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Abstract

Magnetic materials with strong local interactions, but lacking long range order, have long
been a curiosity of physicists. Probing the magnetic interactions is crucial for understanding
the unique properties they can exhibit. Framework materials have recently gathered more
attention as they can produce more exotic structures, allowing for controlled design of
magnetic properties not found in conventional metal-oxide materials. Probing the magnetic
interactions, in functional magnetic materials, can reveal detailed insight into how to optimise
the properties they possess while providing key understanding of the exotic phenomena they
may host. Historically, magnetic diffuse scattering in such materials has been overlooked
but has attracted greater attention recently, with advances in techniques. This thesis probes
the short range magnetic order and long range magnetic structure of some highly efficient
magnetocaloric frameworks containing heavier lanthanides. In particularly we aimed to
identify the magneto-structural relationship that leads to an optimised magnetocaloric effect
in low applied magnetic fields (<2 T) and at temperatures 2-10 K, where these materials
could find use in adiabatic refrigeration applications as an energy efficient alternative for
cooling to temperatures for which liquid helium has historically been used. The magnetic
structure and correlations have been probed through neutron scattering, using reverse Monte
Carlo refinements to establish the short range order they manifests, and Rietveld refinements
to probe the long range order. A variety of physical property measurements have been used
to provide additional information about the bulk properties of these materials.

This thesis begins with an introduction into magnetic materials, including the key aspects
relevant to this thesis in Chapter one and a description of the experimental and analytical
methods used in Chapter two. Chapter three then explores the crystal structure and mag-
netocaloric effect of the LnOHCO3 and LnF3 (where Ln = Tb, Dy, Ho, and Er) phases.
A combination of single crystal X-ray and neutron powder diffraction indicate that the
LnOHCO3 materials solely adopt the P212121 structure under these synthetic conditions
and magnetic susceptibility measurements indicate they remain paramagnetic down to 2
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K. We show that the magnetocaloric effect of TbOHCO3 and DyOHCO3 is significantly
higher, above 4 K in moderate magnetic fields, than the promising GdOHCO3 framework.
Similarly, the LnF3 also show impressive entropy changes, but less than that of LnOHCO3.
The entropy changes in LnF3 are likely due to some persistent ferromagnetic correlations,
and their high density. The peak magnetic entropy change of these frameworks exceeds that
of Gd3Ga5O12 in equivalent fields, making them suitable magnetic cooling materials for use
at liquid helium temperatures using the low applied magnetic fields, required for practical for
a low temperature cooling device.

Chapter four investigates the magnetic structure of metal-organic formate frameworks,
using heat capacity, magnetic susceptibility and neutron diffraction. In Tb(DCO2)3 we
observe emergent magnetic order at temperatures below 1.2 K, consisting of two k-vectors.
Ho(DCO2)3 shows diffuse scattering above 1.6 K, consistent with ferromagnetic chains
packed in a frustrated antiferromagnetic triangular lattice, also observed in Tb(DCO2)3 above
1.2 K. Ho(DCO2)3 shows the same emergent charge ordered state below 0.7 K, but differs
to Tb(DCO2)3 in that k1 and k2 become active simultaneously, and variable temperature
measurements show how the peak width is due to disorder and not an artefact of small domain
size. Tb(DCO2)3 also shows some interesting magnetic inelastic features which persist well
above TN , but can be described by Ising spins, for which the Hamiltonian has been deduced.
The other lanthanides show no short or long range order down to 1.6 K, although at 50
mK Er(DCO2)3 shows order with antiferromagnetic coupling within the chains. The results
suggest an Ising-like 1D magnetic order associated with frustration is responsible for the
magnetocaloric properties, of some members in this family, improving at higher temperatures.
However, the weak antiferromagnetic order in Er(DCO2)3 at 50 mK is likely responsible for
the poor entropy changes seen, with applied magnetic fields.

Chapter five probes the short and long range magnetic order in the LnODCO3 (where Ln

= Tb, Dy, Ho, and Er) framework magnetocalorics using variable-temperature neutron
scattering measurements. Reverse Monte Carlo analysis of neutron scattering data shows
that TbODCO3, DyODCO3 and HoODCO3 develop short range Ising-like magnetic order
between 1.5 and 20 K, consistent with dominant ferromagnetic correlations within chains
along the b-axis. Through magnetic susceptibility measurements we identify long range
magnetic order develops in TbODCO3 and HoODCO3 at 1.2 and 0.9 K, respectively. Neu-
tron diffraction measurements were conducted on HoODCO3 revealing incommensurate
magnetic order develops between 1.2 and 0.9 K, before a commensurate magnetic phases
emerges at 0.8 K with long-range ferromagnetic order in the chains. The results suggest
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Ising-like ferromagnetic chains associated with frustration are responsible for the improved
magnetocaloric properties, of some members in this family, at higher temperatures and low
applied fields.

Chapter six investigates the magnetic structure of two key materials, Tb(DCO2)3 and
TbODCO3 in applied magnetic fields. By exploring the magnetic structure of these magne-
tocaloric materials, in situ, we have been able to understand the mechanism that leads to the
efficient magnetocaloric effect. We find that the presence of short range ferromagnetic chains
correlations develops into long range order upon increasing magnetic field. These persistent
ferromagnetic chains allow for easy magnetisation of the materials in small magnetic fields,
achieving high changes in entropy for moderate field changes.

This thesis provides insight into the fundamental magnetic properties and structure of lan-
thanide frameworks materials that have been shown to have excellent magnetocaloric be-
haviour. The results indicate that the presence of frustrated interactions preventing long range
order, in combination with ferromagnetic Ising chains provide materials optimised for high
entropy changes in low applied magnetic fields.
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1

General Introduction

1.1 Introduction

Magnetic materials have long been studied from a fundamental standpoint [1] and for their
fascinating properties, including data storage and transfer, [2, 3] cooling devices [4, 5] and
medical applications. [6] Ferromagnetism has been known about before modern science
through the naturally occurring iron containing mineral, magnetite, [7] despite a lack of
understanding of its underlying magnetic interactions. In 1907 Weiss published the first
description of its origin [8] through studies of the temperature dependence of alloys and
halides. Ferromagnetism was the only known type of magnetic order until 1948 when Néel
proposed a new type of magnetism, the antiferromagnet [9] from which the interest in the
fundamental understanding of magnetic materials grew. Traditionally, many of the studied
magnetic materials are mineral-like compounds such as alloys, halides, and oxides, due
to their strong magnetic interactions between magnetic centres. Therefore these materials
have higher (and often more useful) ordering temperatures. Metal-oxides, such as materials
with the general structure ABX3 called perovskites, have enjoyed a long history of in depth
studies, [10] and uses in functional devices. Studies go far beyond purely magnetic materials,
for their ability to modify their properties through inclusion of characteristic A or B site
cations, replacing oxygen for similar charged anions or creating layered perovskites.

Materials built from polyatomic components, such as hybrid perovskites which contain
organic cations, have attracted much attention. Hybrid perovskites for example have been
observed to exhibit properties that exceed the ability of traditional perovskites, such as
in photovoltaic applications, [11] due to the inclusion of an organic cation allowing for
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greater flexibility of the structure. [12] However, beyond modifying the composition of
these materials, the knowledge required to tailor the underlying structure and interactions is
not as well developed compared to metals oxides. Given the key role of structure-property
relationships in optimising properties, this is the necessary avenue to investigate.

In general coordination frameworks containing polyatomic ligands, including metal-organic
frameworks (MOFs), have attracted much attention in recent years for their ability to highly
modify the structure and properties. This lends MOFs to gas storage [13, 14] because design
and synthesis of highly porous frameworks, with extended connecting ligands between
metal-centres, is possible. However, more recently, magnetic studies of coordination frame-
works have emerged, highlighting the potential of such materials in functional magnetic
materials. The ability for a greater flexibility in the design of the structure, allows for more
specific topologies and magnetically isolated sheets and chains, opening up the means to low
dimensional and frustrated magnetism, fundamentally interesting and useful when optimised
through knowledge of structure-property relationships.

Frameworks have already been shown to feature a wide variety of the functionality found
in oxides, with uses in chemical and magnetic sensors, [15] magnetocalorics [4, 5] and
multiferroics that combine magnetism with ferroelectric order. [16] In frameworks, the
magnetic interactions are facilitated through the connecting ligand, or a single atom within
them and the strength and direction of these magnetic interactions depends on the precise
nature of the linker. Magnetic interaction strength is typically inversely proportional to the
size of the ligand, and therefore in magnetic frameworks, linkers must be kept short to allow
for sufficient metal-metal magnetic interactions. Through meticulous design of magnetic
frameworks we can build materials with properties such as low dimensional magnetism.

Frustration and low dimensional magnetism have recently been shown to improve the ef-
ficiency of magnetocaloric materials, in low applied magnetic fields. [4, 17] For example
Tb(HCO2)3 shows larger changes in entropy for magnetic fields smaller than 2 T between
4-10 K, compared to Gd(HCO2)3 which shows higher changes in entropy at lower tempera-
tures and in higher magnetic fields. This is suggested to arise from the 1D ferromagnetic
correlations observed in the paramagnetic phase, which is allowed to stay paramagnetic
through competing antiferromagnetic interactions. [18]
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1.2 Crystallography

The aim of a solid state chemist or condensed matter physicist is to understand the structure
of a solid material in order to optimise the properties. The most powerful framework for
understanding the solid state structure of materials is crystallography. Great progress in the
ease of calculations in crystallography has made the understanding of crystalline materials
progress rapidly, and is now a key technique for modern chemistry and physics.

The perfect crystal consists of a regularly repeating structural unit, made of either a single
atom or group of atoms. The regular repeating unit, known as the unit cell, can be translated
in any direction to be perfectly mapped onto any other one. The unit cell is the smallest
region with full symmetry, and can be thought of as the fundamental region from which the
entire crystal may be constructed from purely translational displacement (see Figure 1.1).
Therefore in order to understand the whole crystal, only the symmetry of a single unit cell
has to be determined.

a
b

c
β

𝛾

⍺

Figure 1.1 A diagram showing a collection of regular repeating unit cells, and the lattice constants
and the lattice angles of a simple cubic unit cell.

In real space the lengths of the unit cell are denoted as a,b and c, with the angles between
them labelled α , β and γ as shown in Figure 1.1. The unit cells can be divided into seven
crystal systems based on the rotational symmetry they have, Table 1.1 shows the essential
symmetries the crystal must have to belong to the crystal system. [19].

The seven crystal system can then be further divided into fourteen Bravais lattices, dependent
on the way atoms are packed into the unit cell. Taking into account all the symmetries, and
constraints of the unit cells generates the 230 nuclear space groups, which is the basis of
structural solution of crystals in crystallography.



1.3 Origin of magnetism 7

Table 1.1 The crystal systems. [20]

System Angles Lengths Rotational Symmetry

Triclinic α ̸= β ̸= γ |a| ̸= |b| ̸= |c| None
Monoclinic α = β = 90◦ ̸= γ |a| ̸= |b| ̸= |c| One C2 axis
Orthorhombic α = β = γ = 90◦ |a| ̸= |b| ̸= |c| Three Perpendicular C2 axes
Tetragonal α = β = γ = 90◦ |a|= |b| ̸= |c| One C4 axis
Cubic α = β = γ = 90◦ |a|= |b|= |c| Four C4 axes
Hexagonal α = β = 90◦,γ = 120◦ |a|= |b| ̸= |c| One C6 axis
Trigonal α = β = γ ̸= 90◦ |a|= |b|= |c| One C3 axis

1.3 Origin of magnetism

The electron is a fundamental spin 1/2 fermion particle (s = 1
2), with a −1 electric charge

and the particle of interest for chemists and condensed matter physicists. Organic chemists
build their careers out of tracking the movement of the electron but as condensed matter
and physical chemists we are concerned with how these particles are correlated within the
electromagnetic mean field.

The Pauli-exclusion principle states: [21]

“the total electron wavefunction is antisymmetric with respect to the interchange
of any two electrons”

which simply means that no electron can have the same quantum numbers as another electron
(same values of n, l,ml,ms ), ie. no two electrons can occupy the same orbital with the same
spin state. This lead to the German physicist Hund describing the lowest energy level for a
partially filled orbital as one that maximises multiplicity (Figure 1.2). [22] Conveniently, for
scientists interested in magnetic phenomena, this leads to the consequence of maximising the
magnetic moment on an atom.

0 1 2 3-1-2-3ml

Figure 1.2 A diagram demonstrating Hund’s rule of maximum multiplicity in the f -orbitals, for Gd3+

If we think of the electron as a rotating charged particle about an axis, then the magnetic
moment of a single electron is given by: [23]
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µB =
eh̄

2me
L = 9.274×10−24J ·T−1 (1.1)

where e is the charge of the electron, h̄ is the reduced Planks constant, me is the rest mass
of an electron, and L is the angular moment. The magnetic moment of a single electron is
defined as 1 Bohr magneton (µB).

In lanthanides the magnetic moment is given by the Russell-Saunders coupling scheme, which
takes into account the number of spin contribution (S), the total orbital angular momentum
(L) and the total angular momentum (J). [24] J is calculated as J = L − S for systems that
have the f -orbitals less than half filled and J = L+S for systems that are greater than half
filled, caused by the coupling of spin moment to the orbital angular moment. The orbital
angular momentum is determined by the sum of the quantum numbers (ml) given by the
occupation of electrons in the orbitals, as shown in Figure 1.2 for Gd3+ , L = 0. [25] The
magnetic moments, in units of Bohr magneton, are given by:

µe f f = g j
√

J(J+1) (1.2)

where the landé g-factor (g j) for a lanthanide ion is given by:

g j =
3
2
+

S(S+1)−L(L+1)
2J(J+1)

(1.3)

The calculated values of S, L and J and the effective magnetic moments for systems containing
unpaired electrons such as the lanthanides (Ln) are shown in Figure 1.3. Here we can see the
the contributions of the spin only and orbital terms contributing to the total magnetic moment
of the lanthanide ions.

1.4 Introduction to Magnetic Order and Disorder

The quantum mechanical origin of magnetism as discussed in Section 1.3, leads to the
phenomenon of magnetic moments that can be considered classical vectors similar to that of
a bar magnet. The moments are pictorially represented as arrows with arrows pointing up
referred to as spin up, and pointing down as spin down. At high temperatures, the thermal
energy of the lattice prevents the interactions between the moments cooperating with each
other, and this state is referred to as a paramagnetic state. In the paramagnetic state, magnetic
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Figure 1.3 The values of S, J, L and µe f f in the Ln3+ ions

moments are not correlated to each other and fluctuate randomly with respect to each other, as
shown in Figure 1.4a. Below some critical temperature where the strengths of the interactions
between moments are sufficient to overcome thermal disturbances, the moments become
strongly correlated with each another.

(a) (b) (c)

Figure 1.4 Diagram of a (a) paramagnet showing the movement of the uncorrelated spins (b) Ferro-
magnet with static spins parallel with respect to the nearest neighbour and (c) an antiferromagnet with
static spins antiparallel with respect to the nearest neighbour. All are shown on a square lattice, with
atoms shown in blue and spin directions shown in pink.

In ferromagnetic substances the temperature at which the moments align with respect to its
neighbours is known as the Curie temperature (TC). In this arrangement the moments all
align in the same direction over a range of thousands of atoms, within the magnetic domain.
For a simple 2D lattice, ferromagnetism is shown in Figure 1.4b. The earliest known example
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of this was magnetite, [7] but since then, many transition metals oxides and frameworks have
been found to be ferromagnetic at low temperatures.

At low temperatures many materials undergo a transition to a state where the moments
are antiparallel with respect to each other (Figure 1.4c). These materials are known as
antiferromagnets and the ordering temperature is called the Néel temperature (TN), after Néel
who first predicted the state. [9] The first experimental evidence of an antiferromagnetic state
came with advances in diffraction techniques, leading to the first experimentally observed
antiferromagnetic state in MnO in 1949. [26] These simple magnetic structures can be
considered to be commensurate magnetic order, because the magnetic order is contained
within an integer number of unit cells, and can therefore be expressed using 3 hkl indices.
However more complicated examples of magnetic order exist and are discussed in Section 1.8,
where due to competing interactions the materials cannot form simple magnetic orders. Often
the interactions are such that the materials form order over a non-integer number of unit cells,
and are known as incommensurate magnetic structures. In incommensurate structures sharp
Bragg reflection require >3 hkl indices so it is periodic in higher dimensional superspace, and
the wavelength of the modulation is incommensurate with the average periodic lattice. An
early example of an incommensurate structure is seen in metallic chromium, which shows a
Néel temperature of 311 K, with early measurements suggesting a simple antiferromagnetic
state. Chromium actually undergoes a transition to an incommensurate spin-density sine
wave structure, with moments on the atoms subtly varying along the a-axis (Figure 1.5),
resulting in a small shift in magnetic reflections that initially was overlooked. [27] Further
examples of exotic magnetism are given in Section 1.8 and the theories explaining how this
order forms is discussed further in Section 1.6.4.

Figure 1.5 Left image shows the magnetic structure of the first unit cell, in the sine wave of chromium,
the plot on the right shows how the magnetic moment varies along each equivalent magnetic sites. A
commensurate magnetic structure would consist of all unit cells identical to the first. The spin wave
spans over a non-integer number of unit cell.
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1.5 Magnetic Susceptibility and Behaviour in Field

When a material is exposed to an applied magnetic field H, a magnetic flux is induced in the
sample, this is given by:

B = µ0H +µ0M (1.4)

where µ0 is the permeability of free space, M is the magnetisation of the sample. µ0H is
the magnetisation generated by the applied magnetic field and µ0M is the contribution from
the material. The SI units for an applied magnetic field is the Tesla (T), but historically the
centimetre-gram-second (CGS) unit system has been used and is still used today in magnetic
measurements, where 1 T = 10000 Oe. [28] When a magnetic field is applied to a sample, the
magnetic susceptibility χ is defined by the ratio of the magnetisation to the field where:

χ =
M
H

(1.5)

The magnetic susceptibility is the parameter that is often used to describe the response of a
materials to an applied magnetic field. The magnetic susceptibility of a sample is strongly
dependent on the sample temperature. As temperatures are lowered, the interactions between
magnetic moments become relatively stronger compared to thermally induced disorder
thereby effecting the behaviour of the susceptibility, as summarised in Table 1.2.

Table 1.2 Magnetic susceptibilities of Different Magnetic Orders. SC = Superconductor. [28]

Magnetic Behaviour ≈ χM (cm3 mol−1) χ with Decreasing Temperature

Diamagnetism −8 × 10−6, −1 for SC None
Paramagnetism 0.1-0.001 Increases
Ferromagnetism 5 × 103 Increases
Antiferromagnetism 0-10−2 Decreases

The different types of magnetism can be identified by the magnetic susceptibility of a material,
including the effect of temperature. In diamagnetic samples, where there are no unpaired
electrons and therefore no magnetic moments, a small negative susceptibility is present due
to the exclusion of the magnetic flux from the sample. This diamagnetic effect is created
by the orbital momentum of the electron, where a small moving electric field generates a
magnetic field. The electron momentum is affected by the applied magnetic field, repelling
it.
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In paramagnets magnetic moments exist, typically from ions with unpaired electrons, but
do not have sufficient interactions to order. In this paramagnetic state the application of a
magnetic field aligns the moments with the field, producing a positive susceptibility, and as
the temperature is lowered less thermal motion leads to an increase in magnetic susceptibility.
As magnetic ordering emerges below TC or TN the susceptibility of a paramagnet changes.
This thesis is concerned with the magnetic orders and interactions, so it is necessary to
understand the effect of an applied magnetic field on materials with moments that can
be ordered at low temperatures. At temperatures above the ordering temperature (Curie
Temperature TC for a ferromagnetically ordering sample, Néel TN for an antiferromagnetically
ordered sample) the material is paramagnetic. In ferromagnets, these parallel interactions
allow for full alignment with a field and so the susceptibility increases rapidly. Where these
interactions are anti-parallel this reduces the net moment, so susceptibility decreases (see
Figure 1.6). Most materials have some sort of ordering transition, but there are exceptions.
[29]

Figure 1.6 Ideal magnetic susceptibility and reciprocal susceptibility, following Curie-Weiss law, as a
function of temperature. Shown are the curves for a paramagnet, ferromagnet and antiferromagnet in
blue, orange and green, respectively. The reciprocal susceptibility shows the x-intercept positive for a
ferromagnet and negative for an antiferromagnet, known as the Curie temperature.

At TC and TN a order-disorder transition occurs, as the material goes from a disordered para-
magnet to an ordered structure, evidence for this is shown within the magnetic susceptibility
temperature dependence. A purely isolated paramagnet will obey the Curie-Law, which states
that the magnetic susceptibility is inversely proportional to temperature, given by Equation
1.6. [28]
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χ =
C
T

(1.6)

Where C is the Curie constant, and T is the temperature. Paramagnets with interactions
between magnetic centres well obey a modification of the Curie law - the Curie-Weiss law,
the application of which can aid with the identification of ferromagnets and antiferromagnets.
[30] This is given by:

χ =
C

T −θCW
(1.7)

where θCW is the Weiss constant. The insert in Figure 1.6 shows the effect that a positive or
negative θCW has on the inverse magnetic susceptibility. A positive θCW indicates dominant
ferromagnetic correlations within the materials, and conversely a negative value indicates
dominant antiferromagnetic correlations, and in simple ferromagnets and antiferromagnets
θCW is close to TC or TN .

By fitting the inverse magnetic susceptibility in the paramagnetic region, and some simple
maths, we are able to determine the Weiss and Curie constants of the sample. We can see
that the Curie constant is equal to 1/slope and the Weiss constant is equal to −intercept/slope.
In ideal cases the |θCW | determines the ordering temperature of the material and is equivalent
to TN or TC.

The observed magnetic moment can then be calculated from the Curie constant using:

µe f f =

√
3kB ·C
NA ·µ2

B
(1.8)

where kB is the Boltzmann constant, NA is Avogadro’s constant and µB is a Bohr magne-
ton.

For materials with significant competing interactions the actual long-range ordering tem-
peratures may differ considerably from the Curie-Weiss temperature. In many cases the
frustration index, fi therefore provides a way of measuring and comparing materials with
high degrees of magnetic frustration, and is given by:

fi =
TN

θCW
(1.9)
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This value must be considered tentatively in materials where low temperature effects become
significant such that the orbital angular momentum is quenched, as in lanthanides, but is
a good approximation nonetheless. Determination of the dominant interactions, and order
associated with a sample is important for understanding the microscopic interactions within
a material. In addition to temperature dependent measurements of a sample it is also useful
to perform field dependent measurements, to see how the magnetisation of a sample reacts
under changes in field. Application of a field to a paramagnetic or antiferromagnetic sample
will increase the magnetisation linearly in small applied magnetic fields and in a sigmoid-like
curve in larger applied fields, but no magnetisation will persist after removal of the applied
field (see Figure 1.7a). Figure 1.7b shows a typical hysteresis loop for a ferromagnetic sample.
If the sample is magnetised to the saturation point, when the magnetic field is reduced to
0, some remnant magnetisation will remain. [31] As the sample is initially magnetised the
domain walls of the sample align with the field, until saturation occurs, resulting in the
virgin curve. [32] A small hysteresis can sometimes also been observed in antiferromagnetic
samples with a ferromagnetic component, as a result of spin canting leading to a weak
ferromagnetic state.

(a) (b)

Figure 1.7 (a) Magnetisation measurement of a paramagnetic sample, antiferromagnets have similar
saturation curves in low applied fields, in higher fields stepped magnetisation can occur, as discussed
in Section 1.6.4. (b) Magnetisation measurement of a ferromagnetic ordering sample. The virgin
curve is shown in orange, and the subsequent field sweeps are shown in blue.

The saturation value of the magnetisation in high fields can yield some additional information
about the dimensionality of the magnetic spins. In samples with no magnetic anisotropy, the
magnetisation value will approach the moment determined from Curie-Weiss law (g jJ), as
there are no constraints in which direction the spins can align, and therefore can fully align
with field. In powder averaged samples with significant magnetic anisotropy such that the
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spins have an easy axis, the saturation values approach g jJ/2. [33, 34] In a powder-averaged
samples with randomly oriented particles the application of a magnetic field can only be
applied along one axis. If the vector of the magnetic field is perpendicular to the easy axis, the
spin will not align with the field. If the field is applied near the easy axis the spin will align
along the easy axis closest to the applied field vector, but the measured magnetisation will not
be the g jJ due to the lack of fully orientation of the spin in that direction. By measuring the
saturation value at low temperatures we can determine whether the spins obey Heisenberg or
Ising mechanics.

This magnetisation saturation value of a powder-averaged lanthanide uniaxial spin system
(Ising), with a angle between the applied field vector and the easy axis vector of θ , can be
expressed mathematically as:

Msat =
1
n

n

∑
i

gJJ · sin2
θ (1.10)

1.6 Magnetic Interactions

To fully understand how magnetic order can occur the microscopic models of magnetism
must first be considered. For a spin system constructed of two electrons, the Hamiltonian can
be written as the sum of two spin states S1 and S2, the energy of the singlet wavefunction ES

and an antisymmetric triplet wavefunction ET . The Hamiltonian is given by:

Ĥ =
1
4
(ES +3ET )− (ES +ET )S1 ·S2 (1.11)

The exchange energy which determines if the neighbouring spin state is antisymmetric can
be written as:

J =
ES −ET

2
(1.12)

therefore the spin-dependent term of the Hamiltonian is:

Ĥspin =−2JS1 ·S2 (1.13)
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Therefore if J is negative, the neighbouring spin will be antisymmetric (antiparallel) with
respect to the nearest neighbour, and symmetric if positive. This applied for a two spin
system, but generalised to a many spin system this can be written as:

Ĥ =− ∑
(i, j)

Ji jS⃗i · S⃗ j (1.14)

which is the simplest model for nearest neighbour magnetic interactions and is also called
Heisenberg model.

In this generalised equation i and j are spin sites on a periodic lattice. S⃗ is a unit vector,
representing the magnitude and direction of a magnetic moment, and Ji j is the strength of the
interaction between neighbouring spins.

1.6.1 Dipolar and Direct Exchange

Below some critical temperature, the exchange interactions become significant enough to
overcome the thermal energy and allow for ordering of the magnetic moments. The first
interaction between magnetic moments that should be considered is the dipolar interaction.
If we consider two magnetic dipoles µ1 and µ2, separated by a distance of r, the exchange
energy of this interaction is given by: [31]

E =
µ0

4πr3

[
µ1 ·µ2 −

3
r2 (µ1 · r)(µ2 · r)

]
(1.15)

where µ0 is the vacuum permeability. Here we can see the energy of the dipolar exchange is
inversely proportional to the distance cubed separating the two moments. For two magnetic
moments with moment of 1 µB and separated by a distance of 1 Å , this is approximately
equal to 10−23J or 1 K. This dipolar interaction is therefore extremely weak, and alone
cannot explain the higher magnetic ordering temperatures observed in many materials. For
two lanthanide ions, this effect is much more significant due to the large magnetic moments
and for two Tb3+ with a magnetic moment of 9 µB separated by a distance of 5 Å this
becomes significant at ≈1.2 K.

When exchange happens between two neighbouring atoms, this is known as direct exchange.
The exchange interaction can occur through overlap of the orbitals, allowing for direct
coupling of two magnetic moments to one another. However, in rare-earth elements, the 4 f

electrons are extremely localised to the core with little probability of the electron density
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extending beyond the atomic radii. Therefore, direct exchange is extremely unlikely and
cannot explain the observed phenomena at higher temperatures.

1.6.2 Superexchange

When magnetic moments on atoms are not close enough to each other, direct exchange is
not a significant effect. However, the exchange interactions can occur through another atom,
often an oxygen atom and this is referred to as superexchange. Superexchange was first
proposed by Kramers [35] and extended by Anderson [36] as a way of explaining the strong
interaction observed in MnO, without direct Mn-Mn coupling and a non-magnetic atom
separating them. [26]

Goodenough and Kanamori then developed a set of rules for determining the types of
interactions dependant on the bond angles. [37–39] For simplicity, if we consider the
octahedral coordination environment of a Ni2+ ion, a single unpaired electron occupies the eg

orbitals oriented towards an oxygen creating partial or fully covalent bonds with the oxygen p

orbitals. The p orbital of the oxygen contains two electrons, antisymmetric to the other. The
nickel and oxygen are sufficiently close to create overlap of the orbital and coupling of the
electrons between the atom. Superexchange occurs through the intermediate oxygen, thereby
coupling the two nickels. A bond between two nickel ions, through an oxygen will have
coupling of the spins as shown in Figure 1.8. Here we see antiferromagnetic superexchange
of the nickel with bond angles close to 180◦.

O2-Ni2+

Ni2+

Ferromagnetic 
Interaction

O2- Ni2+Ni2+

Orbital Overlap

Antiferromagnetic 
Interaction

Figure 1.8 (right) Diagram of the antiferromagnetic superexchange mechanism between two Ni2+

ions, through a 180◦ oxygen bond. (left) Diagram of the ferromagnetic superexchange mechanism
between two Ni2+ ions, through a 90◦ oxygen bond.
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If however, the bond angles between the two nickel ions is closer to 90◦, the superexchange is
more likely to be ferromagnetic, as shown in Figure 1.8. These Goodenough-Kanamori rules
are more guidelines than rules, as they only consider the nearest neighbours, without spin-
orbit coupling. In the Ln3+ frameworks in this thesis, there is significant spin-orbit coupling,
and many interactions within the systems, some of which are competing or rely on coupling
through multiple non-magnetic atoms. This somewhat complicates the picture.

1.6.3 Heisenberg, XY, and Ising Models

In the simplest model of magnetic interactions, spins are considered to be three dimensional
and can be oriented in any direction, this is given by the Heisenberg model as given by
equation 1.14. The 3D Heisenberg spins have the dimensionality D = 3, and can sit on a
lattice with a dimensionality of d = 1, 2 or 3. Alternatively, spins can be constrained so they
can only point up or down along a single axis, known as the Ising model (D = 1), [40] or in a
easy plane - the XY model (D = 2).

The Ising model spins are constrained up and down D = 1 and so we only need to consider
the z component of the coordinate system, such that the Ising model Hamiltonian can be
written as:

Ĥ =− ∑
(i, j)

Ji jS⃗i
z · S⃗ j

z
(1.16)

The spins can then be placed on crystal lattices with different dimensionalities. The one
dimensional Ising model takes spins arranged onto a chain, with the ground state NJ/2 for
the spin Si =±1/2. Long range 1D magnetic order cannot exist in an isolated system, with
the exception of an Ising system exclusively at 0 K due to a spin gap. [41]

1.6.4 Theories of Ferro and Antiferromagnetism

Ferromagnetic Models

In 1907 Weiss proposed a molecular field to explain the ordered magnetic state. [42] In the
Weiss model of ferromagnetism the spins align with the molecular field Fw. The molecular
field is proportional to the exchange interaction J of the spins, and for a magnetic moment
with orbital angular momentum, can be written as:
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Fw =
2J(gJ −1)2

ng2
Jµ2

B
(1.17)

where J is the exchange interaction. This yields the Curie temperature for a ferromagnet
as:

TC =
2Ji(gJ −1)2

3kB
Jq(Jq +1) (1.18)

where Ji is the exchange interaction and Jq is the total angular momentum. Unfortunately
these two quantities are often written with the same symbol, and so here they have been
differentiated. gJ is the landé factor.

The Landau theory of ferromagnetism takes a slightly different approach which presents
a mean-field theory of ferromagnetism. [43] This theory also extends beyond the Weiss
model to describe the nature of phase transitions to a ferromagnetic state. This describes the
magnetisation (M) of the sample, above and below the TC, for materials with a moment ̸= 0,
as given by: [31]

M =±
[

a0(TC −T )
2b

]C

(1.19)

Where a0 and b are positive constants, and C is the critical exponent, which for the magneti-
sation is = 1/2 . This mean-field theory therefore describes a system where all the spins are
subject to the same averaged field, and is identical to the Weiss model, but expressed differ-
ently. These mean-field theories are the simplest models for ferromagnetism and therefore
do not account for complex cases, and ignore small perturbations in the mean field which
become important near the phase transition temperatures.

Antiferromagnetic Model

When the exchange interaction is negative, the spins will orient antiparallel, with respect
to the nearest neighbour leading to an antiferromagnetic magnetically ordered ground state.
In a simple model this can be considered two ferromagnetically ordered lattices, that are
combined, such that you have two molecular fields, one for the up spins, and another for the
down spins. The Weiss model of antiferromagnetism expresses this as:
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B− =−|Fw|M−

B+ =−|Fw|M+

(1.20)

For a perfect antiferromagnet where M−+M+ ≡ M, the Néel temperature becomes:

TN =
gJµB(J+1)|Fw|Msat

3kB
=

n|Fw|µ2
e f f

2kB
(1.21)

where Ue f f is the effective magnetic moment, and Msat is the value at which the materials
reaches saturation in high applied fields, and J is the quantum number. For materials where
M+ ̸= M−, below TN the application of sufficiently large magnetic field can result in a
staggered magnetisation, such that it requires less energy align one spin lattice with the field,
than the other. [44, 45]

So far we have neglected the effect of fluctuations on the mean field, but this has an important
effect on the behaviour of magnetism within solids. Divergence from the mean field can be
expressed in terms of a correlation length (ε), which physically corresponds to the length of
which the correlation extends to. [46] This can also be considered as the distance at which
thermal fluctuations become more significant than the strength of the exchange interactions.
At high temperatures T >> TC the correlation length is very small, because fluctuations are
so strong. At low temperatures where T < TC, for a fully ordered materials the correlation
length should approach infinity. In between where a phase transition is occurring or where
we are dealing with disordered materials the correlation length becomes a useful tool for
determining the behaviour of magnetic materials.

1.6.5 Spin Waves

The excitation of a collection of spins, coupled together through exchange interactions is
called a spin-wave. Spin wave theory was first proposed by Bloch and Slater, independently
in 1930. [47, 48] The problem with calculating physical properties is the physical nature
of spin waves are so complicated some approximation is necessary, [49] therefore the spin-
waves are considered to be a perturbation from Landau’s mean field. If a local spin is excited
into a procession about an axis, this will in turn excite the moments coupled to it. The
procession of the spins propagates through the magnetic material, like a wave (Figure 1.9).
The spin-wave through a collection of spins can be considered analogous to the vibration of
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a lattice. In solids the collection of acoustic vibrations is treated as a quasi-particle, called a
phonon, and as such a spin-wave can be considered a magnon, quasi-particle.

k

Figure 1.9 A diagram showing the propagation of a spin wave through a ferromagnet, with vector k.

The magnon is a boson propagating through the magnetic order with a frequency, h̄ω and
momentum h̄q. A simple ferromagnet with moments oriented close to the z axis, Heisenberg
interactions, n spins, magnitude S and the exchange interaction J, gives the energy of the nth

spin as:

E =−2J
N

∑
n=1

Sn ·Sn+1 (1.22)

Assuming the magnetic moments behave as classical bodies, this gives the effective field
acting on the nth spin, due to the exchange interactions as:

Bn =− 2J
gJµB

n

∑
n=1

Sn ·Sn+1 (1.23)

The linear equation to solving the magnetisation of Sn requires no additional approximations
and is given by:

Sn =−Sẑ+σn (1.24)

where −Sẑ is the constant value of Sn, and σn is the vector away from the perfectly aligned
moment. This can visually represented as in Figure 1.10a.

The dispersion relation of the spin-wave in 1D spin wave can be given by:

h̄ω = 4JS(1− cosk a) (1.25)



1.7 The Magnetocaloric Effect 22

Sn −S𝑧̂

σn

(a) (b)

Figure 1.10 (a) A diagram showing the energy of the Sn (b) The dispersion relation of a 1D ferromag-
net

the solution for the spin wave dispersion, shown over the first Brillouin Zone −π/4−π/4,
is shown in 1.10b. For temperatures T > 0 the density of modes of magnons is: [50]

D(ω) =
1

4π2

[
h̄

2JSa2

]3/2

ω
1/2 (1.26)

where a is a lattice spacing. So we can see that the magnetisation of the sample is: [51]

T 3/2
∝

M(0)−M(T )
M(0)

(1.27)

which is Bloch’s T 3/2 law. This simply means that the magnetisation of a sample is reduced
at temperatures above the ordering temperature, but above zero, by the thermal population of
excited states. Hence in inelastic scattering where the excitation are detectable it is possible
to recover the full magnetisation value. [52]

1.7 The Magnetocaloric Effect

The magnetocaloric effect (MCE) is an entropically driven cooling process that occurs when
paramagnets are in a cycled magnetic field. [53] As entropy is the number of available
microstates in a system, the magnetic entropy of a system is directly related to the disorder
of the spins. Total entropy S of the magnetic material is contributed by three parts, i.e., the
magnetic entropy Sm, the electronic entropy Se, and the lattice entropy Sl . When a magnetic
field is applied to the system the spins align with the external magnetic field, to produce a
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more ordered state thereby reducing the magnetic entropy of the system. The total entropy of
the system stays constant under an adiabatic condition, the lattice contribution Sl increases
oppositely to keep total S constant. This results in a positive temperature change, to the
material, as the magnetic entropy of the system is lowered. In order to use this effect in
the context of magnetic refrigeration this process must be done adiabatically, such that the
material heats up without loss of heat to the system (∆Tad). By removing the heat generated
after this step, through an applied heat sink, the materials can be cooled down moving heat
from inside the system to the outside. When the magnetic field is removed in the adiabatic
demagnetisation step, the materials cools down. [54] This process is summarised in Figure
1.11.

