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III Abstract 

Deamination of cytosine, leading to C>T transitions, are one of the most common 

mutation leading to carcinogenesis. Recently, APOBEC3 (A3) enzymes have been 

accounted as the main cause. Under normal conditions, these deaminase enzymes 

have antiviral activities, which mutate viral genome preventing infections. 

Deregulation of these enzymes has been linked with C>T mutation in host genome, 

within the specific TpCpW (where W = A or T) nucleotide sequence, termed 

APOBEC-signature mutations.  These are very common in several tumours, such 

as breast, cervical, head and neck and lung cancer. A3B has predominantly been 

associated with high APOBEC-signature mutations, especially in breast cancer. 

However, a naturally occurring ~29.5kb germline deletion polymorphism, spanning 

from intron 4 of A3A to intron 7 of A3B, generates the hybrid A3A_B, which causes 

the loss of almost the entire A3B. However, A3B-null tumours still present high 

APOBEC-signature mutations and have a high cancer risk. To investigate this 

paradox, we generated an isogenic model, using CRISPR/Cas9, which replicates 

the ~29.5kb deletion in a non-cancerous cell line. The genotyping assay created is 

very sensitive as it was possible to detect as low as 1% of cells with the deletion in 

a heterogeneous population. Furthermore, we analysed the use of the dual puro-

ΔTK selection cassette in NIKS, to enrich for cells with the deletion and laid the 

ground for future studies. This is a novel and important system, which can help 

understand how A3B deletion might affect the other A3 enzymes and cell 

proliferation, what drives carcinogenesis in these cells and what are the impacts on 

treatment development and advances. Overall the results obtained from this work 

are important for further analysis on APOBEC3 and its implication in cancer 

formation, prompting further studies and analysis.  
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1 Introduction 

1.1 APOBEC gene family 

The human apolipoprotein B mRNA-editing enzyme (APOBEC), catalytic 

polypeptide-like gene family comprises 11 genes that code for proteins with tissue-

specific function and expression (Salter et al., 2016). The gene family is thought to 

originate from the ancestral AID gene, and some members of the family share 

similar characteristics (Salter et al., 2016) They bind to both RNA and single 

stranded DNA (ssDNA) and play important roles in immunity and carcinogenesis 

(Revathidevi et al., 2016). The encoded proteins are: activation-induced cytidine 

deaminase (AICDA or AID); APOBEC1 (both AICDA and APOBEC1 genes are on 

chromosome 12), APOBEC2 (gene found on chromosome 6), seven APOBE3 

proteins (genes found on chromosome 22) and APOBEC4 (gene located on 

chromosome 1) (Salter et al., 2016). These proteins show cytidine deaminase 

activity at their catalytic site, except for APOBEC2 and APOBEC4, which are the 

least studied proteins and whose detailed functions have not been elucidated yet 

(Henderson and Fenton, 2015).  

The first protein to be discovered and the family founder was APOBEC1, which gave 

the name to most of the proteins in the family, expect AID. APOBEC1 (also known 

as A1) carries out cytidine deamination at position 6666 in the mRNA of ApoB 

protein, in the small intestine of mammals where ApoB mediates the uptake of 

dietary lipids (Mehta et al., 2000). The deamination converts cytidine to uridine (C 

→U), creating a stop codon and therefore a shorter version of ApoB (Mehta et al., 

2000). Additionally, A1 is also able to deaminate ssDNA (Salter et al., 2016) 

(Henderson and Fenton, 2015). With a similar structure and function as A1, AID 
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carries out deoxycytidine (dC) deamination in ssDNA, which generates deoxyuridine 

(dU). This activity is performed by its activation-induced deaminase (AID) motif, 

responsible for somatic hypermutation and class switching recombination in B cells 

which generates antibodies variation with specific antigen affinity (Henderson and 

Fenton, 2015) (Muramatsu et al., 2000). AID is an important enzyme that has 

influenced the immune system throughout evolution; it is found in bony and 

cartilaginous fish, the first organisms to have developed an adaptive immune 

system, and the enzyme has been conserved throughout evolution (Salter et al., 

2016). Additionally, dysfunctional AID enzyme gives rise to a type of autosomal 

recessive immunodeficiency disease, further highlighting its importance in immunity 

(Salter et al., 2016) (Rebhandl et al., 2015).   

1.1.1 APOBEC3 subfamily 

The APOBEC3 (A3) genes in humans, are located in tandem in a 100kb region on 

chromosome 22 and encode seven proteins: APOBEC3A (A3A), APOBEC3B 

(A3B), APOBEC3C (A3C), APOBEC3D (A3D), APOBEC3F (A3F), APOBEC3G 

(A3G) and APOBEC3H (A3H) (Swanton et al., 2015). These are divided in two 

groups, based on the number of zinc-finger-containing catalytic sites they possess: 

A3A, A3C, A3H have a single deaminase domain, whereas A3B, A3D, A3G and 

A3F have two deaminase domains (Rebhandl et al., 2015) (Swanton et al., 2015).  

 

Figure 1. APOBEC3 genes on chromosome 22 
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Schematic representation of the APOBEC3 gene on chromosome 22. The A3A_B deletion polymorphism is 

also shown, caused as a result of A3B deletion and the fusion of A3A OFR to A3B 3’ UTR (detailed 

explanation of the A3A_B deletion polymorphism in section 0).  

A3 proteins localize in different cell compartments, enabling protection against 

nuclear or cytoplasmic replicating pathogens, and explaining their role in DNA 

modification and implications in human health and diseases. A3G and A3F are 

restricted to the cytoplasm (Lackey et al., 2013; Henderson and Fenton, 2015) A3A 

is highly cytotoxic if overexpressed as it is found both in the cytoplasm and the 

nucleus and it is able to induce double strand DNA (dsDNA) breaks (Caval et al., 

2014; Suspène et al., 2016; Gansmo et al., 2018). A3B is constitutively found in the 

nucleus, due to specific nuclear localization sequence which allows its active 

transport in the nucleus after cell division (Bogerd et al., 2006; Lackey et al., 2012). 

Here, A3B is able to inhibit transcription of retrotransposons such as LINE-1 and Alu 

(Bogerd et al., 2006). A3B nuclear localization and role, might be the result of 

conservation with ancestral AID, however the other functions of the two enzymes, 

diverted over time functions (Lackey et al., 2012). A3H is polymorphic and four major 

haplotypes (I-IV) have been discovered in humans (OhAinle et al., 2008; Harari et 

al., 2009): haplotype I localises in the nucleus and is less active than haplotype II, 

which localizes in the cytoplasm and it’s the most active form; haplotypes III and IV 

are inactive (Li and Emerman, 2011).  

A3 enzymes carry out deamination in ssDNA, and are involved in the defence 

against retroviruses, retrotransposons and viruses such as HPV (human papilloma 

virus), HBV (hepatitis B virus) and HIV; for these reasons, APOBEC3 enzymes 

constitute an important part of the innate immune response (Burns et al., 2015; 

Henderson and Fenton, 2015). Indeed, it was shown that A3G mediates HIV 

restriction, by becoming incorporated into HIV viral particles in the cytoplasm; A3G 
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causes deamination of HIV cDNA during reverse transcription, causing inactivation 

of the virus (Sheehy et al., 2002; Koning et al., 2009). However, the viral protein Vif 

overcomes the host antiviral activity, by depleting cellular levels of A3G in two ways: 

by preventing translation of A3G mRNA and by targeting A3G for proteasomal 

degradation (Mangeat et al., 2003; Stopak et al., 2003). A3B and A3F have also 

been shown to have antiviral activity against HIV, with a similar mechanism as A3G, 

however, A3B does not appear to be regulated by Vif action (Koning et al., 2009; 

Vieira and Soares, 2013). A3A and A3B provide defence against viruses such as 

HPV and HBV (Vartanian et al., 2008; Vartanian et al., 2010a); indeed, A3A and 

A3B have been seen to be upregulated upon HPV infection and it is highly 

expressed in HPV-associated tumours (Henderson et al., 2014; Smith and Fenton, 

2019). A3A and A3B are also powerful inhibitors of retrotransposon elements, such 

as LINE-1 (Bogerd et al., 2006); A3F and, to a certain extent, the other A3 enzymes 

have also been shown to stop retrotransposons activity (Muckenfuss et al., 2006; 

Stenglein and Harris, 2006; Lovin and Peterlin, 2009; Pak et al., 2011; Richardson 

et al., 2014; Henderson and Fenton, 2015).  

 

It is easy to understand that with nuclear localization of these highly active enzymes, 

there is the risk of off-target activities directed to the host genome, if regulation is 

lost. One possible detrimental consequence of regulation loss is the formation of 

genomic mutations which might lead to cancer development. This would suggest 

the importance of unravelling the role APOBE3 proteins in carcinogenesis, as well 

as understanding whether these proteins might be a target for novel therapeutics.  
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1.2 APOBEC3 and cancer  

Cancer arises as a result of an accumulation of mutations in the DNA, coupled with 

the failure of repair mechanisms to resolve the lesion before the next round of DNA 

replication. Characterized by high levels of heterogeneity due to mutations that can 

arise at the start of the tumour, or that can evolve as the tumour progresses and 

eventually metastasises. Several mutational processes have been proposed to 

shape tumour progression, both from exogenous sources, such as tobacco smoke 

or UV light, to endogenous factors such as mismatch repairs or upregulation of 

certain enzymes (Alexandrov et al., 2013) (McGranahan et al., 2015a). The C-to-T 

transition is one of the most common mutation found in cancers, largely caused by 

UV light lesions within di-pyrimidine context, seen in melanomas and head and neck 

squamous carcinomas (Alexandrov et al., 2013) (McGranahan et al., 2015a). These 

can also occur as a spontaneous water-mediated mutation, in a CpG context. 

Interestingly, it has recently been found that APOBEC3 enzymes are predominantly 

responsible for the high volumes of C-to-T mutation in cancers, however this occurs 

in a different nucleoside sequence (Nik-Zainal et al., 2012; Burns et al., 2013a; 

Alexandrov et al., 2013; McGranahan et al., 2015a; Law et al., 2016a). A3 are 

involved in mutations seen in cancer driver genes such as PTEN, EGFR, and TP53 

(Alexandrov et al., 2013; McGranahan et al., 2015a). Moreover, strikingly high 

APOBEC mutations are also see in the helical domain of the oncogene PIK3CA 

across several cancers (Henderson et al., 2014; McGranahan et al., 2015b). 

APOBEC3 enzymes are able to generate somatic hypermutations which frequently 

occur in clusters and are characterized by a specific pattern (TpCpW, where W = A 

or T); these are referred to as kataegis (from Greek for rain shower), originally 

identified in breast cancer with BRCA mutation (Nik-Zainal et al., 2012), and later 
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also seen other cancers (Alexandrov et al., 2013) . Upon ssDNA exposure, 

A3 convert cytosine bases (C) to uracil (U),  resulting in C to T transition, if DNA 

replication occurs before repair has been competed; C to G transversions can also 

be seen, depending on the DNA polymerase involved in the translesion synthesis 

(Burns et al., 2013c; Roberts et al., 2013). Mutation clusters (kataegis) that occur 

on stretches of cytosines within the 5’-TCA-3’ or 5’-TCT-3’ motif have been 

attributed to A3 activity on ssDNA and are referred to as APOBEC-signature 

mutations, shown to be characteristic of certain cancers (Burns et al., 2013c; Chan 

et al., 2015).  

1.2.1 APOBEC3 access to ssDNA 

As previously mentioned, APOBEC3 target ssDNA, therefore, A3-mediated 

mutagenesis in cancer cells depends on substrate availability. Exposure of ssDNA 

can occur during resection of double strand break (DSB) repair, and A3-signature 

mutations are often seen in rearrangement breakpoints in tumours (Roberts et al., 

2012; Henderson and Fenton, 2015). ssDNA is also exposed at replication forks, 

especially if these are stalled or collapsed, a characteristic of tumour cells due to 

forced S-phase entry during cell cycle. Another source of long stretches of ssDNA 

is seen at transcription bubbles, where helicase unzips the DNA and exposes 

ssDNA (Henderson and Fenton, 2015). In fact, A3-mutations are present in highly 

transcribed gens in bladder cancer (Nordentoft et al., 2014). Interestingly, recent 

studies show that A3-mutations are seen in the lagging strand during DNA 

replication, and these mutations are attributed to A3A and A3B (Hoopes et al., 

2016).  
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Analysis of subcellular localization of A3 enzymes, has showed that they are kept 

away from chromosomes during the different stages of mitosis, but they are shuttled 

in different cell compartment during the interphase stage of cell cycle (Lackey et al., 

2013). Their deaminase activity is not impaired during the different stages of cell 

cycle and A3 enzymes also have the capacity to arrest cell cycle. A3A, A3C and 

A3H gain access to DNA during interphase and telophase (Lackey et al., 2013); 

A3B, A3D, A3F and A3G do not come in contact with DNA during the different 

phases of mitosis, however, during interphase, A3B is nuclear as it is transported in 

the nucleus after mitosis (Lackey et al., 2012; Lackey et al., 2013), while A3D, F and 

G are cytoplasmic (Lackey et al., 2013). Despite A3 are excluded from mitotic 

chromosomes, it is possible that the nuclear envelope loses its integrity during 

interphase, altering genome stability and halting cellular processes such as DNA 

transcription and replication prematurely, causing DNA damage such as DSB. DNA 

damage seen as a result of nuclear envelope rupture, is associated with kataegis 

and chromothripsis (Hatch, 2018). These two detrimental phenomena work 

together. Chromothripsis is a not-well-characterized mutational process where 

regions of a chromosome undergo shattering; these chromosomal pieces are 

randomly rearranged together, originating several mutations (Maciejowski et al., 

2015). It is not surprising to see chromothipsis across multiple cancers. 

