
Helal, Ayah (2019) New Archive-Based Ant Colony Optimization Algorithms
for Learning Predictive Rules from Data. Doctor of Philosophy (PhD) thesis,
University of Kent,.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/80465/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
UNSPECIFIED

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/80465/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

NEW ARCHIVE-BASED ANT COLONY
OPTIMIZATION ALGORITHMS FOR LEARNING

PREDICTIVE RULES FROM DATA

a thesis submitted to

The University of Kent

in the subject of computer science

for the degree

of phd.

By

Ayah Helal

August 2019

Copyright

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License.

ii

Acknowledgements

I would like to thank a lot of people, who supported me through my Ph.D. and

helped me to navigate this interesting journey. I came from Egypt to do my Ph.D.

in the UK, not imagining that I would actually start my life here. I want to start

by thanking my husband, James, for giving me a home and family here. Also, I

would like to thank my supervisors, Dr. Fernando Otero, and Prof. Alex Freitas

for their help and support through the ups and downs in my research and writing

this thesis. I want to also thank my examiners for their comments and input.

I want to thank the School of Computing department in Medway for helping

me through my Ph.D and giving me amazing friends. I would like to thank Sam

for the endless chats and distractions we had in the office. He also was one of the

reasons I joined the exclusive lunch club where I got to know my future husband.

I would like to thank Janine and Shannon for being more than administrators.

They did not just support my nervous breakdown in their offices, but also they

became my friends. I would like to thank Anna for being a great friend. I would

like to thank our friendly retired police officer, Mick, who never fails to compliment

me every morning to make my day brighter.

I want to give a special thanks to my family back home. I will never forget

that my inspiration for doing a Ph.D. came from seeing my mother do hers, with

my dad’s support, when I was young. I couldn’t have done it without you. I want

to thank my brother, my friends (Enas and Menna), and my family in Egypt for

always being there for me, even if they are continents away.

iii

Abstract

Data mining is the process of extracting knowledge and patterns from data. Clas-

sification and Regression are among the major data mining tasks, where the goal

is to predict a value of an attribute of interest for each data instance, given the

values of a set of predictive attributes. Most classification and regression prob-

lems involve continuous, ordinal and categorical attributes. Currently Ant Colony

Optimization (ACO) algorithms have focused on directly handling categorical at-

tributes only; continuous attributes are transformed using a discretisation proce-

dure in either a preprocessing stage or dynamically during the rule creation.

The use of a discretisation procedure has several limitations: (i) it increases

the computational runtime, since several candidates values need to evaluated; (ii)

requires access to the entire attribute domain, which in some applications all data

is not available; (iii) the values used to create discrete intervals are not optimised

in combination with the values of other attributes.

This thesis investigates the use of solution archive pheromone model, based

on Ant Colony Optimization for mixed-variable (ACOMV) algorithm, to directly

cope with all attribute types. Firstly, an archive-based ACO classification algo-

rithm is presented, followed by an automatic design framework to generate new

configuration of ACO algorithms. Then, we addressed the challenging problem

of mining data streams, presenting a new ACO algorithm in combination with a

hybrid pheromone model. Finally, the archive-based approach is extended to cope

with regression problems.

iv

All algorithms presented are compared against well-known algorithms from

the literature using publicly available data sets. Our results have been shown

to improve the computational time while maintaining a competitive predictive

performance.

v

Contents

Bibliography i

Copyright ii

Acknowledgements iii

Abstract iv

Contents vi

List of Tables x

List of Figures xv

List of Algorithms xvii

1 Introduction 1

1.1 Overview of the Contributions of the Thesis 5

1.2 Thesis Structure . 6

1.3 Publications . 7

2 Data Mining 8

2.1 Classification . 11

2.2 Regression . 15

2.3 Rule Learning . 18

vi

2.3.1 Iterative Rule Learning . 19

2.3.2 Pittsburgh Rule Learning 21

2.4 An Overview of Classical Classification Algorithms 22

2.5 An Overview of Classical Regression Algorithm 24

2.6 Summary . 26

3 Data Streams 27

3.1 Volume . 28

3.2 Volatility . 30

3.3 Velocity . 33

3.4 Evaluation . 34

3.5 Related Work in Data Stream Classification 36

3.6 Summary . 50

4 Ant Colony Optimization 51

4.1 Metaheuristic . 52

4.2 Mixed-Variable Optimization . 56

4.2.1 Sampling Procedures . 57

4.3 Ant Colony Optimization for Rule Induction 59

4.3.1 cAnt-Miner . 60

4.3.2 cAnt-MinerPB . 63

4.3.3 Ant-Miner-Reg . 66

4.3.4 Other Extensions for Ant-Miner 68

4.4 Summary . 69

5 Mixed-Attribute Ant-Miner For Classification Rule Discovery 70

5.1 Ant-MinerMA . 71

5.1.1 Archive and Rule Structure 72

5.1.2 Archive Initialization . 74

5.1.3 Rule Creation . 76

vii

5.1.4 Rule Creation Walk-through 77

5.1.5 Rule Pruning . 81

5.1.6 Restart Procedure . 82

5.2 Experimental Results for Ant-MinerMA 82

5.3 Summary . 90

6 Automatic Design of Ant-Miner Mixed Attributes for Classifica-

tion Rule Discovery 91

6.1 Ant-MinerMA+G . 92

6.1.1 Rule Construction . 96

6.1.2 Rule Evaluation Function 99

6.1.3 The Effect of Different Quality Functions 100

6.1.4 Pheromone Model Configurations 101

6.1.5 Restart Procedure . 102

6.2 Experimental Results for Ant-MinerMA+G 103

6.3 Comparison Against Classical Algorithms 109

6.4 Summary . 111

7 Data Stream Classification with Ant Colony Optimization 116

7.1 Stream Ant-Miner . 117

7.1.1 Overview of the approach 119

7.1.2 Learning Layer . 120

7.1.3 Rule list creation walk-through 125

7.2 Summary . 131

8 Results for sAnt-Miner 132

8.1 Experimental Setup . 134

8.2 Summary . 141

viii

9 Mixed-Attribute Ant-Miner for Regression Rule Discovery 142

9.1 Archive-based Ant-Miner-Reg . 143

9.1.1 Rule Structure . 143

9.1.2 Rule Quality . 145

9.1.3 Archive Structure and Initialisation 146

9.1.4 Rule Creation . 147

9.2 Comparison with Ant-Miner-Reg 148

9.3 Summary . 151

10 Conclusion 153

10.1 Contributions . 154

10.2 Future Research . 156

Bibliography 159

ix

List of Tables

1 Data set for income classification. 12

2 Data set for income regression. 16

3 Review of data stream classification algorithms employing different

update mechanisms and update types. 39

3 Review of data stream classification algorithms employing different

update mechanisms and update types. 40

3 Review of data stream classification algorithms employing different

update mechanisms and update types. 41

4 A subset of the Australian credit approval data set. 77

5 Parameter values used in the experiments. Ant-MinerMA uses the

first three parameters in the table, while the remaining ones are

used by both Ant-MinerMA and cAnt-Miner. 82

6 Summary of the data sets used in the experiments: data sets from

1 to 18 are considered small data sets, while the remaining ones

are considered large data sets due the larger number of attributes

and/or number of instances. 83

6 Summary of the data sets used in the experiments: data sets from

1 to 18 are considered small data sets, while the remaining ones

are considered large data sets due the larger number of attributes

and/or number of instances. 84

x

7 Average predictive accuracy (average ± standard error) of cAnt-

Miner and Ant-MinerMA measured over 15 runs of tenfold cross-

validation. The last row of the table shows the average rank of the

algorithm. The best value of a given data set is shown in bold. . . 86

8 Average computational time (average ± standard error) of cAnt-

Miner and Ant-MinerMA measured over 15 runs of tenfold cross-

validation. The last row of the table shows the average rank of the

algorithm. The best value of a given data set is shown in bold. . . 87

9 Average rule and term count of cAnt-Miner and Ant-MinerMA mea-

sured over 15 runs of tenfold cross-validation. The last row of the

table shows the average rank of the algorithm. The best value of a

given data set is shown in bold. 88

10 Results of the Wilcoxon Signed Rank tests at the α = 0.05 signifi-

cance level comparing Ant-MinerMA and cAnt-Miner on predictive

accuracy and computational time. Statistically significant differ-

ences are shown in bold, indicating the case where Ant-MinerMA’s

performance is statistically significantly better than cAnt-Miner. . 89

11 Algorithmic components of the proposed Ant-MinerMA+G. 94

12 Rule evaluation functions used for pruning and selection proced-

ures. 96

13 Confusion Matrix . 100

14 The effect of using different rule quality functions to measure the

quality of 2 rules discussed in the text. For each function, a higher

value indicates better quality. 100

15 Range of parameter values in Ant-MinerMA+G. 103

16 Summary of the training data sets used to automatically generate

configurations of the Ant-MinerMA+G algorithm. 103

xi

17 Summary of the testing data sets used by both the Ant-MinerMA

and cAnt-Miner. 104

18 The best configurations of Ant-MinerMA+G found by I/F-Race, where

the starred configurations values are found in Table 11. 106

18 The best configurations of Ant-MinerMA+G found by I/F-Race, where

the starred configurations values are found in Table 11. 107

18 The best configurations of Ant-MinerMA+G found by I/F-Race, where

the starred configurations values are found in Table 11. 108

19 Average classification accuracy measured over 15 runs of tenfold

cross-validation. The last row of the table shows the average rank

of the algorithm. The best value for each given data set is shown

in bold. 112

20 Average runtime measured over 15 runs of tenfold cross-validation.

The last row of the table shows the average rank of the algorithm.

The best value for each given data set is shown in bold. 113

21 Average classification accuracy measured over 15 runs of tenfold

cross-validation for the ACO-based algorithms, while the accuracies

of the remaining algorithms are averaged over one run of tenfold

cross-validation. The last row of the table shows the average rank

of each algorithm. The best value for each given data set is shown

in bold. 114

22 Average number of rules measured over 15 runs of tenfold cross-

validation for ACO-based algorithms, while the results for the re-

maining algorithms are average over one run of tenfold cross-valida-

tion. The last row of the table shows the average rank of the algo-

rithm. The best value for each given data set is shown in bold. . . 115

23 A subset of the airline data set. 126

24 The pheromone matrix with 2 levels depth. 126

xii

25 Individual archive values with 2 level depth. 127

26 Summary of the data sets used in the experiments. 133

27 The data sets used in the I/F-Race procedure, all the data sets

were generated using the MOA data generator. 133

28 sAnt-Miner’s parameters range used by I/F-Race in the tuning

phase. 133

29 Average prequential accuracy computed over 15 runs of 10-folds

bootstrap validation with adwin evaluation window. 135

30 Average runtime in seconds computed over 15 runs of 10-folds boot-

strap validation with adwin evaluation window. 136

31 Average Kappa computed over 15 runs of 10-folds bootstrap vali-

dation with adwin evaluation window. 137

32 Average Kappa M computed over 15 runs of 10-folds bootstrap

validation with adwin evaluation window. 138

33 Average Kappa temporal computed over 15 runs of 10-folds boot-

strap validation with adwin evaluation window. 139

34 Average Rule count computed over 15 runs of 10-folds bootstrap

validation with adwin evaluation window. 140

35 Parameter values used in experiments. Ant-Miner-RegMA uses the

first three parameters in this table, while the remaining ones are

used by both Ant-Miner-RegMA and Ant-Miner-Reg. 148

36 Details of the nineteen data sets used in the experiments. 149

37 Average RRMSE (average ± standard error) measured by five runs

of tenfold cross-validation. The value of the most accurate algo-

rithm for a given data set is shown in bold. 150

38 Average computational runtime (average ± standard error) in sec-

onds measured by five runs of tenfold cross-validation. The value

of the fastest algorithm for a given data set is shown in bold. . . . 151

xiii

39 Results of the Wilcoxon Signed-Rank test at the α = 0.05 signifi-

cance level comparing Ant-Miner-RegMA and Ant-Miner-Reg. Sta-

tistically significant differences are shown in bold, indicating the

case where the performance of Ant-Miner-RegMA is statistically sig-

nificantly better than the one of Ant-Miner-Reg. 152

xiv

List of Figures

1 The main steps in Knowledge Discovery in Databases (adapted

from (Fayyad, Piatetsky-Shapiro and Smyth 1996)). 8

2 Example of a data set with two classes: x’s represent the class

that defaulted on their loans; and the o’s represent the class that

is in good status with the bank. The values in the debt axis are

multiplied by (102) and the values in the income axis are multiplied

by (103). 9

3 In (a) an example of an unlabelled data data set; (b) potential

output of a clustering algorithm, where the data is grouped into 2

clusters. 10

4 An illustration of classification models: (a) decision tree with root

attribute “Work Class” and two branches { “Private” , “State-gov”

} leading to leaf nodes. The number of instances that are cor-

rectly/incorrectly classified by each leaf node is shown in brackets,

respectively. (b) decision rules representing the same model in (a). 13

5 (a) An example of a regression tree with root attribute “Work

Class”, the values of that attribute are “Private” or “State-gov”

and the leaf has the target attribute. The predicted value in the

leaf is the average of the numeric target values of the instances

covered in this subset. (b) A decision rules model representing the

same model. 17

xv

6 Different Classification of Concept Drift (adapted from (Hoens, Po-

likar and Chawla 2012)). 31

7 Different Types of Concept Drift (adapted from (Brzeziński 2010)). 31

8 Examples of time windows: a) sliding window b) fading window c)

tilted-time window (adapted from (Nguyen, Woon and Ng 2015)). 33

9 Archive Structure: example of 3 rules of the archive, each rule

showing a single example of different attribute type: Ar is a real-

valued (continuous) attribute, Ac is a categorical attribute and Ao

is an ordinal attribute. 73

10 Archive example . 78

11 Overview of how sAnt-Miner works. 118

12 Simplified hybrid construction graph. 121

xvi

List of Algorithms

1 High-level pseudocode of Iterative rule learning. 20

2 High-level pseudocode of Pittsburgh rule learning. 21

3 High-level pseudocode of Ant Colony Optimization 55

4 High-level pseudocode of cAnt-Miner 62

5 High-level pseudocode of cAnt-MinerPB 64

6 High-level pseudocode of Ant-MinerMA. 72

7 High-level pseudocode of Ant-MinerMA+G. 93

8 High-level pseudocode of the learning procedure of sAnt-Miner . . 119

9 High-level pseudocode of Ant-Miner-RegMA. 144

xvii

Chapter 1

Introduction

The amount of data available for analyses has exponentially increased as a re-

sult of recent technological advances — nowadays data regarding ad clicks, shares

and likes from social media platforms, user analytics from mobile apps and web

searches are easily available1. The analysis of data has the potential to uncover

useful knowledge and be an important type of support for better decision mak-

ing. Data mining is the research field concerned with the design of algorithms

that (semi-)automate data analysis by employing methods mainly from the areas

of machine learning and statistics (Fayyad, Piatetsky-Shapiro and Smyth 1996;

Piateski and Frawley 1991).

There are two broad types of data mining tasks from a machine learning per-

spective: supervised and unsupervised. Supervised tasks include classification and

regression, where the aim of the task is to build a predictive model representing

the relationship between input variables (predictive attributes, or features) and a

known output (target) attribute. Unsupervised tasks do not involve any output

variable and do not involve prediction (i.e., they use only input variables). Hence,

unsupervised tasks are descriptive, rather than predictive. An example of unsu-

pervised task is clustering, where the instances are grouped into clusters based on
1Based on the information provided by https://www.domo.com/learn/data-never-sleeps-7

1

CHAPTER 1. INTRODUCTION 2

their similarity, so that descriptions of the different clusters can be used to high-

light differences and similarities between different groups of objects (instances).

In this thesis, we will focus on the supervised tasks of classification and regression.

Data mining models can be divided into white-box or black-box models based

on the type of knowledge representation that they use. The term white-box refers

to interpretable models, where the model can be understood by the user when

making a decision - e.g., models based on decision trees, and IF-THEN classifica-

tion/regression rules. It is important to note that not all decision trees/rule sets

are interpretable models, as for example a decision tree with many thousand, or

a rule set with many thousands of rules will not interpretable. The term black-

box refers to models whose inner working are not easily understood by the user

- e.g., models based on artificial neural networks and support vector machines.

The benefit of white-box models is that they help with expert acceptance, since

their prediction can be potentially validated/interpreted by experts, unless the

models are too large for a user’s interpretation. In many domains, explaining the

predictions made by a model is a requirement (Freitas 2014; Freitas, Wieser and

Apweiler 2010; Pazzani, Mani and Shankle 2001).

Data stream mining is the process of extracting knowledge from a continuous

flow of data (Muthukrishnan 2003) — i.e., data instances are continuously gen-

erated. As a result, a data stream needs to be processed without access to the

whole data, and each data instance is processed only once or a small number of

times. According to (Krempl et al. 2014), challenges in handling data streams

are volume, velocity and volatility. Data stream volume (can be considered rate)

incrementally increases from zero to infinite making it infeasible to store all data.

Velocity impacts the mining process since data arrive quickly and continuously,

limiting available processing time. Volatility is the concept of drift and change

of patterns, target, and/or variables of the data being mined, which indicate the

need for an algorithm to deal with a dynamically changing environment.

CHAPTER 1. INTRODUCTION 3

There are several data stream applications as shown by (Nguyen, Woon and

Ng 2015). Mining query streams to provide users with better search results has at-

tracted much research work (Zeng et al. 2004; Chien and Immorlica 2005; Mundhe

and Manwade 2018). Network monitoring is a popular application area, where

the analysis of traffic data can be used to discover usage patterns and unusual

activities in real time (Muthukrishnan 2003; Andreoni Lopez et al. 2019). Sensor

networks are involved in real-life applications such as traffic monitoring, smart

homes, habitat monitoring and healthcare (Gama and Gaber 2007; Sow et al.

2010; ur Rehman et al. 2016). Social networks are becoming more and more pop-

ular, generating tremendous amounts of online data streams (Aggarwal and Philip

2005; Aggarwal and Subbian 2012; Cui et al. 2011; Sakaki, Okazaki and Matsuo

2010; Sun, Faloutsos and Papadimitriou 2007; Chen and Shang 2019; Kudo et al.

2019).

Krempl et al. (2014) highlighted the need to create simpler models, considering

not only predictive accuracy, but also the interpretability of the knowledge discov-

ered by data stream algorithms. Interpretability was one of the recommendations

based on the study of real-world applications and the shortcomings of the existing

approaches. Notably, current rule induction algorithms in the field follow an in-

cremental approach (Gama and Kosina 2011; Stahl, Gaber and Salvador 2012; Le

et al. 2014, 2017), which leads to large and difficult to interpret models. Ensemble

approaches are shown to be successful in data stream classification (Minku and

Yao 2012; Baena-Garcıa et al. 2006; Street and Kim 2001; Almeida, Kosina and

Gama 2013), but an ensemble architecture increases the complexity of the models

produced.

Several evolutionary approaches have been successfully applied to handle data

stream classification. Vivekanandan and Nedunchezhian (2011) proposed an on-

line genetic algorithm (OGA), an incremental rule learning algorithm that creates

a rule set for data stream classification with concept drift. Vahdat et al. (2014a)

CHAPTER 1. INTRODUCTION 4

proposed a GP for streaming data classification tasks with label budgets, where

the GP learns a model using a limited number of labelled instances.

Classification or regression problems can be viewed as optimization problems,

where the aim is to create the best model to represent the predictive patterns in the

data. Many metaheuristics have been applied to create classification/regression

models, including evolutionary and swarm intelligence algorithms (Vivekanandan

and Nedunchezhian 2011; Vahdat et al. 2014a; Cervantes et al. 2013) — Ant

Colony Optimization (ACO) (Dorigo and Stützle 2004) is amongst the most suc-

cessful ones. ACO is a metaheuristic inspired by the behaviour of real ant colonies.

