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Abstract

In the central South Arabian mountains of Yemen and Oman, monsoon fog

interception by the endemic cloud forest is essential for ecosystem functions

and services. Yet, we know little about the local factors affecting fog distribu-

tions and their cumulative effects on vegetation. To examine these relationships,

we developed a novel method of high-resolution fog detection using Landsat

data, and validated the results using occurrence records of eight moisture-

sensitive plant species. Regression tree analysis was then used to examine the

topographic factors influencing fog distributions and the topoclimatic factors

influencing satellite-derived vegetation greenness. We find that the interplay

between the complex mountain topography and the incoming fog results in

heterogeneous fog densities. Specifically, fog accumulates against steep wind-

ward slopes and landforms, resulting in hotspots of fog interception, while

lower fog densities occur in leeward locations. We also find that fog distribu-

tions correlate with patterns of vegetation greenness, and overall, that greenness

increases with fog density. The layer of fog density describes patterns of vegeta-

tion greenness more accurately than topographic variables alone, and thus, we

propose that regional vegetation patterns more closely follow a fog gradient,

than an altitudinal gradient as previously supposed. The layer of fog density will

enable an improved understanding of how species and communities, many of

which are endemic, range-restricted and in decline, respond to local variability

in topoclimatic conditions.

Introduction

Fog is an important hydrologic input in many ecosystems

around the world (Bruijnzeel et al. 2005). Fog intercep-

tion by vegetation is the main process by which fog mois-

ture and the nutrients it contains can enter an ecosystem,

in addition to simple deposition (Weathers et al. 2006).

In arid environments, particularly in coastal and montane

locations, the interplay between the topography, fog and

vegetation can underpin the ecohydrology and provide a

crucial freshwater source for people and nature. Water is

often the primary limiting factor to vegetation growth

and vegetation responses to fog are usually more pro-

nounced than in areas with high rainfall (Hildebrandt

et al. 2007). Studies using in-situ measurements have

shown that the spatial distribution of fog can be affected

by topography (Bruijnzeel et al. 2005; Gultepe et al.

2007) and in turn, the distribution of fog can affect vege-

tation patterns (Cavelier and Guillermo 1989; Martorell

and Ezcurra 2002; Hildebrandt and Eltahir 2008; Scholte

and De Geest 2010). However, these relationships have

yet to be analysed using remote sensing techniques at the

landscape or regional scale, although overlay analysis of

these biospheric components has been used to predict

tropical cloud forest distributions (Mulligan 2010). In this

study, we use a novel high-resolution fog detection tech-

nique, a suite of geospatial datasets, and regression tree

analysis to examine the interplay between topography, fog

and vegetation in the central South Arabian mountains.

The central South Arabian mountains (CSAM) are

located in the Mahra Governorate of Yemen and the Dho-

far Governorate of Oman (Fig. 1). They receive very dense
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fogs (visibility < 100 m) during the monsoon, popularly

known as the khareef. From mid-June to mid-September,

south-westerly winds cause an upwelling of cold sea water

off the coast, lowering the sea temperature to c. 18 degrees.

As warm moist winds blow over it, advection fogs form

and build up against the south-facing mountain escarp-

ments (Stanley Price et al. 1988; Ghazanfar and Fisher

1998). A temperature inversion, caused by warm northerly

winds from the desert, limits the inland movement of fog

(K€urschner et al. 2004; Friesen et al. 2018).

The monsoon fogs support the Hybantho durae-Ano-

geissetum dhofaricae, a drought deciduous cloud forest

community (K€urschner et al. 2004). It is endemic to the

CSAM and the remnants of a once continuous paleo-Afri-

can flora (Meister et al. 2005). It comprises at least 262

floral species, many of which are endemic to the CSAM

(Patzelt 2015). The cloud forest is interspersed with grass-

lands dominated by Arthraxon junnarensis, Apluda mutica

and Themeda quadrivalvis, and shrublands, such as the

Euphorbia balsamifera cushion shrub community which

occupies the high-altitude fringes of the monsoon zone

(Patzelt 2011, 2015). Fog interception by the cloud forest

is estimated to contribute as much water as rainfall (mean

annual precipitation is 200 mm) to net precipitation

(Hildebrandt et al. 2007). The quantity of fog water inter-

cepted by the locally dominant and endemic tree, Ano-

geissus dhofarica (250% more than rainfall), is among the

highest recorded for any tree species (Friesen et al. 2018).

In addition, the fog cover greatly reduces solar radiation

and increases humidity, lowering evapotranspiration rates,

enabling deep infiltration and storage of soil water, which

is then used by the plants to extend the growing season

for a further three months after the monsoon (Hilde-

brandt and Eltahir 2007; Bruijnzeel et al. 2011). Collec-

tively, these processes enable forest cover in this arid

region, where annual net precipitation is much lower than

the expected water demand of forest (Hildebrandt et al.