Chromothipsis can arise as a result of telomere crisis, where the ends of 

chromosomes are joined together, forming long chromatin bridges that link the two 

nuclei while a cell undergoes cell division (Maciejowski et al., 2015). When the 

bridges are broken, long strands of ssDNA are formed and might be subjected to 

A3 deaminase action. In fact, kataegis attributed to the action of APOBEC3A/B are 

seen at chromothipsis break points (Maciejowski et al., 2015). Rupture of nuclear 
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envelope and shuttling of A3 enzymes during the cell cycle, might enable several 

A3 enzymes to cause DNA mutations. However, they act on different nucleotides 

motifs, distinguishable from the APOBEC-signature mutation (Faltas et al., 2016a). 

 

A3B is thought to be the major source of mutations in several cancers; as mentioned 

already, it is the only A3 protein that constitutively localises in the nucleus and has 

remarkable high levels of mRNA expression, especially compared to A3A (Burns et 

al., 2013c). Interestingly, the post-translation regulation of A3B activity and the 

molecular mechanism of its transport in the nucleus, remain unclear; however, it has 

recently been shown that A3B interacts with some of the proteins involved in the cell 

cycle. The study from McCann et. Al, showed that A3B interacts with CDK4 (cyclin-

dependent kinase 4), preventing cyclin D1 import in the nucleus (McCann et al., 

2019) . The complex CDK4-Cyclin D1 is essential for the regulation of the G1/S 

phase transition of the cell cycle (Day et al., 2009), and it is the most common check 

point to be altered in many cancers (Barretina et al., 2010; Baker and Reddy, 2012).  

Enforced over-expression of A3B in cancer cells, causes cell cycle arrest at the 

G1/S phase, due to the A3B-CDK4 interaction, leading to increased exposure of 

ssDNA substrates for A3B. (McCann et al., 2019). As a result, this could result in a 

surge of DNA deamination, mutations and high genomic instability.  

1.3 Role of APOBEC3A and APOBEC3B in cancer development  

The main A3 proteins implicated in cancer development and prognosis are A3A and 

A3B (Shinohara et al., 2012; Caval et al., 2014; Chan et al., 2015).  

A3B was first implicated in causing mutations in breast cancer, due to analysis of 

breast cancer cell lines which showed an upregulation of A3B (Burns et al., 2013a). 

Both A3A and A3B can cause deamination, however, A3A is prevalently found in 
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myeloid cells and therefore less detectable in breast cancer cells. It was observed 

that A3B mRNA was increased in the majority of primary breast cancers and high 

expression of A3B is likely to cause mutations in TP53, leading to its inactivation 

(Burns et al., 2013b). High levels of A3B mRNA, in primary breast tumour compared 

to the corresponding normal tissue, was matched to increased mutational load and 

poor disease prognosis in estrogen receptor positive (ER+) breast cancer, but not 

in ER- tumours, suggesting a link between oestrogen receptor and A3B (Sieuwerts 

et al., 2014). It was also seen that patients with high levels of A3B in primary breast 

tumour, are more likely to have relapse, suggesting that A3 also contribute to 

disease progression and ongoing mutations (Sieuwerts et al., 2014).  

Studies which looked at range of different types of breast cancers, showed that 

human epidermal growth factor receptor 2 (HER2+) subtype had exceptionally high 

levels of A3B as well as signature-mutations, suggesting that A3 mutagenesis is 

linked with cancer development (Roberts et al., 2013). Independent of HER and ER 

expression, A3B was also high in distant metastasis of breast cancer, especially in 

tissues from liver, brain, bones and lungs (Sieuwerts et al., 2017a). This further 

suggests that A3B is not only a major contributor of primary cancer development, 

but it also shapes and dictates disease evolution and progression. 

Subsequent analysis showed that bladder, cervix, lung adenocarcinoma, lung 

squamous cell carcinoma, head and neck, and breast, show an elevated A3B 

expression, as well as increased APOBEC-mutation signature and kataegis (Burns 

et al., 2013c).  

Given the role of A3 enzymes against viral infections, it is not surprising to see that 

A3B implication in HPV related cancers (HPV+), such as head and neck squamous 

cell carcinoma (HNSCC) and cervical cancers (Henderson et al., 2014). Comparison 
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of HPV+ and HPV- HNSCC, showed that HPV- tumours are more likely to develop 

as a result of tobacco smoke, whereas mutations seen in HPV+ HNSCC are 

attributed to A3B mutations, and occur in non-smokers (Henderson et al., 2014). 

A3B signature mutations are also seen in PIK3CA gene of some HPV- HNSCC, 

suggesting that A3B action can be seen in many cancers and its activity might be 

exacerbated by HPV presence (Henderson and Fenton, 2015).  

 

Ovarian cancers present a lower expression of A3B compared to other types of 

cancer; however, it was shown that deamination activities due A3B action, have 

been detected in serous ovarian cancer, which is the most common and severe form 

of ovarian cancer (Leonard et al., 2013). High A3B expression and its activity has 

also been linked with gastric cancers, which results in poor prognosis (Zhang et al., 

2015).  

APOBEC-signature mutation affects the outcome of myelomas too. The cytogenetic 

myeloma subgroups t(14;16) and t(14;20), show A3A and A3B overexpression 

which corresponds in elevated expression of a maf transcription factor (Walker et 

al., 2015). In particular this results in MAF upregulation in the t(14;20) subtype, and 

MAFB upregulation in the t(14;20), both linked with poor prognosis. It is not clear 

how the APOBEC-signature mutations arise in these myeloma subgroups, however 

it was seen that loci translocation between the chromosomes involved, exposes 

ssDNA so APOBEC3 enzyme can use it as a substrate (Walker et al., 2015). 

APOBEC-signature mutations were also seen in both genes when translocation 

occurred between MYC and IG loci, responsible for another type of myeloma 

(Walker et al., 2015). Interestingly, the study by Walker et al. did not distinguish if 

the mutations were caused by A3A or A3B. Urothelial carcinoma also present 
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APOBE3-signature mutations, seen both in early and late disease stages. These 

were attributed to A3B, as A3A expression in urothelial tissue and cell lines is very 

low, although this remains controversial (Vasudevan et al., 2018).  

 

A3B impact on cancer formation, evolution and responsiveness to treatment is 

astonishing. Therefore, it is not surprising to see that the number of studies carried 

out in the last decade have portrayed A3B as the principal source of mutations. 

However, a deeper analysis of these studies reveals no clear discrimination 

between A3B and A3A (or other A3). Therefore, other members of the A3 family, 

such as A3A, may also play an important role in tumorigenesis, making the story 

more complex (Starrett et al., 2016).  

1.3.1 The controversial role of APOBEC3A in carcinogenesis   

Alongside A3B, A3A has also been thought to contribute to some of the signature-

mutations seen in cancers. Interestingly, opposing to what was originally thought, it 

has been shown that A3A is more potent and stable than A3B, and it is considered 

to be the predominant deaminase that causes mutations in cancers. This finding 

was very surprising, considering the significantly higher mRNA level of A3B in 

cancer cells, compared to A3A (Caval et al., 2014; Chan et al., 2015; Kanu et al., 

2016) Due to more than 90% nucleotide similarities between A3A and A3B genes 

(Burns et al., 2015), it has been difficult to finely determine their protein expression 

as not specific enough antibodies are yet available (Starrett et al., 2016). However, 

by using a yeast model, Chan et al. (2015) were able to show that A3A and A3B 

signature mutations are statistically distinguishable (Chan et al., 2015). The study 

showed that A3A and A3B prefer different motifs within the ssDNA: A3A favoured 
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YTCA and A3B favoured RTCA, where Y is a pyrimidine and R is a purine. Although 

the study was conducted in yeast, the A3A and A3B motif preference in yeast can 

be a suitable model for deamination in human cancers (Chan et al., 2015). The 

assumption was made because their results were in accordance with the data 

generated from Taylor et al. (2013). A comparison between cancer kataegis and 

yeast kataegis triggered by A3A and A3B, shows that the flanking regions of the 

target cytosine and the length of the kataegic stretch are similar for both species. 

However, cancer kataegis showed two to fivefold higher mutation density, indicating 

that there may be differences in deaminase activity between the two organisms (Law 

et al., 2016b). The study by Chan et al. (2015) then compared A3A-mutations vs 

A3B-mutations in several different cancer samples. The results indicated that at 

least 6 cancer types, such as bladder (BLCA),breast (BRCA), head and neck 

(HNSC), lung adenocarcinoma (LUAD), lung squamous carcinoma (LUSC) and 

cervical (CESC) cancer had higher A3A-mutations, supporting A3A to be a more 

efficient mutator than A3B (Chan et al., 2015). The different signature mutations of 

A3A and A3B were exploited in a study on oral cancer in a Taiwanese population; 

the results pointed A3A to cause the most APOBEC-associated mutations, and that 

higher A3A expression is seen in cancerous tissues, compared to neighbouring 

corresponding healthy tissues, due to different 3’UTR regulation and greater 

interferon signalling (Chen et al., 2017). A3A was also seen to be the dominant A3 

to cause mutations both in nuclear DNA, especially in TP53 and MYC genes, and 

in mitochondrial DNA (Suspene et al., 2011).  

However, due to the similarities between the preferred motifs and the protein 

sequences, it is difficult to distinguish differences between A3A and A3B and which 

one is more involved in mutagenesis and cancer development.  
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Therefore, an intricate interplay between A3A and A3B might be the result of 

kataegis seen in the genome, however, this area warrants further studies. 

1.3.2 APOBEC3 activity and cancer therapy 

Adding to the tumorigenic role of A3, there is evidence showing that A3B can also 

contribute to drug resistance by continuous generation of mutations throughout the 

treatment. This is shown by the recurrence of cancers, which occurs when the 

patient is undergoing therapy with curative intent (Davies et al., 2013; Law et al., 

2016a) Although difficult to discern whether a mutation was present in a minor 

subclone if the primary tumour, or it was a result of ongoing genomic changes, it 

has been shown that A3B contributes to accumulation of mutations as well as drug 

resistance in oestrogen receptor (ER+) breast tumours (Law et al., 2016a). The 

study by Law et al. (2017) showed that in cells derived from primary ER+ breast 

tumour that never received hormonal treatment, high levels of A3B mRNA 

decreases benefits of tamoxifen treatment in metastatic ER+ breast tumours. 

Additionally, knockdown of A3B in ER+ breast cancer cells showed tamoxifen 

response in murine xenograft. Conversely, A3B overexpression caused tamoxifen 

resistance in murine xenografts. The study shows that high A3B results in tamoxifen 

resistance in ER+ breast cancer, although no clear evidence linking A3B-generated 

mutations to the resistance was presented (Law et al., 2016a).  

 

The interplay between A3 and cytotoxic drugs to treat tumours, is rather interesting. 

A3B has been shown to contribute to on-going mutations throughout the cancer 

lifetime; cytotoxic drugs, used to treat cancer, increase DNA replication stress and 

genomic instability, by creating DNA double strand breaks and therefore increasing 
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ssDNA, a substrate for A3B. This can create mutations in oncogenes and/or tumour 

suppressor genes, further feeding into cancer therapy resistance, in a feedback 

loop.  

Experimental models have shown that treating breast cancer cells and normal cell 

with drugs such as hydroxyurea, aphidicolin, gemcitabine and camptothecin, cause 

DNA replication stress (Kanu et al., 2016). It is speculated that this leads to an 

upregulation of the ATR/Chk1 pathway and the subsequent increased activity of 

A3B, responsible for cytidine-deamination, typical of APOBEC3-signature mutations 

(Kanu et al., 2016).  