Many ant species, despite the simplicity of their individual behaviour and lack of

centralised control, are able to find the shortest path between a food source and

their nest. To find such shortest paths, ants cooperate via an indirect commu-

nication mechanism by means of pheromone deposit. The path with the highest

concentration of pheromone, which usually corresponds to the shortest path since

ants can traverse it quicker, is preferred. ACO algorithms simulate this behaviour

to find optimal or near optimal solutions for optimization problems. Most ACO

algorithm convert the optimisation problem to a shortest path problem, where

ants uses a graph pheromone model to deposit and traverse the solution space.

Recently a different pheromone model was proposed in (Socha and Dorigo 2008;

Liao et al. 2014), where rather than using a graph model to guide the ants, this

approach uses an archive based pheromone model.

ACO algorithms have been successfully applied to classification problems in

(Parpinelli, Lopes and Freitas 2002; Otero, Freitas and Johnson 2008, 2009, 2013;

Liang et al. 2016; Yang et al. 2017; Seidlova, Poživil and Seidl 2019; Al-Behadili,

Ku-Mahamud and Sagban 2018), where the use of pheromone allows the algorithm

to explore the search space effectively to build accurate models. The majority

of ACO-based classification algorithms are limited to cope only with categorical

attributes, while continuous attributes are discretised in a pre-processing step or

CHAPTER 1. INTRODUCTION 5

dynamically during the model creation.

Data stream mining is also a growing research area in terms of open source

software frameworks. Massive Online Analysis (MOA) (Bifet et al. 2010) was

the first framework for data stream mining. MOA includes a collection of ma-

chine learning algorithms—such as classification, regression, clustering, outlier

detection, concept drift detection and recommender systems—as well as stream

generators and evaluation measures. MOA is based on the well-known Waikato

Environment for Knowledge Analysis (WEKA) data mining tool (Hall et al. 2009;

Witten et al. 2016) and its goal is to provide a benchmark suit for the growing

data stream mining community.

1.1 Overview of the Contributions of the Thesis

The focus of this thesis is to extend the current approach of ACO-based clas-

sification mining algorithms to handle mixed-variables problems, in particular

improving how ACO-based algorithms handle continuous attributes. The aim is

to improve the overall computational time without reducing predictive perfor-

mance, allowing ACO-based algorithms to handle large data sets and the more

challenging problem of mining data streams.

The first contribution is a new ACO classification algorithms for mixed-variable

problems, using a pheromone model that efficiently handle continuous attributes;

which eliminates the need for a discretisation procedure in ACO rule induction

(creation) algorithms by using an archive-based pheromone model capable to cope

with continuous attributes directly and faster. We also propose an automatic

design framework to incorporate the graph-based model along with the archive-

based model during the rule creation process.

The second contribution is an ACO data stream algorithm that creates classi-

fication rules; it uses a novel hybrid pheromone model which combines the archive

CHAPTER 1. INTRODUCTION 6

and graph models to handle continuous attributes directly without the need for

a discretisation procedure. The approach uses a Pittsburgh learning strategy to

allow for rule interactions. The approach shows significant improvement in the

model size compared to well-known rule induction algorithms in data stream min-

ing, without any negative impact on predictive accuracy.

The third contribution is an initial work on an ACO regression algorithm

improving the way the algorithm handles continuous attributes; using an archive

pheromone model. The approach shows improvement in the computation runtime,

without negative impact on predictive accuracy.

1.2 Thesis Structure

The remainder of this thesis is organised as follows. Chapter 2 presents an

overview of data mining and rule induction algorithms. Chapter 3 presents an in-

depth analysis of data stream mining algorithms. Chapter 4 presents an overview

of ACO algorithms and ACO-based classification and regression algorithms.

Chapter 5 presents the first contribution of the thesis, namely a new ACO

classification algorithm for mixed-variable problems and the results of the algo-

rithm.

Chapter 6 present the automatic design framework for combining graph-based

and archive-based ACO approaches during the rule creation process, and the

results of the algorithm.

Moreover, Chapter 7 presents an ACO data stream mining algorithm, which

combines and integrates the archive and graph pheromone models to learn rule

lists using a Pittsburgh-based approach. The results of the new algorithm are

presented in Chapter 8.

Chapter 9 presents a inital work in applying the archive-based pheromone

model to regression problems and the computational results.

CHAPTER 1. INTRODUCTION 7

Chapter 10 presents conclusions and final remarks of the thesis, as well as

suggestions for future research.

1.3 Publications

The list of publications from the research described in this thesis is as follows:

• Helal, A. and Otero, F. E. (2016). A Mixed-Attribute Approach in Ant-

Miner Classification Rule Discovery Algorithm. In Proceedings of the Genetic

and Evolutionary Computation Conference 2016, ACM, GECCO ’16, pp.

13–20.

• Helal, A. and Otero, F. E. B. (2017). Automatic Design of Ant-Miner Mixed

Attributes for Classification Rule Discovery. In Proceedings of the Genetic

and Evolutionary Computation Conference, ACM Press, GECCO ’17, pp.

433–440.

• Helal, A., Brookhouse, J. and Otero, F. E. B. (2018). Archive-Based Pheromone

Model for Discovering Regression Rules with Ant Colony Optimization. In

2018 IEEE Congress on Evolutionary Computation (CEC), IEEE, pp. 1–7.

• Helal, A. and Otero, F. E. B. (2019). Data Stream Classification with Ant

Colony Optimization, submitted to IEEE transactions on Evolutionary Com-

putation, under review.

Chapter 2

Data Mining

In the era of big data, vast amounts of information are stored in large data reposi-

tories (Fan and Bifet 2013). The process of analysing and extracting useful knowl-

edge from data is known as Knowledge Discovery in Database (KDD) (Fayyad,

Piatetsky-Shapiro and Smyth 1996). KDD steps involve collecting and selecting

data, preprocessing and data cleaning, transformation, data mining, interpreta-

tion and evaluation. These steps are illustrated in Figure 1. It starts with raw

data, which undergo selection to produce target data; target data then undergo

pre-processing to transform the data for the data mining step; data mining pro-

duces patterns that are interpreted into knowledge.

Data mining is the central step in the KDD process, which aims at discovering

patterns in data and/or relationships between data attributes (Holmes, Donkin

and Witten 1994). Supervised and unsupervised are the two main learning ap-

proaches in data mining. In supervised learning, the data is labelled, meaning

Figure 1: The main steps in Knowledge Discovery in Databases (adapted from (Fayyad,
Piatetsky-Shapiro and Smyth 1996)).

8

CHAPTER 2. DATA MINING 9

1 2 3 4 5 6 7
1

2

3

4

5

6

Income (103)

D
eb

t
(1

02)

Figure 2: Example of a data set with two classes: x’s represent the class that defaulted
on their loans; and the o’s represent the class that is in good status with the bank. The
values in the debt axis are multiplied by (102) and the values in the income axis are
multiplied by (103).

that a target value is known by the learning method. In unsupervised learning,

the data is unlabelled, meaning that there is not a target value specified to the

learning method. Figure 2 illustrates a simple artificial bank data set. Each data

point represents an instance of a person who has taken a loan and the axis rep-

resent the attributes ‘Debt’ and ‘Income’. The 38 instances are divided into two

groups (classes): the x’s represent the class that defaulted on their loans and the

o’s represent the class that is in good status with the bank.

Unsupervised learning focuses on understanding the data and visualizing the

relationships between the data attributes. One of the main types of descriptive

methods is clustering. Clustering algorithms partition the data into clusters,

where each cluster consists of data points that are similar to each other and

different data points belong to different clusters (Jain and Dubes 1988). Clustering

algorithms are an unsupervised learning technique, where the data used is not

labelled, as illustrated in Figure 3(a); a potential output of clustering is illustrated

in Figure 3(b), where the data is divided into 2 clusters.

CHAPTER 2. DATA MINING 10

1 2 3 4 5 6 7
1

2

3

4

5

6

Income (103)

D
eb

t
(1

02)

(a)

1 2 3 4 5 6 7
1

2

3

4

5

6

Income (103)

D
eb

t
(1

02)

(b)

Figure 3: In (a) an example of an unlabelled data data set; (b) potential output of a
clustering algorithm, where the data is grouped into 2 clusters.

A well-known clustering algorithm is K-means, formalised and named by Mac-

Queen (1967). K-means partitions the data into a user-defined number of clusters

k. The algorithm starts by randomly initializing k centroids in the solution space,

where each centroid defines the central point of a cluster. Then it calculates the

distance between each data points and the centroids. Each data point is assigned

to the cluster with the nearest centroid, then the position for each centroid is

recalculate based on the data points assigned to it by centralizing the centroid

position. This iterative process continues until centroids positions do not change

or a maximum number of iterations is reached.

Supervised learning focuses on predicting the value of a target (class) attribute

for previously unseen data points. Two popular predictive tasks are classification

and regression. Classification problems involve the prediction of class values from

a finite set of values, such as identifying loan applicants having credit risks or

not (Weiss and Kulikowski 1991). Regression problems involve the prediction of

a real-valued target value, such as income (Fahrmeir et al. 2013).

In recent years, data mining started to tackle richer data formats rather than

traditional stationary data (Maimon and Rokach 2010), such as data streams

(Gaber, Zaslavsky and Krishnaswamy 2007), spatio-temporal (Kisilevich et al.

CHAPTER 2. DATA MINING 11

2009) and multimedia data (Zhang and Zhang 2008). A data stream consists

of a continuous generation of data that is unbounded on time. Examples of

data streams are stock market data, social media and sensor networks. Spatio-

temporal data are generated from location-based or environmental devices that

record position, time and environmental properties of objects. Multimedia data

have complex data structure, such as images, sounds and music.

In the following sections, we will discuss classification and regression tasks

in more detail, since they are the focus of our work, and present examples of

well-know approaches for these tasks.

2.1 Classification

The classification task is concerned with finding patterns in data, then use those

patterns to classify any new (future) data instance (Weiss and Kulikowski 1991).

Each data instance is described by a set of predictor attributes, whose values

are used to predict the value of a designated class (target) attribute. There are

mainly three types of predictor attributes: continuous, ordinal and (unordered)

categorical. A continuous attribute takes numeric real values, where each instance

has potentially a different value; categorical attributes have a finite set of values,

where each instance has one of the available values; and ordinal attributes also

have a finite set of values, but the values are ordered (e.g., Small, Medium, Large).

Integer attributes are usually treated as continuous attributes in machine learn-

ing. Classification algorithms produce a model based on predictive relationships

between the set of predictor attributes and the class attribute, which represent

the patterns found in the data. In the process of creating a model, the data is

divided into training and test sets to create and evaluate a model, respectively.

Since classification is a supervised learning task, classification algorithm has the

information (value) of the class attribute of every instance in the training set.

CHAPTER 2. DATA MINING 12

Table 1: Data set for income classification.

Age Gender Work Class Income (Class)
39 Male State-gov > 50K
34 Male Private > 50K
52 Male Private ≤ 50K
42 Male State-gov ≤ 50K
59 Female State-gov ≤ 50K
25 Female Private > 50K
66 Female Private ≤ 50K
32 Female State-gov ≤ 50K
57 Female State-gov ≤ 50K
25 Male Private > 50K
36 Female Private > 50K

The model generated by a classification algorithm is then used to predict the

class value of the instances in the test data, where the class value is not given to

the algorithm. The prediction is compared to the actual class value to determine

the model’s quality.

Table 1 shows a small data set regarding income classification. The first at-

tribute “Age” is a continuous attribute; the second and third attributes, “Gender”

{Male, Female} and “Work Class” {Private, State-gov}, are both categorical at-

tributes; the class attribute is the “Income” {≤ 50K, > 50K}.

Classification models can be divided into white or black box. White box models

refer to interpretable models, where the model provides an explanation for the

classification of an instance (or data point) and they can be used to understand

the problem at hand. Black box models are models whose inner workings are not

interpretable, the prediction cannot be easily explained.

The need for interpretable models arises from the need to understand/justify

why a certain prediction was made (Freitas 2014; Doshi-Velez and Kim 2017),

given that in several real-world applications it is not enough to get the prediction

(e.g., medical diagnosis, credit scoring). In such applications, the model needs

to explain how it came to the prediction, because a correct prediction does not

CHAPTER 2. DATA MINING 13

Work Class

> 50K
(4/2)

≤ 50K
(4/1)

Private State-gov

(a)
IF Work Class = Private THEN > 50K

IF Work Class = State-gov THEN ≤ 50K
(b)

Figure 4: An illustration of classification models: (a) decision tree with root attribute
“Work Class” and two branches { “Private” , “State-gov” } leading to leaf nodes. The
number of instances that are correctly/incorrectly classified by each leaf node is shown
in brackets, respectively. (b) decision rules representing the same model in (a).

include the needed explanation to justify the prediction. A wide range of algo-

rithms have been used to create classification models (Wu et al. 2008), including

white box approaches: e.g., decision trees, and rule induction; and black box

approaches: e.g., artificial neural networks and support vector machines, among

others. In this section, we focus only on decision trees and classification rules,

since both are popular forms of interpretable classification models.

In decision trees (Quinlan 1986) internal nodes represent attributes and each

branch originating from a node represents a different test on an attribute’s value;

leaf nodes are associated with a predicted class value. Decision trees are usually

built using a divide-and-conquer approach. It starts by splitting the data into

subsets, which are then split into even smaller subsets, and so on until this iter-

ative process stops when each of the subsets of data is homogeneous (with all its

instances belonging to the same class) or another stopping criteria has been met.

At the root node, the entire data is represented. Next a decision tree algorithm

CHAPTER 2. DATA MINING 14

chooses an attribute to split the data, creating a decision (internal) node; ideally

it chooses an attribute that divides the data into homogeneous subsets. Working

down each branch, the algorithm continues to partition the data choosing the best

attribute to make another decision node. Each attribute in the data set is used in

at most one node. Decision trees can continue to grow indefinitely, dividing the

data into smaller and smaller portions until each instance is perfectly classified

or all attributes are used. However, this could lead to overfitting the training

data, which results in poor predictive performance on unseen data (Mingers 1989;

Malerba, Esposito and Semeraro 1996). One solution to mitigate the effects of

growing a large tree is pruning, where pruning removes leaf nodes to reduce the

size of the tree as long as the overall quality of the tree is not decreased.

Figure 4(a) illustrates a decision tree for the data presented in Table 1, which

consist of a root node “Work Class” represented by a categorical attribute with two

possible values {“Private”,“State-gov”}. Each value is represented by a branch

leading to a leaf node. To calculate the value to be predicted by a leaf node,

a common approach is to return the most frequent (majority) value of the class

attribute amongs the instances that reach the leaf node. In the case of the leaf

node “Private”, the prediction value is “> 50K”, since 4 instances (2,6,10,11) have

the value “> 50K” and 2 instances (3,7) have the value “≤ 50K”. The number of

instances correctly/incorrectly classified is shown under the predicted class value,

respectively.

Decision trees can be easily converted into a set of decision rules, where rules

are represented as IF -THEN statements. The IF part consist of attribute-based

conditions (also called antecedent) and the THEN part consist of the predicted

class value. An instance satisfying all conditions of a rule antecedent is covered

by the rule and has the value of the consequent as its predicted class value. Rule

induction will be covered in Section 2.3. The decision tree in Figure 4(a) can be

converted into a set of IF -THEN rules (Figure 4(4b)) by following each path from

CHAPTER 2. DATA MINING 15

the root node to a leaf node, resulting in two rules: “IF Work Class = Private

THEN > 50K” and “IF Work Class = State-gov THEN ≤ 50K”. Converting

the trees into rules allow for improved readability, as rules tend to be easier to

understand (Mitchell 1997; Freitas 2014).

An important characteristic of classification models is their capacity in clas-

sifying unseen instances. One of the used measures to evaluate a classification

model in this thesis is accuracy, given by:

Q = #CorrectlyClassifiedInstances
#TotalInstances (1)

where the #CorrectlyClassifiedInstances is the number of instances where the

class value predicted by the model is the same as the actual class value and

#TotalInstances is the total number of instances whose class is predicted by the

model. For example, the accuracy of the decision tree presented in Figure 4(a)

when classifying the data in Table 1 is 73% (8 correct instances of a total of 11).

2.2 Regression

The regression task consists of building a model to predict a continuous target

attribute value. Similar to classification algorithms, regression algorithms are

supervised learning techniques, where the training data used is labelled.

The first difference between regression and classification tasks can be identified

by looking at the income data in Table 2 and comparing it to the data in Table 1.

In classification, the class attribute is represented by a categorical attribute with

two values {≤50K, >50K} while in regression the target attribute is represented

by a continuous attribute.

Similarly to classification, a wide range of algorithms have been used to tackle

regression problems (Wu et al. 2008) such as: decision trees, rule induction, linear

regression, artificial neural networks and support vector regression.

CHAPTER 2. DATA MINING 16

Table 2: Data set for income regression.

Age Gender Work Class Income (target)
39 Male State-gov 45150
34 Male Private 34580
52 Male Private 63691
42 Male State-gov 45796
59 Female State-gov 36169
25 Female Private 85849
66 Female Private 37066
32 Female State-gov 39837
57 Female State-gov 30845
25 Male Private 77649
36 Female Private 73969

A linear model is a standard regression technique (Press et al. 1992). Let xi
be the attribute value vector for the instance i and yi its predicted value, a linear

regression algorithm creates a function in the form:

yi = β0 + ε+
n∑
j=1

βjxij (2)

where β0 is the intercept (i.e, β0 is the point were the line crosses the y axis); n is

the number of predictor attributes; βj are the linear coefficients for the predictor

attributes; xij are the j-th predictor attribute values for the i-th instance, and ε

is the error associated with each measurement. Linear regression is restrictive in

modelling relationships since it tries to fit a linear relationship between attributes

and predicted values. More advanced linear regression algorithms would use non-

linear functions to represent attributes such as x′ = 1
x

to better fit the problem

(Fahrmeir et al. 2013), in case a straight line does not fit the problem.

Figure 5 shows two interpretable representations of a simple regression model

based on the data from Table 2. Figure 5(a) presents a regression tree model,

which consists of the attribute “Work Class” as root node. “Work Class” is a

categorical attribute with two possible values: “Private” and “State-gov”. Each

CHAPTER 2. DATA MINING 17

Work Class

62134 39560

Private State-gov

(a)
IF Work Class = Private THEN 62134

IF Work Class = State-gov THEN 39560
(b)

Figure 5: (a) An example of a regression tree with root attribute “Work Class”, the
values of that attribute are “Private” or “State-gov” and the leaf has the target attribute.
The predicted value in the leaf is the average of the numeric target values of the instances
covered in this subset. (b) A decision rules model representing the same model.

value is represented by a branch leading to a leaf node. To calculate the value to

be predicted by a leaf node, a common approach is to calculate the average value

of the target attribute among the instances that reach the leaf node. In the case

of “Work Class = Private”, the value predicted is 62134 (average target value of

the instances 2,3,6,7,10,11). Similarly to classification, a regression tree can be

converted to a rule model as shown in Figure 5(b). A more advanced tree model

would use linear models in the leaf node to make predictions, which in some cases

improve the overall quality of the regression model (Quinlan et al. 1992), while

decreasing its interpretability.

One of the main measures to determine the quality of a regression model is

the Root Mean Square Error (RMSE) (Barnston 1992), given by:

RMSE =
√√√√ 1
m
·
m∑
i=1

(yi − ȳi)2 (3)

where m is the total number of instances, yi] is the actual value of the i-th instance

CHAPTER 2. DATA MINING 18

and ȳi is the predicted value of the i-th instance. RMSE can measure the quality

of regression models and individual regression rules. To calculate the RMSE for

a regression rule, only the instances that are covered by the rule are considered.