2007).

The cloud forest is crucial to ecosystem functions and

services in the CSAM. For example, groundwater recharge

Figure 1. A map of the central South Arabian mountains in the Dhofar Governorate of Oman and the Mahra Governorate of Yemen, and their

location in the Arabian Peninsula. The regression tree analysis (RTA) area, and the 2016 botanical survey sites, are shown.
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rates have been found to be markedly higher (24%) in

highly forested areas compared to sparsely forested areas

(Friesen et al. 2018). Moreover the cloud forest provides

forage resources for pastoralism, and opportunities for

tourism and recreation. The CSAM are part of the Horn

of Africa biodiversity hotspot (Mittermeier et al. 2004),

and support unique biodiversity assemblages, including

the last viable population of critically endangered Arabian

leopards (Spalton and Al Hikmani 2014). However,

decreasing long-term rainfall trends suggest the region is

vulnerable to climate change (AlSarmi and Washington

2011), and scientists have warned of the potential for irre-

versible forest-grassland regime shifts, due to reduced fog

interception following removal of woody vegetation by

browsing livestock (Hildebrandt and Eltahir 2006, 2008).

In view of the high conservation and ecosystem service

value of the cloud forest, improving our understanding of

the ecohydrology in the CSAM is of great importance.

While the density of the fog can be seen to vary in differ-

ent parts of the mountains, no studies have examined

how the complex topography affects fog distributions. In

fact, our overall understanding of topography-fog interac-

tions is limited; based on a small number of studies

involving in situ measurements (Cavelier and Guillermo

1989; Kidron 2005; Hesse 2012). Furthermore, we have a

limited understanding of how fog distributions affect veg-

etation distributions at the landscape scale in the CSAM,

with much of the previous ecohydrological research hav-

ing been conducted in a single forest plot. One exception

is a recent study by Sousa et al. (2019), which provides

evidence of a coupling between fog distributions and veg-

etation phenology. They concluded that vegetation phe-

nology differed longitudinally, however it appears that

their results were capturing the differing phenology of

grasslands and forests, due to a misclassification of west-

ern and central forests as grasslands and eastern grass-

lands as forests.

Using conventional methods of fog detection (in-situ fog

collectors, fog detectors and fog-droplet spectrometers) to

conduct a detailed landscape-scale analysis of the interplay

between topography, fog and vegetation would require an

impractically large number of in-situ fog measurements

(Bruijnzeel et al. 2005). Instead, several remote sensing

approaches have been developed, although no satellites can

detect fog specifically. The most common method involves

differencing thermal (10.8 lm) and mid-infrared (3.7 lm)

spectral bands. Fog is discriminated from other surfaces

due to its low emissivity in mid-infrared at night and its

high reflectivity during the day (Bendix 2002). This method

does not differentiate between fog and other cloud types,

and is usually limited to night-time imagery. Another more

recent method uses spectral, spatial and microphysical

properties of fog from Meteosat 8 data (Cermak and

Bendix 2008). These methods have been used to describe

fog-vegetation relationships, such as in Oman’s central

desert (Borrell et al. 2019) and elsewhere (Cereceda et al.

2008; Cermak 2012; Obregon et al. 2014; Lehnert et al.

2018). However, one drawback of these methods is that fog

distributions are mapped at a low resolution, of no less

than 1.1 km (AVHRR imagery). To detect small or spatially

heterogenous fog events higher resolutions are required,

such as those of Landsat imagery (Bruijnzeel et al. 2005;

Lehnert et al. 2018).

In this study, we develop a new high-resolution fog

detection technique using Landsat data, and compile a

suite of high-resolution geospatial datasets, to examine

the interplay between topography, fog and vegetation in

the CSAM. We address two research questions. First, how

do topographic factors affect the distribution of monsoon

fogs? And second, how do topographic factors and fog

distributions affect patterns of vegetation greenness?

Material and Methods

Topography and vegetation datasets

The geospatial datasets used in this analysis are listed in

Table 1 and hosted in the PANGAEA data repository

(doi.org/10.1594/PANGAEA.902295). The ArcGIS Spatial

Analyst toolbox and the Geomorphometry and Gradient

Metrics toolbox (Evans et al. 2014) were used to calculate

a range of topographic layers and geomorphology metrics

from ASTER Global Digital Elevation Model (GDEM)

data. In addition, several layers were produced to account

for topoclimatic phenomenon specific to the CSAM. The

first was a binary layer to differentiate the north and

south escarpments of the continental divide, which have

contrasting climatic conditions. Without this variable,

topographic variables such as elevation were torn between

the two sides when predicting fog distributions. Surface

aspect was derived from a low resolution (1 km) DEM to

identify the continental divide. The second layer, a mea-

sure of fog exposure, was produced by reclassifying aspect

to have highest values on slopes facing offshore in the

direction of maximum fog exposure (an aspect of 160°)
and lowest values on slopes facing inland (an aspect of

340°) (Abdul-Wahab 2003). The third layer, a binary

layer of fog exposure (windward/leeward), was calculated

from the viewsheds of three observer points situated c.