Additionally, analysis of metastatic urothelial carcinoma, relapsed following 

treatment with a combination of  platinum-based drugs and gemcitabine, also 

showed an increased enrichment for APOBEC3-signature mutations (Faltas et al., 

2016b). Both A3A and A3B-related mutations seemed to be enhanced in the post-

chemotherapy tumour; interestingly, however, the study indicated A3A as is the 

main responsible, due to higher mutations in the A3A-preferred motif (YTCA) (Faltas 

et al., 2016b). Moreover it was shown that mutations in chemotherapy-treated 

cancers significantly diverge from primary, chemotherapy-naïve cancers, attributing 

the clonal tumour evolution to APOBEC-mutations, which occur throughout tumour 

development as well as during therapy (Faltas et al., 2016a). Furthermore, treatment 

of some bladder and breast cancer cell lines with the drug bleomycin (which causes 

DNA damage and induces DNA breaks), showed an increased induction of both 

A3A and A3B, with A3B levels in bladder cancer cell lines (Middlebrooks et al., 2016) 

 

Although a clear distinction between A3A and A3B activity in cancer progression 

has not been made yet, it is certain that these enzymes do play a role. Developing 
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A3B (and/or A3A) inhibitors, to be administered together with known 

chemotherapies, might reduce APOBEC-signature mutations, decrease tumour 

drug resistance and increases survival. This seemingly straightforward approach 

still requires more research to further our understanding of the APOBEC3 enzymes 

and their specific role in carcinogenesis.  

1.4 APOBEC3B deletion polymorphism 

In addition to being the cause of signature mutations in certain cancers, A3B also 

presents an interesting phenotype. This resulted in extensive research to unravel 

the intricate details of its behaviour. High levels of A3B might be beneficial to fight 

off viral infections, however, it can also cause cytotoxicity and increase signature 

mutations (Starrett et al., 2016). Interestingly, it has been shown that a naturally 

occurring deletion of A3B, present in a large proportion of the population, appears 

to result in high levels of signature mutations which might be a contributor to 

elevated cancer risk (Caval et al., 2014) (Kidd et al., 2007) (Chan et al., 2015) 

(Middlebrooks et al., 2016).  

 

Figure 2. Insertion and deletion configuration of A3A and A3B 

The insertion configuration corresponds to the wild type human genome. The ~29.5 deletion spanning from 

intron 4 of A3A (in red) and intron 7 of A3B is shown, which forms a shorrter, hybrid A3A_B gene. The black 

arrows on top of the genes, indicate PCR primers. The primers above APOBEC3B in the insertion 

configuration are referred to as the insertion primers; the primers on top of the deletion configuration are 

referred to as deletion primers. Image adapted from Kidd et al (Kidd et al., 2007). 
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A naturally occurring ~29.5kb deletion between the 5th exons of A3A and the 8th 

exon of A3B, results in the formation of a hybrid gene (A3A_B, also referred to as 

hybrid A3A), where the coding sequence and the regulatory elements are identical 

to A3A, but the 3’ UTR is derived from the A3B gene. As a result, there is a complete 

loss of the coding region of A3B gene (Kidd et al., 2007). The hybrid gene behaves 

virtually identically to A3A, which is much more potent and more stable than A3B. 

In fact, despite the higher cellular level of A3B, A3A mutations are much more 

prominent than A3B (Caval et al., 2014) (Chan et al., 2015) . Moreover, when the 

deletion is present and the A3A_B gene is formed, a higher level of A3A signature-

mutations are seen, which could indicate that the A3A_B gene presents an 

enhanced stability compared to both A3A and A3B (Klonowska et al., 2017). One 

possible explanation for this increased stability, could be the loss of regulatory 

miRNAs which mediated repression of the A3A 3’ UTR. This is consistent with the 

observation in certain cervical cancers, where the downregulation of miR-34b-3p 

(one of the miRNAs downregulated in many tumours) corresponds to high 

expression levels of A3A_B gene and increased somatic mutations. Hence, it is 

clear that a comprehensive analysis of the miRNAs, may help to further understand 

A3A_B regulation and its implications in carcinogenesis (Revathidevi et al., 2016). 

Increased hybrid A3A expression was also seen in oral cancers in a Taiwanese 

population with A3B homozygous deletion, compared to individuals with 

heterozygous deletion and individuals with A3B present (Chen et al., 2017). The 

same study, also indicated that miRNA downregulation might be involved in the 

increased stability of hybrid A3A; they found that miR-409, which decreases A3B 

3’UTR activity but not that A3A 3’UTR, was indeed downregulated in oral cavity 

cancer (Chen et al., 2017). 
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1.5 APOBEC3B deletion frequency, population variation and cancer 

risk 

The signature mutations were firstly identified in breast cancer screens; 

interestingly, the A3B deletion polymorphism is also associated with such mutations 

and the C-to-T and C-to-G mutations are present despite the A3B deletion. The 

signature mutations were later also found in other cancer types, suggesting that A3s 

action was not only restricted to breast tissues (Nik-Zainal et al., 2014). However, 

several studies show different association between the deletion polymorphism and 

cancer risk. Suggestion of A3B deletion and increased breast cancer risk, was 

showed in a Chinese population (Long et al., 2013); the same association was 

showed in small studies on Iranian (Rezaei et al., 2015), Malaysian (Wen et al., 

2016) and European-American (Xuan et al., 2013) populations. However, 

association was not seen in studies done in Swedish (Göhler et al., 2016), Indian 

(Revathidevi et al., 2016) and Moroccan (Marouf et al., 2016) populations. A study 

conducted on Norwegian population did not show association with A3B deletion and 

increased risk of lung, prostate, breast and colon cancer (Gansmo et al., 2018). 

However, a stratification of the population by age showed an increased risk of lung 

cancer in individuals younger than 50 years of age, which progressively decreased 

with age (Gansmo et al., 2018). A similar pattern was seen for prostate cancer, 

however, for both cancer types diagnosis occurred at a young age. The results 

obtained for breast cancer are in agreement with the Swedish study (Göhler et al., 

2016) previously mentioned, showing no association for A3B deletion and increased 

cancer risk (Gansmo et al., 2018). Furthermore, a study on a South Indian 

population showed no association between breast, cervical and oral cancer and A3B 

deletion. Interestingly, the same study indicated a higher incidence of the deletion 
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polymorphism in women than in men both in oral cancer samples and controls, 

however, it is unclear as why that might be the case (Revathidevi et al., 2016). The 

discrepancies in these findings can be explained by the varying frequencies of A3B 

deletion polymorphism across the global population. It is found in ~6% of 

Europeans, ~37% of East Asians, ~58% of Amerindians and a very high fixed 

frequency of ~93% in Oceanic population (Kidd et al., 2007) (Xuan et al., 2013). The 

association studies, indicate conflicting results about the effects of A3B deletion on 

Caucasian population, mirrored by the frequency distribution of the deletion. 

 

Figure 3. Distribution of the A3A_B deletion frequency. 

The map shows the deletion A3A_3B frequency worldwide. The black portion of the pie charts indicate the 
deletion, the white sections indicate insertion frequency.  (Kidd et al., 2007) 

Thinking of A3B deletion as another factor that might increase cancer risk is very 

simplistic; the different ethnic background as well as the expression of A3B in 

different tissues must be taken into consideration when making such a claim. More 

lager scale studies to gain a better understanding of the deletion polymorphism and 

why it is so different across worldwide populations, are essential to further elucidate 

APOBEC3 role in carcinogenesis and therapeutics. Additionally, the role of this 

interesting phenotype needs to be evaluated in light of the specific genetic 
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background of specific individuals, as A3A and A3B are expressed differently, 

depending on the presence of A3B deletion (Chen et al., 2017).   

1.6 Possible causes for A3B deletion frequency and further 

polymorphism in the APOBE3 family 

A3B plays an important role in innate immunity; it has been implicated to restrict 

HBV replication in hepatocytes and high expression was seen in the lungs and the 

spleen. It has been noted that A3B insertion is constitutively present in African 

populations, where malaria is endemic (Kidd et al., 2007), and that there is an 

increased expression of the relative APOBEC1 gene in a mouse spleen infected 

with the parasite P. berghei, during early infection stages. This lead to investigate 

whether there is an association between A3B and malaria susceptibility in humans 

(Jha et al., 2012), despite mice having only one A3 gene, and humans express 

seven. In a study on Indian populations, the deletion allele was associated with a 

higher probability to get infected by falciparum malaria and a low deletion frequency 

was seen in individuals living in endemic regions of India (Jha et al., 2012). Thus, it 

seems safe to accept that A3B is under selective pressure and its worldwide 

distribution mirrors the spread of certain African pathogens such as malaria  (Jha et 

al., 2012). This, indeed, might provide an explanation for the frequency of the A3B 

deletion worldwide and makes it easy to understand: as populations moved out of 

Africa, and migrated towards Europe and then Asia, the protective action of A3B 

against the pathogen was no longer needed. Additionally, it has been speculated 

that HIV infection might also play a role in the distribution of the deletion, together 

with malaria (Jha et al., 2012). However, population’s movement might have not 

been the only reason influencing A3B polymorphism; other A3 proteins also show 

an intricate polymorphism and it has recently been hypothesized that they might 
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also be involved in increased cancer risk (Klonowska et al., 2017).  

A3H is the other polymorphic gene of the APOBEC3 family, presenting several 

haplotypes (I-IV) with variable stability (Li and Emerman, 2011), and this has 

recently been exploited to explain the A3B-deletion paradox (Starrett et al., 2016). 

There is an association between A3B deletion and increased A3H-I expression, 

which might be responsible for the signature mutations seen in tumours from 

patients lacking A3B. Despite A3H-I expression is seen almost exclusively when 

there is A3B deletion, further studies need to be carried out to understand the actual 

contribution of A3H, A3B and/or other members of the family to the mutational load 

observed in breast cancer, lung adenocarcinoma and other cancers (Starrett et al., 

2016).  

1.7 Summary   

A3A and A3B are important antiviral proteins, however, high cellular expression can 

be dangerous as it can cause mutations in the genome, leading to cancer formation. 

Currently, A3A and A3B mutational signatures are implicated in specific cancers, 

however, further studies are needed in order to make clear links and correlations. 

In addition, the peculiar A3B deletion phenotype adds complexity to the picture: a 

deletion of a highly mutagenic gene predicts a reduction in mutations and cancer 

incidence, however, A3B deletion and consequent A3A_B hybrid gene formation, 

increases cancer risk, only in specific populations.  

Additionally, it has been seen that patients with A3B deletion phenotype might be 

more responsive to immunotherapy (Cescon et al., 2015), however, further research 

is needed to confirm this. It was recently shown that A3A might be an important 

prognostic marker, albeit, only when the A3B deletion polymorphism is present. This 

was seen in a small Taiwanese population with oral cancer, the study can prompt 
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further genomic studies on different cancers nonetheless (Chen et al., 2017). 

Further studies are hence needed to understand A3A_B gene functions within the 

cell and how this might affect cell cycle and proliferation, as well as how this 

phenotype might affect viral infection. 

 

A3A and A3B have received most of the attention in past studies, however, it might 

be possible that other members of the A3 family are involved in tumorigenesis.  

Due to the high mutational load caused by APOBEC3, developing inhibitors to use 

in conjunction with or as a substitution of chemotherapy seems a logical assumption 

to make. Most research has pointed to towards the development of A3B inhibitors, 

due to exceptionally high levels of the enzyme in cells and the numerous evidence 

that appoints A3B as the main mutator of genomic DNA. This idea is also supported 

by the germline deletion of A3B in certain patients.  Interestingly, this coincides with 

a higher risk of tumour development, therefore it is important to understand the 

interplay between A3 enzymes and how this can affect disease progression, 

prognosis and treatment. 

1.8 Project outline 

The current knowledge on A3A, A3B and A3A_B, is derived from overexpressing 

recombinant cDNA encoding the hybrid A3A and A3B genes in plasmids and 

expressed in E.coli or yeast. Additionally, A3B knock downs have been realised 

using siRNA in tumour cell lines, characterized by genomic instability where other 

mutations might have already occurred, and which are prone to further mutations. 

The extent to which A3A and A3B are implicated in mutagenesis in cancer is 

therefore still open to debate, augmented by the fact that individuals with the A3A_B 

genotype also present APOBEC3-signature mutations. An isogenic model for 
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A3A_B does not currently exist, hence, creating an A3B-knockout cell line will be 

vital to help address the historical question of whether A3B is essential for 

mutations, and if other A3 enzymes are also involved in the process. Additionally, 

this might also help to understand to what extent each A3 enzyme might contribute 

to mutations and how they might interact with each other.  

 

This project aims generate a model that replicates the germline APOBEC3B deletion 

polymorphism. This naturally occurring -29.5kb deletion, is successfully generated 

in NIKS cell line using CRISPR/Cas9. This cell line, derived from epithelial cells, is 

used as a representative of the healthy tissue from which several squamous cell 

carcinomas, such as breast cervical, lung, head and neck originate and present 

APOBEC-signature mutations. Additionally, the MCF10A cell line was used as a 

representative of breast epithelial, due to the high APOBEC-signature mutations 

seen in breast cancers.  