Figure 1.11 Diagram of the magnetocaloric adiabatic refrigeration cycle.

This process can be iterated to lower the temperature of the material, but for this effect to
work optimally the material must remain paramagnetic over the working temperature range.
This process was first employed in 1933 on the dilute paramagnetic salt Gd2(SO4)3·8H2O to
reach sub kelvin temperatures [55] and now these materials are now often employed in low
temperature cooling applications. [56] Dilute salts have been employed because the use of
non-magnetic ions reduces the ordering temperature to a few mK, [57] ideal for preventing
the entropy loss associated with a phase transition.

Lanthanide ions are most suited to MCE materials, having the largest number of unpaired
spins and greatest magnetic moments. The maximum magnetic entropy change (−∆Sm) is
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usually assumed to be nRln(2S+1) for a material. This is neglecting any contribution from
the orbital angular momentum, which cannot be readily aligned with a field in a powder
sample. [58–61] Table 1.3 summarises the magnetic entropy of some later Ln3+ ions based
on their magnetic spin.

Table 1.3 Magnetic entropy for some later lanthanides.

Ln3+ ion S Rln(2S+1) (J K−1 mol−1)

Gd3+ 3.5 17.29
Tb3+ 3 16.18
Dy3+ 2.5 14.89
Ho3+ 2 13.38
Er3+ 1.5 11.53

When a magnetic field is applied to a paramagnetic material, the entropy is reduced, giving
a field induced ferromagnetic state and the magnetisation of the sample is increased. The
increase in magnetisation can be easily measured, and using the Maxwell relationship
(Equation 1.28) the entropy change can be calculated.

∆Sm(T ) =
∫ [

δM(T,B)
δT

]
B

dB (1.28)

Calculating the entropy change from this method, has its limits because it assumes a field-
induced ferromagnetic state. If the application of a magnetic field induces a long range order
antiferromagnetic state, such that the magnetisation of the material is reduced, this will pro-
duce false negative −∆S. Gd3+ materials have traditionally been favoured as magnetocaloric
materials due to their high magnetic spin caused by having exactly half filled f -orbitals (S
= 7

2) as they have the largest entropy per single ion. Materials such as Gd3Ga5O12 (GGG),
are optimised at sub 2 K temperatures for uses, where reaching millikelvin temperatures is
priority over energy efficiency, and requiring large fields with superconducting magnets has
been deemed acceptable.

The Heisenberg-like spins of Gd, caused by its lack of orbital angular momentum and
therefore spin-orbit coupling, can point in any direction and thus applying fields to a powder
sample can align the spins fully, producing large changes in entropy from a paramagnetic to
an ordered state. In contrast when spins have significant anisotropy such that they are confined
to an easy axis, as in the Ising model an applied field, [40] perpendicular to the easy axis, will
incur no change in magnetisation. Thus Ising anisotropy prevents full magnetisation with
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field in bulk powders, which is detrimental to the magnetocaloric effect. Recently, however,
work has shown that materials containing cations with strong Ising anisotropy improves the
magnetocaloric effect in powders under the low applied magnetic fields that can be generated
using a permanent magnet (< 2 T). [4, 33] This surprising result is an outcome of the greater
ease of magnetisation of these materials under low applied fields, but the microscopic cause
of this remains unknown. Uncovering how magnetic interactions in such compounds are
best optimised to improve magnetocaloric performance requires an understanding of these
materials at the microscopic level, which is most readily achieved using neutron scattering
rather than indirect bulk property measurements.

The efficiency of MCE cooling can be greatly improved by developing materials that provide
large changes of entropy in low fields (below 2 T), allowing them to be used in conjunction
with a permanent magnet rather than relying on the use of superconducting magnets. [62]
If such optimisation of MCE properties at low applied fields is coupled with an increase in
temperature at which the MCE effect peaks to above 4 K, this approach could potentially
be used for cooling at liquid helium temperatures. This has a greater range of applications
than cooling below 2 K, including for cooling superconducting magnets in devices such
as medical resonance imaging (MRI) scanners and NMRs. Such applications typically
rely on liquid helium, which is vital to science and medical applications but is becoming
an increasingly scarce and expensive resource. [63] While cryogen free cryocoolers are
available as alternatives for cooling to the liquid He temperature regimes, their efficiency at
such temperatures is particularly low, typically only a couple of percent. [64] It is therefore
important to investigate if MCE materials can be optimised to have high performance in low
applied magnetic fields between 4 and 20 K. Such materials could then be used for cooling
in the liquid helium regime likely in conjunction with, more efficient, higher temperature
cryocoolers. [65, 66]

For such optimisation of MCE materials, it is becoming apparent that it is important to not just
achieve a high density of magnetic cations but also control the magnetic interactions in these
compounds. It is well established that frustrated magnetic interactions can enhance MCE
behaviour, including in the benchmark oxide GGG; [67–69] frustrated interactions enable a
higher density of magnetic cations to be incorporated in a phase that remains paramagnetic to
low temperature than is possible in the alternative “dilute” magnetic salts, which depend on
having well separated magnetic centres to remain paramagnetic. [70] As a result, magnetic
frustration increases the maximum −∆Sm possible per unit volume or weight. It has also
been shown that the Ising-like interactions in Dy3Ga5O12 play a role in it having superior
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MCE performance for field changes below 2 T than found in GGG; [71] as mentioned above
this concept is supported by similar improvement in the MCE properties of other families of
compounds when Gd is substituted with lanthanides with Ising-like interactions. [4, 33, 72]
Amongst such Ising-systems Tb(HCO2)3 is particularly promising as a MCE material for
use in low applied fields above 4 K; this has been suggested to be linked to the existence of
strong 1D ferromagnetic correlations in this material enabling its magnetic moments to align
even more easily with applied magnetic fields. [4, 18]

These results provide a drive for examining MCE materials based on other late lanthanides,
including Tb and Dy particularly in structures supportive of frustrated and low dimensional
magnetism. An obvious starting point for such studies is families in which the Gd analogue is
already known to have promising MCE properties. GdPO4, GdOHCO3 and GdF3 have been
shown to have some of the largest peak MCE yet, [62, 69, 73] with −∆Sm of ≈58, 69.3 and
67.4 J K−1 mol−1 at 2 K for a 5-0 T field changes, respectively, compared to a peak entropy
change of 32.6 J K−1 mol−1 for Gd3Ga5O12. [73, 74] Notably of these high performance
families two are dense coordination frameworks, which contain polyatomic anions. Such
frameworks tend to adopt highly anisotropic structures with a range of competing magnetic
interactions between magnetic cations. [62, 75–77] The LnOHCO3 frameworks appear
particularly interesting as they have a conceptually similar structure to the Ln(HCO2)3, as
it can be viewed as having chains packed in a triangular array with previous calculations
suggesting the presence of competing antiferromagnetic interchain coupling.

1.8 Frustrated and Low Dimensional Magnetism

1.8.1 Frustrated Magnetism

Below some temperature the exchange interactions J are sufficient to overcome the thermal
fluctuations in the material, and spins can align in a energetically favourable orientation.
When the exchange integrals Ji j are negative, the spins align anti-parallel to nearest neigh-
bours (antiferromagnetic) (Figure 1.12a); when exchange integrals are positive the spins are
parallel (ferromagnetic). On a square lattice, with no next nearest neighbours, either of these
ground states can be satisfied.

Magnetic frustration occurs when there are competing magnetic interactions, usually when
some of the exchange paths are antiferromagnetic, if only nearest neighbour interactions are
considered. The classical example of these systems are Ising antiferromagnetic coupled spins
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arranged on a triangular lattice (Figure 1.12b), first studied by Wannier in 1950. [78] In this
model system, it is energetically favourable for the spin to be anti-parallel, with respect to its
nearest neighbour, but the crystallographic structure of the materials means there are two
near neighbours competing for anti-parallel alignment.

(a) (b)

(c)

Figure 1.12 (a) Antiferromagnetically ordered square lattice, (b) a frustrated antiferromagnet on a
triangular lattice (c) antiferromagnetically coupled Heisenberg spins on a triangular lattice.

In an Ising system it is not possible to satisfy both simultaneously and so a frustrated ground
state emerges with many degenerate energy levels. In a Heisenberg system this frustration
can be alleviated though other routes as shown in Figure 1.12c. When frustration arises
purely from the topology of the lattice, this is described as geometrically frustrated. Whilst
this is a convenient illustrative example, frustration is not limited to two dimensions, or
even triangular lattices, for example in three dimensions this corresponds to a pyrochlore
motif.

Frustration in materials can lead to exotic states including some of the most studied pyrochlore
spin ice materials, Dy2Ti2O7 and Ho2Ti2O7, consisting of four ferromagnetically coupled
lanthanide ions with strong Ising character. [79] Spin ices are named because of their analogy
with water ice, with two spins facing the center, and two facing outwards (see Figure 1.13a).
This leads to some fascinating properties, such as the existence of magnetic monopole
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quasiparticles, [80] that cannot exist in isolation. Spin ice materials are an example of
systems which have a highly degenerate ground state and can exhibit magnetically charge
ordered states, when one of the spin is flipped. The garnet lattice consists of cations
sitting on the vertices of corner sharing triangles, forming a highly frustrated 3D system of
interpenetrating rings. Frustration, in the benchmark magnetocaloric GGG, prevents long
range order forming, but shows spin-liquid behaviour between 140 mK and 5 K, [67] where
despite significant antiferromagnetic interactions the magnetic moments continue to fluctuate.
Unlike a paramagnet however, the spins are correlated while remaining dynamic even very
close to absolute zero.

(a) (b)

Figure 1.13 (a) A spin ice tetrahedra with two in, two out spin arrangement (b) a kagome emergent
charge ordered state.

By magnetically isolating the layers in crystal lattices from one another, the magnetic order
can be reduced to two dimensions, shown in Figure 1.14. The highly studied two dimensional
kagome lattice can be described as a pattern of corner sharing triangles and the triangular
array is a tessellation of edge sharing triangles with magnetic cations sitting on the vertices.
The kagome lattice Dy3Mg2Sb3O14 has also shown evidence of emergent charge order (ECO),
[81] which displays long range magnetic order, on average, not present on the local scale
due to frustration (see Figure 1.13b). This has been described as magnetic fragmentation i.e.
the system can be thought of as in two states: a divergence free state (which gives rise to
Bragg Scattering) and a divergence full state (which is the origin to the diffuse scattering and
the kagome and pyrochlore pinch points). The unequal in/out arrangement of spins on the
triangle create magnetic monopoles, which can be considered analogous to electric charges.
Like electric charges, the magnetic charges repel and attract opposites, and so are forced to
arrange into the lowest possible energy state. [81]
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(a) (b)

Figure 1.14 Two 2D geometrically frustrated crystal structures. (a) A triangular array - edge sharing
triangles (b) The kagome lattice - corner sharing triangles.

For the two dimensional case, the triangular array is the simplest case which can accom-
modate frustration, one such example is the yavapaiite mineral with the general structure
AM(SO4)2. Where M is a transition metal, and A is the alkali metal cation which isolates the
layers of magnetic ions, so the ground state magnetic order is constrained to two dimensions.
Magnetic frustration in CsFe(SO4)2 and RbFe(SO4)2, is relieved through rotating the antifer-
romagnetically coupled spins by 120◦ in the ab plane. [82] This is only possible in this case
because the spins are Heisenberg-like and can point in any direction. [83] An Ising system,
with a single easy axis, cannot relieve frustration through this method. Long range order
is suppressed due to competing interactions, but unlike a paramagnet the spins are strongly
correlated with their immediate neighbouring spins. [84]

The Kagomé lattice is well studied, for its high degree of frustration, its potential as a
quantum spin-liquid (QSL) state [85] and the variety of minerals whose transition metal ions
form such a lattice. QSLs form a novel class of matter where despite strong interactions
between neighbouring spins, the system does not form any long range order, due to (zero-
point) quantum fluctuations. [86] The first QSL candidate was a structurally perfect S

= 1/2 Kagomé antiferromagnet in the mineral Herbertsmithite in 2005. [87, 88] Interest
has re-emerged in QSLs since the discovery of Majorana fermions in the QSL α-RuCl3
[89] - a type of particle that is it’s own anti-particle and does not obey the Dirac equations.
First predicted in 1937 [90] but only recently experimentally observed, has opened up new
horizons in condensed matter physics. QSL candidates can also be found in the triangular
array YbMgGaO4, consisting of highly disordered correlated Ising spins. [91]
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1.8.2 1D Magnetism

When the exchange interactions between magnetic ions is restricted to one dimension the
material behaves as a 1D system. Such systems have attracted great interest for the potential
to discover new phases of matter, attracting interest for quantum information transfer [92]
and spin quasi-particles. [93]

Examples of low dimensional magnetism do exist, but it’s often difficult in mineral and
oxide systems to properly isolate magnetic chains from interacting with each other. While
this is far from an exhaustive list, [94] some examples of this include the AFeX3 family of
compounds (where A = Rb or Cs and X = Cl or Br) consisting of stacked triangular array.
These systems behave as Heisenberg quasi-1D spin chains, and in the case of CsFeCl3 does
not show any long-range 3D order down to 0.8 K. [95] If chains are poorly isolated as is the
case for RbFeCl3, the material will transition to a 3D ordered state. [95]

In the extended perovskite ABX3 family other examples of quasi-1D magnetic compounds
include CsNiF3 and CsCuCl3, with the latter being extensively studied. Both have their own
associated fascinating ground state physics, but still consist of stronger Heisenberg ferromag-
netic correlations in 1D with weaker antiferromagnetic exchange between the ferromagnetic
chains. [96, 97] An interesting result in 1D magnetism can be found in the compounds
Sr3CuIrO6 and Sr3CuPtO6, which are 1D Heisenberg ferromagnetic and antiferromagnetic,
respectively. Mixing of the two materials results in a random ferro/antiferromagnetic param-
agnetic state, described as a quantum spin chain paramagnet. [98]

More fascinating examples of quasi-1D systems are the Ising 1D systems. Ca3Co2O6 has
been extensively studied experimentally and theoretically as it undergoes a transition to a
quasi-1D magnetic state in zero field and contains unusual magnetic properties. [99, 100]
It has 1D ferromagnetic intrachain correlations and weaker interchain antiferromagnetic
interactions, and at low temperatures orders into longitudinal amplitude-modulated spin-
density wave (SDW) propagating along the c-axis. α-CoV2O6, a 1D Ising ferromagnet,
[101] undergoes transitions into different phases under variable applied fields. Studies
of this material also showed that it was an excellent magnetocaloric, within it’s operating
temperature, with a steep magnetisation curve as a result of overcoming the antiferromagnetic
interchain correlations into a ferromagnetic state. It should be noted that these systems show
quasi-1D Ising like behaviour only because they are not truly isolated 1D chains, and exhibit
3D magnetic order.
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1.8.3 Neutrons for Exotic Magnetism

The discovery of the neutron by James Chadwick in 1932, [102] was significant for the
progression of solid state science and worthy of the 1935 Nobel prize in physics. This led
to the pioneering work by Shull in 1949 [26, 103] that laid the groundwork for magnetic
structure determination, using neutrons. The neutral charge and magnetic moment of neutrons
make them an ideal probe for understanding magnetism on a microscopic scale and how this
leads to the physical properties. It is therefore the technique of choice among solid state
chemists and physicists. Modern neutron sources and detector technology have developed
to the point where it is possible to collect high quality diffraction patterns with less than
a gram of sample, allowing for the studies of magnetism in materials where synthesising
high purity bulk samples is limited. Interactions between the magnetic moment of neutrons
and spins, of sufficiently magnetically ordered materials, below it’s ordering temperature,
cause the appearance of magnetic Bragg peaks observable in diffraction patterns. For highly
frustrated or low dimensional materials, with only short-range order, the correlated disorder
may materialise as structured diffuse scattering [84].

However, to properly analyse the data and arrive at the correct solution, the quality of data
measured must be sufficient to capture the subtle features observed in diffuse scattering to
fully understand short-range correlated systems. It is typical for diffuse features to be two to
four orders of magnitude weaker than Bragg reflections, [104] but with modern high efficiency
detectors, and their low background, it is possible to capture high-quality reciprocal-space
data at high flux spallation sources extremely rapidly. [105, 106] Another consideration that
must be made is that we need to be able to distinguish between Bragg peaks, produced by truly
long range order, and broadened Bragg-like peaks, that may indicate the order is short range
or at least has a small domain size. This requires high resolution to distinguish between peaks
that are instrument resolution limited, and those that are broad as a result of short range order.
Finally, data must be recorded to the shortest possible reciprocal space to capture the diffuse
features which appear in this region. With modern advances in understanding of magnetic
systems and developed reverse Monte Carlo (RMC) techniques it is now possible to probe
the nature of this diffuse from powder neutron diffraction experiments. [107, 108]

With these considerations, the data generated allows the solution of magnetic structures from
powder diffraction patterns, and has such been developed extensively for oxide materials.
These techniques can also be applied to framework materials that possess magnetic order,
but the topology of these materials can lead to a greater variation in the types of magnetism
observed. The caveat, however, of frameworks are the lower ordering temperatures, and need
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to deuterate any hydrogen containing linkers, which have historically held back the quantity
of studies, although these limitations are becoming less restrictive than they once were. The
varied structures of frameworks have lead to a catalogue of reported magnetic structures,
containing frustration and low dimensional order.

Many of the examples discussed so far, are dense oxides and minerals but the greater flexibility
in design of the size, shape and coordination of organic linkers in frameworks allow for more
complex magnetic structure and the ability to tailor desired magnetic properties. Forming
one or two dimensional magnetic systems in oxides is not trivial, exemplified by the scarce
physical realisations of theoretical models in these exotic states of matter. frameworks are
a good alternative because they can have longer distances between magnetic centers, and
therefore can better isolate the magnetic sheets or chains from each other. However, these low
dimensional units can remain strongly coupled through oxygen atoms. It is possible to modify
the ligand to achieve desired exchange interactions, making frameworks ideal model systems
for the study of new physics. Until recently, the field of magnetic frameworks have been
largely overlooked and many studies remain limited to bulk magnetic property measurements.
There are fewer detailed studies of the microscopic magnetic phases in frameworks, which
typically require neutron based techniques to characterise in detail. [109]

Examples of exotic magnetism in MOFs are present in the literature including chiral, 2D
and 1D magnetic structures, in addition to long range magnetically ordered systems.[109]
Frustrated magnetism has been experimentally studied in magnetic MOFs in materials
such as Co3(OH)2(sq)2.3H2O and M(tca)2 (tca = tricyanomide), using neutron scattering
but these materials undergo phase transitions to 3D long-range ordered structures, at low
temperature. Co3(OH)2(sq)2.3H2O has significant frustration within its CoO6 ribbons, and
unusually undergoes a phase transition upon dehydration.[110] In Mn(tca) strong frustration
is observed and is relieved by the formation of an incommensurate 3D structure. [111]

1.9 Thesis Overview

In this thesis we have explored the magnetocaloric properties, magnetic structure and correla-
tions of some highly efficient magnetocaloric materials. The two main research themes have
involved determination of the magnetocaloric effect through magnetisation measurements of
other lanthanide frameworks, and determination of the magnetic structure and correlations in
the materials which have displayed some of the most promising magnetocaloric results.
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The first theme deals with probing the magnetocaloric measurements of some lanthanide
frameworks for which the gadolinium framework has previously been found to show an
excellent magnetocaloric effect at low temperatures. As discussed, the gadolinium materials
do not have any orbital contribution to the magnetic moments and so, whilst unable to
be experimentally confirmed with neutron diffraction, are expected to show no magnetic
anisotropy. The other lanthanides in the series are expected to show strong anisotropy
which may be beneficial to the magnetocaloric effect under modest applied fields. The
magnetocaloric measurements of late LnOHCO3 and LnF3 frameworks have been explored,
due to the efficient magnetocaloric effects displayed in GdOHCO3 and GdF3. [73, 77]

The second theme explores the magnetic correlations and magnetic structure, which is
responsible for the efficient magnetocaloric effect observed. The magnetic structures have
been determined with neutron diffraction, and Rietveld refinement in cases were long-
ranged ordered magnetic structures evolve. In phases which lack long range order but have
significant local magnetic correlations that lead to diffuse scattering, an RMC approach has
been employed to uncover the nature of the diffuse scattering in the cooperative paramagnetic
phases. Commonly the materials examined in this thesis feature diffuse magnetic scattering
at higher temperatures before long-range or quasi-long range ordered states emerge at lower
temperatures.

These magnetic phases have been explored in zero field to understand the correlations that
are present before the application of a magnetic field, and in applied fields to understand
how magnetic phases change under an applied field. Through studying the magnetic phases
that emerge in applied magnetic fields we are able to directly observe the mechanism of the
magnetocaloric effect. The work, in this aspect of the thesis, focuses on the Ln(HCO2)3

and LnOHCO3 frameworks, which have promising magnetocaloric properties for higher
temperature applications. Before we describe the work conducted on these materials we will
first describe what was known about these compounds prior to the work carried out in this
thesis and the aims of our investigation.

As shown in Figure 1.15, the Ln(HCO2)3 frameworks have Ln3+ ions arranged into chains
on a triangular array. As shown in previous studies, [4, 18] Tb(DCO2)3 exhibits a large
magnetocaloric effect that supersedes the Gd counterpart in low applied magnetic fields.
Tb(DCO2)3 is an excellent example of a dense magnetic MOF with interesting properties at
low temperatures and a physical realisation of a stacked triangular array, forming chains of Tb
ions (Figure 1.15). The material perfectly combines frustration and 1D magnetic order, [18]
making it the ideal model for the triangular array with near equivalent J coupling between Tb
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ions, through the formate ligand. The MOF examples discussed so far all have 3D ordered
ground states but, for this Ising antiferromagnetic compound, the situation appears to be
different.

Figure 1.15 The average crystal structure of Tb(HCO2)3. Tb ion coordination environments are
shown as purple polyhedra, and carbon, oxygen and hydrogen are shown in black, red and white
respectively.

Above 1.6 K Tb(DCO2)3 shows strong magnetic diffuse scattering as a result of short
range order emerging from ferromagnetically correlated chains, coupled through frustrated
antiferromagnetic interactions on the triangular array. Below 1.6 K it displays long range
Ising-like 1D magnetic order along the c-axis with spins aligned in the chain direction, but
shows no long range order in the ab plane. The lack of long range 3D order appears to
be suppressed by the frustrated interactions between chains leading to the emergence of a
triangular Ising antiferromagnetic (TIA) state, with a large number of degenerate ground
states. [18] In the paramagnetic phase it shows significant magnetic diffuse scattering, due
to the frustration caused by antiferromagnetically coupled spins on the triangular motif.
The diffuse scattering is consistent with highly disordered 1D ferromagnetic Ising chains,
and cooling to ≈1.6 K leads to a stabilised 1D ordered magnetic state, with no long range
order.

The 1D ordered state is stabilised by the large predicted difference between interchain and
intrachain coupling, [18] combined with the magnetic frustration of the latter. By substi-
tuting other lanthanides in the series into isostructural frameworks we aim to explore the
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exotic magnetic order over a wide temperature range. The ferromagnetic correlations and
antiferromagnetic frustration that persists, in the paramagnetic state, allow for high entropy
changes in small applied magnetic fields contributing to a high efficiency as a magnetocaloric.
[4] This dominant ferromagnetic intrachain coupling allows the moments to be more easily
aligned with the applied field. The additional weaker frustrated antiferromagnetic interchain
interactions lead to suppression of magnetic order, in absence of a field, required for param-
agnetic magnetocalorics. In these materials we see that Tb(HCO2)3 and Ho(HCO2)3 show
similar magnetocaloric responses, with respect to field and temperature. [4]. In small applied
magnetic fields, it can be seen that the magnetocaloric effects peak at 4 and 2 K for a 1-0 T
field change, respectively. The other studied Ln(HCO2)3 materials, shown typical responses
with increasing magnetocaloric effects with lowering temperatures.

Inspired by the recent success of Tb(HCO2)3 MCE in low fields and at temperatures above
2 K, [4] our study has probed the magnetic interactions and physical properties of this and
other members of the Ln(HCO2)3 series in further detail, including measurements at lower
temperatures and under applied magnetic fields. We have focused on the heavier lanthanides
due to their high magnetic moments, as required for greater MCE, and large spin-orbit
coupling. A key aim was to establish how the TIA phase is modified at lower temperatures,
under applied magnetic fields and by replacing Tb with other Ln cations.

The recent discovery of the colossal magnetocaloric effect in the GdOHCO3 framework,
[77] and the improved effect in by lanthanide substitution in other isostructural frameworks
has lead to the further exploration of the materials in this family. [4, 72, 112] The P212121

structure has 4 unique oxygen atoms, one for the hydroxide groups and three distinct oxygen
atoms in the carbonate anions. The lanthanide can be viewed as being 10-coordinate with
chains of LnO10 face-sharing polyhedra, with edge-sharing interchain connectivity (Figure
1.16). However, there is some debate over whether the heavier LnOHCO3 crystallise in the
P212121, [113] or the Pnma orthorhombic space group. [114] The initial magnetocaloric
study of the GdOHCO3 framework performed density functional theory calculations, finding
antiferromagnetic nearest neighbour intrachain coupling. [77]

After initially determining the magnetic entropy change of the AOHCO3 (A = Tb, Dy, Ho
and Er) magnetocalorics this study then aimed to establish a clear understanding of how the
microscopic interactions of these compounds effect their physical properties. To achieve
this we have studied these compounds using neutron diffraction, establishing both the local
magnetic correlations in these materials in their paramagnetic phase, in which they exhibit
their magnetocaloric properties, and in the case of HoOHCO3 the ordered magnetic states
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Figure 1.16 (left) LnOHCO3 crystal structure. Ln3+ coordination environments are shown as purple
polyhedra, and carbon, oxygen and hydrogen are shown in black, red and white respectively, with
only Ln3+ nearest neighbour chains shown in insert, along the [100] direction. (right) LnOHCO3
interactions between Ln3+ with a distance of 4.0 - 5.0 Å , shown arranged into layers of triangular
motifs, along the [010] direction.

they exhibit at low temperatures. Neutron diffraction measurements have also been conducted
in the application of the magnetic field to TbOHCO3 in order to explore how it responds
during the magnetocaloric cycle.

It has recently been shown that combining this with Ising and 1D ferromagnetic interactions
(d = 1, D = 1) likely enhances this further, by making it easier to align the magnetic spins in
low applied fields. [4, 18, 31, 72, 101] For an isolated 1D Ising ferromagnet, with a ground
state of −NJ/2, where N (the number of magnetic ions in the chain) is very large, a defect in
the chain has an energy cost of J/2, so the energy change is J. However, the entropy gain is
equal to kBlnN. Therefore, any defect introduced into the system by magnetic or temperature
fluctuations,[31] will induce a response throughout the chain. It’s for this reason that Ising
ferromagnetic order within chains may be beneficial to the MCE.

Previous research investigated the MCE in the Ln(HCO2)3 family of materials, and discovered
that Tb(HCO2)3 had the most efficient magnetocaloric behaviour above 4 K and in applied
magnetic fields, [4] in a region that would make it suitable for a liquid helium cooling
alternative. Neutron diffraction of this material revealed it contains 1D Ising ferromagnetic
chains, made possible by frustrated neighbouring chains, arranged into a triangular motif,
which has been described as a triangular Ising antiferromagnet (TIA). These results are
extremely valuable when you consider that this result confirms what has been theorised
about magnetocalorics containing Ising spins being more efficient, and frustration improving
entropy changes in field. This work builds on these studies, and we are attempting to
characterise the magnetic interactions in similar efficient magnetocalorics, to understand
the origin, not only for fundamental understanding, but also to perhaps steer research in a
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direction to make these types of magnetocalorics a reality in low temperature refrigeration
devices.

Despite the magnetocaloric effect being intimately linked with magnetic order, little research
has been done on the mechanism of the MCE.

By probing the magnetic interactions in these materials above and below the ordering
temperatures (and in zero and applied magnetic fields) it is possible to understand how
magnetic order is related to the MCE, especially in this class of efficient magnetocaloric
materials. Additionally, magnetic neutron diffraction on framework materials is relatively
uncommon, as greater interatomic separation usually hinders the superexchange, therefore
lowering ordering temperatures, making this work novel and valuable for the progression of
magnetocaloric research.



2

Experimental Techniques

2.1 Introduction

Several experimental techniques have been used to characterise the framework materials
studied in this thesis, and this chapter describes these methods along with, where necessary
the theoretical background. Diffraction techniques were the primary methods of analysis,
with crystal structures and phase purity confirmed with X-ray diffraction. Powder neutron
scattering was the primary technique used for analysing the nuclear and magnetic crystal
structures in these materials. Analysis methods such as the Rietveld method and reverse
Monte Carlo were used to interpret the diffraction observed in these materials, supplemented
by representation theory and symmetry analysis. Inelastic neutron scattering was performed
to understand the magnetic structure dynamics and interactions. Heat capacity, magnetic
susceptibility, thermogravimetric analysis and Fourier transform infrared spectroscopy were
conducted for bulk property measurements. Samples were synthesised through hydrothermal
and wet chemistry routes.

2.2 Synthetic Methods

The methods for synthesis of hydrogenated and deuterated samples used in this thesis are
described here. It is necessary to deuterate samples used for neutron scattering experiments
to minimise background noise caused by the incoherent scattering of hydrogen. We expect
deuteration of the frameworks for neutron studies will have an insignificant effect on the
magnetic exchange correlations.
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2.2.1 Lanthanide Formates (Ln(DCO2)3) Frameworks

Ln(HCO2)3 and Ln(DCO2)3 (where Ln = Ce, Pr, Nd, Tb-Er) samples were synthesized by
slowly adding 2 g of Ln(NO3)3.6H2O (99.9%, Sigma-Aldrich) to a solution of 4.75 mL of
formic acid (97.5% Sigma-Aldrich), or d-formic acid (95.0% Sigma-Aldrich), respectively,
with 0.25 mL of ethanol added. After several minutes of stirring, NOx was released and
the product precipitated out of solution. The products were collected by vacuum filtration,
washed several times with ethanol, and dried in a desiccator.

2.2.2 Lanthanide Hydroxycarbonates (LnODCO3) Frameworks

LnOHCO3 and LnODCO3 (where Ln = Gd, Tb, Dy, Ho, Er) samples were synthesised via a
hydrothermal method, by reacting Ln(NO3)3.6H2O (99.9 %, Sigma-Aldrich, 1 mmol) and
Na2CO3 (99.5 %, Sigma-Aldrich, 1 mmol) in water (10 mL). The hydrothermal synthesis
involves heating a solution of reagents to high temperatures and pressures, above 100◦C and
held for an extended period of time in a pressurised vessel.

The mixture was sealed in a Teflon-lined (23 mL) Parr-Bomb autoclave and heated at 170◦C
for 72 h, followed by slow cooling to room temperature at a rate of 3◦C h−1, to improve
crystal formation. The samples were isolated by vacuum filtration a washed with water, and
dried in a desiccator. 2 g deuterated samples, used for neutron diffraction were produced
with D2O (99.9 %) under an N2 atmosphere, in multiple batches.

2.3 Scattering Techniques

Scattering techniques have been a staple of solid state science since its inception and occurs
when a beam of waves (or particles) interact with matter, causing a change from the incident
wave vector (ki) to a final wave vector (k f ). The relationship between the incident and final
scattering waves are given by Q, the momentum transfer, as shown in the Equation 2.1 and
Figure 2.1.

Q =
2π

d
= ki −k f (2.1)
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Q

𝑄 = 2𝑘𝑠𝑖𝑛𝜃 =
4𝜋𝑠𝑖𝑛𝜃
𝜆

ki

kf

Elastic	:	ki =	kf

2θ

Inelastic	:	ki ≠	kf

Figure 2.1 Diagram of the scattering triangle for an elastic collision where the incident energy is
equal to the final energy.

2.3.1 Diffraction

Diffraction is one of the most powerful structural techniques used in modern science, and
has been crucial to many important discoveries since its development across the natural
sciences. Diffraction involves the generation of waves/particles which impinge on a sample
and elastically scatter (with no loss in energy where the magnitude of the wavevector ki = k f )
off the sample determined by the interatomic distances. The pioneering work by W. Bragg
and L.Bragg allowed for structure solution from diffraction of X-rays from crystallographic
ordered lattices and yielded the equation for a relationship between scattering angle θ and
the interatomic distances d with a known beam wavelength λ given by:

nλ = 2dsinθ (2.2)

A visual representation of this is depicted in Figure 2.2, showing the real space structure,
and the observed diffraction pattern is measured in reciprocal space, containing information
about the real space structure.

Diffraction occurs when a collection of individual atoms scatter waves or particles, from the
ordered crystallographic lattice, causing constructive or destructive interference. At angles
satisfying Bragg’s law constructive interference of long range order occurs leading to sharp
peaks in the diffraction pattern, referred to as Bragg peaks. The intensity of the elastically
scattered waves in diffraction F(Q), from the periodic lattice, can be calculated from the
following equation [115]:
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λ

θ θd

n λ = 2dsinθ

Figure 2.2 Diagram showing diffraction according to Bragg’s Law. Red arrows indicate incoming
waves with the wavelength λ , and the elastically scattered outgoing waves in black. The purple dots
indicate atoms in a crystallographically ordered lattice.

F(Q) = ∑
(i, j)

〈
bib jexp(iQ · [ri − r j])

〉
(2.3)

where bi j is the is the scattering length, and ri and r j is the atomic positions of the atoms in
the crystal structure. For a macroscopic sample, where there are effectively an infinitely large
numbers of atoms, the equation simplifies to:

F(Q) =
∫

ρ(r)exp(iQ · r)dr (2.4)

where ρ is the electron density at position r. The diffraction pattern made of up reflected
intensities (Bragg peaks) in reciprocal space, Q is dependent on the reciprocal lattice pa-
rameters and atomic positions. Therefore we can mathematically describe the amplitude,
phase and vector of waves diffracted from a crystal lattice with the Miller indices (hkl) of the
crystal lattice with the equation [51]:

Fhkl =
n

∑
j=1

f j(θ)exp[2πi(hx j + ky j + lz j)] (2.5)
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Where x j,y j,z j are the coordinates for the jth atom, and f j(θ) is the form factor of the jth

atom for X-ray diffraction. In the case of neutron diffraction the form factor is replaced by
the neutron scattering length, which will be discussed further below.

Unfortunately, diffraction is insensitive to the global phase of the system, as the intensity
of the peaks, proportional to square of the scattering factor |F(Q)|2 is the experimentally
measured observation. Therefore, it is not possible to solve the structure by a simple Fourier
transform, [116] and therefore assumptions and alternative methods are required to work
around this phase problem.

2.3.2 X-ray Diffraction

X-rays are high energy electromagnetic waves and commonly used for diffraction techniques.
X-ray diffraction is one of the most commonly used techniques in solid state chemistry for
structural characterisation and phase identification. [28] Sources of X-rays in a laboratory
are made by accelerating a beam of electrons from a tungsten cathode. These electrons
strike an anode (usually copper but sometimes molybdenum) which ionises core 1s electrons
in the anode. Electrons from higher energy levels relax to fill the empty 1s orbital and
energy corresponding the orbital gap is released, which is in the X-ray spectrum. For copper
sources electrons from the higher p orbitals drop down, with a 2p1->1s, 2p2->1s and 3p1->1s
transitions called the Kα1, Kα2 and Kβ1 corresponding to 1.5404, 1.5443 and 1.3922 Å ,
respectively. These transitions are summarised on Figure 2.3.

The Kα transitions are far more common, and therefore more intense, than the Kβ transition
and so are used for diffraction experiments, with the Kβ filtered out to simplify analysis.
X-rays can interact with matter by scattering and absorption. Scattered X-rays interact
with the electrons of matter, and so the scattering intensity is proportional to the number
of electrons. When no loss of energy occurs in the X-ray scattering this can be used for
X-ray diffraction. In this thesis two methods of X-ray crystallography were used for initial
structural determination, powder and single crystal diffraction. The advantage of single
crystal X-ray diffraction is primarily the large amount of data generated from collecting
and being able to distinguish between information in 3D reciprocal space. The amount of
data generated through single crystal diffraction makes solutions of structural information
possible. However, single crystal diffraction requires synthesis of suitably sized crystals
which may not be possible. Powder diffraction allows collection of powder averaged data,
suffering from a significant loss of information. The advantages of powder diffraction are the
ability to collect structural information from any microcrystalline sample, including long and



2.3 Scattering Techniques 43

Figure 2.3 Energy level diagram for a Copper atom showing the electronic transitions.

short range ordered materials, such as glasses and amorphous samples. More importantly,
powder diffraction collects additional information about the microstructure of the material,
such as strain, defects and particle shape/size. [117] Also, unlike single crystal diffraction, it
provide insight into the bulk composition.

