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Abstract

This review describes a link between Lax operators, embedded surfaces and
Thermodynamic Bethe Ansatz equations for integrable quantum field theories. This
surprising connection between classical and quantum models is undoubtedly one of the
most striking discoveries that emerged from the off-critical generalisation of the
ODE/IM correspondence, which initially involved only conformal invariant quantum
field theories. We will mainly focus of the KdV and sinh-Gordon models. However,
various aspects of other interesting systems, such as affine Toda field theories and
non-linear sigma models, will be mentioned. We also discuss the implications of these
ideas in the AdS/CFT context, involving minimal surfaces and Wilson loops. This work
is a follow-up of the ODE/IM review published more than ten years ago by JPA, before
the discovery of its off-critical generalisation and the corresponding geometrical
interpretation.
(Partially based on lectures given at the “Young Researchers Integrability School 2017”,
in Dublin.)

1

mailto:p.e.dorey@durham.ac.uk
mailto:t.c.dunning@kent.ac.uk
mailto:stefano.negro@stonybrook.edu
mailto:tateo@to.infn.it


Contents

2



1 Introduction

There is a deep connection between integrable equations in two dimensions and the
embedding of surfaces in higher-dimensional manifolds. The simplest instance of this
relation appeared in the works of 19th-century geometers [?, ?] on the description of
pseudo-spherical and minimal surfaces sitting in 3-dimensional Euclidean space R3. The
structural equations describing their embedding, the Gauss-Mainardi-Codazzi (GMC)
system, are today known as the sine-Gordon and Liouville equations, respectively. More
recently, in the works of Lund, Regge, Pohlmeyer and Getmanov [?, ?, ?], a general
correspondence has been suggested and subsequently formalised by Sym [?, ?, ?, ?, ?]. These
results showed that any integrable field theory, with associated linear problem based on a
semi-simple Lie algebra g, could be put in the form of a GMC system for a surface embedded
in a dim(g)-dimensional space.

The connection between embedded surfaces and integrable models has proven especially
fruitful in the context of the AdS/CFT correspondence. In this framework, the semiclassical
limit of a string worldsheet theory in an AdSn+1 space can be exploited to compute certain
observables of conformal field theory (CFT) living on the boundary of that space. The
canonical example of this correspondence deals with AdS5×S5. In this case, semiclassical
worldsheet solutions are used to describe, in the dual CFT, states with large quantum
numbers [?], expectation values of Wilson loop operators [?, ?] and universal properties of
Maximally Helicity Violating (MHV) gluon scattering amplitudes [?, ?]. The connection
with integrable models allows these quantities to be related to certain known universal
structures of integrability, such as the Y-system or the corresponding set of Thermodynamic
Bethe Ansatz (TBA) equations [?, ?].
Generally speaking, the ODE/IM correspondence, discovered in [?], is instead a link between
quantum Integrable Models, studied within the formalism of [?, ?] where analytic properties
and functional relations are the main ingredients, and the theory of Ordinary Differential
Equations in the complex domain [?, ?]. The relationship is far more general than initially
thought, with concrete ramifications in string theory, AdS/CFT, and aspects of the
recently-discovered correspondences between supersymmetric gauge theories and integrable
models [?, ?, ?, ?, ?, ?, ?, ?, ?]. The ODE/IM correspondence relies on an exact equivalence
between spectral determinants associated with certain generalised Sturm-Liouville problems,
and the Baxter T and Q functions emerging within the Bethe Ansatz framework. Currently,
the link mainly involves the finite volume/temperature Bethe Ansatz equations associated
with 2D integrable quantum field theories. However, there are mild hopes that it can be
generalised to accommodate also integrable lattice models [?].

The primary purpose of this review is to describe the deep connection existing between
the ODE/IM correspondence and the theory of embedded surfaces in higher-dimensional
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manifolds.
The rest of the article is organised as follows. A brief review on the KdV theory and

associated integrals of motion, at both the classical and quantum level, is contained in sections
?? and ??. Section ?? contains a preliminary discussion of the ODE/IM correspondence for the
quantum KdV (mKdV/sinh-Gordon) hierarchy, the relevant Schrödinger equation is
introduced, and some general facts about the correspondence are described. Section ?? is
devoted to a schematic derivation of the Baxter TQ relation from the Schrödinger equation
(more details can be found in the original works [?], [?], [?] and in the review [?]). Section ??
describes how the local integrals of motion emerge from the semiclassical quantisation. A
short discussion of generalisations to excited states and to models related to higher-rank
algebras is contained in section ??.

The problem associated with the off-critical variant of the ODE/IM correspondence, the
connection with the sinh-Gordon model (shG) and surfaces embedded in AdS spaces is
discussed in section ??. In particular, section ?? contains a general introduction to embedded
surfaces in AdSn+1, while in section ?? the specific case of minimal surfaces in AdS3 is
discussed in more detail, together with their relation with Lax equations and the modified
sinh-Gordon model (mshG). In section ??, the generalised potential appearing in the
modified sinh-Gordon model is interpreted within a Wilson loop type setup while in sections
??–?? the associated linear problem is linked, also with the help of a WKB analysis, to the T-
and Y-systems. Starting from the Y-system and the WKB asymptotics, the corresponding
Thermodynamic Bethe Ansatz equations are derived in section ?? and the interpretation of
the surface area in terms of the free energy is given in section ??. Finally, section ?? contains
our conclusions.

2 Classical and quantum KdV, the light-cone shG model,
and local integrals of motion

The starting point of the work [?] by Bazhanov, Lukyanov and Zamolodchikov (BLZ) is the
Korteweg-de Vries equation1

u,t(x, t) + 12u,x(x, t)u(x, t) + 2u,xxx(x, t) = 0 , (2)

on a segment of length L = 2π with periodic boundary conditions u(x + 2π, t) = u(x, t). In
the following we will often omit the time dependence of u, since we will mainly work within

1In the following, we will denote partial derivatives with subscripts after a comma:

F,x1x2,... (x1, x2, . . . ) =
∂

∂x1

∂

∂x2
. . . F (x1, x2, . . . ) = ∂x1

∂x2
. . . F (x1, x2, . . . ) . (1)
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the Hamiltonian formalism. It is well-known (see, for example, [?]) that from the point of
view of integrability, the KdV equation is also deeply connected with the light-cone classical
sinh-Gordon model

φ,xt(x, t) + sinh (φ(x, t)) = 0 , (3)

since they formally share the same set of local integrals of motion. Note that we have used
different font styles for the KdV time parameter t in equation (??) and the sinh-Gordon time
t in equation (??). As will become apparent from later considerations, this is to underline
the fact that the corresponding Hamiltonians, when considered as part of the same hierarchy
of conserved charges for one of the two models, evolve field configurations along different
‘generalised time directions’.

2.1 Lax pair and classical conserved charges

The purpose of this section is to derive the expression of the classical integrals of motion for
the KdVmodel through the introduction of a pair of Lax operators which depend on a spectral
parameter. We will essentially sketch the derivation presented in the book [?], to which the
interested reader is addressed for further details.

First of all, notice that the KdV equation (??) can be written as a Zero Curvature Condition
(ZCC)

At,x − Ax,t − [Ax, At] = 0 , (4)

for the sl (2) connection2 A = Ax dx+ At dt, with components

Ax =

(
0 1

λ2 − u 0

)
, At = −2

(
−u,x 4λ2 + 2u

4λ4 − 2λ2 u− u,xx − 2u2 u,x

)
, (5)

where λ is the spectral parameter. In turn, equation (??) coincides with the compatibility
condition of the following pair of linear systems of (first-order) differential equations:

(1∂x − Ax)

(
Ψ

χ

)
= 0 , (1∂t − At)

(
Ψ

χ

)
= 0 . (6)

The first equation in (??) gives χ = Ψ,x , together with the Schrödinger-type equation

(L− λ2)Ψ = 0 , L = ∂2
x + u . (7)

The second relation in (??) leads instead to the time-evolution equation

(∂t −M)Ψ = 0 , M = −2(∂3
x + 3u ∂x + 3u,x) . (8)

2That is, an sl (2)-valued one-form.
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The compatibility between equations (??) and (??) gives

L,t − [M,L] = 0 , (9)

a constraint which is also equivalent to the original KdV equation (??).
A direct consequence of the zero-curvature condition (??), which involves the arbitrary

parameter λ, is the existence of an infinite tower of independent conserved charges. The
generator of these quantities is the trace

T (λ) = tr(M(λ)) , (10)

of the so-called monodromy matrix

M(λ) =←−exp

(∫ 2π

0

dxAx(x, t, λ)

)
= lim

δx→0
(1 + δxAx(xn, t, λ)) . . . (1 + δxAx(x1, t, λ)) . (11)

In (??), the symbol←−exp denotes the path-ordered exponential and x1 = 0 < x2 < · · · < xn =

2π.
Since Ax and At belong to the sl(2) algebra we can introduce the matrices

H =

(
1 0

0 −1

)
, E+ =

(
0 1

0 0

)
, E− =

(
0 0

1 0

)
, (12)

with [H,E±] = ±2E±, [E+,E−] = H and, expand the connection Ax over the basis
{H,E−,E+} as

Ax = Ah H + A−E− + A+ E+ . (13)

Notice that T (λ), defined in (??), is invariant under (periodic) gauge transformations of Ax

Ax → gAx = g−1Ax g − g−1 g,x . (14)

Therefore, we can gauge transform (??) such that gA− = gA+ = 0. We first perform the gauge
transformation g1 = exp(f−E−), which leads to

g1Ax = (Ah + A+f−) H− (f−,x + 2Ah f− + A+ f
2
− − A−) E− + A+ E+ . (15)

Setting

f− =
1

A+

(ν −A) , A = Ah −
1

2
∂x lnA+ , (16)

the vanishing of the coefficient A− of E− in (??) becomes equivalent to the solution of the
following Riccati equation:

ν,x + ν2 = V , V = A,x +A2 + A−A+ , (17)
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that, with the standard replacement ν(x) = ∂x ln y(x), can be recast into the Schrödinger-type
form (

∂2
x − V (x, λ)

)
y(x) = 0 . (18)

Since the potential in (??) is periodic, V (x + 2π, λ) = V (x, λ), we can introduce a pair of
independent Bloch solutions {y+, y−} such that the corresponding WronskianW [y+, y−] = 1

and
y±(x+ 2π, λ) = exp(±P(λ))y±(x, λ) , (19)

where P is the quasi-momentum:

P(λ) = ln

(
y+(2π, λ)

y+(0, λ)

)
=

∫ 2π

0

dx ν(x, λ) . (20)

However, in (??), the coefficient A+ is still unfixed and Ah may still depend on the coordinate
x. Following [?], we can perform two further independent gauge transformations, g2 and g3,
without spoiling theA− = 0 constraint. In fact, the combined transformation g = g1 g2 g3 with

g2 = exp(f+ E+) , g3 = exp(hH) , (21)

and
f+ = A+ y+ y− , h =

1

2
ln
(
A+ y

2
+ exp

(
−2P(λ)

x

2π

))
, (22)

leads to
gAx =

1

2π
P(λ) H , (23)

giving
T (λ) = tr(M(λ)) = 2 cosh (P(λ)) . (24)

For the KdV model under consideration, we have (cf. (??), (??) and (??) )

Ah = 0 , A− = λ2 − u , A+ = 1 , (25)

while the Riccati and the Schrödinger equations are

ν,x + ν2 = λ2 − u , (L− λ2)y = 0 . (26)

To find the local conserved charges, we expand ν as series in the spectral parameter around
λ2 =∞:

ν = λ+
∞∑
n=0

(−1)n
νn
λn

, (27)

and therefore

P(λ) =

∫ 2π

0

dx ν(x) = 2πλ+
∞∑
n=0

(−1)n

λn

∫ 2π

0

dx νn(x) . (28)
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Finally, plugging (??) into (??) we find the recursion relation

νn+1 =
1

2

(
ν,x +

n∑
p=0

νpνn−p

)
, ν0 = 0 , ν1 =

1

2
u . (29)

The first few coefficients are

ν1 =
1

2
u , ν2 =

1

4
u,x , ν3 =

1

8
(u2 + u,xx) ,

ν4 =
1

2
ν3,x +

1

8
uu,x , ν5 =

1

2
ν4,x +

1

32
(u,x)

2 +
1

16
uu,xx +

1

16
u3 , (30)

which correspond, when normalised as in [?] and up to total derivatives, to the following
integrals of motion:

I
(cl)
1 = I

[KdV]
1 =

∫ 2π

0

dx

2π
u(x) , I

(cl)
3 = I

[KdV]
3 =

∫ 2π

0

dx

2π
u2(x) ,

I
(cl)
5 = I

[KdV]
5 =

∫ 2π

0

dx

2π

(
u3(x)− 1

2
u2
,x(x)

)
. (31)

The relation between the KdV and the modified KdV (mKdV) equations emerges through
the Miura transformation

u(x, t) = −v2(x, t)− v,x(x, t) , (32)

which implies

u,t + 2u,xxx + 12uu,x = −(2 v + ∂x)
(
v,t + 2 v,xxx − 12 v2 v,x

)
= 0 . (33)

Hence a solution v(x, t) of the mKdV equation

v,t(x, t) + 2 v,xxx(x, t)− 12 v2(x, t) v,x(x, t) = 0 , (34)

can be mapped into a KdV solution through the Miura transformation (??). A straightforward
consequence of this fact is that the quantities I(cl)

n coincide with the integrals of motion I [mKdV]
n

of the mKdV theory
I [mKdV]
n [v] = −I [KdV]

n [u = −v2 − v,x] , (35)

that is

I
[mKdV]
1 =

∫ 2π

0

dx

2π
v2(x) , I

[mKdV]
3 = −

∫ 2π

0

dx

2π

(
v4(x) + (v,x(x))2

)
, . . . (36)

Furthermore, the sinh-Gordon model (??) also possesses the same set of local charges, provided
the formal identification v(x, t) = φ,x(x, t)/2 is made at fixed times t and t:

I [shG]
n [φ] = I [mKdV]

n [v = 1
2
φ,x] . (37)
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In fact, the sinh-Gordon Lagrangian in light-cone coordinates is

L[shG] =
1

2π
(φ,t(x, t)φ,x(x, t)− cosh(φ(x, t)) + 1) , (38)

and the conjugated momentum and Hamiltonian are

π(x, t) =
1

2π
φ,x(x, t) , H [shG] =

∫ 2π

0

dx

2π
(coshφ(x, t)− 1) . (39)

Then {φ(x, t), π(x′, t)} = δ(x− x′), and the sinh-Gordon equations of motion can be written
as

φ,xt(x, t) = 2 v,t(x, t, t) = 2 {v(x, t, t), H [shG]} . (40)

Notice that in (??), t denotes the sinh-Gordon time, which differs from the KdV (mKdV) time
t appearing in (??) and (??).3

In addition, imposing periodic boundary conditions φ(x + 2π, t) = φ(x, t) and using the
equation of motion, it is not difficult to prove that

{I(cl)
2n+1[v =

1

2
φ,x], H

[shG]} = 0 , (∀n ∈ Z≥) . (41)

For example:

{I(cl)
1 [v =

1

2
φ,x], H

[shG]} =

∫ 2π

0

dx

4π
φ,x φ,xt = −

∫ 2π

0

dx

4π
∂x cosh(φ(x, t)) = 0 . (42)

Therefore, and as mentioned in the previous section, the KdV conserved charges {I(cl)
n } are

also integrals of motion for the sinh-Gordon model (??). We will see later that the off-critical
field theory generalisation of the ODE/IM correspondence described in this review is
naturally based on the sinh-Gordon perspective of this connection.