For example, the rule “IF Work Class = Private THEN 62134” covers 6 instances

(2,3,6,7,10,11), the value of the Mean Square Error (MSE) of instance 2 predicted

as 62134, is given by:

(y2 − ȳ2)2 = (34580− 62134)2 = 759, 222, 916 (4)

The MSE values of all the instances covered by the rules are calculated, as given:

(y2 − ȳ2)2 = 759, 222, 916

(y3 − ȳ3)2 = 2, 424, 249

(y6 − ȳ6)2 = 562, 401, 225

(y7 − ȳ7)2 = 628, 404, 624

(y10 − ȳ10)2 = 240, 715, 225

(y11 − ȳ11)2 = 140, 067, 225
m∑
i=1

(yi − ȳi)2 = 2, 333, 235, 464

(5)

using the Equation 3, The quality of the rule is:

RMSE =
√√√√ 1
m
·
m∑
i=1

(yi − ȳi)2

RMSE =
√

1
6 · 2, 333, 235, 464 = 19719.9

(6)

2.3 Rule Learning

In this section, we will discuss three learning approaches to build rule models.

Rule models can be represented as either rule sets (unordered rules) or rule lists

CHAPTER 2. DATA MINING 19

(ordered rules), also known as decision lists. That is, rule sets do not impose any

order on the rules, while rule lists apply a strict order on the rules. In a rule

list, the order of rules plays an important role in determining the prediction of

individual rules. When using a rule list to classify an instance, each rule is tested

sequentially until a rule that covers the instance is found (i.e., all the attribute

conditions in the rule antecedent are satisfied by the instance). This means that

a rule is only used if the previous rules do not cover the instance. In the case

of a rule set, all rules attempt to cover the instance. If only one rule covers

the instance, the rule classifies the instance; if multiple rules cover the instance, a

conflict resolution criterion is used to decide the final classification of the instance.

Michigan rule learning (Booker, Goldberg and Holland 1989) is well known

learning approach, where the system learns all the rules at once. In our work we

do not use Michigan learning, so we will not discussed further.

We will discuses two different rule induction approaches from the broader area

of evolutionary algorithms (Freitas 2002; Alcalá-Fdez et al. 2009), each employing

a different strategy to create a rule model.

2.3.1 Iterative Rule Learning

Iterative Rule Learning (IRL), also known as sequential covering (Mitchell 1997),

is based on the idea that the problem of creating a rule list or rule set can be

divided into a set of smaller problems consisting in creating a single rule. Starting

with the complete data, a single rule is created and the instances covered by the

rule are removed. The rule is added to the rule model and the procedure to

create a single rule (LearnOneRule) is then repeated until a user-defined maximum

number of instances are left uncovered (Threshold). Algorithm 1 presents the

high-level pseudocode of the IRL approach. Since each iteration of the procedure

uses a different set of instances, given that the covered instances are removed, a

different rule will be created.

CHAPTER 2. DATA MINING 20

Algorithm 1: High-level pseudocode of Iterative rule learning.
Data: Instances
Result: Rule Model

1 RuleModel ← {}
2 while |Instances|> Threshold do
3 Rule ← LearnOneRule(Instances)
4 RuleModel ← RuleModel.addrule(Rule)
5 Instances ← Instances − Covered(Rule, Instances)
6 end
7 RuleModel ← RuleModel.addrule(RuleDefault)
8 return RuleModel

Note that IRL can create either a set or list of rules, depending on the covered

procedure used (line 5). If the covered procedure removes only the instances that

are correctly classified by a rule (the prediction of the rule is the same as the

instance class value), the final rule model (line 7) will be a rule set. If the covered

procedure removes all instances covered by a rule, regardless if they are correctly

classified or not, the final rule model will be a rule list. After the loop (lines 2-6)

ended, a default rule is added to the rule model. A default rule is normally a rule

with an empty antecedent, such that it will make a prediction to any instance that

is not covered by the rules in the list or set. The use of a default rule ensures that

the rule-based model will always make a prediction. There number of polices to

decide on the default rule prediction one of them is the majority class among the

uncovered instances, while in regression it is the mean value of the class attribute

among the uncovered instances.

LearnOneRule can be implemented using different strategies and it is usually

the main point where IRL algorithms differentiate. A greedy strategy would learn

the most accurate rule, meaning it will focus on selecting whatever attribute seems

best at the moment and then solve the subproblems that arise later. Usually a

greedy strategy will fall into a local minima, since it does not cope well with

attribute interaction (Freitas 2001). Attributes interaction exists between two

CHAPTER 2. DATA MINING 21

attributes when the joint effect of both attributes in a model is different from

that obtained by additively combining the individual effects (Chanda et al. 2009).

A global strategy, such as evolutionary or swarm intelligence algorithms, allows

the creation of strategies that choose other attributes (not just the best), coping

better with attribute interaction.

2.3.2 Pittsburgh Rule Learning

Pittsburgh rule learning is based on the idea of learning a complete rule model

using a single procedure (Smith 1983). In the context of swarm intellgence, an

individual is a complete solution, and the algorithm tries to improve the complete

solution as whole. A high-level pseudocode is shown in Algorithm 2, where the

algorithm looks like IRL except that the LearnOneRule procedure is replaced by

LearnOneRuleModel in order to create an entire rule model rather than just a

single rule. The algorithm starts by creating an empty rule model, and while

the algorithm has not reached the Max Number of iterations, LearnOneRuleModel

creates a new rule model.

Algorithm 2: High-level pseudocode of Pittsburgh rule learning.
Data: Instances
Result: Rule Model

1 RuleModelbest ← {}
2 while i <Max Iterations do
3 RuleModel ← LearnOneRuleModel
4 if Quality(RuleModel) >Quality(RuleModelbest) then
5 RuleModelbest ← RuleModel
6 end
7 end
8 return RuleModelbest

In the LearnOneRuleModel procedure, the algorithm can learn either a set or

list of rules, determined by the LearnOneRuleModel procedure. Pittsburgh-based

algorithms do not focus on the quality of a single rule, therefore, the selection of

CHAPTER 2. DATA MINING 22

the final model is based on the quality of a complete model (line 4). This strategy

allows the optimisation of rule interactions rather than just attribute interactions,

as done by previous strategies.

2.4 An Overview of Classical Classification Al-

gorithms

In this section, we will discuss some of the classical classification algorithms (Wu

et al. 2008). Classification And Regression Trees (CART) (Breiman et al. 1984)

creates binary trees, where each node contains a logical condition that evaluates

to either a true or false value. CART uses the Gini diversity index to select

the attribute to create a node; the Gini index provides an indication of how

“pure” or “homogeneous” (with respect to their class) the instances in the leaf

nodes are. CART is also able to use categorical and continuous attributes as

target variables during tree construction, allowing the creation of classification or

regression models, respectively.

Another well known classification algorithm that produces trees models is C5.0

(see5), which is a predecessor of (C4.5 and ID3) (Quinlan 1986, 1993). The algo-

rithm follows a divide-and-conquer strategy to create decision trees. It uses the

entropy of the class distribution (entropy is a measure of impurity in data set) to

identify good splits for internal nodes by calculating the information gain ratio

(measures how much information a feature gives us about the class) of attributes

in the training data. Moreover, the algorithm allows for two or more outcomes

from an internal tree node.

Quinlan (1987) proposed a transformation approach to convert decision trees

created by C4.5 into rules and simplify the rules to create a rule set. The sim-

plification procedure removes conditions that are satisfied by the fewest number

of instances in the training set until at least one condition remains or the rule’s

CHAPTER 2. DATA MINING 23

quality deteriorates. In this case, pruning rules rather than the decision trees gives

two advantages. First, it allows the removal of attribute conditions that affect a

single rule. In the case of decision trees, the removal of any attribute affect its

subtree. Second, it allows the removal of attribute conditions that occur at the

top of the tree including the root node. In a decision tree, it is not possible to

remove only the root node. After the simplification, if multiple rules classify the

same instance, the approach uses the rule with the best accuracy to classify the

instance.

Cendrowska (1987) presented the PRISM algorithm. The first difference be-

tween PRISM and the above algorithm is that it does not create rules using

decision trees. PRISM starts by dividing the data into subsets according to the

class attribute values and creates rules for each subset. In order to create rules,

PRISM selects the attribute-value pair with the highest frequency of occurrence

in the subset of instances being considered; it continues selecting attribute-value

pairs until the subset of instances is homogeneous with respect to the class.

Frank and Witten (1998) proposed the PART algorithm, a rule induction algo-

rithm that produces a rule list. The algorithm obtains rules from partial decision

trees, using a sequential covering strategy. To build the rule, the algorithm first

creates a pruned decision tree; then a rule is extracted from the tree based on the

best leaf node and added to the rule list.

Support Vector Machines (SVMs) (Vapnik 1995) are one of the most robust

and accurate methods in data mining (Wu et al. 2008). SVMs are referred to

as black box models, since the processes that transform the input to output are

difficult to understand by domain specialists compared to decision trees and classi-

fication rules. In a two-class learning task, the aim of SVMs is to find a hyperplane

that maximises the margin between the two classes in order to generalize its pre-

diction for future data. SVMs can be extended to handle multi-class problems by

repeatedly using one class as the positive class and the remaining ones as negative

CHAPTER 2. DATA MINING 24

to create multiple separating hyperplanes.

Ensemble learning (Hansen and Salamon 1990; Dietterich 1997) is based on

the idea of building a predictive model by integrating multiple models, where each

of the models solves the same original problem, and combining their output (pre-

dictions) to create a more robust model. Some approaches combine the prediction

of different models, by means of a majority vote. One of the classical ensemble

algorithms is AdaBoost (Schapire 1990; Freund and Schapire 1995). AdaBoost

starts by assigning an equal weight to each instance in the training set. It then

builds a classification model. Then, it updates the weights of the instances, where

it increases the weights for misclassified instances and decreases the weights for

correctly classified instances. Using the updated weights of instances, it builds a

new classification model and adds it to the ensemble. It repeats the process of

updating the weights and creating new models until a pre-set number of models

have been created or no further improvement can be made on the training set by

adding new models.

2.5 An Overview of Classical Regression Algo-

rithm

As explained previously, regression aims to predict a real value rather than a

categorical value as in classification. A classical decision tree regression algorithm

is CART, which can be used for both regression and classification (Breiman et al.

1984). CART, when applied to regression problems, uses the Least Squares or

Least Absolute Deviation (LAD) measure to select attributes for its internal nodes.

LAD is the sum of absolute errors in each leaf of the tree, calculated as:

LAD =
n∑
i=1
| yi − f(xi) | (7)

CHAPTER 2. DATA MINING 25

where xi is the attribute-value vector representing the i-th instance, f(xi) is the

predicted value for the i-th instance, yi is the actual value of the target attribute

for i-th instance, and n is the number of the instances in the current leaf node.

Quinlan et al. (1992) proposed the decision tree regression algorithm M5. The

main difference between CART and M5 trees is that M5 uses linear models in the

leaf nodes, rather than a single value to make a prediction. M5 uses a standard

deviation split point generation method to choose attributes, which attempts to

maximise the reduction in error of the predicted target value in a subset of the

instances. Once the tree is grown and each branch is terminated with a leaf node,

a pruning step is undertaken. The pruning step replaces internal nodes with leaf

nodes (linear models). Starting from a leaf node, the algorithm moves up the tree

to the next internal node. A linear model is then generated and placed at the

internal node. If the quality of the model tree is improved, the sub-tree is pruned,

i.e., the linear model replaces the internal node and the sub-tree rooted at the

node. The linear model produced by M5 is not a model that uses all the available

attributes, but it is simplified to use only the attributes present in the sub-tree

that will potentially be pruned.

Janssen and Fürnkranz (2010b) proposed the Separate-and-Conquer Regres-

sion (SeCoReg) algorithm, which employs the commonly used sequential covering

strategy to create a list of regression rules. SeCoReg uses a greedy search to learn

one regression rule at a time, considering all possible conditions (attribute, op-

erator, value) and adds the best possible condition to improve the quality of the

rule.

Holmes, Hall and Prank (1999) proposed the M5’Rules algorithm, which is

a wrapper for the M5 decision tree regression algorithm. The algorithm uses

a sequential covering strategy to create a set of rules. It starts creating a full

regression tree using the current training instances. Then, the best leaf in the

tree is converted to a rule and added to the rule model. The correctly covered

CHAPTER 2. DATA MINING 26

instances are then removed from the current training instances and the process is

repeated. Similarly to M5 trees, M5’Rules uses linear models to make predictions.

2.6 Summary

In this chapter, we discussed two of the main data mining supervised learning

tasks: classification and regression. In supervised learning tasks, the data is

labelled, i.e., there is a target attribute and the data mining algorithm has access

to its value during it’s training. Both classification and regression aim to find

patterns in the data to predict the value of the target attribute for unseen (future)

data. Classification aims to predict a categorical value, while regression aims to

predict a continuous value.

Furthermore, this chapter discussed the differences between black and white

box models and presented in detail strategies to create two types of while box

(interpretable) models: decision trees and rules. We focused on decision tree

and rules since our aim is to build interpretable models. Finally, an overview of

classical classification and regression algorithms was presented.

Chapter 3

Data Streams

In data streams, data arrives in rapid and continuous form. Data stream mining is

the area concerned with extracting information from an incoming stream of data

(Muthukrishnan 2003). While traditional data mining usually runs in off-line

mode, characterised by slow data generation and where data storage is feasible

(Fayyad, Piatetsky-Shapiro and Smyth 1996), data stream mining runs in real-

time mode with rapid data generation where data storage is not feasible.

The main properties of data streams are volume, velocity and volatility—these

properties present challenges in handling data streams (Krempl et al. 2014). As

data streams volume incrementally increases from zero to infinity, data stream

mining approaches need to incorporate data in an incremental form without stor-

ing all data. Velocity impacts the mining process, preventing the use of any

off-line or time consuming procedure, due to the fact that data arrives in high

velocity. Volatility is the change of patterns, target, and/or features of the data

being mined, which require continuous updates of the model learned from the

data. Volatility is also called concept drift. An example of volatility is the be-

haviour of customers in an on-line shop, where the prediction of how profitable

a week is will differ with the increase of advertising and brand loyalty over time.

These challenges and related work addressing them are discussed next.

27

CHAPTER 3. DATA STREAMS 28

3.1 Volume

Data stream cannot store all data in memory, therefore algorithms are restricted

to storing small summaries of data stream. Moreover, keeping past elements could

be harmful to the model since the distribution of data can change over time.

Most data stream processing make use of summarisation techniques to handle

its large volume. Those techniques are used to produce approximate representa-

tions of large data sets, usually by selecting a subset of the data.

Random sampling is one of the most common techniques to reduce the data

size (Motwani and Raghavan 1995). The difficulty of using sampling in context

of data stream is the unknown data size. Additionally, the use of sampling is

associated with poor detection of concept drifts (Gaber, Zaslavsky and Krish-

naswamy 2005), since not all data is examined. Vitter (1985) presents a reservoir

sampling algorithm, which keeps n number of data in memory, and with each new

data instance arriving, it uses a probability to replace an old instance in memory.

Chaudhuri, Motwani and Narasayya (1999) extended the reservoir sampling algo-

rithm to weight the sampling where the weights are used to change the probability

of replacing the instances. The weighting reservoir sampling was further extended

by Guha et al. (2000) to apply the weighted apporach on clustring data streams.

Sketching involves building a summary of the data stream using a small amount

of memory. Alon, Matias and Szegedy (1999) presented frequency moments, which

capture the statistics of the data stream distribution in linear space. The statistics

captured include the length of a sequence, the number of distinct values in a

sequence, and the most frequent item multiplicity. Several approaches to estimate

different frequency moments have been proposed by Babcock et al. (2002).

Synopsis data are any data structures substantively smaller than their origi-

nal data, such as histograms and wavelets. Histograms are summary structures

capable of aggregating the distribution of the attributes in a data set, where equal-

width histograms aggregate data distributions to instance counts for equally wide

CHAPTER 3. DATA STREAMS 29

data ranges. The most common types of histograms for data streams are V-

optimal histograms (Jagadish et al. 1998), equal-width histograms (Greenwald

and Khanna 2001), and end-based histogram (Fang et al. 1998).

Wavelets are used to approximate the data distribution with a given proba-

bility. Wavelet coefficients project a given signal into an orthogonal set of basis

vectors. Research in data stream models with wavelet coefficients are discussed

by Gilbert et al. (2002). The limitation of synopsis data is that it does not repre-

sent all the characteristics of the data sets (Gaber, Zaslavsky and Krishnaswamy

2005).

Another summarisation technique is the Hoeffding bound framework (Hoeffd-

ing 1963). The Hoeffding bound is used in data stream algorithms to obtain

confidence bounds on the mean of a distribution based on a small subset of the

distribution. This characteristic fits well with data stream scenario, where the

distribution of the data is unknown. Therefore, the estimation of the bound is

independent of the probability distribution generating the data. The price of this

generality is that the bound is more conservative using more data that it would

have in comparison to distribution-depended ones.

Consider an observed mean x̄ of a random variable x whose range R is cal-

culated from a small observed sample of n independent observations x1, x2 . . . xn.

The true mean of the variable x is at least x̄− ε where:

ε =
√
R2ln(1

δ
)

2n (8)

ε represents the bound on how close the estimated mean is to the true mean

after n observations, with confidence of at least 1− δ; δ is a value between 0 and

1, this is known as the Hoeffding bound.

Babcock et al. (2002) presented a sampling procedure on a sliding window

model, while Domingos and Hulten (2000) used Hoeffding bound for sampling data

in decision tree-based classification and k-mean clustering. Hoeffding bound is a

CHAPTER 3. DATA STREAMS 30

probability model that is independent of the probability distribution generating

the observation.

3.2 Volatility

Volatility in data stream leads to concept drift, which is an unforeseen change

in patterns or targets, and/or features. Let us consider a classification decision

for instance X to class ci, determined by the prior probability P (ci) of the class

and the class-conditional probability density functions P (X|ci), i = 1, . . . , k. The

posterior probability of an instance belonging to a particular class is P (ci|X), i =

1...k. Concept drift occurs in three ways according to Kelly, Hand and Adams

(1999), as shown in Figure 6 :

1. Drift type 1: the probabilities of classes P (c1), ...P (ck) change over time.

Figure 6 (a) shows that the frequency of class x (cx) is higher after a concept

drift as Pt(cx) 6= Pt+1(cx).

2. Drift type 2: the class-conditional probabilities distributions P (X|ci), i =

1...k change. Figure 6 (b) shows that the boundary of class x changed after

concept drift.

3. Drift type 3: the posterior probabilities of classes P (ci|X), i = 1...k change

over time. Figure 6 (c) shows that some objects that were classified as circle

will change classification to x after the concept drift.

Some authors consider the first two types 1 and 2 as virtual drifts (Gama

et al. 2014), temporary drifts (Lazarescu, Venkatesh and Bui 2004), sampling

shifts (Salganicoff 1997), or feature change (Gao et al. 2007). While Type 3 is

considered as real concept drift, where the class change, this drift is easier to

handle so it is handled by most algorithms.

CHAPTER 3. DATA STREAMS 31

1 2 3 4 5 6 7

2

4

6

Income (103)

D
eb

t
(1

02)

1 2 3 4 5 6 7

2

4

6

Income (103)

D
eb

t
(1

02)

(a) Drift type 1. Note that the
class x occurs more frequently af-
ter drift: Pt(cx) 6= Pt+1(cx).

1 2 3 4 5 6 7

2

4

6

Income (103)

D
eb

t
(1

02)

2 4 6 8

2

4

6

Income (103)

D
eb

t
(1

02)

(b) Drift type 2. Note that
the boundaries of the class x
changed after drift: Pt(X|cx) 6=
Pt+1P (X|cx).

1 2 3 4 5 6 7

2

4

6

Income (103)

D
eb

t
(1

02)

1 2 3 4 5 6 7

2

4

6

Income (103)

D
eb

t
(1

02)

(c) Drift type 3. Note that the
boundaries between the classes
changed after drift: Pt(ci|X) 6=
Pt+1P ((ci|X).

Figure 6: Different Classification of Concept Drift (adapted from (Hoens, Polikar and
Chawla 2012)).