60 km offshore at an elevation of 500 m.

Vegetation indices are combinations of two or more

spectral bands which detect vegetation properties such as

photosynthetic activity. The most commonly used is the

normalized difference vegetation index (NDVI) (Rouse

et al. 1974). In arid environments, NDVI is a strong

proxy of vegetation cover fraction, leaf area and biomass
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(Tian et al. 2019). We derived NDVI from Sentinel-2

MSI data products. The Sentinel 2 Level 1C top-of-atmo-

sphere reflectance data products were processed to Level

2A bottom-of-atmosphere data products using the Sen2-

Cor processer in the Sentinel 2 Toolbox in the Sentinel

Application Platform (SNAP) (Zuhlke et al. 2015). Ima-

gery from April 2017 was chosen because in April the dis-

tinction between habitat types is most pronounced. Trees

and shrubs undergo a second generative growth phase

while herbaceous species have senesced (Miller et al.

1988). The productivity of this regreening was particularly

pronounced in 2017 due to a strong monsoon the previ-

ous summer. A visual comparison of NDVI values with

satellite imagery shows that high NDVI values correspond

to cloud forest, lower values correspond to grasslands,

and the lowest values indicate unvegetated areas.

Table 1. Geospatial datasets used in this analysis

Metric Description

Average monsoon fog

density (0-1 scale)

A multiband (R, G, B, NIR) raster layer of average monsoon fog density calculated on a per cell basis as the mean

of the fog reflectance values of 119 Landsat 5 TM scenes, 17 Landsat 7 ETM+ scenes and 121 Landsat 8 OLI

TIRS scenes.

Fog temporal variability (0-1

scale)

A multiband (R, G, B, NIR) raster layer of fog temporal variability calculated on a per cell basis as the standard

deviation of the fog reflectance values of 119 Landsat 5 TM scenes, 17 Landsat 7 ETM+ scenes and 121 Landsat

8 OLI TIRS scenes. This layer serves as a measure of temporal variability in fog density.

Normalized Difference

Vegetation Index (NDVI)

(Rouse et al. 1974)

An NDVI raster layer derived from Sentinel-2 imagery from April 2017. NDVI is a strong proxy of vegetation cover

fraction, leaf area and biomass in arid environments.

Elevation An elevation raster layer derived from ASTER Global Digital Elevation Map V2. The original data has been

transformed to a projected coordinate system with bilinear resampling.

Slope (Burrough and

Mcdonnell 1998)

A raster layer of slope, in degrees, derived from the elevation layer using the average maximum technique.

Topographic Position Index

(TPI) (Guisan et al. 1999).

Nine layers with radii of

100 m, 200 m, 300 m,

400 m, 500 m, 1000 m,

2000 m, 3000 m, 5000 m,

and 10000 m.

TPI raster layers using different radii derived from the elevation layer. TPI measures the difference between a

central cell elevation and the average elevation around it within a predetermined radius. It is a measure of

terrain roughness. TPI is increasingly used to classify slope position and landform types.

Linear Aspect A linear aspect raster layer derived from the elevation layer. Circular aspect is transformed to a linear variable.

Terrain Ruggedness Index

(TRI) (Riley et al. 1999)

A TRI raster layer derived from the elevation layer, based on the sum change in elevation between a central cell

and its eight neighbouring cells. TRI is a terrain roughness metric.

Surface Area Ratio (SAR)

(Berry 2002)

A SAR raster layer derived from the elevation layer. SAR is another measure of terrain roughness which compares

terrain surface area to the planimetric area. Berry’s method uses slope to calculate an adjustment factor for the

cell planimetric area.

Surface Relief Ratio (SRR)

(Pike and Wilson 1971)

A SRR raster layer derived from the elevation layer which describes terrain roughness using a central cell and its

eight neighbouring cells.

Curvature (Moore et al.

1991)

A layer of curvature derived from the elevation layer. It is the second derivative value of the input surface on a

cell-by-cell basis and describes the concavity or convexity of a surface.

Compound Topographic

Index (CTI) (Gessler et al.

1995)

A CTI raster layer derived from the elevation layer. CTI is a steady state wetness index and a measure of flow

accumulation. Higher values represent drainage depressions, while lower values represent hilltops and ridges.

Site Exposure Index (Balice

et al. 2000)

A SEI raster layer derived from the elevation layer. SEI rescales aspect with higher values on warm south facing

slopes and lower values on north facing slopes.