2.2 Quantisation of the local conserved charges

It is well known (cf. [?]) that the KdV model admits two equivalent Hamiltonian structures.
The first Hamiltonian is

H = I
(cl)
3 =

∫ 2π

0

dx

2π
u2(x) , (43)

3At least formally, relation (??) can be regarded as a particular instance of the KdV/mKdV hierarchy of
equations [?]:

v,t2k−1
({ti}) = {I [mKdV]

2k−1 , v({ti})} ,

where {ti}, with i ∈ 2Z + 1, is the set of generalised time directions with the identifications t1 = x, t3 = t and
also t−1 = t, i.e. I [mKdV]

−1 = H [shG] (see, for example [?, ?] ).
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with Poisson bracket

1

2π
{u(x), u(y)} = 2(u(x) + u(y))δ,x(x− y) + δ,xxx(x− y) . (44)

The second possibility is instead

H ′ = I
(cl)
5 =

∫ 2π

0

dx

2π

(
u3(x)− 1

2
(u,x(x))2

)
, (45)

with Poisson bracket
1

2π
{u(x), u(y)}′ = 2 δ,x(x− y) . (46)

Both options lead to the KdV equation:

∂tu = {H, u} = {H ′, u}′ = −12uu,x − 2u,xxx . (47)

Furthermore, through the change of variables u(x) = −(φ,x(x))2 − φ,xx(x), the first Poisson
bracket (??) reduces to

1

2π
{φ(x), φ(y)} =

1

2
ε(x− y) , (48)

with ε(x) = n for 2πn < x < 2π(n + 1) and n ∈ Z. This is the standard Poisson bracket
involving a single bosonic field φ(x, t) with periodic boundary conditions and conjugated
momenta π(x, t) as in (??).

The quantisation of (??) is then achieved by performing the following replacements [?]:

1

2π
{ , } → ic

6π
[ , ] , u(x)→ −6

c
T(x) . (49)

Expanding

T(x) =
c

24
+

∞∑
n=−∞

L−ne
inx , (50)

we see, from (??), that the operators Ln satisfy the Virasoro algebra

[Ln,Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0 . (51)

Alternatively, performing first a quantum Miura transformation

− β2T(x) = : φ̂,x(x)2 : +(1− β2)φ̂,xx(x) +
β2

24
, (52)

and expanding the fundamental quantum field φ̂(x) in plane-wave modes as

φ̂(x) = iQ + iPx+
∑
n6=0

a−n
n
einx , (53)
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we obtain the Heisenberg algebra

[Q,P] =
i

2
β2, [an, am] =

n

2
β2δn+m,0 . (54)

The relation between the central charge c appearing in the Virasoro algebra (??) and the
parameter β in equation (??) is

β =

√
1− c

24
−
√

25− c
24

. (55)

The highest weight (vacuum) vector |p〉 over the Heisenberg algebra is defined by

P|p〉 = p|p〉 , an|p〉 = 0 , (∀n > 0). (56)

In terms of the Virasoro representation, the states |p〉 are highest weights with conformal
dimensions

∆ =

(
p

β

)2

+
c− 1

24
, (57)

L0|p〉 = ∆|p〉 , Ln|p〉 = 0, (∀n > 0) . (58)

The quantum charges were first determined in [?] under the replacement of classical fields
with the corresponding operators (φ→ φ̂), and by following the scheme

1. In = : I
(cl)
n : , (n = 1, 3);

2. In = : I
(cl)
n : +

∑n
k=1(β)2k : I

(k)
n : , (n = 5, 7, . . . );

3. The quantum corrections : I
(k)
n : do not contain any of the : I

(cl)
m : as a part (see [?] for

more details.);

4. [In, Im] = 0 , (∀n,m ∈ 2Z≥ + 1) .

The first three non-vanishing local integrals of motion, written in terms of the generators of
the Virasoro algebra (??), are:

I1 = L0 −
c

24
, I3 = 2

∞∑
n=1

L−nLn + L2
0 −

c+ 2

12
L0 +

c (5 c+ 22)

2880
,

I5 =
∑

n1+n2+n3=0

: Ln1Ln2Ln3 : +
∞∑
n=0

(
c+ 11

6
n2 − 1− c

4

)
L−nLn +

3

2

∞∑
n=0

L1−2nL2n−1

− c+ 4

8
L2

0 +
(c+ 2)(3 c+ 20)

576
L0 −

c (3 c+ 14)(7 c+ 68)

290304
. (59)
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In equation (??), the normal ordering : : means that the operators Lni with larger ni are placed
to the right. The corresponding expectation values Ivacn = 〈p|In|p〉 on the vacuum states are

Ivac1 = ∆− c

24
, Ivac3 = ∆2 − c+ 2

12
∆ +

c (5 c+ 22)

2880
,

Ivac5 = ∆3 − c+ 4

8
∆2 − (c+ 2)(3 c+ 20)

576
∆− c (3 c+ 14)(7 c+ 68)

290304
, (60)

where c and ∆ are related to p and β through equations (??) and (??). An alternative, but more
sophisticated, method leading to the same result (??) is described in [?].

3 TheODE/IM correspondence for the quantumKdV-shG
hierarchy

The simplest instance of the ODE/IM correspondence involves, on the ODE side, the second
order differential equation [?, ?] (

−∂2
x + P (x)

)
χ(x) = 0 (61)

with
P (x) = P [KdV]

0 (x,E, l,M) =

(
x2M +

l(l + 1)

x2
− E

)
. (62)

The generalised potential P and wavefunction χ depend, therefore, on three extra parameters:
the energy or spectral parameter E, the ‘angular-momentum’ l, and the exponent M . For
simplicity, throughout this review,M and l will be kept real withM ≥ 0. However, there are
no serious limitations forbidding the extension of bothM and l to the complex domain. The
range −1 ≤ M ≤ 0 is essentially equivalent, by a simple change of variables, to the M > 0

regime [?, ?].4 We will see that for M ≥ −1 equation (??) is related, through the ODE/IM
correspondence, to the conformal field theory with central charge c ≤ 1 associated to the
quantisation of the KdV-shG theory.5

The ODE/IM correspondence is based on the observation that the CFT version of Baxter’s
TQ equation [?] for the six-vertex model, and the quantum Wronskians introduced in the
works by BLZ [?], exactly match the Stokes relations and Wronskians between independent
solutions of (??). BLZ introduced a continuum analogue of the lattice transfer matrix T for
the quantum KdV equation, an operator-valued function T(λ,p), together with the Baxter
Q±(λ,p) operators with Q(λ,p) ≡ Q+(λ,p) = Q−(λ,−p), where p is the quasi-momentum

4In fact, with the identification β−2 = M + 1, the equivalence (−1 ≤ M ≤ 0) ↔ (M ≥ 0) coincides with
the β2 → β−2, duality in the integrals of motion in the quantum KdV model (see, for example, [?]).

5The regimeM < −1 is also interesting, since it is related to the Liouville field theory [?].
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[?]. Both the Q and T operators are entire in the spectral parameter λ with

[T(λ,p),Q±(λ,p)] = 0 . (63)

All the descendent CFT states in the Verma module associated to the highest-weight vector
|p〉 are characterised by the real parameter p. Since T and Q± commute, we can work directly
with their eigenvalues

T (λ,p) = 〈p|T(λ,p)|p〉 , Q±(λ,p) = 〈p|λ∓p/β2

Q±(λ,p)|p〉 (64)

which satisfy the TQ relation [?]

T (λ,p)Q±(λ,p) = e∓i2πpQ±(q−1λ,p) + e±i2πpQ±(qλ,p) (65)

with q = exp(iπβ2).
It turns out that equation (??) exactly matches a Stokes relation, i.e. a connection formula,

for particular solutions of the ODE (??). The precise correspondence between the parameters
in (??) and those in (??) is:

β−2 = M + 1 , p =
2l + 1

4M + 4
, λ = (2M+2)−2M/(M+1) Γ

(
M

M + 1

)−2

E . (66)

Supplemented with the analytic requirement that both T and Q are entire in λ, (??) leads to
the Bethe Ansatz equations. At a zero λ = λi of Q(λ,p) = Q+(λ,p), the RHS of (??) vanishes
since T (λi,p) is finite, and hence

Q(q−1λi,p)

Q(q λi,p)
= −ei4πp . (67)

As a result, the link between (??) and the Baxter relation (??) for the quantum KdV model is
more than formal: the resulting T and Q functions emerging from these two – apparently
disconnected – setups are exactly the same.

3.1 Derivation of Baxter’s TQ relation from the ODE

Consider the ODE (??), where we will henceforth allow x to be complex, living on a suitable
cover C of the punctured complex plane C∗ = C \ {0} so as to render the equation and its
solutions single-valued. A straightforward WKB analysis shows that for large x close to the
positive real axis a generic solution has a growing leading asymptotic of the form

χ(x) ∼ c+ P (x)−1/4 exp

(∫ x

dx′
√
P (x′)

)
, (Re[x]→ +∞) . (68)

Even at fixed normalisation c+, this asymptotic does not uniquely characterise the solution,
since an exponentially decreasing contribution can always be added to χ(x) without spoiling

13



the large-x behaviour (??). The exponentially small term can explicitly emerge from the
asymptotics only if the nontrivial solution to (??) is carefully chosen such that the coefficient
of the exponentially growing term vanishes. In this special situation

χ(x) ∼ c− P (x)−1/4 exp

(
−
∫ x

dx′
√
P (x′)

)
, (Re[x]→ +∞) . (69)

Apart for the arbitrariness of the overall normalisation factor c−, the asymptotic (??) now
uniquely specifies the solution of (??). This was formalised by Sibuya and collaborators in the
following statement, which holds not only on the real axis but also in an M-dependent
wedge of the complex plane: the ODE (??) has a basic solution y(x,E, l) with the following
properties, which fix it uniquely:

1. y(x,E, l) is an entire function of E, and a holomorphic function of x ∈ C, where C is a
suitable cover of the punctured complex plane C∗ = C \ {0} ;

2. the asympotic behaviour of y(x,E, l) for |x| → ∞ with | arg(x) | < 3π/(2M+2) is

y ∼ 1√
2i
x−

M
2 exp

(
−x

M+1

M+1

)
, y,x ∼ −

1√
2i
x
M
2 exp

(
−x

M+1

M+1

)
, (70)

though there are small modifications in the asymptotics (??) for M ≤ 1 (see, for
example, [?]).

To proceed with our analysis, it is necessary to continue x even further into the complex
plane, beyond the wedge where Sibuya’s initial result applies. We define general rays in the
complex plane by setting x = %eiϑ with % and ϑ real. Substituting into the WKB formulas (??)
and (??), we detect two possible asymptotic behaviours

χ± ∼ P−1/4 exp

(
± 1

M+1
eiϑ(1+M)%1+M

)
. (71)

For most values of ϑ, one of these solutions will be exponentially growing, or dominant, and
the other exponentially decaying, or subdominant. However, for

Re
[
eiϑ(1+M)

]
= 0 (72)

both solutions oscillate, and neither dominates the other. The values

ϑ = ± π

2M+2
, ± 3π

2M+2
, ± 5π

2M+2
, . . . , (73)

where this happens, and the two solutions (??) exchange rôles, are called anti-Stokes lines.6

The Stokes lines are instead the lines along which χ either grows or shrinks the fastest, and
6We are following here the convention used, for example, in [?]. Unfortunately, the lines characterised by

the condition (??) are sometimes called instead Stokes lines.
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Figure 1: Stokes, WKB sectors and convention for the branch cut when 2M /∈ Z≥.

in the current case they lie right in the middle, between adjacent anti-Stokes lines, and are
characterised by

Im
[
eiϑ(1+M)

]
= 0 . (74)

The wedges between adjacent anti-Stokes lines are called Stokes sectors, and we will label
them as

Sk =

{
x ∈ C :

∣∣∣∣arg(x)− 2πk

2M+2

∣∣∣∣ < π

2M+2

}
. (75)

In this notation the region of validity of the asymptotic (??) is the union of wedges

SWKB = S−1 ∪ S0 ∪ S1 (76)

where S0 is the closure of S0.
Finding the large |x| behaviour of the particular solution y(x,E, l) outside the region (??)

is a non-trivial task: the continuation of a limit is not in general the same as the limit of a
continuation, and so (??) no longer holds once SWKB is left. This issue is related to the
so-called Stokes phenomenon, wherein the quantities of principal interest are the Stokes
multipliers, encoding the switching-on of small (subdominant) exponential terms as Stokes
lines are crossed [?].

Thus far we have discussed the behaviour of solutions to (??) when |x| is large. Consider
now the region x ' 0. ForM > −1, the origin corresponds to a regular singularity, and the
associated indicial equation shows that a generic solution to (??) behaves as a linear combination
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of xl+1 and x−l as x → 0. This allows a special solution ψ(x,E, l) to be specified by the
requirement

ψ(x,E, l) ∼ xl+1 +O(xl+3) . (77)

This boundary condition defines ψ(x,E, l) uniquely provided Re[l] > −3/2. A second solution
can be obtained from ψ(x,E, l) by noting that, since the differential equation (??) is invariant
under the analytic continuation l → −1−l, ψ(x,E,−1−l) is also a solution. Near the origin,
ψ(x,E,−1−l) ∼ x−l +O(x−l+2), therefore for generic values of the angular momentum l the
two solutions

ψ+(x,E) = ψ(x,E, l) , ψ−(x,E) = ψ(x,E,−1−l) , (78)

are linearly independent, i.e. the Wronskian W [ψ+, ψ−] is non-vanishing. Some subtleties
arise at the isolated points

l +
1

2
= ± (m1 + (M + 1)m2) , (m1,m2 ∈ Z≥) , (79)

where {ψ+, ψ−} fails to be a basis of solutions [?]. For 2M ∈ Z≥, this is just the standard
resonant phenomenon in the Frobenius method, which predicts that one of the two
independent solutions may acquire a logarithmic component, when the two roots of the
indicial equation differ by an integer. For the remainder of this review we will steer clear of
such points, but see [?] for some further discussion of the issue.

A natural eigenproblem for a Schrödinger equation, the so-called radial or central problem,
is to look for values of E at which there exists a solution that vanishes as x→ +∞, and behaves
as xl+1 at origin. For Re[l] > −1/2, this boundary condition is equivalent to demanding the
square integrability of the solution on the half line, and for Re[l] > 0 to the requirement that
the divergent x−l−1 term is absent. For Re[l] ≤ −1/2, the problem can be defined by analytic
continuation.