Powder X-ray diffraction was used for sample phase purity performed on ground polycrys-
talline samples on either an Empyrean PANalytical (with Cu Kα1 radiation) or a Rigaku
MiniFlex 600 (with Cu Kα radiation) with the use of a zero-background silicon sample
holder. The Empyrean PANalytical is a high resolution monochromatic generated from
Cu X-ray tubes, operating at 4.6 kW (40 kV and 40 mA), typically between 10-120 2θ in
increments of 0.05◦ steps. The sample and holder were held in a reflection-transmission
spinner, and variable angles measured with a θ -2θ goniometer, and scattered X-rays detected
with X’Celerator detector. The Rigaku Miniflex 600 is a low resolution/intensity bench top
diffractometer suitable for phase purity determination, with an operating Cu tube voltage of
40 kV and 15 mA, typically operating between 10-70◦ in increments of 0.1◦. The samples
were loaded into the 6 position sample change, with data collected with a θ -2θ goniometer
using a D/teX Ultra.

Single-crystal diffraction data was recorded for TbOHCO3 on a Rigaku Supernova with
Mo Kα radiation (λ= 0.7107 Å) generated from a microfocus source, operating at 0.8 kV
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and 50 mA, with multi-layer focusing optics. The sample was held in a MiTeGen micro-
loop and cooled to 169 K using an Oxford Cryosystem and diffraction data measured with
a Atlas CCD detector. The data obtained was indexed, integrated and reduced using the
CrysAlisPro software suite version 1.171.38.4131, with empirical absorption corrections
performed using the same packages. The structure was solved using the Patterson method in
SHELXS-2008 [118] and refinements subsequently carried out using a least-squares method
with SHELXL-2015 [119] using the Olex2 graphical user interface. [120] Only the atomic
displacement parameters for the lanthanide were refined anisotropically, with lighter elements
refined isotropically as the quality of the fit is insensitive to these values. The hydrogen atom
positions were determined from the Fourier difference and refined with a restraint so that
it remains 0.96 Å from the oxygen to which it is attached, typical for an O-H bond, [121]
and its displacement parameters constrained to be 1.5 times the oxygen that it is attached
to.

2.3.3 Neutron Diffraction

Neutrons can be generated, in sufficient quantities, for use in scattering experiments through
two main methods. The discovery of the neutron by James Chadwick in 1932, [102] for
which he was awarded the 1935 Nobel prize in physics, was significant for the progression of
solid state science. The neutral charge and magnetic moment of neutrons make them a highly
penetrating technique, sensitive to the magnetic moment of an atom. This makes neutrons
an ideal probe for understanding microscopic magnetism in bulk materials, and therefore is
the technique of choice among solid state chemists and condensed matter physicists. The
wavelength of neutron is given by:

λ =
h

mnvn
(2.6)

where mn is the mass of the neutron = 1.674929x10−27 kg and vn is the velocity of the
neutrons.

Bulk property magnetic susceptibility and heat capacity measurements are a useful tool
for a macroscopic understanding of these materials and muon and Mössbauer spectroscopy
enable inferences to be drawn regarding magnetic coupling via the effect this has on the
internal magnetic field but neutron diffraction and spectroscopy remain the most powerful
experimental tools currently available for unravelling the magnetic structure. Modern neutron
sources and detector technology have developed to the point where it is possible to collect
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high quality diffraction patterns with less than a gram of sample, allowing for the studies of
magnetism in materials where synthesising high purity bulk samples is limited.

Neutrons are commonly generated at particle-accelerator spallation sources and nuclear
reactors, which typically provide pulsed and continuous supplies of neutrons, respectively.
Neutron diffraction instruments at these facilities therefore usually have distinct character-
istics based on time-of-flight and constant wavelength approaches. Both of these types of
instrument are used in this project and are thus described below. [122]

Time-of-Flight Powder Neutron Diffraction

Time-of-flight (TOF) neutron diffraction starts by generating pulses of neutrons. This is
achieved by accelerating pulses of hydrogen nuclei, in a synchrotron, and bombarding a
heavy metal (tungsten at ISIS), under constant cooling to dissipate the heat from the collision.
[123] The generation of neutrons in this method (Figure 2.4) creates a Maxwell-Boltzmann
distribution of neutron wavelengths, with a high energy peak distribution, therefore the
neutrons need to be slowed down (cooled).

Neutron

Proton

Figure 2.4 Diagram of the production of neutrons from proton spallation on a heavy nuclei.

To cool the hot neutrons from the heavy metal target it is necessary to use a moderator made
of a material that has a small absorption cross section (so it does not absorb and remove
flux) and a high scattering cross section (so it interacts strongly with the neutron). For these
reasons materials with a high content of hydrogen or deuterium are often used. Within the
ISIS facility a number of different moderators are used to produce different distributions of
energies including water, methane and hydrogen. For the TOF WISH instrument, which is
on Target Station 2, a solid methane moderator is used to provide ultra cold, long wavelength
neutrons, required to reach low Q. After interacting with the moderator there is still a
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large spread of neutron wavelengths and so to improve the resolution of the instruments
a chopper is used to narrow the distribution. The chopper is typically a rotating disc of a
highly absorbing material (such as gadolinium) with a flight path cut through the middle.
This creates a narrow window of time where neutrons can pass through the centre, as the
disc rotates the flight path is blocked by gadolinium and is strongly absorbed, stopping large
intensities of flux. The rotating chopper creates narrow pulses of neutrons with a smaller
distribution of wavelengths.

The resulting beam of neutrons still contains a distribution of wavelengths and not a single
wavelength so measuring the angle of the diffracted neutrons is not sufficient to analyse the
structure. The relationship between neutron wavelength and velocity presented in Equation
2.6, however, enables neutrons of different energies to be separated based on the time they
arrive at the detector allowing a wide range of diffraction Q-space to be measured from a
detector angle at a fixed angle. The relationship between Q and neutron time-of-flight is
given by:

Q =
4πmnLsinθ

ht
(2.7)

where mn is the mass of the neutron, L is the flight path length (in meters), 2θ is the angle
of the detector in degrees and t is the time-of-flight, where the relationship between the
time-of-flight and the neutron wavelength is given by:

t =
mnLλ

h
(2.8)

where h is Plank’s constant.

WISH time-of-flight Diffractometer

The majority of neutron diffraction experiments in this thesis were conducted on the high-
resolution time-of-flight (TOF) WISH diffractometer (Figure 2.5) at the ISIS neutron source,
Rutherford Appleton Laboratory. [124] WISH is a long-wavelength diffractometer primarily
designed for collecting high quality powder diffraction data at long d-spacing (or low Q) with
minimal instrumental background. This makes WISH optimised to analyse materials with
magnetic structures and/or large unit cell systems, with options for enabling single-crystal
experiments. In particular the magnetic diffuse scattering that provides key insights into
the local magnetic structures probed during this study are typically two to four orders of
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magnitude weaker than Bragg reflections, [84] and so the low instrumental background is
essential to carry out the analysis presented in this work.

Figure 2.5 Photograph of the inside of the WISH instrument. (Image reproduced from the WISH,
ISIS website [125])

In order to achieve the low Q space and resolution WISH employs a long flight path of 42.2
metres, cold neutrons with an effective wavelength of 8 Å and wide angle detector with the
long d-space bank situated at 27◦, the detector array is shown in Figure 2.6 The wide area
detectors has given it the name WISH - Wide-angle In Single Histogram.

LnODCO3 and Ln(DCO2)3 sample measurements that were carried out between 1.6 K to 100
K, were loaded into 8 mm vanadium cans and cooled using the standard Oxford Instruments
WISH cryostat. Low temperature measurements of Tb(DCO2)3, Ho(DCO2)3 and HoODCO3

were carried out between 0.28 K to 1.95 K, with the sample loaded in an 8 mm copper can
and cooled using a 3He Heliox sorption refrigerator.

Strong absorption was noted in dysprosium frameworks, as to be expected from the large
absorption cross section of Dy and absorption corrections were applied to the raw data before
fitting. Packing densities were calculated as a basis for absorption corrections, however
the parameters were optimised such that the backgrounds approached linearity across the
different detector banks. The absorption was negligible in other frameworks and so absorption
corrections were not applied but included in the Rietveld refinements.

For applied field measurements of Tb(DCO2)3 and TbODCO3 powders were loaded into
8 mm vanadium cans and wetted with d6-isopropyl alcohol, sealed with indium wire and
flash frozen in the standard WISH Oxford Instruments cryostat. The d6-isopropyl alcohol
was included to minimise the effect of preferred orientation on the diffraction patterns in
the application of the magnetic field, and indeed prevented any significant orientation of the
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Figure 2.6 Diagram of the detector array of the WISH instrument. Incoming beam spectra shown as a
red/blue gradient arrow. Outcoming beams shown as black arrows. Sample shown in purple. Adjacent
banks are equivalent and colour coded, to increase statistics the banks are merged. Detector banks are
located at fixed angles around the sample, and record different ranges of d-space.

powder sample with the applied magnetic field. The sample was flash frozen in order to
prevent the d6-isopropyl alcohol crystallisation and resulted in the formation of an amorphous
solid, as indicated by the diffuse scattering centred around 4.2 Å. Magnetic fields between 0
and 3 T were generated using the 10 T GEM superconducting magnet, which the sample and
cryostat were placed within. The presence of the cryomagnet produced aluminium reflections,
which were fitted with a Le Bail model to negate the effects of the highly textured surface, and
un-indexable peaks in the highest resolution bank. Diffraction patterns were recorded on the
high resolution time-of-flight WISH diffractometer at the Rutherford Appleton Laboratory at
Harwell.

Constant Wavelength Neutron Diffraction

Constant wavelength neutron diffractometers are typically associated with nuclear reactor
based sources, where neutrons are generated by fission. [122] In this process incident
neutrons bombard heavy Uranium-235 isotopes, splitting the isotope and, thereby producing
γ-rays, two smaller nuclei and, crucially, more neutrons (See Figure 2.7). The thermal
neutrons produced go on to split other nuclei in a chain reaction, and so the process must be
cooled and moderated, with water, to prevent a meltdown.
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Figure 2.7 Diagram of the production of neutrons from nuclear fission by bombarding a heavy nuclei
with neutrons, creating a chain reaction.

For these neutrons to be made useful for neutron scattering they must be cooled further with
a secondary moderator, which as for spallation sources controls the spectrum of neutrons
available. For constant wavelength neutron diffraction, the spectrum of high energy neutrons
is slowed such that the energy is reduced to a single wavelength by a moderator made of
materials such as pyrolytic graphite or germanium. [122] In constant wavelength neutron
sources, diffraction occurs with a single neutron wavelength, and therefore the angle of
diffraction is measured in order to collect a diffraction pattern, typically but not always by
moving the detector. The relationship between Q and the angle of diffraction θ is given
by:

Q = 4π
sinθ

λ
(2.9)

where λ is the wavelength of the incoming neutron beam. The relative merit of constant
wavelength and time-of-flight neutron scattering is very dependent on the characteristics of
the precise instrument used. [122] For example one typical advantage of constant wavelength
instruments is the ability to collect high quality data to lower Q than is typical on a TOF
instrument but WISH is clearly an exception to this rule. Another advantage of constant
wavelength instruments is the smaller amount of data processing and calibration required
to achieve high quality patterns. Generally, however, for an instrument with comparable
resolution with regards to instrumental peak width TOF instruments are able to collect data
with better signal to noise due to the greater intensities of spallation neutron sources.
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Wombat Constant Wavelength Diffractometer

The Wombat instrument [126] at the OPAL reactor is a high flux, medium-resolution powder
diffractometer and does not get its name from an acronym but named after the Australian
marsupial. Wombat employs the powder diffraction scanning method proposed by Hewat,
[127] providing suitable resolution for diffraction experiments. Due to its high flux and large
detector that can collect data over a continuous range of 160◦ it is optimised for time-resolved
studies or for probing small volumes of materials, at the expense of only having moderate
resolution. It has recently been upgraded to implement polarised neutrons and a dilution
fridge. [128]

Data were collected on Ho(DCO2)3 and Er(DCO2)3 in a dilution fridge inside a cryocooler,
using 2.41 and 4.61 Å neutrons, from 50 mK and 20 K. The initial intention was to use the
dilution fridge in conjunction with the 3He neutron polariser, but due to technical issues
this failed prior to the measurements. The outcome of this is that the weak magnetic peaks
observed were not easily resolved, and the presence of the polarisation instrumentation leads
to areas in the diffraction pattern of missing information, requiring data collection of two
wavelengths to obtain a full diffraction pattern.

2.3.4 X-ray vs Neutron Diffraction

For structure determination X-ray diffraction is usually the method of choice, however it is
not without its issues. The advantages and disadvantages of neutron and X-ray diffraction
compared to each other are discussed below [117, 122]:

Interaction with matter Neutrons interact with matter through the strong force, only in-
teracting with the nuclear force of atom over a length scale of ≈1 fm. To a neutron
the nuclei are effective point sources, from which the angle independence of neutron
scattering arises (see Figure 2.8a). In contrast X-rays interact with a diffuse cloud of
electrons, meaning there is an atomic form factor that drops off with increasing Q. The
ability to achieve high quality measurement at low d-spacing makes neutrons the ideal
probe for pair distribution function studies.

Neutrons interact weakly with matter and so they penetrate the sample deeply and probe
the entire sample, including penetrating through a wide range of sample environments.
X-rays are strongly diffracted by the surface molecules and therefore are predominantly
a surface probe, but because they strongly interact with matter small sample sizes are
required, and collect times can be fractions of a second. The weak interactions of
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neutrons lead to an individual pattern taking between 30 minutes and a day to collect
an individual measurement even using multi gram samples.

Zero charge Neutrons have no charge allowing high penetration of the neutron deep into
the materials, due to the lack of coulomb repulsion. This allows the whole material
to be probed not just the surface and sample environments readily designed to work
under a wide range of temperatures and other in-situ environments.

Useful Energy Scale Commonly used thermal neutron have energies comparable to exci-
tation energies in condensed matter. Therefore, as discussed in Section 4.2.3, using
inelastic neutron spectroscopy one can extract information about the dynamics of the
system by measuring the change in energy of a neutron beam after interacting with the
system.

s = 1/2 Magnetic Moment X-rays strongly interact with electron clouds, but extremely
weakly to magnetic moments because of their lack of magnetic moment. Neutrons
have magnetic moment with spin s = 1/2 and, as a result, can interact magnetically
with unpaired electrons in the system and provide information about the magnetic
structure. This enables the position, direction, and magnitude of magnetic moments to
be determined.

Production X-ray are easily produced, and can be made in house. Neutrons require syn-
chrotrons, linear accelerators or nuclear reactors to generate neutrons and in small
quantities. X-rays produced by synchrotrons are orders of magnitude more bright than
the sun, [129] and produce enough flux to make collections time short.

Sample Discrimination The atomic form factor of X-rays scales linearly with increasingly
number of electrons meaning heavy element scattering far more strongly than light
atoms. (see Figure 2.8b) In contrast to X-ray diffraction the neutrons scattering
length varies wildly between atoms and different isotopes. This makes it possible
to easily differentiate between oxygen and nitrogen, for example, making structural
determination of unknown atoms possible, which in X-ray diffraction would not be
possible.

Whilst X-rays are useful for many problems, this thesis is mostly concerned with magnetic
structure and properties, hence neutron diffraction has been the primary method for analysis.
Neutron diffraction is still the most widely use method for magnetic correlations and structure
determination, despite new methods in non-resonant X-ray scattering which provide some
advantages over magnetic neutron scattering. [130] X-ray advantages include decoupling
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(a) (b)

Figure 2.8 (a) Comparison between the nuclear scattering power of X-rays vs Neutrons for a single
hydrogen atom. (b) Comparison between the scattering power of X-rays vs Neutrons. Measured by
the X-ray form factor at Q = 0 and the neutron scattering length, for each atomic number.

the spin and orbital contribution to the magnetic moment [131] and, as a surface technique,
probing magnetic thin films. However they are not able to determine the length of the vector
and do not provide good resolution in Gamma point of the Brillouin zone, and so neutron
scattering will always be necessary for magnetic structure determination. There is also the
practical consideration for softer materials such as those in this thesis, which would likely
decompose under the high energy and intensity X-rays.

2.3.5 Magnetic Neutron Scattering

The neutron has an s= 1
2 and a moment = −1.913 µN , where µN = eh̄

2mp
= 5.051×10−27JT−1,

which makes neutrons a probe sensitive to the magnetic moment of atoms, as they scatter
from the unpaired electrons of paramagnetic ions. [132] Between 1937 - 1941 Halpern and
Johnson et al. [133–136] gave the first full descriptions of magnetic neutron scattering from
paramagnetic and magnetically ordered materials. When a sample forms long range magnetic
order, this causes magnetic Bragg reflections to occur in the diffraction pattern while in
purely paramagnetic samples this scattering just contributes to the incoherent background
at low Q. Magnetic Bragg reflections can be used to determine the magnetic structure of a
material in a similar fashion to how Bragg peaks from scattering from atomic nuclei can be
used to determine the crystal structure of a material. The diffraction angle of these reflections
can then be used to determine the interatomic space of the magnetic spins and the intensity of
magnetic Bragg peaks are proportional to the square of the magnetic moment of the sample,
enabling the size and direction of the magnetic moment to be determined. [31] This was
first achieved experimentally by the pioneering work of Shull, [103] in the 1950’s which
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determined the antiferromagnetic structure of later first row transition metal oxides such as
MnO and laid the groundwork for magnetic diffraction studies of materials.

In contrast to the neutron scattering length, which measures the strength of the scattering
from a particular atomic nucleus, and is independent of Q, magnetic neutron scattering has a
magnetic form factor with a logarithmic decay like Q dependence. [137] This leads to the
magnetic scattering intensity approaching 0 with increasing Q, as shown by the magnetic
form factors of some late lanthanides in Figure 2.9.

(a) (b)

Figure 2.9 (a) Plot of the calculated neutron magnetic form factors, from the analytical approximation,
for select Ln3+ ions. (b) Plot of the calculated scattering amplitude, from the analytical approximation,
for select Ln3+ ions.

The form factor of a moment with only spin-only contribution is given by ⟨ j0⟩ only, but
for lanthanide ions with a strong spin-orbit coupling the ⟨ j2⟩ is necessary which are given
by:

⟨ j0⟩= Ae−as2
+Be−bs2

+Ce−cs2
+D (2.10)

and

⟨ j2⟩= s2(A′e−a′s2
+B′e−b′s2

+C′e−c′s2
+D′) (2.11)

where:

s =
k

4π
=

sinθ

λ
(2.12)
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and the form factor is given by:

F(k) = ⟨ j0⟩+C2 ⟨ j2⟩ (2.13)

where C2 is the ratio of the orbital magnetic moment to the total contribution of the magnetic
form factor. The empirical values for Aa, Bb, Cc and Dd in these equations can be found in
the International Crystallographic Tables C [138] or on the Institut Laue–Langevin website.
[139] The Q dependence of magnetic neutron scatterings means that in order to achieve
the maximum amount of information possible for magnetic structure determination it is
important to probe low Q areas of reciprocal space with wide angle area detectors using cold
neutrons, taking advantage of their long wavelengths.

Another consideration that must be made is that the neutron only interact with moments
perpendicular to the scattering vector, this be described by the scattering length of the
magnetic ion [140]:

F2
m = b2 +2bpq · v+ p2q2 (2.14)

where b is the nuclear scattering amplitude, p is the magnetic scattering amplitude, v is the
unit vector direction of the scattered neutron, q is given by:

q = ε(ε ·κ)−κ (2.15)

where ε is the unit vector along the direction of the neutron beam and κ is the unit vector
parallel to the magnetic moment, and p is described by:

p =
e2γ

2mec2 gJJ f (2.16)

where gJJ is the magnetisation perpendicular to the direction of the momentum transfer
for atom with an orbital contribution, e is the electron charge, me is the electron mass, c is
the speed of light γ is the neutron magnetic moment in units of nuclear magneton, J is the
spin-orbit coupling term and f is the magnetic form factor.

We can therefore see for moments parallel to the direction of the neutron beam, this equation
reduces to 0. For single crystal magnetic neutron scattering this is extremely important to
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consider when making measurements, however in powder averaged samples (used in this
thesis) this means that the intensity of the Bragg peaks will never quite be equal to gJJ.

2.4 Structural Analysis Techniques

2.4.1 The Rietveld Method

The Rietveld method [141] is a whole pattern least squares fitting method for fitting ex-
perimental data to refine average nuclear and magnetic structures from powder diffraction
data. The method requires a starting model close to that of the true model for which the
powder diffraction pattern can be calculated and compared to the experimental data. Rietveld
refinements involve optimising a range of parameters determined by the sample, instrument
and/or both to best fit the data, including a phase scale, lattice parameters, atomic positions
and displacement parameters, zero offset, background parameters and peak shape parameters.
Before discussing the mathematical models used for some of these terms we will first discuss
how the quality of the fit is calculated. Two of these factors, Rp and Rwp are the profile factor
and weighted profile factor, yobs is the intensity of the experimental reflection, ycalc is the
intensity of the calculated reflection and wi is a weighting factor.

Rp =
Σ[yobs − ycalc]

Σ[yobs]
(2.17)

Rwp =

√
Σwi[yobs − ycalc]2

Σwi[yobs]2
(2.18)

The value for which Rwp should approach for a perfect fit is:

Rexp =

√
N −P

∑wi[yobs]2
(2.19)

where N is the number of reflections and P is the number of used parameters. During the
refinement the sum of the squared differences χ2 is minimised during the refinement, where
χ2 = 1 corresponds to a perfect fit.

χ
2 = Σwi[yobs − ycalc]

2 (2.20)
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It is preferable to use the fewest number of parameters to fit a pattern. This is preferable
to prevent the possibility of over-fitting data, for example fitting the data with non-physical
variables, providing better statistics but producing models not justified by the quality of the
data available.

We now turn to a description of the parameters determined by the experimental measurement
rather than the crystal structure itself. Background parameters are approximated either with a
mathematical function, such as a Chebyshev polynomial [142] or with an interpolation of
user given points. The reflections list and d-spacing must be calculated, the peak shape fit
and then compared against the experimental data. The other parameters are dependent on
whether the measurement is done on a constant wavelength or TOF instrument so we will
discuss these in turn.

Constant Wavelength The parameters for a constant wavelength instrument, necessary
for a refinement, consist of a zero offset to account for any error in the sample or detector
position, and a known wavelength. Taking into account Bragg’s law the equation peak
position in terms of d-space then becomes:

d =
nλ

2sin(θ + zero)
(2.21)

In constant wavelength data, most commonly a pseudo-Voight function is used to fit the peak
shape of the reflections, consisting of a convolution of Gaussian and Lorentzian components
(see Figure 2.10).

Figure 2.10 Plots comparing Gaussian, Lorentzian and Pseudo-Voight Peaks. 0 is fully Lorentzian,
and 1 is fully Gaussian. Mixing the two produces a pseudo-Voight.
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The angle dependence of the FWHM is defined by two terms. The Gaussian FWHM, defined
by the Caglioti formula [143], and the Lorentzian components are given by:

FWHMG−CW =
√

Utan2θ +Vtanθ +W

FWHML−CW = Xtanθ + Y
cosθ

(2.22)

where U,V,W and X ,Y are refineable parameters, which are modified to minimise the
difference between the observed and calculated peaks, and θ is the angular dependence.
Considerations must also be made for peak asymmetry causing tailing on peaks, and can be
fit with appropriate functions, which is more prevalent at low scattering angles.

Time-of-flight TOF instruments are more complicated than constant wavelength with a
quadratic TOF dependence on d-space given by:

TOF = Zero+DT T 1d +DT T 2d2 (2.23)

DTT1 relates the theoretical time-of-flight position of the reflections to d-space, is calculated
from the length of flight path (L), the detector angle (θ ), Planck’s constant (h) and the mass
of a neutron (mn).

DT T 1 =
2mnlsinθ

h
(2.24)

Zero accounts for the difference in timing signal between the time at which data is acquired
versus when the time it should arrive, caused by the response time in detector electronics and
processing, and usually expressed in terms of µS. DTT2 is an empirically derived addition
to the d-space relationship to account for small differences in absorption for shorter versus
longer wavelengths, and therefore shifts in peaks.

The TOF peak shape is also more complicated, containing asymmetric peaks shapes as a
result of the pulsed neutron source. The peak-shape can be described by an Ikeda-Carpenter
function [144] which is a convolution of a pseudo-Voight with back-to-back exponentials to
account for the neutron wavelength distribution. The Gaussian and Lorentzian components
of the TOF peak shape d-space dependence follows the equations:
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FWHMG−TOF =
√

σ0 +σ1d2 +σ2d4

FWHML−TOF = γ0 + γ1d + γ2d2

(2.25)

In some cases, including where noted in this thesis for some magnetic Bragg reflections, [hkl]
dependent anisotropic peak broadening has been fitted with spherical harmonics expansion
of the domain shape. [145] For more information regarding the mathematical explanation of
the Rietveld method see the FULLPROF manual. [146]

In this thesis average structure patterns have been primarily fitted with several Rietveld re-
finement programs. LHPM-Rietica [147] has been used to fit constant wavelength laboratory
X-ray data and FULLPROF [146] has been used to fit most TOF and CW neutron data, with
occasional use of EXPGUI + GSAS. [148, 149] Additionally, places where JANA2006 [150]
has been used to fit TOF data have been noted in the text.

For TOF data a linear interpolation of points were used to fit the background and using
a profile function built from a convolution of back-to-back exponentials with a pseudo-
Voight TOF function to fit the peak shapes. The full width half-maximums of the finite
correlation length magnetic peaks were fitted with a anisotropic broadening model. [145]
Where observed peaks caused by the sample environment, such as the copper sample can
and the aluminium magnet, these were fitted with a Le Bail method.

2.4.2 Diffuse Scattering and Reverse Monte Carlo

Diffuse scattering arises from short-range interactions in a material, structural diffuse scat-
tering can arise from a range of phenomena including short-range ordered defects such as
oxygen vacancies or mixed cations. [151] In magnetic materials, short-range order can occur
due to 1 or 2D magnetic order or magnetic frustration from competing interactions, either of
which prevent the spins from achieving long range order. In contrast with the sharp Bragg
peaks associated with long range magnetic order when order is short-range (in real space)
this corresponds to a large area of reciprocal space, hence diffuse scattering covers a large
Q-space. Diffuse features from correlated disorder may occur with or without the presence
of Bragg peaks, although in some cases it can be difficult to determine whether moderately
sharp features are true Bragg peaks associated with three dimensional magnetic order or an
intermediate form of magnetic order. [18, 84, 152, 153]
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It is important to note that in order to properly analyse the data and develop a reasonable
model of the local magnetic ordering in a material the quality of data measured must be
sufficient to capture the subtle features observed in magnetic diffuse scattering. As a result
of short range order, it is typical for diffuse features to be two to four orders of magnitude
weaker than Bragg reflections, [104] but with modern high efficiency detectors, and their low
background, it is possible to capture high-quality reciprocal-space data at high flux spallation
sources extremely rapidly. [105, 106] High resolution data remains important, however,
to enable any indication of broadening of Bragg-like features that might indicate features
worthy of deeper analysis. Finally, data must be recorded to the shortest possible reciprocal
space to capture these features, which appear in this region, especially in materials with large
structures.

Modern advances in understanding of magnetic systems and recently developed reverse
Monte Carlo (RMC) techniques enable the diffuse scattering to be interpreted from powder
neutron diffraction experiments as well as long established from single crystal diffraction
approaches, which typically are based on Monte Carlo models. [107, 108] These new
methods enable a wider range of compounds with local magnetic correlations to be probed,
including the types of materials examined in this thesis for which single crystals are not
available. Indeed these techniques are ideally suited to frameworks, which often possess low
dimensional or frustrated magnetic order due to the versatile structures they adopt but rarely
grow the several mm3 size single crystals needed for single crystal neutron diffraction.

RMC methods involve fitting observed diffuse scattering data using a large supercell of spins
with fixed magnetic moments and no enforced symmetry. As computer power has increased
Monte Carlo based big box methods such as Monte Carlo and RMC [154, 155] have become
ideal for their flexibility and applications to a variety of problems and data types. [156]
The reverse Monte Carlo method has been used throughout this thesis, and it follows the
same algorithmic procedure as Monte Carlo methods. While Monte Carlo methods aim
to minimise the energy of the system reverse Monte Carlo methods minimise the error of
the calculated fit, to the experimental diffraction pattern. The general RMC method, for
magnetic systems, is summarised in Figure 2.11, starting from an initial disordered supercell
of spins which is to approach a suitable model that best fits the data. Spins can be give
some orientation rules, e.g. a Heisenberg model where the spins are free to orient in any
direction or an Ising model, where the spins are given a fixed easy axis, and may point
either up or down along this axis. In this thesis initial RMC refinements were performed
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with unconstrained Heisenberg spins, and upon further investigation fixed to an Ising model,
consistent with the large spin-orbit coupling in these systems.

Figure 2.11 A flow diagram describing the reverse Monte Carlo algorithm.

For analysing the magnetic diffuse scattering, with unpolarised neutrons, as used in the
studies in this thesis, it is necessary to isolate the total magnetic contribution from the
neutron-scattering data and normalise the intensity of the data. Data subtraction is done by
taking measurements at a temperature well above that at which magnetic diffuse scattering
emerges. To normalise the data we start by assuming that the observed nuclear Bragg peak
intensity (Iobs) is proportional to the absolute nuclear intensity (Iabs) of the material in units
of barn sr−1 atom−1:

Iobs = s× Iabs (2.26)

In order to find the proportionality constant (s) that converts the observed intensity into the
absolute a refinement of the nuclear intensity is required at temperatures above the magnetic
order, so that we can determined the scale factor (Scale) obtained from a Rietveld refinement.
This parameter is multiplied by the calculated intensity of the Bragg peaks, during refinement,
such that:

Iobs = Scale× Icalc (2.27)

therefore:
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s = Scale× Icalc

Iabs
(2.28)

In order to determine the proportionality constant, s, we require expression for both Icalc and
Iabs. The profile intensity calculated in FULLPROF is expressed as :

Icalc = ∑
G

mG|FG|2Lx
GRx(x− xG) (2.29)

where G is a set of equivalent Bragg reflections, having the multiplicity mG and the Lorentz
factor and x is the scattering angle 2θ (in constant wavelength data) and time t in µS (for
time-of-flight) data, and Rx(x− xG) is the resolution function. This assumes that the data
has already been corrected for absorption and the occupation factor is the site multiplicity
divided by the general multiplicity of the site. However absorption can be taken into account,
during the calculation of the scale factor. The structure factor as calculated in FULLPROF
is:

FG =
N

∑
j=1

b jTjexp(iG · r j) (2.30)

where r j and b j are the position of the jth atom, and its nuclear scattering length (in units
of 10−12 cm). Tj is it’s Debye-Waller factor, used to describe the thermal motion of the
atom, and the sum is taken over all atoms in the unit cell. This thesis has dealt with RMC on
temperature subtracted data of both TOF and CW data, but data normalisation is calculated
differently for each experimental method. Here temperature subtracted data is defined has
Tsub = Tlow − Thigh, where Tlow is the diffraction pattern data of interest containing magnetic
diffuse scattering, and Thigh » TN and is a diffraction pattern containing little or no magnetic
information.

The equation for Iabs can be expressed in terms of scattering angle or time-of-flight, using
the Q-dependence of the Bragg scattering intensity: [157]

Iabs(Q) =
2π2

NV ∑
G

mG|FG|2

G2 RQ(Q−G) (2.31)

where N is the number of magnetic atoms in the unit cell, V is the volume of the unit cell
(Å3).
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For TOF data we know the Q dependence from equation 2.7, and so substituting this into the
above equations yields the formula for Iabs as:

Iabs(TOF) =
mnl

2πhNV ∑
G

mG|FG|2LtRt(t − tG) (2.32)

where the Lorentz factor in time-of-flight is given by LG = d4sinθ , and d is the d-spacing of
the Bragg reflection. This gives the proportionality constant for time-of-flight as:

sTOF = Scale× 4πNV sinθ

DT T 1
(2.33)

DTT1 is the instrument parameter, dependant on the flightpath (l) and the angle of the detector
(θ ), and has the units of µS−1. DTT1 is given by equation 2.24

For constant wavelength neutron the relationship between Q and scattering angle is given by
equation 2.9, and substituted into equation 2.31 gives us:

Iabs(CW ) =
45λ 2

2π2NV ∑
G

mG|FG|2L2θ
G R2θ (2θ −2θG) (2.34)

where the Lorentz factor for constant wavelength neutrons is L2θ
G = 1

2sin2θGcosθG
, giving the

proportionality constant for constant wavelength data as:

sCW = Scale× 2π2NV
45λ 3 (2.35)

Therefore in order to obtain the absolute intensity of the temperature subtracted data, we
divide the experimentally observed profile by the proportionality constant for TOF and CW
data, respectively.

In the work in this thesis data collected at a high temperature Thigh were subtracted from the
low-temperature data of interest, where Thigh = 20-30 K. TOF data banks were merged over
a Q range of 0.2 to 3.75-4 Å−1 to improve statistics, areas with Bragg peak contamination
excised and data re-binned to improve the signal to noise in the data without losing any
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resolution with regards to the shape of the magnetic diffuse scattering. As previously
discussed in Section 2.3.5 the magnetic form factor decays as a function of increasing Q, and
magnetic diffuse scattering features are much weaker than Bragg reflections. Above 4 Å,
the signal to noise ratio becomes so significant, that no information can be reliably resolved,
therefore ≈4 Å is a suitable cut off for magnetic diffuse scattering to reduce computation
time and minimise fitting to artefacts in the data.

The data were placed on an absolute intensity scale (barn sr−1 Ln−1 by normalisation to the
calculated nuclear Bragg profile at Thigh. Diffuse neutron patterns were fitted with the RMC
program - SPINVERT. [108] For the Ln(DCO2)3 frameworks a supercell of 52 x 54 x 55 Å3

or 5 x 5 x 13 unit cells was used. For the Ln(DCO2)3 frameworks a supercell of 49 x 49 x 51
Å3 or 10 x 7 x 6 unit cells was used. A supercell of ≈50 Å3 was chosen as this provided a
good balance of resolution and speed of computations. Each RMC refinement provides a
’snapshot’ into the disorder of a system, and so we must compile many refinements to build
an accurate description of the system, and thereby decrease the statistical error. However
we cannot distinguish between dynamic or static structural disorder which is one limitation
to this method. These possibilities can only be distinguished between using spectroscopic
methods.

2.5 Magnetic Symmetry Analysis

Symmetry is vital to many disciplines of technology and science, making complex problems
more tractable by breaking down the problem into its most fundamental parts. The selection
rules of spectroscopy are symmetry defined and without symmetry analysis, the discipline of,
crystallography would not have become the success that it is today. In order to determine
magnetic structures of materials, magnetic symmetry becomes a useful tool to narrow down
the possible solutions and discover what is symmetry allowed.

2.5.1 Magnetic Symmetry Groups

Magnetic symmetry follows the same rules as structural space group symmetry, however for
magnetic symmetry, the time-inversion or spin-flip operation, which reverse the direction all
all magnetic moments is also important. If we consider a magnetic moment to be a rotating
electric charge, as seen in Figure 2.12 then a normal mirror acting on a will cause the moment
to invert. That is to say the magnetic moment (an axial vector) is invariant under rotation but
when a reflection operation is applied an additional time-reversal symmetry must be applied.
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Crystallographic symmetry when applied to nuclear structures does not need to consider this
for the spherical atom and when a time-reverse operator is applied or not makes no difference,
but to axial vector this is not so.

Figure 2.12 Diagram showing time-reversal or spin-flip operators applied to a magnetic moment.

The first mathematical description of magnetic symmetry came from Heesch [158] and
Shubnikov [159] which extended the 32 crystallography point groups by means of an anti-
symmetry operation. Describing the groups in terms of colours and yielding the 122 magnetic
point groups. This was then further extended to the space groups giving 1651 commensurate
magnetic space groups. The use of magnetic crystallography is a powerful technique, and is
the definitive way to describe a set of symmetries within magnetic crystallography. However
it becomes exponentially more complicated when dealing with more complicated magnetic
structures as seen in geometrically frustrated systems. The superspace formalism has been
used to describe modulated systems in 1, 2 and 3D and yielding 11764 superspace groups.
[160] The method of symmetry analysis developed by Stokes and Campbell [161] breaks
down the magnetic symmetry groups into symmetry modes, valid for a magnetic space group
and using that as a method for determination of the magnetic structure. The community has
developed tools for analysing modulated and incommensurate magnetic structures, using
superspace symmetry groups, but when dealing with incommensurate magnetic structures it
is much more elegant to use representation theory.

2.5.2 Representation Theory

Representation theory is the extension of group theory from point groups to include space
groups, and has been used to deal with commensurate and incommensurate magnetic struc-
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tures with great success. In Landau theory of phase transitions, any magnetic ordering
occurring in a continuous transition necessarily transforms under the symmetry operations of
the paramagnetic phase according to a single irreducible representation of the the symmetry
group of this phase. This is the basis of representation theory with regards to magnetic
structure and can be attributed to Bertaut in 1968. [162, 163]

This approach starts by considering the unit cell, and states that the propagation of a magnetic
structure through a solid can be described using plane waves (Bloch wave), and then relates
it back to the unit cell (G0) through a phase relation. The moment of atom j (V⃗j) with respect
to the moment of atom i (V⃗i) is described by the equation for a plane wave, and for a simple
case is described simply by:

V⃗j = V⃗icos(−2π⃗k ·⃗ t) (2.36)

where t⃗ is the translation between the moment of the ith and jth atom, k⃗ is the frequency of
the wave in terms of unit cells. The k-vector k⃗ is the reciprocal of the number of unit cells
needed to describe the magnetic supercell ie. a supercell 4x that of the nuclear unit cell has
the vector 0.25.

