first time. Whilst Regianni 

showed that a single muscle fibre typically expresses one myosin isoform, a muscle may 

consist of multiple fibre types (Bottinelli and Reggiani 2000), making the isolation of a single 

isoform difficult. The C2C12 cell methodology enabled the characterisation of seven of the 

class II isoforms (Deacon et al. 2012; Bloemink et al. 2013; Walklate et al. 2016). In Chapter 

3, we characterised another developmental class II isoform; MyHC-Peri. Despite the 

achievements of this production system, there are limitations. Firstly, the process is time 

consuming. The time from viral expression to protein purification is typically three months. 

Secondly, the protocol requires specialist equipment and expertise; a methodology that 

uses standard lab chemicals would be advantageous. Furthermore, little protein is 

generated; typically, 1 mg from a 1 litre culture. To address these issues, and utilise the 

information we have about the role of UNC-45 in myosin folding, colleagues in the Clausen 

lab in Vienna attempted to produce sarcomeric myosin using a standard baculoviral 

expression system in a non-muscle environment. 

 

Using the High Five insect cell line and baculovirus expression system, the motor 

domain of a sarcomeric C. elegans myosin was successfully produced. Baculovirus has 

been used previously to produce smooth non-muscle myosins, but this is the first time it has 

been used to produce a sarcomeric myosin. The gene for the body wall myosin, MHC-B, 
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was co-expressed with the gene for UNC-45. The expression and purification system were 

able to generate 15 mg protein per litre of insect cell culture. This is almost 15x the yield of 

that obtained from the C2C12 system. Not only was the protein produced folded and 

soluble, it was also fully active. We confirmed this by stopped-flow spectroscopy to 

characterise the activity of the protein. This characterisation is novel, as no kinetic 

measurements have been performed on a C. elegans myosin previously. The data in 

Supplementary Table 1 of Chapter 6 demonstrates that the C. elegans MHC-B has similar 

properties to the slow-type MyHC-β. The two proteins had a similar affinity for actin (KA), 

second order rate constant of ATP binding to S1 (K1k+2) and actin.S1 (K’1k’+2), and ATP 

affinity for acto.S1 (1/K’1). The major differences were the ADP affinity for S1 (K6K7) value - 

which was 14-fold weaker - and the ADP affinity for actin.S1 (K’6K’7) value, which was 2-

fold weaker. The ADP release rate from acto.S1 (k’+6) was over three times faster, with a 

value of 189 s-1, compared to 59 s-1 for the MyHC-β (Deacon et al. 2012; Bloemink et al. 

2013). This is rather surprising, due to the very similar nucleotide binding sites between the 

two proteins. To validate the results of the recombinant MHC-B, a characterisation of 

endogenous MHC-B purified from C. elegans would be required. 

 

It is worth noting that the MHC-B construct was expressed in the absence of any IQ 

domains, and hence light chains, whereas the MyHC- β was co-expressed with the human 

essential light chain, MYL3. However, this is unlikely to cause the differences in ADP affinity 

or ADP off-rate reported. Deacon et al compared MyHC-β with 1 and 2 light chains (Deacon 

et al. 2012), and saw no significant differences in these parameters. Similarly, Woodward 

et al demonstrated that removal of the light chain in Dictyostelium discoideum myosin did 

not alter enzymatic properties of the motor domain (Woodward, Geeves, and Manstein 

1995). As mentioned above, Lowey et al showed with rabbit skeletal S1 that the absence 

of light chains altered velocity but not ATPase activity (Lowey, Waller, and Trybus 1993b). 

Therefore, it is unlikely that the lack of IQ domains and light chains altered the kinetic 

properties of the purified MHC-B. 

 

The limitation of the production system is the so-far inability to produce mammalian 

myosin. Attempts to produce the motor domain of human MyHC-β resulted in successful 

expression of the gene, but when purified the protein aggregated and no-soluble myosin 

was present. To address this, a chaperone screen using a proteomics approach could be 

employed to identify chaperones that are required for mammalian myosin folding that are 

not present in simpler model systems, such as C. elegans. It could also be that the 

recombinant protein is lacking in PTMs that would exist if the myosin was produced in a 

muscle environment – this could be critical for correct myosin folding, and has yet to be 
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explored. Another potential use of the insect cell system would be the ability to produce 

HMM, rather than S1. As discussed above, the HCM mutations studied to date are often 

conducted on S1, which is not representative of the double headed conformation that exists 

within a sarcomere. Work to produce HMM using the insect cell system is not presented 

here, but is on-going in the Clausen laboratory. 