Addressing the reader to [?] and [?] for more details, we proceed by adopting a trick due to
Sibuya [?]. Starting from the uniquely-defined solution y(x,E, l), subdominant in the Stokes
sector S0, we generate a set of functions

yk(x,E, l) = ωk/2y(ω−kx, ω2kE, l) , ω = e
2πi

2M+2 , (k ∈ Z) , (80)

all of which solve (??). Notice that the asymptotic expansion

y±1(x,E, l) ∼ ±
√
i
x−M/2

√
2

exp

(
xM+1

M + 1

)
, (81)

is valid in the Stokes sector S0 containing the real line. Hence, we can compute theWronskians
W [y, y±1] using the expansions (??) and (??), finding that they are non-zero: W [y, y±1] = ±1.
As a consequence {y, y±1} are bases of the two-dimensional space of solutions to the ODE

16



(??). More generally, a similar consideration shows that W [yk, yk+1] = 1 and hence any pair
{yk, yk+1} constitutes a basis. In particular, y−1 can be written as a linear combination of the
basis elements y = y0 and y1 as y−1 = Cy + C̃y1, or equivalently

C(E, l) y(x,E, l) = y−1(x,E, l)− C̃(E, l) y 1(x,E, l) , (82)

where the connection coefficients C̃ and C are the Stokes multipliers. For the right-hand side
of of (??) to match the exponentially decreasing behaviour on the left, we must set C̃ = −1 (cf.
equation (??)) and so

C(E, l) y0(x,E, l) = y−1(x,E, l) + y1(x,E, l) , (83)

where the sole non-trivial Stokes multiplierC(E, l) takes, in the chosen normalisations (??) and
(??) for y(x) and yk(x), the simple form:

C(E, l) = W [ y−1 , y1]/W [ y0, y1] = W [ y−1 , y1] . (84)

We now project y(x,E, l) onto another solution, defined by its asymptotics as x → 0.
Taking the Wronskian of both sides of (??) with ψ(x,E, l) results in the x-independent
equation

C(E, l)W [y0, ψ](E, l) = W [y−1, ψ](E, l) +W [y1, ψ](E, l) . (85)

To relate the objects on the right-hand side of this equation back to W [y0, ψ], we first define
another set of ‘rotated’ solutions, by analogy with (??):

ψk(x,E, l) = ωk/2ψ(ω−kx, ω2kE, l) , (k ∈ Z) . (86)

The functions (??) also solve (??) and a consideration of their behaviour as x→ 0 shows that

ψk(x,E, l) = ω−(l+1/2)kψ(x,E, l) . (87)

In addition,

W [yk, ψk](E, l) = ωkW [y(ω−kx, ω2kE, l), ψ(ω−kx, ω2kE, l)] = W [y, ψ](ω2kE, l) . (88)

Combining these results,

W [yk, ψ](E, l) = ω(l+1/2)kW [y, ψ](ω2kE, l) , (89)

and setting
D(E, l) = W [y, ψ](E, l) , (90)

the projected Stokes relation (??) becomes

C(E, l)D(E, l) = ω−(l+1/2)D(ω−2E, l) + ω(l+1/2)D(ω2E, l) . (91)
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Therefore, as anticipated at the end of section ??, with the identifications T = C and Q = D

and (??), the Stokes equation (??) exactly matches the Baxter TQ relation (??) for the quantum
KdV theory described in [?]. Finally, the constraintW [ yk , yk+1] = 1, becomes

det

(
ω−

2l+1
4 D−(ω−1E) ω

2l+1
4 D−(ωE)

ω
2l+1

4 D+(ω−1E) ω−
2l+1

4 D+(ωE)

)
= (2l + 1) , (92)

withD−(E) = D(E, l) andD+(E) = D(E,−l− 1). Equation (??) is known in the literature as
quantumWronskian [?], and is a special case of the QQ-systems of [?]. In turn, the QQ-systems
are x-independent versions of the ψ-systems of [?].

3.2 All orders semiclassical expansion and the quantum integrals of
motion

We first note that with a simple change of variables [?], the Schrödinger equation (??) can be
recast into the form (

−ε2∂2
w + Z(w)

)
y(w) = 0 , (93)

where
Z(w) =

1

4l̂2
w1/l̂−2(wM/l̂ − 1) , l̂ = l +

1

2
, ε = E−(M+1)/2M . (94)

A key feature of equations (??) and (??) is that the E-dependence, contained in ε, has been
factored out of the transformed potential Z(w). Suppose now that (??) has a solution of the
form

y(w) = exp

(
1

ε

∞∑
n=0

εnSn(w)

)
. (95)

For equation (??) to be fulfilled order-by-order in ε, the derivatives Sn,w(w) must obey the
following recursion relation:

S0,w(w) = −
√
Z(w) , 2S0,w Sn,w +

n−1∑
j=1

Sj,w Sn−j,w + Sn−1,ww = 0 , (n ≥ 1) . (96)

The first few terms of the solution are

S1,w = − Z,w
4Z

, S2,w = − 1

48

(
Z,ww
Z3/2

+ 5 ∂w

(
Z,w
Z3/2

))
,

S3,w = − Z,ww
16Z2

+
5(Z,w)2

64Z3
= ∂w

(
5(Z,w)2

64Z3
− Z,ww

16Z2

)
, (97)

and further terms are very easily obtained using, for example, Mathematica. Keeping only
the first two contributions, S0 and S1, corresponds to the standard physical optics or WKB
approximation. Near the turning points Z = 0 the approximation breaks down, and further
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work is needed to find the connection formulae for the continuation of WKB-like solutions
of given order from one region of non-vanishing Z to another (see, for example, section 10.7
of [?]).

In cases where Z(w) is an entire function of the coordinate w, with just a pair of well-
separated simple zeros on the real axis, Dunham [?] found a remarkably simple formulation of
the final quantisation condition, valid to all orders in ε:

1

i

∮
γ

dw

(
∞∑
n=0

εn−1Sn,w(w)

)
= 2π k , (k ∈ Z≥) . (98)

In (??), the contour γ encloses the two turning points; it closes because for such a Z all of the
functions Sn,w derived from (??) are either entire or else have a pair of square root branch points
which can be connected by a branch cut along the real axis. Notice that the contour γ can be
taken to lie far from the two turning points where the WKB series breaks down and so there
is no need to worry about connection formulae. All of the terms S2n+1,w, n ≥ 1, turn out to be
total derivatives and can, therefore, be discarded, while the contribution of 1

2i
S1,w = − 1

8i
Z,w/Z

is a simple factor π/2, when integrated round the two zeros of Z. Dunham’s condition then
becomes

1

i

∮
γ

dw

(
∞∑
n=0

ε2n−1S2n,w(w)

)
= (2k+1)π , (k ∈ Z≥) . (99)

In the current situation, we are interested in the radial connection problem, where the
integration contour runs initially on the segment w ∈ (0, 1):∮

γ

dw S2n,w(w)→ 2

∫ 1

0

dw S2n,w(w) . (100)

However, for generic values of l̂, M and n the integrand in (??) is divergent at w = 0 and/or
at w = 1. We need, therefore, a consistent regularisation prescription. To this end we replace
the integration on the segment w ∈ (0, 1) with an integral over the Pochhammer contour γP ,
represented in figure ??, around the branch points at w = 0 and w = 1. To proceed, we first
perform a change of variable z = wM/l̂,

Ǐ2n−1(M, l̂) =
2

i

∫ 1

0

dw S2n,w(w) =
2

i

l̂

M

∫ 1

0

dz S2n,w

(
z l̂/M

)
z l̂/M−1 . (101)

Setting

S̃2n(z) =
2

i

l̂

M
S2n,w

(
z l̂/M

)
z l̂/M−1 , (102)

the monodromies around z = 0 and z = 1 are:
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Figure 2: The Pochhammer contour γP .

S̃2n(zei2π)→ ei
π
M

(1−2n)S̃2n(z) , S̃2n((z − 1)ei2π + 1)→ −S̃2n(z) . (103)

Therefore, we can replace the integral over the interval (0, 1)with an integral over γP , provided
the extra contribution introduced by integrating over the Pochhammer contour is properly
balanced by a normalisation factor. The result is

Ǐ2n−1(M, l̂) =
1

2
(

1− ei
π(1−2n)

M

) ∮
γP

dz S̃2n(z) , (104)

which is now well defined for generic values ofM and λ and can always be written as a finite
sum of Euler Beta functions. The explicit outcome is:

Ǐ2n−1(M, l̂) = (−1)n

√
π Γ
(

1− (2n−1)
2M

)
Γ
(

3
2
−n− (2n−1)

2M

) (4M+4)n

(2n−1)n!
I2n−1(M, l̂) , (105)

where I−1 = 1, while the coefficients I2n−1(M, l̂), with n > 0, coincide with the local KdV
conserved charges for the vacuum states (??), provided the following identifications are made:

c = 1− 6M2

M + 1
, ∆ =

(2l + 1)2 − 4M2

16(M + 1)
. (106)

The exact link between the all-order WKB coefficients and the integrals of motion (??) is
another striking result of the ODE/IM correspondence.

3.3 Simple generalisations

First of all, the link between the ODE (??) and the vacuum states of the quantum KdVmodel in
finite volume L = 2π can be generalized to accommodate the whole tower of excited states [?]
(see also [?]). The basic replacement is to send P [KdV]

0 → P [KdV]
exc in (??) with

P [KdV]
exc (x,E, l,M, {zk}) =

(
x2M +

l(l + 1)

x2
− 2∂2

x

(
K∑
k=1

ln(x2M+2 − zk)

)
− E

)
, (107)
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where the constants {zk} satisfy the auxiliary Bethe Ansatz type equations:

K∑
j=1
j 6=k

zk(z
2
k + (M+3)(2M+1)zkzj +M(2M+1)z2

j )

(zk − zj)3
− Mzk

4(M+1)
+ ∆ = 0 . (108)

Generalisations of the ODE/IM correspondence for both the vacuum and the excited states
involving families of higher-order differential operators were studied in [?, ?, ?, ?, ?, ?, ?, ?].

In the following, instead of describing the setup of [?] or [?, ?, ?, ?, ?, ?, ?, ?, ?] we shall focus
on an off-critical variant, which is related to the classical problem of embedded surfaces in
AdS3 and also to polygonal Wilson loops [?, ?]. As a preliminary remark, we notice that a
natural generalisation of the Sturm-Liouville problem associated with (??)-(??) corresponds to
polynomial potentials of the form

P [HsG]
0 (x, {xk}) =

2N∏
k=1

(x− xk) , (2N ∈ Z>) , (109)

where x1 can be set to zero by shifting x, while the remaining constants xk (i = 2, . . . , 2N ) are
free parameters. It was argued in [?] that the choice (??), is connected to theHomogeneous sine-
Gordon model (hsG) in its CFT limit or equivalently to the SU(2N)2/U(1)2N−1 parafermions
[?, ?, ?]. The specific choices of the set xk which lead to

P [Vir]
0 (x,m,m′) = xm−2(xm

′−m − Ẽ) , (110)

correspond to the Virasoro minimal models Mm,m′ . As described in [?], the generalised
potential (??) is related to the original instance of the ODE/IM correspondence, discussed in
the previous sections, by a simple change of variables.

We shall see in the remaining part of this review that the polynomial potentials (??) appear
naturally in the description of Wilson loops in AdS3 with polygonal boundaries.

4 Classical integrable equations and embedded surfaces

In this section we wish to recall the general properties of minimal and constant mean curvature
(CMC) surfaces embedded in AdSn+1 and explain how a linear differential system arises as a
structural constraint on the functions describing the embedding of these surfaces. We will
then focus on the simplest non-trivial case of minimal surfaces embedded in AdS3. Here a
single field ϕ̃ is present, parametrizing the conformal factor of the metric. This field satisfies
the modified sinh-Gordon equation [?, ?, ?, ?], with (anti)-holomorphic potentials A and Ā,7

7As shown in section ??, these functions intuitively measure how ‘curved’ the surface is, and enter in the
definition of the Gauss curvature.
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whose singularity structure has profound effects on the shape of the embedded surface. In
particular, the presence of an irregular singularity (e.g. when A is a polynomial) corresponds
to the presence of a Stokes phenomenon in the linear differential system which then translates
into the existence of light-like edges of the surface at the conformal boundary of AdS3. For A
and Ā polynomials of order 2N ∈ Z>, the embedded surface will sit on a light-like 4(N + 1)-
gon on the conformal boundary. Finally, we will explain how to encode the full information
of this embedding into a set of finite difference equations, the T-system and the Baxter TQ
equation, which can then be converted into non-linear integral equation form.

4.1 Surfaces embedded in AdSn+1

The (n + 1)-dimensional anti de-Sitter space AdSn+1 can be described by a pseudo-spherical
restriction of the pseudo-Riemannian flat space R2,n. More precisely, consider
~Y = (Y −1 , Y 0 , · · · , Y n)

T ∈ R2,n, where the superscript T denotes the operation of matrix
transposition; then the condition

~Y · ~Y ≡ −
(
Y −1

)2 −
(
Y 0
)2

+
n∑
k=1

(
Y k
)2

= −α2 , (α ∈ R) , (111)

represents an immersion of AdSn+1 with radius α inside R2,n. Here and below we use the dot
to denote the scalar product of vectors in R2,n:

~Y · ~Y ′ = ηABY
AY ′B , ηAB = diag

−1 ,−1 , 1 , . . . , 1︸ ︷︷ ︸
n

 . (112)

Concerning the indices we will adopt the convention

A,B,C, . . . = −1, 0, 1, . . . , n , µ, ν, . . . = 0, 1 , (113a)

j, k, l, . . . = 1, 2, . . . , n , a, b, . . . = 1, 2 . (113b)

The AdSn+1 space can be parametrised by global coordinates (ρ, τ, θ1, . . . , θn−1) as

Y −1 = α cosh(ρ) cos(τ) ,

Y 0 = α cosh(ρ) sin(τ) , (114)

Y j = α sinh(ρ) cos(θn−j+1)

n−j∏
k=1

sin(θk) , θn = 0 .

From the last equations we can read the standard AdS metric

ds2 = α2
(
− cosh2(ρ) dτ 2 + dρ2 + sinh2(ρ) dΩ2

n−1

)
, (115)
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where dΩ2
n−1 is the metric of the unit (n − 1)-dimensional sphere. The conformal boundary

of AdSn+1 can be reached by taking the limit ρ→∞ jointly with a rescaling of the arc-length
ds→ ds/ sinh(ρ). The resulting metric is that of a cylinder in R1,n :

ds2
∂ = α2

(
−dτ 2 + dΩ2

n−1

)
. (116)

Let us mention another useful parametrization of the space AdSn+1: the Poincaré coordinates
{r, t,~x}

Y −1 =
α2

2r
+ r

α2 + |~x|2 − t2

2α2
,

Y n = −α
2

2r
+ r

α2 − |~x|2 + t2

2α2
, (117)

Y 0 =
r

α
t , Y j =

r

α
xj , 1 ≤ j < n .

In these coordinates the metric reads

ds2 =
α2

r2
dr2 − r2

α2
dt2 +

r2

α2
|d~x|2 , (118)

from which we see that r→∞ approaches the boundary ∂AdSn+1. The singularity r = 0 is an
apparent one, called Poincaré-Killing horizon and shows that the Poincaré coordinates are not
global.