Topographic Radiation

Aspect Index (TRASP)

(Roberts and Cooper 1989)

A TRASP derived from the elevation layer which assigns lowest values to cool, north-facing slopes and highest

values to hotter, dryer south-facing slopes.

Escarpment (North/South) A binary raster layer to differentiate the north and south watersheds of the continental divide. Produced by

calculating aspect on a low resolution (1 km) DEM to identify the continental divide.

Modified aspect A raster layer of reclassified aspect with highest values on slopes facing offshore in the direction of maximum fog

exposure (an aspect of 160°) and lowest values on slopes facing inland (an aspect of 340°) (Abdul-Wahab

2003).

Topographic exposure to fog A binary raster layer of topographic exposure to monsoon fog (exposed/leeward). Calculated from the viewsheds

of three observer points situated c. 60 km offshore at an elevation of 500 m.
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Fog density dataset

Satellite observations show some consistency in the mon-

soon fog distributions in the CSAM. For example, some

areas of the mountains receive frequent dense fogs, while

other areas receive infrequent fogs. We hypothesized that

topographic factors influence the fog distribution, which

interacts with the land surface and influences vegetation

distributions. Therefore, we produced a raster layer of aver-

age monsoon fog density, calculated on a per cell basis as

the mean of the fog reflectance values of multiple Landsat

scenes. In addition, we calculated a layer of standard devia-

tion values, as a measure of fog temporal variability.

These layers were calculated in Google Earth Engine

(see Data S1 for JavaScript code). First, the Landsat 5, 7

and 8 top-of-atmosphere reflectance imagery collections

were filtered to imagery from the CSAM acquired during

the monsoon (June-September). Then, scenes with no or

very little fog, or a high coverage of mid-level or high-

level clouds, were filtered out. This was achieved by

filtering out scenes with less than 5% cloud cover (using

Google Earth Engine’s pixel-based cloud scoring algo-

rithm) over the fog-affected southern escarpments or

more than 5% cloud cover to the north of the mountains

(Fig. 2). This technique successfully filtered out cloudy

scenes because the monsoon fog is restricted to the vege-

tated southern escarpments, and thus substantial areas of

cloud outside this typical distribution, is very likely to be

mid-level and high-level clouds, rather than fog.

The scenes were cropped to remove ragged edges or bor-

dering ‘no data’ values, to ensure a seamless final composite

layer. Then, the fog cover was extracted from each scene

using the cloud bitmask (4) in the quality assessment band

(BQA), and the background cells were set to zero to repre-

sent fogless areas (a reflectance threshold could also have

been used to select fog areas). This extraction method,

using a cloud bitmask, was effective because the monsoon

fog in the CSAM is dense and contrasts with the land sur-

face. Thus, it should be noted that this method may not be

appropriate for isolating low density or irregular fog events,

or distinguishing between fog, haze and low stratus.

Fog reflects solar radiation in the visible and infrared

spectra (Wang et al. 1999). In the CSAM, higher reflectance

values in fog areas can be interpreted as denser and more

moisture-laden fog because the fogs lower and upper alti-

tudes are limited by the southern escarpment and a temper-

ature inversion, respectively (K€urschner et al. 2004; Friesen

et al. 2018). A histogram of the band reflectance values

confirmed the green, red, blue and near-infrared (NIR)

bands detected the greatest range of fog reflectance values

(Fig. 3). These bands were isolated in each image and

renamed for continuity between sensors.

A total of 257 scenes acquired in the years 1987–2002
and 2013–2019 were included in the mean and standard

deviation calculations (Data S2). The number of scenes

and their locations (WRS-2 path/row) in each represented

Figure 2. A diagram illustrating the criteria employed for filtering out

scenes with little or no fog (<5% over the mountains) or a high

coverage of mid-level or high-level clouds (>5% to the north of the

mountains) prior to calculating the average fog density. One hundred

and nineteen of 251 Landsat 5 scenes, 17 of 36 Landsat 7 scenes and

121 of 232 Landsat 8 scenes remained after removing fogless and

cloudy scenes.

Figure 3. Histograms of the band reflectance values in fog areas. The NIR band detects the greatest range of reflectance values in fog areas, and

thus the range of fog densities are well-represented.
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monsoon season, are shown in Figure 4, along with their

fog intensity. Fog intensity was calculated for each scene

as the mean of the fog density cell values within an analy-

sis window. Each tile area (WRS-2 path/row) contained

an analysis window, within which every scene had com-

plete data.

Finally, the scenes were stacked, and the mean and

standard deviation were calculated on a per cell basis, to

produce layers of average fog density and fog temporal

variability, respectively. The NIR band was used in this

analysis as it detects the greatest range of reflectance val-

ues in fog areas, and thus the range of fog densities are

well-represented (Fig. 3).