A symmetry operation of a space group (G0) which only involves a translation of the unit cell,
and leaves k⃗ unchanged are known as the little group Gk. However, there can be operations
which can be equivalent but involve a rotational aspect, meaning there can be equivalent
k-vector depending on the setting. The goal of representation theory is finding the irreducible
representation of the magnetic supercell, that describes the magnetic structure. [164] The
irreducible representations are made of up basis vectors, equivalent to the vibrational modes
of spectroscopy. Representation theory only tells you what is symmetry allowed, not the
energies, and therefore it does not determine the ground state magnetic structure. Only
experimental techniques and comparison with data can determine the magnetic structure. The
success of representation analysis lies in its generality describing magnetic, structural and
other orders of crystallography within a single theory and be extended to complex systems
with ease.

2.5.3 Magnetic Structure Determination

Magnetic structure model refinements were was carried out in FULLPROF. [146] Magnetic
propagation vectors were determined with the k-search functionality in WINPLOTR, [165]



2.6 Inelastic Neutron Scattering 66

taking into consideration the breaking of symmetry for centred cells, and looking at the
symmetry points of the Brillouin zone using ISODISTORT [161]. For determination of
magnetic crystallography groups a combination of ISODISTORT [161] and the Bilbao
Crystallographic Server [166] were used. For symmetry analysis using representation theory,
a combination of SARAh [167] and BASIREPS (within the FULLPROF suite) were used to
determine the irreducible representations and basis vectors. Where multiple magnetic phases
were required to fit the diffraction patterns, the phase scales were fixed to be equal, and the
magnetic moments were refined, as it is not possible to refine the phase scale and magnetic
moment on each of the phases. Therefore we have assumed that the magnetic moment vector
is proportional to the magnetic phase fraction.

2.6 Inelastic Neutron Scattering

Inelastic neutron scattering is a scattering technique used for measuring the dynamics of
samples. [122, 168] When probing the magnetic order, both long range and local, it can be
used to measure the dynamics of the motion of spins, so called spin-waves. These spin waves
can also be considered boson quasi-particles known as magnons, that propagate through
magnetic order, in an analogous way to phonons propagating through a lattice. [31] The
inelastic scattering method involves determining the changes in energy by measuring the
incident and scattered energies in order to determine the wave vector (see Figure 2.13). The
conservation of energy allows changes in energy be calculated from the relationship shown
below.
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Figure 2.13 Diagram of the inelastic scattering triangles.

Momentum and energy transfer allow for fitting of inelastic neutron spectra to reveal infor-
mation about the dynamics of atoms and magnetic spins. TOF spectrometers come in two
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varieties, direct and indirect geometries. Direct geometry spectrometers define the incident
energy with choppers and the final energy is determined by the time-of-flight between the
sample and the detectors. Indirect (inverted) geometry spectrometers expose the sample to
a white incident beam, and the incident energy is determined at the sample position by the
measurement of the time-of-flight, and the final energy is measured by a monocrystal.

2.6.1 LET

The inelastic neutron scattering study in this thesis used the Low Energy Transfer (LET)
spectrometer. This is a direct geometry cold-neutron multi- chopper spectrometer on TS-2
at the ISIS neutron source. This combines large area detectors, advanced neutron beam
transport and state-of-the-art computational tools to maximise the efficiency of delivering
neutrons to the sample and to their subsequent detection and analysis, by using large area
detectors (see Figure 2.14). [169] Such instrumentation has the ability to cover a highly
diverse range of science from bio-molecular materials through to quantum matter.

Figure 2.14 Photograph of the inside of LET, showing the large area detectors.

In this study an incident energy Ei = 15 meV, in High resolution mode with a chopper
frequency of 240 Hz was used. Tb(DCO2)3 was loaded into a copper annular can, consisting
of a 18 mm inner can and 22 mm outer can. Measurements were carried out between 50 mK
to 120 K, with the samples cooled using a dilution refrigerator, inside an Orange cryostat.
The data were reduced using the MSlice package within the Mantidplot software suite. [170]
Calculations of the spin wave dispersion were performed using a semiclassical method using
the SpinW software, [171] using linear spin wave theory.
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2.7 Physical Property Measurements

The theory of magnetism and the measurement quantities such as magnetic susceptibility
and magnetisation have previously been introduced. Here the experimental methods for
measuring these quantities is described.

2.7.1 Magnetic Susceptibility

The Quantum Design magnetic property measurement system (MPMS) is able to detect
magnetic susceptibilities to a high degree of precision, able to resolve changes in magnetic
fields as small as 10−15, over a wide temperature range and applied magnetic fields by using
superconducting components. The principal components of this DC measurement system
comprise of [172]:

Temperature Control System Control of the sample temperature, requiring heat flow to
the sample, and control of liquid helium coolant.

Magnetic Control System A large superconducting coil, made of a niobium germanium
alloy (Nb3Ge) and a TC of 23 K, submerged in liquid helium to remain cool. An
applied current is proportional to the magnetic field generated.

Superconducting SQUID Amplifier System The Superconducting Quantum Interference
Device (SQUID) is the magnetic measurement detector of the MPMS, built from two
Josephson junctions, which will be discussed in further detail.

Sample Handling System The system that controls the position of the sample, and is able
to move the sample through the detector without mechanical vibrations.

Computer System A computer with software to automate the functions of the MPMS.

The Josephson junction was theoretically proposed in 1962 [173] and experimentally ob-
served in two years later [174], yielding Josephson the Nobel prize for his discovery. The
Josephson junction consists of two superconducting wires electrically separated by a small
insulating material junction, over which quantum tunnelling of electron Cooper pairs occurs.
If a constant biasing current (IB) is applied to either sides of the ring, and is greater than the
critical current for the junction, a voltage is produced.

A SQUID consists itself of two Josephson junctions in a ring, as shown included in the MPMS
diagram in Figure 2.15. The electrical current density through a Josephson junction depends
on the phase difference ∆Φ of the two superconducting wave functions. The time derivative of
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∆Φ is proportional to this bias current. The SQUID is connected to superconducting detector
coils and when a magnetic sample is passed through a voltage is induced, due to Faraday’s
law, which causes a change in ∆Φ and therefore in voltage. Electronic measurement systems
are extremely sensitive to changes in voltage and therefore the SQUID can achieve high
resolution in changes of magnetic flux. During measurement the sample is aligned in the
centre of the detector coils, and at each data point is moved through the coils to measure the
magnetic susceptibility.

V(t)𝚫Φ2

IB

𝚫Φ1

Figure 2.15 Diagram of the detector coils of the MPMS connected to the SQUID, by superconducting
wires. The yellow sections of the ring indicates the Jospehson junctions, with a biasing current across.

In this thesis two measurements have been conducted with the MPMS SQUID magnetometer,
measurements of magnetic susceptibility (χ) measured in Zero-Field Cooled (ZFC) and Field-
Cooled (FC) conditions, and magnetisation (MvH) curves. ZFC measurement are initially
cooled in zero-applied field, a field is applied and then measurements are taken on warming.
Field-Cooled measurements involve measuring a sample cooled in the same magnetic field
the measurement is performed in and can be done on warming or cooling. Deviations
from the ZFC and FC measurements provide information about the type of magnetic order
occurring. Magnetisation measurements were conducted at constant temperature with the
sample measured over a variety of field strengths. A single magnetisation curve provides
information about the dimensionality of the spin (Ising v.s. Heisenberg), and sweeping
the field from −H to +H suggests whether it is ferromagnetically ordered. A series of
magnetisation measurements at variable temperatures can be used to calculate magnetocaloric
values, as will be discussed.

Magnetic susceptibility measurements were typically performed on a Quantum Design
magnetic properties measurement system (MPMS), equipped with a 4He cryostat. Samples
were measured between 2-300 K with susceptibility measurements performed in an applied
field of 1000 Oe . Samples were placed in gelatin capsules enclosed inside a pierced straw



2.7 Physical Property Measurements 70

with a uniform diamagnetic background. Magnetic properties measured below 2 K were
performed on MPMS with a 3He insert in a 100 Oe DC field, with samples held in a
diamagnetic film and placed into a Quantum Instruments MPMS sample holder.

2.7.2 Magnetocaloric Measurements

The magnetocaloric effect can be measured directly, through heat capacity and temperature
measurements [175] or indirectly through magnetisation measurements. [176] Throughout
this thesis the magnetocaloric effect has been measured indirectly through magnetisation
measurements. Despite indirect measurements, for GdOHCO3 [77], Gd(HCO2)3 [62] and
other similar materials [177] excellent agreement between direct and indirect measurements
has been observed, and so we have confidence in the accuracy of these measurements.

The magnetocaloric effect was determined from calculating the magnetic entropy −∆Sm, by
taking magnetisation curves at regular temperature intervals, using the Maxwell relation in
Figure 2.37.

∆Sm(T ) =
∫ [

δM(T,B)
δT

]
B

dB (2.37)

Magnetisation measurements were taken between 0 and 5 T, at variable temperatures. The
entropy was calculated for each temperature point, and change in entropy calculated by
subtracting the entropy at zero field from those in applied field. Measurements were put into
appropriate units for comparison.

2.7.3 Heat Capacity

Heat capacity is a useful physical property measurement to understand the entropy of a
material at variable temperature and in zero and applied fields. This can give important
physical information because it can show the entropy changes associated with phase transition
to a high degree of precision. The heat capacity of a sample is defined as the energy required
to raise the temperature of the sample by an amount, this can be described by:

Cp =

(
dQ
dT

)
P

(2.38)

For a constant pressure, the second law of thermodynamics states:
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dQ = T dS (2.39)

Therefore, at constant pressure, the heat capacity is directly related to the entropy of the
system given by:

S =
∫ Tmax

0

(
CT

T

)
dT (2.40)

Where Tmax is the maximum temperature heat capacity has been measured. The total heat
capacity of a system is made of a several parts described by:

Ctotal =Clattice +Cmag +Cnuclear +CSchottky (2.41)

Where Ctotal is the total energy of the material, comprised of Clattice - the lattice heat capacity,
Cmag - the magnetic heat capacity, [178] Cnuclear - the hyperfine contribution and CSchottky

the heat capacity resultant of the Schottky term. Phonons in the material are responsible for
the lattice contribution of the heat capacity and are proportional to temperature. This can be
modelled with the Debye equation: [178]

Clattice =
9nRT 3

θ 3
D

∫
θ/T

0

x4ex

(ex −1)2 dx (2.42)

Where θD is the Debye temperature, N is the number of atoms in the unit cell, R is the
universal gas constant, T is the temperature and x is the range needed to integrate over to
provide the heat capacity.

The Debye temperature describes the temperature when all atoms are vibrating with the same
frequency, below which quantum effects may be observed. This is given by: [179]

θD =
hvm

kB
(2.43)

where h is Planck’s constant, kB is the Boltzmann constant and vm is the Debye fre-
quency.

For experimental data it is often difficult to de-convolute the contributions from all of the heat
capacity contributions, and other anomalous effects, and so we have reported the heat capacity
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after subtraction of the sample holder, the silver powder (used for better heat transfer) and
the lattice contributions. This is sufficient as the important conclusion we can draw from
heat capacity is the ordered temperature and how it effects changes in entropy rather than the
entropy results themselves.

Heat capacity measurements in zero and applied field were performed on a Quantum Design
PPMS DynaCool with 14 T superconducting magnet and 3He insert, between 400 mK and
14 K. Insulating materials such as the frameworks in this thesis, typically have poor thermal
conductivity therefore samples were ground into a powder, mixed with an equal amount of
powdered silver, to improve heat transfer, and pressed into a pellet. Empty sample holder
measurements were taken to allow for subtraction after measurement of the sample. To isolate
the magnetic contribution to the heat capacity, the blank sample holder, lattice (calculated
from the Einstein-Debye equations), and the silver contributions (taken from literature data
[180]) were subtracted.

2.8 Characterisation Techniques

2.8.1 TGA/DSC

Thermogravimetric analysis (TGA) with Differential Scanning Calorimetry (DSC) is a
method for testing the thermal stabilities, mass loss and heat absorption of materials at room
temperature and above. The mechanism of heat absorption follows the same equations for
lattice vibration energies as described in Section2.7.3, but at much higher temperatures, and
therefore quantum effects and magnetic entropy are not significant. Heating of the sample is
performed on a high precision mass balance, and a loss of mass is assumed to be due to loss
of material in the sample, either due to de-solvation or breakdown of the lattice.

The thermal stabilities of selected LnOHCO3 samples of about 5 mg were characterized
with a Netzsch STA 409 PC TGA-DSC between 20-800◦C, heating at a rate of 10◦C min−1

with data analysed using Netzsch Proteus. Data were recorded under an atmosphere of
air, Background measurements were initially conducted on an empty ceramic crucible, and
subtracted from measurements to isolate the sample contribution.

2.8.2 Infrared Spectrometry

Infrared spectroscopy is a means of probing the covalent bonds in a materials by exposing it
to a broad spectrum of incident infrared waves, and detecting the absorption or transmission
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at a detector. Different wavelengths of infrared light will be absorbed by different types of
covalent bonds, and vibrational modes corresponding to a quantized energy level of that
mode. The bending and/or stretching modes of different chemical bonds typically occur in
the absorption bands (above 1500 cm−1) and so it is trivial to qualitatively analyse bonds in
materials. [19]

The absorption infrared absorption spectra of LnOHCO3 samples was recorded with a
Shimadzu IRaffinity-1 Fourier transform infrared spectrometer in the range 500-4000 cm−1,
and analysed with LabSolutions IR. Infrared spectra measurement were initially conducted
on a blank background for subtraction for the sample data. Measurements were used as
confirmation of the synthesised samples, and to confirm deuteration of samples used for
neutron scattering experiments.



3

Structural and Magnetic Properties of
the LnOHCO3 and LnF3

3.1 Introduction

The need for dense magnetocaloric phases with high magnetic moments has driven an
interest in MCE materials based on late lanthanide frameworks (where lanthanide (Ln) =
Gd-Er) because of the high magnetic entropy change they support. A new wave of non-
oxide magnetocalorics have recently been reported to have particularly high magnetocaloric
effects, including Gd(HCO2)3, GdOHCO3 and GdF3, which have superior performance to
the benchmark Gd3Ga5O12 phase as shown in Figure 3.1. [4, 5, 62, 69, 73, 74, 77, 177]
Several of these phases contain polyatomic anions which adopt highly anisotropic structures
to incorporate their non-spherical cations while hosting a range of competing magnetic
interactions between them. [62, 75–77] Exploring dense framework materials containing
smaller polyatomic ligands and a range of different lanthanides are potentially of great
interest for MCE applications.

Recent work has shown the substitution of Gd for other lanthanide ions (in particular Tb),
with Ising-like spins has led to larger magnetocaloric responses above 2 K in low applied
fields, [4, 5, 72, 181] at the expense of some decrease of performance for larger field changes.
This has inspired the search for other magnetocaloric materials by substituting gadolinium
for other lathanides, in gadolinium containing materials which have already been shown to
perform well. The benefits of such an approach has already been highlighted by studies of
the Ln(HCO2)3 phases, which show that Tb(HCO2)3 outperforms Gd(HCO2)3 above 4 K
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and for the field change possible using a permanent magnetic (< 2 T). [4] Therefore we have
chosen to investigate the magnetocaloric effect of some high performance magnetocaloric
materials, highlighted by earlier studies of the gadolinium analogues.

Figure 3.1 A comparison of the magnetocaloric effect for various materials, in variable fields. Data
reproduced from literature values. [4, 5, 62, 69, 73, 74, 77, 177]

3.2 LnOHCO3 Frameworks

3.2.1 X-ray Diffraction of the LnOHCO3 Phases

In order to ensure phase purity of the LnOHCO3 samples Le Bail fits were performed on
X-rays patterns (see Figure A.1), providing excellent fits to the data. This confirms the
phase purity and yields the room temperature lattice parameters and fitting statistics shown
in Table 3.1. Lattice parameters determined from these fits have been used for the volumetric
magnetocaloric effect calculations in Section 3.2.2. There is some debate about whether the
LnOHCO3 crystallise in the Pnma or P212121 space group. [73, 77, 113, 114] We initially
chose the P212121 space group as this gave a slight improvement to the fitting statistics over
Pnma, and is the most commonly reported space group for these LnOHCO3. The refinements
indicated the expected reduction in the unit cells across the series, as a result of the lanthanide
ion radii contraction. [182]
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Table 3.1 Summary of the LnOHCO3 refinements in the P212121 space group, from powder X-ray
diffraction

Ln a (Å) b (Å) c (Å) Rp (%) Rwp (%)

Gd 7.07339(8) 4.87444(6) 8.44347(11) 2.05 3.02
Tb 7.01195(11) 4.85322(8) 8.44689 (15) 3.27 4.25
Dy 6.97710(20) 4.83203(14) 8.44309(24) 4.88 6.05
Ho 6.95637(6) 4.81218(4) 8.45494(7) 3.13 4.12
Er 6.92541(5) 4.79026(4) 8.46914(7) 2.71 3.51

3.2.2 Magnetic Properties of LnOHCO3

Field cooled (FC) and zero-field cooled (ZFC) magnetic susceptibility data of the LnOHCO3

frameworks (Ln = Gd3+, Tb3+, Dy3+, Ho3+ and Er3+) were measured in a 1000 Oe field
from 2 K to 300 K and did not show any indication of long range magnetic order. This data
was found to obey the Curie-Weiss law over the full temperature range, with the exception
of DyOHCO3 where significant deviations were found to occur above 200 K that likely
result from crystal field effects (see Figure A.2c). Effective magnetic moments were found
to be broadly consistent with the values expected for these trivalent lanthanides according
to the Russell–Saunders coupling scheme [25] (see Table 3.2) calculated from mean field
Curie-Weiss behaviour - see Figure A.2 for associated fits.

Table 3.2 Summary of Curie-Weiss temperatures and magnetic moments for lanthanides in LnOHCO3,
calculated from the Curie-Weiss fits to the data.

Ln θCW (K) Curie Constant (emu mol−1 Oe−1) Magnetic Moment (µB)

Gd −1.013(4) 6.6863(20) 7.3123(11)
Tb −2.82(7) 10.20(5) 9.029(20)
Dy −2.79(4) 14.40(6) 10.732(21)
Ho −3.149(11) 13.371(16) 10.340(6)
Er −2.47(9) 9.65(6) 8.784(28)

Curie-Weiss temperatures were determined and suggest moderate antiferromagnetic inter-
actions in all materials. Aside from Gd, however, the depopulation of Stark levels at lower
temperatures in lanthanides with significant orbital angular momentum means that these
Curie-Weiss temperatures must be considered tentatively. [183]
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Isothermal magnetisation measurements on the LnOHCO3 frameworks measured at 2 K (see
Figure 3.2) reveals that both TbOHCO3 and DyOHCO3 are easily magnetized under modest
applied fields, with both close to saturation under applied fields of 10 kOe. In contrast,
the other frameworks, including GdOHCO3 continue to magnetize with applied magnetic
field up to 50 kOe. The greater ease of magnetisation in TbOHCO3 and DyOHCO3 of the
frameworks in low applied fields is the source of their high MCE performance in fields
below 20 kOe, as discussed below. The saturation value of the magnetisation can provide
some insight into whether a magnetic material is a Ising or Heisenberg system, in which
cases limits of gJJ/2 and gJJ are expected. [33, 34, 184, 185] The magnetic saturation of Gd
approaches 7 µB, consistent with a Heisenberg cation, while those of Ho and Er approach
values expected in a purely Ising case. Those for DyOHCO3 and TbOHCO3 are close to the
limit expected for the magnetic cations in an Ising case but are above this suggesting other
contributions to the magnetic observed saturation magnetisation.

Figure 3.2 Isothermal magnetisation measurements on the LnOHCO3 frameworks measured at 2 K.

Magnetic entropy change, ∆Sm, was calculated from the Maxwell relation between 2 and 10
K, and for field changes between 0 and 1-5 T (see Figures A.3 for magnetisation plots). While
this is an indirect way of measuring the magnetocaloric effect, recent work on Gd(HCO2)3

and GdOHCO3, have shown that for similar frameworks excellent agreement is usually
obtained between this approach and the direct determination of ∆Sm from heat capacity
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measurements. [4, 62] The ∆Smax
m values determined from this approach are presented in

Table 3.3.

Table 3.3 Summary of the peak MCE (∆Smax
m ) at peak temperatures (Tmax) of the studied LnOHCO3

at different field changes. Mass refers to changes in entropy per mass in units of J Kg−1 K−1 and
volume refers to change in entropy per volume in units of mJ cm−3 K−1.

∆µ0H = 1-0 T ∆µ0H = 2-0 T ∆µ0H = 5-0 T

Ln Tmax (K) Mass Volume Mass Volume Mass Volume

Gd 2 19.32 103.37 44.17 236.31 69.33 370.42
Tb 4 17.64 95.97 30.99 168.62 33.72 183.40
Dy 4 20.76 115.87 33.34 186.15 34.46 192.42
Ho 4 10.84 61.53 19.85 112.67 24.38 138.36
Er 2 15.04 86.43 28.11 161.51 31.98 183.73

As expected from other lanthanide magnetocaloric materials, the previously reported GdOHCO3

is observed to have the greatest -∆Sm
max at 2 K, particularly in multiple Tesla magnetic fields

(see Figures 3.3 and 3.4). For moderate field changes of less than 2 T, TbOHCO3 and
DyOHCO3 are found to perform exceptionally well between temperatures of 4 and 10 K
with −∆Sm

max at 4 K (Figure 3.3b). TbOHCO3 and DyOHCO3 have a higher −∆Sm than
GdOHCO3 at all temperatures between 4 and 10 K for a 2-0 T field change and exhibit
a trend that suggests this will continue at higher temperatures. Of these two compounds
DyOHCO3 has the highest −∆Sm

max, at 4 K, of 33.34 J Kg−1 K−1 with TbOHCO3 having a
∆Sm

max of 30.99 J Kg−1 K−1 c.f. GdOHCO3 that has a −∆Sm of 29.54 J Kg−1 K−1 for the
equivalent temperature and field change. The difference in the performance of TbOHCO3 and
DyOHCO3 is even greater for ∆µ0H = 1-0 T where they are observed to have −∆Sm

max of
17.64 J Kg−1 K−1 and 20.76 J Kg−1 K−1 at 4 K respectively, c.f. GdOHCO3, which we find
to have an equivalent −∆Sm of 11.67 J Kg−1 K−1. In ∆µ0H = 1-0 T DyOHCO3 outperforms
all other LnOHCO3 at all temperatures above 3 K, and the −∆Sm

max for DyOHCO3 is almost
twice the −∆Sm of GdOHCO3 at the same temperature.

These results are particularly impressive when compared to the benchmark material GGG or
Dy3Ga5O12 (DGG). For ∆µ0H = 2-0 T GGG has a −∆Sm

max = 17.7 J Kg−1 K−1 or 145 mJ
cm−3 K−1 at 1.2 K [77] and DGG has a −∆Sm

max = 11.64 J Kg−1 K−1 or 95 mJ cm−3 K−1

at 1.2 K, although the performance of DGG is modestly better for a 1-0 T field change and
at higher temperatures compared to GGG. [71, 112] DyOHCO3 however, has a −∆Sm

max =
33.34 J Kg−1 K−1 or 186.15 mJ cm−3 K−1 at 4 K and retains a greater −∆Sm per weight
than GGG’s −∆Sm

max up to 8 K. TbOHCO3 also maintains a −∆Sm that is higher than
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(a) (b)

Figure 3.3 The magnetocaloric effect of the late LnOHCO3 frameworks for field changes of (a) 0-1 T,
(b) 0-2 T. The filled and hollow symbols mark mass and volumetric units, respectively.

(a) (b)

Figure 3.4 The magnetocaloric effect of the late LnOHCO3 frameworks for field changes of (a) 0-3 T
and (b) 0-5 T. The filled and hollow symbols mark mass and volumetric units, respectively.
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GGG’s ∆Sm
max for ∆µ0H= 2-0 T between 3-6 K. The MCE performance of HoOHCO3 and

ErOHCO3 are less remarkable. The later continues to decrease on cooling to 2 K but with
much poorer performance for a given temperature and applied field change compared to
GdOHCO3. HoOHCO3, in contrast has its −∆Sm

max at 4 K but this is much lower than
observed for DyOHCO3 and TbOHCO3. Thus its −∆Sm only exceeds that of GdOHCO3

for ∆µ0H = 1-0 T and 2-0 T, respectively, above 6 K and 7 K and this is then only by small
amounts. Perhaps more notably −∆Sm becomes negative at 2 K, which from the Maxwell
relation can be interpreted as indicating that is becoming negative at low temperatures,
consistent with the material being close to a transition to an antiferromagnetic state.

The results obtained here vary from those obtained from the previous study of the Ln(HCO2)3

family in two key respects. [4] Firstly, in the formates, Tb(HCO2)3 showed the greatest
MCE performance [4] between 4-10 K, for applied field changes of less than 2 T. The
magnetocaloric measurements of TbOHCO3 indicate the MCE behaviour is qualitatively
similar to Tb(HCO2)3 above 4 K in low applied fields, but with greater performance. Unlike
the Ln(HCO2)3 family, the best performer of the LnOHCO3 family is DyOHCO3. This is
distinct from the behaviour of Dy(HCO2)3, which continues to increase at low temperatures
in a similar fashion but with much lower performance than Gd(HCO2)3. Secondly the value
of −∆Sm

max for TbOHCO3 and DyOHCO3 is much closer to that of GdOHCO3 (see Table
3.3) than is the case for Tb(HCO2)3 compared to Gd(HCO2)3 ( c.f. 8.08 J Kg−1 K−1 and
10.64 J Kg−1 K−1 for 1-0 and 2-0 T field changes in Tb(HCO2)3 to 13.23 J Kg−1 K−1 and
25.37 J Kg−1 K−1 for 1-0 and 2-0 T field changes in Gd(HCO2)3) . [4] This is related to
much larger MCE effects above 4 K in TbOHCO3 and DyOHCO3 compared to Tb(HCO2)3,
offering performance comparable to that found in GGG, below 2 K, at higher temperatures
for the first time.
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3.2.3 TbxGd1−xOHCO3 and DyxGd1−xOHCO3 Solid Solutions

The higher Tmax of TbOHCO3 and DyOHCO3 encouraged further solid solution studies of
TbxGd1−xOHCO3 and DyxGd1−xOHCO3 in order optimise the higher temperature and peak
performance, simultaneously. Previous studies of Ln substituted magnetocalorics have found
to improve magnetocaloric performance, particularly in TbxGd1−x(HCO2)3. [4, 186] In the
TbxGd1−x(HCO2)3 series doping with up to 40 % Tb improved the MCE effect observed
above 4 K without significantly decreasing the performance at lower temperatures. [4]

Doping Tb3+ and Dy3+ with GdOHCO3, to produce TbxGd1−xOHCO3 and DyxGd1−xOHCO3

frameworks, was successful with stoichiometric control over doping confirmed from the unit
cell volume change consistent with Vegard’s law (Figure A.4). The trend in unit cell volume
obtained from fits to powder X-ray diffraction patterns suggest stoichiometries of x = 0.18,
0.37, 0.63, 0.81 for Tb and x = 0.22, 0.40, 0.60, 0.77 for Dy have been achieved, close to the
nominal stoichiometries.

The magnetic properties of doped GdOHCO3 with Tb3+ and Dy3+ were therefore explored
with steps of x=0.2 across the TbxGd1−xOHCO3 and DyxGd1−xOHCO3 series. The per-
formance of these doped compounds were found to vary from a physical mix of the end
member compounds, suggesting that magnetic coupling between magnetic cations plays
a key role in their MCE (see Figure 3.5. In particular there is a sharp change between
GdOHCO3-like MCE performance and DyOHCO3 and TbOHCO3 performance between
40 and 60 % Dy doping and 60 and 80 % Tb doping, respectively. Unfortunately, even a
small doping of any of the three end members leads to a significant reduction in −∆Sm

max

without any compensating increase in performance at other temperature ranges. Potentially
improving the magnetocaloric performance of this family could be explored further using
other doping strategies, such as other lanthanide cations or lower doping percentages, but
this is beyond the immediate focus of this work.
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(a) (b)

(c) (d)

Figure 3.5 The magnetocaloric effect of LnOHCO3 solid solutions for Ln = Tb/Gd for field changes
of (a) 0-1 T, (b) 0-2 T and Ln = Dy/Gd for field changes of (c) 0-1 T and (d) 0-2 T. The filled and
hollow symbols mark mass and volumetric units, respectively.



3.2 LnOHCO3 Frameworks 83

3.2.4 Magnetostructural Relationships

There are a number of structural differences between the Ln(HCO2)3 and LnOHCO3 frame-
works that could lead to the observed differences in their magnetocaloric properties. Firstly,
while the Ln cations in the Ln(HCO2)3 are in a highly symmetric 9 coordinate tricapped
trigonal prism environment with 3m site symmetry; those in the LnOHCO3 structure have
1 site symmetry, which can be either viewed as a 10-coordinate environment or a highly
distorted LnO8 square antiprism coordination environment, as shown in Figures 1.16 and
1.15. This difference may influence the magnetic anisotropy [187] and affect the relative
ease with which the orbital angular momentum may partially align with the applied magnetic
field, effecting the MCE observed. As discussed above the magnetisation of DyOHCO3 is
essentially saturated at 20 kOe at approximately 7 µB atom−1, while the magnetisation of
Dy(HCO2)3 increases relatively rapidly to about 5 µB atom−1 by 20 kOe before increasing
more slowly to just above 6 µB mole−1 at 50 kOe, where it is far from saturation. [4] The
magnetisation value observed for Dy(HCO2)3 at low applied fields is close to the expected
contribution to the moment expected from a purely Ising ion (gJJ/2 = 5 µB atom−1 for f 9

Dy3+) while that observed for DyOHCO3, as discussed above, is significantly higher than
this but well short of that expected from a Heisenberg ion (gJJ = 10 µB atom−1). This addi-
tional magnetisation in DyOHCO3 at such low applied fields is unusual since Dy typically
exhibits Ising anisotropy and is likely to further enhance its MCE properties. This could be
interpreted as indicating the alignment of some fraction of the orbital angular momentum
with the applied field although this typically requires a very strong field. [23]

Since Dy, which is a Kramer ion, responds very differently between the two series alternating
between exhibiting MCE properties qualitatively similar to Gd(HCO2)3, which also contains
a Kramers ion, and TbOHCO3, which contains a non-Kramers ion, suggests Kramer ion
effects do not primarily determine which systems have MCE maximised below or above
4 K. That Tb and Ho containing members of both LnOHCO3 and Ln(HCO2)3 have MCE
optimised for use above 4 K may suggest non-Kramers ions more commonly have MCE of
this type, although it is notable that, for example, A3Ga5O12 (A = Tb or Ho) do not [112] so
the relevance of this is far from clear.

Another factor that likely effects the magnetic properties of these two families of materials is
the different ways in which the cations in their structures are connected, which will play a
key role in their magnetic coupling. The structure of Ln(HCO2)3 can be readily simplified
into face-sharing chains packed into a frustrated triangular lattice and it has been argued
that the combination of ferromagnetic chains and magnetic frustration plays a key role in
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the magnetocaloric properties of this family. [4, 18] In particular, the high magnetocaloric
performance of Tb(HCO2)3 above 4 K in low applied magnetic fields has been attributed
to the presence of ferromagnetic coupling within chains with complete magnetic order
suppressed by the frustrated coupling between chains. [4, 18] Direct analysis of the magnetic
interactions in the LnOHCO3 frameworks is, however, required to confirm to what extent
their dominant magnetic interactions resemble the interactions in LnOHCO3 and whether
additional interactions, such as through J4 which couples neighbouring chains diagonally,
modify this. Efforts to achieve this are described in detail in Chapters 5 and 6.

3.3 LnF3

The impressive magnetocaloric effect observed in GdF3, as shown in Figure 3.1, and the
success of improving the MCE efficiency through substitution of the Gd for other late
lathanides (Tb-Er), inspired investigation of the MCE in the LnF3 materials. The simplicity
and commercial availability, makes these materials ideal for industry.

3.3.1 LnF3 Crystal Structure

LnF3 (Ln = Gd, Tb, Dy, Ho and Er) were purchased from Fisher Scientific (Alfa-Aesar
99.99%) and were measured without any additional purification. With the exception of HoF3

which was purchased as a ’crystalline lump’, the samples were sold as fine powders. The
samples were tested for quality and phase purity through powder X-ray diffraction of ground
samples, using a Rigaku MiniFlex with Cu Kα radiation and a zero-background silicon
sample holder, between 10 and 70◦ at 300 K.

The LnF3 materials are isostructural, crystallising in the orthorhombic Pnma space group.
Indexing of the diffraction patterns agrees that the reflections of these materials are from
the Pnma space group. [73, 188] Le Bail refinements were performed on the diffraction
patterns as seen in Figure A.5. These highlighted that GdF3, TbF3 and HoF3 were phase
pure, however DyF3 and ErF3 contained significant non-hydrated Ln(NO3)3 impurities, and
DyF3 also contained another unknown phase - shown by the un-indexed peak at ≈1.75 Å−1.
Only HoF3 was highly crystalline, and the diffraction patterns of the other materials suffered
from small particle sizes indicated by the broadening of the reflection, which were fit using
an anisotropic peak broadening model. Limited attempts were made to purify and improve
crystallinity the samples for several reasons. Firstly, recrystallisation of LnF3 is not possible
without the use of concentrated HF, which was considered too risky considering the small
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level of impurities involved. Secondly, the aim of this sub-study was to investigate the bulk
magnetic properties and magnetocaloric effect between 2-10 K, of commercially available
materials that could readily be deployed in a device.

3.3.2 Magnetic Properties of the LnF3

Field cooled (FC) and zero-field cooled (ZFC) magnetic susceptibility data of the LnF3

frameworks (Ln = Gd3+, Tb3+, Dy3+, Ho3+ and Er3+) were measured in a 1000 Oe field
from 2 K to 300 K. The magnetic susceptibility data for all LnF3 were found to obey
Curie-Weiss law over between 100 - 300 K (see Figure A.6). Effective magnetic moments
were found to be broadly consistent with the values expected for these trivalent lanthanides
according to the Russell–Saunders coupling scheme [25] (see Table 3.4) calculated from mean
field Curie-Weiss behaviour above 50 K, and extrapolated to lower temperatures. The Curie-
Weiss temperatures of LnF3 = Tb-Er indicates predominantly antiferromagnetic interactions
within these materials, although as for the LnOHCO3 phases this must be interpreted carefully
due to a likely contribution from crystal field effects of the Ln cations at low temperatures.
These results of the DyF3 and ErF3 materials must be considered tentatively, due to the
presence of nitrate impurities.

Table 3.4 Summary of Curie-Weiss temperatures and magnetic moments for lanthanides in LnF3.

Ln θCW (K) Curie Constant (emu mol−1 Oe−1) Magnetic Moment (µB)

Gd 0.1293(16) 7.3132(18) 7.6474(9)
Tb 0.898(24) 9.84(5) 8.870(22)
Dy −1.440(31) 11.62(6) 9.639(25)
Ho −1.05(6) 14.43(16) 10.74(6)
Er −3.97(8) 9.78(8) 8.845(34)

GdF3, DyF3 and ErF3 did not show any indication of deviation from purely paramagnetic
behaviour down to 2 K. In contrast TbF3 and HoF3 showed some behaviour in their low
temperature magnetic properties that suggest some deviation from pure paramagnetism. In
HoF3 there is a small divergence in magnetic susceptibility measurements between zero
field-cooled and field-cooled measurements, below 100 K, which may reflect limited weak
ferromagnetic order or be an instrumental artefact (see Figure 3.6a). While the latter is more
likely, if the former this indicates the presence of some correlations to such high temperatures,
despite no long range order forming indicates there are some strong interactions in HoF3.
In contrast TbF3 was found to deviate from Curie-Weiss law below 2.9 K with χMT also
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increasingly rapidly at low temperature, with a maximum observed at 2.9 K (see Figure
3.6b). A weak divergence of ZFC and FC magnetic susceptibility is also observed at this
temperature so this likely reflects the onset of long range antiferromagnetic order.

(a) (b)

Figure 3.6 χMT data for (a) HoF3, with magnetic susceptibility shown in the insert and (b) χMT data
for TbF3, with inverse magnetic susceptibility shown in the insert.

Isothermal magnetisation measurements on the LnF3 frameworks measured at 2 K (see Figure
3.7) reveal that only GdF3 which has magnetisation consistent with a Heisenberg spin, that
which approaches 7 µB under high applied magnetic fields.

In contrast TbF3, DyF3 and ErF3 all show saturations values close to that of gJJ/2 expected
for purely Ising anisotropy, [33, 34, 184, 185] and materials with large spin-orbit coupling.
Finally, HoF3 shows a saturation value close, but noticeable exceeding, the limit expected for
the magnetic cations in an Ising case suggesting other contributions to the magnetic observed
saturation value. This is analogous to the effect we have reported in DyOHCO3, where
the saturation value indicates Ising like anisotropy but greater, which showed the largest
magnetocaloric effect out of the LnOHCO3. The magnetisation of GdF3, TbF3 and HoF3

show a steep rise in magnetisation with all nearing plateau below 2 T.