Now that we have defined our embedding space, AdSn+1, we move on to the construction
of the embedded surface Σ. Here we have a choice to make: we need to decide whether the
time-like direction of AdSn+1 lies in the tangent space TΣ, in which case we will have what is
known as a time-like surface, or is orthogonal to it which will yield a space-like surface. This
choice will dictate the type of reality conditions we need to impose on the parametrisation of
Σ. For time-like surfaces we will need to describe the surface with Minkowski coordinates
ξµ or, equivalently, with light-cone coordinates (ξ+ = ξ0 + ξ1, ξ− = ξ0 − ξ1) ∈ R2. On the
contrary, space-like surfaces will be parametrised by Euclidean coordinates xa or, which is
the same, complex coordinates (z = x1 + ix2, z̄ = x1 − ix2) ∈ C. In the following we will
concentrate on the latter type of surfaces. The same type of analysis can be carried over with
some modifications for time-like surfaces. As is usual when dealing with the Euclidean plane,
we will let the coordinates (z, z̄) take values in the full two dimensional complex space C2

while keeping the real slice condition z∗ = z̄ in the back of our minds, imposing it only when
we see fit. Furthermore, we will continue to denote partial derivatives with subscripts after a
comma, i.e.:

f,z (z, z̄) =
∂

∂z
f (z, z̄) = ∂f (z, z̄) , f,z̄ (z, z̄) =

∂

∂z̄
f (z, z̄) = ∂̄f (z, z̄) . (119)

Finally, whenever it is not necessary, we will drop the explicit dependence on the coordinates.
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The description of the embedding of Σ in AdSn+1 is carried by the embedding function
~Y : C2 −→ R2,n, such that ~Y (z, z̄) · ~Y (z, z̄) = −α2. From it we can immediately construct
the tangent space TpΣ at any point p ∈ Σ as the span of the two vectors ~Y,z and ~Y,z̄, and compute
the metric tensor, also known as first fundamental form:

I = ds2 = gzz (dz)2 + 2 gzz̄ dz dz̄ + gz̄z̄ (dz̄)2 , g =

(
~Y,z · ~Y,z ~Y,z · ~Y,z̄
~Y,z · ~Y,z̄ ~Y,z̄ · ~Y,z̄

)
. (120)

It is an established fact [?, ?, ?, ?] that, at least locally, one can choose isothermal coordinates
(z′, z̄′) such that

ds2 = 2 g′z′z̄′ dz
′ dz̄′ . (121)

In the following we will fix these coordinates and drop the primes. The requirements ~Y,z ·~Y,z =
~Y,z̄ · ~Y,z̄ = 0 are known as Virasoro constraints and we see that these immediately imply that
the (real) vectors ~Y,1 = ~Y,z + ~Y,z̄ and ~Y,2 = −i~Y,z + i~Y,z̄ satisfy the following identities

~Y,1 · ~Y,1 = ~Y,2 · ~Y,2 , ~Y,1 · ~Y,2 = 0 . (122)

As a consequence, since we already have one independent time-like vector ~Y and in R2,n there
can be at most 2, we conclude that

~Y,1 · ~Y,1 > 0 , ~Y,2 · ~Y,2 > 0 =⇒ ~Y,z · ~Y,z̄ > 0 . (123)

Due to the AdS constraint ~Y · ~Y = −α2, we see that the triple
(
~Y , ~Y,z, ~Y,z̄

)
spans, at any

point of Σ, a three-dimensional subspace of AdSn+1. In order to understand the structure of
the embedding, we now need to augment the above triple to a full basis of R2,n and we can do
this by introducing the following set of orthonormal real vectors,8{

~Nj

}n−1

j=1
, ~Ni · ~Nj = ηij , ηij = diag (−1 , 1 , . . . , 1) , (124)

spanning, together with ~Y , the normal space (TpΣ)⊥ at any point p ∈ Σ :

~Ni · ~Y = ~Ni · ~Y,z = ~Ni · ~Y,z̄ = 0 . (125)

For each of these vectors there exists a second fundamental form IIj , defined as

IIj = (dj)zz (dz)2 + 2 (dj)zz̄ dz dz̄ + (dj)z̄z̄ (dz̄)2 , (126)

dj =

(
~Y,zz · ~Nj

~Y,zz̄ · ~Nj

~Y,zz̄ · ~Nj
~Y,z̄z̄ · ~Nj

)
.

8To have a basis of R2,n we need 2 time-like vectors. One, ~Y , we already have, the other has to be one of
these normals. We choose it to be ~N1.
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Note that while in principle we should also have a fundamental form associated to the normal
direction ~Y ,9 this turns out to be trivial:

d0 =

(
~Y,zz · ~Y ~Y,zz̄ · ~Y
~Y,zz̄ · ~Y ~Y,z̄z̄ · ~Y

)
=

(
−~Y,z · ~Y,z −~Y,z · ~Y,z̄
−~Y,z · ~Y,z̄ −~Y,z̄ · ~Y,z̄

)
= −g . (127)

It is now a good point to simplify the notation by introducing the following functions

eϕ̃ = ~Y,z · ~Yz̄ , Hj = e−ϕ̃~Y,zz̄ · ~Nj , (128a)

Aj = ~Y,zz · ~Nj , Āj = ~Y,z̄z̄ · ~Nj . (128b)

The field ϕ̃ ∈ R is sometimes called the Pohlmeyer field. From the first and the second
fundamental forms one can construct the shape operators

wj = djg
−1 =

(
Hj e−ϕ̃Aj

e−ϕ̃Āj Hj

)
, (129)

whose invariants compute the total Gauss curvature K and the components Hj of the mean
curvature vector ~H

Hj =
1

2
tr (wj) =

~Y,zz̄ · ~Nj

~Y,z · ~Y,z̄
= Hj , (130a)

K =
n−1∑
j=1

det (wj) =
n−1∑
j=1

(
HjHj − e−2ϕ̃AjĀj

)
. (130b)

Now we have, at any point p ∈ Σ, a complete set of orthogonal vectors in R2,n which we
collect as the rows of a matrix σ

σ =
(
~Y , ~Y,z , ~Y,z̄ , ~N1 , · · · , ~Nn−1

)T
. (131)

This object is known as the frame field or moving frame and is anchored on the surface Σ.
Consequently, its motion along the surface has to satisfy certain constraints and, since σ
provides a basis everywhere on Σ, these take the form of a set of linear equations, called the
Gauss-Weingarten (GW) system:

σ,z = Uσ , σ,z̄ = Ūσ . (132)

Finally, this system immediately implies a consistency condition which, in the geometry
literature, is known as the Gauss-Codazzi-Mainardi (GMC) equation

U,z̄ − Ū,z +
[
U , Ū

]
= 0 . (133)

9We will identify this direction with the index 0.
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The above equation represents a set of structural conditions for the surface, imposing non-
linear constraints on the functions defining the shape and properties of Σ. Its functional form
is completely general and appears as a condition for every surface embedded in any space, the
details of the particular problem at hand being contained in the form of the matrices U and
Ū . In a more geometrical language, U and Ū are the components of a connection one-form
Udz + Ūdz̄ and the GMC equation above is a vanishing condition on the curvature two-form
associated to said connection, completely analogous to the ZCC (??) which appeared in the
case of the KdV equation. In our case, for a generic surface embedded in AdSn+1, U and Ū are
(n+ 2)× (n+ 2) matrices, which depend on

• the real Pohlmeyer field ϕ̃,

• the n− 1 real mean curvatures Hj ,

• the n− 1 complex functions Aj ,

• the 1
2
n (n− 1) complex functions Bij = −Bji, describing the rotation of the normal

space (TΣ)⊥ under motion along the surface:

Bij = ~Ni,z · ~Nj = − ~Ni · ~Nj,z . (134)

The curvatures Hj and the functions Aj are usually treated as inputs, identifying the type of
surface one is dealing with. An interpretation of the functionsAj for the case n = 2 is presented
in section ??. On the other hand, the Pohlmeyer field ϕ̃ and the functions Bij are to be treated
as proper dynamical variables.

We will not give the explicit expressions, in the general case, for the matrices U and Ū nor
for the GMC equation, as the case of interest of this review, presented below, is n = 2. The
reader can easily extract them by derivation from the various constraints amongst the vectors
in σ. We wish however to note that for general n the matrices U and Ū entering the GW
system (??) can be seen to belong to the affine untwisted Kač-Moody algebra of type B or C.
By appropriately redefining the quantities listed above, one can connect this system with the
corresponding Toda field theory. Off-critical generalisations of the ODE/IM correspondence
associated to higher-rank algebras have been discussed in [?, ?, ?, ?, ?, ?, ?, ?], although without
specific analysis of the connection with surface embedding. The case we focus on here, that is
n = 2, is particularly simple as the associated algebra turns out to beB(1)

1 = so
(1)
3 ≡ A

(1)
1 = su

(1)
2 .

4.2 Minimal surfaces in AdS3

While in section ?? the description of embedded surfaces in AdSn+1 was reviewed, here we
concentrate on the simple case of minimal surfaces embedded in AdS3.10 The number of

10In three dimensions, a minimal surface is defined by the vanishing of the mean curvature H ≡ H1 = 0.
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functions we have to deal with collapses now to two: the real Pohlmeyer field ϕ̃ and the
complex function A1 = A. The former will be our unknown function, while we will
consider A as a given.

As mentioned in section ??, the structural data of an embedded surface Σ ⊂ AdS3 is
contained in a pair of 4 × 4 matrices U and Ū satisfying the Gauss-Codazzi-Mainardi
equation

U,z̄ − Ū,z +
[
U , Ū

]
= 0 . (135)

These matrices depend on the complex variables (z, z̄) through the Pohlmeyer field ϕ̃, its
derivatives and the functionA. In the case of a minimal surface in AdS3 they take the following
explicit form

U =


0 1 0 0

0 ϕ̃,z 0 −A
1
α2 e

ϕ̃ 0 0 0

0 0 −e−ϕ̃A 0

 , Ū =


0 0 1 0

1
α2 e

ϕ̃ 0 0 0

0 0 ϕ̃,z̄ −Ā
0 −e−ϕ̃Ā 0 0

 , (136)

and the GMC equation reduces to the non-linear partial differential equation

ϕ̃,zz̄ =
1

α2
eϕ̃ − AĀe−ϕ̃ , A,z̄ = Ā,z = 0 . (137)

This can be further simplified by introducing the quantities

ϕ = ϕ̃− ln(2α2) , P (z) =
1

2iα
A(z) , P̄ (z̄) = − 1

2iα
Ā(z̄) , (138)

in terms of which the matrices U and Ū read

U =


0 1 0 0

0 ϕ,z 0 −2iαP

2eϕ 0 0 0

0 0 −i e−ϕ
α
P 0

 , Ū =


0 0 1 0

2eϕ 0 0 0

0 0 ϕ,z̄ 2iαP̄

0 i
e−ϕ

α
P̄ 0 0

 , (139)

and the GMC equation takes the form of the so-called modified sinh-Gordon equation

1

2
ϕ,zz̄ = eϕ − PP̄e−ϕ . (140)

This equation can bewritten in the form (??) by a shift of the fieldϕ together with a redefinition
of the variables z, z̄

ϕ (z, z̄) −→ ϕ (w (z) , w̄ (z̄)) +
1

2
ln
(
P (z) P̄ (z̄)

)
, (141a)

w (z) = 2

z∫ √
P (z′)dz′ , w̄ (z̄) = 2

z̄∫ √
P̄ (z̄′)dz̄′ . (141b)

27



Wewish to remark that the above transformation, making (??) into (??), does alter the geometry
on which the equation is considered. Moreover, equation (??) is defined on the space C2, on
which we impose the real slice condition z̄ = z∗; on the other hand, equation (??) is defined on
R2. Hence the two equations are not to be considered equivalent.

Although it is not immediately evident, the above pair (??) can be gauge rotated to a tensor
product form:11

U ′ = UL ⊗ 12 + 12 ⊗ UR , Ū ′ = ŪL ⊗ 12 + 12 ⊗ ŪR , (142)

where
U ′ = Γ−1UΓ− Γ−1Γ,z , Ū ′ = Γ−1UΓ− Γ−1Γ,z̄ . (143)

The explicit expressions for the 2× 2 UR, UL, ŪR and ŪL matrices are as follows:

UL =

(
−1

2
ϕ,z 1

P 1
2
ϕ,z

)
, ŪL =

(
0 P̄ e−ϕ

eϕ 0

)
, (144a)

UR =

(
−1

2
ϕ,z i

iP 1
2
ϕ,z

)
, ŪR =

(
0 −iP̄ e−ϕ

−ieϕ 0

)
, (144b)

while the rotation matrix is

Γ =


0 iα α 0

0 0 0 2iα

2αeϕ 0 0 0

0 −1 −i 0

 . (145)

One can further rotate both left and right pairs as

LL = e
1
4
ϕσ3

ULe
− 1

4
ϕσ3 − e

1
4
ϕσ3

∂e−
1
4
ϕσ3

, σ3 =

(
1 0

0 −1

)
, (146)

and similarly for the other three matrices, obtaining the more symmetric form

LL =

(
−1

4
ϕ,z e

ϕ
2

Pe−
ϕ
2

1
4
ϕ,z

)
, L̄L =

(
1
4
ϕ,z̄ P̄ e−

ϕ
2

e
ϕ
2 −1

4
ϕ,z̄

)
, (147a)

LR =

(
−1

4
ϕ,z ie

ϕ
2

iPe−
ϕ
2

1
4
ϕ,z

)
, L̄R =

(
1
4
ϕ,z̄ −iP̄ e−ϕ2
−ieϕ2 −1

4
ϕ,z̄

)
. (147b)

11It is an easy exercise to verify that the GMC equations (and thus the structural data of Σ) is invariant under
the gauge rotation (

U , Ū
)
−→

(
Γ−1UΓ− Γ−1Γ,z,Γ

−1ŪΓ− Γ−1Γ,z̄
)
,

where Γ is some 4× 4 matrix depending on (z, z̄).
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As a consequence of the above decomposition, the rotated frame σ′ =
(
e

1
4
ϕσ3 ⊗ e 1

4
ϕσ3
)

Γ−1σ

is also decomposed as
σ′ = ΨM0 , Ψ = ΨL ⊗ΨR , (148)

where M0 is a constant 4× 4 matrix, while ΨL and ΨR are solutions to their respective linear
problems

ΨL,z = LLΨL , ΨL,z̄ = L̄LΨL , (149a)

ΨR,z = LRΨR , ΨR,z̄ = L̄RΨR . (149b)

Recapitulating, given two solutions of the above systems (??,??), one can reconstruct the
corresponding embedding function ~Y for the minimal surface in AdS3 as

~Y ≡ ~e T
1 σ = ~e T

1 Γ
(
e−

1
4
ϕσ3 ⊗ e−

1
4
ϕσ3
)

(ΨL ⊗ΨR) M0 , (150)

~e T
1 =

(
1 , 0 , 0 , 0

)
.