2 Materials and methods  

2.1 Tissue culture 

2.1.1 Normal Immortalized Keratinocytes (NIKS)  

NIKS were cultured using medium composed of Ham’s F-12 medium (Invitrogen 

11765-054) and Dulbecco’s modified Eagle’s medium (DMEM) with 1% L-Glutamine 

(Invitrogen 11965-084), at a ratio of 3:1 respectively, supplemented with 5% Foetal 

Bovine Serum (FBS) (Pan Biotech. Cat. No.P30-3031). The medium was 

complemented with 0.4 μg/mL Hydrocortisone (Sigma H0888-1G), 8.3 ng/mL 

Cholera Toxin (EMD Biosciences 227035), 24 μg/mL Adenine (Sigma A2786-5G), 
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10 ng/ml Epidermal Growth Factor (EGF) (Sigma E1257-0.1MG), 5 μg/mL Insulin 

(Sigma I6634-50MG) and 1% penicillin/streptomycin (10000 U/ml, 10 mg/ml. Cat. 

No. P06-07100). The complete medium is referred as FC medium. Cells were 

cultured on a layer of feeder cells (mouse 3T3 fibroblasts) treated with mitomycin-

C. NIKS were incubated in humidified atmosphere at 37°C and 5% CO2; media was 

changed every 2-3 days. NIKS were grown both in T25 and T75 flasks, depending 

on the downstream use of the cells. For transfection, cells were grown in T75 flasks. 

2.1.2 TK-NIKS cell line    

NIKS were previously modified, to express the puroΔTK selection cassette, as 

shown in Figure 4. The cassette is formed by a combination of puromycin N-

acetyltransferase (puro), which confers puromycin resistance to the cells, and a 

truncated version of the herpes simplex virus type 1 thymidine kinase (ΔTK or HSV-

TK), as shown by Chen et al. (Chen and Bradley, 2000). Natural substrate of HSV-

TK is thymidine, however, it also phosphorylates nucleosides analogues such as 

FIAU and ganciclovir (GCV), which stop DNA elongation, leading to cell death 

(Borrelli et al., 1988; Chen and Bradley, 2000). Cells that express the selection 

cassette are negatively selected when treated with GCV, causing cell death. The 

selection cassette was inserted between exon 1 and 2 of the APOBEC3B gene, 

generating the modified TK-NIKS cell line, sensitive to GCV, with no effects on the 

expression of the A3B gene.  
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Figure 4. Gene construct for puroΔTK selection cassette insertion in A3B 

puroΔTK selection cassette was inserted between exon 1 and 2 of APOBEC3B gene (intron 1). Cells that had 
a successful insertion of the cassette are resistant to puromycin, therefore these can be isolated from the 
heterogeneous population present after transfection via puromycin treatment. The presence of the inserted gene 
can also be showed by PCR, which should generate a product of approximately 4982-bp (shown in the targeted 
allele construct). The puroΔTK construct can be eliminated by using flippase enzymes; this generates a PCR 
product of approximately 2454-bp (shown in final targeted allele construct), which is similar the PCR product 
generated by the wild type allele. Additionally, cells which had the puroΔTK selection cassette removed are 
resistant to ganciclovir, therefore GCV-treatment eliminates cells in which flippase action was not successful.  
 

TK-NIKS cells, were cultured the same way as NIKS (see section 2.1.1); same 

conditions as NIKS, also applied for TK-NIKS cell sorting. 

2.1.3 3T3 mouse fibroblasts 

Feeder cells were cultured in DMEM medium, supplemented with 10% FBS and 1% 

penicillin/streptomycin (10000U/ml and 10 mg/ml respectively), and incubated in 

humidified atmosphere at 37°C and 5% CO2. When they reach 80-90% confluency, 

feeder cells were treated with mitomycin-C (Sigma - M4287-2MG) which arrests 

their growth. 2% of 50X mitomycin-C was diluted in DMEM and then added to the 

growing feeder cells, which were incubated 1-4 hours in humidified atmosphere at 

37°C and 5% CO2. Treated 3T3 feeder cells can be used in co-culture with NIKS or 

stored at -80°C, for later use. NIKS and growth arrested feeder cells are plated at a 

ratio of 3:1, respectively.  
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2.1.4 SKBR3 

SKBR3, a breast cancer cell line homozygous for the A3A_B deletion allele, was 

cultured in DMEM medium, supplemented with 10% FBS and 1% 

penicillin/streptomycin (10000U/ml and 10 mg/ml respectively), and incubated in 

humidified atmosphere at 37°C and 5% CO2. At 80-90% confluency, cells we were 

harvested for DNA extraction which was used as a positive control for deletion 

primers, in all the genotyping experiments.  

2.1.5 MCF10A  

MCF10A Odin Cas9 High, a stable cell line with tetracycline-inducible Cas9 

expression was supplied by Dr Emmanuela Cuomo (Astra Zeneca). These cells 

were adapted to new media and cultured using 1:1 Ham’s F-f12 medium and 

Dulbecco’s modified Eagle’s medium (DMEM) with 1% L-Glutamine (Pan Biotech. 

Cat. No. P04-41250), supplemented with 5% Horse serum. The medium was 

complemented with 0.4 μg/mL Hydrocortisone (Sigma H0888-1G), 8.3 ng/mL 

Cholera Toxin (EMD Biosciences 227035), 24 μg/mL Adenine (Sigma A2786-5G), 

10 ng/ml Epidermal Growth Factor (EGF) (Sigma E1257-0.1MG), 5 μg/mL Insulin 

(Sigma I6634-50MG) and 1% penicillin/streptomycin (10000 U/ml, 10 mg/ml. Cat. 

No. P06-07100). Media was changed every 2-3 days. 

MCF10A cells were grown in T25 flasks and passaged every 5 days.  

For transfection, MCF10A cells were plated in 6 well plates. 

2.2 Bacteria culture  

Previously transformed E.coli cells were streaked on LB agar plates, in the presence 

of ampicillin (stock concentration 100 mg/ml, 1:1000 dilution to obtain a final 

concentration of 100 μg/ml in the plates). Four different plates were streaked, each 
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with bacteria containing one of 4 different plasmids. Three of these encoded Cas9 

protein and sgRNA targeting intron 4 of APOBEC3A and intron 7 of APOBEC3B at 

different locations in proximity. The sgRNA were classified as sgRNA1, sgRNA2 and 

sgRNA3 (for sgRNA sequences see Table 1). Additionally, an empty plasmid 

without sgRNA, was used as a negative control. All plasmids encoded GFP protein, 

which allows to determine transfection efficiency via a fluorescent microscope and 

allows for cell sorting (as elucidated later. A diagram of the plasmid construct and 

of the sgRNA targets on A3A and A3B is shown in Figure 5 and Figure 6, 

respectively. The sgRNA oligonucleotides were previously cloned in a pX458 

plasmid, following the protocol from Zhang at al. (Cong and Zhang, 2015). The agar 

plates were incubated overnight at 37◦C. The following day, a single colony from 

each plate was taken to carry out an overnight culture, in 250 ml of LB broth 

containing 100 μg/ml of ampicillin (as explained above). The bacterial cells were 

harvested the next day, for plasmid DNA extraction.  
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Figure 5. pX458 plasmid construct to express CRISPR/Cas9 

The plasmid contains the gRNA scaffold, which encodes for the specific sgRNA designed, Cas9 protein and 
EGFP. Additionally, the ampicillin resistant gene (AmpR) is also encoded by the plasmid. These are all under 
the same promoter, so they all get synthesized upon transfection into cells. Image obtained from SnapGene.  

 

 

Figure 6. Schematic representation of A3A and A3B genes and sgRNA cut points 

Representation of the sgRNA cut points in A3A and A3B. Gene sequence of A3A and A3B is almost identical, 
including the regions of interest, intron 4 of A3A and intron 7 of A3B. This means that the same sgRNA can be 
used to target both introns, as shown in the picture above. Intron 4 and intron 7 are found where the three 
sgRNA cluster; sgRNAs have been designed to perfectly match the targeted sequence. The PCR insertion 
primers are also shown on the gene map. Because only the wild type version (also called insertion configuration) 
of the genes A3A and A3B is shown here, it was not possible to add the PCR deletion primers. These, however, 
are shown in Figure 2. When deletion occurs, the binding site for the insertion primers on A3B is no longer 
available and the deletion configuration, allows binding of the deletion primers. size of extected PCR product 
from wild type and deletion configuration are listed in Error! Reference source not found.  Image obtained 
from SnapGene.  

 

2.2.1 Plasmid DNA extraction  

The plasmid containing the CRISPR/Cas9 system was extracted from bacteria cells 

following the QIAGEN Plasmid Plus Midi Kit (Cat. No. 12943) protocol. 

2.3 NIKS Cell transfection 

CRISPR/Cas9 containing plasmids were delivered to wild type NIKS and TK- NIKS.  

Cells were transfected according to the Technical Manual Fugene HD, following the 

instruction for T75 flasks. A 3:1 ratio Transfection Reagent:DNA was used for the 

experiments, which required 18 μg DNA, mixed with Fugene HD (Promega. Cat No. 

E2311) and Opti-MEM  I. This formed the transfection complex that was then added 
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to the cells, which were incubated for 48 hours in humidified atmosphere at 37°C 

and 5% CO2. Transfection was carried out when cells were at 80% confluency. 

Pictures of cells were taken 48h post transfection, using a Lumascope with 100x 

magnification.  

2.4 MCF10A transfection  

In order to allow the expression of Cas9, MCF10A cells were treated with different 

concentration of doxycycline (Doxycycline Hydrochloride ready-made solution, 

Sigma-Aldrich Cat. No. D3070). The concentration used were 0 ng/mL, 10 ng/mL, 

50 ng/mL, 100 ng/mL, 250 ng/mL, 500 ng/mL and 100ng/mL. Doxycycline was 

added to the medium 2 days before transfection and was kept till two days post 

transfection, when the cells were harvested for analysis. MCF10A were transfected 

as described by the Dharmacon Edit-R CRISPR-Cas9 gene engineering with 

lentiviral Cas9 and synthetic guide RNAs Technical Manual, following the protocol 

for Transfection of synthetic guide RNA. The protocol was adapted to this specific 

experiment, as the transfection reagent used was Lipofectamie RNAiMAX 

(Invitrogen. Cat. No. 13778030). Additionally, throughout transfection, doxycycline 

(at the same concentrations mentioned above) was added to the complete growth 

medium to allow the expression of Cas9. Briefly, 10μM crRNA and tracrRNA were 

mixed with Tris buffer, to make a final 2μM solution. This was mixed with serum-free 

media, to form the gRNA complex, to which was added the transfection reagent 

Lipofectamie RNAiMAX, after it was diluted at 1/50. The transfection solution 

(tracrRNA:crRNA and the transfection reagent) were incubated at room temperature 

for 20 minutes. This was then added to the cells and incubated for 48 hours in 

humidified atmosphere at 37°C and 5% CO2, before proceeding with further 

analysis.  



Rosalba Biondo  

 

37 

 

2.5 Genomic DNA extraction and quantification  

DNA was extracted from all the samples by following the protocol from QIAGEN 

QIAamp DNA blood mini kit (Cat. No. 51306), as described in appendix B for 

cultured cells.  

Briefly, cells were cultured in T25 flasks, following the appropriate procedure, and 

when confluent, they were harvested and suspended in phosphate buffered saline 

(PBS), to which was added proteinase K. To this, Buffer AL is added and the sample 

in incubated at 56°C for 10 minutes, followed by the addition of ethanol. The mixture 

was then applied to a DNA QIAmp mini spin column and centrifuged. The 

supernatant was discarded, Buffer AW1 was added to the column and the sample 

was centrifuged. Again, the supernatant was discarded, Buffer AW2 was added to 

the column and the sample was centrifuged. The supernatant was discarded, and 

the DNA was eluted by adding Buffer AE to the column and collecting the flow 

through. DNA was quantified using the NanodropOneC (ThermoFisher).  

2.6 PCR genotyping assay 

The primers used were the same as the ones developed by Kidd et al. (Kidd et al., 

2007), designed to distinguish insertion and deletion genotypes for A3B. Deletion 

primers generate a 700-bp PCR product (Forward primer: 

TAGGTGCCACCCCGAT; Reverse primer: TTGAGCATAATCTTACTCTTGTAC). 