To confirm that the fog density layer was spatially

accurate and interacting with the land surface and affect-

ing vegetation patterns, we used data from a 2016 botani-

cal survey of the cloud forest in the Jabal Qamar

mountain range in Dhofar (Ball 2019). The original data-

set comprised 7200 woody plant records from 30 system-

atically sampled sites between 300 m and 900 m above

sea level (Fig. 1). To validate the fog layer, an ANOVA

test was used to compare fog density values at the loca-

tions of four xerophytic plant species (Acacia gerrardii,

Adenium obesum, Aloe praetermissa and Cordia ovalis)

with fog density values at the locations of four relatively

mesophytic plant species (Blepharis dhofarensis, Cordia

perrottetii, Croton confertus and Ruttya fruticosa).

Testing the topography-fog-vegetation
relationship

To produce a testable dataset the geospatial layers were

randomly sampled at 50 000 locations throughout the

monsoon area of the CSAM (fog density > 0.1). We

excluded the city of Salalah on the coastal plain and areas

within 50 m of surfaced roads, to avoid sampling terrain

disturbance and anthropogenic features. The sample was

analysed using regression tree analysis (RTA) in the R

‘rpart’ package (R Core team, 2019; Therneau and Atkin-

son 2019b) which implements methodologies of Breiman

et al. (1984). Two trees were grown. The first tree mod-

elled fog density as a function of topographic variables and

included 22 explanatory variables (Table 1). The second

tree modelled vegetation greenness as a function of fog

and topographic variables, using the same 22 topographic

variables, plus fog density and fog temporal variability.

Regression tree analysis partitions a dataset into smaller

subgroups through recursive partitioning. The binary

splits occur at nodes based on true/false answers about

the values of predictors, and each split is based on a sin-

gle variable. The rule generated at each step maximizes

the class purity within each of the two resulting sub-

groups (Breiman et al. 1984; Miska and Jan 2004). It is a

popular alternative to classical regression techniques with

several characteristics that make it well-suited to our

Figure 4. Number of scenes (total 257) and their locations (WRS-2 path/row) in each represented monsoon season (1987–2002 and 2013–2019).

Fog intensity was calculated for each scene as the mean of the fog density cell values within an analysis window. Each tile area (WRS-2 path/row)

contained an analysis window, within which every scene had complete data.
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analysis. First, it is a non-parametric technique which

befits the heteroscedasticity and non-normality of our

response variables. Second, it does not rely on a priori

hypotheses about the relationships between the predictors

and the response variable. This is important in geomor-

phological and remote sensing analyses where nonlinear

responses and predictors may interact in unknown ways

(Miska and Jan 2004). Finally, RTA accepts both categori-

cal and continuous predictors and models interaction

effects, and represents them in a highly interpretable for-

mat (Thuiller et al. 2003).

Deciding on the appropriate length of the tree is a key

consideration in RTA. If the tree is too short (underfitting)

it could have a high predictive error and underexplain the

data, but if it is too long (overfitting) it will describe ran-

dom ‘noise’ in the data and become complex and uninter-

pretable (Spruill et al. 2010; Therneau and Atkinson

2019a). The rpart package performs cross-validations to

determine an appropriate complexity parameter for tree

pruning. Between 10 and 20 cross-validations are recom-

mended, so 15 cross-validations were chosen. Any split

that does not decrease the overall lack of fit by a factor of

the complexity parameter at each step is not attempted

(Prasad et al. 2006). By default, the rpart package imple-

ments a minimum complexity parameter of 0.01, but

Therneau and Atkinson (2019a) warn of underfitting with

large datasets. For our tree which modelled vegetation

greenness, we reduced the complexity parameter to 0.005,

which increased the number of terminal nodes from eight

to ten. Variable importance was calculated using the

default method in the rpart package from Breiman et al.

(1984), as the sum of the goodness of split measures (Gini

index) for each variable used as a primary or surrogate

split. The minimum number of observations required for a

split and for a terminal node was specified as 20.

Results

The fog density and fog temporal variability layers are

displayed in Figure 5, alongside a true-colour satellite

image, NDVI and elevation. Visually, broadscale correla-

tive patterns are evident. In Figure 6, fog density is plot-

ted against fog temporal variability, which shows a

curvilinear relationship, with increasing temporal fog vari-

ability until a fog density of 0.4, and then decreasing fog

variability with increasing fog density. Fog data at the

locations of the eight moisture-sensitive plant species are

also plotted in Figure 6, and an ANOVA test confirmed

that fog densities are significantly higher in areas occu-

pied by the mesophytic species (F (1, 94) = 65.7,

P = < 0.001). This indicates that our fog detection

method is accurate and that the observed fog distribution

is interacting with the land surface and affecting

vegetation patterns. Figure 7 shows a detailed cross-sec-

tion of the CSAM with the layer of fog density draped

over a double-exaggerated, contoured, shaded relief eleva-

tion surface.