Let us also mention that the matrix M0 is not completely general. In fact its form can be
almost entirely fixed by considering the orthogonality and normalisation conditions on the
scalar products of the basis vectors, which in terms of σ can be written as

σ


−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

σT =


~Y · ~Y ~Y · ~Y,z ~Y · ~Y,z̄ ~Y · ~N
~Y,z · ~Y,z ~Y · ~Y,z ~Y,z · ~Y,z̄ ~Y,z · ~N
~Y,z̄ · ~Y ~Y,z̄ · ~Y,z ~Y,z̄ · ~Y,z̄ ~Y,z̄ · ~N
~N · ~Y ~N · ~Y,z ~N · ~Y,z̄ ~N · ~N



=


−α2 0 0 0

0 0 eϕ̃ 0

0 eϕ̃ 0 0

0 0 0 −1

 . (151)

One then has

(ΨL ⊗ΨR) M0

(
σ3 ⊗ 12

)
MT

0 (ΨL ⊗ΨR)T =
i

2


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 , (152)

or, equivalently,

M0

(
σ3 ⊗ 12

)
MT

0 =
i/2

det(ΨL) det(ΨR)


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 . (153)
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It is a matter of straightforward computation to verify that the following matrix

Mspec =
1

2
√

det(ΨL) det(ΨR)


0 ib ib 0

−1
c

0 0 1
c

ic 0 0 ic

0 1
b
−1
b

0

 , (154)

represents a particular solution to the equation (??). In order to derive the general solution,
we can reason as follows. Let M be a solution to (??) and R ∈ GL(4) a generic non-singular
matrix. Then we can write M = RMspec. Due to both matrices solving the same equation,
the matrix R has to satisfy the following relation

R (ς ⊗ ς) Rt = (ς ⊗ ς) , ς =

(
0 1

−1 0

)
. (155)

Expanding this relation in 2× 2 blocks, we obtain the following three equations

R11ςR
t
12 = −

(
R11ςR

t
12

)t
,

R21ςR
t
22 = −

(
R21ςR

t
22

)t
, (156)

R11ςR
t
22 +

(
R21ςR

t
12

)t
= ς ,

where, evidently, Rij are the 2 × 2 blocks of the matrix R. The first two relations are solved
by

R11 = aς
(
Rt

12

)−1
ς−1 =

a

det (R12)
R12 , R21 = a′ς

(
Rt

22

)−1
ς−1 =

a′

det (R22)
R22 , (157)

where a and a′ are some undetermined constants. Plugging the above solutions into the third
equation of (??), we have

aς
[(

R12R
−1
22

)t]−1

− a′R12R
−1
22 ς = ς , (158)

or, equivalently, (
a

det (R22)

det (R12)
− a′

)
R12R

−1
22 = 12 , (159)

from which we deduce
R22 = a′′R12 , aa′′ − a′

a′′
= 1 . (160)

From these manipulations we conclude that

R =

(
a

det(R12)
1

b
cdet(R12)

c

)
⊗R12 . (161)
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We have found that we can write the general solution to (??) as follows

M0 = (ML ⊗MR) Mmix , (162)

whereML andMR are SL(2) matrices that rotate, respectively, the solutions ΨL and ΨR, while
Mmix takes the following form

Mmix =
1

2
√

det
(
ΨM
L

)
det
(
ΨM
R

)


0 ib ib 0

−1
c

0 0 1
c

ic 0 0 ic

0 1
b
−1
b

0

 , (163)

with ΨM
L = ΨLML and similarly for the right one. We thus see that a generic constant matrix

M0 in (??) is determined by 10 complex parameters, 4 for each SL(2) rotation ML/R and an
additional pair for the matrix Mmix. Note that 10 is the real dimension of the isometry group
of the space R2,2, in which AdS3 is immersed. A further condition on the constant matrix M0

comes from the reality properties of the basis vectors

σ∗ =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

σ , (164)

which implies

(ΨL ⊗ΨR)∗M∗
0 = i


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 (ΨL ⊗ΨR) M0 . (165)

and reduces the 10 complex parameter determining M0 to 10 real ones. Hence our embedded
surface determined by (??) is uniquely determined up to isometries of R2,2.

Finally, let us also mention that minimal surfaces are naturally related to string theory.
The very fact of being minimal implies the possibility of obtaining their defining relations by
means of the minimisation of some quantity which, as it turns out, is nothing but the action
of a non-linear sigma model

ANLSM =

∫
Σ

dz dz̄
(
~Y,z · ~Y,z̄ + Λ

(
~Y · ~Y + α2

))
, (166)

where the Lagrange multiplier Λ imposes the constraint (??), forcing the target space to be
AdS3. The equations of motion

~Y,zz̄ =
1

α2

(
~Y,z · ~Y,z̄

)
~Y , ~Y,z · ~Y,z = ~Y,z̄ · ~Y,z̄ = 0 , (167)
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are rather easily connected with (??) [?, ?, ?]. The area A of the worldsheet is then computed
thanks to the metric g as follows

A =

∫
Σ

dz dz̄
√
− det(g) =

∫
Σ

dz dz̄
(
~Y,z · ~Y,z̄

)
=

∫
Σ

dz dz̄ eϕ̃ . (168)

Note that, due to the modified sinh-Gordon equation (??), one has

A = 2α2

∫
Σ

dz dz̄
(
ϕ,zz̄ + PP̄e−ϕ

)
= 2α2

∫
Σ

dz dz̄ P P̄ e−ϕ + total derivatives , (169)

where the total derivative term is a constant independent of the kinematics. This area is
divergent and needs to be regularized. As will be explained below, the asymptotic behaviour
as |z| → ∞ of the modified sinh-Gordon field is ϕ ∼ ln |P | and one can define a regularized
area

Areg = 2α2

∫
Σ

dz dz̄
(
PP̄e−ϕ −

(
PP̄
) 1

2

)
. (170)

4.3 A boundary interpretation of the function P and the Wilson loop

Let us recall that the function P – equivalentlyA (??) – is related to the Gauss curvature through
equation (??). In the current case we have

K = −e−2ϕ̃AĀ = − 1

α2
e−2ϕPP̄ . (171)

Thus, since we wish the surface Σ to be everywhere regular, we must demand for solutions to
(??) to compensate for divergences of P . More concretely, we impose that

lim
(z,z̄)→(zc,z̄c)

1

|P |
= 0 =⇒ ϕ ∼

(z,z̄)→(zc,z̄c)
ln |P | . (172)

Note that this asymptotic behaviour at the singularities of P is consistent with equation (??).
From now on we will assume that the function P is a polynomial of order 2N , then the only
singular point is |z| → ∞. The Gaussian curvature is, therefore, asymptotically a constant

K∞ = lim
|z|→∞

K = − 1

α2
, (173)

and in this limit the matrices of the linear system (??) become

LL ∼

(
0 zN/2z̄N/2

z3N/2z̄−N/2 0

)
, L̄L ∼

(
0 z−N/2z̄3N/2

zN/2z̄N/2 0

)
, (174a)

LR ∼

(
0 izN/2z̄N/2

iz3N/2z̄−N/2 0

)
, L̄R ∼

(
0 −iz−N/2z̄3N/2

−izN/2z̄N/2 0

)
. (174b)
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right Stokes lines 

left Stokes lines 

Im[z]

Re[z]

Figure 3: Representation of the Stokes sectors and lines in the complex (z, z̄) plane, for the linear
system (??), with P ∼ z2N and N = 3.

In order to studywhat happens to the boundary of AdS3 we need to jump ahead of ourselves
and consider the first order in theWKB expansion of the solutionsΨL andΨR. Amore detailed
analysis of the WKB solutions and the Stokes phenomenon will be given in section ??; here
we will just present some facts which will be useful in deriving the boundary of the minimal
surface. A simple WKB analysis (cf. section ??) yields

ΨL ∝

 e
2 %N+1

N+1
cos((N+1)ϑ) −e−iNϑe−

2 %N+1

N+1
cos((N+1)ϑ)

eiNϑe
2 %N+1

N+1
cos((N+1)ϑ) e−

2 %N+1

N+1
cos((N+1)ϑ)

 , (175a)

ΨR ∝

 e
2 %N+1

N+1
sin((N+1)ϑ) e−iNϑe−

2 %N+1

N+1
sin((N+1)ϑ)

−eiNϑe
2 %N+1

N+1
sin((N+1)ϑ) e−

2 %N+1

N+1
sin((N+1)ϑ)

 , (175b)

with z = %eiϑ and z̄ = %e−iϑ. We see that the linear problem displays a Stokes phenomenon
at %→∞, meaning that we can pin down the asymptotic of a specific solution only in certain
sectors of the complex plane (see figure ??). These sectors, which we denote by S(i)

L and S(i)
R ,

are bounded by the anti-Stokes lines which are given by cos ((N + 1)ϑ) = Re
[
zN+1

]
= 0 for

the left solution and by sin ((N + 1)ϑ) = Im
[
zN+1

]
= 0 for the right one.

Now, we choose a solution Ψ
(i)
L ⊗Ψ

(i)
R having the above asymptotic behaviour in a definite

sector of the complex plane, which happens to be the overlap of S(i)
L with S(i)

R . Suppose that
we rotate our solution in the complex plane and, at some point, we cross a left anti-Stokes line.
Then the asymptotic of our solution will change, since the diverging solution might obscure
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the presence of a smaller decaying solution. In mathematical terms,

Ψ
(i)
L ⊗Ψ

(i)
R =

(
Ψ

(i+1)
L S

(
γ

(i)
L

))
⊗Ψ

(i)
R , S (γ) =

(
0 −1

1 γ

)
. (176)

A similar jump will happen for the right solution at the right anti-Stokes lines, meaning we

have 4(N + 1) parameters
{
γ

(i)
L , γ

(i)
R

}2(N+1)

i=1
, one for each anti-Stokes line.

Now let us consider what happens to the surface embedding function ~Y for |z| → ∞. We
will see things more clearly by working in Poincaré coordinates (??):

r = Y−1 + Y2 , x± = x± t =
Y1 ± Y0

Y−1 + Y2

, (177)

where we have introduced the light-cone Poincaré coordinates x±. Some simple but tedious
computation shows that these coordinates have the following expression12 for our embedding
(??)

r = iαc
ΨM
L,22Ψ

M
R,11 + iΨM

L,12Ψ
M
R,21√

det
(
ΨM
L

)
det
(
ΨM
R

) ,

x+ =
b

c

ΨM
L,21Ψ

M
R,11 + iΨM

L,11Ψ
M
R,21

ΨM
L,22Ψ

M
R,11 + iΨM

L,12Ψ
M
R,21

, (178)

x− =
1

ib c

ΨM
L,22Ψ

M
R,12 + iΨM

L,12Ψ
M
R,22

ΨM
L,22Ψ

M
R,11 + iΨM

L,12Ψ
M
R,21

,

where we used (??) and (??) while ΨM
L,ij and ΨM

R,ij are the components of the rotated solutions
ΨLML and ΨRMR, respectively.

Let us suppose we are in a Stokes sector, away from Stokes lines; in the next few
expressions, in order to lighten the notation, we will omit the superscript (i) specifying the
Stokes sector. Then, as |z| → ∞, the components ΨM

L,ij and ΨM
R,ij will be naturally expressed

by a superposition of a growing and a decaying solution:

ΨM
L,ij = c

large
L,j ψ

large
L,i + csmall

L,j ψ
small
L,i , (179)

where the functions ψlarge
L/R,i and ψ

small
L/R,i are the components of two arbitrary vector solutions to

the linear system (??) respectively diverging and decaying13 as |z| → ∞ in our chosen Stokes
12Note that we have not implemented the reality condition (??) in the above expression. When doing so, these

embedding functions will be, clearly, real.
13In sec. ?? we will define more precisely solutions to the linear problem according to their asymptotic

behaviour. There we will refer to them as dominant and subdominant. For the moment, however, we content
ourselves with this intuitive definition as it will be sufficient to gain a qualitative understanding of the asymptotic
behaviour of the embedded surface. For this same reason we follow the example of [?] and denote them as large
and small.
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sector. We easily verify that

c
large
L,j =

det

(
ΨM
L,1j ψsmall

L,1

ΨM
L,2j ψsmall

L,2

)

det

(
ψ
large
L,1 ψsmall

L,1

ψ
large
L,2 ψsmall

L,2

) , csmall
L,j = −

det

(
ΨM
L,1j ψ

large
L,1

ΨM
L,2j ψ

large
L,2

)

det

(
ψ
large
L,1 ψsmall

L,1

ψ
large
L,2 ψsmall

L,2

) . (180)

Equivalent expressions hold for the constants c(large)/(small)
R,j . Finally plugging (??) into (??), we

see that in the limit |z| → ∞, the Poincaré radius diverges14 r → ∞ – signalling that we are
indeed approaching the boundary ∂AdS3 – while the light cone coordinates take the following
simple form

x+ =
b

c

det

(
ΨM
L,11 ψsmall

L,1

ΨM
L,21 ψsmall

L,2

)

det

(
ΨM
L,12 ψsmall

L,1

ΨM
L,22 ψsmall

L,2

) , x− =
1

ibc

det

(
ΨM
R,12 ψsmall

R,1

ΨM
R,22 ψsmall

R,2

)

det

(
ΨM
R,11 ψsmall

R,1

ΨM
R,21 ψsmall

R,2

) . (181)

Note that, while the expressions (??) depend on the choice of normalization for the functions
ψ
large
L/R,i and ψ

small
L/R,i, the boundary light-cone coordinates above are independent of it.

Given these results, we can easily see what happens when a Stokes line, say a left one, is
crossed. Let us reinstate the explicit index for the sector: x+

(i) and x−(i) are given by the above

expressions, where each of the components of the solutionsΨM
L ,ΨM

R , ψsmall
L , ψlarge

L are defined in
the overlap of the i-th Stokes sectors S(i)

L ∩ S
(i)
R . Looking back at (??), we notice that crossing

a left Stokes line, only the light-cone coordinate x+
(i) is influenced, while x−(i) is the same on

both sides of the left Stokes line. In other words, in S(i)
L ∩ S

(i)
R we have light-cone boundary

coordinates
(
x+

(i), x
−
(i)

)
, while in S(i+1)

L ∩ S(i)
R they are

(
x+

(i+1), x
−
(i)

)
. The same exact reasoning

repeats for the crossing of a right Stokes line. Hence we conclude that points on the boundary
determined by solutions lying in neighboring Stokes sectors are light-like separated.

Recapitulating, we have seen that the order 2N polynomial P defines 4(N + 1) distinct
Stokes sectors on the (z, z̄) plane and, consequently, 4(N +1) points on the boundary of AdS3.
These are connected by 4(N + 1) light-like lines, forming a light-like 4(N + 1)-gon on the
boundary of AdS3. In figure ??we plotted the minimal surface, along with its Wilson loop, for
the simplest possible case P = P̄ = 1, α = 1 and ϕ = 0. The polygon on the boundary has the
interpretation, in the CFT living on ∂AdS3, as a light-like Wilson loop and, according to the
proposal of [?, ?], we can measure its expectation value by computing the area of the minimal
surface Σ in AdS3 having theWilson loop as its boundary. Moreover, as explained in [?,?], this

14Indeed, the numerator of r in (??) is dominated by ψlarge
L,i and ψsmall

L,i , while the denominator is a constant.
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Figure 4: Minimal surface for the case P = P̄ = 1, α = 1 and ϕ = 0 in AdS3 and its Wilson loop.
Figure ?? is a representation with tanh(ρ) as a radius, τ as a vertical direction and θ as an angle where
(ρ, τ, θ) are AdS3 global coordinates (??). The shaded cylinder is the conformal boundary and the red
line is the Wilson loop. Figure ?? is a plot of the Wilson loop on the plane (θ, τ) corresponding to the
boundary tanh ρ = 1.

same area can be used to compute the gluon scattering amplitude, at leading order in strong
coupling, in the boundary theory.