T1 T2 T3

C1

C2

Time

C
la

ss

(a) Sudden

T1 T3

C1

C2

Time

C
la

ss

(b) Incremental

T1 T2 T3 T4 T5 T6

C1

C2

Time

C
la

ss

(c) Gradual

T1 T2 T3 T4 T5 T6

C1

C2

Time

C
la

ss

(d) Recurrent

T1 T2 T3

C1

C2

Time

C
la

ss

(e) Blip

T1 T2 T3

C1

C2

Time

C
la

ss

(f) Noise

Figure 7: Different Types of Concept Drift (adapted from (Brzeziński 2010)).

CHAPTER 3. DATA STREAMS 32

Concept drift may manifest in different forms over time, as illustrated in Figure

7, showing the change in a single variable over time for a two class problem. A

drift might occur suddenly, where the change in the class assignment is instant

and irreversible; incremental drift slowly occurs over time, where the attributes

slowly change their values; gradual drift slowly occurs over time; recurrent drift

represents changes that are temporary and reverted after some time, it can be

periodic and reappear again; blip is a more rare change, which could be considered

as an outlier in the data and should be ignored in data stream; finally, noise should

be ignored and not considered in data stream as this fluctuation is not connected

to the source distribution (Brzeziński 2010).

Data stream mining is constrained by memory and time: it is thus not possible

to store all data, but only to remember a small subset thereof, like a time window.

This constraint could be relaxed to allow an algorithm to remember the data for

a short term, like a time window. However, it will have to discard data to use

newly arriving data (Aggarwal 2009; Gama 2013; Bifet et al. 2010). Moreover a

near-real time response is required, so mining algorithms should be fast.

Data stream should be able to react to concept drift by forgetting outdated

data, while learning new patterns. A popular alternative to data summarisation,

is to use a time window. Time windows are used to process portions of the entire

data streams. There are different types of time windows: landmark, sliding,

fading and tilted time windows, as illustrated in Figure 8. Time windows allow

an algorithm to adapt to changing concepts by forgetting outdated data.

Sliding window uses the most recent instances, eliminating older instances.

With the arrival of a new data instance, the oldest instance that does not fit in the

window is thrown away (Wang et al. 2003; Guha, Kim and Shim 2004; Oza 2005;

Hashemi et al. 2009; Zhang et al. 2009, 2011a,b,c; Nguyen et al. 2012). Fading

window assigns weight to instances according to arrival time and a decreasing

exponential function is used as a fading model. Older examples receive smaller

CHAPTER 3. DATA STREAMS 33

(a) Sliding Window

(b) Fading window (λ = 0.99)
(c) Tilted-time window

Figure 8: Examples of time windows: a) sliding window b) fading window c) tilted-time
window (adapted from (Nguyen, Woon and Ng 2015)).

weights and are treated as less important by the classifier (Park and Lee 2004; Cao

et al. 2006; Tasoulis, Ross and Adams 2007; Chen and Tu 2007; Dang et al. 2009;

Lühr and Lazarescu 2009; Rai, Daumé and Venkatasubramanian 2009; Smith

and Alahakoon 2009; Leite, Costa and Gomide 2010). Tilted time window uses

different summarisation with regards to the age of data. The most recent data

are stored in fine scale and long-term data are stored a summarised scale e.g.,

a histogram structure (Aggarwal et al. 2003, 2006; Guo et al. 2011; Zhou et al.

2007).

3.3 Velocity

Velocity impacts the data stream mining processing time. Due to the high rate

that data arrives, data stream algorithms are not able to do any offline or time-

consuming tasks. Preprocessing tasks in traditional data mining are used to im-

prove the quality of the data, and usually take place off-line. Preprocessing meth-

ods include feature selection, outlier definition and removal. In data streams, it

is challenging to implement preprocessing frameworks (Krempl et al. 2014) that

CHAPTER 3. DATA STREAMS 34

can be fully automated and easily integrated with the stream mining task being

used due to the velocity. Addressing the frequency of missing feature values, how

to select the best imputation method when missing values are present, and the

trade-off between speed and accuracy are all challenges due to the velocity.

Computational approach in data stream is usually based on incremental learn-

ing. In incremental learning, the model evolves incrementally to adapt to changes

in the incoming data. The frequency of the update can vary from being by data

instance (Guha et al. 2000; Guha, Kim and Shim 2004; Leite, Jr and Gomide 2009)

or by window (Hulten, Spencer and Domingos 2001; Dang et al. 2009). Its main

advantage is that it provides results instantly, but it requires more computational

resources.

3.4 Evaluation

In traditional data mining algorithms, where the algorithm have unrestricted ac-

cess to the data, the evaluation process focuses on maximizing the use of data.

Hold-out, K-fold cross validation and leave-one-out are standard validation meth-

ods (Kantardzic 2011). Hold-out methods randomly partition the data set into

two subsets, one for training and one for testing — the ratio of training and test-

ing partitions are usually (1
2 ,1

2) or (2
3 ,1

3), respectively. The k-fold cross-validation

partitions the data into k independent and equal size1 subsets, each subset used

once for testing while the remaining k − 1 are used for training. This process is

repeated k times and the results are averaged to provide one single output. In

most cases, the k partitions maintain the same class distribution as the original

data set (stratified cross validation). The leave-one-out is a variant form of cross

validation, where k is equal to the data set size and the testing is performed on

one data instance.
1If the data set cannot divide equally to K subsets, it can have one or more subsets not the

same size

CHAPTER 3. DATA STREAMS 35

Since in data streams the data is unbounded, the validation process focuses

on evaluating the model at various stages. A well-know approach is to create a

learning curve by measuring the model performance over time to show how much

the model improves with training data and how well it adapts to concept drift.

Hold-out and prequential are two popular approaches for stream validation (Bifet

et al. 2015). In the hold-out method, data instances are collected into chunks —

each chunk is used as a testing and then used to update the model. Models that

adapt to concept drift tend to use this method as it allows the model to adapt to

latest changes in data. In the Prequential method, the data instances are used to

test the model before they are used to update the model. The prequential method

can be considered a special case of the hold-out method with chunk size equal to

one.

Bifet et al. (2015) discussed major issues on the evaluation of data stream

classifiers and proposed solutions for those problems. They report the current

evaluation are not standardised, and current practice is that the comparisons of

algorithms performance, although appearing acceptable, are frequently invalid.

In their paper, they highlight the importance of a proper evaluation method-

ology for streaming classifiers, and produced some recommendations. The first

recommendation is the use of prequential k-fold distributed bootstrap validation

to compare different classifiers and also to use the Wilcoxon’s signed-rank test

(Wilcoxon 1992) for testing if any statistically significant improvement exists be-

tween different classifiers. k-fold distributed bootstrap validation runs k instances

of the same classifier, where each instance is used for training in approximately

two thirds of the classifiers, with a separate weight2 in each classifier, and for

testing in the rest. The use of only two third simulates drawing random samples

with replacement from the original stream.

Another issue identified by Bifet et al. (2015) is the class imbalance problem,
2The weight is used to calculate the prequential accuracy of the classifier.

CHAPTER 3. DATA STREAMS 36

where the prior probability of one class is small compared to that of the rest of

classes. This is a frequent problem in real-world applications, like fraud detection

or credit scoring (Krempl et al. 2014). They propose several statistics to handle

any skew in evolving data stream. The recommendations in (Bifet et al. 2015),

uses 3 different measures kappa measures:

1. Kappa compares an algorithm’s prequential accuracy to a chance classifier

(one that assigns the same number of instances to each class as the algorithm

being evaluated);

2. Kappa M compares an algorithm’s prequential accuracy to a simple ma-

jority class classifier;

3. Kappa Temporal compares an algorithm’s prequential accuracy to a per-

sistent classifier (one that predicts the class label of the previous instance

for the current instance).

Moreover, they propose an ADWIN prequential evaluation, rather than using

a sliding window. ADWIN is an adaptive sliding window algorithm for detecting

change and keeping updated statistics from a data stream (Gama, Sebastião and

Rodrigues 2012). ADWIN prequential evaluation is used to calculate the accuracy

of the model, rather than using the accuracy of all instances seen, the ADWIN

averages the accuracy on different sized windows, this shows the different changes

in the prefromance of the algeothrim. ADWIN keeps a variable-length window of

recently seen items, an older item in the window is dropped if and only if there is

enough evidence that its average value differs from that of the rest of the window.

3.5 Related Work in Data Stream Classification

Data stream classification algorithms are called adaptive classifiers. They are

implemented to learn, forget and to limit the storage of data instances. All

CHAPTER 3. DATA STREAMS 37

data stream algorithms implement update mechanisms to cope with new data

instances arriving from the stream. They update the model with different pro-

cedures. Moreover, some algorithms implement specific procedures to be more

reactive to concept drift. In Table 3, we present the approaches that we will dis-

cuss in this section, presenting the update mechanism and type, and indicating if

they have a special procedure for handling concept drift.

Considering the update mechanism, algorithms are divided into evolving and

trigger-based learners. Trigger-based algorithms uses a trigger to start a learning

process to update the model. In this case, the algorithm could learn a new model

or increment the model used. Evolving algorithms update the model gradually

and always learn using the data stream. Considering the update type, algorithms

are divided into incremental and replacement learners. In replacement algorithms,

the current model is discarded and a new model is build from scratch based on

the new data. In incremental algorithms, the model is incrementally updated to

handle the data stream.

A Hoeffding decision tree approach called Very Fast Decision Tree (VFDT) was

proposed by Domingos and Hulten (2000). The algorithm does not store any data

instances in main memory, requiring only space proportional to the size of the tree

and associated statistics to calculate the information gain for attributes. For each

attribute, the statistic consists of the frequency of all values seen. VFDT builds

a decision tree in a similar fashion to the classic C4.5 tree induction algorithm

(Quinlan 1993), growing the decision tree as more data arrives from the stream.

The Hoeffding bound is used to decide on the number of instances needed to

be seen by a leaf node before making a decision to create a test and divide the

node into two leaves. The attribute selected is the one that provides the best

information gain. The experiments showed that VFDT using the Hoeffding bound

on a subset of the data selected the same nodes to build the tree as when the entire

data set used. Thus, given a stream of instances, the first ones will be used to

CHAPTER 3. DATA STREAMS 38

select the root test; once the root attribute is chosen, the following instances will

be passed down to the corresponding leaves and used to choose the appropriate

attributes there, and so on recursively.

CHAPTER 3. DATA STREAMS 39

Ta
bl

e
3:

R
ev

ie
w

of
da

ta
st

re
am

cl
as

sifi
ca

tio
n

al
go

rit
hm

s
em

pl
oy

in
g

di
ffe

re
nt

up
da

te
m

ec
ha

ni
sm

s
an

d
up

da
te

ty
pe

s.

A
lg

or
it

hm
N

am
e

A
cr

on
ym

C
it

at
io

n
M

od
el

T
yp

e
U

pd
at

e
m

ec
ha

ni
sm

U
pd

at
e

T
yp

e
C

on
ce

pt

dr
ift

V
er

y
Fa

st
D

ec
is

io
n

Tr
ee

s
V

F
D

T
(D

om
in

go
s

an
d

H
ul

te
n

20
00

)
D

ec
is

io
n

Tr
ee

E
vo

lv
in

g
In

cr
em

en
ta

l
N

o

C
on

ce
pt

-a
da

pt
in

g
V

er
y

Fa
st

D
ec

i-

si
on

Tr
ee

C
V

F
D

T
(H

ul
te

n,
Sp

en
ce

r
an

d
D

om
in

-

go
s

20
01

)

D
ec

is
io

n
Tr

ee
E

vo
lv

in
g

In
cr

em
en

ta
l

Y
es

H
oe

ffd
in

g
A

da
pt

iv
e

Tr
ee

s
A

da
pt

iv
e

V
F

D
T

(B
ife

t
an

d
G

av
al

dà
20

09
)

D
ec

is
io

n
Tr

ee
E

vo
lv

in
g

In
cr

em
en

ta
l

Y
es

E
vo

lu
ti

on
ar

y
Le

ar
ni

ng
C

la
ss

ifi
er

Sy
st

em

X
C

S
(D

am
an

d
Lo

ka
n

20
07

)
R

ul
e

M
od

el
E

vo
lv

in
g/

Tr
ig

ge
r

R
ep

la
ce

m
en

t
Y

es

V
er

y
Fa

st
D

ec
is

io
n

R
ul

es
V

F
D

R
(G

am
a

an
d

K
os

in
a

20
11

)
R

ul
e

M
od

el
E

vo
lv

in
g

In
cr

em
en

ta
l

N
o

O
nl

in
e

G
en

et
ic

A
lg

or
it

hm
O

G
A

(V
iv

ek
an

an
da

n
an

d
N

e-

du
nc

he
zh

ia
n

20
11

)

R
ul

e
M

od
el

E
vo

lv
in

g
In

cr
em

en
ta

l
Y

es

E
vo

lv
in

g
se

t
of

R
ul

es
eR

ul
es

(S
ta

hl
,

G
ab

er
an

d
Sa

lv
ad

or

20
12

)

R
ul

e
M

od
el

Tr
ig

ge
r

In
cr

em
en

ta
l

Y
es

G
au

ss
ia

n
E

vo
lv

in
g

se
t

of
R

ul
es

G
-e

R
ul

es
(L

e
et

al
.2

01
4)

R
ul

e
M

od
el

Tr
ig

ge
r

In
cr

em
en

ta
l

Y
es

H
oe

ffd
in

g
R

ul
es

H
R

ul
es

(L
e

et
al

.2
01

7)
R

ul
e

M
od

el
Tr

ig
ge

r
In

cr
em

en
ta

l
Y

es

CHAPTER 3. DATA STREAMS 40

Ta
bl

e
3:

R
ev

ie
w

of
da

ta
st

re
am

cl
as

sifi
ca

tio
n

al
go

rit
hm

s
em

pl
oy

in
g

di
ffe

re
nt

up
da

te
m

ec
ha

ni
sm

s
an

d
up

da
te

ty
pe

s.

A
lg

or
it

hm
N

am
e

A
cr

on
ym

C
it

at
io

n
M

od
el

T
yp

e
U

pd
at

e
m

ec
ha

ni
sm

U
pd

at
e

T
yp

e
C

on
ce

pt

dr
ift

Sy
m

bi
ot

ic
B

id
-B

as
ed

G
en

et
ic

P
ro

-

gr
am

m
in

g

St
re

am
SB

B
(V

ah
da

t
et

al
.2

01
4b

,a
)

R
ul

e
M

od
el

E
vo

lv
in

g
R

ep
la

ce
m

en
t

N
o

Sy
m

bi
ot

ic
B

id
-B

as
ed

G
en

et
ic

P
ro

-

gr
am

m
in

g

St
re

am
SB

B
(K

ha
nc

hi
,

H
ey

w
oo

d
an

d

Zi
nc

ir
-H

ey
w

oo
d

20
17

)

R
ul

e
M

od
el

E
vo

lv
in

g
R

ep
la

ce
m

en
t

N
o

G
ro

w
in

g
T

yp
e

2
Fu

zz
y

C
la

ss
ifi

er
G

T
2F

C
(B

ou
ch

ac
hi

a
an

d
V

an
ar

et

20
14

)

Fu
zz

y
R

ul
e

M
od

el
E

vo
lv

in
g

In
cr

em
en

ta
l

Y
es

St
re

am
in

g
E

ns
em

bl
e

A
lg

or
it

hm
SE

A
(S

tr
ee

t
an

d
K

im
20

01
)

E
ns

em
bl

e
E

vo
lv

in
g

R
ep

la
ce

m
en

t
Y

es

D
yn

am
ic

W
ei

gh
te

d
M

aj
or

ity
D

W
M

(K
ol

te
r

an
d

M
al

oo
f2

00
7)

E
ns

em
bl

e
E

vo
lv

in
g

R
ep

la
ce

m
en

t
Y

es

O
nl

in
e

B
ag

gi
ng

w
it

h
A

D
W

IN
O

B
A

G
A

(B
ife

t
et

al
.2

00
9)

E
ns

em
bl

e
E

vo
lv

in
g

R
ep

la
ce

m
en

t
Y

es

O
nl

in
e

B
oo

st
in

g
w

it
h

A
D

W
IN

O
B

O
O

ST
A

(B
ife

t
et

al
.2

00
9)

E
ns

em
bl

e
E

vo
lv

in
g

R
ep

la
ce

m
en

t
Y

es

D
iv

er
si

ty
fo

r
D

ea
lin

g
w

it
h

D
ri

ft
s

D
D

D
(M

in
ku

an
d

Y
ao

20
12

)
E

ns
em

bl
e

Tr
ig

ge
r

R
ep

la
ce

m
en

t
Y

es

A
da

pt
iv

e
R

an
do

m
Fo

re
st

A
R

F
(G

om
es

et
al

.2
01

7)
E

ns
um

bl
e

E
vo

lv
in

g
R

ep
la

ce
m

en
t

Y
es

E
ar

ly
D

ri
ft

D
et

ec
ti

on
M

et
ho

d
E

D
D

M
(B

ae
na

-G
ar

cı
a

et
al

.2
00

6)
D

et
ec

ti
on

M
et

ho
d

Tr
ig

ge
r-

ba
se

d
R

ep
la

ce
m

en
t

Y
es

G
ro

w
in

g
P

ro
to

ty
pe

N
et

w
or

k
C

la
s-

si
fie

r

G
P

N
C

(C
er

va
nt

es
et

al
.2

01
3)

C
lu

st
er

in
g

E
vo

lv
in

g
In

cr
em

en
ta

l
Y

es

CHAPTER 3. DATA STREAMS 41

Ta
bl

e
3:

R
ev

ie
w

of
da

ta
st

re
am

cl
as

sifi
ca

tio
n

al
go

rit
hm

s
em

pl
oy

in
g

di
ffe

re
nt

up
da

te
m

ec
ha

ni
sm

s
an

d
up

da
te

ty
pe

s.

A
lg

or
it

hm
N

am
e

A
cr

on
ym

C
it

at
io

n
M

od
el

T
yp

e
U

pd
at

e
m

ec
ha

ni
sm

U
pd

at
e

T
yp

e
C

on
ce

pt

dr
ift

Su
pe

rv
is

ed
N

eu
ra

l
C

on
st

ru
ct

iv
is

t

Sy
st

em

SN
C

S
(S

an
ch

o-
A

se
ns

io
,

O
rr

io
ls

-P
ui

g

an
d

G
ol

ob
ar

de
s

20
14

)

M
LP

s
E

vo
lv

in
g

R
ep

la
ce

m
en

t
Y

es

D
yn

am
ic

E
xt

re
m

e
Le

ar
ni

ng
M

a-

ch
in

e

D
E

LM
(X

u
an

d
W

an
g

20
17

)
N

eu
ra

lN
et

w
or

ks
Tr

ig
ge

r
In

cr
em

en
ta

l
Y

es

E
ns

em
bl

e
O

S-
E

LM
ba

se
d

on
co

m
-

bi
na

ti
on

w
ei

gh
t

C
W

E
O

S-
E

LM
(Y

u,
Su

n
an

d
W

an
g

20
19

)
E

ns
em

bl
e/

N
eu

ra
l

ne
tw

or
ks

E
vo

lv
in

g
R

ep
la

ce
m

en
t

N
o

A
da

pt
iv

e
R

an
do

m
Fo

re
st

A
R

F
(G

om
es

et
al

.2
01

7)
E

ns
um

bl
e

E
vo

lv
in

g
R

ep
la

ce
m

en
t

N
o

CHAPTER 3. DATA STREAMS 42

Hulten, Spencer and Domingos (2001) proposed the CVFDT algorithm as

an extension of VFDT to cope with concept drift, using a fixed window size

to determine nodes in the tree that are ageing. Fragments of the decision tree

that become old and inaccurate after seeing a user defined number of instances

are replaced with alternative subtrees. The process incrementally improves and

updates the decision tree, while building subtrees to update the model using the

data instances in the current time window. The resulting accuracy of the CVFDT

is similar to what would be obtained by reapplying a VFDT to the entire window

every time a new data instance arrives. The experiments showed that CVFDT is

better at controlling the size of the tree throughout concept drifts, while VFDT

considers many more examples and it is forced to grow larger trees to make up

for the early decisions becoming incorrect.