In the following section we present the RTA trees

(Figs. 8 and 9) and diagnostic plots (Fig. 10). The com-

plexity parameter plots show the reduction in the cross

validated error with decreasing complexity parameter val-

ues and increasing tree size (Fig. 10). They show that we

would see diminishing returns if we continued to grow

the trees. Additional plots show the importance of each

variable (Fig. 10). The higher the variable importance (0–
1 range), the more the variable contributes to improving

the model.

The tree to describe fog distributions had 10 splits, 11

terminal nodes and a cross-validated error of 0.582

(Fig. 8, Data S3). The most important variables (impor-

tance > 0.05) are shown in Figure 10.

In RTA, partitions near the starting node are the most

important and result in large reductions in model error. At

the first split, the tree identified an important elevation

threshold at 858 m. This represents the boundary of the

core fog zone, where the southern escarpments meet the

plateau, where an atmospheric temperature inversion lim-

its the northward movement of fog (K€urschner et al. 2004;

Friesen et al. 2018). The lowest fog densities occurred at

elevations above 1027 m (Node 4) and on the northern

desert-facing escarpments (Node 14). On the southern

escarpments, low fog densities occurred in leeward areas

above 858 m (Node 10) and on hilltops below 300 m

(Node 12). The topographic position index (TPI) describes

whether land is within wadis and depressions or on crests

and hilltops. Higher fog densities occurred in wadis

between 300 m and 858 m (Node 30), on leeward-facing

wadi slopes below 300 m (Node 26), and on windward-

facing slopes between 858 m and 1027 m (Node 11).

Higher fog densities occurred on hilltops in leeward areas

between 300 m and 858 m (Node 124), where fog densities

were markedly higher on steep slopes (Node 125), as mea-

sured by Surface Area Ratio. High fog densities occurred

on windward wadi slopes below 300 m (Node 27), with

the highest on windward hilltops between 300 m and

858 m (Node 63). In summary, fog densities are low above

858 m unless in windward areas, while below 858 m,

higher fog densities occur in wadis at lower elevations and

on hilltops at higher elevations. At all elevations, fog densi-

ties are higher in windward locations.

The tree describing vegetation distributions had 9

splits, 10 terminal nodes and a cross-validated error of

0.349 (Fig. 9, Data S4). The most important variables

(importance > 0.05) are shown in Figure 10.

The first partition at a fog density threshold of 0.37

reduced the cross-validated error from 1 to 0.6, indicating
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Figure 5. Layers of (A) true-colour satellite image, (B) NDVI, (C) elevation, (D) average fog density and (E) fog temporal variability, for the central

South Arabian mountains. Broadscale correlative patterns are evident. Diffference in NDVI between cloud forest and grassland can be seen in the

inset maps.
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the importance of this first split which represents the

boundary of the core fog zone. Low NDVI values were

found to be in areas with fog densities below 0.37, with

the lowest at elevations below 293 meters. Here, NDVI

values were lower on hilltops (Node 8) than in wadis

(Node 9). Slightly higher NDVI values occurred at eleva-

tions above 293 m in areas with fog densities below 0.29

(Node 10), in areas with smooth terrain below 164 m

with fog densities above 0.37 (Node 12), and in areas

above 293 m with fog densities between 0.29 and 0.37

(Node 11). Higher NDVI values were on hilltops with

smooth terrain (Terrain Ruggedness Index) above 164 m,

in areas with fog densities greater than 0.37 (Node 26),

and in areas with rougher terrain with fog densities

between 0.37 and 0.44 (Node 14). Higher NDVI values

occurred in areas with rugged terrain and fog densities

greater than 0.44 (Node 30) and in wadis with smooth

terrain above 164 m and fog densities greater than 0.37

Figure 6. A scatterplot of fog density and fog temporal variability.

The curvilinear relationship shows increasing and high temporal fog

variability in areas with low fog densities (<0.4) but lower and

decreasing fog variability in areas of high fog densities. Fog density is

significantly higher (P < 0.001) and temporal variability lower for

mesophytes compared to xerophytes, providing evidence that the fog

density layer is accurate.

Figure 7. A three-dimensional cross section of the central South Arabian mountains between Dhalkut and Rakhyut in Dhofar, with the layer of

fog density draped over a double-exaggerated, contoured, shaded relief elevation surface. Fog density has been classified into six classes (Jenks

optimization). Steep windward slopes obstruct the inland movement of fog affecting its distribution.
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(Node 27). The highest NDVI values occurred in areas

with very rugged terrain and fog densities greater than

0.44 (Node 31). In summary, the lowest NDVI values

occurred in areas with fog densities below 0.37 and at

low elevations (<164 m), while higher NDVI values were

in foggier areas, especially within wadis and areas with

rugged terrain.