We will now turn to a more in-depth analysis of the solutions to the linear problem (??). As
we will see, the presence of the Stokes phenomenon, instead of being a hindrance, will allow us
to derive a closed set of functional equations for a collection of functions Yk15. These can then
be exploited to reconstruct the solutions ΨL and ΨR and compute the area (??) of the minimal
surface.

15These functional equations form a closed set only if P (z) lives on a finite cover of C. This can be
understood intuitively from the fact that there exists a function Yk for each generator of the first homology
group H1 (RWKB,Z) of the Riemann surface RWKB associated to

√
P . If we allow non-rational powers in P ,

then the first homology group of this Riemann surface will not be finitely generated and we will have to deal
with an infinite set of functions Yk. From a physical point of view, in this case on the boundary of AdS3 there
will be an infinity of light-like lines, never closing themselves into a polygon.
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4.4 The associated linear problem, the spectral parameter and the
WKB solutions

The left and right pair of matrices (??) are, essentially, the Lax operators for the modified sinh-
Gordon model appearing in [?]:

L (λ) =

(
−1

4
ϕ,z λe

ϕ
2

λPe−
ϕ
2

1
4
ϕ,z

)
, L̄ (λ) =

(
1
4
ϕ,z̄

1
λ
P̄ e−

ϕ
2

1
λ
e
ϕ
2 −1

4
ϕ,z̄

)
. (182)

The onlymissing element in the pairs (??) is the spectral parameter λ. However we immediately
notice that by specialising the value of λ one has

LL = L (λ = 1) , L̄L = L̄ (λ = 1) , (183a)

LR = L (λ = i) , L̄R = L̄ (λ = i) . (183b)

The analysis of the Lax pair (??) has been carried out in [?] for the particular case of the function
P (z) = z2M − s2M . There it was shown that the generalised monodromy data for the linear
problem

Φ,z = LΦ , Φ,z̄ = L̄Φ , (184)

is connected with the integrable structures of the quantum sine-Gordon (forM > 0) or sinh-
Gordon (forM < −1) models. As mentioned above, in what follows we will think of P (z) as a
polynomial function of order 2N .16 For further simplicity, we will concentrate on polynomials
having only real roots; hence, from now on we will set

P (z) = z2N +
2N−1∑
k=0

Pk z
k =

2N∏
k=1

(z − zk) , (zk, Pk ∈ R) . (185)

The first thing we notice about the linear problem (??) is that it possesses a Z2 symmetry(
L (z, z̄|λ) , L̄ (z, z̄|λ)

)
=
(
σ3L (z, z̄| − λ)σ3, σ3L̄ (z, z̄| − λ)σ3

)
, (186)

which implies that, given a solution Φ (z, z̄|λ), then σ3Φ
(
z, z̄|eiπλ

)
is also a solution. This

fact will be useful momentarily, when we discuss the Stokes phenomenon associated with our
linear problem. A simple way to study the linear problem (??) is to gauge rotate it by the matrix
exp

(
1
4
ϕσ3

)
, so that one obtains

Φ̃,z = L̃ Φ̃ , Φ̃,z̄ = ˜̄L Φ̃ , Φ̃ = e−
1
4
ϕσ3

Φ , (187)
16Wemight think of consideringmore general multi-valued potentials, e.g. P (z) = z2N−s2N whereN /∈ 1

2Z
but we still ask thatN ∈ Q. The presence of non-integer powers in the function P (z) would force us to consider
the linear problem on an appropriate finite covering of the complex plane. Since the substance of our analysis
would not change, we will avoid this complication.
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where

L̃ = e−
1
4
ϕσ3 L e

1
4
ϕσ3 − e−

1
4
ϕσ3

∂
(
e

1
4
ϕσ3
)

=

(
−1

2
ϕ,z λ

λP 1
2
ϕ,z

)
, (188)

and
˜̄L = e−

1
4
ϕσ3L̄e

1
4
ϕσ3 − e−

1
4
ϕσ3

∂̄e
1
4
ϕσ3

=

(
0 1

λ
P̄ e−ϕ

1
λ
eϕ 0

)
. (189)

With this form of the linear problem, it is easier to obtain the WKB expansion.
We start from the following ansatz

Φ̃ =
1√
S,z

 1 1(
S + ϕ−ln(∂S)

2λ

)
,z

(
−S + ϕ−ln(∂S)

2λ

)
,z

 · e−λSσ3

, (190)

where S is a function of the variables (z, z̄) and of the square of the spectral parameter λ, with
asymptotic expansion as λ2 →∞

S = S
(
z, z̄|λ2

)
=
∞∑
k=0

λ−2kSk (z, z̄) . (191)

The solution Φ̃ is normalized in such a way that

det(Φ̃) = −2 =⇒ det(Φ) = −2 . (192)

The linear system (??) then reduces to a pair of equations for the function S,

S2
,z −

1

2λ2
{S, z} =

ϕ2
,z − 2ϕ,zz

4λ2
+ P , {S, z} =

S,zzz
S,z
− 3

2

(
S,zz
S,z

)2

, (193a)

S,z̄ −
P̄

λ2
e−ϕS,z = 0 , (193b)

which, as one can easily check, are mutually compatible. Exploiting the series representation
(??) we turn this pair of equations into an infinite triangular system for the coefficients Sk,
which we then solve by iteration, the first few equations being

S2
0,z = P , S0,z̄ = 0 , (194a)

S1,z =
1

8
√
P

(
P,zz
P
− 5

4

(
P,z
P

)2

+ ϕ2
,z − 2ϕ,zz

)
, S1,z̄ = e−ϕ

√
PP̄ , (194b)

· · · , · · · .
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We thus have expressed the solution to the linear problem (??) as an expansion around
λ→∞ as follows:

Φ = e
1
4
ϕσ3

(
e−λS0− 1

4
lnP+ 1

λ
S1+O(λ−2) eλS0− 1

4
lnP− 1

λ
S1+O(λ−2)

e
−λS0+ 1

4
lnP+ 1

λ

(
S1+

ϕ,z

2
√
P
− P,z

4P3/2

)
+O(λ−2) −eλS0+ 1

4
lnP− 1

λ

(
S1+

ϕ,z

2
√
P
− P,z

4P3/2

)
+O(λ−2)

)
,

(195)
with

S0 =

∫
z∗

dz
√
P , S1 =

∫
z∗

dz

8
√
P

(
P,zz
P
− 5

4

(
P,z
P

)2

+ ϕ2
,z − 2ϕ,zz

)
, (196)

and z∗ some arbitrarily-chosen base point.
A similar analysis for the linear system (??), gauge rotated with the matrix exp

(
−1

4
ϕσ3

)
,

yields the small-λ behaviour

Φ = e−
1
4
ϕσ3

 e
− 1
λ
S̄0+ 1

4
ln P̄+λ

(
S̄1+

ϕ,z̄

2
√
P̄
− P̄,z̄

4P̄3/2

)
+O(λ2) −e

1
λ
S̄0+ 1

4
ln P̄−λ

(
S̄1+

ϕ,z̄

2
√
P̄
− P̄,z̄

4P̄3/2

)
+O(λ2)

e−
1
λ
S̄0− 1

4
ln P̄+λS̄1+O(λ2) e

1
λ
S̄0− 1

4
ln P̄−λS̄1+O(λ2)

 ,

(197)
with

S̄0 =

∫
z∗

dz̄
√
P̄ , S̄1 =

∫
z∗

dz̄

8
√
P̄

(
P̄,z̄z̄
P̄
− 5

4

(
P̄,z̄
P̄

)2

+ ϕ2
,z̄ − 2ϕ,z̄z̄

)
. (198)

4.5 WKB geometry, Stokes sectors and subdominant solutions

Now, let us think more carefully about the geometry of what we are doing. By recasting
(??) into the system (??) we have moved from an equation defined on C2 to a system living on
the Riemann surface RWKB defined by the algebraic equation ζ2 = P (z). The quantities Sk
appearing in the expansion (??) are line integrals along curves on RWKB:

Sk (z, z̄) =

(z,z̄)∫
z∗

sk , S̄k =

(z,z̄)∫
z∗

s̄k , (199)

with sk and s̄k being one-forms on RWKB , e.g.

s0 =
√
Pdz , s1 =

dz

8
√
P

(
P,zz
P
− 5

4

(
P,z
P

)2

+ ϕ2
,z − 2ϕ,zz

)
, · · · . (200)

Figure ?? depicts the first sheet of the Riemann surface in the case of a polynomial P (z) having
real roots. In order to define theWKB solutions (??, ??) correctly, on the one hand it is necessary
to be careful in the choice of the base point z∗ and the integration contour. On the other hand,
however, it is possible to pin down the specific solution correctly only in a certain sector of
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Figure 5: An example of the (first sheet of the) Riemann surface RWKB for a polynomial P (z) having
real roots, and a basis {γi} of cycles on that surface.

the complex plane; this is an example of the Stokes phenomenon and is a direct consequence
of the presence of an irregular singularity at (z, z̄)→∞.

To be more precise, consider the solution (??) at large distances both from the origin and
from any critical values of P (z). Then P (z) behaves as P (z) ∼ z2N and we can compute the
leading behaviour of the coefficients S0 and S1 :

S0 ∼
|z|→∞

z∫
z∗

dz zN =
zN+1 − zN+1

∗
N + 1

, S1 ∼
|z|→∞

N

8

N + 2

N + 1

(
z−N−1 − z−N−1

∗
)
. (201)

Similar expressions hold for S̄0 and S̄1. More generally, as shown in (??), solutions to the
modified sinh-Gordon equation (??) behave at leading order in |z| → ∞ as ϕ ∼ 2N ln |z|; the
only remaining terms in S and S̄ are then, respectively, S0 and S̄0. Hence one finds

Φ ∼
|z|→∞

z̄N/4

zN/4

(
1 1

zN/2

z̄N/2
− zN/2

z̄N/2

)
· e−

λzN+1+ 1
λ
z̄N+1

N+1
σ3

. (202)

Let us denote by Φ(d) and Φ(s) the two column vectors comprising the matrix Φ

Φ =
(

Φ(s) Φ(d)
)
, (203)

so that for large |z| and |ϑ| < π
N+1

these vectors behave as

Φ(s) ∼
|z|→∞

(
e−i

N
4
ϑ

−eiN4 ϑ

)
exp

(
−2 %N+1

N + 1
cos ((N + 1)ϑ− iυ)

)
, (204a)

Φ(d) ∼
|z|→∞

(
e−i

N
4
ϑ

ei
N
4
ϑ

)
exp

(
2 %N+1

N + 1
cos ((N + 1)ϑ− iυ)

)
, (204b)

where z = %eiϑ, z̄ = %e−iϑ and λ = eυ. Much as before, we will call Φ(s) the subdominant
solution and Φ(d) the dominant solution. It is clear from the above expressions that if we
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Figure 6: Stokes and anti-Stokes lines for the function P (z) = z
(
z2 − 1

) (
z2 − 4

)
, with λ ∈ R.

Although not shown here, there are branch cuts connecting −2 with −1, 0 with +1 and +2 with∞.

analytically continue from (%, ϑ) to
(
%, ϑ+ π

N+1

)
the two asymptotics seem to swap rôles.

However, while we can precisely pin down the asymptotic of Φ(s), since no other term can
be added to it without spoiling its asymptotic behaviour, the behaviour (??) might be hiding a
contribution coming from a decaying exponential, with a coefficient which in general will
change as the Stokes line in the middle of this sector is crossed. Hence when we perform the
analytic continuation, we will obtain the following asymptotics, valid for |ϑ| < π

N+1
and

ϑ(+) = ϑ+ π
N+1

:

Φ(s)
(
%, ϑ(+)

)
∼
|z|→∞

(
e−i

N
4
ϑ(+)

−eiN4 ϑ(+)

)
exp

(
2 %N+1

N + 1
cos ((N + 1)ϑ− iυ)

)
= dominant , (205a)

Φ(d)
(
%, ϑ(+)

)
∼
|z|→∞

c+ (λ)

(
e−i

N
4
ϑ(+)

−eiN4 ϑ(+)

)
exp

(
2 %N+1

N + 1
cos ((N + 1)ϑ− iυ)

)
. (205b)

Therefore, for ϑ in the sector |ϑ| < π
N+1

, the continued solution Φ(d)
(
%, ϑ(+)

)
is in general

dominant but, exceptionally, it will be subdominant at zeros of the coefficient c+(λ). The story
is similar to that of section ??, and the preliminary discussion reported there will be formalised
in the following sections.

Summarising, we see that the function P (z) partitions the Riemann surface RWKB into
Stokes sectors Sj , bounded by anti-Stokes lines, defined by Re [λS0] = 0. In each of these sectors
we can define a matrix solution Φj composed of a dominant and a subdominant solution

Φj =
(

Φ
(s)
j Φ

(d)
j

)
. (206)

The decay (or growth) of this solution is largest whenever the solution lies on a Stokes line,
defined by Im [λS0] = 0. Figure ?? depicts an example of the Stokes and anti-Stokes lines for a
particular choice of P (z), while figure ?? is a view of the same picture from very large |z|. The
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Figure 7: Figure ?? looked at from very large |z|. The fine details of the function P (z) disappear and
we only see the lines defined by Re

[
z7/2

]
= 0 and Im

[
z7/2

]
= 0, that is ϑaSk = π 2k+1

7 and ϑSk = π 2k
7

with k = −3,−2,−1, 0, 1, 2, 3. The Stokes sectors Sk are labeled by the index k of the angles ϑSk .

definition of Stokes and anti-Stokes lines depends on the phase of the spectral parameter λ and,
as displayed in figure ??, a counter-clockwise rotation of λ rotates the sectors in a clockwise
direction. When arg (λ) = π, one returns to the same situation as for arg (λ) = 0, but with the
sectors exchanged in a clockwise fashion. Consequently, exploiting the Z2 symmetry (??), we
can define the solutions Φj as

Φj (z, z̄|λ) =
(
σ3
)j

Φ
(
z, z̄|ejiπλ

)
, (207)

where Φ, our starting solution, is defined in what we choose to be the 0-th sector S0. In what
follows we will label the sectors according to the index k of the ϑSk = π k

N+1
solution of the

Stokes line equation Im
[
zN+1

]
for large |z|. Hence the sector S0 will be for λ ∈ R the one

containing the positive real line at large enough |z|. See figure ?? for an example.
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Figure 8: Plots of Stokes and anti-Stokes lines for the polynomial function P (z) = z
(
z2 − 1

) (
z2 − 4

)
and various phases of the spectral parameter λ. One sees that a counter-clockwise rotation of λ
corresponds to a clockwise rotation of the sectors. For arg (λ) = π, the picture looks the same as
figure ??, but the sectors have been exchanged in a clockwise fashion.