Hoeffding Adaptive Tree or Adaptive VFDT is presented in (Bifet and Gavaldà

2009). It uses a change detection mechanism in order to define the length of a

window of relevant patterns. Adaptive VFDT used ADWIN window to detect

changes in a series of pattern. If changes are detected in the data, the length of

the window decreases; when no change is present the window length increases.

The evolutionary learning classifier XCS was orginal introduced in (Wilson

1995). XCS was adapted for data stream by Abbass et al. (2004). Another

XCS algorithm (Dam and Lokan 2007) is a rule-based system, where each rule

(individual) represents a partial solution to the target problem. The typical goal

of XCS is to evolve a population of rules to represent a complete solution to

the target problem. XCS relies on reinforcement learning for evaluating rules

in the population, and on a GA for exploring the search space and introducing

new rules into the population. XCS receives a data stream instance and returns

a prediction, if the prediction is good the rule is rewarded. The GA runs to

produce two offspring once with every new data instance, the two offspring are

CHAPTER 3. DATA STREAMS 43

added to population and compete with parents. The population size is a user-

defined parameter, and when the population size reaches the maximum, the worse

performing individuals are removed. Three different strategies were proposed:

(1) an adaptive learning strategy to adjust the learning rate according to the

prediction error; (2) re-initialize the population when a drift is recognized; and

(3) re-initialize the learning rate parameter values when a drift is recognized. XCS

detects concept drift by monitoring the prediction error. The results show that

in the case of small drifts, the original XCS, adaptive (1), and learning rate re-

initialization (3) perform better than re-initializing the population (2). While in

the case of larger drifts, the number of affected rules is large, therefore the re-

evaluation time is large enough so that it is more effective to re-learn rules from

scratch; re-initializing population (2) performed best as a consequence.

Both original XCS and the adaptive strategies are considered evolving ap-

proaches that do not implement a drift detection procedure, while re-initialising

learning rate and the re-population strategies are considered trigger-based. In

all cases the model is updated by the current population following a replacement

mechanism. This is due to the fact that the model is based on population, that

is updated in the learning procedure.

Very Fast Decision Rules (VFDR) was proposed by Gama and Kosina Gama

and Kosina (2011). It is a single pass3 algorithm that learns ordered or unordered

rules. Similar to the VFDT’s approach, the statistics are saved for all values

seen for each attribute. The Hoeffding bound is used to determine the number of

instances seen before a rule can be expanded or a new rule can be induced from the

default rule. A rule can be induced or expanded, by creating an attribute-value

condition based on the current seen instances to create a homogeneous subset. A

rule is expanded with the attribute-value condition that minimizes the entropy

of the class labels of the instances covered by the rule. Experiments have shown
3A single pass uses data instance only once.

CHAPTER 3. DATA STREAMS 44

that the number of rules produced by VFDR is much smaller than the number of

leaves in a VFDT tree.

Vivekanandan and Nedunchezhian (2011) proposed an Online Genetic Algo-

rithm (OGA), an incremental rule learning algorithm that creates a rule set for

data stream classification with concept drift. Each individual represents a clas-

sification rule and the algorithm builds the rule set gradually by evaluating each

individual on a window of instances, adding the best individual of the population

to the rule set. Rules that fall under user-defined threshold accuracy are removed

from the rule set. OGA has the limitation of not handling continuous attributes

in the data sets, only nominal attributes are supported.

Stahl, Gaber and Salvador (2012) proposed the eRules algorithm for rule in-

duction in data stream. eRules uses a fixed sliding window and learns rules using

the Prism algorithm (Cendrowska 1987). Prism is a greedy rule induction algo-

rithm that creates a set of rules, where each attribute-value pair in the antecedent

of the rule is chosen to maximise the probability of the target class. New instances

from the stream are added to a buffer if they are not covered by the current rule

set. eRules uses a user-defined limit of instances on the buffer to trigger the

incremental creation of new rules. To adapt to concept drift, the rule set is vali-

dated using the current buffer. If a rule’s accuracy is deteriorated as a results of

misclassifying instances over time, it is removed from the rule set. eRules use a

time-consuming discretisation procedure, testing multiple cut points to create a

continuous attribute-value-condition.

Le et al. (2014) proposed an extension to eRules to handle continuous at-

tributes in a more computational efficient way. The proposed G-eRule extension

uses a Gaussian distribution on continuous attribute values to efficiently sample

values to create continuous attribute-value conditions. Le et al. (2017) added a

Hoeffding bound procedure to determine the credibility of a rule condition. A rule

CHAPTER 3. DATA STREAMS 45

condition is added to the current rule if the difference of the conditional probabil-

ities between the new rule condition and the second best possible rule condition

is greater than the Hoeffding bound.

Vahdat et al. (2014a) proposed a GP for streaming data classification tasks

with label budgets, where the GP learns a model using a limited number of labelled

instances. Operating under a label budget assumption means requesting a label

for the data instance is computationally expensive, so the algorithm tries to reduce

the number of requests for labels. The GP uses sliding window with a uniform

sampling procedure to request labels. The apporach have a data archive to save a

sampled set of seen instances, to be used by the algorithm in updating the model.

The approach uses a sampling procedure to select instances from the data stream

to receive a label and add them to an archive. Then, a GP procedure is triggered

to create a model on the archive instances. The best individual of the GP is

selected as the anytime classifier. The GP runs a limited number of iterations on

the archive. This approach handles concept drift by updating the model using the

GP procedure.

Khanchi, Heywood and Zincir-Heywood (2017) proposed improvement for

problems with class imbalance under the label budget. The archive and sam-

pling polices are optimised to operate under class imbalanced context, where they

incrementally introduce a bias on both the sampling of the stream and the replace-

ment of instances in the archive to balance the class distribution and improve the

model creation.

Bouchachia and Vanaret (2014) propose an on-line rule learning algorithm

based on the Growing Type 2 Fuzzy Classifier (GT2FC). The algorithm is designed

to operate on-line and to learn from both labelled and unlabelled data. The idea

is to produce clusters that evolve over time to generate the rules antecedents.

Growing Gaussian Mixture Model (2G2M) (Lee 2005) is used to generate the

type-2 fuzzy membership function to predict the class. Fuzzy membership allow

CHAPTER 3. DATA STREAMS 46

us to define fuzzy sets, where each element is mapped to a value between 0 and 1.

This value, called membership value or degree of membership, quantifies the grade

of membership of the element to the fuzzy set. The algorithm adapts to concept

drift by continuously and regularly evolving its 2G2M parameters using batches

of labelled data. To maintain compactness of the rules, the GT2FC classifier uses

an online feature selection algorithm.

An ensemble approach is proposed by Street and Kim (2001), called Streaming

Ensemble Algorithm (SEA). SEA combines a maximum of 25 unpruned decision

tree classifiers. The prediction is a combined majority vote and ties are broken

randomly. SEA uses a heuristic strategy to replace the “weakest” classifier based

on two factors: accuracy and diversity. Accuracy is important because, as the

authors state, an ensemble should correctly classify the most recent examples to

adapt to a concept drift. On the other hand, diversity is the source of success

of ensemble methods in static environments such as Bagging or boosting. SEA

trains a new classifier on each sequential batch of data and the trained classifier is

added to the fixed-sized ensemble while the worst performing classifier is discarded.

Experiments showed that SEA performs better than a single tree classifier in

data without concept drift, but when the target concept changes suddenly the

performance of both algorithms decreases. The dynamic nature of SEA allows

the accuracy to recover very quickly, while the single decision tree, which still

uses data points from the old concept, recovers much more slowly, if at all.

Dynamic Weighted Majority (DWM) (Kolter and Maloof 2007) is a well cited

approach for concept drift. DWM does not use a drift detection method, it main-

tains an ensemble of classifiers whose weights are reduced by a multiplier constant

ρ, ρ < 1, when the classifier gives a wrong prediction. DWM allows the addition

and removal of a classifier with every instance arriving. If a classifier weights

falls below a specific threshold, then DWM removes it from the ensemble. The

ensemble is general and can be used with any algorithm — in the paper they

CHAPTER 3. DATA STREAMS 47

used a incremental naive Bayes (Witten et al. 2016) and incremental tree inducer

(Utgoff, Berkman and Clouse 1997) as the base classifier.

Online Bagging with ADWIN (OBAGA) and Online Boosting with ADWIN

(OBOOSTA) where proposed by Bifet et al. (2009). OBAGA bagging trains each

model in the ensemble using a randomly drawn subset of the training set. Predic-

tions are based on the unweighted voting of each base classifier. The algorithm

uses ADWIN window to adjust to concept drift. OBOOSTA is a boosting algo-

rithm using ADWIN window to adjust to concept drift, while ONSBOOST uses

a fixed size window, and removes and updates a classifier, if the ensemble is per-

forming better without that classifier. Both approaches used Adaptive Hoeffding

tree as base classifiers.

Minku and Yao (2012) proposed an online leaning algorithm called Diversity

for Dealing with Drifts (DDD). The algorithm starts with two modified “On-

line Bagging” ensembles: an ensemble with lower diversity and an ensemble with

higher diversity using as a base classifier lossless Incremental Tree Inducer (ITI)

online decision trees classifier (Utgoff, Berkman and Clouse 1997). The original

online bagging ensemble uses each data instance that arrives and train K times

(where K is random value from distribution of Poisson(1)) each base classifier.

To create different diversity among the ensembles DDD uses the parameter λ

for the Poisson(λ) distribution, where higher/lower λ values are associated with

higher/lower diversity (Minku, White and Yao 2010). λ takes a user-defined value

between 0 and 1 to calculate the diversity level of each ensemble.

The DDD algorithm has two modes of running, stable stream and concept

drift detection. In the stable stream mode, the lower diversity ensemble is used

for model predictions since the lower diversity ensemble is more accurate on the

the data stream, although both high/low diversity ensembles are trained on the

incoming instances. The algorithm uses a concept drift detection method, and

triggers a new learning mode when it detected a concept drift. After a drift is

CHAPTER 3. DATA STREAMS 48

detected, DDD creates two new ensembles, one with low and the other with high

diversity on the new coming data instances. The old high diversity ensemble

starts learning with lower diversity; (lower value of λ); in order to improve its

convergence to new concept. The four ensembles start to learn and their pre-

dictions are determined by weighted majority voting of three ensembles: the old

high, the new low, and the old low diversity ensembles. The new high diversity

ensemble is ignored, since it will have low accuracy on the current data instances.

The algorithm returns to the stable stream mode when the new low ensemble has

higher accuracy than the old low and old high ensemble. When this happen DDD

replaces both high/low old diversity ensembles with both high/low new diversity

ensembles. As a special case, if the old high diversity ensemble is perfomering

better than the new low diversity ensemble, the algorithm will choose the old

high as the low diversity ensemble and the new high diversity ensemble as the

high diversity ensemble, discarding the new low and old low ensembles.

Random forests is a well-known algorithm in traditional data mining. Gomes

et al. (2017) presents an Adaptive random forest ARF, where an online boost-

strap process is used in sampling the incoming data instances for each base tree.

Moreover, each tree in the ensemble is limited to a random subset of features

when considering node split. The algorithm uses a drift detection procedure to

relearn the ensemble when a warning of concept drift is detected, and replace the

ensemble when the concept drift is detected.

The Early Drift Detection Method (EDDM) (Baena-Garcıa et al. 2006) is

based on the idea that the distance between two consecutive errors increases when

a the data stream is stable. In EDDM, the distance is monitored and if it reduces

considerably according to predefined constant value, a concept drift is detected.

EDDM could be considered an online learning system, if we consider that a new

online classifier system is created when the warning level is triggered, instead of

storing the training instances for posterior use. The paper used three distinct

CHAPTER 3. DATA STREAMS 49

learning algorithms namely J48 (Quinlan 1993) (C4.5, decision tree), IB1 (Aha,

Kibler and Albert 1991) (nearest-neighbourhood, it is not able to deal with noise)

and NNge (Martin 1995) (nearest-neighbourhood with generalisation).

Particle Swarm Optimization (PSO) concepts were adapted in the Growing

Prototype Network Classifier (GPNC) algorithm (Cervantes et al. 2013). GPNC

is an incremental learning algorithm that generates a network of linked prototypes,

each labelled with one of the class labels in the training data set. Each prototype

has a class label, a fitness value, a set of neighbours prototypes, as well as position

and velocity vectors as in PSO. The prototypes move in the search space using a

PSO simplified velocity equation, and classify nearest arriving data instances. It

adapts to concept drift using a decay mechanism for the noisy prototypes. When

detecting contradiction between new data and previous data, the model deletes

prototypes with fitness lower than a user-defined threshold.

Sancho-Asensio, Orriols-Puig and Golobardes (2014) proposed a Supervised

Neural Constructivist System (SNCS) for mining data streams with concept drift.

The SNCS classifier uses a population of multilayer perceptrons (MLP) with feed

forward topology (i.e., the signal propagates from inputs toward the output layer).

SNCS operates in two modes, the learning mode and the prediction mode. In the

learning mode, SNCS discovers and evolves new MLPs that accurately predict

a desired label. In the prediction mode, SNCS uses its current knowledge to

determine the best label for new input instances.

Xu and Wang proposed the Dynamic Extreme Learning Machine (DELM) for

data stream classification (Xu and Wang 2017). Extreme learning machine (ELM)

is a single hidden layer feedback neural network. Due to its fast training and good

generalization, ELM has been applied to many fields and recently to data streams.

DELM uses two hidden layers so that it can dynamically adjust the ELM layer

when concept drift is detected. From the results comparing DELM with different

ELM implementations for data streams, DELM can get a better balance between

CHAPTER 3. DATA STREAMS 50

accuracy and time overhead than online sequence extreme learning machine (OS-

ELM) (Liang et al. 2006).

Yu, Sun and Wang (2019) proposed an ensemble of OS-ELM based on combi-

nation weight. The algorithm extends the OS-ELM (Liang et al. 2006) algorithm,

by introducing a two phase process: a learning step and an updating step. In the

learning step, the weights of the ensemble is determined by Adaboost. In the up-

date step, the weights are calculated using game theory analysis of the prediction

of the base learners.

3.6 Summary

In this chapter we focused on the challenges of dealing with data streams in data

mining. We described main concepts and methodologies found in the literature

to deal with data streams. We also discussed the differences between evaluation

measures for traditional (offline) data mining and (online) data stream mining,

including specific evaluation measures from the literature.

We also described current approaches for data stream classification, focusing on

three different aspects: (1) How they update the model to cope with new instances;

(2) The update type, incremental or replacement; (3) if a special procedure is used

to detect a concept drift.

We can identify recurrent themes in the discussed algorithms, starting with the

use of Hoeffding bound as a heuristic to update the model under construction.

Since it is infeasible to store all data, algorithms employ sampling and archive

procedures to store relevant data. This is usually the case with evolutionary

algorithms in order to allow the model to evolve for a limited number of iterations.

ADWIN windows have proved useful for deciding the window size when evaluating

the algorithms, and then deciding the size of the instance buffer. Using archive

and sampling procedures to store some instances for algorithms update.

Chapter 4

Ant Colony Optimization

Combinatorial Optimization problems (Papadimitriou and Steiglitz 1998) are prob-

lems that consist of finding a combination of components from a finite set of

components where the combination is optimal with respect to a given objective

function. Classical combinatorial problems include shortest-path problems, where

the goal is to find a minimum cost plan to deliver goods to customers, e.g., Travel

Salesman Problem (Lawler 1985). In many problems, a straightforward exhaustive

search to enumerate all possible combinations and select the best one is infeasi-

ble, since the number of solutions tend to grow exponentially with the size of the

problem.

Ant Colony Optimization (ACO) is a metaheuristic inspired by the foraging

behaviour of real ants (Dorigo and Stützle 2004). Ant colonies, and more generally

social insect societies, are distributed systems that, in spite of the simplicity of

their individuals’ behaviour, present a highly structured social organization. As

a result of this organization, ant colonies can accomplish complex tasks that in

some cases far exceed the individual capabilities of a single ant. Many ant species

can find shortest paths between food sources and their nest with limited or no

visual aid (Blum 2005). When searching for food, ants start by exploring the

area surrounding their nest at random. While moving, ants deposit a chemical

51

CHAPTER 4. ANT COLONY OPTIMIZATION 52

pheromone trail on the ground. As soon as an ant finds a food source, it starts the

journey back to the nest. During the trip back, the ant deposits more pheromone

on the ground. Since an ant can move back and forth quicker when using a

shorter path, over time the pheromone concentration on the shortest path will be

greater. Ants can detect pheromone and they will prefer trails that are associated

with strong pheromone concentration to follow, i.e., the stronger the pheromone

concentration, the higher the chance that the path will be selected. This indirect

communication is called stigmergy (Grassé 1959).

This chapter will discuses the ACO metaheuristic (Dorigo and Stützle 2004)

and its extension ACOMV (Liao et al. 2014). We will then discuses how ACO is

used in data mining, covering well known approaches in the literature.

4.1 Metaheuristic

As aforementioned, ant colony optimization (ACO) is a metaheuristic where a

colony of artificial ants cooperate to find good solutions to discrete optimization

problems. Cooperation is a key design component of ACO, where simple agents

communicate by depositing pheromones. The amount of the deposited pheromone

is proportional to the quality of the solution the ant has built. Good solutions are

an emergent property of the agents’ cooperative interaction. ACO algorithms are

based on the following steps:

• Create an appropriate representation of the problem, where the problem is

represented as a construction graph. Nodes of the graph represent com-

ponents of the solution and edges represent the connections between them.

Ants incrementally create solutions through the use of a probabilistic transi-

tion rule, based on the amount of pheromone and a local problem-dependent

heuristic associated with nodes or edges of the graph. At the start of the

search, all nodes/edges are given the same probability of being selected;

CHAPTER 4. ANT COLONY OPTIMIZATION 53

• Each path followed by an ant represents a candidate solution for a given

target problem;

• When an ant follows a path, the amount of pheromone deposited on that

path is proportional to the quality of the corresponding candidate solution,

given a problem-dependent evaluation function.

• When an ant has to choose between two or more paths, the path with a

larger amount of pheromone has a greater probability of being chosen by

the ant;

• Pheromone concentration decreases over time, so sub-optimal trails would

have a smaller chance of being chosen by ants again.

As a result, the colony eventually converges to a good solution, generally

the optimum or a near-optimum solution for the target problem. The high-level

pseudocode of a ACO algorithm is shown in Algorithm 3, where the algorithm

is informally divided into three procedures: Construct Ant Solutions, Update

Pheromones and Daemon Actions.

Construct Ant Solutions manages a colony of ants that concurrently visit ad-

jacent nodes by moving through the problem construction graph. They move by

applying a stochastic local decision based on the values of pheromone and heuris-

tic information. The probability of ant k to move from node i to node j is given

by :

pkij =


τijηij∑
l∈Nk

i
τil
, if j ∈ Nk

i

0, j /∈ Nk
i

(9)

where Nk
i is the set of neighbouring nodes of ant k when at node i, τij is the

amount of the pheromone on the edge connecting nodes i and j, and ηij is the

heuristic information on the edge connecting nodes i and j. The neighbouring

nodes of an ant k when at node i are all the nodes that are connected to node i

CHAPTER 4. ANT COLONY OPTIMIZATION 54

and are valid to visit. Nodes can be invalid based on a heuristic problem-based

function or when the node has been visited by the ant before. The ants stop

visiting nodes, when there is no more available nodes to visit.

After all ants build their solution, a set of the high quality solutions — usually

the best solution — deposit pheromone on the edges used. The pheromone deposit

is a function of the generated solution quality, which helps in directing future ants

more strongly towards the components that lead to the creation of better solutions.