To further test the importance of fog, relative to topo-

graphic variables, for describing vegetation distributions

(in addition to the variable importance results in Fig. 10),

we ran the analysis of vegetation greenness distributions

without fog data. Less variance was explained – elevation

was the most important variable (0.44), but a cross-

validated error of only 0.56 was reached by the ninth

split, compared to 0.35 with fog data included.

Discussion

The first tree in our analysis, which described fog distri-

butions, had a cross-validated error of 0.582, showing

that topographic factors play a substantial role in shaping

fog distributions. Altitudinal variation in fog distributions

was identified, with important thresholds at 858 m and

1027 m, which correspond to the boundary of the core

fog zone and fog spillover to the northern escarpments,

respectively (Fig. 8). Topographic position and exposure

Figure 8. Tree describing fog distributions had 10 splits, 11 terminal nodes and a cross-validated error of 0.582. The ‘jumps’ in the node

numbers result from the pruning of those branches which did not decrease the overall lack of fit by a factor of complexity parameter. The

terminal node numbers were reassigned to the data points and mapped according to the tree colour scheme.
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were important (Fig. 10). Our results show that at low

elevations fog density is higher in wadis than on hilltops,

while at higher elevations fog density is lower in wadis

(Fig. 8). One explanation for this pattern is that at lower

elevations, wadis are larger and deeper and oriented with

their mouths in a windward direction, and therefore can

collect fog. However, at higher elevations the wadis are

shallower and oriented in various directions, and there-

fore the fog passes over them, assisted by the higher wind

speeds at altitude.

Regarding exposure, we see high fog densities where

windward slopes and landforms, such as cliffs, obstruct

the inland movement of fog, while lower fog densities

occur in leeward locations (Fig. 7). Lawton (1978)

described a similar trend from Dhofar but at a much

smaller scale. Moisture-deprived shadows of bare ground

on the lee-side of Euphorbia balsamifera shrubs were

noted. Our results, which show the greatest fog densities

on steep windward slopes, conform to findings from

other studies which used in-situ field measurements. For

example, windward aspects received higher fog precipita-

tion than leeward aspects in the Negev desert (Kidron

2005) and fog densities were found to be lower in leeward

locations in coastal Peru (Hesse 2012). Furthermore, over

twice as much fog was intercepted by forests on exposed

windward slopes than on leeward slopes in Columbia and

Venezuela (Cavelier and Guillermo 1989).

The second tree in our analysis, with a cross-validated

error of 0.349, described considerable variance in vegeta-

tion greenness. Fog density was the most important pre-

dictor (Fig. 9). Fog is known to influence vegetation

patterns (Cavelier and Guillermo 1989; Martorell and

Figure 9. The tree describing vegetation distributions had 9 splits, 10 terminal nodes and a cross-validated error of 0.349. The ‘jumps’ in the

node numbers result from the pruning of those branches which did not decrease the overall lack of fit by a factor of complexity parameter. The

terminal node numbers were reassigned to the data points and mapped according to the tree colour scheme.
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Ezcurra 2002; Scholte and De Geest 2010), especially in

arid environments (Martorell and Ezcurra 2002; Hilde-

brandt and Eltahir 2008; Scholte and De Geest 2010).

Our results corroborate existing evidence of the impor-

tance of fog for supporting forest in the CSAM (Hilde-

brandt and Eltahir 2007; Hildebrandt et al. 2007). To

evaluate the relative influence of other climatic variables

on broader-scale vegetation patterns in Southern Arabia,

climate datasets such as CHELSA or ERA5 could be used.

Our results also show that vegetation greenness

increases with fog density. In areas with the highest and

most consistent fog densities we see the highest NDVI

values (Fig. 9). In these locations, fog interception by the

cloud forest increases soil moisture availability, therefore

sustaining its own ecological niche (Hildebrandt and Elta-

hir 2006; Hildebrandt et al. 2007). Interestingly, our

results show that these areas also have high terrain rough-

ness (Fig. 9), which presumably gives rise to a complex

forest canopy structure, which is known to intercept more

fog moisture than a continuous, smooth canopy (Hilde-

brandt and Eltahir 2008). Therefore, these areas, such as

at the base of cliffs or tops of tributaries, represent

important hotspots of fog interception.

Several of our findings provide evidence that regional

vegetation patterns more closely follow a fog, rather than

an altitudinal gradient, as conventionally supposed (Raf-

faelli and Tardelli 2006; Mosti et al. 2012; Patzelt 2015).

First, our results show that fog density and vegetation

greenness vary at comparable altitudes. Second, the vari-

able importance data shows that topographic factors such

as exposure and topographic position are collectively as

important as elevation in describing fog distributions

(Fig. 10). Finally, fog density was much more important

than elevation in describing vegetation greenness

(Fig. 10). Indeed, much less variance was explained when

we ran our analysis of vegetation greenness distributions

without fog data. An altitudinal gradient in fog moisture

may also be suppressed in the CSAM due to the counter-

acting effects of elevation and distance from the coast.