3.3.3 Magnetocaloric effect of the LnF3

Magnetic entropy changes, ∆Sm, were calculated using the Maxwell relation between 2 and
10 K, and for field changes between 0 and 1-5 T (see Figures 3.8 and 3.9 for magnetocaloric
effect plots). As expected from other lanthanide magnetocaloric materials, the previously
reported GdF3 is observed to have the greatest −∆Smax

m at 2 K, particularly in multiple tesla
magnetic fields. For moderate field changes of less than 2 T TbF3 and HoF3 are found
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Figure 3.7 Isothermal magnetisation measurements on the LnF3 frameworks measured at 2 K.

to perform well with −∆Smax
m at 4 K , with HoF3 outperforming GdF3 above 5 K with a

very gradual decrease that suggests this differential will increase significantly at higher
temperatures.

The almost linear response of the magnetocaloric effect with respect to temperature in these
initial studies inspired further investigation into the magnetocaloric effect of HoF3 to higher
temperatures. As shown in Figures 3.10 these enable the magnetocaloric entropy change for
HoF3 to be calculated up to 25 K.
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(a) (b)

Figure 3.8 The magnetocaloric effect of the late LnF3 frameworks for field changes of (a) 0-1 T, (b)
0-2 T. The filled and hollow symbols mark mass and volumetric units, respectively.

(a) (b)

Figure 3.9 The magnetocaloric effect of the late LnF3 frameworks for field changes of (a) 0-3 T, (b)
0-5 T. The filled and hollow symbols mark mass and volumetric units, respectively.
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Figure 3.10 The magnetocaloric effect of HoF3 between 5-25 K for field changes of 0-(1-5) T.

A summary of the peak MCE temperatures of all the LnF3 is given in Table 3.5, showing the
temperatures at which the MCE peaks in both mass and volumetric units, with regards to
the performance above 4 K. In comparison to the LnOHCO3 in mass units, the LnOHCO3

phases outperform the LnF3 phases, important in applications where low mass is crucial but
low volume is less necessary, when comparing HoF3 to DyOHCO3, the compounds with
the best high temperature performance in each family. Due to the high density of the LnF3

materials HoF3 outperforms DyOHCO3, when comparing volumetric units, above 8 K. [5,
77] However, DyOHCO3 has a peak performance greater than that of HoF3 (186 and 136 mJ
cm−3 K−1 at 2-0 T field change), and when compared in mass units DyOHCO3 outperforms
HoF3 up to the highest measured temperature.

Perhaps more notably −∆Sm becomes negative in HoF3 at 2 and 3 K, which from the
Maxwell relation can be interpreted as indicating a decrease in magnetisation with decreasing
temperature, consistent with the material being close to a transition to an antiferromagnetic
state. A secondary interesting feature of HoF3, in contrast to other materials discussed in
this thesis, is the field change dependence of the peak temperature of the magnetocaloric
effect. It appears that with larger changes in magnetic field the temperature at which the
magnetocaloric effect peaks increases significantly. Large changes in entropy are observed
in both HoF3 and DyOHCO3 above 4 K, and these materials also display magnetisation
saturations larger than for purely Ising spins. The effect contributing to this may be from
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Table 3.5 Summary of the peak MCE (∆Smax
m ) at peak temperatures (Tmax (K)) of the studied LnF3

at different field changes. Mass refers to changes in entropy per mass in units of J Kg−1 K−1 and
volume refers to change in entropy per volume in units of mJ cm−3 K−1.

∆µ0H= 1-0 T ∆µ0H = 2-0 T ∆µ0H = 5-0 T

Ln Tmax Mass Volume Tmax Mass Volume Tmax Mass Volume

Gd 2 26.72 191.69 2 50.94 365.45 2 69.13 495.95
Tb 4 13.59 98.27 4 21.96 158.75 4 25.65 185.40
Dy 2 12.73 96.30 2 20.75 156.94 3 23.75 179.64
Ho 5 10.15 77.62 6 17.80 136.12 8 21.22 162.25
Er 2 10.29 79.55 2 19.78 152.89 2 25.51 197.19

a orbital contribution but also anisotropy that does not quite behave fully Ising. This is
still unclear and inelastic neutron spectroscopy data would provide suitable understanding.
An anomalous reduction in the magnetocaloric effect is observed in HoF3, in higher fields
changes at 14 and 15 K, which is not due to any experimental errors or temperature excursions.
This may indicate the onset of some partial ordering of the magnetic moments in higher
applied magnetic fields that is only present over a narrow temperature/field range.

HoF3 has interesting properties compared to GGG and DGG. For ∆µ0H = 2-0 T GGG has
a ∆Smax

m = 17.7 J Kg−1 K−1 or 145 mJ cm−3 K−1 at 1.2 K [77] and DGG has a −∆Smax
m =

11.64 J Kg−1 K−1 or 95 mJ cm−3 K−1 at 1.2 K [71, 112] HoF3 provides an entropy change
of 17.80 J Kg−1 K−1 or 136.12 mJ cm−3 K−1 at 5 K for the same field change and even at 12
and 16 K has entropy changes greater than 10 J Kg−1 K−1 or 50 mJ cm−3 K−1, respectively.
This gives commercially available HoF3 a potential use for magnetic refrigeration over a
wide temperature. The large magnetocaloric effect in these materials is partly due to the
high density of the LnF3 (7.6441(20) g cm−3 for HoF3 at 300 K), and the large magnetic
entropy of the Ln ions coupled with rapidly increasing magnetisation at low applied magnetic
fields.

The performance of the Ising LnOHCO3 phases is generally superior to the Ising LnF3

phases so our studies attempting to relate the magnetic interactions to their magnetocaloric
properties will generally focus on the former. We will attempt to draw some conclusions here
about why TbF3 and HoF3 may exhibit MCE values that peak at higher temperatures, from
knowledge drawn from existing studies. Figure 3.11 shows the nuclear structure of the LnF3

and the face-sharing chains of Ln3+ cations that extend along the a-axis.
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(a) (b)

Figure 3.11 Structure of the LnF3, with the Ln3+ cations shown in purple, and fluoride anions shown
in yellow. The unit cell is shown in black. (a) The structure shown along the b-axis, with the
nearest neighbour interactions in the insert, displaying the buckled chains present in the structure. (b)
Structure shown along the a-axis, looking down the buckled chains. The triangular motifs are shown
in the insert, consisting of next-nearest neighbour interactions. The chains are circled for clarity.

Early neutron studies of HoF3 determined a canted antiferromagnetic structure at TN = 0.53
K, with moments oriented along the buckled chains, towards the nearest neighbour. [189,
190] Allowing for this spin canting coupling within the face-sharing chains is ferromagnetic
and, by comparison to the magnetocaloric properties of Tb(HCO2)3 it is possible, that these
may also contribute to the magnetocaloric properties of HoF3 if they persist locally to high
temperatures.

Studies of TbF3 have determined the presence of an incommensurate antiferromagnetic
structure below TN = 3.97 K possibly induced from magnetic frustration, formed of Ising
spins in ferromagnetic chains. [191, 192] The discrepancy between our TN from magnetic sus-
ceptibility measurements and TN from this may be related to the poorer degree of crystallinity
of the commercially available sample used for our study. Moments in TbF3 are primarily
oriented along the a-axis with similar spin vectors as the HoF3 structure. [188–191]

TbF3 and HoF3 show similar magnetic structures at low temperatures, and have the largest
magnetocaloric effect in low applied fields, which suggests the relative strength of the mag-
netic interactions within these materials may play a role in their magnetocaloric performance.
From these early studies, the magnetic moment of HoF3 was determined to be 5.7(2) µB at
70 mK for Ho3+, far below the expected 10 µB for a fully ordered moment. This is indicating
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there is still significant disorder within this system at 70 mK well below the TN = 0.53 K.
The disorder in HoF3 and the incommensurate phase in TbF3 can be ascribed to competing
interactions, if we assume that all neighbouring interactions are antiferromagnetic within the
triangles (Figure 3.11b), which would be consistent with the antiferromagnetic ground state.
It is therefore possible that the combination of ferromagnetic chains and magnetic frustration
may be linked their MCE properties. In contrast ErF3 has been reported to develop long
range magnetic order at TN = 1.05(3) K, but differs to that seen in TbF3 and HoF3. [193]
The magnetic moments in ErF3 are oriented primarily along the c-axis, with a magnitude of
6.7 µB closer to that of a fully ordered Er3+ ion. This indicates that the simple presence of
magnetic order below the paramagnetic magnetocaloric operating temperatures is not suffi-
cient to improve the magnetocaloric performance, but that the magnetostructural-property
relationship plays an important role. These early studies do not show full diffraction patterns,
which is unfortunate as it prevents examining these for any indication of magnetic diffuse
scattering although by the same token this may not have been clearly visible on the diffrac-
tometers available 30 years ago. [84] With the increase of Q range and resolution of modern
instruments, it would be wise to revisit the magnetic structure determination of HoF3 and
TbF3, below these transition temperatures and near in search of short range order.

From the survey of the literature above we can speculate that the efficient magnetocaloric
effect of TbF3 and HoF3 may be due to the presence of ferromagnetic Ising chains observed in
these materials. Therefore, large changes in entropy are induced by small changes in magnetic
field as the chains are readily aligned in them. At temperatures where the magnetocaloric
effect has been measured, it is possible that these ferromagnetic interactions are still present,
and beneficial to the magnetocaloric effect, as observed in other materials. [4, 17, 18,
194]

3.4 Conclusions

The magnetic properties of the LnOHCO3 frameworks have been characterized with a focus
on the magnetocaloric properties of the later lanthanides between Tb and Er. We find that
TbOHCO3 and DyOHCO3 are exceptional MCE materials above 4 K, both surpassing the
peak MCE of the benchmark magnetic cooler Gd3Ga5O12 (GGG) observed at much lower
temperature in the lower applied fields accessible using permanent magnets; [74] DyOHCO3

is particularly promising having the highest performance in the 4-10 K temperature range.
Doping of Gd3+ into TbOHCO3 or DyOHCO3 has also been explored and while good
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stoichiometric control has been achieved this does not result in improved MCE, in contrast
with the Ln(HCO2)3 frameworks. [4] These results highlight that the MCE is not only
determined by the magnetic ion, but that structural and ligand field effects can contribute
greatly to this behaviour.

Magnetic properties of the LnF3 are equally interesting yielding large changes in volumet-
ric entropy at temperatures above 2 K. Amongst these materials HoF3 exhibits the best
magnetocaloric entropy change above 4 K under modest applied magnetic fields. While
generally inferior to the LnOHCO3 phases this compare well to the benchmark Ln3Ga5O12

series, particularly with regards to the retention of performance above 10 K. Examining
how the magnetocaloric performance of these materials relate to the magnetic interactions
within them requires the analysis of these materials using modern neutron scattering. The
subsequent chapters in this thesis will focus on precisely this sort of analysis, starting with
the Ln(HCO2)3 phases that had already been reported to have enhanced magnetocaloric
properties above 4 K for low applied field changes and then moving onto the LnOHCO3

phases, which have the best physical properties reported in this work. Equivalent studies for
the LnF3 phases would also be desirable, particularly in the case of HoF3 but this has not
been prioritised in this work due to the superiority properties of the LnOHCO3 phases.



4

Magnetic Structure and Correlations of
the Ln(DCO2)3 Frameworks

4.1 Introduction

Several frameworks were recently reported to have magnetocaloric effects comparable
or superior to that of the benchmark magnetocaloric material Gd3Ga5O12 below 10 K.
[62] It is key to explore the performance of magnetocalorics in this temperature range
to optimise their potential for use as solid state refrigeration devices that can replace the
expensive and non-renewable liquid helium refrigeration. [60] In light of the promising
magnetocaloric properties of Gd(HCO2)3, [62] the other isostructural heavy lanthanide
formate frameworks were investigated. This revealed the superior magnetocaloric entropy
change of Tb(HCO2)3 and Ho(HCO2)3 frameworks in low applied magnetic fields above
4 K compared to Gd(HCO2)3, unusual for materials with lower total theoretical magnetic
entropy. [4] It was found that short range order was present in the temperatures at which
Tb(HCO2)3 performed most efficiently, consisting of 1D ferromagnetic correlations within
its face-sharing chains, as shown in Figure 1.15. At ≈1.6 K Tb(HCO2)3 was found to form
quasi-long range order, consisting of 1D ferromagnetic correlations within its face-sharing
chains. [4, 18] Inspired by the connection between promising magnetocaloric properties
and interesting magnetic correlations in Tb(HCO2)3 this and other Ln(HCO2)3 have been
furthered investigated for the presence of any short and long-range magnetic order in and if
present, determine the link between it and the magnetocaloric effect. This includes the first
neutron scattering studies of these materials below 1 K.
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4.2 Tb(HCO2)3

4.2.1 Physical Property Measurements

It has previously been reported that the Ln(HCO2)3 frameworks do not show any indication
of long range order down to 2 K, and follow Curie-Weiss behaviour, with Weiss temperatures
of −0.6 K, −0.9 K, −6.1 K, −10.3 K and −16.0 K, for Ln = Gd–Er. [4] Since neutron
diffraction measurements indicated the emergence of magnetic order in Tb(HCO2)3 at 1.6
K we have probed the physical properties down to 0.4 K to identify the effect this order
has on it’s physical properties. Zero-field cooled (ZFC) magnetic susceptibility data for
Tb(HCO2)3 shows indications of magnetic transitions at ≈1.6 K and ≈0.5 K, (see Figure
4.1). Heat capacity measurements shown in Figures 4.1b and A.7 show a have a large peak
in 1.68 K for zero applied field, this is suppressed in applied fields consistent with the onset
of a magnetic transition. Despite the small change in susceptibility, associated with the TIA
transition, the signal in heat capacity is much more significant. Both of these features are
consistent with the emergence of the TIA, as a transition to a long range 1D order would
result in a large entropy change, while the strong short range antiferromagnetic coupling
of the chains would prevent any great change in magnetic susceptibility. It is also possible
that the signal at 1.6 K is an experimental artefact from the MPMS switching between high
and low temperature modes. A clearer transition can be seen at ≈0.5 K indicating more
complete, possibly long-range antiferromagnetic order. [4, 18] A second large change in the
heat capacity is observed below 600 mK, this may be the onset of long-range order but could
also be the onset of a hyperfine Schottky anomaly.

(a) (b)

Figure 4.1 Magnetic measurements of Tb(HCO2)3. (a) Magnetic susceptibility in 100 Oe field below
30 K, close up below 1.6 K in insert, (b) Cmag/T in variable fields between 400 mK and 14 K.
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The broad feature in the heat capacity is sometimes ascribed to the Schottky anomaly, [195]
however this would indicate an onset of this phenomenon at temperatures far too high for
either nuclear or electronic Schottky, and responds too strongly to an applied magnetic
field. It is therefore likely this feature is caused by the short range magnetic order we see
developing in the neutron diffraction data, as indicated by magnetic diffuse scattering. [4,
18] However, 1D magnetism can give rise to the emergence of solitons, as seen in CsNiF3.
[196, 197] The broad feature of this heat capacity feature may arise due to the presence of
these solitons, [198] which can be calculated with a sine-Gordon model, [199] but testing
this hypothesis is beyond the scope of this study.

Magnetisation data were measured at variable temperatures below and above the ordering
temperatures detemined from susceptibility and heat capacity data. Magnetisation curves
measured at 0.5 K, 1.5 K and 2 K are virtually identical and approach saturation around 1
T (see Figure 4.2), the value observed is up to >95 % of the gJJ/2 value expected for Ising
anisotropic spins, as seen in the previous RMC studies. [4, 18] This highlights the ease of
magnetisation in low applied field, in agreement with the magnetocaloric abilities of this
compound in low applied magnetic field. A further gradual linear increase with applied fields
above 3 T observed is consistent with the onset of Van Vleck paramagnetism, [183] due to
field induced electronic transitions. [200, 201] The similarities of the magnetisation curves
above and below the transition temperatures suggests that if antiferromagnetic order does
emerge at low temperature it is unlikely to be a conventional long range magnetic state.

Figure 4.2 Magnetisation measurements of Tb(HCO2)3 between 0-7 T, at variable temperatures.
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4.2.2 Emergent Charge Order (ECO)

Consistent with the previous studies by Saines et al., [4, 18, 202] upon cooling below 1.6
K the neutron diffraction measurements performed on Tb(DCO2)3 show the appearance of
extra reflections ascribable to the development of long range magnetic ordering albeit these
features are much broader than the instrumental resolution. This can be appreciated from the
broad peak observed around 9 Å (Figure 4.3b). If treated as conventional crystallographic
magnetic order, as previously established, [4, 202] the extra reflections can be indexed with
a propagation vector k1 = [0,0,1] belonging to the LD line (00γ) of the first Brillouin zone
(BZ). The quantitative Rietveld refinement agrees with the P3m′1 magnetic space group
corresponding to the mLD2LE2 irreducible representation with order parameter (ξ1,ξ2) as
previously reported. [4] The group subgroup relationship, as shown in Figure 4.4, is in
agreement with Landau theory, demonstrating this magnetic structure can be formed of a
single irreducible representation.

(a) (b) (c)

Figure 4.3 Rietveld fits to neutron diffraction patterns of Tb(DCO2)3 at variable temperatures from
bank 2 and 9 of WISH along with the fitting statistics (a) 1.7 K, Rp = 6.45 %, Rwp = 5.27 % (b) 1.2 K,
Rp = 6.51 %, Rwp = 5.44 % (c) 0.28 K, Rp = 6.58 %, Rwp = 5.41%.

It is worth underlining that the observed propagation vector does not correspond to a special
point of the BZ and the γ value can, in principle, be incommensurate. The broad nature
of the diffraction peaks does not allow us to determine with absolute certainty that the
propagation vector is locked to the commensurate [0,0,1] value. Nevertheless the comparison
with similar systems in the literature and the good refinement of the diffraction data with
the commensurate value let us to conclude that the real propagation vector is likely to be
γ=1, as previously reported. [4] The spin ordering can be described two different global
phases. One of these resembles a partially disordered antiferromagnet (PDA) in which each
of the triangles has one chain ordered up, one down, and the third remaining disordered
(π/4). The other up-down-down model contains one TbO9 chain ordered up, and two down
with the latter having half the magnetic moment of the former (π/6). [4, 202] The two
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Figure 4.4 Group subgroup relationship of Ln(DCO2)3 for the k-vector = [0,0,1]. Generated using
the Bilbao Crystallographic Server.

descriptions for the magnetic structure cannot be distinguished between, as they only vary in
the phase (π/4 and π/6), which diffraction is not sensitive to. It should be emphasized that,
as reported previously [4, 18] both of these possibilities are conventional crystallographic
approximations of the TIA, which only has long range 1D order in the chains, and which is
able to not only explain the Bragg-like reflections in this material but also the underlying
magnetic diffuse scattering.

Patterns collected below 1.2 K revealed the presence of additional broad reflections at
high d-spacing, the most significant Bragg-like peak can be seen at ≈10.5 Å (see Figure
4.3c). The broad nature of these features, comparable to those associated with the TIA
phase and the retention of the diffuse scattering suggest these are also associated with a
state that lacks conventional crystallographic order. We have, however, treated them with
conventional crystallographic approaches, as in the absence of clearly established prediction
of the scattering as established for the TIA, [78, 152, 153] we cannot completely exclude
that the peak broadening is not a result of small magnetic domains. The peak width was fit
with an anisotropic peak broadening model, and the broadening is an indication of a finite
correlation length. When the diffuse Bragg-like peak (7.85-9.37 Å or 0.80 to 0.67 Å−1)
with a Warren-like peak shape function, [203, 204] the correlation length, considered to
be associated with correlations in the ab plane, was found to be ≈52 Å (see Figure 4.5 for
quality of fit).
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Figure 4.5 Warren fit to the diffuse Bragg-like peak of the TIA phase of Tb(DCO2)3 with the
experimental data shown in black, the fit shown in red, and the difference shown in blue.

We observed no reduction in the width of the magnetic peaks upon cooling below 1.6 K
indicating the magnetic correlation length remains unchanged. These extra reflections can be
indexed to a supercell violating the parent rhombohedral symmetry and doubled along the
b-axis with a k2-vector = [0,0.5,1] corresponding to F point of the BZ and associated with
the mF2 mode. These new reflections here have been interpreted as an additional component
of the magnetic structure, but the possibility of magnetic phase separation in the material
cannot be completely excluded. The lack of intensity on the satellites of the 00l reflections
indicate that the moment remains along the c-axis only, in agreement with the Ising character
of the Tb spins.

Using ISODISTORT [161] we have found that the low temperature magnetic phase can
be described in the Pm′ space group in which there are six independent Tb sites with
moments dependant on the global phase, with the lattice parameters a = 3.96860(13) Å, b

= 10.42077(15) Å, c = 18.0493(3) Å as shown in Figure 4.6. Since the structure factors
are insensitive to the choice of the global phase, it is not possible to distinguish between
the two structures from the neutron diffraction alone. In agreement with Landau theory the
combination of the two k-vectors acting on this material allows for a continuous transition
to the Pm′ space group with a single irreducible representation, as shown in the graph of
subgroups - Figure 4.7.
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(a) (b)

Figure 4.6 Tb(DCO2)3 two possible magnetic average structure solutions at 0.28 K. Unit cell shown
as black box with magnetic moments in Pm′ space group. The spin charges are shown as minus and
plus signs. J2 and J3 are shown next to the corresponding interaction and J1 not shown, goes into the
plane. On the right of each figure is shown the projection of the structure in the ab plane and on the
left of each figure the bc plane. Magnetic moments colour coded, but not to scale. (a) Global phase =
π/4 (b) Global phase = π/6.

Figure 4.7 Group subgroup relationship of Ln(DCO2)3 for the k1-vector = [0,0.5,1] and k2 = [0,0,1].
Generated using the Bilbao Crystallographic Server.
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As can be seen in Figure 4.6 the solution with global phase π/4 results in a modification of
the PDA structure in which the k2 propagation modulates the moment in the chains resulting
in pairs of large moment Tb chains (±7.68(3) µB and ±6.19(3) µB) antiferromagnetically
coupled to each other and separated from other pairs by a chain with a small moment
(±0.74(3) µB). For the high temperature magnetic structure this phase choice gives a partially
disordered antiferromagnet solution closest to the TIA model proposed, [18] and therefore
is our preferred model. The π/6 solution, is a slight modification of the up 1

2down 1
2down

structure on a triangular lattice in which the moments are modulated along the b-axis of the
parent structure. [202] This phase choice gives the most symmetric solution with the less
spread of the Tb moment size with refined lengths of 4.75(3), 7.27(3), 8.75(4) and 3.26(3)
µB.

Both solutions find the moments on each triangle sum to be ±0.75 µB, which arrange into
an emergent antiferromagnetic-like state, absent from nearest neighbour interactions alone.
This is analogous to the emergent charge order observed in the kagome ECO states, [81,
205] which has two observed experimental signatures; non-zero entropy and the presence of
magnetic diffuse scattering and Bragg-like peaks in the neutron diffraction measurements.
[206] Such exotic magnetic states are elusive and have so far only been reported in oxide
materials. Based on observing similar features this may be the first example of such a state
present in a MOF. The emergence of antiferromagnetic order, associated with k2, is consistent
with the observation of antiferromagnetic-like transitions in the physical property data. The
magnetic scattering associated with the emergent order does suggest that the 1D order of the
TIA phase is retained in this lower temperature phase and together with the magnetisation
behaviour suggests that this is not a conventional antiferromagnetic state.

The evolution of the magnetic moments, with respect to temperature, associated with the two
k-vectors is shown in Figure 4.8. Whilst the high temperature transition is consistent with
the physical property measurements we attribute the low temperature transition discrepancy
to temperature equilibration issues, in particular that the physical property measurements
were measured on cooling and neutron diffraction patterns on warming. The phase transition
is also clearly seen as a sharp peak in the unit cell volume at ≈1.6 K, as shown in Figure
4.9, indicative of an expansion in the unit cell volume, and of the lattice parameters at this
temperature. Interestingly, we do not see any other significant changes in the unit cell volume
at 1.2 K, upon transition to the ECO phase.
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Figure 4.8 Evolution of the ordered magnetic moments associated with k1 and k2, in Tb(DCO2)3,
with respect to temperature.

Figure 4.9 Change in the unit cell of Tb(DCO2)3, and the lattice parameter length in the insert, with
respect to temperature between 0.28 and 1.95 K.



4.2 Tb(HCO2)3 103

A summary of atomic information of Tb(DCO2)3 at 0.28 K, from the Rietveld refinements is
summarised in Table 4.1. Using the bond valence method for calculating oxidation states,
[121] the atomic positions below yielded a bond valence of 2.87(3) for Tb, close to that
expected for a Tb3+ ion. This bond valence must be considered tentatively, as the empirical
bond valence sum values are calculated for room temperature structures. [207] The refined
occupancy of the 98 % indicates the deuteration of Tb(DCO2)3 was overall successful,
resulting in only a 2 % hydrogen impurity on the deuterium sites.

Table 4.1 Tb(DCO2)3 atomic Summary, with atomic positions given as fractional coordinates and
occupations given as fractional occupancies, refined in the R3m space group.

Atom x y z Uiso x 100 (Å2) Occupancy

Tb 0.33333 0.66667 0.000 0.014(8) 1.000
C 0.5131(2) 0.4869(2) 0.23103(9) 0.11259(10) 1.000
D 0.4971(3) 0.5029(3) 0.48473(9) 0.30589(18) 0.980(14)
O1 0.4667(3) 0.5333(3) −0.01430(9) 0.2259(13) 1.000
O2 0.5840(3) 0.4160(3) 0.17390(9) 0.24539(8) 1.000

4.2.3 Inelastic Neutron Scattering

Following from the neutron diffraction studies of Tb(DCO2)3 the magnetic excitations
and interactions of this material were probed directly using inelastic neutron scattering
using the LET spectrometer. Initial inspection of the inelastic neutron scattering at 50 mK
revealed information-rich spectra, with excitations that varied as a function of both Q and
energy (see Figure 4.10). The strong Q dependence of the 6.5 meV signal indicates the
excitation is that of propagating magnetic excitations. [208] There is a clear gap in intensity
between the elastic line, and the first excited state at ≈5.8 meV, this spin-gap is a clear
indication of a magnetic system with Ising anisotropy. SpinW was employed to calculate the
powder inelastic scattering function of the long range ordered structure as a function of Q

and energy, by calculating the spectra in full reciprocal space and then powder averaging.
This is one shortcoming of SpinW and linear spin wave theory in that it cannot calculate
the scattering function of short range ordered component of this system, [171] which is
expected to contribute a significant scattering component. Initial simulations of the magnetic
excitation near 6.5 meV using SpinW (see Figure 4.10a), using the Pm′ space group and
initial energies provided by earlier Monte Carlo studies, [18] provided promising results.
Despite long computation times, a grid search was used to further refine the energies of
Hamiltonian.
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Figure 4.10 Inelastic neutron scattering of Tb(DCO2)3 on LET (left) The experimental scattering
spectra at 200 mK and (right) The calculated spin-wave excitation using SpinW.

Simulations of the magnetic excitation near 6.5 meV using SpinW (see Figure 4.10b) gave
an excellent match to this feature with the values for J interaction energies shown in Table
4.2, and indicating the spins in Tb(DCO2)3 behave with Ising mechanics. [171] In this
interpretation J1 corresponds to the intrachain coupling, J2 and J3 are the interchain coupling
and the anisotropy is the Ising-like anisotropy along the c-axis (see Figure 4.11). In reality
these correlations correspond to slightly different distances (6.17/6.59 Å) but changing these
values made little to no improvement on the quality to the fits.

Table 4.2 Exchange interactions between Tb ions in Tb(DCO2)3

Energy

meV Kelvin

J1 0.162 1.88
J2/J3 -0.005 0.058
Anisotropy 0.90 10.44

The direction determination of the J interaction strengths and the Ising anisotropy are all
qualitatively consistent with the previous Monte Carlo and reverse Monte Carlo work. [18]
The temperature of the intrachain J1 coupling is consistent with the ordering temperatures
we have observed for the TIA transition and both this and the strength of J2/J3 are very close
to the values determined in the previous work. [18] The Ising-like anisotropy determined
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J1

J2J3

Figure 4.11 The left image shows the nuclear model of Tb(DCO2)3 with Tb shown in purple, carbon
shown in black, oxygen shown in red and hydrogen shown in grey. The right image shows are cartoon
of just the Tb atoms and the J interactions between them. J1 is the intrachain coupling shown in blue.
J2 is the next-nearest neighbour interchain interaction shown in orange, and J3 is the next-next-nearest
neighbour interchain interaction shown in red. The black triangle is highlighting the triangular motif.

here is much weaker than the estimate of the previous studies, emphasizing the importance
of directly determining magnetic interactions using inelastic scattering.

Interestingly the spin wave excitation persists at temperatures well above the transition
temperature at ≈1.6 K. Cuts along energy at constant Q show the spin wave is present in
the ECO and TIA phase. The spin-wave remains qualitatively the same in both ordered
states, persisting far above TN but decaying in intensity above 10 K to a diffuse spin-wave.
The intensity of the spin wave increases above the ECO transition, which we attribute to an
increase in the fluctuations present in the TIA phase, as shown in Figure 4.12. The strong Q

dependence of this high energy excitation is consistent with this being the remnant of the
magnetic excitation rather than a crystal field transition. At high temperatures the diffuse
nature of this excitation means the scattering is dominated by short-range ordering, similarly
to that seen in the spin-liquid Mn2(OD)2(C4O4). [209] This may suggest that a similar spin
liquid exists in Tb(DCO2)3 well above its ordering temperature. This is consistent with the
continued presence of magnetic diffuse scattering to near 20 K. [18, 194]

The emergence of this spin-wave well above its transition temperature would mean that it
cannot be a simple magnon mode of the ordered phase – as it would no longer be present so
far above TN . This excitation could be evidence of a singlet triplet excitation as predicted in a
valence bond solid, [210] as observed in Mn2(OD)2(C4O4). [209, 211] Below 1.6 K at which
point the intrachain interactions become sufficient to provide long-range order in 1D, but still
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disordered between the chains, the excitation doesn’t change in feature (see Figure 4.12a).
On further cooling below the ECO transition temperature this excitation remains unchanged.
Regardless of the true nature of the spin-wave the presence of the magnetic excitations
survives well above the magnetic ordering temperature of TN = 1.6 K, persisting above 90 K,
(see Figure 4.12b) unambiguously indicating the quasi-1D nature of the magnetic interactions
in Tb(DCO2)3. [212]

(a) (b)

Figure 4.12 (a) The temperature dependence of the spin-wave excitation. Cut over E = 0.1-9.0 meV
and integrated over Q = 0-5 Å. (b) The short ranged spin-wave excitations remaining at 90 K.

Ideally we would model the data with a function for describing a powder averaged S = 6
2

spin chain, with nearest neighbour interactions on a triangle. However, to the best of our
knowledge this type of system is not well understood and no function has been derived. The
results obtained would suggest that this S = 6

2 is showing non-classical behaviour, which is
untypical for materials with such high spin - but not unobserved. [208, 209]

We attribute this quantum-like behaviour to two observations. Firstly, the one-dimensionality
of the chains caused by the geometric frustration between them. Secondly, an effective spin
1
2 state, consistent with Ising anisotropy that has been observed in Ln3Ga5O12, Ln3Al5O12

for Ln = Tb, Dy and Ho, [185, 213–215] and Tb2Ti2O7. [216] In order to investigate this
possibility further inelastic neutron measurements should be performed to higher energies, in
order to probe the crystal field ground state.

The strong anisotropy of the system prevents tilting of the moments out of the plane, that
would lift the degeneracy, which forces this exotic magnetic state. In light of this pecu-
liar magnetic feature it should be investigated further to determine the true nature of this
excitation.
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4.3 Ho(HCO2)3

4.3.1 Short Range Magnetic Order

Neutron diffraction measurements of A(DCO2)3 frameworks (A = Ce-Nd and Dy-Er) at 1.5
K indicated that of the neutron accessible Ln(DCO2)3 phases studied, excluding Tb(DCO2)3,
only Ho(DCO2)3 exhibits structured magnetic scattering above 1.6 K. Ho(DCO2)3 begins to
exhibit diffuse scattering below 10 K, whilst remaining paramagnetic to 1.6 K, see Figure
4.13 for the normalised and temperature subtracted neutron patterns.

Figure 4.13 Evolution of the diffuse scattering, in Ho(DCO2)3, with respect to temperature.

Diffuse scattering in Ho(DCO2)3 emerges at temperatures below 10 K, and increases with
decreasing temperature. This, in addition to its Q dependence, indicated that the diffuse
scattering was magnetic in origin. Using a magnetic supercell of 50 Å along all the unit cell
directions and 1000 RMC moves, the magnetic diffuse scattering was fit well with SPINVERT.
The stereographic projections, showing the average of the refined spin orientations indicate
that the spins are preferentially aligned along the c-axis (see Figure 4.14). This is consistent
with the large spin-orbit coupling and the Ising-like magnetic anisotropy of Ho3+, and similar
to that seen in Tb(DCO2)3. [4, 217]
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Figure 4.14 Stereographic projections of the spin orientations averaged over 100 RMC Heisenberg-
like fits to diffuse neutron scattering data from Ho(DCO2)3 at 1.6 K. The relative spin density, ρ(θ ,φ ),
is defined as ρ(θ ,φ ) = ln

[
ρ(θ ,φ)

Nd(cosθ)dφ

]

Attempts were therefore made to fit the diffuse scattering data with a model consisting of Ising
spins, using the same parameters as the unconstrained Heisenberg refinements. These were
constrained with uniaxial easy axes along the c-axis, such that the spins can be oriented up or
down, in agreement with the stereographic projections. These Ising refinements also yielded
a reasonable fit (Figure 4.15a), though of somewhat lower quality than the Heisenberg-like
refinement (Figure 4.15b, χ2= 2.53 and 8.29), expected as the Ising refinement is more highly
constrained compared to Heisenberg fits.

(a) (b)

Figure 4.15 RMC fit to magnetic diffuse with an (a) Ising model and (b) Heisenberg model. Data
points in black, fit in red and the difference in blue. The correlations of each fit is shown in the insert.

This result suggests that the spins have a strong, although probably not purely, Ising character
which is often observed for Ho3+ as seen, for example, in the spin-ice materials Ho2Ti2O7

and Ho2Sn2O7. [218] We would therefore expect to see a gap in the inelastic neutron
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spectra of Ho(DCO2)3 similar to that noted in Tb(DCO2)3. Spin correlations ⟨S0 ·Sr⟩,
averaged over 100 RMC refinements, for Ho(DCO2)3 show that dominant spin correlations
in this material are ferromagnetic along the chain direction, with weaker antiferromagnetic
interchain interactions (see Figure 4.16 insert).

Figure 4.16 Correlation lengths, from Ising model fits, at various temperature with spin correlations
and fit of Ho(DCO2)3 at 1.6 K in insert with chain correlations highlighted in black.

We have extracted correlation lengths with the function ⟨S0 ·Sr⟩= Aexp(−r/ε), where A is
the Ising-like anisotropy, r is the correlation distance, and ε is the correlation length (see
Figure 4.16 for the evolution in ferromagnetic correlation length with temperature). As
the temperature was raised and the correlations became significantly weaker, the best fit to
data was found with unphysical A values, for this reason A was fixed to the value - 0.72 -
determined for the lowest temperature fit. For correlation fits see Figure A.8.

At 1.6 K, the ferromagnetic chain correlation length is 7.3(6) Å with weaker antiferromagnetic
inter-chain correlations of −0.018(2) and −0.034(2) observed for Ho3+ cations separated
by 6.10 and 6.57 Å within the triangles, respectively. This indicates that the correlations
in Ho(DCO2)3 are weaker than Tb(DCO2)3 for a given temperature (0.14 vs 0.33 for the
strongest correlation at 3 K). [4, 18] This observation indicates that the formation of this
order is not simply due to direct or dipolar exchange, which would be expected to be stronger
for Ho(DCO2)3 and the shorter bond lengths. It is possible the stronger interactions of
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Tb(DCO2)3 are caused by the crystal field, but additional crystal field studies would be
required for both systems to confirm this hypothesis. In the Ln(DCO2)3 series Tb(DCO2)3

and Ho(HCO2)3 were both noted to have their magnetocaloric properties optimised for use
above 4 K, these are also the only two compounds to show structured diffuse scattering
above 1.6 K. Ho(HCO2)3 may be a worse magnetocaloric than Tb(HCO2)3 due to its weaker
ferromagnetic correlations, needing greater changes in magnetic fields to align spins with the
field. The decrease in correlation lengths in Ho(DCO2)3 follows the same exponential law
seen in the Tb(DCO2)3 framework and the relative strength of the ferromagnetic intrachain
and antiferromagnetic interchain correlations in the two compounds is the same. Therefore it
is necessary to probe to sufficiently low temperatures, to probe if the Ho(DCO2)3 framework
will feature similar exotic magnetic states to that of Tb(DCO2)3.

4.3.2 Physical Property Measurements

With the emergence of short range order in the Ho(DCO2)3, probing the physical property
measurements to lower temperature was the next sensible step to determine whether mag-
netic order occurs at low temperatures. Zero-field cooled magnetic susceptibility data for
Ho(DCO2)3 shows features at ≈1.5 K and ≈0.5 K (see Figure 4.17a). The small change in
susceptibility at 1.5 K can be interpreted similarly to the feature in Tb(DCO2)3 at a similar
temperature, as either an experimental artefact from the MPMS switching between high and
low temperature modes or an indication of a TIA-like phase. A significant feature in the heat
capacity of Ho(DCO2)3 is observed at ≈1.2 K, similarly to the feature caused in Tb(DCO2)3

by the emergence of the TIA-phase (see Figure 4.17b).