Interestingly, the correlation between the amount of pheromone to deposit and

the solution quality is also present in some ant species: (Beckers, Holland and

Deneubourg 2000) found that some ant species will deposit more pheromone when

returning from rich food sources than from poorer food sources. The update of

the pheromone value τij is given by:

τij ← τij + ∆θk,∀τij ∈ Sk (10)

the value of ∆θk is a value derived from the quality of the solution created by the

ant K (Sk). Then, all pheromone values are evaporated to avoid quick convergence

towards a suboptimal solution. The pheromone evaporation is important for the

search of new solutions by allowing the ants to forget poor choices made at earlier

stages of the search. The pheromone values are evaporated based on equation

(11):

τij ← (1− ρ)τij,∀(i, j) ∈ A (11)

where ρ ∈ (0, 1] is a user defined parameter and A is all the set of edges in the

construction graph.

Finally, the optional daemon actions procedure is used to implement cen-

tralised actions, which can not be performed by individual ants. These include

using local search procedure to further improve solutions, adding the recalcula-

tion of heuristic information about the problem, and selecting one or few ants to

CHAPTER 4. ANT COLONY OPTIMIZATION 55

Algorithm 3: High-level pseudocode of Ant Colony Optimization
1 Set parameters, initialize pheromone trails
2 while Termination condition not met do
3 Construct Ant Solutions
4 Update Pheromones
5 Daemon Actions
6 end

deposit additional pheromone.

The above steps are repeated until one or more termination criteria are satis-

fied, which usually include a maximum number of iterations and/or a stagnation

test, where it detects where the ants failed to produce better solutions after a

fixed number of iterations. The best solution found is then returned as the result

of the search.

Different variations of ACO algorithms were proposed in literature: the Ant

System, which was the first ACO algorithm proposed in the literature (Dorigo,

Maniezzo and Colorni 1996), the Ant Colony System (ACS) (Dorigo and Gam-

bardella 1997) and the MAX −MIN ant system (Stützle and Hoos 2000) are

among the most influential ones. ACO algorithms have been applied to many

different combinatorial optimization problems, such as routing problems (Dorigo,

Maniezzo and Colorni 1996), assignment problems (Stützle and Hoos 2000) and

scheduling problems (Merkle, Middendorf and Schmeck 2002); data mining (Parpi-

nelli, Lopes and Freitas 2002; Martens et al. 2007; Otero, Freitas and Johnson

2008); dynamic optimization (Guntsch and Middendorf 2001; Mavrovouniotis

2013); stochastic optimization problems (Bianchi, Gambardella and Dorigo 2002);

multi-objective optimization problems (Gambardella, Taillard and Agazzi 1999;

López-Ibáñez and Stützle 2012), and continuous optimization problems (Socha

and Dorigo 2008).

CHAPTER 4. ANT COLONY OPTIMIZATION 56

4.2 Mixed-Variable Optimization

ACOMV (Liao et al. 2014) is an ant colony optimization for mixed-variable op-

timization problems, which is an extensions for continuous optimisation (Socha

and Dorigo 2008). Mixed-variable optimization solutions are composed by r real-

valued variables, c (unordered) categorical-valued variables and o ordinal-valued

variables. As discussed in the previous section, ACO can naturally cope with com-

binatorial (discrete) problems, while ACOMV is an extension to cope with mixed-

variable optimization problems. The fundamental idea underlying ACOMV is the

shift from using a discrete probability distribution, i.e., a construction graph, to

using a continuous one, i.e., a solution archive. ACOMV uses a solution archive

and weighted solutions to replace the graph and pheromone model in the classical

ant colony optimization.

In ACOMV, the archive structure contains R previously generated solutions.

Each solution Sj in the archive, where j = {1, 2, ..., R}, is a vector containing

n-dimensional real-valued components, m-dimensional categorical-valued compo-

nents and o-dimensional ordinal-valued components. The archive is sorted by the

quality Q of solutions, so that Q(S1) ≥ Q(S2) ≥ · · · ≥ Q(SR).

Each solution Sj is associated with a weight wj that is related to Q(Sj), where

wj is calculated using the Gaussian function given by

wj = 1
qR
√

2π
e
−(rank(j)−1)2

2q2R2 (12)

where q (Local Search) is a constant that is used to control the extent of the

top-ranked solution influence on the construction of new solutions. The weight of

solution Sj is used during the creation of new solutions, as an indicator for the

level of attractiveness of this solution. The higher the weight of the solution Sj,

the higher the probability of sampling a new solution around the values of Sj.

ACOMV starts by randomly generating m solutions in the archive R. The

CHAPTER 4. ANT COLONY OPTIMIZATION 57

solution construction phase starts by each ant i generating a new Si candidate

solution. When constructing solution Si, a probabilistic solution construction

method is used to sample new values from the solution archive according to each

attribute type. At the end of an iteration, all solutions created by the ants in the

colony are added to the archive (R + m). The archive is sorted by the solution

quality and only the best R solutions are kept and the remaining solutions are

removed.

4.2.1 Sampling Procedures

ACOMV sample new values from the solution archive according to each attribute,

using the following sampling procedures:

Continuous variables Continuous variables are handled by ACOMV using

ACOR (Socha and Dorigo 2008), where each ant i probabilistically chooses a

solution j given by:

Pj = wj
R∑
l=1

wl

(13)

where Pj is the probability of selecting the j-th solution from the archive to sample

the new continuous variable value around it, R is the size of the archive and wj is

the weight associated with the j-th solution in the archive. Let Si denote a new

solution sampled by ant i around the chosen solution Sj for a continuous attribute

a, the Gaussian probability density function (PDF) used to choose a continuous

value is given by:

Si,a ∼ N(Sj,a, σj,a) (14)

CHAPTER 4. ANT COLONY OPTIMIZATION 58

σj,a = ξ
R∑

r=1,j 6=r

|Sj,a − Sr,a|
R− 1 (15)

where Sj,a is the value of the variable a in the solution j of the archive, σa,j is the

average distance between the value of the variable a in the solution j and the value

of a in all the other solutions in the archive and ξ (convergence) is a user-defined

value representing the convergence speed of the algorithm. For the purpose of

sampling, the value Sa,j is considered the average value of the distribution and

σa,j is the variance.

Ordinal variables Ordinal variables are variables that do not necessarily have

a numeric value but whose values’ order have a meaning, e.g., small < medium

< large. ACOMV handles ordinal variables as continuous variables, where the

continuous value is the index of the chosen value in the ordered attribute values.

Then, a final step is to round up the value generated from Equation (14) to the

nearest index. Using this relaxed continuous sampling allows the algorithm to

take into consideration the order of ordinal attribute values.

Categorical variables Categorical variables whose values have no meaningful

order, are treated differently by ACOMV. Assume that a categorical variable i has

t possible values, so that each ant has to choose a value ti from vil ∈ {vi1, v1, .., v
i
t}.

The probability P i
l to choose the lth value is given by:

P i
l = αl

ti∑
j=1

αj

(16)

where αl is the weight associated with each l-th value of the categorical variable,

CHAPTER 4. ANT COLONY OPTIMIZATION 59

calculated as:

αl =



wji

uij
+ q

κ
, if κ > 0, uij > 0,

wji

uij
, if κ = 0, uij > 0,

q
κ
, if κ > 0, uij = 0,

(17)

where wji is the weight of the first solution that uses the value vij in the archive,

uij is the number of solutions that use the value vij in the archive, κ is the number

of values of this attribute that are not used in the archive and q is a parameter

used to control the extent of the top-ranked solution influence on the construction

of new solutions (the same parameter found in Equation (12)).

The categorical sampling procedure allows an ant to consider two components

when sampling a new value. The first component biases the sampling towards

values that are used in high-quality solutions but do not occur very frequently

in the archive. The second component biases the sampling towards unexplored

values of the attribute.

4.3 Ant Colony Optimization for Rule Induction

Ant colony optimization algorithms have been applied to both supervised and

unsupervised data mining tasks. Most work on unsupervised learning focused

on clustering (Shelokar, Jayaraman and Kulkarni 2004; Abraham, Das and Roy

2008), while more work focused on supervised learning in classification (Martens,

Baesens and Fawcett 2011). This section discuses mainly ACO algorithms for

classification, more specifically, ACO-based rule induction algorithms.

There are two main approaches to apply ACO to create classification rules

in the literature: grammar- and graph-based approaches. In grammar-based ap-

proaches, the rule creation is guided by a context-free grammar, which determines

CHAPTER 4. ANT COLONY OPTIMIZATION 60

the valid structure of rules. The Grammar-Based Ant Programming (GBAP) al-

gorithm (Olmo, Romero and Ventura 2011; Olmo, Romero and Ventura 2012)

was the first implementation of a grammar-based approach. Similar to the major-

ity of ACO-based classification algorithms, GBAP does not cope with continuous

attributes directly and it uses a discretisation procedure in a preprocessing stage.

Graph-based approaches started with Ant-Miner (Parpinelli, Lopes and Freitas

2002), which was limited to discrete data sets only. Ant-Miner successfully extract

IF-THEN classification rules from data. Ant-Miner uses a sequential covering

approach to create a rule list model, using an ACO procedure to create rules.

Each ant traverses a construction graph, where each node in the graph consists of

a condition that the ant might choose to add to its rule.

4.3.1 cAnt-Miner

cAnt-Miner (Otero, Freitas and Johnson 2008) is an extension of the well known

Ant-Miner approach to handle continuous attributes during rule construction.

cAnt-Miner uses a graph-based approach to extract IF-THEN classification rules

from data. Each rule is represented as a n-dimensional vector of terms that are

joined with AND, such as IF t1 AND t2 AND tn THEN (class), where each

term ti consist of a tuple (attribute, operator, value).

The construction graph in cAnt-Miner consists of a fully connected graph.

Let ai be a nominal attribute and vij be the j-th value of attribute ai. For

j = 1, ..., bi, where bi is the number of values of attribute ai, each vij is added

as a node (ai, =, vij) to the graph. Let ci be a continuous attribute, only one

node (ci) is added to the graph—the operator and value are not defined for a

continuous attribute node, since those will be dynamically selected during the

rule construction procedure. The pheromone model is represented as a matrix,

where columns and rows represent the nodes and the value in each cell represents

the pheromone value of the edge connecting the node specified in the row to the

CHAPTER 4. ANT COLONY OPTIMIZATION 61

node specified in the column.

cAnt-Miner uses the sequential coverage approach to create a list of rules.

cAnt-Miner constructs a rule that satisfies part of the training instances using an

ACO procedure, then removes those instances, and repeats until no (or very few)

training instances remain.

The high-level pseudocode for cAnt-Miner is shown in Algorithm 4. In sum-

mary, cAnt-Miner works as follows. It starts with an empty rule list (line 2) and

iteratively (while loop) (line 3) adds one rule (the best rule discovered by the ACO

procedure) to that list (line 18) while the number of uncovered training instance

is greater than max uncovered training instances, a user-defined parameter. The

antecedents of the rules are chosen probabilistically in line 8. Rules are then

pruned in line 9 to remove irrelevant terms from the antecedent — i.e., terms that

are added as result of the stochastic behaviour of the ACO procedure, but have

very little or no predictive power. The consequent of a rule is computed based on

the most frequent class value observed on the training instances covered by the

rule. Finally, in (line 12) pheromone trails are then updated using the iteration-

best rule (Currentbest) (this to direct the ants to interesting areas in the search

space) based on the quality measure Q until a user-specified number of iteration

reached or the algorithm converges (line 7). Convergence occurs when the best

rule generated in an iteration is the same for a number of conservative iterations.

The training instances covered by the newly created rule are then removed from

the training set and the whole rule creation procedure is repeated.

The rule creation starts with an empty rule at node i and probabilistically

chooses to visit a node j based on the amount of pheromone and heuristic infor-

mation on the edge Eij, given by:

P (Eij) =
ταij · η

β
j∑

l∈Ni

ταil · η
β
l

(18)

CHAPTER 4. ANT COLONY OPTIMIZATION 62

Algorithm 4: High-level pseudocode of cAnt-Miner
1 training set ← all training instances
2 rule list ← ∅
3 while |training set | > max uncovered training instances do
4 τ ← initialise pheromone
5 rulebest ← ∅
6 i ← 1
7 while i < max iterations OR convergence do
8 CreateRules()
9 PruneRules()

10 ComputeConsequents()
11 Currentbest ← BestRule()
12 UpdatePhermones(τ ,Currentbest)
13 if Q(Currentbest) > Q(rulebest) then
14 rulebest ← Currentbest
15 end
16 i ← i + 1
17 end
18 rule list ← rule list + rulebest
19 training set ← training set − CoveredInstances(rulebest)
20 end

where τij is the pheromone value of the edge connecting node i to node j; ηj is

the value of the heuristic information for node j; node l is a node in the neigh-

bourhood of node Ni; the exponents α and β are used to control the influence of

the pheromone and heuristic information, respectively. The heuristic information

is based on the information gain of the (attribute-value) pair associated with each

value.

If a node with a nominal attribute is selected, then a term in the form (ai = vij)

is added to the rule. The nodes with the same nominal attribute are then marked

invalid, and removed from the neigbouring nodes set. If a node with a continuous

attribute is selected, then a dynamic discretisation procedure based on the entropy

measure is used to choose an operator and value to create a term in the form

(ai ≤ vij) or (ai > vij). This is done with a time complexity of O(n log n), where

n is the number of the training instances, since the values need to be sorted and

CHAPTER 4. ANT COLONY OPTIMIZATION 63

multiple candidate threshold values are evaluated. The ant continues to visit the

rest of the graph, when selecting a node the ant cannot visit it again, until no

node can be visited or until is not possible to visit any node.

The quality of a rule is measured as sensitivity × specificity, as used in Ant-

Miner, given by

Q = TP

TP + FN
× TN

FP + TN
(19)

where True Positive TP is the number of instances covered by the rule that are

correctly classified; False Negative FN is the number of instances that are not

covered and have the same class value as predicted by the rule; False Positive FP

is the number of covered instances that are incorrectly classified; True Negative

TN is the number of instances that are not covered and do not have the same class

value as predicted by the rule. The quality function Q measures how well the rule

classifies the training instances that have the same class values as predicted by

the rule and, at the same time how well the rule avoids covering training instances

that have different class values.

4.3.2 cAnt-MinerPB

The cAnt-Miner version based on the Pittsburgh approach (cAnt-MinerPB) (Otero,

Freitas and Johnson 2013) is an ACO classification algorithm that employs a dif-

ferent search strategy from cAnt-Miner. Rather than using the sequential cover-

ing approach to produce the list of best rules as cAnt-Miner does, cAnt-MinerPB

searches for the best list of rules. This change might sound minor in words, but

it does have a significant effect in the algorithm behaviour. In cAnt-Miner, each

ant creates an individual rule and the rules compete to be the best, so that the

best is added to the list. In cAnt-MinerPB, each ant creates an entire list of rules,

where rules are added independently of their individual qualities, considering the

CHAPTER 4. ANT COLONY OPTIMIZATION 64

Algorithm 5: High-level pseudocode of cAnt-MinerPB

1 τ ← initialise pheromone
2 rule listgb ← ∅
3 m← 1
4 while m < max iterations OR convergence do
5 rule listib ← ∅
6 for n ← 1 to colony size do
7 rule listn ← ∅
8 instances ← all training instances
9 rule listn ← ∅

10 while | instances | > max uncovered training instances do
11 rule ← CreateRule()
12 rule ← PruneRule()
13 rule ← ComputeConsequents()
14 rule listn ← rule listn + rule
15 instances ← instances − CoveredInstances(rule)
16 end
17 if Quality(rule listn) > Quality(rule listib) then
18 rule listib ← rule listn
19 end
20 end
21 UpdatePhermones(rule listib)
22 if Quality(rule listib) > Quality(rule listgb) then
23 rule listgb ← rule listib
24 end
25 m← m+ 1
26 end

quality of the rule list as a whole.

The high-level pseudocode of cAnt-MinerPB is shown in Algorithm 5. The new

strategy works as follows. An ant in the colony starts with empty an rule list

(line 7). After creating and pruning a rule, the training instances covered by the

rule are removed from the current instances (line 15) and the rule is added to the

current rule list. After all ants create their rule lists, the best list of the iteration

updates the pheromone values based on its quality (This allow the algorithm to

converge easier); The algorithm also keeps track of the best list of rules created

so far (rule listgb) — this is the list returned as the final rule list.

CHAPTER 4. ANT COLONY OPTIMIZATION 65

In order to use the pheromone model to create multiple rules, the pheromone

matrix was extended to include a tour identification. This tour corresponds to

the index of the rule being created (e.g., 1 for the first rule, 2 for the second rule,

and so forth). Each entry in the pheromone matrix that corresponds to an edge

of the construction graph is represented by a triple (tour,vertexi,vertexj) — where

vertexi and vertexj correspond to the vertices connected by edgeij. This way an

ant will use the pheromone entries that correspond to the position of the rule in

the list being created.

The probability for an ant k to follow the edgeij leading to the vertex vj from

the vertex vi when creating the rule t is given by:

pktij =


τtij .ηvj∑

l∈Nk
i

τtil.ηvl

,

0, if j /∈ Nk
i

(20)

where τtij is the amount of pheromone associates with the entry (t,i,j) in the

pheromone matrix, ηvj
is the heuristic information associated with vertex vj and

Nk
i is the set of neighbouring vertices of vertex vi.

The pheromone update function also takes into account the tour identification,

where the pheromone values are updated by the iteration-best list. The pheromone

update rule is given by:

τtij =


ρ.τtij, if (t, i, j) /∈ rule listib

ρ.τtij +Q(rule listib), if (t, i, j) ∈ rule listib
(21)

where ρ is the evaporation factor between [0,1], τtij is the amount of pheromone

associated with entry (t,i,j) and Q(rule listib) is the quality of the iteration-best

list of rules. As it can be seen in Equation 21, the search performed by cAnt-

MinerPB is guided by the quality of a complete rule list, more specifically, the

CHAPTER 4. ANT COLONY OPTIMIZATION 66

accuracy of the rule list measured on the training set.

4.3.3 Ant-Miner-Reg

Brookhouse and Otero introduced the first extension of the Ant-Miner algorithm

for regression problems, called Ant-Miner-Reg (Brookhouse and Otero 2015). Ant-

Miner-Reg uses the same sequential covering approach adopted by cAnt-Miner,

with the dynamic discretisation procedure based on Quinlan’s M5 (Quinlan et al.

1992) to adapt the rule creation to cope with continuous value prediction.

Ant-Miner-Reg creates a rule list as follows. First, n rules are created by the

colony, where each ant traverses a graph of attribute nodes and values to build the

antecedent of a rule — similarly to cAnt-Miner. If an ant visits a node representing

a continuous attribute, a value is generated via a dynamic discretisation method

that finds the value that minimises the variance on the generated subsets. After

the antecedent of a rule is created, the prediction is generated by calculating the

mean value of the class attribute over the instances covered by the rule. Once all

rules are created, the best rule generated is used to update the pheromone values.

The creation procedure is repeated until the maximum number of iterations is

reached or the algorithm reaches stagnation, at which point the best rule is then

returned and added to the list of rules under construction, removing any newly

covered instances from the data set. The colony is then reset and the ACO

process repeated on the remaining set of uncovered instances until all (or almost

all) instances are covered by the rule list.

The quality of a regression rule is based on two factors. The first is the

quality of the prediction measured using the Relative Root Mean Squared Error

(RRMSE). The RRMSE of a rule is defined as:

LRRMSE = LRMSE√
1
m
Ldefault

(22)

CHAPTER 4. ANT COLONY OPTIMIZATION 67

where LRMSE is the root mean square error and LDefault is a normalising factor

that will approximately bound the RRMSE between 0 and 1. LRMSE and LDefault
are defined as:

LRMSE =
√√√√ 1
m
·
m∑
i=1

(yi − ȳi)2

Ldefault =
m∑
i=1

(yi − y′)2

(23)

where m is the number of instances covered by the rule, yi is the value of the i-th

instance, ȳ is the predicted value of the i-th instance and y′ is the mean value

over all instances.