Generally, coastal advection fog interception increases

with altitude within the fogs elevation range, due to con-

current increases in fog frequency (immersion time) and

wind speed (Bruijnzeel et al. 2005). However, fog inter-

ception tends to decrease with distance from the coast

(Cereceda et al. 2002).

The layer of fog density describes patterns of vegetation

greenness more accurately than topographic factors alone,

perhaps as it incorporates unmeasured topoclimatic pro-

cesses. Therefore, the layer of fog density represents an

important variable for ecological modelling of biodiversity

Figure 10. Complexity parameter plots and variable importance for (A) the tree describing fog distributions and (B) the tree describing vegetation

distributions. Complexity parameter plots show the reduction in the cross validated error with decreasing complexity parameter and increasing

tree size. We would see diminishing returns if we continued to grow the trees. Variable importance is calculated as the sum of the goodness of

split measures (Gini index) and considers both primary and surrogate splits.
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in the region, especially for plants which respond strongly

to moisture availability. In recent years, the number of

botanical records from the CSAM has increased substan-

tially, thanks to the efforts of the Oman Botanic Garden

(Patzelt et al. 2008, 2009). Besides plants, specialist animal

species (many of which have received very little research

attention), are also likely to respond to fog density. For

example, humidity has been cited as an important factor

in the ecological separation of species of Hemidactylus

geckos in Dhofar (Carranza and Arnold 2012), while dif-

ferent bird communities have been described from habi-

tats with different water availability in western Dhofar

(Ball et al. 2015). It should also be noted that by advanc-

ing our ability to model abiotic conditions, we improve

our ability to quantify the relative effects of human dis-

turbances on vegetation patterns in the CSAM, which will

be one focus of our future research.

This research contributes a novel, high-resolution, fog

detection technique which is particularly suited to mapping

dense fog events with complex spatial distributions. How-

ever, there are two main limitations to our fog detection

technique. First, it may not be appropriate for detecting

low density or irregular fog events, or distinguishing

between fog, haze and low stratus. The fog needs to con-

trast with the land surface to be extracted using a cloud

mask or reflectance threshold, and to minimise the influ-

ence of land surface reflectance values on fog reflectance

values. Second, the measures of fog density are unitless.

Thus, comparisons with other studies would be difficult,

unless liquid water content values from multiple field mea-

surements could be interpolated in the fog density layer.

There are also two main limitations to our analysis. First,

we cannot determine if the fog layer is touching the local

surface or not. Thus, ground fog and raised fog are lumped

together. This is common to other remote sensing fog

detection methods. However, our results show beyond rea-

sonable doubt that our observed fog distributions are

affecting vegetation processes. Second, other unmeasured

thermodynamic processes, such as cold air pooling (Hang

et al. 2016), turbulence (Gultepe et al. 2007), wind (Walm-

sley et al. 1996) or changes in the frequency, depth, and

strength of atmospheric inversions (Abdul-Wahab 2003),

will influence fog distributions. These may account for

some of the cross-validated error (0.582) in the tree

describing fog distributions, in addition to variability asso-

ciated with the landscape scale of the analysis.

Conclusion

In the central South Arabian mountains of Yemen and

Oman, fog interception by the vegetation supports ecosys-

tem functions and services. Yet we have a limited under-

standing of the factors affecting fog distributions and

their cumulative effects on vegetation. In this paper, we

developed a novel method of high-resolution fog detec-

tion using Landsat data and assembled a suite of geospa-

tial datasets. Regression trees analysed the topographic

factors influencing fog distributions and the topoclimatic

factors influencing satellite-derived vegetation greenness,

which had cross-validated errors of 0.582 and 0.349,

respectively. We found that elevation, topographic posi-

tion and land exposure strongly affect fog distributions.

Specifically, steep windward slopes and deep wadis

obstruct the inland movement of fog, resulting in

heterogenous fog densities. We found a positive spatial

correlation between fog density and vegetation greenness.

Moreover we identified hotspots of fog interception in

areas with rugged terrain, dense cloud forest and the

highest and most consistent fog densities. In addition, we

found that the layer of fog density describes vegetation

patterns more precisely than topographic factors alone,

and we propose that the average fog distribution, rather

than an elevation gradient, may be more appropriate to

describe regional vegetation patterns. The layer of fog

density, calculated as the mean of the fog reflectance val-

ues of 257 Landsat scenes acquired since 1987, maps the

typical fog distribution at a high resolution, and repre-

sents an important new variable for ecological modelling

in this moisture-limited region. The same method could

be used to map dense fog events in other arid locations

which have low coverage of mid-level or high-level

clouds. In the CSAM, the layer of fog density will enable

an improved understanding of how local biodiversity,

much of which is endemic, range-restricted, or in decline,

responds to local variability in topoclimatic conditions.
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