4.6 The connection matrices, the T-system and the Hirota equation

We can now make the relations (??) more precise as follows:17

Φ
(s)
j−1 (z, z̄|λ) = Φ

(d)
j (z, z̄|λ) (208a)

Φ
(d)
j−1 (z, z̄|λ) = −Φ

(s)
j (z, z̄|λ) + T

(
ejiπλ

)
Φ

(d)
j (z, z̄|λ) , (208b)

17The −1 sign in the second equality is necessary to have det(Φj−1) = det(Φj) = −2.
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or, in matrix notation

Φj−1 (z, z̄|λ) = Φj (z, z̄|λ) T
(
ejiπλ

)
, T (λ) =

(
0 −1

1 T (λ)

)
. (209)

It is immediate to see that

T (λ) =
1

det(Φ0)
det
(

Φ
(s)
0 Φ

(d)
−1

)
= −1

2
det
(

Φ
(s)
0 Φ

(s)
−2

)
, (210)

where we have used (??) and the fact that Φ
(d)
j = Φ

(s)
j−1. We can generalize this construction,

introducing the lateral connection matrices Tk (λ) which, as the name suggests, relate solutions
living in (next)k-neighbouring Stokes sectors:

Φj (z, z̄|λ) = Φj+k (z, z̄|λ) Tk

(
λe(j+

k+1
2 )iπ

)
. (211)

The form of these matrices is constrained by noticing that they need to satisfy the following
consistency relation

Tk (λ) = Tk−j

(
e
j
2
iπλ
)

Tj

(
e
j−k

2
iπλ
)
, (212)

which implies that we can parametrise the lateral connection matrices as follows

Tk (λ) =

 −Tk−2 (λ) −Tk−1

(
e−

1
2
iπλ
)

Tk−1

(
e

1
2
iπλ
)

Tk (λ)

 . (213)

Each function Tk (λ), which we call a Stokes multiplier or lateral connection coe�cient, can
be computed as a determinant of subdominant solutions defined in distinct Stokes sectors:

T2k−1 (λ) =
1

2
det
(

Φ
(s)
−k−1 Φ

(s)
k−1

)
, (214a)

T2k

(
λe

1
2
iπ
)

=
1

2
det
(

Φ
(s)
−k−1 Φ

(s)
k

)
. (214b)

One must clearly have T0 (λ) = 1, implying that

T−2 (λ) = −1 , T−1 (λ) = 0 , T0 (λ) = 1 , (215)

which agree with the determinant expressions (??).
The relation (??) can be used to extract a series of additional constraints on the functions

Tk (λ). First of all one has the unimodularity condition

det(Tk (λ)) = 1 , (216)

to which we will return momentarily. Another obvious relation is the following

T0

(
e−

j
2
iπλ
)

= 1 = T−j (λ) Tj (λ) =⇒ T−k−1 (λ) = −Tk−1 (λ) . (217)
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We also require that a rotation of 2 (N + 1) Stokes sectors brings us back to the same solution
(modulo a ±1 factor), from which we deduce that

Tj+2N+2 (λ) = ±Tj

(
e(N+1)iπλ

)
=⇒ T2N+1 (λ) = 0 . (218)

Finally, we obtain a recursive definition for Tk (λ) by looking at the components of (??)

Tk (λ) = Tj

(
e
j−k

2
iπλ
)
Tk−j

(
e
j
2
iπλ
)
− Tj−1

(
e
j−k−1

2
iπλ
)
Tk−j−1

(
e
j+1

2
iπλ
)
, (219)

which is called the T-system. An equivalent, more elegant, form is obtained by the simple
unimodularity requirement mentioned above

det (Tk+1 (λ)) = 1 =⇒ Tk

(
e

1
2
iπλ
)
Tk

(
e−

1
2
iπλ
)

= 1 + Tk+1 (λ)Tk−1 (λ) . (220)

This equation needs to be supported by the boundary conditions found above, T0 (λ) = 1 and
T2N+1 (λ) = 0, and is known in the literature as Hirota bilinear equation [?, ?, ?]. One can check
that the T-system is obtained by iteration from the Hirota equation.

There are various manipulations one can perform on the Hirota equation. For example,
one can formally solve it by parametrizing the functions Tk (λ) by a pair of Q functions
{Qa (λ)}a=1,2 as follows

Tk (λ) = det

 Q1

(
e
k+1

2
iπλ
)

Q1

(
e−

k+1
2

iπλ
)

Q2

(
e
k+1

2
iπλ
)

Q2

(
e−

k+1
2

iπλ
)  . (221)

Then it is easy to see that the Hirota equation is equivalent to the following one

det

 Q1

(
e

1
2
iπλ
)

Q1

(
e−

1
2
iπλ
)

Q2

(
e

1
2
iπλ
)

Q2

(
e−

1
2
iπλ
)  = 1 , (222)

which, in the literature, is known as a quantum Wronskian [?, ?]. The relation (??) is the off-
critical version of the constraint (??), obtained within the quantum KdV context. From (??)
and (??) we obtain Baxter’s TQ equation

T1 (λ)Qa (λ) = Qa

(
eiπλ

)
+Qa

(
e−iπλ

)
, (a = 1, 2) , (223)

by simply expanding the trivial identity

det

 Q1

(
eiπλ

)
Q1 (λ) Q1

(
e−iπλ

)
Q2

(
eiπλ

)
Q2 (λ) Q2

(
e−iπλ

)
Qa

(
eiπλ

)
Qa (λ) Qa

(
e−iπλ

)
 = 0 , (a = 1, 2) . (224)
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The matrix

Q (λ) =

(
Q1

(
eiπλ

)
Q1 (λ)

Q2

(
eiπλ

)
Q2 (λ)

)
(225)

has a geometrical interpretation: it is the central connection matrix of the central problem for
our linear system. In other words, it relates the solutions Φj to another fundamental solution
Ξ, defined via local analysis at a point where no Stokes phenomenon is present18. Then Ξ is
insensitive to the rotation of λ by integer multiple of iπ and one has the relation

Φj (z, z̄|λ) = Ξ (z, z̄|λ) Q
(
ejiπλ

)
. (226)

Playing with this relation and (??), we obtain the following identity

Q (λ) = Q
(
ekiπλ

)
Tk

(
e
k+1

2
iπλ
)
, (227)

from which it is possible to derive both the Baxter TQ equation (??) (by simply setting k =

1) and the parametrization (??) of the functions Tk (by Cramer’s rule). The QQ-system (??)
corresponds to the unimodularity requirement det(Q(λ)) = 1.

Although Q-functions are interesting objects, we find it more convenient to introduce a
new set of functions: the Y-functions. These are defined as follows

Yk (λ) = Tk−1 (λ)Tk+1 (λ) , (k = 1, . . . , 2N − 1) , (228)

or, in a more invariant form, and using the fact that det
(

Φ
(s)
k Φ

(s)
k+1

)
= − det Φ0,

Y2k (λ) =
det
(

Φ
(s)
−k−2 Φ

(s)
k

)
det
(

Φ
(s)
−k−1 Φ

(s)
k−1

)
det
(

Φ
(s)
−k−1 Φ

(s)
−k−2

)
det
(

Φ
(s)
k Φ

(s)
k−1

) , (229a)

Y2k+1

(
λe

1
2
iπ
)

=
det
(

Φ
(s)
−k−2 Φ

(s)
k+1

)
det
(

Φ
(s)
−k−1 Φ

(s)
k

)
det
(

Φ
(s)
−k−1 Φ

(s)
−k−2

)
det
(

Φ
(s)
k+1 Φ

(s)
k

) . (229b)

In term of the functions Y , the Hirota equation (??) becomes

Yk

(
λe

1
2
iπ
)
Yk

(
λe−

1
2
iπ
)

= (1 + Yk+1 (λ)) (1 + Yk−1 (λ)) . (230)

This set of equations is known in the literature as a Y-system; see for example [?, ?, ?, ?].
18In the first incarnations of the ODE/IM correspondence [?, ?] this point was the origin z = 0, which

represents a regular singularity of the differential equation. Consequently the solution obtained by local analysis
around z = 0 does not exhibit any Stokes phenomena. The term “central” also descends from these first examples,
in which the eigenvalue problem associated to the central connection matrix concerned functions with behaviour
defined at z = 0 and |z| → ∞. In our case the linear system possesses no singularity at finite z, however we can still
define an eigenvalue problem for functions with given behaviour as |z| → ∞ and at an arbitrary point z which,
being regular, will not give rise to a Stokes phenomenon. We stick to the tradition and call such an eigenvalue
problem “central”.
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4.7 Properties of the Y-functions and the TBA equation

Although the rewriting (??) of the Hirota equation does not seem to change the situationmuch,
it actually allows us to derive an integral equation for the logarithm of the Y functions. Let us
briefly review how this is done.

Using the definition (??) of the WKB solution, we easily see that

Y2k (λ) = exp

−λ ∮
γ2k

s

 , Y2k+1

(
λe

1
2
iπ
)

= exp

−λ ∮
γ2k+1

s

 , (231)

where s =
∑∞

k=0 λ
−2ksk and the one-forms sk were introduced in (??). The γk are closed

contours, elements of a basis of the first homology group H1 (RWKB,Z). Since our branch cuts
can all be taken to lie on the real axis (remember, we chose the polynomial P (z) to only have
real roots), we can arrange them as shown in figure ??. It is evident that the Yk (λ) functions are
analytic in λwith essential singularities sitting at λ = 0 and λ =∞. In particular, a perturbative
analysis of the WKB solutions tells us that

lnY2k = −λ
∮
γ2k

dz
√
P +O

(
λ−1
)
, lnY2k+1 = iλ

∮
γ2k+1

dz
√
P +O

(
λ−1
)
. (232)

A similar result holds for the expansion around λ = 0, with
√
Pdz replaced by

√
P̄ dz̄. Hence

we find that the Y functions have the following asymptotic for large |υ|, with υ = lnλ,

lnYk (υ) ∼
|υ|→∞

−mk cosh(υ)


m2k = 2

∮
γ2k
dz
√
P = 2

∮
γ2k
dz̄
√
P̄

m2k+1 = −i 2
∮
γ2k+1

dz
√
P = −i 2

∮
γ2k+1

dz̄
√
P̄

.

(233)
Note that this behaviour is valid for Im [υ] ∈ (−π, π), since beyond this range, the WKB
approximation we have used may no longer be reliable.19 The quantities mk can be shown to
be real when all the zeroes of P (z) are real.20

19Actually the WKB approximation can be shown to be valid in the range Im [υ] ∈
(
− 3

2π,
3
2π
)
.

20Consider a polynomial with 2N roots

P (z) = (z − z1) (z − z2) · · · (z − z2N ) ,

and suppose that z1, z2 ∈ R. We wish to compute the integral

I =

∮
γ1,2

dz
√
P (z) ,

where γ1,2 is a cycle encircling in a counter-clockwise sense the cut running from z1 to z2. Moreover, without
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Now, from the properties just mentioned, we deduce that the auxiliary function

yk (υ) = ln
(
Yk (υ) emk cosh(υ)

)
, (234)

is analytic in the strip Sυ = |Im [υ] | < π
2
and decays at large |Re [υ] | therein. Moreover it obeys

the logarithmic form of (??)

yk

(
υ +

1

2
iπ

)
+ yk

(
υ − 1

2
iπ

)
= ln (1 + Yk+1 (υ)) + ln (1 + Yk−1 (υ)) . (235)

This form is very useful, because the operator effecting the shift in the right-hand side above
is inverse to the convolution kernel K (υ) = 1

2π cosh(υ)
. In mathematical terms

[K ∗ yk]
(
υ +

1

2
iπ

)
+ [K ∗ yk]

(
υ − 1

2
iπ

)
=

∫
R

dυ′

2π

yk
(
υ′ + 1

2
iπ
)

+ yk
(
υ′ − 1

2
iπ
)

cosh (υ − υ′)
=

∮
∂Sυ

dυ′

2πi

yk (υ′)

sinh (υ − υ′)
= yk (υ) , (236)

where ∂Sυ is the boundary of the strip Sυ = |Im [υ] | < π
2
and we used, in turn, that yk decays

in Sυ for Re [υ] → ±∞, and that it has no singularities in Sυ. Thus we have arrived at the
following integral TBA-like equation [?]

εk (υ) = mk cosh(υ)−
∫
R

dυ′

2π

ln
(
1 + e−εk−1(υ′)

)
+ ln

(
1 + e−εk+1(υ′)

)
cosh (υ − υ′)

, (237)

where we introduced the pseudo-energies (borrowing the language of the TBA)

Yk (υ) = e−εk(υ) . (238)

If we were to choose a polynomial P (z) with complex roots, then everything that has been
said and shown above will essentially remain the same, with the exception of the assertion
mk ∈ R. What will now happen is that the ‘masses’mk will be complex numbers and the TBA
equation (??) will need to be adjusted to the following, more general, form

εk (υ) =
mk

2
eυ +

m∗k
2
e−υ −

∫
R

dυ′

2π

ln
(
1 + e−εk−1(υ′)

)
+ ln

(
1 + e−εk+1(υ′)

)
cosh (υ − υ′)

. (239)

loss of generality, suppose z1 = 0, z2 > 0 and zj /∈ [0, z1] , ∀j = 3, . . . , 2N . Then our integral becomes

I = −2

z2∫
0

dz
√
z (z − z2) · · · (z − z2N ) ,

since the integrals on infinitesimal circles around z = 1 and z = z2 vanish. The integral I is explicitely a real
number, as long as zj ∈ R , ∀j = 3, . . . 2N .
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Note that as long as
∣∣arg (mk)− arg (mk+1)

∣∣ < π/2 , ∀k, the above equation is perfectly well
defined. However, as soon as we go beyond this regime, it is necessary to pick out the
appropriate pole contribution from the kernel.21 Although the integral equation changes
form, the functions Y turn out to be continuous; this phenomenon is known as wall-crossing
and has been discussed in [?, ?].

We have arrived at an integral equation whose only inputs are the ‘masses’ mk, i.e. the
integrals of the WKB one-form s0 along the basis cycles of H1 (RWKB,Z), and whose outputs
are some functions εk of the spectral parameter λ. As we will now explain, the knowledge
of these functions will allow us to compute the regularized area (??) of the minimal surface in
AdS3, the boundary of which is a polygonal light-likeWilson loop determined by the function
P (z), as explained in section ??.