The feature in the magnetic susceptibility of Ho(DCO2)3 at 1.5 K is thus more likely an
artefact of the measurement, implying that this may also be true for Tb(DCO2)3, unless the
temperature discrepancy is caused by temperature equilibration issues. A clearer transition
can be seen at ≈0.5 K indicating more complete, possibly long-range antiferromagnetic
order, particularly given its tendency to be suppressed under an applied magnetic field. [4,
18] A second large change in the heat capacity is observed below 600 mK, this may also
be associated with the onset of long-range order but could also be caused by a hyperfine
Schottky anomaly. [195] As with Tb(DCO2)3 the broad feature of this heat capacity feature
may arise due to the presence of solitons, [198] or the formation of magnetic structure with a
finite length correlation length.
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(a) (b)

Figure 4.17 Magnetic measurements of Ho(HCO2)3. (a) Magnetic susceptibility in 100 Oe field
below 30 K, close up below 1.6 K in insert, (b) Cmag in variable fields between 400 mK and 14 K.

Magnetisation data of Ho(HCO2)3 (see Figure 4.18) has been performed above and below the
phase transitions and follows a typical curve up to ≈3 T, saturating near GJJ/2 as expected
for Ising spins, in agreement with the RMC refinements of the short range order.

Figure 4.18 Magnetisation measurements of Ho(HCO2)3 between 0-7 T, at variable temperatures.

The magnetisation is seen to reach the Msat value less rapidly than the Tb(HCO2)3, which is
consistent with the less efficient magnetocaloric effect in low applied field as seen in previous
studies. [4] The slower magnetisation can be attributed to weaker coupling between spins
which would explain the lower ordering temperatures observed in Ho(HCO2)3.
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4.3.3 Emergent Charge Order

Crash cooling Ho(DCO2)3 in the 3He to base temperature = 0.25 K revealed the presence of
magnetic diffuse Bragg-like peaks in the neutron diffraction pattern, shown in Figure 4.19a.
Indexing of these peaks reveals that the peaks arise from a similar ECO magnetic state, as
seen in Tb(DCO2)3. However, measurements taken on warming indicated the FWHM of
these magnetic peaks decreasing with varying temperature, indicating the magnetic domains
in these materials were growing. These magnetic reflections are lost above 0.7 K, indicating
the disappearance of this ordered magnetic phase. It is noticeable that this temperature
varies significantly from the temperature of the transition indicated by the heat capacity
measurements, which suggests a phase transition of 1.2 K.

(a) (b)

Figure 4.19 Contour plots of Ho(DCO2)3 on (a) warming and (b) cooling. Measurements taken on
warming were crashed cooled to 0.25 K, and then slowly warmed. The extremely broad magnetic
peaks are a consequence of small magnetic domains. Measurements taken on cooling were cooled
from 3 K slowly. The peaks are much sharper but still significantly broader than instrumental
resolution, indicating the broad peaks are likely inherent to the system, due to a finite magnetic
correlation length.

To determine if the emergence of the ordered magnetic state in Ho(DCO2)3 is a sluggish
process and to what extent the broadening for the peaks is purely a result of crash cooling
leading to small magnetic domains the sample was cooled again from 3 K to below TN = 0.7
K, with measurement taken on cooling. These measurements reveal peaks with a FWHM
much sharper than measurements taken on warming, but still much broader than instrumental
resolution, at 0.7 K, the same temperature these are observed at on warming. This indicates
that the broadness of these peaks are likely intrinsic to the magnetic phase having a finite
correlation length and not purely a results of the finite magnetic domains caused by crash
cooling.
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Unlike the magnetic ECO state seen in Tb(DCO2)3, which is proceeded by a stabilised
intermediate magnetic phase that is best thought of as a TIA state, in Ho(DCO2)3 the ECO
state emerges immediately from the correlated paramagnetic phase. This is indicated by
the magnetic reflections associated with both k-vectors appear simultaneously at 0.7 K,
giving rise to the magnetic ECO state. It was previously noted, in Tb(DCO2)3, that due
to the appearance of the two k-vectors at different temperatures we could not rule out the
possibility of magnetic phase separation. In Ho(DCO2)3 the likelihood of two magnetic
phases appearing simultaneous is unlikely, therefore we assert that the magnetic emergent
charge ordered state, determined from refinement of the magnetic phase, is an accurate
representation of the average magnetic phase of this system.

As seen in Tb(DCO2)3 the ordered magnetic phase of Ho(DCO2)3 adopts the space group
Pm′, and the lattice parameters a = 3.94050(13) Å, b = 10.3582(3) Å, c = 17.9409(3) Å at
0.575 K. The fits to this temperature measured on cooling is shown in Figure 4.20.

(a) (b)

Figure 4.20 Rietveld fits to neutron diffraction patterns of Ho(DCO2)3 at 0.575 K from WISH along
with the fitting statistics (a) bank 5/6, Rp = 6.96 %, Rwp = 7.08 % (b) bank 2/9, Rp = 8.36 %, Rwp =
4.87 %

A summary of crystal structure of Ho(DCO2)3 at 0.575 K, from the Rietveld refinements is
summarised in Table 4.3. Using the bond valence method for calculating oxidation states,
[121] the atomic positions below yielded a bond valence of 3.04(2) for Ho, close to that
expected for a Ho3+ ion. The deuterium occupancy was refined to yield a value of 98 %
indicating that deuteration of Ho(DCO2)3 was successful, containing only 2 % hydrogenated
formates.
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Table 4.3 Ho(DCO2)3 atomic Summary, with atomic positions given as fractional coordinates and
occupations given as fractional occupancies.

Atom x y z Uiso x 100 (Å2) Occupancy

Ho 0.33333 0.66667 0.000 0.000 1.000
C 0.5109(2) 0.4891(2) 0.22690(11) 0.12789(10) 1.000
D 0.4970(3) 0.5030(3) 0.49144(8) 0.22983(14) 0.978(7)
O1 0.4655(3) 0.5345(3) −0.01582 (10) 0.28733(12) 1.000
O2 0.58424(19) 0.41575(19) 0.17818(6) 0.28832(22) 1.000

Figure 4.21 depicts the evolution of its magnetic moment with temperature. Examining the
conventional crystallographic interpretation of the ordered magnetic state in Ho(DCO2)3

we need to consider the two distinct global phases that are possible for a conventional
crystallographic interpretation of these features.

Figure 4.21 Evolution of the ordered magnetic moments associated with k1 and k2, in Ho(DCO2)3,
with respect to temperature.

At 0.575 K the solution with global phase π/4 results in a modification of the PDA structure
in which the k2 propagation modulates the moment in the chains resulting in pairs of large
moment Ho chains (±4.01(5) µB and ±3.09(3) µB) antiferromagnetically coupled to each
other separated by a chain with a smaller moment (±0.93(4) µB), as shown in Figure
4.22.
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Figure 4.22 Ho(DCO2)3 magnetic average structure solutions at 0.575 K. Unit cell shown as black
box with magnetic moments in Pm′ space group. The spin charges are shown as minus and plus signs.
J2 and J3 are shown next to the corresponding interaction and J1 not shown, goes into the plane. On
the right of each figure is shown the projection of the structure in the ab plane and on the left of each
figure the bc plane. Magnetic moments colour coded, but not to scale. (a) Global phase = π/4, (a)
Global phase = π/6.

At 0.575 K the solution with the global phase π/4 results in a modification of the ECO
structure seen in Tb(DCO2)3, with six independent magnetic moments and the lengths +4.35,
+2.51, +1.25 and −4.68, −2.84, −0.59 µB, with spin vectors are oriented along the c-axis,
with no intensity in the ab-plane. The sum of these spin vectors on each of the triangles sums
to produce ±0.92 µB, yielding the same ECO seen in Tb(DCO2)3 with different intensities of
spin charges. The solution with the global phase π/6 produces the same spin orientation but
with the magnetic vectors of +4.97, +3.01, +0.04 and −4.03, −2.07, −1.92 µB, and spin
charges of ±0.98 µB. The magnetic structure of Ho(DCO2)3 differs from that of Tb(DCO2)3,
in that the different global phases of the system produce slightly different spin charges within
the ECO. It cannot be ruled out that this discrepancy is due to the error of the measurements,
and not inherent to the system. However, it may be possible to differentiate between the
two phases through some technique sensitive to this. The phase transition indicated by the
appearance of new Bragg-like peaks, did not produce any significant change in the lattice
parameters of Ho(DCO2)3, in either cooling or warming measurements. This suggests that
such this deviation is associated with the emergence of a TIA phase in Tb(DCO2)3, which is
absent in Ho(DCO2)3.

The existence of this emergent phase in Ho(DCO2)3, as well as in Tb(DCO2)3, and the persis-
tence of some order into the paramagnetic phases is likely contributing to the magnetocaloric
behaviour of these materials. In the previous magnetocaloric studies of the Ln(DCO2)3 [4],
Ho(DCO2)3 and Tb(DCO2)3 both show the same magnetocaloric behaviour with respect to
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field and temperature. In a 1-0 T field change it can be seen that the magnetocaloric effect of
Ho(DCO2)3 peaks at 2 K, compared to 4 K for Tb(DCO2)3. This is likely a direct result of the
weaker interaction in Ho(DCO2)3 and hence the lower ordering temperature. This is further
supported by the emergence of the diffuse scattering in the paramagnetic phase becoming
significant at 10 K in Ho(DCO2)3, compared with ≈20 K in Tb(DCO2)3. The existence of
predominantly 1D ferromagnetic correlations in the paramagnetic phases, is beneficial the
magnetocaloric effect and is observed in the diffuse and magnetcaloric measurements of
these materials.

4.4 Er(HCO2)3

4.4.1 Crystal Structure

Er(DCO2)3 was measured on WISH to 1.5 K in search of any evidence of long or short range
magnetic order at 1.6 and 20 K. No evidence of magnetic Bragg peaks were observed in
Er(DCO2)3 at 1.5 K, indicating a lack of magnetic structure, and remained in the R3m space
group over its entire temperature range (see Figure 4.23 for quality of fit at 1.5 K).

(a) (b)

Figure 4.23 Rietveld fits to neutron diffraction patterns of Er(DCO2)3 at 0.575 K from WISH along
with the fitting statistics (a) bank 5/6, Rp = 5.50 %, Rwp = 7.08 % (b) bank 2/9, Rp = 6.31 %, Rwp =
4.21 %

A small discrepancy was noted between the low and high temperature neutron diffraction
patterns of Er(DCO2)3 between 1.6 and 20 K. Temperature subtraction of the data sets
(see Figure A.9) shows very small intensities and large standard deviations of the data
points. Fitting to this diffuse scattering, using and RMC approach, yielded unphysical poor
fits, suggesting this is more likely an artefact of the instrument. The high resolution and
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low background of the WISH diffractometer combined with the lack of significant diffuse
scattering, as seen in Tb(DCO2)3 and Ho(DCO2)3, [18, 194], suggests that there is no short
range order in Er(DCO2)3, above 1.5 K.

4.4.2 Magnetic Properties

Physical property measurements performed on Er(DCO2)3 show no indication of long-range
magnetic order forming down to 0.4 K. The fit to the magnetic susceptibility data yielded an
effective magnetic moment of 8.97 µB, a Curie constant of 10.06 and a θCW temperature of
−14.21 K. The large Weiss temperature with respect to the lack of transition temperature may
indicate that this material is quite frustrated but care should be taken in this interpretation
given the quenching of the orbital angular moment in isolated lanthanide centres at low
temperatures can cause a similar effect. Heat capacity data also show no significant features
in the data, only increasing with lowering temperature, which can be ascribed to the nuclear
heat capacity effects or the Schottky anomaly. [195]

(a) (b)

Figure 4.24 (a) Magnetic susceptibility of Er(DCO2)3 in a 100 Oe field, between 0.4 - 300 K, with
the Curie-Weiss fit in the insert. (b) Heat capacity measurements in zero applied field, of Er(DCO2)3
between 0.5 - 5 K, indicating a lack of phase transitions.

Magnetisation measurements, shown in Figure 4.25, indicate the spins are not Heisenberg
shown by a Msat of less than g jJ. The Msat is close to g jJ/2 suggesting that the spins, in
Er(DCO2)3, are likely Ising. In high fields (> 3 T) the magnetisation data becomes linear-field
dependent, consistent with the onset of Van Vleck paramagnetism, [183] related to the field
induced electronic transitions. [200, 201]
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Figure 4.25 Magnetisation measurements of Er(HCO2)3 between 0-7 T, at variable temperatures.

4.4.3 Antiferromagnetic Order

Upon cooling to 50 mK the neutron diffraction measurement performed on Er(DCO2)3

show the appearance of extra weak reflections ascribable to the development of long-range
magnetic ordering. These extra reflections can be indexed to a supercell, doubled along the a

and b axes, with the propagation vector k1 = [0, −0.5, 0.5], corresponding to the L-point of
the Brillouin zone. Given the moderate resolution of the Wombat diffractometer used for
these measurements no conclusions can be drawn regarding the size of the magnetic domains
in this materials.

Due to the modest quality of the data it was decided to refine the magnetic structure against
temperature subtracted data to best enabled the weak magnetic reflections observed to be
isolated. This involved subtracting the data collected at 6 K from that obtained at 50 mK.
This process first required a refinement of the nuclear structure at 50 mK, which produced
the atomic position as summarised by Table 4.4 and the fits displayed in Figure 4.26a.

The quality of the data was compromised by the presence of many sample environment
reflections, including the copper can and aluminium from the dilution fridge. This resulted in
obscured Er(DCO2)3 reflections, meaning the refinement of the data was unstable with all
parameters turned on. For this reason the isotropic displacement was fixed, and assumed to
be near zero at 50 mK. The calculation of bond valence sums resulted in a value of 2.98(1)
for Er, close to that expected for a Er3+ ion.
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Table 4.4 Summary of nuclear component of Er(DCO2)3 refined in the R3m space group, with atomic
positions given as fractional coordinates. The quality of the data was not high quality enough to refine
the fractional occupancies or isotropic displacement parameters. The fractional occupancies were
fixed to 1, and all isotropic displacement parameters were fixed to 0.01 x 100 Å2.

Atom x y z

Er 0.33333 0.66667 0.000
C 0.5154(8) 0.4846(8) 0.254(6)
D 0.4982(10) 0.5018(10) 0.504(6)
O1 0.4672(6) 0.5328(6) 0.008(5)
O2 0.5871(8) 0.4128(8) 0.159(5)

(a) (b)

Figure 4.26 (a) Temperature subtracted magnetic only neutron diffraction pattern fit of Er(DCO2)3 at
50 mK, using a 2.41 Å wavelength. The fit to the data yielded the fitting statistics, for the magnetic
phase, of Rp = 13.5 %, and Rwp = 15.8 %, which whilst high, is to be expected for data of this
quality. (b) Group subgroup relationship for the [0,-0.5,0.5] in Er(DCO2)3, made using the Bilbao
crystallographic server.

Once refinement of the nuclear structure was completed a fit to the magnetic reflections was
performed (see Figure 4.26a). The best fits for the reflections observed is obtained with an
antiferromagnetic structure in space group Ccc (see Figure 4.27 for a depiction of this phase).
The group subgroup relationship is also seen in Figure 4.26b, and we see that the phase
transition for Er(DCO2)3, is comprised of a single irreducible representation, in agreement
with Landau theory. [31, 43] In this structure there is only one independent Er site with an
ordered magnetic moment of 0.75(4) µB at base temperature. The magnetic moment intensity
lies in the a-axis and canted into the b-axis, oriented along the [0.720,−0.217,0.00] vector,
as shown in Figure 4.27, and the lattice parameters a = 10.293(1), b = 20.554(2) and c =
7.8279(5). Unlike Tb(DCO2)3 and Ho(DCO2)3, which we have shown to be ferromagnetic
along the c-axis and chain direction, Er(DCO2)3 is antiferromagnetic within the chains.
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Indeed such interactions between the chains is directly implied for the k-vector [0,-0.5,0.5]
in Er(DCO2)3.

a

b c

bc a

Figure 4.27 Antiferromagnetic structure of Er(DCO2)3 at 50 mK, as determined from Rietveld refine-
ment of WOMBAT neutron data. (left) Viewed along the c-axis and showing the antiferromagnetic
interactions within the chains, and (right) viewing along the a-axis, showing only the erbium atoms
for clarity. Erbium shown in green, oxygen shown in red, hydrogen shown in grey and carbon shown
in black. Unit cell shown in black.

Heating the sample to 100 mK, the weak magnetic reflections seen in Figure 4.26a did not
persist, indicating the TN is between 50 and 100 mK. To avoid additional scattering from the
sample environment a thermal conductor was not used inside the sample can, instead relying
on the presence of a condensed He from the atmosphere under which the sample was loaded.
It is possible, therefore, that the sample can may not be precisely at this temperature due
to poor thermal conduction between the refrigerator setup and the sample. There was no
evidence of magnetic diffuse scattering in temperature subtracted data from temperatures
above 100 mK, although the modest quality of the data does not exclude the possibility of
weak diffuse scattering being observed, in higher quality measurements. In either case the
weak antiferromagnetic ordering in Er(DCO2)3 may explain why this material performs more
poorly, as a magnetocaloric compared to Tb(DCO2)3 and Ho(DCO2)3. The antiferromagnetic
interactions between spins likely requires greater magnetic fields to align the spins with the
applied magnetic field to overcome these interactions. Why Er(DCO2)3 is antiferromagnetic
within the chains, in contrast to Tb(DCO2)3 and Ho(DCO2)3, despite being isostructural
is open for discussion, but could be due to the crystalline electric field of these systems.
Notably Er3+ has a non-degenerate Kramers ground state compared to Kramers Tb3+ and
Ho3+. [35]
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4.5 Other Ln(HCO2)3 Phases

As indicated in Section 4.3, Ce(HCO2)3, Pr(HCO2)3, Nd(HCO2)3 and Dy(HCO2)3 showed no
clear sign of magnetic diffuse scattering down to 1.5 K and, furthermore, lower temperature
physical property measurements of these materials failed to reveal any interesting features.
This will be discussed briefly below.

4.5.1 Magnetostructural Properties

Magnetic susceptibility measurements were obtained for Nd(HCO2)3 and Dy(HCO2)3 down
to 0.4 K, with no indication of magnetic order found. Curie-Weiss fits, above 100 K, to this
magnetic susceptibility data have been performed as shown in Figure 4.28.

(a) (b)

Figure 4.28 (a) Magnetic Susceptibilities of (a) Nd(HCO2)3 and (b) Dy(HCO2)3 in a 100 Oe field,
between 0.4 - 300 K, with the Curie-Weiss fit in the insert.

Dy(HCO2)3 follows Curie-Weiss behaviour to low temperatures while Nd(HCO2)3 deviates
from this near 80 K, suggesting quenching of orbital angular moment happens at higher
temperatures in the latter. The Curie-Weiss temperatures and effective magnetic moments
obtained from these fits are shown in Table 4.5, and are close to the values expected of 3.62
and 10.65 µB. [25] The fits to the data yield a effective magnetic moments, Curie constants
and θCW summarised in Table 4.5 for Nd(HCO2)3 and Dy(HCO2)3.

Table 4.5 A summary of the magnetic properties of Nd(HCO2)3 and Dy(HCO2)3.

Framework θCW (K) Curie Constant (emu mol−1 Oe−1) Magnetic Moment (µB)

Nd(HCO2)3 −77.49 1.31 3.24
Dy(HCO2)3 −4.14 14.84 10.89
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Isothermal magnetisation of Nd(HCO2)3 and Dy(HCO2)3, shown in Figure 4.29 suggest
spins with single ion anisotropy, as indicated by Msat significantly less than that the expected
gJJ. The Msat value in moderately applied field indicate the spins are most likely Ising. In
high fields (> 5 T) the magnetisation becomes linear-field dependent, indicating the onset
of Van Vleck paramagnetism, [183] related to the field induced electronic transitions. [200,
201]

(a) (b)

Figure 4.29 Magnetisation measurements between 0-7 T for (a) Nd(HCO2)3 at 2 K and (b)
Dy(HCO2)3 at variable temperatures.

The heat capacity data on Dy(HCO2)3, collected between 450 mK and 3 K, also lacks any sig-
nificant features, other than an increasing in heat capacity with lowering temperature, which
can be ascribed to the nuclear heat capacity effects or the Schottky anomaly. [195]

Figure 4.30 Heat capacity measurements in zero applied field, of Dy(DCO2)3 between 0.5 - 3 K,
showing the magnetic heat capacity and indicating no phase transitions.
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4.5.2 Neutron Diffraction

Samples of Ce(DCO2)3, Pr(DCO2)3, Nd(DCO2)3 and Dy(DCO2)3 were measured on the
WISH diffractometer to 1.5 K in search of any evidence for magnetic diffuse scattering. We
note that A(DCO2)3 samples (where A = Pm, Sm, Eu and Gd) were not tested due to the high
absorption cross sections, or in the case of Pm, its radioactivity. No evidence for magnetic
diffuse scattering was found in these four compounds, indicating a lack of significant mag-
netic interactions in these materials. This may suggest why, in the hydrogenated analogues,
Dy(HCO2)3 lacks the higher magnetocaloric performance found Tb(HCO2)3 and Ho(HCO2)3

at higher temperatures and in applied magnetic fields as previously reported by Saines et al..
[4] This emphasizes that while Ising spins may help to optimise magnetocaloric properties
under low applied fields it is not sufficient unless accompanied by optimised magnetic inter-
actions between cations. The magnetocaloric properties of Dy(HCO2)3 continues to increase
gradually down to 2 K, the lowest temperature measured where the entropy change exhibited
is higher than Er(HCO2)3, which is likely due to the smaller magnetic moment of erbium
compared to dysprosium. Further characterisation of Dy(DCO2)3 should be performed at
temperatures lower than 0.5 K in search of order to confirm the nature of the weak magnetic
interaction within this material. If the chain interactions are determined by the ground state of
the lanthanide ion, from the observation of the weak antiferromagnetism seen in Er(DCO2)3

and the Kramers ground state of dysprosium we would expect an antiferromagnetic structure
at lower temperatures in Dy(DCO2)3.

The neutron diffraction patterns obtained from Ce(DCO2)3, Pr(DCO2)3, Nd(DCO2)3 and
Dy(DCO2)3 were fitted to obtained their low temperature crystal structures, which were
found to be well fitted in R3m symmetry. This is particularly significant in the case of
Pr(HCO2)3, because a previous Raman study concluded there was a second order phase
transition at ≈140 K to R3 symmetry. [219] In contrast we find that an excellent fit to the data
is achieved with the R3m model in all the Ln(DCO2)3, at all temperatures with no significant
improvement found when symmetry is lowered to R3. Fits to the 1.5 K diffraction pattern
can be seen in Figure 4.31 and crystallographic details seen in Table 4.6 and A.1.
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Figure 4.31 Rietveld fits of Ln(DCO2)3 from bank 2/9 of WISH, at 1.5 K, with a R3m model of the
Ln(DCO2)3. Experimental data shown in black, fit shown in red, Bragg reflections shown in magenta
and the difference curve shown in blue.

Table 4.6 A table summarising the structural properties of the non-magnetically ordering Ln(DCO2)3
frameworks at 1.5 K.

Framework a (Å) c (Å) Rp (%) Rwp (%) Space Group

Ce(DCO2)3 10.65644(32) 4.11018(16) 7.05 5.73 R3m
Pr(DCO2)3 10.61446(36) 4.08233(18) 7.30 5.91 R3m
Nd(DCO2)3 10.57028(42) 4.05726(19) 5.88 5.16 R3m
Dy(DCO2)3 10.39072(38) 3.95551(16) 4.22 3.45 R3m
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4.6 Conclusions

This chapter has explored the physical properties, the magnetic structure and correlations
of the Ln(DCO2)3, in the short and long range ordered magnetic phases and related this to
the magnetocaloric effect. Materials with the highest magnetocaloric effects in low applied
fields, namely Tb(HCO2)3 and Ho(HCO2)3 are the materials which contain magnetic diffuse
scattering, for the deuterated analogues. RMC analysis of the diffuse scattering reveals it
corresponds to short range 1D ferromagnetic correlations along the chains of Ln3+ Ising-like
spins aligned along the c-axis. The correlations length of these 1D ferromagnetic chains
grows with decreasing temperature before transitioning to a quasi-long range ordered TIA
state at 1.6 K and an ECO state at 1.2 K for Tb(DCO2)3 and an ECO state at 0.7 K in
Ho(DCO2)3. While the TIA state has previously been studied the new ECO states are
reported for the first time as a result of the work in this thesis.

These ECO states are determined to be consistent with materials with a complex average
structure within which can be reduced to an elegant emergent feature. The Bragg-like
peaks, which in this work we have analysed in a conventional crystallographic fashion have
significant diffuse scattering present, indicating the correlations are finite. Thus, as seen in the
previous work on the TIA phase, the models we report for these materials may simply be an
approximation of the magnetic structure of these phases that neglects the correlated disorder
that gives rise to the diffuse scattering. Careful analysis of the Ho analogue have determined
the broad nature of the Bragg-like reflections are most likely intrinsic to the system and
not a result of finite magnetic domains. In contrast with these compounds the Ln(DCO2)3

phases, which show poorer magnetocaloric performance above 4 K and in low applied
magnetic fields display no magnetic diffuse scattering at 1.5 K, indicating the absence of
significant magnetic correlations in these materials. Analysis of neutron diffraction patterns
of Er(DCO2)3 indicates the emergence of a phase with antiferromagnetic intrachain coupling
near 50 mK, but the temperature at which this emerges emphasizes the weak nature of the
magnetic interactions in this material.

The understanding of Tb(DCO2)3 and Ho(DCO2)3 is far from complete. Further analysis
is required to understand the peculiarities of the features in the inelastic neutron scattering
spectra of Tb(DCO2)3, and to investigate that of Ho(DCO2)3. The analysis performed on
the ECO of these materials only characterises the average structure, but further Monte-Carlo
analysis can be performed to fit the diffuse features underneath the Bragg-like peaks, and
therefore provide insights into its true nature.
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The combination of frustration and 1D ferromagnetic Ising chains in these materials appears
to be directly responsible for the highly efficient magnetocaloric effect in these materials,
inducing a strong change in magnetisation under a moderate applied magnetic field. The
accompanying magnetic frustration prevents long range order from forming in the paramag-
netic operating temperatures but are easily overcome by a moderate applied magnetic field,
allowing for high changes in entropy. The combination of these factors leads to some highly
efficient magnetocaloric materials, produces the exotic magnetic ground states observed and
highlights the practical uses for these fundamentally interesting magnetic systems.



5

Structural and Magnetic Order of the
LnODCO3 Frameworks

5.1 Introduction

As shown in Chapter 3, several LnOHCO3 (Ln = Tb, Dy and Ho) frameworks provide
optimised −∆Sm above 4 K and for applied magnetic field changes of less than 2 T, at
the expense of decreasing performance below this temperature. [5] These orthorhombic
frameworks are isostructural with a lattice structure that combines the elements required for
1D and frustrated magnetism, with nearest neighbour chains along the b-axis and a triangular-
like lattice in ac plane. While three LnOHCO3 members of this family have magnetocaloric
performance optimised for these conditions, the performance of the Tb and Dy materials is
particularly notable.

These compounds feature higher −∆Sm for lower applied fields than the maximum of the
canonical magnetocaloric material Gd3Ga5O12, which peaks at a much lower temperature of
1.2 K. [5] In contrast, ErOHCO3, which also appears to feature Ising-like spins based on its
magnetisation, does not feature such optimised magnetocaloric performance but instead this
increases gradually at all temperatures down to 2 K. Therefore, while Ising-like interactions
may play a role in optimising the performance of such materials it is not sufficient on its own.
This is perhaps unsurprising given magnetic frustration, in which all magnetic interactions in
a material are unable to be optimised simultaneously, is well known to play a key role in the
properties of magnetocaloric oxides, including Gd3Ga5O12 itself. [67, 220, 221]
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Chapter 4 presented the neutron scattering studies of Tb(HCO2)3 and Ho(HCO2)3 and
indicated that their magnetocaloric properties, also optimised for use above 4 K in less than 2
T applied fields, are linked to the presence of 1D ferromagnetic chains packed in a frustrated
antiferromagnetic triangular array. [4, 18, 194] A subsequent study finds ferromagnetic
chains improve magnetocaloric performance, over a similar temperature range, in oxide
materials also. [17]

The higher magnetocaloric entropy changes of DyOHCO3 and TbOHCO3 compared to the
Ln(HCO2)3 emphasises the case for using neutron diffraction to understand the way in which
the atomic-level magnetic interactions in these materials influence the macroscopic properties
of the LnOHCO3 phases. The LnOHCO3 frameworks structure is more complex than that
of the Ln(HCO2)3 phases and can be viewed as either consisting of face-sharing chains of
LnO10 polyhedra or corner sharing zig-zag chains of LnO8 polyhedra. Density-Functional
Theory calculations by Chen et al., [222] on GdOHCO3 suggested the presence of dominant
antiferromagnetic coupling within the face-sharing chains (J1 in Chapter 1), with frustrated
antiferromagnetic coupling between them (J2 and J3). This is consistent with the shortest
superexchange pathway being through the hydroxide oxygen atom along the b-axis, such that
coupling between face-sharing chains of LnO10 polyhedra may dominate even if the other
two superexchange pathways along such chains are longer than others in this material (see
Figure 1.16 for structure). While dipole-dipole magnetic coupling can also be significant
quantifying these interactions for a particular structure requires further analysis, which was
omitted by the previous study of Chen et al. [222].

In this chapter to establish a clear understanding of how the microscopic interactions of
LnOHCO3 effect their magnetocaloric entropy change we have studied these compounds
using neutron diffraction. We have established both the local magnetic correlations in these
materials in their short ranged ordered phase, in which they exhibit their magnetocaloric
properties, and in the case of HoOHCO3 the long range ordered magnetic states they exhibit
at low temperatures. Those compounds with magnetocaloric properties optimised for use
above 4 K in low applied magnetic fields all exhibit clear magnetic diffuse scattering. The
diffuse scattering arises from a lattice featuring competing antiferromagnetic couplings in
the ac plane, and ferromagnetic Ising chains along the b-axis. The ferromagnetic chains
are arranged into non-collinear chains with a preference for spin orientations close to the
b-axis, but canted into the ac plane. The long range incommensurate and commensurate
magnetic structures of HoOHCO3 exhibited below 1.2 K and 0.8 K, respectively, also feature
ferromagnetic chains that are coupled together antiferromagnetically. This highlights that
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ferromagnetic units coupled antiferromagnetically to each other in a frustrated lattice can be
lead to optimised magnetocaloric performance under more moderate conditions. This is in
sharp contrast to GdOHCO3, which is optimised for application at lower temperatures, that
features antiferromagnetic coupling within the chains.

5.2 LnOHCO3 Crystal Structure and Thermal Stabilities

LnOHCO3 are known to form as different polymorphs in at least 2 different space groups:
P6̄, most commonly adopted at higher synthetic pressures, and orthorhombic space group(s)
Pnma or P212121, which typically form at lower synthetic pressure. [76] The P6̄ polymorph
is distinctly different from the other two reported structures, having a much larger unit cell
with layers of edge and face sharing polyhedra separated by CO2−

3 , through corner sharing
polyhedra. The P6̄ can also be considered consisting of layers of triangular arrays. In
our study it is found to only be adopted by the larger lanthanides, Pr and Nd. SmOHCO3

made at 170◦C is a mixed phase of hexagonal and orthorhombic structures but lowering
the hydrothermal temperature to 150◦C forms a pure orthorhombic phase. The heavier
lanthanides Gd-Er were only found to adopt orthorhombic structures so, since they are more
likely to have the significantly magnetocaloric properties of interest to this study, the rest of
this section will focus on distinguishing which of the two possible orthorhombic structures
they adopt.

The Pnma and P212121 structures are very similar and indeed we could not distinguish
between these using powder X-ray diffraction results presented in chapter 3. The P212121

structure has 4 unique oxygen atoms, one for the hydroxide groups and three distinct oxygen
atoms in the carbonate anions (see Figure 1.16) while the Pnma structure has 3 unique oxygen
atoms, with two oxygen atoms in each carbonate anion being related by symmetry. The only
other significant difference between the two structures is that the identity of the a and the b

axis are reversed in their conventional settings. In both, the lanthanide can be viewed as being
10 coordinate with chains of LnO10 face-sharing polyhedra, with edge-sharing inter-chain
connectivity. Alternatively, if the longest two bonds in the LnO10 polyhedra are neglected,
which are 0.1-0.2 Å longer than other Ln-O bonds in this structure, it can be simplified
as consisting of highly distorted LnO8 square antiprisms; these can in turn be viewed as
being packed into edge-sharing LnO8 chains connected by oxygen atoms from the carbonate
ligands with corner-sharing interchain connectivity via the hydroxide groups. Either of these
simplifications of this complex structure feature magnetic chains, shown to be linked with
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low-field high performance magnetocalorics, with previous calculations indicating intrachain
coupling is dominant. [18, 77]

Through slow cooling of the hydrothermal parr bomb, (see Section 2.2 for synthetic details)
we have been able to synthesize single crystals of TbOHCO3 and the single crystal structures
determined from these have P212121 orthorhombic symmetry, with systematic absences
required for the Pnma structure clearly violated.

Only the atomic displacement parameters for Tb were refined anisotropically, with lighter
elements refined isotropically as the quality of the fit is insensitive to these values. The
hydrogen atom positions were determined from the Fourier difference and refined with a
restraint that it remains 0.96 Å from the oxygen, typical for an O-H bond, [121] to which it
is attached and its displacement parameters constrained to be 1.5 times the oxygen that it is
attached to (See Table 5.1 for crystallographic details). Despite equivalent synthesis methods
for all the LnOHCO3 and attempted synthetic optimisation, single crystals were not available
from the other members of this series.

Table 5.1 Crystallographic data for the structure of TbOHCO3 determined by single crystal X-ray
diffraction.

Parameter Statistic

Formula TbCHO4
Formula Weight 235.94
T (K) 169(2)
Crystal System Orthorhombic
Space Group P212121
a (Å) 4.8551(2)
b (Å) 7.0178(3)
c (Å) 8.4394(4)
V (Å3) 287.55(2)
Z 4
ρcal (g cm−3) 5.450
µ (cm−1) 24.402
Refl. meas./unique 2063/710
Parameters refined 33
R1, wRa

2 (all) 0.0400, 0.0776
R1, wRa

2 (obs) 0.0341, 0.0725
Goodness of Fit 1.062

Powder X-ray diffraction patterns of the two possible orthorhombic polymorphs cannot
distinguish between the two symmetries because the weak reflections indicating violation
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of Pnma symmetry are weaker than the background of the instruments used in this study
even for longer measurements. The greater sensitivity of neutron diffraction to the positions
of light atoms, such as the oxygen atoms that are the primary difference between these two
structures, enables this to clearly distinguish between these two possibilities.

Neutron diffraction patterns we have measured on LnODCO3 (Ln = Tb-Er) samples on the
WISH neutron diffractometer clearly all show reflections that violate the systematic absences
expected for the Pnma space group confirming that all samples adopt the P212121 space
group. This is most clearly highlighted by a weak reflection observed at a d-spacing of about
3.18 Å (the [102] reflection in P212121) in all diffraction patterns of these compounds, which
is allowed by P212121 symmetry but not in Pnma where this is the [012] reflection (see
Figure 5.1).

(a) (b)

Figure 5.1 (a) Neutron diffraction patterns of TbODCO3 at 100 K from banks 5/6 of the WISH
diffractometer. (b) close up of the [102] reflection at 3.18 Å, and correct fitting using P212121 space
group – Rp, Rwp and χ2 of fit = 1.73%, 2.52% and 16.09 respectively, and close up of Rietveld fit
in Pnma showing systematically absent [012] reflection in Pnma - Rp, Rwp and χ2 of fit = 2.24%,
4.26% and 45.98 respectively. Black points, red line, blue line and purple markers indicate the data,
calculated intensity, difference plot and position of the Bragg markers, respectively.

These structures remain in the P212121 space group for all temperatures recorded between
1.5-100 K for all four compounds studied. Additional diffraction patterns of TbOHCO3 and
ErOHCO3 obtained at 300 K indicate these materials retain P212121 symmetry up to ambient
conditions (Figure 5.2 and 5.3). Given Tb and Er are the largest and smallest lanthanides,
respectively, hosted in the series of compounds studied by neutron diffraction, we suggest that
none of these compounds have any structural phase transitions between 1.5-300 K retaining
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P212121 throughout this temperature range. This precludes the possibility of observations of
a Pnma polymorph due to structural phase transition up to ambient temperature in these four
compounds. Unfortunately, due to its high neutron absorption cross section it is not possible
to use neutron diffraction to directly study the Gd member of this series, although it is likely
it adopts the same structure as found for Tb-Er, at least under the synthetic conditions used
in this study. Bond distances determined by Rietveld refinements of neutron diffraction data
can be seen in the Table A.2, and bond valence sums [207] were determined to be consistent
with trivalent oxidation states for Tb, Dy, Ho and Er in LnODCO3; values of 3.12(3),
3.14(9), 3.10(4) and 3.16(5) respectively, were obtained. These values must be considered
tentatively, because they have been calculated for materials measured at temperatures well
below room temperature, and the empirical bond valence method values have been calculated
for structures at room temperature.