Insertion 2 (from herein simply termed insertion) primers generate a 705-bp PCR 

product (Forward primer: TGTCCCTTTTCAGAGTTTGAGTA; Reverse primer: 

TGGAGCCAATTAATCACTTCAT).  PCR was carried out according to the 

HotStarTaq Plus PCR handbook, following the HotStarTaq Plus PCR Master Mix 

protocol. Each reaction was made up to a total of 10ul, composed of 5ul of 

HotStarTaq Plus PCR Master Mix, 0.5 μM Forward Primer, 0.5 μM Reverse Prime, 
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100ng of DNA template, variable volume of RNase-Free Water and 2ul of the 

provided CoralLoad dye. The cycling conditions were the following: 5 mins at 95°C, 

0.5 min at 94°C, 0.5 min at 54°C, 1 min at 72°C, plus a final extension time of 10 

min at 72°C; the number of cycles used for each PCR was 30.  

2.6.1 PCR optimization and sensitivity 

PCR conditions and primers used were the same as described in section 2.6. DNA 

from wt NIKS and SKBR3 was mixed, in different proportion, in the same PCR 

reaction A total of 100 ng of DNA per reaction was used and DNA was mixed as 

follows: 50ng wt NIKS DNA and 50ng SKBR3 DNA; 70ng wt NIKS DNA and 30ng 

SKBR3 DNA; 90ng wt NIKS DNA and 10ng SKBR3 DNA; 99ng wt DNA and 1ng 

SKBR3 DNA. Additionally, two reactions with 100ng wt NIKS DNA and 100ng 

SKBR3 DNA respectively were also added.  

2.6.2 Agarose gel 

PCR products were analysed on a 1% agarose gel, using the 1kb DNA ladder 

from Fisher-Invitrogen. 
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2.7 Summary of oligonucleotides used for cell transfection and PCR 

primers 

 

Table 1. List of oligonucleotides used and their function 

The table lists all the oligonucleotides used for cell transfection as well as PCR primers. Gene sequence of A3A 
and A3B is almost identical, including the regions of interest, intron 4 of A3A and intron 7 of A3B. This means 
that the same sgRNA can be used to target both introns, as shown in Figure 6. The table also summarizes the 
expected size of the wild type product, detected by the insertion primers, and the deletion product, detected with 
the deletion primers. The deletion configuration is obtained as a result of the sgRNAs cut points from intron 4 of 
A3A, to intron 7 of A3B. This causes a genomic deletion of ~29.5kb (see section 1.4), which produces PCR 
products of ~700-bp 
 

2.8 Cell sorting via FACS  

After transfection, cells were harvested from the flasks, resuspended in PBS and 

analysed on BD FACSJAZZ cell sorter (BD Biosciences), with 10,000 events per 

sample. Cells were sorted according to their GFP signal. Data was acquired and 

Oligo sequence Function Material and 

Method section 

sgRNA sequence: 

GACGGAGCTGGGCGCCCTGTGGG 

sgRNA 1 encoded from 

plasmid, used for NIKS 

transfection 

Section: 2.2, Figure 6 

sgRNA sequence: 

ACGGAGCTGGGCGCCCTGTG 

sgRNA 2 encoded from 

plasmid, used for NIKS 

transfection 

Section: 2.2, Figure 6 

sgRNA sequence: 

GGGGAGGCCGATGGGGCACC 

sgRNA 3 encoded from 

plasmid, used for NIKS 

transfection 

Section: 2.2, Figure 6 

crRNA sequence: 

GACGGAGCTGGGCGCCCTGTGGG 

crRNA. RNA complementary 

to the targeted DNA section. 

It forms a complex with 

tracrRNA, which acts as a 

scaffold. The complex 

formed is gRNA. The gRNA 

binds with the targeted DNA 

and causes cuts.  

Section: 2.4 

Forward primer: 

TAGGTGCCACCCCGAT;  

Reverse primer: 

TTGAGCATAATCTTACTCTTGTAC 

Deletion PCR primers, which 

generate a 700-bp PCR 

product 

Section: 2.6 

Forward primer: 

TGTCCCTTTTCAGAGTTTGAGTA; 

Reverse primer: 

TGGAGCCAATTAATCACTTCAT 

Insertion primers, which 

generate a 705-bp PCR 

product  

Section: 2.6 
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analysed using the BD FACS Sortware software. Non-transfected NIKS and TK-

NIKS, were used to establish the background level of cells autofluorescence.  

2.9 Single-cell cloning  

Single cell cloning was performed following the low-density seeding method. NIKS 

that had been transfected and sorted, were diluted to a density as low as 0.5 cell 

per well of a 96-well plate. A cell suspension of 10 cells/mL in complete media was 

made and 50 μl of this was transferred to each well of a 96-well plate. Four hours 

prior to seeding the NIKS, feeder cells were added to the plate. These were diluted 

in a suspension of 1000 cells per 50 μl; 50 μl aliquots were added to each well of a 

96-well plate. Two 96-well plates were set up for each plasmid sample. Plates were 

checked after 2-3 days and after that every day for two weeks, to identify wells that 

contained only one cell which would give raise to a colony with genetically identical 

cells. Wells that contained more than one cell, and therefore generating more than 

one colony, were disregarded.  

2.10 Cell viability assay 

96 well plates were seeded with 3T3 feeder cells, wt NIKS and A3B A5 NIKS. The 

3T3 feeder cells were seeded at a density of 1x103 per well, and both types of NIKS 

were seeded at a density of 3x103 per well. A3B A5 NIKS and wt NIKS were plated 

in different 96 well plates, at the same time as the feeder cells, with FC media as 

described in the Tissue Culture section for NIKS. Cells were treated for 5 days with 

different concentrations of ganciclovir (8 serial dilution were done with 1:3 dilution. 

The starting concentration was 200 μM) and incubated in humidified atmosphere at 

37°C and 5% CO2. On the 5th day, cell proliferation was measured using CellTiter 

96 AQueous One Solution Cell Proliferation Assay system (Promega), according to 
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manufacturer’s instructions. 20μl of CellTiter 96® AQueous One Solution reagent 

was added per well, the plates were incubated in humidified atmosphere at 37°C 

and 5% CO2. After 3 hours, absorbance was measured at 490nm using a 96-well 

plate reader. A dose-response curve was generated using GraphPad Prism 8.0.2. 

Three replicates well per each concentration were used to measure cell proliferation. 

The optimal ganciclovir concentration was then added to cells in culture.  

2.11 Electroporation  

Electroporation was carried out by using the Gene Pulser Xcell Electroporation 

System. MFCF10 and NIKS were harvested from the flasks and, after a cell count, 

1x106 cells were resuspended in 400 μl OptiMEM. Previously purified Cas9 protein 

is added to the cell suspension (Cas9 stock concentration is 6 μg/ml). 1mL of this 

mx was then added to a 0.2 cm electroporation cuvette, which was then added to 

the Gene Pulser chamber. The exponential protocol was selected from the machine, 

with one pulse at 300V and capacitance of 300 μF. After electroporation, cells are 

left to rest for 5 mins and complete medium was added in a 1:1 ration with Opti-

MEM the cell are transferred into wells of 24-well plate. A coverslip coated with poly-

D-lysine (Sigma P7280) had been previously inserted in the wells which was then 

needed for fluorescence microscopy. The plate was incubated overnight in 

humidified atmosphere at 37°C and 5% CO2. 

2.12 Cell fixation  

Cells that adhered to the cover slip inserted in the 24-well plate, were washed twice 

with cold PBS and fixed in 4% paraformaldehyde for 10 mins. Cells were then 

washed three times with PBS, incubated for 15 mins with 50 mM NH4Cl and washed 

again three times with PBS. The cells were then permeabilized and blocked for 15 
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mins with 2% (w/v) BSA in PBS, supplemented with 0.1% (v/v) Triton X-100. Without 

being washed, the cells were incubated for 1 hour with nucleus stai3 

n Hoechst (Invitrogen. Cat. No. H3570), stock concentration of 20mM. A dilution of 

1:12 was made with PBS and the diluted dye was place on parafilm. The coverslips 

were then placed inverted on the dye and covered as the dye is light sensitive. The 

cells were then washed three time with PBS and one time with dH2O.The cover slips 

were then mounted on microscope slide with mowiol, supplemented with 2.5% (w/v) 

DABACO (Sigma. Cat. No. D-2522). The coverslips were stored overnight in the 

dark at room temperature, until the mowiol set, then they were stored at 4◦C. the 

slides were then analysed with fluorescence microscopy.  

2.13 Fluorescence microscopy  

Imaging was conducted with Widefield CytoVision Olympus BX61 microscope with 

Olympus UPlanFl 100X 1.30 Oil Japan numerical aperture and Hamamatsu 

Photonics Digital CCD camera ORCA-R2 C10600-10B-H, using DAPI and Cy5 

filters. 
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3 Results  

3.1 Optimizing a PCR genotyping assay to detect A3A_B deletion 

PCR primers previously designed by Kidd et al. (Kidd et al., 2007) were used to 

carry out all genotyping assays. These were insertion and deletion-specific primers 

(see Figure 2). The genetic insertion configuration corresponds to the wild type cell 

make up; the same labelling as used in the study by Kidd et al. is used in this project. 

The PCR primers were tested against wt NIKS and SKBR3 DNA. Additionally, the 

DNA of the two cell lines was mixed with different ratios, as shown in Figure 7, in 

order to determine the sensitivity of the assay.  

 

Figure 7. Agarose gel showing PCR results for the insertion-specific and deletion-specific genotyping 
primers. 

Deletion-specific PCR reactions generated products of the expected size of 700 bp (lines 1-9). Insertion-specific 

PCR reactions generated products of the expected size of 705-bp (lines 10-18).  

DNA of wt NIKS was used as a negative control for A3B deletion (line 1. Line 10 

indicates insertion for NIKS), as the cells present a normal genomic make up. 

Previous sequencing and gene expression analysis conducted in the laboratory, has 

indeed demonstrated that the NIKS cell line is homozygous for the insertion of A3B 

allele (wild type). DNA from SKBR3 cells was used as the positive control for the 
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deletion (line 2. Line 11 shows that this cell line differs from the insertion and hence 

wild type genotype), as SKBR3 cell line derives from mammary breast metastatic 

tumour and is homozygous for the A3B deletion. Line 8 shows that, even when there 

is as little as 1ng of DNA presenting the deletion in a heterogeneous sample, it can 

still be detected by PCR. Therefore, in a mixed population sample, a low number of 

cells with the deletion can be detected, making this s a very useful tool for testing 

the pool of mixed cell population after transfection and A3B gene knockout.   
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3.2 Establishment of GCV sensitivity in NIKS harbouring a puro-ΔTK 

dual selection cassette in A3B intron 1 

In order to enrich for cells with the deletion, and increase the purity of the population, 

the TK-NIKS cell line was used. As shown in Figure 4, TK-NIKS cells were 

previously modified to express the puro-ΔTK selection cassette, which makes them 

sensitive to GCV. However, the optimal concentration needed to eliminate all TK-

NIKS has not been established. Different serial dilutions were used to carry out the 

MTS assay, as shown in Figure 8. As GCV is dissolved in DMSO, it is difficult to 

say whether the effect seen in cells is due to GCV or DMSO. It appears that GCV 

has an effect on cell viability at concentrations between 3.125 μM and 100 μM. At 

concentrations higher than 100 μM, DMSO also seems to play a role in cell viability, 

however, it is difficult to establish for sure. At concentrations lower than 3.125 μM, 

there is not much difference between GCV and DMSO and GCV does not seem to 

have an effect as almost 100% of the cells is alive.  

The cassette seems to confer different susceptibility to GCV, depending on the cell 

line used, with different IC50 values. This is further analysed in the discussion.  

 

Figure 8. The effect of ganciclovir on TK- NIKS 

Non-transfected A3B A5 NIKS were treated with different concentrations of GCV. DMSO was used as control 
and treated the same as GCV. For both experiments, cells were plated in 96-well plate together with either GCV 
or DMSO and after 5 days, MTS reagent was added, and OD was read at 490nm. Cell viability was calculated 
as a percentage of untreated cells and each data point was an average of triplicate repeats. The highest drug 
concentration used was 200 μM, and 1:2 serial dilutions were carried out. IC90 for GCV is shown in the graph.  
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3.3 Cell transfection  

3.3.1 Transfection of NIKS  

To generate the APOBEC3B deletion, NIKS were selected as the isogenic model. 

NIKS were transfected with plasmids containing the CRISPR/Cas9 system, sgRNA 

targeting intron 4 of A3A and intron 7 of A3B, as described in Material and methods, 

section 2.3. Figure 9 shows the cells 48h post transfection, indicating that 

transfection efficiency is very low; despite being ~80% confluent, not many 

fluorescent cells are seen. The GFP reporter gene inserted in the plasmid used for 

transfection (Figure 5), allows visualization of successful transfection. 
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Figure 9. Transfected NIKS.  