4.8 The area as the free energy

Now we wish to show that the regularized area is really the Free Energy associated to the TBA
equation (??) – or, more generally, (??). In order to do so we will take a route which might
appear to be slightly convoluted, so bear with us. First of all, consider the expression (??) for
the regularized area

Areg = 2α2

∫
Σ

dz dz̄
(
PP̄e−ϕ −

√
PP̄
)
. (240)

We notice that it is possible to write this in terms of the one-forms s0 and s̄0 (??) and a one-form
u

s0 =
√
Pdz , s̄0 =

√
P̄ dz̄ , u = uzdz + uz̄dz̄ , (241)

as
Areg = 2α2

∫
RWKB

(s0 ∧ u− s0 ∧ s̄0) , (242)

where, in order to reproduce (??), we are forced to fix the anti-holomorphic part of u as

uz̄ =
√
PP̄e−ϕ . (243)

It is evident that both s0 and s̄0 are exact, since their components are, respectively,
holomorphic and anti-holomorphic. In general the form u is not exact, but it can be made so
by precisely choosing the z component uz, which does not contribute to the integral (??).
One easily verifies that the following choice

u =

(
ϕ2
,z − 2ϕ,zz

8
√
P

+ f (z)

)
dz +

√
PP̄e−ϕdz̄ , (244)

21In fact, the equations (??) can be rewritten in the form (??), by shifting υ → υ − arg (mk). These equations
will involve kernels 1/ cosh

(
υ − υ′ − i arg (mk) + i arg (mk±1)

)
, which present singularities on the real υ′-line

whenever
∣∣arg (mk)− arg (mk+1)

∣∣ = (2n+ 1)π/2 , n ∈ Z≥.
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where f (z) is an arbitrary function of z, fits the bill since

du =
eϕ

2
√
P

∂

∂z

(
PP̄e−2ϕ +

1

2
ϕ,zz̄e

−ϕ
)
dz ∧ dz̄ = 0 , (245)

due to the modified sinh-Gordon equation (??). We still have the freedom to choose the
function f(z) at will, and in the following we take

f (z) =
1

8
√
P

(
P,zz
P
− 5

4

(
P,z
P

)2
)
, (246)

so that we can express the form u in terms of s1 (??) as

u = s1 +
√
PP̄e−ϕdz̄ . (247)

We are then able to rewrite the regularized area as an integral (??) over the Riemann surface
RWKB of the external product of two exact one-forms: s0 and u − s̄0. Why would we want
to do this? The answer comes from the following neat property of integration on Riemann
surfaces:

Theorem. [?] Consider a Riemann surface Σg of genus g and let {ai, bi}gi=1 be a standard basis of
cycles, i.e. a standard basis of H1 (Σg,Z). Take two exact one-forms ω and ω′ and define

αi =

∮
ai

ω , βi =

∮
bi

ω ,

α′i =

∮
ai

ω′ , β′i =

∮
bi

ω′ .

Then the integral of the two-form ω ∧ ω′ over the Riemann surface can be decomposed as∫
Σg

ω ∧ ω′ =
g∑
i=1

(αiβ
′
i − βiα′i) . (248)

Thanks to this result we can write the expression (??) for the area as

Areg = 2α2
∑
i,j

wi,j

∮
γi

s0


∮
γj

s1 − ˆ̄s0

 , (249)

where
ˆ̄s0 =

√
PP̄e−ϕdz̄ − s̄0 =

√
P̄
(√

PP̄e−ϕ − 1
)
dz̄ , (250)
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{γi} is a basis of H1 (RWKB,Z) and wi,j are the intersection numbers of these cycles.22

Now we need to identify the contour integrals in (??). To this end, let us introduce the
functions ε̂k defined as

ε̂2k (υ) = ε2k (υ) , ε̂2k+1 (υ) = ε2k+1

(
υ + i

π

2

)
. (251)

We can describe their large λ behaviour in two equivalent ways:

• using the expression (??) in terms of WKB integrals

ε̂k = λ

∮
γk

s0 +
1

λ

∮
γk

s1 +O
(
λ−2
)
, (252)

• using the TBA equation (??)

ε̂k = λ

∮
γk

s0 +
1

λ

∮
γk

s̄0 −
1

π

∞∫
−∞

dυ′eυ
′∑

j

wk,j ln
(

1 + e−ε̂j(υ
′)
)+O

(
λ−2
)
, (253)

where we have used the definition (??) of the dimensionless mass parametersmk and their
complex conjugates m∗k.

In the case in which the parameters mk satisfy
∣∣arg (mk)− arg (mk+1)

∣∣ < π/2, wj,k has
the simple expression wj,k = δj+1,k + δj−1,k, and if 2N ∈ 2Z≥ + 1 it is invertible with
inverse given by the cycle intersection number wi,j introduced above.

Since the above two large-λ expansions must agree term by term, we find the exact
expression for the integral of the 1-form s1 on the contours γk:∮

γk

s1 =

∮
γk

s̄0 −
1

π

∞∫
−∞

dυ′eυ
′∑

j

wk,j ln
(

1 + e−ε̂j(υ
′)
)
. (254)

The expression for the area (??) then takes the following form:

Areg = 2
α2

π

∑
i,j

wi,jZi

 ∞∫
−∞

dυ′eυ
′∑

j

wj,k ln
(

1 + e−εk(υ′)
) , (255a)

Zi = −
∮
γi

s0 . (255b)

22The cycles γi depicted in figure ?? do form a basis but not a normalized one. Hence the need to insert the
intersection numbers.
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The exact same reasoning as above can be repeated for the small λ limit; this yields

Areg = 2
α2

π

∑
i,j

wi,jZ̄i

 ∞∫
−∞

dυ′e−υ
′∑

j

wj,k ln
(

1 + e−εk(υ′)
) . (256)

Finally, as these two expressions must give the same result,23 we can take their mean value to
find

Areg =
α2

π

∑
i

|mi|
∫
R

dυ cosh(υ) ln
(

1 + e−εi(υ−i arg(mi))
)
, (257)

which coincides with the free energy expression for the TBA equation (??). Note that we
made the implicit assumptions that

∑
j wi,jw

j,k = δki , which is true only if 2N ∈ 2Z≥ + 1,
and

∣∣arg (mk)− arg (mk+1)
∣∣ < π/2. If instead we have N ∈ Z≥ with the constraint on the

phases of the masses still in place, the area keeps the form (??), though acquiring an extra term
as studied in detail in [?]. On the other hand, if this constraint is relaxed and we cross a wall,
new cycles enter the game and one needs to track their contributions with care. However by
adapting the derivation we followed it is possible to show that an expression of the form (??)
continues to hold. See [?], appendix B, for more details.

4.9 The IM side of ODE/IM correspondence and the conformal limit

We conclude this excursion in the realm of minimal surfaces by briefly making contact with
the IM side of the ODE/IM correspondence. In fact what we have done so far in this section
pertains to the ODE part of the correspondence: we investigated the classical linear problem
(??) and showed how its monodromy data can be used to compute the area of a minimal
surface in AdS3 sitting on a light-like polygonal loop on the boundary ∂AdS3. Through
some non-trivial manipulations of the monodromy data, we arrived at the expression (??) in
terms of a set of auxiliary functions εk (υ) which satisfy the system of non-linear integral
equations (??). As mentioned above, these equations have the flavour of TBA equations for
quantum integrable field theories and, as a matter of fact, have appeared earlier in the
literature as the equations describing the finite-size ground state spectrum of the
SU (2N)2 /U (1)2N−1 Homogeneous sine-Gordon model24 [?, ?, ?, ?, ?, ?, ?]. Hence we
conclude that the linear system (??) works as a bridge, connecting the geometry of minimal
surfaces in AdS3 – and, consequently, the properties of light-like Wilson loops in ∂AdS3 – to
the properties of the quantum SU (2N)2 /U (1)2N−1 HsG model in finite-size geometry.

23This statement is equivalent to the requirement that the total momentum of the TBA vanishes identically,
or, in other words, that the pseudo-energies εk are even functions of υ.

24Actually, the equations (??) are associated to a particular instance of the SU (2N)2 /U (1)
2N−1 HsG model,

in which the so-called resonance parameters are chosen to vanish, see [?, ?].
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It is known [?,?] that the CFT limit of theGk/U (1)rG , withG a compact simple Lie group,
rG the rank of the group G and k its level, is described by the parafermionic Gk/U (1)rG coset
CFT with central charge

c =
k − 1

k + hG
rG hG , (258)

where hG is the Coxeter number of the group G. In the case considered in this section, that is
G = SU (2N), one has rG = 2N − 1 and hG = 2N and choosing k = 2 one obtains the central
charge

c = N
2N − 1

N + 1
. (259)

As mentioned in section ??, the integrable structure of these CFTs is conjectured to be
described by a Sturm-Liouville problem for (??) with the particular choice (??) of the potential
P (x). In order to verify this fact, we need to perform the conformal limit on the linear system
(??). We thus first pick a generic point (z0, z̄0), such that P (z0) = p0 6= 0,∞ and P̄ (z̄0) = p̄0 6=
0,∞. Without loss of generality we will suppose that (z0, z̄0) = (0, 0). As the point (0, 0) need
to be generic, we require the Gauss curvature (??) to be a finite constant at that point

e−2ϕPP̄ ∼
(z,z̄)→(0,0)

O
(
z0, z̄0

)
, (260)

which means that the sinh-Gordon field ϕ will have the following simple, regular behaviour

ϕ (z, z̄) ∼
(z,z̄)→(0,0)

1

2
ln
(
P0P̄0

)
+
∞∑
k=1

(
ϕkz

k + ϕ̄kz̄
k
)
. (261)

The coefficients ϕk and ϕ̄k are fixed by inserting the above ansatz into the modified sinh-
Gordon equation (??); their explicit form is of no relevance, but we list here the first few

ϕ1 =
P1

2P0

, ϕ2 =
P2

2P0

− P 2
1

4P 2
0

, ϕ3 =
P3

2P0

− P1P2

2P 2
0

+
P 3

1

6P 3
0

, (262a)

ϕ4 =
P4

2P0

− P 2
2 + 2P1P3

4P 2
0

+
P 2

1P2

2P 3
0

− P 4
1

8P 4
0

, (262b)

with

P (z) = P0 +
2N∑
k=1

Pkz
k =

2N∏
k=1

(z − zk) . (263)

Similar expressions hold for ϕ̄k and p̄ (z̄). We see that when taking the light-cone limit z̄ → 0,
the field assumes the following form

ϕ (z, z̄) ∼
z̄→0

1

2
ln
(
P0P̄0

)
+
∞∑
k=1

ϕkz
k . (264)
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Let us look back at the linear system (??)

Φ,z = LΦ , Φ,z̄ = L̄Φ , (265)

with

L (λ) =

(
−1

4
ϕ,z λe

ϕ
2

λPe−
ϕ
2

1
4
ϕ,z

)
, L̄ (λ) =

(
1
4
ϕ,z̄

1
λ
P̄ e−

ϕ
2

1
λ
e
ϕ
2 −1

4
ϕ,z̄

)
. (266)

We now consider the unknown Φ as a vector, i.e. an arbitrary column of a generic matrix
solution of (??), which we can parametrise in the two following ways

Φ =

(
λe

ϕ
4 χ

e−3ϕ
4 ∂
(
e
ϕ
2 χ
) ) =

(
e−3ϕ

4 ∂̄
(
e
ϕ
2 χ̄
)

1
λ
e
ϕ
4 χ̄

)
. (267)

One then easily checks that the linear problem reduces to the following pair of second order
differential equations

χ,zz (z, z̄) +

(
1

2
v (z, z̄)− λ2P (z)

)
χ (z, z̄) = 0 , (268)

χ̄,z̄z̄ (z, z̄) +

(
1

2
v̄ (z, z̄)− 1

λ2
P̄ (z̄)

)
χ̄ (z, z̄) = 0 , (269)

where

v (z, z̄) = ϕ,zz (z, z̄)− 1

2
ϕ,z (z, z̄)2 , v̄ (z, z̄) = ϕ,z̄z̄ (z, z̄)− 1

2
ϕ,z̄ (z, z̄)2 , (270)

are the Miura transforms of the field ϕ.
Now we will consider the conformal limit in the form of a double limit: we first take the

light cone limit z̄ → 0, which will ‘freeze’ the anti-holomorphic dependence, and subsequently
consider the regime z ∼ 0. In order to consistently perform this last limit, we first rescale all
the quantities in play by the appropriate power of λ as follows

z = λ−
1

N+1x , z̄ = λ
1

N+1 x̄ , (271)

and scale the zeroes zk of the potential P (z) as z → 0 so that

P (z) =
2N∏
k=1

(z − zk) = λ−
2N
N+1

2N∏
k=1

(x− xk) = λ−
2N
N+1P (x) , (272)

then consider the limit λ→∞. Let us first concentrate on what happens to equation (??) when
we send z̄ → 0. The Miura transform v becomes

v (z, z̄) = O
(
z0
)

= λ
2

N+1O
(
λ−

2
N+1

)
, (273)
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while the differential equation itself now reads

χ,xx (x, x̄)−
(
O
(
λ−

2N
N+1

)
+ P (x)

)
χ (x, x̄) = 0 . (274)

Then we take the limit λ→∞ while keeping the scaling variables x and xk finite, so that we
arrive at the following equation

χ,xx (x) = P (x)χ (x) , (275)

which is clearly holomorphic in form and the reason why we dropped the x̄ dependence of φ.
What is the fate of the equation (??)? Let us look at what happens to the potential P̄ in the

light-cone limit

P̄ (z̄) =
2N∏
k=1

(z̄ − zk) ∼
z̄→0

2N∏
k=1

zk = λ−
2N
N+1

2N∏
k=1

xk = λ−
2N
N+1XN . (276)

On the other hand, in the light-cone limit we have v̄ → 0. Consequently the equation (??)
reduces to

χ̄,x̄x̄ (x, x̄)− λ−
4N
N+1XN χ̄ (x, x̄) = 0 , (277)

which in the limit λ→∞ becomes

χ̄,x̄x̄ (x, x̄) = 0 . (278)

We easily check that this equation is consistent with the relation imposed by the two
parametrizations (??) of the vector Φ, since considering the identity

χ =
1

λ
e−ϕ∂̄

(
e
ϕ
2 χ̄
)
, (279)

and taking a derivative with respect to z̄, we obtain

χ,z̄ =
e−

ϕ
2

λ

(
χ̄,z̄z̄ (z, z̄) +

1

2
v̄ (z, z̄) χ̄ (z, z̄)

)
−→ 0 . (280)

This proves that in the double scaling limit, the function φ is indeed holomorphic. Hence, as
expected, we have recovered the ODE (??) with a potential

P (x) =
2N∏
k=1

(x− xk) , (2N ∈ Z>) , (281)

of the same form as (??).
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5 Conclusions

The discovery of a connection between the theory of ordinary differential equations and 2D
quantum field theories was a completely unexpected surprise for the integrable model
community. It has allowed the investigation of problems in pure mathematics, in statistical
mechanics and condensed matter physics, strings and supersymmetric gauge theories.
However, most of the mathematical structures and connections that have emerged over the
past 20 years in the ODE/IM context have only been superficially explored. Among the
many mysterious facts concerning the ODE /IM correspondence, perhaps one of the most
fascinating is that it provides a compelling alternative way to quantise classical integrable
systems. In this respect, it will be essential to put more effort toward the implementation of
this novel quantisation scheme in the context of non-linear sigma models, as initiated in [?].

The ODE/IM correspondence might also provide a way to extend fundamental concepts
related to the renormalisation group to the Hamiltonian picture [?] and to implement the
quantisation of effective quantum field theories.

Concerning the last topic, the so-called TT̄-perturbation, where TT̄ is the composite
operator defined as the determinant of the stress-energy tensor [?], is known to be integrable
at both classical and quantum level [?, ?, ?, ?, ?]. On the classical side, deformed EoMs and Lax
operators coincide with the undeformed quantities up to a field-dependent local change of
the space-time coordinates [?, ?, ?]. The effect of this deformation on the finite-size quantum
TBA spectrum is also well understood; however, what is still missing are the ODE/IM steps
connecting the classical to the quantum TBA answer. For instance, it would interesting to
know the fate of the polygonal Wilson loops, in particular of the area/ free-energy
equivalence described in this review, under the TT̄ perturbation or the Lorentz-breaking
generalisations studied in [?, ?, ?].
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