(a) (b)

(c) (d)

Figure 5.2 Rietveld refinements of neutron diffraction data of TbODCO3 (a) 300 K - Bank 5/6, (b)
300 K - Bank 2/9, (c) 1.5 K - Bank 5/6, (d) 300 K - Bank 2 using the P212121 space group
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(a) (b)

(c) (d)

Figure 5.3 Rietveld refinements of neutron diffraction data of ErODCO3 (a) 300 K - Bank 5/6, (b)
300 K - Bank 2/9, (c) 1.5 K - Bank 5/6, (d) 1.5 K - Bank 2/9 using the P212121 space group

Neutron diffraction measurements of the LnODCO3 (where Ln = Tb, Dy, Ho and Er)
frameworks showed typical reduction in the lattice parameters on cooling as shown in Figure
5.4.
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(a) (b)

(c) (d)

Figure 5.4 The change in unit cell volume and lattice parameters, in the insert, with respect to
temperature for (a) TbODCO3, (b) DyODCO3, (c) HoODCO3 and (d) ErODCO3. Errors are shown
on the unit cell value, but smaller than the markers.

In DyODCO3 the deviations from thermal expansion of the lattice parameters can be as-
cribed to noisy data, caused by the high absorption cross section of Dy. HoODCO3 shows
an anomalous decrease of the b length between 20-80 K, however there is no change in
diffraction patterns to suggest a phase transition. This anomalous negative thermal expansion
may indicate some, yet unknown, feature that neutron diffraction data is not sensitive to.
Refinements down to the base temperature of Tbase = 1.5 K, revealed typical reduction in
the unit cell volume upon cooling. Refined models of the nuclear structures at 1.5 K of
TbODCO3, DyODCO3 and HoODCO3 yield J1 distances of 3.799(3), 3.778(5) and 3.762(5)
Å, J2 distances of 4.851(9), 4.843(9) and 4.802(12) Å; J3 distances of 5.077(5), 5.048(6)
and 5.101(7) Å; and J4 distances of 5.162(5), 5.183(6) and 5.115(7) Å, respectively. These
interactions are summarised in Figure 5.5.
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J1

J2

J3 J4

Figure 5.5 A diagram showing the J magnetic exchange interactions in the LnODCO3, shown off the
c-axis, only the magnetic cations, shown in purple, have been shown for clarity.

5.3 Physical Property Measurements

TGA studies of LnOHCO3 have shown the frameworks to be stable until around 450◦C
whereby they endothermically undergo oxidation of the carbonate ligand to produce Ln2O3

(Figure A.10). Fourier transform infrared spectrometer in the range 500-4000 cm−1, revealed
IR absorptions for what we have assigned as O-H at 3400 cm−1, C-O at 1400 cm−1, Ln-OH
at 823 cm−1, and Ln-OC at 705 cm−1 (See Figure A.11).

In Section 3.2.2 it was reported that the LnOHCO3 frameworks do not show any indication
of long range order down to 2 K, and follow Curie-Weiss behaviour, with Weiss temperatures
of −5.04 K, −0.84 K, −3.83 K and −7.47 K, for Tb, Dy, Ho and Er. [5] Our magnetic
susceptibility measurements below 2 K of TbOHCO3 and HoOHCO3 show features indicative
of the formation of long range order at ≈1.2 K and ≈0.8 K, respectively (see Figure 5.6).
The observed divergence of the zero field-cooled (ZFC) and field-cooled (FC) susceptibility
suggest a weak ferromagnetic nature to this order, which we ascribe to a small degree of
spin canting of the long-range ordered antiferromagnetic structure since, as discussed below,
there is no indication of a net ferromagnetic moment in the ordered magnetic structure of
HoOHCO3 determined by neutron diffraction.
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(a)

(b)

Figure 5.6 Magnetic susceptibility of (a) TbOHCO3 and (b) HoOHCO3 in a 1000 Oe field, below
100 K, with a close up of temperatures below 1.8 K in the insert.
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5.4 LnODCO3 Short Range Order

Neutron diffraction measurements in zero-field of the LnOHCO3 frameworks indicated
that, of the samples measured, TbOHCO3, DyODCO3 and HoODCO3 showed significant
magnetic diffuse scattering below 20 K, indicative of short range order. This is an important
result, as these materials show magnetocaloric properties maximised for use above 4 K for
low applied magnetic field changes. Only ErODCO3, whose magnetocaloric properties
gradually increases on cooling down to 2 K and, resembles GdOHCO3 but with overall
poorer performance, did not show any sign of magnetic diffuse scattering, indicative of
the lack of significant magnetic correlations. It was noted that the strength of magnetic
diffuse scattering observed at 1.5 K decreased significantly from TbOHCO3 to HoODCO3

to DyODCO3, indicating a decrease in the strength of the magnetic correlations giving
rise to this, but does not correlate with bond distances. The observed diffuse magnetic
scattering of TbOHCO3, DyODCO3 and HoODCO3 were well fitted by the RMC method,
with stereographic projections of refined Heisenberg-like moments, which have unconstrained
spin orientations, showing the spin preferentially aligned close to the b-axis, as shown in
Figure 5.7.

Figure 5.7 Stereographic projections of the spin orientations averaged over 100 RMC Heisenberg-like
fits to diffuse neutron scattering data from TbODCO3 at 1.6 K. The relative spin density is defined as
ρ(θ ,φ) = ρ(θ ,φ)

Nd(cosθ)dφ
. Bright spots indicate areas of high spin density.

Attempts were therefore made to fit the diffuse scattering data with Ising spins constrained to
point only along the b-axis. These refinements produced poor fits to the data and so Ising
moments directions were manually modified and repeatedly tested until an optimal fit was
achieved for TbODCO3 at 1.5 K, because this data provided the best signal to noise ratio.
The best fit was found to occur using a model in which the orientations of the Ising spins
were allowed to orient towards four independent easy axes, primarily along the b-axis but
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canted into the ac plane. This four-site Ising model indicates the easy axes are oriented
in the direction of the nearest chain neighbour with the unit vectors of these moments
corresponding to [±0.33, 1, ±0.66]. These spin orientation produced excellent fits to the
data for TbODCO3 at all temperatures (Figure 5.8), although of slightly lower quality than
the Heisenberg refinement (χ2 ≈130 and ≈150 at 1.5 K for typical Heisenberg and Ising
models respectively); the marginal improvement of the Heisenberg model is inevitable due to
its higher degrees of freedom.

(a)

(b)

Figure 5.8 Reverse Monte Carlo fits to magnetic diffuse of (a) TbODCO3 and (b) HoODCO3 at 1.5
K, data points in black, fit in red and the difference in blue, using an Ising model at 1.5 K. Spin
correlations as produced from SPINVERT are shown in the insert.
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Since the HoODCO3 data are qualitatively similar and Heisenberg refinements yield similar
spin orientations the same Ising model was also used to fit the HoODCO3 data, producing
equally good fits (χ2 ≈120 and ≈170 at 1.5 K). Fitting the same model to the DyODCO3

data, however, did not produce suitable fits and despite refinement of the spin orientation for
the DyODCO3 no quality fits were obtained for an Ising model (χ2 = ≈112 for Heisenberg
compared to ≈450 for Ising at 1.5 K (Figure 5.9).

(a) (b)

Figure 5.9 Reverse Monte Carlo fits to magnetic diffuse of DyODCO3 at 1.5 K, using a Heisenberg
model (a) and an Ising model (b) data points in black, fit in red and the difference in blue, using an
Ising model at 1.5 K.

We expect that the significantly poorer fit for DyODCO3 using Ising-like spins is a result
of the combination of the failure to fully correct the high level of absorption caused by the
presence of Dy and the large degree of incoherent scattering caused by this element, combined
with the weaker diffuse scattering observed. The strong similarity of the diffuse scattering
features of the three samples, and previous inference of Ising-like dimensionality based on
magnetisation of these materials (see Section 3.2.2), leads us to suggest all three compounds
have Ising-like spins. The resulting short range magnetic structure can be seen in Figure 5.10.
It would be possible to investigate this hypothesis, using isotopically enriched samples of
160Dy or 163Dy that have smaller absorption cross sections. [223] However, respective 160Dy
and 163Dy natural abundances of 2.34 and 24.9 %, made this option prohibitively expensive
for these studies.
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Figure 5.10 Spin orientations in the short range ordered phase of LnODCO3, along the [100] direction.
Ln3+ coordination environment shown as purple polyhedra, magnetic vectors shown as red arrows,
and nearest neighbour chains highlighted with translucent white arrows. The spins disordered from
the average ferromagnetic chain direction are highlighted in green.

Spin correlations ⟨S0 ·Sr⟩, averaged over 100 RMC refinements show that the dominant
spin correlations in all these materials are qualitatively very similar, in both Heisenberg and
Ising refinement models. Significant ferromagnetic correlations are clearly noted along the
chain direction out to distances of about 15 Å at low temperatures with significant nearest
neighbour antiferromagnetic correlations between chains packed into a distorted triangular
array (see Figure 5.11 inserts). The strongest ferromagnetic correlations at 3.79 and 7.01 Å
correspond to the first and second nearest neighbours in the chain, coupled through oxygen
and O-C-O bridges from the hydroxy and carbonate groups. The strongest antiferromagnetic
correlation at 4.85 and 8.52 Å corresponds to the neighbouring atom within the triangles
along the a-axis and the analogous interaction with a cation that is the next-nearest neighbour
along a chain from one of these atoms in the triangle. The former are coupled by a O-C-O
bridge of the carbonate group (see Figures 1.16 and 5.5).

We have extracted intrachain correlation lengths with the function:

⟨S0 ·Sr⟩= Ae−r/ε (5.1)

where A is the Ising-like anisotropy, r is the correlation distance and ε is the correlation
length, from the Ising fits to the data. Due to the non-linear alignment of spins along the
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(a) (b)

Figure 5.11 Chain correlation lengths with respect to temperature for (a) TbODCO3 and (b)
HoODCO3. The solid blue line shows the fit. Spin correlations in the b-axis only at 1.5 K shown in
the insert. The black points indicate the correlations within the chains.

buckled chain direction, it is necessary to only consider the correlations of the components
of the magnetic moment along the b-axis when extracting the ferromagnetic correlation
length. This is required because otherwise the non-collinear nature of the spins lead to next
nearest neighbour in the chain, whose spins are collinear, having higher correlations than the
nearest neighbour. Considering only the component of the magnetic moment along the b-axis
allows us to decouple the Ising-like interactions in these materials, which would be expected
to arise from the strong single-ion of lanthanides, from the magnetic interactions between
neighbouring lanthanide cations. This yields a correlation length of 6.69(11), 1.49(4) and
5.06(2) Å for TbODCO3, DyODCO3 and HoODCO3, respectively, at 1.5 K, consistent with
the overall weaker interactions in DyOHCO3 and the weaker diffuse scattering observed. The
values of A determined for TbODCO3, DyODCO3 and HoODCO3 are 0.689(9), 0.514(5),
and 0.596(13) at 1.5 K close to the value of 1 that would be expected for the ideal Ising
system, suggesting some deviation from a purely Ising model.

As the temperature was raised and the correlations became significantly weaker, the best
fit to data was found with unphysical A values; for this reason A was fixed to the values
determined for the lowest temperature fit for all temperatures. Temperature evolution of
the ferromagnetic intrachain correlation length ε follows the expression for an independent
ferromagnetic Ising chain [100, 224], as shown in Figures 5.11 and A.12:

ε =
c

2ln[coth J1J
T ]

(5.2)
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In this expression J1 is nearest neighbour exchange interaction from the Ising Hamiltonian.
At higher temperatures the correlation length evolution diverges from the fit indicating the
limitation of the approach, but this only occurs above 12 K and 8 K for TbODCO3 and
HoODCO3, respectively, at which point magnetic correlations are very short. The fit to the
correlation length yields values for J1J of TbODCO3, DyODCO3 and HoODCO3 of 1.11,
0.1, 0.76 K – consistent with the strength of the magnetic interactions following the trend
TbODCO3 > HoODCO3 » DyODCO3. The values for TbODCO3 and HoODCO3 are very
close to the ordering temperatures shown in magnetic susceptibility measurements, reflecting
their Ising chain behaviour.

We expect the short-range magnetic correlations in these materials are key to the highly
efficient magnetocaloric effect of these materials above 4 K under modest applied magnetic
fields. As previously suggested for Tb(HCO2)3 and Ho(HCO2)3 the ferromagnetic Ising
chains allow for high entropy changes in small applied magnetic fields as ferromagnetic units
are more readily aligned with the applied magnetic field. [4, 194] The competing weaker
antiferromagnetic interactions help to suppress long-range order, required for paramagnetic
magnetocalorics, but are weak enough to require only small fields to be overcome to lead
to a ferromagnetic field-induced state. This dominant ferromagnetic intrachain coupling
allows the moments to be more easily aligned with the applied field. In the magnetocaloric
studies of these materials, [5] the materials that show this structured diffuse scattering, and
this exotic magnetic order are the materials that have optimised performance in low applied
magnetic fields above 4 K.

The precise extent to which these three systems resemble ideal Ising system may be somewhat
different, which likely effects how these materials respond to applied magnetic fields. Given
the powder averaging this data suffers from, it is possible there may be other solutions that
provide suitable fits to the diffuse scattering data, or there are some deviations in the precise
spin orientations that have been overlooked. However, the data are consistent with a four site
Ising model, and long range order discussed for HoODCO3 in Section 5.5.2, so this is likely
an optimal model. The Ising-like nature of the spins of these materials would be ideally
confirmed by measuring the inelastic neutron spectra of these materials, where a spin gap is
expected to be present. Such measurements would also more clearly identify the strength
of the Ising-like interactions. This may be an important as the magnetisation measurements
of TbODCO3 and DyODCO3 indicate magnetisation is somewhat higher than that expected
for Ising powder averaged samples, but far lower than a Heisenberg magnetisation curve,
suggesting that these compounds are mostly but not entirely Ising. This combined with
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the large magnetic moments in these systems allows for large changes in magnetisation in
applied fields, greater than that of a purely Ising material, and beneficial to the magnetocaloric
effect in this sample. This, along with the greater overall magnetic moment of DyOHCO3

may explain why it exhibits a greater magnetic entropy change despite its weaker magnetic
interactions.

5.5 Magnetic Order in HoODCO3

5.5.1 Incommensurate Magnetic Order

To probe the nature of the magnetic transitions observed via low temperature magnetic suscep-
tibility measurements of these compounds we continued these studies on HoODCO3, below
1.6 K. Upon cooling the sample further, the magnetic diffuse scattering shifts and sharpens
into Bragg peaks ascribable to the development of long range order (Figure 5.12)

Figure 5.12 Contour plot of HoODCO3 with respect to temperature, between 0.25 and 1.5 K, showing
the movement of the magnetic peaks with temperature and thus a changing propagation vector.

The broadening of these Bragg peaks is an indication of the finite correlation length in this
material, varying from ≈419 to ≈1520Å, between 1.2 and 0.9 K. These broad Bragg features
sharpen with decreasing temperature, and indicate a growing correlation length. Between 1.2
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and 0.9 K, these magnetic reflections can be indexed with a k-vector – [α ,0,0], summarised
in Table 5.2, corresponding to the Σ symmetry line of the first Brillouin zone (BZ).

Table 5.2 Summary of k-vectors and moments of the incommensurate phase of HoODCO3.

Temperature (K) α Moment (µB)

1.0 0.24811(12) 7.68 (04)
1.1 0.27259(8) 6.54(04)
1.2 0.28421(13) 4.20 (05)

Rietveld refinements of the data with these k-vectors produced an excellent fit to the data.
The broadening of the peaks associated with finite correlations length, was modelled with
an anisotropic broadening model and accounted for the peak broadening sufficiently well to
model the peak intensities. This magnetic phase can be described by a longitudinal amplitude
modulated spin-density wave propagating along the a-axis, summarised in Figure 5.13 for
the magnetic structure at 1.1 K.

Figure 5.13 Rietveld fits to neutron diffraction pattern of HoODCO3 at 1.1 K, from bank 2/9 of
WISH, along with the fitting statistics Rp = 6.72 % and Rwp = 4.20 %.

The moments are oriented primarily along the b-axis, canted into the ac plane (Figure
5.14), with the unit vector [±0.28, 1.06, ±0.66] consistent with the RMC refinements. In
insulating materials, such as LnODCO3, the total magnetic moment on each is expected to
remain constant so the modulated moment reflects an average structure interpretation of a
structure in which some of the magnetic moment remains disordered. The observation of
such a state, therefore, is support for magnetic frustration between adjacent chains caused
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by Ising-like spins on a distorted triangular array. In particular the magnetic modulation
is observed along the same axis in which there are ferromagnetic coupling between chains
in the incommensurate structure despite the antiferromagnetic correlations observed in the
short range ordered phase, reflecting the comprise needed to achieve long-range magnetic
order.

c

ba

(a) (b)

Figure 5.14 Magnetic structure of the incommensurate magnetic phase of HoODCO3 at 1.1 K, (a)
along the [100] direction, and (b) the [001] direction. Moments are aligned primarily along the
b-axis, and canted into the ac-plane. The amplitude modulated spin-wave propagates along the
incommensurate a-axis. Only magnetic atoms are included for clarity. Black lines indicate the
ferromagnetic chains, the green lines indicate magnetic moments with the same fractional coordinates
in translated unit cells. Sine wave indicates the propagation of the amplitude modulated magnetic
moments.

5.5.2 Commensurate Magnetic Order

Cooling further, at 0.9 K there is some magnetic phase separation, with the model producing
the best fit to our data consisting of two magnetic phases, an incommensurate and a k = 0
phase. At 0.8 K and below only the commensurate magnetic order exists. Using the Bilbao
Server [166] and Rietveld refinement we have determined the data agrees with the P212121

magnetic space group, with the lattice parameters a = 4.80206(15) Å, b = 6.95563(20) Å, c =
8.42543(27) Å at 0.25 K (see Figure 5.15 for quality of the fit). A summary of the refined
atomic positions is given in Table 5.3 and bond distances in Table A.3. Since the k-vector
is a special point of the Brillouin zone, the phase of the system is fixed to a solution that
produces symmetry equivalent magnetic moments, with a single independent magnetic site,
and a moment of 7.63(7) µB at 0.25 K.
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(a) (b)

Figure 5.15 Rietveld fits to neutron diffraction patterns of HoODCO3 at 0.25 K, in the k=0 phase,
from the 90◦ bank (a) and the high resolution 153◦ (b) of WISH along with the fitting statistics Rp =
7.06 %, Rwp = 6.00 % and Rp = 7.84 %, Rwp = 4.74 %. Fit in red and the difference in blue.

Table 5.3 HoODCO3 at 0.25 K atomic Summary, with atomic positions given as fractional coordinates
and occupations given as fractional occupancies, determined from Rietveld refinement.

Atom x y z Uiso x 100 (Å2) Occupancy

Ho 0.00000 0.1155(5) 0.1649(4) 1.29(13) 1.000
C 0.515(2) 0.4494(7) 0.1646(6) 0.20(13) 1.000
D −0.1158(13) −0.2618(13) 0.0378(8) 2.8(3) 0.97(2)
O1 −0.273(2) 0.4270(16) 0.1251(10) 2.1(2) 1.000
O2 0.539(2) 0.0575(9) 0.2014(6) 0.22(14) 1.000
O3 0.024(2) −0.1982(8) 0.1155(8) 0.50(14) 1.000
O4 0.272(2) 0.3914(12) 0.0906(10) 0.24(20) 1.000
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The P212121 magnetic space group does not allow any ferromagnetic component, while
magnetic susceptibility suggests a ferromagnetic component in applied fields indicating
this symmetry is likely lowered further. The weak ferromagnetic order that leads to this,
however, is evidently too subtle to be observed in the neutron diffraction patterns. Figure
5.16 shows the moments oriented in the direction of the nearest neighbour along the face-
sharing polyhedra, in the direction of the chain. Magnetic coupling along the chains remains
ferromagnetic, with spins canted into the ab plane caused by the strong Ising-like single ion
anisotropy, with antiferromagnetic coupling of chains along the c-axis but ferromagnetic
correlation of spins along the a-axis.

c

a b

Figure 5.16 Magnetic structure of the k=0 ordered magnetic phase of HoODCO3 at 0.25 K, along
[100] direction. Showing ferromagnetic interchain coupling along the b-axis, and antiferromagnetic
interchain coupling. Ho coordination environment shown as purple polyhedra, and magnetic vector
orientations shown as red arrows. Nearest neighbour interchain correlations have been highlighted
with translucent white arrows in the direction of the ferromagnetic chain vector. The insert shows the
ball and stick model off the [100] direction, carbon and oxygen are shown in black and red respectively.
Deuterium has been omitted for clarity. Nuclear unit cells are shown as black boxes.

In the commensurate magnetic structure the spins remain oriented in the same direction as in
the incommensurate phase, but are now fully ordered. In this ordered phase the magnetic
Bragg peaks are sharper than in the incommensurate phase but still much broader than
instrumental resolution, and we observed no reduction in the width of the magnetic peaks
upon further cooling, indicating the magnetic domain size remains unchanged. Therefore,
even in this commensurate long range ordered state the magnetic domains remain relatively
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small, with an average correlation length is ≈1580 Å. The correlation length along the
a-axis is even shorter, as indicated by the most significant broadening of the [100] reflection.
Extracting the correlation length from the anisotropic broadening, reveals a correlation length
of ≈438 Å along this direction. We attribute this anisotropic peak broadening to underlying
frustration since in this commensurately ordered phase the moment along the a-axis are
aligned ferromagnetically with respect to each other while in the short range ordered phases
we observe significant antiferromagnetic correlations in this direction. The ordered magnetic
moment observed at 0.25 K is still significantly lower than the 10 µB expected from a
fully ordered Ho3+ moment, observed through neutron diffraction (see Figure 5.17a for the
magnetic moment evolution); indicative of the retention of significant disorder within the
system. The phase transition to the incommensurate phase is also indicated by the modest
magnetorestriction of the unit cell (Figure 5.17b).

(a) (b)

Figure 5.17 (a) Plot of the evolution of the magnetic moments of HoODCO3 with respect to temper-
ature. The short range ordered, incommensurate and k=0 phase regions are shaded in red, orange
and yellow, respectively. The temperature point with phase coexistence is shaded in light orange. (b)
Plot of the change of the unit cell volume of HoODCO3 with respect to temperature. HoODCO3
undergoes modest unit cell magnetorestriction when in the incommensurate phase.

It should be noted that the model of the magnetic interactions of the short range ordered
phase is consistent with the order seen in the commensurate and incommensurate phases
of HoODCO3. The 1D ferromagnetic correlations remain present in the ordered phases,
while the Ising-like character is reflected by the non-collinear ordered magnetic structures.
Clear evidence of magnetic frustration presented by both the nature of the incommensurately
modulated phase and the reduced magnetic domain size and ordered moment. Given the
similar short range order and susceptibility data we expect that TbODCO3, will also un-
dergo a transition to a similar longer range ordered state, which could be confirmed using
neutron diffraction. Further exploration of the magnetic frustrations within these frame-
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works with inelastic neutron scattering would enable the magnetic interactions to be probed
directly.

5.6 Conclusions

This chapter reports the low temperature crystal structure, physical properties, magnetic
susceptibility and magnetic order of LnODCO3 frameworks. We have synthesized and struc-
turally characterized a family of these materials using a combination of powder and single
crystal diffraction, focusing on the heavier lanthanides due to their high magnetic moments
as required for greater MCE. Finding that under moderate hydrothermal conditions these
form P6̄ hexagonal crystal structures for Pr, Nd and Sm and P212121 orthorhombic structures
for the later lanthanides, which has previously been debated. [76, 77, 113, 114]

We show that that the promising magnetocaloric phases for higher temperature applications
develop significant magnetic correlations below 20 K. In the short range ordered phase these
systems show features consistent with a ferromagnetic Ising chains with frustrated antifer-
romagnetic interchain packing and non-collinear magnetic moments. At 1.2 K, HoODCO3

undergoes a transition to an incommensurate magnetic state, with the k-vector [α ,0,0], char-
acterised by a spin-density wave in the same direction. Upon further cooling HoODCO3

transitions to a k=0 commensurate magnetic state with similar spin orientation and magnetic
order to the incommensurate ordered state, with a finite correlation length of ≈438 Å along
the a-axis, which may arise from the magnetic frustration in this material. We attribute these
correlations to the efficient magnetocaloric effect observed in these materials. We propose
that frustration and ferromagnetic chains present in these materials, which persist in the short
range ordered phase, are responsible for the excellent magnetocaloric properties in these
materials and are a recipe for enhanced refrigeration materials. Direct observation of the
magnetocaloric effect in these materials, through neutron diffraction in applied fields should
provide great detail about the mechanism of the magnetocaloric effect; this will be discussed
for TbODCO3 alongside of Tb(DCO2)3 in the next, and final, chapter in this thesis.
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Observation of the Magnetocaloric
Effect Through Neutron Diffraction

6.1 Introduction

Magneto-structural coupling plays an important role in the magnetic behaviour of materials.
In order to tune the physical properties and field behaviour of these materials, we must first
understand what is occurring at the microscopic level. We have shown in previous chapters
the highly efficient and promising magnetocaloric effects in the LnODCO3 and Ln(DCO2)3

frameworks, and the link between the interactions in the short and long range ordered phases.
However, in order to fully appreciate the subtleties of the mechanism of the magnetocaloric
effect in these materials, it is important to understand the magnetic phases that develop in the
presence of a magnetic field. Therefore, we have investigated the magnetic structure of some
of the highest efficiency magnetocaloric materials (TbODCO3 and Tb(DCO2)3) in applied
field, using neutron diffraction.

6.1.1 Applied Field Experimental Methods

Tb(DCO2)3 and TbODCO3 powders were loaded into 8 mm vanadium cans and wetted
with d6-isopropyl alcohol, sealed with indium wire and flash frozen using the 10 T GEM
cryomagnet. The d6-isopropyl alcohol was included to minimise the effect of preferred
orientation on the diffraction patterns in the application of the magnetic field, and was
successful in this preventing any significant orientation. The sample was flash frozen in
order to prevent the d6-isopropyl alcohol crystallisation and resulted in the formation of an
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amorphous solid, as indicated by the diffuse scattering centred around 4.2 Å. The presence
of the cryomagnet produced aluminium reflections, which were fitted with a Le Bail model
to negate the effects of the highly textured surface, and un-indexable peaks in the highest
resolution bank which were excluded from refinements. Diffraction patterns were recorded on
the high resolution time-of-flight WISH diffractometer at the Rutherford Appleton Laboratory
at Harwell with fields up to 3 T applied.

6.2 Neutron Diffraction of Tb(DCO2)3 in Applied Fields

6.2.1 Field Sweep

Tb(DCO2)3 was cooled from room temperature to base, and no significant change in the
intensity of the Bragg-like reflections was observed. This suggests that the TIA phase [4,
18, 194] has not formed in the absence of a notionally zero applied field at 1.5 K, despite
having been observed to form below 1.6 K in other measurements in this thesis. This could
be a result of a discrepancy in the measured temperatures of different cryostats, poorer
temperature equilibration due to the d6-IPA glass not properly conducting heat or a result of
trapped magnetic flux present within the magnet affecting the formation of the TIA state at
very low applied fields. It was also not possible to accurately measure the diffuse scattering
previously found in Tb(DCO2)3 at low temperature in this study precisely due to the higher
background of these measurements, including scattering from the frozen d6-IPA.

At 1.5 K, the magnetic field was swept from 0-3 T in variable steps. With an applied field
of µ0H = 0.1 T, the appearance of new peaks was noted that were found to be consistent
with the formation of the previously reported TIA phase. [4, 18, 194] When treated as
conventional Bragg-reflections these peaks can be indexed with the k1-vector = [0,0,1],
belonging to the P3m′1 magnetic space group, discussed in Section 4.2.2, with moments
aligned along the c-axis. We note that in doing so we are again treating the observed features
as a conventional PDA phase, this is unavoidable for the data obtained in this chapter since
the diffuse scattering that is key evidence for the unconventional magnetic order of the TIA
phase is partially obscured by the higher backgrounds involved in these measurements. Since
it has previously been established, however, that the TIA phase is the most likely explanation
of these Bragg-like features we will continue to refer to this as the TIA phase. The most
intense peak associated with the TIA phase can be seen at 9.1 Å as shown in Figure 6.1.



6.2 Neutron Diffraction of Tb(DCO2)3 in Applied Fields 152

Figure 6.1 Waterfall plot of data from bank 2/9 of WISH, plotted on a log scale, for Tb(DCO2)3 with
respect to field, at 1.5 K. The strong peaks at ≈5.2 Å indicates the ferromagnetic phase, and the weak
peaks highlighted with a box at ≈9.1 Å indicate the TIA phase.

The interesting feature of the Bragg peaks observed in this applied field data, as compared
to the previous zero-field studies, is the much smaller FWHM of the peaks associated with
the TIA phase, although they are still broader than the instrumental resolution of WISH. We
previously assigned the peak broadening of this phase to the inherent disorder of this state,
which lacks conventional 3D crystallographic order. The smaller FWHM of this phase in
applied field corresponds to a much larger correlation length, likely within the chains of the
TIA state.

Increasing the field to 0.2 T, the intensities of the peak associated with the TIA phase
increased in intensity and additional intensity was observed on existing reflections, which
can be indexed to a k2-vector = 0 (see Figures 6.2 and A.13 for quality of selected fits).

The intensity of the magnetic reflections associated with the k2 = 0 phase can be described by
a simple ferromagnetic structure, with all moments aligned along the c-axis. The alignment
of the moments along the c-axis, is in agreement with the anisotropic easy axis and Ising
character of the spins, determined in Section 4.2.3. At 0.2 T the maximum intensity of the
reflections associated with the TIA phase is observed, with a refined magnetic moment of
0.86(7) µB obtained. Between 0.2 - 0.6 T there is phase coexistence of the TIA and the
ferromagnetic phase, with the TIA phase dropping in intensity at fields above 0.2 T and
the ferromagnetic phase growing in intensity. Here we have treated the observed magnetic
scattering as phase coexistence, however we cannot rule out that this scattering arises from a
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Figure 6.2 Evolution of the ordered magnetic moments associated with k1 and k2, in Tb(DCO2)3,
with respect to field.

single, more intricate, magnetic phase. At 0.8 T only the ferromagnetic phase exists scattering
from this phase increases in intensity up to 3 T, although it is near saturation (8.63(11) µB) at
≈2 T, as shown in Figure 6.2. The saturation value at 3 T = 8.86(10) µB is close to the 9 µB

value expected for Tb3+.

The formation of the TIA phase in small magnetic fields, before the emergence of the
ferromagnetic phase indicates that the application of the applied magnetic field supports
ferromagnetic ordering of the magnetic chains before high applied magnetic fields overcome
the weaker antiferromagnetic coupling between the chains. To explain this in zero field the
short range 1D ferromagnetic correlations that persist, [18, 194] enable the spins within the
chains to be readily aligned in magnetic field, forming the TIA. The TIA still has significant
disorder, and therefore still large amounts of residual entropy. Once the magnetic field is
such that the antiferromagnetic interchain correlations are overcome (beginning above 0.2 T),
the disorder is removed and transitions into a ferromagnet (see Figure 6.3). The alignment
of the ferromagnetic chains in the TIA phase to simple ferromagnetic structure leads to
large changes in entropy for small applied magnetic fields, which has been suggested in
previous studies. [4, 17] In this study we have confirmed and directly observed the evolution
of the TIA phase under a magnetic field and its conversion into a ferromagnetic phase under
moderate applied fields. This is analogous to the behaviour we would expect at and above
4 K, where the magnetocaloric effect of Tb(HCO2)3 (4 - 10 K) peaks. In this regime the
dominant ferromagnetic correlations allow the TIA to emerge as magnetic field is applied
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and long range order of the magnetic chains occurs before the spins in all chains are aligned
with the magnetic field to yield a ferromagnetic state.

+ μ0H

Figure 6.3 Diagram showing the phase transition from the PDA approximation to the TIA phase to a
ferromagnetic phase in applied magnetic field. The Tb3+ atoms are shown in purple, all other atoms
have not been included for clarity and magnetic vectors are shown as red arrows. The unit cell is
shown as a black box. Left shows the PDA phase, and the right shows the ferromagnetic phase along
the [100] axis.

6.2.2 Variable Temperature Measurements in a 0.1 T Magnetic Field

In order to confirm whether the TIA phase persists into the peak magnetocaloric temperatures,
we have explored the features associated with this phase under a fixed applied field at variable
temperatures. Between the field sweep and the variable temperature measurements the
applied field was removed. A 0.1 T magnetic field was then applied to the sample and it
was found that a similar intensity of the magnetic reflections associated with the TIA were
observed as when the sample had first been exposed to a 0.1 T magnetic field. This was
observed to coexist with the ferromagnetic phase, with refined magnetic moments of 3.32(5)
µB for the TIA phase and 5.59(6) µB for the ferromagnetic phase.

Measurements were then taken at variable temperatures, with a 0.1 T applied field, between
1.5 and 40 K. The diffraction patterns are shown in Figure 6.4. Raising the temperature
resulted in continuous reductions of the magnetic moments, before a rapid decrease in their
intensities above 3 and 4 K for the TIA and ferromagnetic phases.

All intensity in the reflections is lost upon reaching critical temperatures of ≈8 and ≤40 K,
for the TIA phase and between 20 and 40 K for the ferromagnetic phase, respectively (Figure
6.5a). We note that the critical temperature for the TIA phase observed here is higher than
that observed in zero applied fields, about 1.6 K, confirming it is stabilised by application of
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Figure 6.4 Contour plot of bank 2/9 of WISH for Tb(DCO2)3 with respect to temperature, with a 0.1
T applied field. The weak peaks at ≈5.2 Å indicates the ferromagnetic phase, and the strong peaks at
≈9 Å indicates the TIA phase.

an applied magnetic field. Above this temperature diffuse scattering centred around ≈9.1
Å, indicating persistent short range order of the TIA phase, can be observed up to 40 K, as
shown in Figure 6.5b. The diffuse scattering observed is qualitatively similar to that observed
in previous studies, [4, 18, 194] and in the Ho(DCO2)3 short range ordered phases, and
therefore can likely be attributed to short range 1D Ising correlations along the c-axis.

(a) (b)

Figure 6.5 (a) Evolution of the ordered magnetic moments associated with k1 and k2, in Tb(DCO2)3,
with respect to temperature. (b) Evolution of the magnetic diffuse scattering associated with k1, in
Tb(DCO2)3, with respect to temperature.
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6.3 Neutron Diffraction of TbODCO3 in Applied Fields

6.3.1 Field Sweep

TbODCO3 was cooled in zero applied magnetic field to base temperature of T = 1.5 K and left
to equilibrate for 1 hour. As in zero field measurements of TbODCO3 strong magnetic diffuse
scattering is observed at 1.5 K [5, 225] Field sweep measurements were taken between µ0H

= 0-3 T in variable steps with selected diffraction patterns shown in Figure 6.6 and a contour
plot shown in Figure 6.7a. The clearest indication of the growing magnetic phases is shown
by the Bragg peaks at 5.3, 7.1 and 8.5 Å, which increase with applied magnetic field.

Figure 6.6 The evolution of the Bragg peaks emerging from the magnetic diffuse scattering, indicating
a transition from short to long rang order on application of a magnetic field, between 0 and 0.5 T.

The position of the Bragg reflections associated with the crystal structure do not change
significantly under application of magnetic fields indicating there is no significant change in
lattice parameters, which was confirmed by refinements. There was, however, a significant
change in the features arising from magnetic scattering. In zero and small magnetic fields
there is significant magnetic diffuse scattering and with the increase in applied magnetic
field above 0.2 T the Bragg peaks associated with these phases evolve from this diffuse
scattering, indicating a transition from short to long range order. This suggests more detailed
studies should be performed in future to establish if there is a phase that can account for
the sharp magnetic reflections and the magnetic diffuse scattering that accompanies it under
higher applied magnetic fields. [81] The diffuse magnetic scattering observed in these studies
is qualitatively similar to the scattering observed in the zero field studies of Section 5.4.
Therefore, this diffuse scattering is likely due to the short range ferromagnetic Ising chain
correlations.
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(a) (b)

Figure 6.7 Evolution of the ordered magnetic moments associated with the ferromagnetic phases
of TbODCO3 with respect to applied field. Growing peaks can be seen at 5.3, 7.1 and 8.5 Å with
increasing applied magnetic field. (a) Bank 1/10 (b) Bank 2/9. There is significant magnetic diffuse
scattering at higher d-space, from which the Bragg Peaks emerge.

In the long d-spacing banks, centred at 27◦ (1/10), all of these magnetic peaks above 5 Å are
weak but clearly visible, at all field strengths at which they are present. However in banks
2/9 (centred at 56◦) these peaks are not visible, leading to some initial analysis problems.
This loss of these peaks in bank 2/9 can be attributed to the absorption from the sample.
In banks 2/9 the reflection at 8.5 Å is likely using a lambda between 9-10 Å but in banks
1/10 a much shorter wavelength is responsible for these reflections, so the absorption will
be significantly higher in banks 2/9. As a result of this and that Tb is moderately absorbing,
when the reflection is small it cannot be observed in banks 2/9. The peak intensity of the
[011], [010] and [001] reflections is further affected by the anisotropic broadening of these
higher d-space reflections.