At ~80% confluency, wt NIKS were transfected with empty plasmid. The pictures show transfection efficiency 
for each condition used chosen for each condition used. (A.), NIKS transfected with sgRNA1 (B.), NIKS 
transfected with sgRNA2 (C.), NIKS transfected with sgRNA3 (D.) NIKS transfected with sgRNA1+2+3 (E.). 
Imaging was done 48h post transfection, at 100x magnification.  
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3.3.2 Transfection of TK-NIKS 

TK-NIKS cell line was also transfected in the same way as NIKS cell line (Material 

and Methods section 2.3). Cells were examined 48h post transfection and pictures 

were taken, shown in Figure 10. This seems to show that, at ~80% cell confluency, 

that the transfection efficiency in TK-NIKS is higher compared to NIKS (Figure 9), 

a more of fluorescent cells are seen in Figure 10.  

 

Figure 10. Transfected TK-NIKS.  

At ~80% confluency, TK-NIKS were transfected. The pictures show transfection efficiency for each condition 
used. (A.) TK-NIKS were transfected with empty plasmid; (B.) TK-NIKS transfected with sgRNA1; (C.) TK-NIKS 
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transfected with sgRNA2; (D.) TK-NIKS transfected with sgRNA3. Imaging was done 48h post transfection, at 
10x magnification.  

3.4 Fluorescence Activated Cell Sorting (FACS) 

3.4.1 Cell sorting of transfected NIKS 

In order to enrich the population for transfected cells, FACS was carried out. This 

technique relies on the expression of GFP by transfected cells. The fluorescence 

emitted is detected by the lasers in the flow cytometer and cells are separated 

accordingly. Figure 11 shows the results obtained from each sample.  

Figure 11 (A) shows wt non-transfected NIKS sample, used as a control to set the 

population autoflourescence base line. Any variation from that, was considered to 

be as a result of GFP expression from the plasmid and it is represented by gate P1 

(in red) in the histogram. The gating system used for sorting was not very stringent, 

due to the low transfection efficiency seen in Figure 9; the main goal was to have a 

population with a higher proportion of transfected cell, however, some non-

transfected cells will inevitably be carried over. In fact, Figure 11 (A), shows that a 

small percentage of the total cell population appears to be classified as transfected 

(the red cell population of the scatter plot).  

 

The scatter plot diagrams, [Figure 11 (B-F)] represents the entire cell population for 

each sample. The transfected cells, expressing GFP, which go into gate P1 gate 

are represented by the red population. These were separated from the whole 

population, collected and cultured to grow for later analysis.  

It is encouraging to see that the amount of cells sorted from the transfected samples 

[Figure 11 (B-F)] is higher than the control.  
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Figure 11. Cell sorting analysis of transfected NIKS  

Post transfection, NIKS were sorted via FACS. Successfully transfected cells were selected over not transfected 
ones due to GFP expression. Percentage of collected cells is expressed in each diagram.  Here are shown the 
scatter plot diagrams and histogram. The gate set as “P1” indicates cells that express GFP protein. (A.) Control 
of wt non-transfected NIKS. (B.) NIKS transfected with empty plasmid (C.) NIKS transfected with sgRNA1 (D.) 
NIK transfected with sgRNA2 (E.) NIKS transfected with sgRNA3 (F.) NIKS transfected with sgRNA1+2+3.  

 

8.95% 5.77% 

8.51% 7.98% 

10.48% 
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3.4.2 Cell sorting of transfected TK-NIKS 

The same parameters using for NIKS, were used to sort transfected TK-NIKS.  

Figure 12 (A) shows non-transfected TK-NIKS sample, used as a control to set the 

population autoflourescence base line. Any variation from this was considered to be 

the result of GFP expression from the plasmid, represented by gate P1 (in red) in 

the histogram. However, in this sample, a percentage of these cells appear to be 

transfected, due to the presence of a red population in the scatter plot diagram. This 

is as a result of low transfection efficiency (Figure 10), which led to use a not 

stringent gating system, in order to collect as many transfected cells as possible. 

Therefore, in the transfected samples [Figure 12 (B- (F)], some of the non-

transfected cells are carried forward and selected by the cell sorter, creating a 

heterogeneous population of sorted cells.  

 

 

 

8.87% 
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Figure 12 (B) shows TK-NIKS transfected with the empty plasmid (see Material and 

Methods section 2.2). This is used as a control and, together with Figure 10 (A), 

indicates that cells are successfully transfected, despite the low efficiency and sort 

outcome.  

 

 

Figure 12. Cell sorting analysis of TK-NIKS  

Post transfection, TK-NIKS were sorted via FACS. Successfully transfected cells were selected over not 
transfected ones due to GFP expression. Percentage of collected cells is expressed in each diagram. Here are 
shown the scatter plots and histogram. Gate P1 indicates the cell that express GFP protein. (A.) Control of non-
transfected TK-NIKS. (B.) TK-NIKS transfected with empty plasmid (C.) TK-transfected with sgRNA1 (D.) TK-
transfected with sgRNA2 (E.) TK-transfected with sgRNA3. 

4.43% 5.89% 

4.05% 4.80% 
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3.5 Generation of the ~29.5kb deletion in NIKS using CRISPR/Cas9  

After NIKS were transfected and sorted, they were left to recover and grow in 

complete medium for ~2 weeks. At this point, a section of the cells was harvested 

for genomic DNA extraction, the rest were kept growing for subsequent analysis 

(see later sections). The extracted DNA was used to carry out PCR, using the 

primers developed by Kidd et al. (Kidd et al., 2007), as described in the Material and 

Methods section 2.6. PCR products were then analysed on agarose gel, as shown 

in Figure 13. A band of approximately 700-bp is seen in lines 2-5, suggesting that 

a successful deletion, spanning from intron 4 of A3A to intro 7 of A3B, was obtained. 

Similar sized bands, however, were seen in lines 11-14, suggesting that most cells 

are not transfected the deletion might have not occurred in all the cells in the sample 

(compare this with line 16, containing SKBR3 DNA). SKBR3 DNA is used as a 

positive control, as this cell line presents the A3B deletion; wt NIKS DNA is used as 

a negative control. In lines 8 and 17, 1ng of SKBR3 DNA is used to understand the 

sensitivity of the assay, as explained in section 3.1; a band of approximately 700-bp 

is seen in line 8 with the deletion primers so, even when A3B deletion is present in 

a small proportion of cells, it can be detected by PCR.  

 

Figure 13. Agarose gel showing PCR genotyping assay of transfected NIKS, post cell sorting 

PCR genotyping was carried out after transfected cells were sorted. Deletion primers were used in lines 1-9; 
insertion primers were used in lines 10-18. For more details on the primers see Material and Methods, section 
2.6.  
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3.6 Single-cell cloning to isolate cells with the A3A_B deletion 

FACS enriched the pooled population for transfected cells. However, the gating 

setting used was not stringent (see section 3.4), resulting in a heterogeneous 

population, formed by cells that could be heterozygous or homozygous for the 

deletion, or that have not had the deletion at all. In order to isolate cells with A3B 

deletion and characterize the type of deletion (heterozygous, homozygous), single 

cell cloning was carried out. After sorting cells were left to recover for ~2 weeks, and 

plated in a 96-well plate at a density of 0.5 cell per well, (Material and Methods 

section 2.9). Due to time restriction, only 3 sgRNA-transfected clones from a total of 

130 were harvested for DNA extraction and PCR genotyping, while all the other 

clones were frozen for future genotyping and use. The agarose gel obtained with 

the PCR products is shown in Figure 14. Not surprisingly, the deletion was not 

present in these samples, as deletion-specific PCR products cannot be seen in lines 

2-4. Interestingly, a band caused by larger PCR products is seen in line 11, when 

the insertion primers were used. 

 

Figure 14. Agarose gel showing PCR genotyping of single cell clones 

Post transfection, NIKS were sorted via FACS and single cells were isolated from the pooled samples in order 
to detect either homozygous or heterozygous deletion in the clones. Deletion primers were used in lines 1-9; 
insertion primers were used in lines 10-18. For more details on primers see Material and Methods, section 2.6. 
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3.7 GCV selection in TK-NIKS 

In order to further enrich the population of cell, so that it is composed only of 

transfected cell with A3B deletion, TK-NIKS were treated with GCV. The previously 

constructed dual puro-ΔTK selection cassette, allows for both positive and negative 

cell selection (Chen and Bradley, 2000). Cells with this cassette are sensitive to 

thymidine (TK endogenous substrate) analogues such as FIAU and GCV; hence, 

GCV treatment leads to cell death. NIKS were modified and this cassette was added 

in intron 1 of A3B (Material and Methods section 2.1.2).  

Post- transfection and flow cytometry, TK-NIKS were left to recover for ~2 weeks 

and treated with 63.5 μM of GCV for 11 days. This concentration is the IC50 of GCV, 

when a 1:2 dilution was used in a previous MTS (data not shown). However, the 

treatment was extended to 11 days, as no visible changes appeared after 5 days.  

Figure 15 shows TK-NIKS before GCV treatment (A-F) and after treatment (G-N). 

Cells appear slightly different, however after 11 days, they reached maximum 

confluency, as it is clear in the picture below Figure 15 (G-N), and GCV treatment 

was stopped. All non-transfected TK-NIKS were expected to die after GCV 

treatment, but this was not observed in the current experiments. When analysed 

under the microscope, however, non-transfected TK-NIKS appeared more affected 

by the drug compared to the transfected cells [Figure 15 (B) and (H)]; a higher 

amount of cells appeared to be dead and floating in the flask. wt NIKS were 

expected to not be affected by the treatment, and this seems to be true, as cells do 

not appear much different before and after treatment Figure 15 (A) and (G).  
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Figure 15. TK-NIKS before and after GCV treatment 

Cells were treated with 63.5 μM GCV for 11 days. (A-F) Cells before GCV treatment. (G-N) Cells after GCV 
treatment. (A.) (G.) wt NIKS control. (B.) (H.) non-transfected TK- NIKS. (C.) (I.) TK-NIKS transfected with empty 
plasmid (D.) (L.) TK-NIKS transfected with sgRNA1 (E.) (M.) TK-NIKS transfected with sgRNA2 (F.) (N.) TK-
NIKS transfected with sgRNA3.  
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Carrying out genotyping PCR of GCV treated TK-NIKS, might suggest that GCV 

does not have much of an effect on the cells. PCR products were analysed on 

agarose gel and results are shown in Figure 16. There are bands showing the 

expected PCR product ~700-bp in lines 2-4, with the deletion primers, however 

these are very weak. The band seen in line 15 with the insertion primers in non-

transfected TK-NIKS, might indicate that a large portion of these cells is still alive 

and are not subject to GCV effect.  

 

Figure 16. Agarose gel showing PCR genotyping of transfected TK-NIKS treated with 63.5 μM GCV 

Genotyping of transfected TK-NIKS. Cells were treated with 63.5 μM ganciclovir for 11 days, DNA extracted and 
PCR genotyping was carried out. Deletion primers were used in lines 1-9; insertion primers were used in lines 
10-18. For more details on the primers see Material and Methods, section 2.6. 
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Because the hypothesized result was not seen with 63.5 μM of GCV, a second cell 

viability assay was done and the IC90 was calculated, as shown in Figure 8.  

Therefore, another section of transfected TK-NIKS was treated with 186.5 μM of 

GCV for 7 days. Pictures of cells before and after GCV are not shown, however, 

results of the genotyping PCR are shown in picture Figure 17. The agarose gel 

shows bands of approximately 700-bp in lines 4-6 with the deletion primers; 

however, the prominent band shown in line 11 with the insertion primers, might 

indicate that not all the non-transfected TK-NIKS died as a result of GCV treatment.  

 

A comparison of the results obtained with the two GCV concentrations, shows that 

the bands in lines 4-6 in Figure 17 are more prominent than those in lines 2-4 in 

Figure16. This indicates that a higher GCV concentration enrich for cell with A3B 

deletion and therefore some selection occurs, however, this is still inefficient. 

 

Figure 17. Agarose gel showing PCR genotyping of transfected TK- NIKS treated with 186.5 μM GCV 

Transfected TK-NIKS were incubated with 186.5 μM ganciclovir for 7 days, DNA extraction and PCR genotyping 
were then carried out. Deletion primers were used in lines 1-9; insertion primers were used in lines 10-18. For 
more details on the primers, see Material and Methods, section 2.6.  
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3.8 MCF10A transfection using different DOX concentrations 

Until recently, A3B action was believed to cause genomic mutations that shape the 

evolution of a range of tumors, negatively contributing to prognosis and clinical 

outcomes (Nik-Zainal et al., 2012; Burns et al., 2013b; Burns et al., 2013c; Roberts 

et al., 2013; Sieuwerts et al., 2014). However, APOBEC3 signature mutations are 

still detected in breast tumors with the ~29.5kb deletion from intron 4 of A3A to intron 

7 of A3B, which removes A3B coding region (Chan et al., 2015) (Nik-Zainal et al., 

2014) (Long et al., 2013) (Xuan et al., 2013). The deletion frequency is different 

among different populations (Klonowska et al., 2017) (Kidd et al., 2007) (Xuan et 

al., 2013). For this reason, the epithelial breast cell line MCF10A was used as 

isogenic model, to reproduce the deletion, which would allow for testing the effect 

of the deletion on mutations propensity and tumorigenesis.   