The RRMSE approximately normalises the RMSE of a rule between 0 and 1,

where a value less than 1 corresponds to a rule making predictions better than

predicting the mean value and a value greater than 1 corresponds to a rule making

prediction worse than predicting the mean value.

The second factor is a measure of how general the rule is, i.e., the ratio of

the number of covered instances over the total number of training instances. Like

RRMSE, the coverage of a rule is normalised so that 0 represents a rule covering

no instances and 1 represents a rule that covers all of the instances in the training

data set. The relative coverage of a rule R is defined as:

relCov = 1
M
· coverage(R) (24)

Where M is the number of training instances. Both the RRMSE and relative

coverage are combined into a single metric Q, which is used as a rule quality

function, defined as:

Q = α · (1− LRRMSE) + (1− α) · relCov (25)

where α sets the weighting between RRSME and relative coverage. Varying α

CHAPTER 4. ANT COLONY OPTIMIZATION 68

between 0 and 1 will bias the rule quality towards either RRMSE or relative

coverage, lower values of α will give more importance to accurate rules and greater

values of α will give more importance to generic rules.

4.3.4 Other Extensions for Ant-Miner

Several other extensions of Ant-Miner have been proposed (Martens, Baesens and

Fawcett 2011). Ant-Miner2 (Liu, Abbass and McKay 2002) and Ant-Miner3 (Liu,

Abbas and McKay 2003) presented a simple heuristic function using density-based

estimation. Ant-Miner+ (Martens et al. 2007) extended Ant-Miner in several as-

pects: it uses a class based heuristic, since an ant pre-selects the predicted class

value and extracts a rule accordingly; it also employs a different pheromone initial-

ization and update procedure based on theMAX −MIN ant system (MMAS)

(Stützle and Hoos 2000), where the use of the lower and upper bound values of

pheromone levels allows the algorithm to avoid early stagnation of the search; and

the complexity of the construction graph is reduced, in terms of the number of

edges connecting vertices, by defining it as a direct acyclic graph (DAG).

Additionally, Ant-Miner+ employs a distinctive procedure for categorical and

ordinal attributes. Categorical attributes have unordered nominal values (e.g.,

male and female), which were treated as a tuple (attribute,=, value). Ordinal

attributes have a natural order (e.g., poor < acceptable < good), where the algo-

rithm creates upper and lower bounds on the values chosen by the ant: the first

type represents a lower bound of the interval and takes the form (attribute, ≤,

valuei); the second type represents an upper bound of the interval and takes the

form (attribute, ≥, valuej), where valuei and valuej are values from the attribute

domain. Continuous attributes are discretised in a pre-processing stage and then

treated as ordinal attributes.

Improvements in the cAnt-Miner are found in (Salama et al. 2013), where the

CHAPTER 4. ANT COLONY OPTIMIZATION 69

authors proposed the use of multiple pheromone levels to extract rules predict-

ing different class values. Ant-Minermbc (Liang et al. 2016) proposed the use of

multiple rule lists to create an ensemble, where the ensemble uses weighted votes

to provide the final classification. While further improvements on cAnt-MinerPB

in (Yang et al. 2017) by incorporating a principal of attraction and exclusion of

pheromone, reaching a balance in the relation of exploration and development of

constructing rules. Brookhouse and Otero (2016); Brookhouse and Otero (2018)

extended their regression algorithm to enforce monotonicity constrains, a type of

domain knowledge.

4.4 Summary

In this chapter, we present the ant colony optimization metaheuristic and appli-

cations in the data mining context. We covered graph-based ACO algorithms,

suitable for combinatorial problems, and archive-based ACO algorithms, suitable

for mixed-variable problems.

Furthermore, this chapter discussed the rule induction algorithms using ACO.

The majority of the algorithms follow a sequential covering approach, using an

ACO procedure to create a single rule; this procedure is then repeated to create

a list. There are also algorithms that use an ACO procedure to create a complete

rule list.

Noticeably, ACO approaches in the literature depended on a discertisation

procedure to handle continuous attributes in the data, which is time consuming

and ideally requires prior knowledge of the domain of the attribute. Discretisation

procedures can be implemented in the traditional data mining scenario, where

all training data is available to the algorithm and computational time is not a

constraint (unless the data set is extremely large), but it is not practical to use

the traditional discretisation procedure in a data stream context.

Chapter 5

Mixed-Attribute Ant-Miner For

Classification Rule Discovery

While ACO classification algorithms can cope with continuous attributes, this is

achieved by a time consuming discretisation procedure. To cope with this problem,

this chapter introduces the first contribution of this thesis, the aim is to eliminate

the discretisation procedure in ACO rule induction algorithms by using an archive-

based pheromone model, which is capable to cope with continuous attributes di-

rectly and faster. Hence, this chapter proposes the Mixed-Attribute Ant-Miner

Classification Rule Discovery Algorithm (Ant-MinerMA). Ant-MinerMA was in-

spired and designed based on ACO for mixed-variable optimization (ACOMV)

(Liao et al. 2014). Ant-MinerMA uses a solution archive as a pheromone model,

inspired by ACOMV, eliminating the need for a discretisation procedure, and in

Ant-MinerMA attributes can be treated directly as continuous, ordinal, or cate-

gorical.

We present the results for the archive pheromone model in the rule creation

for classification problems. The comparison between the proposed Ant-MinerMA

and cAnt-Miner, where a similar predictive accuracy was observed in combination

with a statistically significant improvement in runtime on large data sets.

70

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 71

The algorithms presented in this chapter were first presented in the following

peer-reviewed papers: Ant-MinerMA was published in:

• Helal, A. and Otero, F. E. (2016). A Mixed-Attribute Approach in Ant-

Miner Classification Rule Discovery Algorithm. In Proceedings of the Genetic

and Evolutionary Computation Conference 2016, ACM, GECCO ’16, pp.

13–20.

The remainder of this chapter is organised as follows, Section 5.1 describes

the Ant-MinerMA algorithm. Section 5.2 shows the results for comparison of the

algorithms. Section 5.3 summarizes the chapter.

5.1 Ant-MinerMA

The proposed Ant-MinerMA algorithm uses an ACOMV procedure to handle mixed

attributes types, eliminating the need for an entropy-based discretisation when

handling a continuous attribute as used in cAnt-Miner (Otero, Freitas and John-

son 2009), and also coping with ordinal attributes. ACOMV is an ACO algorithm

designed for mixed variable optimization problems; it handles ordinal, categori-

cal, and continuous variables using a solution archive as the pheromone model.

Ant-MinerMA uses a solution archive to sample conditions for the creation of the

rules, instead of traversing a construction graph. A high-level pseudocode of Ant-

MinerMA is shown in Algorithm 6.

Ant-MinerMA starts with an empty list of rules (line 1), and iteratively adds

the best rule found along a sequential covering process to the list of rules in

the outer while loop, which is executed while the number of uncovered training

examples is greater than a user-defined maximum value. At each iteration, the

best rule created by an ACOMV procedure is added to the list of rules (lines 3–18).

The ACOMV procedure starts by initializing the solution archive with R random

generated rules (line 3). Then, each ant generates a new rule (lines 7-11). Once

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 72

Algorithm 6: High-level pseudocode of Ant-MinerMA.
input : training data
output: list of rules

1 RuleList ← {}
2 while |TrainingData|<MaxUncovered do
3 SA ← Generate Random Rules
4 Restarted ← 0
5 while t <MaxIterations AND Restarted <2 do
6 SAt ← {}
7 while i < number of ants do
8 Ri ← Create New Rule
9 Ri ← Prune(Ri)

10 SAt ← Ri

11 i← i+ 1
12 end
13 SA ← UpdateArchive(SA ,SAt)
14 t← t+ 1
15 if stagnation() then
16 Restart(SA)
17 Restarted ← Restarted + 1
18 end
19 end
20 Rbest ← BestRule(SA)
21 RuleList ← RuleList + Rbest

22 TrainingData ← TrainingData − Covered(Rbest)
23 end
24 return RuleList

m new rules have been generated, where m is the number of ants in the colony,

they are added into the solution archive (line 13). The R and m rules are sorted

and the m worst ones are removed from the archive. The procedure to create a

new rule is repeated until the maximum number of iterations has been reached.

5.1.1 Archive and Rule Structure

As aforementioned, the archive consist of R rules. Each rule consist of a vector of

n-dimensional terms, where n is the number of attributes in the data set. Each

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 73

Continuous attribute (Ar) Categorical attribute (Ac) Ordinal attribute (Ao)︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Flag Op Value1 Value2 Flag Op Value Flag Op Value f(S) w

S1 T > v1 - T = v2 F - - f(S1) w1

S2 T <≤ v3 v4 F - - T ≤ v5 f(S2) w2

S3 F T = v6 T ≥ v7 f(S3) w3

..
.
..
.

..
..

..

..
..

..

..
..

..

..
.
..
.

..
.
..
.

SR T ≤ v8 - F - - T ≤ v9 f(SR) wR︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Continuous attributes Categorical attributes Ordinal attributes

Figure 9: Archive Structure: example of 3 rules of the archive, each rule showing a
single example of different attribute type: Ar is a real-valued (continuous) attribute, Ac
is a categorical attribute and Ao is an ordinal attribute.

term in a rule contains a flag to indicate if this term is enabled or not, an operator

and value(s). For continuous attributes, the operator could be either ≤ (less than

or equal to), > (greater than) or <≤ (in range); categorical attributes’ operator is

always =; and ordinal attributes have an operator of either ≤ or ≥ (greater/less

than or equal).

Figure 9 illustrates a solution archive with 3 rules, each rule showing a single

example of a different attribute type. The rules are stored according to their

quality in the archive, where the best is stored at the top (highest ranking) and

the worse at the bottom (worst ranking). The archive stores the quality of each

rule f(S) and the weight w for each solution calculated by Equation (26):

wj = 1
qR
√

2π
e
−(rank(j)−1)2

2q2R2 (26)

where q (Local Search) is a constant that is used to control the extent of the

top-ranked solution influence on the construction of new solutions. The weight

wj of a solution Sj is used during the creation of new solutions, as an indicator

for the level of attractiveness. The higher the weight of a solution Sj, the higher

the probability of sampling a new solution around the values of Sj.

Figure 9 presents an example of a solution archive containing three rules.

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 74

Those rules have Ar a real-valued (continuous) attribute in the data set, Ac a

categorical attribute in the data set and Ao is an ordinal attribute in the data set:

1. S1 is IF Ar > v1 AND Ac = v2 THEN C1

2. S2 is IF v3 < Ar ≤ v4 AND Ao ≤ v5 THEN C2

3. S3 is IF Ac = v6 AND Ao ≥ v7 THEN C3

The rule S1 is a rule where the continuous attribute Ar is enabled (Flag = T),

the operator is “greater than” and the value v1 is set. The categorical attribute

Ac is enabled (Flag = T), the default operator is “equal” and value v2 is set.

The ordinal attribute Ao is not enabled (Flag = F) and so it has no values for

operator and value. The rule S2 is a rule where the continuous attribute Ar is

enabled (Flag = T), the operator is “in range” and two values v3 and v4 are set.

The categorical attribute Ac is not enabled showing (Flag = F) and so it has no

values for operator and value. The ordinal attribute Ao is enabled (Flag = T),

the operator is “less than or equal” and value the v5 is set. Rule S3 follows a

similar representation.

5.1.2 Archive Initialization

In the archive initialization procedure, each rule is randomly initialized. Rule

initialization starts with an unbiased random probability to enable each the term,

then it continues the rule initialization according to each attribute type. For all

continuous terms, it uses an unbiased random probability to select the operator

from the set {≤, >, <≤}. The value of the continuous attribute is generated

using a random value sampled from a normal distribution in the domain of the

attribute. In case of the <≤ (range) operator, two values are generated and the

values will only be accepted if they make the operator valid, e.g., the operator

will not be valid with 9 < Ar ≤ 4.

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 75

Ordinal and categorical attributes values are encoded into non-negative inte-

gers, e.g., ordinal attribute values (small, medium, large) are encoded into (0, 1,

2) and for categorical attribute values (cat, dog, horse, cow) are encoded into (0,

1, 2, 3). Ordinal terms also use an unbiased random probability to choose the

operator from the set {≤, ≥}, then an unbiased random value for the index is

generated. For categorical terms, a default = operator is added, then an unbiased

random value for the index is generated.

After the random initialization of each rule, a rule is pruned to remove irrel-

evant terms enabled by the stochastic nature of the initialization. The pruning

procedure is detailed in Section 5.1.5. Then, if the number of covered instances

of a rule is greater or equal to a user-defined minimum limit, the rule is added to

the archive. Finally, the rules in the archive are ordered according to their quality

measured as the m-estimate measure in the rule selection and archive ordering

(m-estimate provides a tradeoff between consistency/coverage), given by

Q =
TP +m · (P

P+N)
TP + FP +m

(27)

where TP (true positives) is the number of instances covered by a rule that belong

to the class predicted by the rule; FP (false positives) is the number of instances

covered by a rule that do not belong to the class predicted by the rule; P and N

are the total number of instances that are in the positive and negative class in

the training data set, respectively.1 The value m = 22.466 used in our approach

has been determined experimentally in (Janssen and Fürnkranz 2010a) to be the

optimum value for the m-estimate measure.
1An instance is considered negative if it is from a class different than the class predicted by

the rule.

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 76

5.1.3 Rule Creation

Each attribute type used by Ant-MinerMA has a sampling procedure to create

new rules. The sample procedures are based on the ACOMV algorithm, as shown

in Section 4.2.1. Rule creation uses the sampling procedures to determine which

attribute and their values should be part of the antecedent of a rule. In order to

create a rule, an ant performs the following steps.

1. For each term, it considers the probability of including the term or not. The

decision is handled as a categorical choice, since it is dealing with boolean

{TRUE, FALSE} values, where the value is sampled using the categorical sam-

pling procedure.

2. If the term is enabled, an operator is chosen according to the attribute type.

If the attribute type is categorical, the operator is =; if it is continuous, the

decision is handled as a categorical choice of three operators {≤, > , <≤},

using the categorical sampling procedure; for ordinal attributes, the decision

is handled as a categorical choice of two operators {≤, ≥}. In both cases

an operator should be sampled from the subset of rules in the archive that

has the term enabled, to avoid using wrong terms that had no effect in the

rule quality.

3. After selecting the operator, the value of the attribute is sampled according

to the attribute type. Note that the sampling takes into consideration only

the subset of the rules in the archive that have the term enabled using the

same operator, which allow the terms to be correctly optimised.

4. After the creation of a term, the term is added to the antecedent of a rule

and the rule is applied to the training set. If the rule covered less than a user-

defined minimum number of instances, the term is disabled. This process

(Steps 1-4) is repeated for the next term, until all terms are considered.

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 77

After the antecedent of a rule is created, the rule is applied to the training set.

The prediction is set as the majority class of the rules covered instances.

5.1.4 Rule Creation Walk-through

Let us consider a subset of the Australian credit approval data set (Lichman

2013). This data subset has 2 attributes: A2 is a continuous attributes; and A1 is

a categorical attribute. The target class attribute has 2 values. Table 4 shows a

subset of the data set.

Table 4: A subset of the Australian credit approval data set.

A1 A2 Class
0 23.5 1
1 17.5 1
0 28.42 0
0 46.67 1
1 41.5 0
0 20.33 1
1 47.42 1
1 44.25 0
1 32.42 1
0 20 0
0 29.67 1
1 47.33 0
0 19.58 1
0 32.25 1
1 16.25 0

After initialisation, the archive has 4 randomly generated rules - shown in

Figure 10. Using q = 0.26 and ξ = 0.65, we will go through the 3 steps that we

described in Section 5.1.3.

Step 1: Starting from attribute A1, we consider the probability to include

the term or not. To decide whether or not to include a term from A1, we use the

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 78

Categorical attribute (A1) Continuous attribute (A2)︷ ︸︸ ︷ ︷ ︸︸ ︷
Flag Op Value Flag Op Value1 Value2 f(S) w

S0 T = 0 F 0.64 0.21
S1 F T > 24 0.54 0.14
S2 T = 1 F 0.23 0.021
S3 T = 0 T > 21 0.15 0.012

Figure 10: Archive example

categorical sampling, as follows:

αT = w0

uT
= 0.21

3 = 0.07

αF = w1

uF
= 0.14

1 = 0.14
(28)

where αT is the weight for enabling attribute A1, αF is the weight for disabling

attribute A1, w1 is the weight of the first rule in the archive that has A1 enabled

(rule index 1), w0 is the weight of the first rule in the archive that has A1 disabled

(rule index 0), uT is the number of rules that have A1 enabled and uF is the number

of rules that have A1 disabled. Using both αT and αF values, the probability of

enabling/disabling the term is given by:

PT = αT
αT + αF

= 0.07
0.21 = 0.33

PF = αF
αT + αF

= 0.14
0.21 = 0.66

(29)

where PT is the probability to have A1 enabled and PF is the probability to have

A1 disabled. Using the above probabilities, we sample a random value to decide

whether A1 will be enabled or disabled. Assuming we get the value P = 0.54, the

term for attribute A1 is set to false (disabled) since P > PT , and then we stop

the sampling of the attribute.

Moving on to attribute A2, we consider the probability to include the term or

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 79

not using the same rationale:

αT = w1

uT
= 0.14

2 = 0.07

αF = w0

uF
= 0.21

2 = 0.105

PT = αT
αT + αF

= 0.07
0.175 = 0.4

PF = αT
αT + αF

= 0.105
0.175 = 0.6

(30)

Using the above probabilities, we sample a random value to decide whether

A2 will be enabled or disabled. Assuming we get the value P = 0.35, the term for

attribute A2 is set to true (enabled) since P < PT .

Step 2: Since the term for attribute A2 is enabled and A2 is a continuous

attribute, an operator is then sampled. In order to choose an operator, we use

categorical sampling as follows:

α> = w1

u>
+ q

κ
= 0.14

2 + 0.26
2 = 0.27

α≤ = q

κ
= 0.26

2 = 0.13

α<≤ = q

κ
= 0.26

2 = 0.13

(31)

where α> is the weight for the > operator in attribute A2, α≤ is the weight for the

≤ operator in attribute A2, α<≤ is the weight for the <≤ operator in attribute

A2, w1 is the weight of the first rule in the archive has A2 operator equal to >

(rule index 1), u> is the number of rules that have A2 operator equal to >, q is

the variable that is used to control the extend of the top-ranked rule influence on

the construction of new rules and κ is the number of values of this attribute that

are not used in the archive (2 in this case). Using the weights α>, α≤, α<≤ we

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 80

calculate their probabilities,

P> = α>
α> + α≤ + α<≤

= 0.27
0.53 = 0.50

P≤ = α≤
α> + α≤ + α<≤

= 0.13
0.53 = 0.25

P<≤ = α<≤
α> + α≤ + α<≤

= 0.13
0.53 = 0.25

(32)

where P> is the probability to have A2 operator set to >, P≤ is the probability

to have A2 operator set to ≤ and P<≤ is the probability to have A2 operator set

to <≤. Using the above probabilities, we sample a random value to select an

operator. Assuming we get the value P = 0.152, we set the operator to > since

P < P>.

Step 3: After selecting the operator for attribute A2, we start sampling its

value. Firstly, we choose a rule from the archive to build our solution around it.

There are only two rules with A2 term enabled and the probability of selecting

one of them is given by

P1 = w1

w1 + w3
= 0.14

0.152 = 0.921

P3 = w3

w1 + w3
= 0.012

0.152 = 0.078
(33)

where P1 is the probability to select the rule with index 1 and P3 is the probability

to select the rule with index 3. Using the above probabilities, we sample a random

value to select a rule form the archive. Assuming we get the value P = 0.567,

the rule index 1 is selected since P < P1. Using the values from the archive to

calculate the value of the term.