 

An inherent limitation in characterising the substrate-targeting mechanism of UNC-

45 thus far has been the lack of sufficient quantities of its substrate (due to reasons outlined 

above). The higher protein yields from the insect cell system therefore enabled the 

importance of various folding factors in myosin folding to be explored. Soluble myosin was 

only obtained during co-expression with UNC-45, not with Hsp70 or Hsp90, highlighting the 

essential requirement of UNC-45 even in the absence of its co-chaperones. Because of the 

high protein yield we propose that it would also be easier to obtain high resolution crystal 

structures of human cardiac myosins in multiple states, attempts of which have yet to 

produce such structures. This is also important for the elucidation of the previously 

mentioned SRX state of myosin, which has yet to be crystallised. Obtaining a crystal 

structure of the SRX state is challenging due to the requirement of the sample containing 

intact filament. A technique such as cryo-electron microscopy is more likely to reveal the 

3D-structure of such a complex. This technique would still require HMM constructs, so that 

the sequestered heads folded back onto the myosin tail can be resolved. 

 

Whilst no mammalian myosin has been expressed, as noted above, the work on 

HCM could benefit from a model organism. A DALI search (a database for comparing 3D 

structures of proteins) found that of 36 related protein structures in the Protein Data Bank, 

the human MyHC-β myosin was the closest structural homolog of the MHC-B structure. The 

two motor domains are 59% identical and 72% similar.  The work of Bernstein and 

colleagues use Drosophila melanogaster as a model for cardiomyopathy, which they have 

successfully used to characterise the K146N and R2249Q HCM mutations (Kronert et al. 

2018; Bell et al. 2019). Since D. melanogaster is 58% identical to human MyHC-β, which is 

comparable to the C. elegans MHC-B, and because C. elegans is a widely used genetic 

model for muscle biology, we propose that C. elegans could be used as a model organism 

for both myosin folding and disease. To test the suitability of C. elegans as a model 

organism, a well-studied HCM-causing mutation, such as R403Q or R453C, could be 

inserted into the MHC-B, and observe if the same kinetic parameters are changed 

compared to WT. Further, the role of UNC-45 in cardiomyopathies could be explored using 

this system. Melkani et al showed the importance of UNC-45 in maintaining cardiac 

contractility during remodelling of the myocardium in fly heart muscle (Melkani et al. 2011). 
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The study showed that UNC-45 knockdown in Drosophila heart leads to conditions similar 

to cardiomyopathies. The precise mechanism that generates this phenotype is not yet fully 

understood.  

An interesting question that still remains is how the UNC-45b isoform is specific for 

myosin, compared to the more generic UNC-45a. The two isoforms have a 57% sequence 

homology. Studying the isoform-specific activities of UNC-45 and their regulation will be 

critical to enhance our understanding of myosin chaperone function in health and disease. 

It is also currently unknown if they are differentially regulated. Another interesting question 

is whether or not the assembly of UNC-45 oligomers regulates chaperone activity. The 

equilibrium between monomeric and oligomeric UNC-45 has yet to be defined, and 

transition between the two states may direct different chaperone activities. Whether this 

equilibrium is altered when a muscle undergoes stress may further yield insights into the 

protective role of UNC-45 in stress response.  
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7.5  Concluding remarks and future perspectives  
 

The work of this thesis has elucidated how sarcomeric myosins have fine-tuned their 

properties to give rise to different physiological functions. Disruption of these processes in 

diseased-states is crucial for understanding the mechanism of disease onset and 

progression. There are still a number of interesting questions that remain within the fields 

of muscle physiology and myosin biochemistry. I have outlined below a few areas I think 

will shape these fields in the coming years. 

 

Fundamental to myosin biochemistry is the mechanochemical cycle, which is 

conserved across myosin classes. As discussed in 1.6.2, force generation during the 

working stroke of the cross-bridge cycle includes phosphate release and movement of the 

lever arm, although the precise order of these two events remains under debate. It is also 

unknown whether this order varies between different classes of myosin. Elucidating the 

precise process of force generation remains a challenge in the field.  

 

The design and testing of small molecules or MyHC-β inhibitors to treat HCM is 

required to advance the current therapeutic options available to patients. It is unlikely there 

is one single modulator of MyHC-β that could successfully treat all cases of HCM, due to 

the array of different impairments reported in the protein (see Table 7.1). The phenomenon 

of myosin in a SRX may pose a potential mechanism to target for both prevention of disease 

progression and treatment of existing cardiac conditions. The structural state of the SRX is 

yet to be elucidated. Whilst not only advancing our potential understanding of cardiac 

disease pathology, it will yield insights into fundamental thick filament behaviour and 

regulation. 

 

The IHM and SRX state of myosin heads which are unable to bind to actin and 

hydrolyse ATP raises the question of how the motors can sense the state of the thin filament 

during activation. A thick-filament mechanosensing mechanism in skeletal muscle has been 

proposed (Linari et al. 2015), whereby a small fraction of constitutively active motors allows 

the muscle to respond immediately to calcium activation and  initiates a positive feedback 

loop. Such a mechanism in cardiac muscle may represent a potential target for therapeutic 

intervention in disease. 
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