  

Previously modified, MFC10A cells had doxycycline (DOX)-inducible Cas9 GFP 

inserted into their genome, under the same promoter. Therefore, in order to express 

Cas9, cells were treated with different DOX concentrations (see Material and 

Methods, section 2.1.5). GFP allows to have a visual representation of whether 

Cas9 was successfully expressed. 

Figure 18 shows images of MCF10A cells 2 days after dox treatment, at different 

concentrations. This was done before cell transfection.  

Cas9 expression was successful with all the concentrations, however, from the 

images it is difficult to detect whether DOX concentrations had an impact on the 

mount of Cas9 synthesized, and which one was the optimal concentration for the 

cell line and the purpose of this work.  
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Figure 18. Transfected MCF10A.  

Different concentrations of doxycycline were used to induce Cas9 expression. GFP insertion under the same 
dox-inducible Cas9 promoter, allows GFP expression upon DOX treatment, allowing to detect Cas9 expression. 
Two pictures from a large selection, were chosen for each DOX concentration, to show Cas9 expression 
efficiency. (A) 10ng/ml of DOX; (B) 50ng/ml of doxycycline; (C) 100ng/ml of doxycycline; (D) 250ng/ml of 
doxycycline; (E) 500ng/ml of doxycycline; (F) 1000ng/ml of doxycycline.  
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MCF10A cell treated with DOX for 2 days, were transfected with gRNA 

(tracrRNA:gRNA complex) (see Material and Methods, section 2.4). Because Cas9 

was inserted in the cells’ genome, it was assumed that all cells in the sample would 

express it and the deletion would occur, if transfection was successful.  

48h post transfection, a section of the cells was harvested for genomic DNA 

extraction and the rest was kept growing. A PCR, using insertion and deletion 

primes as previously described (Material and Methods section 2.6), was carried out. 

PCR products were analysed on agarose gel and the results are shown in Figure 

19. Despite expression of Cas9 seen in Figure 18, no successful deletion has 

occurred as no bands are seen with the deletion primers, lines 2-7.  

Lines 1 and 13 are used as a negative control; the cells were transfected but no 

DOX treatment was done. A band of approximately 700-bp in lines 10 (positive 

control) and 11, indicates that primers are functional and other factors might be 

accountable for the results obtained.  

 

Figure 19. Agarose gel showing PCR genotyping assay for transfected MCF10A. 

MCF10A cells were treated with different concentrations of DOX, to induce Cas9 expression. Deletion primers 
were used in lines 1-12; insertion primers were used in lines 13-24. For more details on the primers, see Material 
and Methods section 2.6.  
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3.9 Electroporation and Fluorescence microscopy  

Electroporation is yet another technique used to deliver CRISPR/Cas9 system into 

the cell. Highly efficient and quick, it is a relatively harsh method for the cells due to 

high voltage and partial membrane repair. It relies on electric waves that are pulsed 

through the sample, to make the cell membrane more permeable by creating 

temporary holes, so that small molecules (in this case CRISPR/Cas9 system) can 

be delivered into the cell.  

To understand the efficiency of this technique, we decided to conduct a control 

experiment using a deactivated form of Cas9 (dCas9), tagged with red halo-tag. 

dCas9 was transfected into the wt NIKS and MCF10A cells via electroporation. No 

sgRNA, were inserted at this point (see Material and Methods section 2.11 for more 

details on electroporation).  

Cells were left to recover, fixed and stained and observed under the microscope 

(see Material and Methods sections 2.12 and 2.13).  

Figure 20 and Figure 21, show images of MCF10A and NIKS, respectively, after 

electroporation. Two different concentrations of dCas9 were used, 0.06 μg/μl of 

dCas9 [Figure 20 (A) and Figure 21 (B)] and 0.12 μg/μl of dCas9 [Figure 20(A) and 

Figure 21 (B)]. Surprisingly though, not significant difference was observed between 

the two concentrations and the cell lines. Additionally, the transfection efficiency 

observed was very low and not beneficial to the work. As a result, this technique 

was not carried out any further.  
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Figure 20. dCas9 localization in MCF10A 

MCF10A cells were transfected via electroporation to deliver dCas9. Nuclei were stained with Hoechst stain and 
dCas9 was tagged with red halo-tag (shown by the red clusters in the images). (A.) Cells were transfected using 
0.06 μg/μl of dCas9. (B.) Cells were transfected using 0.12 μg/μl of dCas9. Images were taken after cells were 
left to recover for a day and were fixed and stained. Imaging was done on an Olympus BX-61 microscope with 
DAPI and Cy5 filters.  
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Figure 21. dCas9 localization in NIKS 

wt NIKS cells were transfected via electroporation to deliver dCas9. Nuclei were stained with Hoechst stain and 
dCas9 was tagged with red halo-tag (shown by the red clusters in the images). (A.) Cells were transfected using 
0.06 μg/μl of dCas9. (B.) Cells were transfected using 0.12 μg/μl of dCas9. Images were taken after cells were 
left to recover for a day and were fixed and stained. Imaging was done on an Olympus BX-61 microscope with 
DAPI and Cy5 filters. 
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4 Discussion  

APOBEC3 enzymes play an important role in human health. These enzymes have 

shown to be vital against both RNA viruses such as HIV (Mangeat et al., 2003), and 

DNA viruses such as HPV and HBV (Vartanian et al., 2008; Vartanian et al., 2010b). 

A3s are expressed in many healthy tissues (Salter et al., 2016), with no harmful side 

effects when present at low levels, however, high expression of these enzymes can 

cause mutations in the host DNA.   

Viral infection causes the activation of other defence mechanisms by the host, such 

as type I interferons; these have been shown to upregulate A3, particularly A3A and 

A3B  (Bonvin et al., 2006; Wang et al., 2014; Cescon et al., 2015; Suspène et al., 

2016) which leads to high mutations in host genome and ultimately tumorigenesis. 

However, upregulation and off target activity has not been fully outlined in non-viral 

cancers. Attention has been focused on A3A and A3B, which are the main A3 

enzymes that play a pivotal role in cancer formation. Activation of these enzymes 

causes high signature mutations in oncogenes and/or tumour suppressor genes, 

characteristic of several cancers, particularly in breast cancer (Nik-Zainal et al., 

2012; Burns et al., 2013b; Alexandrov et al., 2013) Due to high mRNA expression 

levels, A3B has been thought to be the major cause of signature mutations in 

tumours (Burns et al., 2013c; Roberts et al., 2013; Sieuwerts et al., 2017b) 

Surprisingly, though, a germline deletion spanning from intron 4 of A3A to intron 7 

of A3B, increases cancer formation (Long et al., 2013; Xuan et al., 2013; 

Middlebrooks et al., 2016) It is therefore clear that more studies need to be carried 

out to gain a better understanding of A3A and A3B role in the cell and in cancer.   
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4.1 Creating an isogenic model for the A3A_B deletion  

During this project, the epithelial cell line NIKS was used as an isogenic model to 

recreate the naturally occurring A3B germline deletion. (Figure 13). The population 

of cells obtained after transfection and sorting was highly heterogenic, due to low 

transfection efficiency and non-stringent gating used during cell sorting; however, it 

was assumed that the deletion occurred in more than 1% of cells, due to more 

prominent bands seen in lines 2-5  as opposed to line 8 in Figure 13.  Line 8 was 

obtained by combining 1 ng of SKBR3 DNA with 99ng of wt NIKS DNA, as explained 

in Figure 7, where SKBR3 DNA was assumed to represent 1% of the total DNA 

present in the PCR reaction. This shows that even when a small amount of DNA 

contains the A3B deletion, it can be detected in a PCR reaction. On the other hand, 

comparing lines 2-5 to line 7 (Figure 13), which consists of SKB3 DNA 

(homozygous for A3B deletion), indicates that only a minority of the cells in the 

sample have had the deletion. This can also be assumed by comparing lines 2-5 to 

lines 10-14 (Figure 13), which show DNA from the samples analysed with the 

insertion primers.  

Interestingly, NIKS transfected with a mix of the three sgRNAs present a smaller 

sized PCR product, generating a lower band, as shown in Figure 13, line 5. It has 

been outlined that when making a large genomic deletion, combination of multiple 

sgRNA  (termed multiplex) increases targeting efficiency, with a higher probability 

of generating the desired result (Song et al., 2017). Despite, size of the genomic 

deletion and targeting efficiency are inversely proportional (Song et al., 2017), 

multiplex sgRNAs were successful in generating genomic deletions ranging from 

23kb to 100 kb, in different organisms such as rabbit, C. elegans and humans (Chen 

et al., 2014; Han et al., 2014; Song et al., 2016). Therefore, the presence of the 
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lower band in Figure 13 might be due to the combined effect of the sgRNAs used 

during transfection. The sgRNAs cut the DNA at different points, creating different 

sized bands, as shown in Figure 22, via non-homologous end joining repair.  

 

Figure 22. Representation of the different cut sites when using all three sgRNA in combination. 

The diagram represents some of the possible cut sites (shown under the A3A and A3B genes) when the sgRNAs 
are used in combination. The cut done when the sgRNAs are used individually, are seen in lines 2-4 in Figure 
13. The combination of sgRNAs can cause either larger or smaller DNA cuts, than the sgRNA individually.  
The diagram is not drawn to scale, as the sgRNA are found much closer together both in A3A intron and in A3B 
intron (see Figure 6); however, this diagram enables understanding of bands seen in lines 5 and 14 in Figure 
13. 
 

The band in line 5 is lower than the bands in lines 2-4 in Figure 13. This is the result 

of a larger cut created in the DNA, which spans from the sgRNA3 on A3A to the 

sgRNA1 on A3B, as shown in Figure 22 (DNA cut by sgRNA3 in A3A and sgRNA1 

in A3B). This generates a PCR product that is slightly smaller than the ones 

originated when the sgRNAs were used individually (DNA cut by sgRNA1, sgRNA2, 

sgRNA3 in Figure 22). Additionally, using the three sgRNAs together, causes the 

formation of the satellite band seen in line 14 of Figure 13. This is because sgRNAs 

can cause deletions spanning from sgRNA3 to sgRNA1 within each individual intron 

of A3A and A3B, forming small PCR products (Figure 22 DNA cut by sgRNA3 and 

sgRNA1 in A3B). This rearrangement is still detected by the insertion primers, as 

they are positioned on either side of the sgRNAs in A3B (see Figure 6). DNA 

sequencing might aid the identification of the exact cut points within the genome, 



Rosalba Biondo  

 

71 

 

which can provide a better understanding of the cells’ genomic profile after deletion 

has occurred. 

 

To isolate cells that show the deletion, single-cell cloning was carried out, as 

outlined in section 3.6. This will enable us to identify which clones present the 

deletion and whether this is homozygous or heterozygous.  

It is not surprising that the results we observed in Figure 14, from the three clones 

picked did not show the deletion; however we would expect several of the remaining 

130 clones to show it. This occurs because CRISPR/Cas9 system might not get 

delivered to all cells but these are still selected by the flow cytometer due to non-

stringent gating applied (see section 3.4.1); moreover, even if the system was 

delivered to the cells, there is still a possibility that the CRISPR-induced double 

strand break was quickly repaired before the mutation occurred. In fact, 

rearrangement occurred at the CRISPR/Cas9 cut point is seen in line 11 in Figure 

14, which shows a band generated by a larger PCR product than the one expected 

by insertion primers (~705bp). Performing RT-qPCR with the remaining clones can 

confirming that A3B expression loss can provide insight on the expression level of 

the other A3 genes, such as upregulation of A3A, and what impact the deletion has 

had on their regulation. It would be particularly interesting to assess A3H expression 

in comparison to A3A, as the study from Starrett et al (2016), debunks A3A role in 

breast and lung cancers, indicating A3H-I the main cause of the APOBEC-signature 

mutations, when A3B is deleted. 

4.2 Using puro-ΔTK did not enrich for cells with the deletion 

In order to enrich for cells that have the desired ~29.5kb deletion, TK-NIKS cells 

were used. This cell line was obtained by inserting the puro-ΔTK selection cassette 
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in intron 1 of A3B NIKS (Figure 2). A successful deletion between intron 4 of A3A 

and intron 7 of A3B would impair expression of the puro-ΔTK selection cassette, 

and cells would be resistant to GCV, as shown in Figure 23.  