The magnetic reflections of this material, which are associated with the Γ-point cannot
be fitted well by a single magnetic phase (see Figure 6.8). Symmetry analysis of the k=0
propagation vector acting on the P212121 space group produces four symmetry allowed
magnetic space groups, three with ferromagnetic components along the a, b and c-axis and
one with no ferromagnetic component. The space group with no ferromagnetic component
was observed at low temperatures in HoODCO3, but in the presence of a magnetic field this
is not energetically favourable, and phases would be expected to contain a ferromagnetic
moment. Inspection of the other three magnetic space groups reveals that only those with a
ferromagnetic component along the b and c axes, produces a magnetic structure compatible
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with the easy axes of the Tb3+ moments, established from the local structure determined at
higher temperatures in Section 5.4.

Figure 6.8 TbODCO3 group subgroup relationship for the P212121 space group and a k=0 propagation
vector.

Fitting the data with a model comprised of these two separate magnetic phases leads to
excellent fits, as shown in Figure 6.9.

(a) (b)

Figure 6.9 Rietveld refinement fits to the neutron diffraction data of Banks 2/9 of TbODCO3 at (a)
0.0 T and (b) 3.0 T, with the fitting statistics Rp: 3.85 %, Rwp: 1.62 % and Rp: 3.90 %, Rwp: 2.07 %,
respectively.

These can be described as a ferromagnetic phase and a canted antiferromagnetic phase.
The ferromagnetic phase and the canted antiferromagnetic phases are both expressed by
the P2′12′121 space group but are differentiated by the presence of the mΓ4 and mΓ2 modes,
respectively. Despite attempts, it was not possible to produce quality fits by lowering the
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symmetry to P21 using any combinations of irreducible representations. This would produce
magnetic moments orientations that differ from the easy axes determined in Section 5.4, and
is therefore consistent with these previous results. It is also important to note that despite
the changes in the magnetic scattering with applied field, the scattering from the crystal
structure does not change indicating the crystal structure remains the same under all applied
fields.

The ferromagnetic phase emerges in small magnetic fields (<0.1 T) with the canted antiferro-
magnetic phase forming at <0.2 T applied field, steadily rising with increasing magnetic field.
The ferromagnetic phase shows the dominant ferro-magnetic component is along the b-axis
(Figure 6.10), with non-collinear moments in agreement with the easy axis determined in
Section 5.4.

FerromagnetCanted Antiferromagnet

Figure 6.10 The two magnetic structures of TbODCO3 in an applied magnetic field at 3 T. Tb3+

ions are shown in purple, carbon shown in black, oxygen shown in black and Deuterium shown in
grey. Unit cell shown in black. Magnetic vectors shown as red arrows. The canted antiferromagnetic
structure (left) still has a significant ferromagnetic component along the c-axis, and the ferromagnetic
structure is purely ferromagnetic along the b-axis. Both structures agree with the Ising character and
easy axis, inferred from previous measurements.

This reflects the non-collinear nature of the Ising-like short range ordered phase of TbODCO3.
In this long range ordered structure, however, not only are the magnetic cations within the
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chains ferromagnetically coupled but they also have ferromagnetic inter-chain coupling.
This indicates that the applied magnetic field has overcome the interchain antiferromagnetic
coupling found in the short range ordered phase. Using the Bilbao Crystallographic Server
[166] we have determined this magnetic phase can be described by the magnetic space group
P2′12′121, with a single magnetic site.

The presence of a canted antiferromagnetic phase co-existing with a ferromagnetic phase in
the presence of a magnetic field was initially peculiar. We can see that the refined canted
antiferromagnetic phase has non-collinear spins oriented towards directions summarised
in Table 6.1 and A.4 leading to a ferromagnetic component along the c-axis. The spin
orientation in both phases is oriented essentially along the same easy axis, despite the
changes in the orientation of the ferromagnetic component. This canted antiferromagnetic
phase can also be described by the P2′12′121 magnetic space group, through a transformation,
with antiferromagnetic intrachain coupling, which is also puzzling given ferromagnetic
coupling is dominant within the chains of this compound in the short range correlated phase
that forms in the absence of an applied field.

Table 6.1 Summary of the LnODCO3 applied field magnetic structures, showing the spin vectors of
the canted antiferromagnetic (CAFM) and ferromagnetic (FM) structure at 3.0 T, given as unit vectors.
The x, y and z fractional coordinates of Tb1-4 atomic sites are Tb1 = 0.00554(17), 0.11279(4),
0.161820(28); Tb2 = 0.49446(17), 0.88721(4), 0.661820(28); Tb3 = 0.99446(17), 0.61279(4),
0.338180(28) and Tb4 = 0.50554(17), 0.38721(4), 0.838180(28).

Atomic Sites CAFM FM

Atom u v w u v w

Tb1 0.223(12) 0.851(23) 0.483(11) 0.152(10) 0.942(22) 0.301(11)
Tb2 −0.223(12) −0.851(23) 0.483(11) 0.152(10) 0.942(22) −0.301(11)
Tb3 0.223(12) −0.851(23) 0.483(11) −0.152(10) 0.942(22) −0.301(11)
Tb4 −0.233(12) 0.851(23) 0.483(11) −0.152(10) 0.942(22) 0.301(11)

In order to rationalise the presence of two co-existing magnetic phases in variable applied
fields, the applied field vector must be considered. The near random particle orientation
distribution in powder samples produces suitable powder averaging to allow indexing and
characterisation of the nuclear phase in these materials. However with highly anisotropic
single ion moments, in the application of a magnetic field sufficient powder averaging is
lost. Therefore, the applied magnetic field acting on the powder averaged sample forces the
magnetic moments to align in the most favourable orientations that is symmetry allowed and
with consideration to the local Ising easy axis. That is, if the magnetic field vector is applied
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closer to the b-axis of the randomly oriented particle, the ferromagnetic component of the
moments will be aligned along the b-axis producing the ferromagnetic phase, and while we
hypothesis that the canted antiferromagnetic phase arises when the applied field is closer to
the c-axis consisting the ferromagnetic component observed along the c-axis. Both structures
produce moments with easy axes close to that determined from the RMC studies in Section
5.4 and the long range ordered k=0 state seen in HoODCO3, but with the exception that
they both have ferromagnetic components along the b, and c axes for the ferromagnetic and
canted antiferromagnetic structures, respectively.

To properly understand the ground state of this material in moderate magnetic fields, neutron
diffraction sized single crystals should be obtained since these will allow fields to be applied
along particular directions of the crystal structure in a more controlled fashion. However,
given the challenges in growing large single crystal under hydrothermal conditions this will
require considerable synthetic optimisation. Additionally for highly anisotropic single ions
such as Tb3+, the magnetic moments refined from powder diffraction data must be considered
tentatively. When a field is applied the moment are oriented along the easy axis vector as
close to the applied field, but powder averaging fails to average the crystal field of the ions,
and therefore the moments lengths are a approximation. Despite the lack of compensation
in the FullProf suite (or any other Rietveld software), the magnetic structures and moments
determined are sensible and therefore we are confident our model is close to the physical
manifestation of these phenomena. The effect of the applied magnetic field on the evolution
of the magnetic phases is in broad agreement with the magnetic susceptibility measurement,
as shown in Figure 6.11, showing typical magnetisation behaviour and beginning to saturate
below 2 T.

We note there is some discrepancy between the neutron diffraction measurements which were
performed at 1.5 K, and the magnetisation measurements measured at 2 K. That is the mag-
netisation rises steeper than the neutron diffraction data, and so for comparison the neutron
diffraction data has been compared with magnetisation measurements at 4 K. We hypothesis,
however, that it is likely that the discrepancy is due to either the aforementioned issues
with powder averaging in Ising like systems or the two experimental methods measuring
magnetisation on an atomic and bulk scale. We cannot absolutely rule out that this is a result
of poor thermal equilibration of the sample or by the trapped magnetic flux in the magnet.
The co-existence of two k=0 magnetic phases additionally lead to the problem of have many
overlapping reflections, with contributions from each phase difficult to de-convolute, leading
to a noisy neutron magnetisation curve.
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Figure 6.11 Evolution of the ordered magnetic moments associated with the ferromagnetic phases of
TbODCO3 with respect to applied field. Shown in blue is the ordered magnetic moment as determined
by Rietveld refinement of the diffraction pattern from neutron diffraction data. Shown in orange is
the magnetic moment as determined by the SQUID MPMS. The magnetic moment determined from
MPMS has been scaled appropriately for comparison, so that the largest magnetic moments are equal.

In a 3.0 T magnetic field, at 1.5 K, the ferromagnetic and canted antiferromagnetic phases
have magnetic moments of 5.02(6) and 3.94(3) µB, respectively. This indicates that the domi-
nant phase is the ferromagnetic phase, which maintains the ferromagnetic chains observed in
the short range ordered phase as discussed in Section 5.4, but with all ferromagnetic chains
ferromagnetically coupled due to the field suppressing the interchain antiferromagnetic
coupling. This indicates that only a small magnetic field along specific axis is required to
suppress the interchain correlations and align the entire phase ferromagnetically along the b-
axis. This may indicate that single crystal samples of TbODCO3 magnetised along the b-axis
may show a single ferromagnetic phase and therefore would have even better magnetocaloric
performance in low applied magnetic fields, than the powder analogue. As discussed above
the presence of this antiferromagnetic phase is likely due to the magnetic field vector applied
along the c-axis in some particles, and requires higher magnetic fields to establish. This
suggests that applying a magnetic field vector along the c-axis to a single crystal, of this
phase, is likely to only display the canted antiferromagnetic structure described above. This
could suggest that there is potential to recover the full entropy change of these materials
in the adiabatic refrigeration cycle in smaller magnetic fields, by applied a magnetic field
along the b-axis, such that the LnODCO3 phases would provide even better magnetocaloric
performance than its already impressive results. We therefore suggest that bulk magnetic
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property studies and neutron scattering work on single crystals of these materials would
likely shed further useful insight into the properties and interactions of these interesting
materials.

6.4 Variable Temperature Measurements in a 1 T
Magnetic Field

In order to determine the persistence of these magnetic phases to higher temperatures, variable
temperature measurements have been performed in fixed magnetic fields. TbODCO3 was
warmed to 20 K, and the field was set to µ0H = 0 T, in order to break down any short or long
range magnetic order. The sample was then cooled to Tbase = 1.5 K and a 1.0 T magnetic field
was applied. A 1.0 T field was seen to be an appropriate field to apply due to the efficient
magnetocaloric performance of TbODCO3 in a 1.0 T field changes over a wide temperature
range. In the presence of a 1.0 T magnetic field measurements were taken between 1.5 and 30
K in variable steps. At Tbase the magnetic peaks are clearly present indicating the presence of
both the ferromagnetic and antiferromagnetic phases. The length of total moment is 7.31(12)
µB, consisting of ferromagnetic moments of 4.61(6) µB, and antiferromagnetic moments of
2.70(6) µB (see Figure 6.12 for quality of the fit).

(a) (b)

Figure 6.12 Rietveld refinement fits to the neutron diffraction data of TbODCO3 on banks (a) 5/6 at
(b) 2/9 with the fitting statistics Rp: 2.59 %, Rwp: 2.82 % and Rp: 3.91 %, Rwp: 1.85 %, respectively.

Raising the temperature with the applied magnetic field resulted in a continuous reduction
magnetic moment lengths of both phases, as can be seen in Figure 6.13. While the magnetic
order of the canted antiferromagnetic phase is lost at 30 K there is still significant ordered
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moment in the ferromagnetic phase (see Figure 6.13). The magnetic moment at these
higher temperature must be considered tentatively, due to the small intensity of the magnetic
peaks.

Figure 6.13 Evolution of the ordered magnetic moments associated with the ferromagnetic phases of
TbODCO3 with respect to temperature in a 1 T applied field. Blue indicates the ordered magnetic
moment as determined by Rietveld refinement of the diffraction pattern from neutron diffraction data.
Orange indicates the magnetic moment as determined by the SQUID MPMS in a 0.1 T field scaled
appropriately for comparison, so that the largest magnetic moments are equal.

The continued presence of this ferromagnetic phase in a magnetic field to high temperatures,
and certainly through the temperature range where TbOHCO3 has been found to have high
magnetocaloric performance, indicates it readily forms under an applied magnetic field,
which is beneficial to these physical properties.

As for Tb(DCO2)3 throughout the low applied field measurements there was still significant
diffuse scattering, underneath the emergence of the Bragg peaks in TbODCO3. This should
encourage further studies utilising reverse Monte Carlo techniques, with considerations for
both long and short range order. We have treated the presence of Bragg and diffuse scattering
features as an indication of phase coexistence but could be an indication of a more complex
magnetic phase exhibiting both.

6.5 Conclusions

We have shown that the magnetic structure of two excellently performing low temperature
magnetocaloric materials, with applications in liquid helium refrigeration replacement, show
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the transition from a high entropy short range ordered paramagnetic phase to a low entropy
long range ordered phase under applied magnetic fields. In Tb(DCO2)3 short range order
is initially present, before transitioning to a quasi long-range ordered phase (TIA) in small
magnetic fields, and finally to a fully long range ordered ferromagnetic phase in moderate
applied magnetic fields. Similarly TbODCO3 shows short range order in zero and small
magnetic fields which decreases as the magnetic field increases, as long range order emerges.
In TbODCO3 two ordered magnetic phases are found, one ferromagnetic and one canted
antiferromagnetic phase, which we hypothesis as being a result of applying a magnetic
field to a powder sample of an Ising system; this leads to different grains being exposed to
fields from different orientations compared to the crystallographic structure stabilizing two
different ground states.

It has been inferred previously in this thesis and in other works [5, 17, 225] that ferromagnetic
chains in magnetocaloric materials are beneficial for allowing large changes in entropy with
small applied magnetic fields. Here we have shown clearly that ferromagnetic Ising chains
play a key role in the adiabatic refrigeration cycle of two promising materials, Tb(DCO2)3

and TbODCO3. Specifically we suggest that the significant ferromagnetic correlations within
these materials enable ordered magnetic states to emerge at low fields, once the frustrated
antiferromagnetic interactions in both materials are suppressed. Such ordered states have
much lower entropy than the short range ordered states, resulting in large magnetic entropy
changes for relatively low applied magnetic field changes. Crucially we have shown that
such ordered states persist to temperatures above which the peak magnetocaloric properties
are observed, such they are likely to play a key role in this performance. This has great
implications in the design of new magnetocaloric materials optimised for low temperature
refrigeration, for liquid helium replacement. The hypothesised anisotropic response of
TbODCO3 to the applied magnetic field complicates this picture somewhat, since the canted
antiferromagnetic state does not retain the ferromagnetic correlations from the short-range
ordered structure. It is notable that this is the smaller phase fraction, particularly below 1 T,
and may suggest better magnetocaloric performance could be obtained from single crystals
of this sample.
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Conclusions

This thesis has primarily explored the magnetic structure and correlations of two families
of magnetocaloric frameworks, the Ln(DCO2)3 (where Ln = Gd-Er) and the LnODCO3

series, and some magnetocaloric measurements of the LnF3. Through physical property
measurements and diffraction experiments we have been able to understand the magnetic
structure of these materials and how this relates to their exceptional magnetocaloric effect.
The magnetocaloric effect in some of these materials has been shown to outperform the
benchmark Gd3Ga5O12 under the low applied magnetic fields, achievable with a permanent
magnet and at temperatures more suited to liquid helium refrigeration replacement. The
values determined from magnetisation measurements make these some of the best perform-
ing magnetocaloric materials in their class, promising a pathway towards magnetocaloric
materials for a wider range of cryogenic applications.

These results have shown that the materials that display the largest changes in entropy in the
smallest magnetic fields all have similar features in their magnetic lattices. Specifically in
the paramagnetic phase these have chains of Ising-like lanthanide cations with short range
ferromagnetic intrachain correlations and frustrated antiferromagnetic coupling between
these chains. This short range order is present in the magnetocaloric operating temperatures
of these materials, and the application of a moderate magnetic field enables these to be
transformed into a long range ordered state. This is considered to be a result of the applied
magnetic field suppressing the antiferromagnetic interactions between chains that prevent
long range order from forming, while, in most cases, reinforcing the ferromagnetic coupling
within the chain. This change between short range and long range correlated states enables
a large change in magnetic entropy under relatively weak applied magnetic fields. In
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short, ferromagnetic chains of Ising anisotropic spins, with competing antiferromagnetic
interactions are a recipe for enhanced magnetocaloric materials - Figure 7.1. The conclusions
from this thesis are set out in detail below.

T

<<T

Figure 7.1 A visual summary of the conclusion of this thesis. Ferromagnetic Ising chains, with
competing antiferromagnetic interactions are a recipe for enhanced magnetocaloric materials.

7.1 The Magnetocaloric Effect

Inspired by the recent success of investigating non-gadolinium based magnetocaloric mate-
rials, [4, 72, 112] containing magnetic ions with significant single ion anisotropy, we have
explored the magnetocaloric effect of the LnOHCO3 and the LnF3 material families. The
peak entropy changes in some of these materials exceed that of Gd3Ga5O12 in equivalent
fields, making them suitable magnetic cooling materials for use at liquid helium temperatures
using low applied magnetic fields. Magnetisation measurements suggest that all of these
heavier lanthanide frameworks have magnetic ions with Ising-like anisotropy, which whilst
reducing the total possible entropy change in powders, allows for easy alignment of the spins
with applied field along the easy axis.

Of the materials LnOHCO3 frameworks TbOHCO3, DyOHCO3 and HoOHCO3 were shown
to have some improved magnetocaloric performance above 4 K in low applied magnetic
fields (below 2 T), at the cost of reduced performance at lower temperatures. TbOHCO3

and DyOHCO3, which exhibit the highest MCE performance in this régime, have a greater
−∆Smax

m than the benchmark material Gd3Ga5O12 with peak performance shifted to higher
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temperatures. Of these DyOHCO3 is the best performing compound maintaining a greater
entropy change than −∆Smax

m of Gd3Ga5O12 to nearly 10 K.

In the LnF3 materials TbF3 and HoF3 have optimised performance for higher temperatures in
low applied magnetic fields although this is inferior compared to the best of the LnOHCO3

phases. While both these compounds and DyF3 and ErF3 all show Ising-like magnetisation
curves the magnetocaloric entropy change of DyF3 and ErF3 gradually increase to 2 K with
inferior performance to GdF3 which has a magnetisation curve consistent with Heisenberg
spins. This indicates the high magnetocaloric effect cannot be described by the Ising-like
anisotropy of the material alone, and that other factors must be taken into consideration
to rationalise this improved performance. We show the particular high persistence of the
magnetocaloric effect in HoF3 may show promise in wide temperature magnetocaloric
devices.

7.2 Ln(DCO2)3 Magnetic Structure

Prior to this work, the Ln(DCO2)3 frameworks had already been established to combine 1D
magnetism with frustration leading to the triangular Ising antiferromagnetic (TIA) state in
Tb(DCO2)3. This created the expectation there was more to be uncovered in these materials
leading to the detailed neutron scattering studies presented in this thesis. We found that only
the materials with magnetocaloric properties optimised for higher temperatures in low fields,
Tb(DCO2)3, and Ho(DCO2)3, feature significant structured diffuse scattering above 1.5 K.
This has been interpreted via reverse Monte Carlo methods to be a result of ferromagnetic
1D correlations with weaker frustrated antiferromagnetic coupling. This is in contrast to
other Ising Ln(DCO2)3 phases, which lack such optimised magnetocaloric performance and
diffuse scattering. The stronger 1D ferromagnetic correlations in Tb(DCO2)3 likely explain
why this is the most efficient magnetocaloric material compared to Ho(DCO2)3.

Magnetic ordering of Tb(DCO2)3 changes below 1.2 K from a TIA state to one that appears
to display emergent order, when interpreted via conventional crystallographic approaches.
The broadness of the Bragg-like peaks and retention of the magnetic diffuse scattering is
consistent with the retention of 1D order in the TIA phase of Tb(DCO2)3 in this lower
temperature phase but only the average magnetic structure of this state has been refined in
this thesis. The emergent charge ordered (ECO) state, likely the first example of such a state
in a MOF, is robust to the two possible magnetic structures, which vary only in the phase of
their scattering. Subsequently we show that Ho(DCO2)3 is likely the second example of a
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MOF with an ECO state, with its short range ordered state directly evolving to give a similar
combination of sharp and diffuse scattering as seen in Tb(DCO2)3, without the formation of
the TIA phase in between. Using inelastic neutron scattering we confirm the presence of Ising
anisotropy in Tb(DCO2)3 and directly determine the strength of its magnetic interactions by
modelling its spin wave. Finally neutron measurements of Er(DCO2)3 reveal the emergence
of an ordered state with antiferromagnetic intrachain coupling, which is likely linked to its
poorer magnetocaloric properties since antiferromagnetic chains will not align as readily
with an applied magnetic field.

Field studies further consolidate the hypothesis of 1D ferromagnetic chains improving the
magnetocaloric effect in low applied fields. In Tb(DCO2)3 we directly observe a change
from short range correlations in 1D ferromagnetic chains to the TIA state and finally to long
range ferromagnetic order, all in fields under 1 T. This indicates that the application of the
applied magnetic fields first strengthens the coupling within the chains before suppressing the
antiferromagnetic correlations between them. The evolution of a ferromagnetic phase under
a modest applied magnetic fields is consistent with our hypothesis that the 1D correlations
in the short range ordered phase are clearly directly linked to the improved magnetocaloric
effect. We see that these correlations persist well above TN in applied magnetic fields, and
there is a clear route from high entropy short range ordered state, to a low entropy long range
ordered phase.

7.3 LnODCO3 Magnetic Structure

Inspired by the recent magnetostructural-property relationships of the Ln(DCO2)3, [4] and the
efficient magnetocaloric effect of GdOHCO3, [5, 77] we have explored the LnODCO3 frame-
works. These were found to show similar exotic magnetic states combining ferromagnetic
chains with frustrated antiferromagnetic interchain coupling, which are directly responsible
for the optimised magnetocaloric performance. We have shown that the magnetocaloric
materials with properties optimised for applications above 4 K, TbODCO3, DyODCO3 and
HoODCO3, all display significant magnetic diffuse scattering. No short or long range order
was observed in ErODCO3 which lacks such a magnetocaloric effect. Through reverse Monte
Carlo techniques it has been shown that the magnetic diffuse scattering arises from short
range ferromagnetically coupled spins on chains, with antiferromagnetic interchain interac-
tions. Fits to the data with constrained spins indicate the spins have Ising-like anisotropy,
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and fits to the temperature dependence of the correlations length indicate this evolve in the
way consistent with isolated 1D Ising chains.

HoODCO3 undergoes a transition from a short range ordered phase to an incommensurate
magnetic phase at ≈1.3 K, as the correlations length grows from short range to quasi-long
range order. This incommensurate magnetic phase can be described as a spin-density sine
wave, which can be considered to be an average structure interpretation of a disordered
magnetic structure. Cooling further causes a changed in the propagation vector eventually
locking in to a k = 0 antiferromagnetic phase, with a finite correlation length. Even at the
lowest recorded temperature the correlation length of the magnetic interactions remains finite.
Therefore, in its ground state the competing interactions prevent fully long range order from
forming. All magnetic phases shown in HoODCO3 contain the ferromagnetic Ising chains
present in the short range ordered phase.

Field studies of TbODCO3 indicate in the application of small magnetic fields, there is
coexistence of short and long range order. With increasing magnetic fields the short range
order diminishes in intensity as long range magnetic order becomes dominant. The long range
magnetic order can be described by two magnetic phases, one with ferromagnetic intrachain
correlations and one without. We attribute this dual magnetic phase to the application of a
magnetic field to an anisotropic powder. In the application of moderate magnetic fields this
long range order persist to temperatures well above TN , indicating these phases are directly
responsible for the change from a high entropy short range order phase to the low entropy
long range ordered magnetic phase.

7.4 Future Work

This thesis has explored the magnetocaloric behaviour and magnetic structure of the late
lanthanides frameworks. In order to fully understand why these materials have greater
MCE at higher temperatures and lower fields than the gadolinium analogues, despite lower
total entropy we need to understand the magnetic structure of GdODCO3 and Gd(DCO2)3.
Of course this is not a trivial task through neutron diffraction techniques due to the high
absorption cross section of naturally abundant gadolinium approximately 50x more absorbing
than Dy and 2100x more absorbing than Tb. [223] In order to carry out such experiments,
synthesis of these materials with enriched gadolinium will be required, and long count
times. We would expect to see no frustration in these materials due to the lack of single
ion anisotropy in Gd, and therefore no short range order and eventual long range order at
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sufficiently low temperatures, as noted in Er(DCO2)3. Similar low temperature studies on all
Ln(DCO2)3 and LnODCO3 materials down to dilution refrigeration temperatures would also
enable these to be probed for unique magnetic states.

In order to clarify why the Er materials behave so differently from the Tb and Ho materials,
despite apparent Ising-like anisotropy, it would be necessary to probe any magnetic excitations
through inelastic neutron spectroscopy of both Ho(DCO2)3 and Er(DCO2)3. Assuming
magnetic excitations are present, we would expect to see a spin-wave similar to that seen in
Tb(DCO2)3, in Ho(DCO2)3 while antiferromagnetic intrachain coupling in Er(DCO2)3 should
lead to significantly different features. We have inferred the anisotropy of the LnODCO3

through RMC techniques and magnetisation measurements, but it would be preferable to
confirm the Ising mechanics of these materials directly.

Inelastic measurements of Tb(DCO2)3 revealed some interesting magnetic features, which
we were unable to fully account for in the spectra fitting. It is possible the high temperature
features were simply due to the persistence of the quasi-1D magnetism, as seen in other quasi
1D systems. [212] However these features also alluded to more exotic behaviour which would
require more extensive variable temperature studies, and better fitting. For example fitting
the structure factor of a bond valence solid to the feature that we saw in the high temperature
phases. In the low temperature ECO phase the spin-wave excitation fit the feature quite well,
however we are still unaware of whether this is a static or fluid state. Muon spin spectroscopy
would be the ideal tool for probing the dynamics of these low temperatures phases, but the
decay of the muon is directly related to the magnetic moment of the magnetic ion. [31,
226] Therefore, an instrument without very fast counting times, will miss the decay of the
muon and measure no useful data. Therefore a sufficiently fast instrument, such as those at
the Paul Sherrer Institut, Switzerland should be used to probe the dynamics and quasi-long
range order seen in Tb(DCO2)3 and Ho(DCO2)3. The average structure approach we have
applied to understanding the ECO phases of Tb(DCO2)3 and Ho(DCO2)3 are sufficient for
an initial understanding of these materials, but further Monte Carlo studies are required to
understand the precise nature of this state and how its combination of diffuse and sharp
scattering arises.

The magnetocaloric behaviour of the LnF3 was explored, but in some cases, in poorly
crystalline impure materials. Synthesis of higher quality powders and/or single crystal should
be attempted of these lanthanide compounds, and also of the solid solutions, which showed
promising magnetocalorics in the Ln(DCO2)3. [4] Inspection of the nuclear and reported
magnetic structure reveals they show properties required to show short range order and



7.4 Future Work 172

ferromagnetic chains. Therefore, neutron diffraction studies should be performed on modern
instruments on the LnF3, in order to probe the magnetic structure and correlations, including
for the presence of short range ordered states.

GdPO4 is another example of a framework material with a promising magnetocaloric effect
at temperatures 2-10 K. [69] Given the success of substituting isotropic Gd for anisotropic
Tb, Dy and Ho found in this work these member of the LnPO4 series of materials should be
thoroughly investigated to determine their magnetocaloric properties and, using similar ap-
proaches to those presented in this thesis, probe the link to their magnetic interactions.

Our magnetocaloric measurements throughout this thesis have assumed that the Maxwell
relations that calculate the magnetocaloric effect from magnetisation curves are accurate, as
has shown to be the case for other materials. [77, 227, 228] In order to confirm the accuracy
of the magnetocaloric measurements direct measurement of the magnetocaloric effect should
be performed within an adiabatic refrigerator setup, measuring the change in temperature
with changes in magnetic field. The priority here would be DyOHCO3 which showed the
greatest changes in entropy with applied magnetic field and is therefore the most likely to find
applications in low temperature refrigeration. The suggestion that the direction of the applied
field on TbODCO3 play a role in which of two long range ordered states also highlights
that the magnetocaloric performance of the LnODCO3 phases could be improved by judicial
application of magnetic fields to various directions of the single crystals of these materials.
Accompanying neutron scattering studies of such single crystal samples would also provide
a wealth of information.
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(a) (b)

(c)

(d) (e)

Figure A.1 Le Bail refinements of the LnOHCO3 frameworks (a) GdOHCO3, (b) TbOHCO3, (c)
DyOHCO3, (d) HoOHCO3 and (e) ErOHCO3 at 300 K.
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(a) (b)

(c)

(d) (e)

Figure A.2 FC and ZFC measurements in a 1000 Oe field, the insert shows a Curie-Weiss fit to the
inverse magnetic susceptibility measurements for (a) GdOHCO3, (b) TbOHCO3, (c) DyOHCO3, (d)
HoOHCO3 and (e) ErOHCO3. Curie-Weiss behaviour fit between 2-300 K, with the exception of
DyOHCO3 which was fit below 150 K and extrapolated to higher temperature.
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(a) (b)

(c)

(d) (e)

Figure A.3 Magnetisation measurements of the LnOHCO3 frameworks at variable temperatures for
(a) GdOHCO3, (b) TbOHCO3, (c) DyOHCO3, (d) HoOHCO3 and (e) ErOHCO3
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(a)

(b)

Figure A.4 Vegard’s law of doped LnOHCO3 showing the reduction of the unit cell volume with
fraction of (a) Tb and (b) Dy doped into GdOHCO3. Error bars are shown but smaller than the graph
points.
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(a) (b)

(c)

(d) (e)

Figure A.5 Le Bail refinements of the LnF3 frameworks (a) GdF3, (b) TbF3, (c) DyF3, (d) HoF3 and
(e) ErF3
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(a) (b)

(c)

(d) (e)

Figure A.6 FC and ZFC measurements in a 1000 Oe field, the insert shows a Curie-Weiss fit to the
inverse magnetic susceptibility measurements for (a) GdF3, (b) TbF3, (c) DyF3, (d) HoF3 and (e)
ErF3. Curie-Weiss behaviour fit between 50-300 K.
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Figure A.7 Cmag of Tb(HCO2)3 in variable fields between 400 mK and 14 K.

Figure A.8 Evolution of the correlation lengths of the 1D Ising chains in Ho(DCO2)3, with respect to
temperature.
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Table A.1 A table summarising the atomic information of the non-magnetically ordering Ln(DCO2)3
frameworks at 1.5 K, using the R3m space group.

Atom x y z Uiso x 100 Å2 Occupancy

Ce(DCO2)3

Ce 0.33333 0.66667 0.000 0.738(18) 1.000
C 0.51394(24) 0.48605(24) 0.20643(12) 0.814(73) 1.000
D 0.49505(18) 0.50494(18) 0.46622(3) 1.90(16) 0.974(18)
O1 0.46808(23) 0.53190(23) -0.01130(4) 0.72(8) 1.000
O2 0.58271(16) 0.41729(16) 0.17198(22) 0.55(7) 1.000

Pr(DCO2)3

Pr 0.33333 0.66667 0.000 0.944(17) 1.000
C 0.51393(20) 0.48606(20) 0.20519(4) 1.06(7) 1.000
D 0.49473(16) 0.50526(16) 0.46429(7) 2.59(12) 0.991(2)
O1 0.46778(21) 0.53220(21) -0.00922(23) 1.015( 68) 1.000
O2 0.58214(14) 0.41784(14) 0.17250(7) 0.811(62) 1.000

Nd(DCO2)3

Nd 0.33333 0.66667 0.000 0.76(9) 1.000
C 0.51290(19) 0.48709(19) 0.20395(14) 1.01(7) 1.000
D 0.49414(17) 0.50585(17) 0.46362(16) 1.49(1) 0.972(12)
O1 0.46747(20) 0.53252(20) -0.01661(22) 0.71(6) 1.000
O2 0.58271(15) 0.41729(15) 0.16569(12) 0.59(6) 1.000

Dy(DCO2)3

Dy 0.33333 0.66667 0.000 0.82(6) 1.000
C 0.51152(19) 0.48847(19) 0.24120(5) 0.93(7) 1.000
D 0.49420(18) 0.50581(18) 0.50725(5) 2.656(12) 0.973(2)
O1 0.46502(18) 0.53497(18) 0.00951(4) 0.58(7) 1.000
O2 0.58263(16) 0.41737(16) 0.19604(23) 0.71(7) 1.000
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Figure A.9 Temperature subtracted data of Tlow - Thigh, where Tlow = 1.6 K and Thigh = 20 K.

Table A.2 Table summarising bond lengths of LnODCO3 (where Ln = Tb, Dy, Ho and Er) determined
from neutron diffraction measurements taken at 100 K. Bond lengths are given in angstroms (Å)

Bond Length (Ln = Tb) Length (Ln = Dy) Length (Ln = Ho) Length (Ln = Er)

Ln1_O1 2.2909(10) 2.2774(16) 2.2581(9) 2.2446(14)
Ln1_O1 2.2773(13) 2.2730(20) 2.2627(12) 2.2259(17)
Ln1_O2 2.4689(25) 2.446(4) 2.4376(19) 2.4240(23)
Ln1_O2 2.4840(23) 2.4374(28) 2.4190(17) 2.3852(22)
Ln1_O2 2.8555(24) 2.8938(3) 2.9243(17) 2.9631(20)
Ln1_O3 2.5034(22) 2.473(3) 2.4905(17) 2.4791(20)
Ln1_O3 2.5842(22) 2.6382(26) 2.6338(18) 2.6366(23)
Ln1_O3 2.6768(23) 2.6133(30) 2.6041(18) 2.5858(22)
Ln1_O4 2.4691(29) 2.4320(5) 2.3828(22) 2.3473(28)
Ln1_O4 2.5095(28) 2.5230(4) 2.5593(22) 2.5647(28)
C1_O1 1.2752(25) 1.3010(4) 1.2991(23) 1.3158(34)
C1_O2 1.2811(22) 1.27000(4) 1.2764(23) 1.2700(32)
C1_O3 1.2591(11) 1.2721(27) 1.2699(15) 1.2807(19)
O4_D1 0.9714(17) 0.939(3) 0.9798(17) 0.9792(24)
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(a) (b)

(c)

(d) (e)

Figure A.10 Changes in the mass and heat flow of (a) GdOHCO3, (b) TbOHCO3, (c) DyOHCO3,
(d) HoOHCO3, and (e) ErOHCO3, with respect to temperature, the sample is heated at 10◦C min−1

between 30-800◦C.
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(a) (b)

(c)

(d) (e)

Figure A.11 Infrared spectroscopy measurements of (a) GdOHCO3, (b) TbOHCO3, (c) DyOHCO3,
(d) HoOHCO3, and (e) ErOHCO3, between 500 and 4000 cm−1.
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Figure A.12 Fit to the chain correlation length of DyODCO3 using a Heisenberg model. The fit to
the base temperature at 1.5 K in the insert.

Table A.3 Summary of the bond distances of HoODCO3 at 0.25 K, determined from Rietveld
refinement.

Atom 1 Atom 2 Distance (Å)

Ho O1 2.554(12)
Ho O1 2.563(11)
Ho O2 2.270(13)
Ho O3 2.224(7)
Ho O3 2.262(7)
Ho O4 2.405(10)
Ho O4 2.415(10)
C O1 1.082(13)
C O2 1.381(8)
C O4 1.383(13)
D O3 1.037(11)

O1 O2 2.143(12)
O1 O4 2.218(14)
O2 O4 2.287(11)
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(a) 0 T (b) 0 T

(c) 0.2 T (d) 0.2 T

(e) 3.0 T (f) 3.0 T

Figure A.13 Rietveld fits to applied field neutron diffraction patterns of Tb(DCO2)3 at variable fields
from (left) bank 4/8 and (right) 2/9 of WISH along with the fitting statistics (a) Rp = 3.46 %, Rwp =
3.72 %, (b) Rp = 3.63 %, Rwp = 2.16 %, (c) Rp = 3.38 %, Rwp = 3.53 %, (d) Rp = 3.64 %, Rwp = 2.14
%, (e) Rp = 3.91 %, Rwp = 3.78 %, (f) Rp = 4.00 %, Rwp = 2.73 %.
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Table A.4 Summary of the LnOHCO3 applied field magnetic structures, showing the spin vectors of
the canted antiferromagnetic (CAFM) and ferromagnetic (FM) structure at 3.0 T.

Atomic Sites CAFM FM

Atom x y z u v w u v w

Tb1 0.0113(18) 0.1131(3) 0.16084(28) 1.17 4.48 2.51 1.02 6.32 2.04
Tb2 0.4886(18) 0.8868(3) 0.66084(28) -1.17 -4.48 2.51 1.02 6.32 -2.04
Tb3 0.9886(18) 0.6131(3) 0.33916(28) 1.17 -4.48 2.51 -1.02 6.32 -2.04
Tb4 0.5113(18) 0.3868(3) 0.83916(28) -1.17 4.48 2.51 -1.02 6.32 2.04
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