Additionally, using this construct, allows for a quicker section of cells that present 

the deletion; GCV is applied to cell culture after cell sorting without the need to carry 

out single-cell cloning.  

 

Figure 23. The ~29.5 deletion in TK-NIKS stops puro-ΔTK expression 

The puro-ΔTK selection cassette is not expressed in the hybrid APOBEC3A_B gene, after deletion has 
happened, as shown in the diagram above. This makes cells resistant to GCV.  

 

Treating sorted cells with GCV, should eliminate cells that did not have a successful 

deletion and leave a population of cells presenting the desired ~29.5kb deletion 

between A3A and A3B. This is possible because viral thymidine kinase and human 

thymidine kinase might have had a different evolution, resulting in HSV-TK to 

recognises a wider range of different substrates (Harrison et al., 1991). Therefore, 

nucleoside analogues such as GCV, are substrates for HSV-TK (Borrelli et al., 

1988). TK converts the prodrug GCV to the toxic form known as GCV-triphosphate, 

which interferes with DNA elongation, eventually leading to cell death (Greco et al., 

2015; Hossain et al., 2019). The puro-ΔTK selection cassette, exploits the 

differences in substrate specificity between human and viral TK to eliminate 

undesired cells (Hossain et al., 2019). HSV-TK has also been widely used as gene 
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therapy in cancer, known as suicide gene therapy, with promising results (Greco et 

al., 2015).  

Our results show that GCV selection did not yield the desired outcome. Genotyping 

of GCV treatment of non-transfected TK-NIKS is not expected to show a PCR 

product with the insertion-specific primers on the agarose gel. However, the ~705bp 

product seen in lines 15 and 11 in Figure 16 and Figure 17 respectively, suggests 

the opposite. Thus, it can be assumed that in the transfected TK-NIKS samples, 

negative selection by GCV did not occur and the population is still heterogeneous.   

GCV used in our experiments was dissolved in DMSO, therefore treatment with high 

drug concentrations results in a high percentage of DMSO which is not tolerated by 

cells, as it is show in Figure 8. At GCV concentrations higher than 100 μM it is 

difficult to separate GCV and DMSO action on the cells, so we cannot say with 

certainty what causes cell death above this concentration. Interestingly however, a 

comparison of the results obtained with the two GCV concentrations, shows that the 

bands in lines 4-6 in Figure 17 are more prominent than those in lines 2-4 in 

Figure16. This indicates that a higher GCV concentration enrich for cell with A3B 

deletion and therefore some selection occurs, however, this is still inefficient. Thus, 

it would be worthwhile to test GCV solubility in different solvents, which might be 

less toxic to cells.  

As an explanation for the failed selection, we hypothesized that the cells might expel 

the drug, however this has not been shown before and no mechanism is known for 

this behaviour. In a parallel MSc project in the laboratory, this method was 

successful for selecting cells in which the FRT-flanked selection cassette was 

removed by Flippase transfection, following introduction of a transcription terminator 

to block expression of the A3A gene in a bladder cancer cell line (BFTC). These 
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cells originally expressed the puro-ΔTK selection cassette in A3A intron 1, and were 

susceptible to low doses of GCV, allowing for quick negative selection of cells that 

still expressed the cassette. This would suggest that different cell lines expressing 

HSV-TK have different sensitivities to GCV. Perhaps, genomic instability and high 

proliferation rates of cancer cells, allows for an easier incorporation of 

phosphorylated GCV into DNA during replication, making cancer cells more 

vulnerable to GCV action when expressing HSV-TK. It would be interesting to 

understand the effect of GCV on other non-cancerous cell lines expressing HSV-

TK, and how these results compare to NIKS. Another possibility for the failed 

selection using puro-ΔTK in our experiments, might be the presence of random 

mutations within the TK fusion gene. DNA sequencing of TK-NIKS, would allow us 

to gain a better understanding of the cells’ genetic profile and what influences our 

results. Further investigation to explore how to conduct negative selection in NIKS 

expressing HSV-TK, is therefore required.  

4.3 A3B deletion polymorphism in breast tissues and alternative ways 

to deliver CRISPR/Cas9 into cells.  

A3B deletion polymorphism has been shown to increase deamination mutations 

compared to when the deletion was not present. This was mostly observed in breast 

tumours, with varying incidence among different populations (Long et al., 2013; 

Chan et al., 2015; Revathidevi et al., 2016; Klonowska et al., 2017; Gansmo et al., 

2018).  

With this in mind, we thought that it would be interesting to reproduce the ~29.5kb 

deletion between A3A and A3B in non-cancerous epithelial breast cells; for this 

reason, we used the MCF10A cell line. The cells used in this project, present a 

stable tetracycline-inducible Cas9 expression, which is synthesised upon cell 
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treatment with tetracycline or its analogues, such as doxycycline. Despite not being 

able to establish the optimal DOX concentration, Cas9 is expressed at all 

concentrations tested (Figure 18). However, when the PCR products of the 

transfected cells where analysed on agarose gel, no bands indicative of the deletion 

were observed (lines 2-7 in Figure 19). Due to time restrictions, it was not possible 

to optimize and/or repeat this experiment. The results obtained could be due to 

several reasons: the designed gRNA might have not been specific enough; 

transfection efficiency might have been poor; Cas9 and gRNA were not in the right 

proportions to generate the desired deletion. While this approach did not yield the 

wanted results in this project, it has been proven to be a successful way to generate 

genomic mutations via CRISPR/Cas9 (Cao et al., 2016). Off target activity it is also 

limited by using doxycycline-induced Cas9 expressing cells, due to the limited time 

the genome is exposed to Cas9 activity, while still enabling target activity (Cao et 

al., 2016). As a result of the relative simplicity and advantages of this system, it 

would be valuable to further investigate how it can be exploited to create the desired 

~29.5kb deletion in MCF10A.  

 

Another technique to deliver CRISPR/Cas9 into cells is electroporation. This method 

creates small pores in the cell membranes, allowing CRISPR system to enter the 

cell. While this is a quick and easy technique, which does not discriminate between 

cell types, it is harsh on mammalian cells, which might find it difficult to recover (Lino 

et al., 2018). However, due to the high throughput and speed of this technique, it 

will continue to be improved and utilized for research purposes (Lino et al., 2018). 

Perhaps due to the cells being sensitive to the voltage and current used, we did not 

obtain the hoped results by using electroporation (section 3.9). An inactive form of 
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Cas9 was delivered to MFC10A and NIKS, at different concentrations; the 

transfection efficiency observed via fluorescence microscopy was very low with little, 

if any, difference between the different concentrations used (Figure 20 and Figure 

21). For this reason and due to time restriction, we decided not to take this work 

forward.   

4.4 Current knowledge and future directions 

Analysis on cell line and tumour tissue have shown upregulation of A3B compared 

to normal corresponding tissues, which correlates to increased mutations in cancer 

driver genes, such as TP53 and PIK3CA (Cescon et al., 2015). This seems to be 

associated with several types of breast cancers, as well as other types of 

carcinomas, as shown in previous studies (Nik-Zainal et al., 2012; Burns et al., 

2013b; Burns et al., 2013c; Roberts et al., 2013; Alexandrov et al., 2013; Sieuwerts 

et al., 2017b). However, the processes and mechanisms that lead to the 

deregulation of A3B, subsequent increased expression and generation of APOBEC-

signature mutations have not been identified yet. Depicted as the major cause of 

mutations seen in cancers, resulting in C>T transition, developing A3 inhibitors 

seems a tempting idea. Chemotherapy adjuvant or administered independently, the 

potential inhibitors, might decrease A3B-driven tumoral heterogeneity which 

contributes to resistance of existing therapies and decreased survival. The germline 

APOBEC3B deletion polymorphism surely supports this hypothesis, suggesting that 

A3B might not be essential, however, different considerations need to be made and 

further research is required.  

 

Other members of the A3 family, such as A3A, A3H and A3G, cannot be fully 

excluded; furthermore, single nucleotide polymorphism (SNP) can also be 
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associated with increased APOBEC-signature mutation and cancer risk 

(Middlebrooks et al., 2016). SNPs increase of bladder cancer risk might occur 

through A3B upregulation, which prevailed over A3A_B associated risk. The 

opposite was true in breast cancer, which was strongly modulated by A3A_B 

presence. Additionally, A3A expression was significantly higher in breast than in 

bladder cancer cells, when both were virally infected, indicating that cell and tissue 

specificity affect cancer formation (Middlebrooks et al., 2016). High A3A was 

detected in A3A_B tumours which expressed high inflammation-related genes, 

causing continuous immune system activation and high A3A mutations that might 

not be detectable in later stages of tumour (Cescon et al., 2015). Conversely, higher 

APOBEC mutagenesis, might contribute to neoantigens formation and more 

immune response. A3A_B tumours show increased immune infiltration in breast 

tumour and the phenotype associated with this mutation can be exploited for 

development of immunotherapy (Cescon et al., 2015). This would benefit a large 

portion of the population, as over 40% presents the A3A_B polymorphism, although 

this might be an over-estimation. 

A few recent studies have proposed A3A as the favoured A3 enzyme in creating 

cancer mutagenesis, when the 29.5kb deletion is present. These studies support 

the idea that the chimeric A3A_B gene formed accounts for the observed A3A 

increased action, as A3A_B is composed by the entire coding region of A3A and 

A3B 3’ untranslated region (UTR)  (Caval et al., 2014; Chan et al., 2015; 

Middlebrooks et al., 2016). Perhaps A3B 3’ UTR (or maybe a downstream enhancer 

of A3B), allows for a different regulation of the hybrid gene, stabilizing the transcript. 

A3B mRNA has been shown to be more abundant than A3A, therefore, the 

increased A3A seen in A3A_B cancers might be an effect of the A3B 3’UTR 
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regulation. However, these assumptions have been made using transfected 

reporters in model organisms with different genetic make-up than human cells and 

hence, different responses to genomic alterations.  

 

Despite studies indicating A3A-induced mutations in a A3A_B background, Starrett 

et al (2016), showed that A3H haplotype I (A 3H-I) might account for the APOBEC-

signature mutations seen in breast and lung cancer when the deletion polymorphism 

in present. In fact, A3H-I is merely present when A3B is expressed, and A3H-I levels 

rise when A3B is absent (Starrett et al., 2016). Moreover, the study showed no 

evidence of the A3A_B gene, when depleting A3B using CRISPR/Cas9 in MCF7 

cells (Starrett et al., 2016). This was in line with a previous study that was not able 

to detect A3A_B (Cescon et al., 2015). Perhaps, both hybrid A3A and A3H-I might 

influence mutagenesis when A3B is deleted, though further studies that analyse this 

effect need to be carried out, as well as understanding the role of the A3A_B gene.  

However, none of the A3 enzymes can be fully excluded and no conclusion or direct 

links can be made, as it is extremely difficult to determine mutations in cancer and 

the exact time point at which they happened. The replica systems created in 

laboratories do not portray the true environment present within the body, thus 

unravelling the many processes involved in carcinogenesis is rather challenging. 

 

Further research on the expression and activity of APOBEC3 enzymes in normal 

and tumour cells is essential to understand what drives their deregulation, which A3 

generates mutations in tumours that develop in individuals homozygous for the 

A3A_B polymorphism, how and if the polymorphism can be exploited for generation 

of future therapies and what individuals might benefit from them. 
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4.5 Conclusion 

APOBEC mutations might occur at different points throughout tumour development; 

A3B activity might be the leading cause of tumorigenesis and its action shapes the 

tumour throughout its lifetime; A3A might also cause mutations in cancers, but these 

are not seen in later stages and A3H might also be involved. On the A3A_B 

background, A3B is not expressed, which does not reduce mutation formation and 

cancer risk. A3A might transiently cause mutations at the beginning of tumour 

formation and/or A3H-I might drive tumorigenesis too. Therefore, APOBEC-

signature mutations heavily shape and modulate tumour formation and progression 

and influence response to treatment. Furthermore, population background also 

influences A3 expression and role in cancer.  

 

This study generates an isogenic model of the A3A_B deletion in a non-cancerous 

cell line (NIKS). This is a valuable tool which allows determination of the other 

APOBEC3 enzymes expression, and what role these might play in tumorigenesis. 

This prompts further studies to understand what are the processes and mechanisms 

that regulate A3 expression and if these are linked. Additionally, it provides a 

platform for novel therapies development, such as A3B inhibitors as well as 

understanding which individuals will benefit from them; perhaps it would be worth 

analysing the possibility of developing inhibitors that target enzymes such as A3A 

and A3H alone or in combination with A3B. More importantly this model, might aid 

the determination of what causes deregulation of A3 enzymes and what drives 

tumorigenic. Lastly, but surely not least important, it would be possible to study the 

implication of viral infections such as HPV, when the A3B deletion is present and 

what is the association with HPV-driven tumours.  
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