σ = ξ
|S1,2 − S3,2|

1 = 0.655× 3 = 1.965

value = Gaussian(S1,2, σ) = Gaussian(24, 1.965) = 23.23
(34)

σ is the average distance between the value of the attribute A2 in rule 1 and the

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 81

value of attribute A2 in all the other rules in the archive (only rule 3 in this case),

and ξ is a user-defined value representing the convergence speed of the algorithm.

S1,2 is the selected rule value used as the mean for the Gaussian sampling.

5.1.5 Rule Pruning

Ant-MinerMA applies different heuristics for the rule refinement and rule selection

following a similar approach proposed in (Stecher, Janssen and Fürnkranz 2014).

Ant-MinerMA uses a pruning function to remove irrelevant terms that are added to

the rule, due to the stochastic nature of the rule creation. The random sampling

in enabling terms, could allow irrelevant terms to be added. The pruning function

starts by disabling the last enabled term in the rule and, if the quality of the

rule does not decrease, it permanently disable the term. The pruning function

continue to remove terms until the removal of a term decreases the quality of the

rule or the rule has only one term remaining. This is the same pruning procedure

used in cAnt-Miner (Otero, Freitas and Johnson 2009).

For the pruning function, the sensitivity × specificity function is used to mea-

sure the quality of rules, as employed in Ant-Miner, given by

QPruning = TP

TP + FN
· TN

FP + TN
(35)

where TP is the number of instances covered by a rule that belong to the class

predicted by the rule; FP is the number of instances covered by a rule that do

not belong to the class predicted by the rule; TN is the number of instances not

covered by a rule that do not belong to the class predicted by the rule; FN is the

number of instances not covered by a rule that belong to the class predicted by

the rule.

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 82

Table 5: Parameter values used in the experiments. Ant-MinerMA uses the first three
parameters in the table, while the remaining ones are used by both Ant-MinerMA and
cAnt-Miner.

Parameters Value
q (Local Search) 0.025495
ξ (Convergence) 0.6795
R (Archive Size) 90
Minimum Covered 10
Max Uncovered 10
Max Iterations 1500
Number of Ants 60
Stagnation Test 10

5.1.6 Restart Procedure

Ant-MinerMA uses a simple restart strategy to avoid search stagnation. The restart

procedure is triggered when the best rule of the current iteration is exactly the

same as the best rule constructed in a user-defined number of previous iterations,

which works as a stagnation test. After the restart procedure is triggered, all rules

in the archive are reinitialized except the best-so-far rule (top rule in the archive).

The restart is performance only once.

5.2 Experimental Results for Ant-MinerMA

The computational results were computed using 30 publicly available data sets

from the UCI Machine Learning Repository (Lichman 2013), presented in Tables

6. Ant-MinerMA uses the first three parameters in Table 5 for the archive settings,

while the remaining parameters are used by both Ant-MinerMA and cAnt-Miner.

These were either empirically chosen based on preliminary experiments (archive

setting parameters) or based on cAnt-Miner’s default values (Otero, Freitas and

Johnson 2009).

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 83

Ta
bl

e
6:

Su
m

m
ar

y
of

th
e

da
ta

se
ts

us
ed

in
th

e
ex

pe
rim

en
ts

:
da

ta
se

ts
fr

om
1

to
18

ar
e

co
ns

id
er

ed
sm

al
ld

at
a

se
ts

,
w

hi
le

th
e

re
m

ai
ni

ng
on

es
ar

e
co

ns
id

er
ed

la
rg

e
da

ta
se

ts
du

e
th

e
la

rg
er

nu
m

be
r

of
at

tr
ib

ut
es

an
d/

or
nu

m
be

r
of

in
st

an
ce

s.

A
tt

rib
ut

es

#
D

at
a

se
t

Si
ze

#
C

la
ss

es
To

ta
l

#
O

rd
in

al
#

C
at

eg
or

ic
al

#
C

on
tin

uo
us

1
br

ea
st

-t
iss

ue
10

6
6

9
0

0
9

2
iri

s
15

0
3

4
0

0
4

3
w

in
e

17
8

3
13

0
0

13

4
pa

rk
in

so
ns

19
5

2
22

0
0

22

5
gl

as
s

21
4

7
9

0
0

9

6
br

ea
st

-l
28

6
2

9
4

5
0

7
he

ar
t-

h
29

4
5

13
3

3
7

8
he

ar
t-

c
30

3
5

13
3

3
7

9
liv

er
-d

iso
rd

er
s

34
5

2
6

0
0

6

10
io

no
sp

he
re

35
1

2
34

0
0

34

11
de

rm
at

ol
og

y
36

6
6

34
33

0
1

12
cy

lin
de

r-
ba

nd
s

54
0

2
35

2
14

19

13
br

ea
st

-w
56

9
2

30
0

0
30

14
ba

la
nc

e-
sc

al
e

62
5

3
4

4
0

0

15
cr

ed
it-

a
69

0
2

14
4

4
6

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 84

Ta
bl

e
6:

Su
m

m
ar

y
of

th
e

da
ta

se
ts

us
ed

in
th

e
ex

pe
rim

en
ts

:
da

ta
se

ts
fr

om
1

to
18

ar
e

co
ns

id
er

ed
sm

al
ld

at
a

se
ts

,
w

hi
le

th
e

re
m

ai
ni

ng
on

es
ar

e
co

ns
id

er
ed

la
rg

e
da

ta
se

ts
du

e
th

e
la

rg
er

nu
m

be
r

of
at

tr
ib

ut
es

an
d/

or
nu

m
be

r
of

in
st

an
ce

s.

A
tt

rib
ut

es

#
D

at
a

se
t

Si
ze

#
C

la
ss

es
To

ta
l

#
O

rd
in

al
#

C
at

eg
or

ic
al

#
C

on
tin

uo
us

16
pi

m
a

76
8

2
8

0
0

8

17
an

ne
al

in
g

89
8

6
38

0
29

9

18
cr

ed
it-

g
10

00
2

20
11

2
7

19
M

ic
eP

ro
te

in
10

80
8

80
0

3
77

20
H

ill
Va

lle
y

12
12

2
10

0
0

0
10

0

21
M

ag
ic

19
02

0
2

10
0

0
10

22
N

om
ao

34
46

5
2

11
8

0
29

89

23
ba

nk
-a

dd
iti

on
al

41
18

8
2

20
0

10
10

24
eb

45
78

1
31

3
0

1
2

25
ad

ul
t

48
84

2
2

14
0

8
6

26
co

nn
ec

t4
67

55
7

3
42

0
42

0

27
di

ab
et

es
10

17
66

3
47

2
34

11

28
Sk

in
N

on
Sk

in
24

50
57

2
3

0
0

3

29
Fo

re
st

T
yp

e
58

10
12

7
54

0
44

10

30
Po

ke
rH

an
d

10
25

01
0

10
10

5
0

5

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 85

The cAnt-Miner implementation used in the experiments was the cAnt-Miner2MDL

variation (Otero, Freitas and Johnson 2009)2, which can create intervals with lower

and upper bounds for continuous attributes.

We ran both the Ant-MinerMA and cAnt-Miner algorithms for 15 times in

a tenfold cross-validation setting — the averaged results (over the 150 individ-

ual runs) are shown in Tables 7 and 9. We ran the Wilcoxon signed rank test

(Wilcoxon 1992) on the results of the 30 data sets to show if there are statistically

significant differences in terms of both predictive accuracy and runtime. For a

fair comparison, both algorithms are implemented in Java running in the same

environment.

According to the results presented in Table 7, Ant-MinerMA achieved a better

average rank (1.43) for the predictive accuracy, while cAnt-Miner has an average

rank of 1.57. In terms of runtime, the results in Table 8 shows that Ant-MinerMA

has a rank of 1.10, while cAnt-Miner has a rank of 1.90. Most of the data sets show

an order of magnitude improvement of Ant-MinerMA over cAnt-Miner in terms of

runtime. Considering both number of attributes and instances size, the largest

data sets are forest type, poker hand and diabetes, respectively. Most notably, a

single cAnt-Miner execution on diabetes takes up to 3.5 days, while Ant-MinerMA

takes just over 1 hour. Ant-MinerMA would take 45 minutes for a single run in

poker hand, while cAnt-Miner almost 8 hours. These results show that the use

of the solution archive as a pheromone model does not affect the accuracy, while

improving the computational time since the discretisation procedure is eliminated.

Table 9 shows that Ant-MinerMA models are significantly bigger than cAnt-

Miner, although Ant-MinerMA achieved better runtime and similar accuracy. In

MiceProtein data set, Ant-MinerMA shows an increase in rules and terms count

(25.3, 3.4) with low predictive accuracy (62.57), while cAnt-Miner shows much

concise model (7.9, 1.5) with higher predictive accuracy (99.07). Also notably
2Available from https://github.com/febo/myra.

https://github.com/febo/myra

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 86

Table 7: Average predictive accuracy (average ± standard error) of cAnt-Miner and
Ant-MinerMA measured over 15 runs of tenfold cross-validation. The last row of the
table shows the average rank of the algorithm. The best value of a given data set is
shown in bold.

Accuracy
Data set Ant-MinerMA cAnt-Miner
breast-tissue 60.24±0.97 64.24±0.24
iris 93.6±0.31 94.27±0.11
wine 90.78±0.40 93.52±0.07
parkinsons 86.29±0.64 85.22±0.40
glass 63.24±0.50 59.18±0.32
breast-l 71.46±0.34 76.17±0.11
heart-h 64.37±0.29 64.81±0.33
heart-c 56.94±0.54 57.42±0.32
liver-disorders 63.13±0.49 62.26±0.18
ionosphere 89.28±0.37 88.84±0.25
dermatology 89.42±0.47 89.02±0.25
cylinder-bands 69.32±0.35 70.28±0.22
breast-w 93.53±0.22 94.28±0.11
balance-scale 80.10±0.22 68.34±0.08
credit-a 85.19±0.22 85.74±0.11
pima 75.30±0.21 67.45±0.07
annealing 96.68±0.14 97.02±0.09
credit-g 74.19±0.14 69.39±0.17
MiceProtein 62.57±0.37 99.07±0.43
HillValley 52.65±0.19 51.35±0.11
Magic 82.67±0.05 70.41±0.01
Nomao 87.56±0.05 90.66±0.02
bank-additional 89.49±0.02 89.87±0.01
eb 65.00±0.05 64.58±0.01
adult 84.74±0.03 79.73±0.04
connect4 68.18±0.02 67.83±0.01
diabetes 55.83±0.09 54.23±0.13
SkinNonSkin 98.91±0.02 97.54±0.00
ForestType 68.55±0.07 63.09±0.07
PokerHand 51.97±0.04 50.2±0.00
Rank 1.43 1.57

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 87

Table 8: Average computational time (average ± standard error) of cAnt-Miner and
Ant-MinerMA measured over 15 runs of tenfold cross-validation. The last row of the
table shows the average rank of the algorithm. The best value of a given data set is
shown in bold.

Computational time (seconds)
Data set Ant-MinerMA cAnt-Miner
breast-tissue 0.38±0.01 0.67 ±0.02
iris 0.28±0.00 0.49 ±0.00
wine 0.33±0.01 0.56 ±0.04
parkinsons 0.78±0.01 2.87 ±0.25
glass 0.50±0.00 2.66 ±0.42
breast-l 0.54±0.01 1.28 ±0.14
heart-h 0.72±0.00 12.61±0.62
heart-c 0.76±0.02 10.91±0.64
liver-disorders 0.47±0.01 1.81 ±0.08
ionosphere 1.27±0.03 5.97 ±0.65
dermatology 1.31±0.02 16.67±1.49
cylinder-bands 3.15±0.08 29.54±1.31
breast-w 2.31±0.04 5.40 ±0.29
balance-scale 0.50±0.01 5.95 ±0.38
credit-a 1.10±0.01 11.57±0.79
pima 0.93±0.01 3.69 ±0.42
annealing 4.79±0.16 10.76±0.77
credit-g 1.69±0.02 39.1 ±2.11
MiceProtein 26.79±0.61 8.53±0.65
HillValley 37.93±0.71 19.12±0.91
Magic 25.56±0.61 155.07±2.01
Nomao 2308.57±98.25 779.77±28.15
bank-additional 185.27±2.49 1970.72±60.55
eb 25.38±0.36 321.58±1.11
adult 236.54±3.83 5048.44±165.33
connect4 1273.66±7.97 14380.04±535.72
diabetes 4008.11±141.34 ∗388023.6±3580.67
SkinNonSkin 125.41±1.56 1484.52±5.27
ForestType 30649.92±695.20 53336.53±3946.86
PokerHand 2577.19±43 .07 27872.59±2286.18
Rank 1.10 1.90

∗ Result of a single tenfold execution due to high computational time.

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 88

Table 9: Average rule and term count of cAnt-Miner and Ant-MinerMA measured over
15 runs of tenfold cross-validation. The last row of the table shows the average rank of
the algorithm. The best value of a given data set is shown in bold.

Rule Count Term Count
Dataset Ant-MinerMA cAnt-Miner Ant-MinerMA cAnt-Miner
breast-tissue 6.9 6.9 1.2 1.0
iris 4.9 5.0 0.9 0.8
wine 5.8 5.1 1.4 0.8
parkinsons 7.2 5.8 1.7 1.2
glass 7.8 10.1 1.8 1.4
breast-l 8.3 5.9 1.8 1.3
heart-h 8.6 8.3 2.0 2.4
heart-c 9.4 9.7 2.1 2.5
liver-disorders 9.9 7.7 1.4 1.2
ionosphere 8.0 6.0 1.8 1.4
dermatology 10.3 9.7 2.7 2.1
cylinder-bands 13.4 7.6 2.1 2.1
breast-w 9.0 8.8 2.4 1.3
balance-scale 11.3 12.3 1.5 1.0
credit-a 10.6 7.6 2.1 1.6
pima 13.6 10.0 1.7 1.2
annealing 13.5 11.2 1.4 1.9
credit-g 16.3 9.0 1.7 1.7
MiceProtein 25.3 7.9 3.4 1.5
HillValley 20.4 21.4 1.6 1.1
Magic 39.4 36.3 1.4 1.1
Nomao 43.2 15.2 1.9 1.6
bank-additional 32.9 14.7 1.6 1.8
eb 48.6 150.4 1.6 1.2
adult 66.6 19.4 1.4 1.5
connect4 37.6 17.8 1.9 2.2
diabetes 92.8 18.5 1.5 2.1
SkinNonSkin 35.7 81.5 1.3 1.4
ForestType 113.9 52.4 1.7 1.7
PokerHand 39.3 28.6 1.5 1.3

Rank 1.73 1.27 1.70 1.30

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 89

Table 10: Results of the Wilcoxon Signed Rank tests at the α = 0.05 significance level
comparing Ant-MinerMA and cAnt-Miner on predictive accuracy and computational
time. Statistically significant differences are shown in bold, indicating the case where
Ant-MinerMA’s performance is statistically significantly better than cAnt-Miner.

Size W+ W- Z p
Accuracy 30 289.5 175.5 -1.1724 0.24200
Runtime 30 59 406 -3.5686 0.00036
Rules Count 30 371 94 -2.85 0.0044
Terms Count 30 358 107 -2.58 0.00988

this is one of the small number of instances that shows an increase in runtime

of Ant-MinerMA as its runtime (26.8) while cAnt-Miner is (8.5). This case does

repeat itself in instances with high attribute sizes such as HillValley, Nomao.

The results suggest that there is a small limitation when the number of at-

tributes increases over 50, where the observed improvement in computational time

is only around 25% in the forest type data set. In cases where there is a large

number of attributes but a smaller number of instances—which means that the

discretisation overhead is less noticeable—such as in the data sets Namao (119

attributes, 34465 instances), Hill Valley (101 attributes, 1212 instances) and Mice

Protein (81 attributes, 1080 instances), Ant-MinerMA running time increases in

relation to cAnt-Miner. We hypothesised that this is due to the use of the graph

pheromone model in cAnt-Miner, which allows the algorithm to quickly identify

irrelevant attributes and not use them in the rule creation process.

Table 10 indicates that there is no statistically significantly differences between

Ant-MinerMA and cAnt-Miner in terms of predictive accuracy (p = 0.24200).

In the case of computational time, Ant-MinerMA’s improvement is statistically

significant (p = 0.00036). In case of the rules and terms count Ant-MinerMA

loses with statistical significance to cAnt-Miner. So, we believe this shows that

archive model fails to identify good attributes quickly. Overall, we consider these

CHAPTER 5. ANT-MINERMA FOR CLASSIFICATION 90

results positive. The use of a rule creation process inspired by ACOMV led to a

statistically significant runtime improvement in Ant-MinerMA compared to cAnt-

Miner, without affecting the predictive accuracy.

5.3 Summary

We introduced Ant-MinerMA to tackle mixed-attribute classification problems,

based on ACOMV. The use of a solution archive allows the algorithm to deal

with categorical, continuous and ordinal attributes directly, without requiring a

discretisation procedure. The rule creation procedure then uses ACOMV strategies

to sample values for each attribute to create the antecedent of a rule.

In this chapter, we showed the effects of using an archive pheromone model.

The use of a solution archive allows the algorithm to deal with continuous at-

tributes without requiring a discretisation procedure. The results suggest that

there is a small limitation when the number of attributes increases. We hypoth-

esised that this is due to the use of the graph pheromone model in cAnt-Miner,

which allows the algorithm to quickly identify irrelevant attributes and not use

them in the rule creation process leading to larger models as shown by the rule

size.

Chapter 6

Automatic Design of Ant-Miner

Mixed Attributes for

Classification Rule Discovery

This work in Chapter 5, identified a limitation of using the archive only as the

pheromone model, as the archive pheromone model fails to identify good attributes

quickly. In this chapter, I will show how we can we combine both the graph

pheromone model and the archive pheromone model into a single framework, to

overcome this limitation. We introduce the Automatic Design of Ant-Miner Mixed

Attributes for Classification Rule Discovery (Ant-MinerMA+G). Ant-MinerMA+G is

an automatic design framework to incorporate the graph-based model along with

the archive-based model in the rule creation process.

We then present results for Ant-MinerMA+G, showing that the new framework

combining both the archive and the graph pheromone models achieved a statisti-

cally significant improvement over cAnt-Miner in runtime and predictive accuracy.

Ant-MinerMA+G was published in :

• Helal, A. and Otero, F. E. B. (2017). Automatic Design of Ant-Miner Mixed

Attributes for Classification Rule Discovery. In Proceedings of the Genetic

91

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 92

and Evolutionary Computation Conference, ACM Press, GECCO ’17, pp.

433–440.

Section 6.1 describes the framework of Ant-MinerMA+G. Section 6.2 shows

the results of the comparison between Ant-MinerMA+G and cAnt-Miner. Finally,

Section 6.3 compares the ACO-based Ant-MinerMA+G, Ant-MinerMA and cAnt-

Miner against C5.0 rules (Quinlan 1993), Jrip (Cohen 1995), and PART (Frank

and Witten 1998) to show their performance compared to well-known induction

algorithms from the literature.

6.1 Ant-MinerMA+G

The graph-based pheromone model was introduced to guide the ants in a discrete

search space, where solution components are represented by nodes of the graph.

While the archive-based pheromone model was introduced to guide the ants in the

mixed variables search space, employing different sampling strategies according to

the variable type on a solution archive.

The second approach, Ant-MinerMA+G (archive + graph) is implemented to

combine both the graph and the archive approaches into one framework, since

both graph-based and archive-based pheromone models have their merits. The

archive-based model showed limitations when the number of attributes increased

over 50, the runtime increased compared to graph-based model. Also, the graph-

based model showed improvement in predictive accuracy with over 50 attributes,

and the graph-based pheromone model had the advantage of finding the best

attributes to use faster than the archive-based pheromone model. Combining

concepts from both approaches could potentially lead to improved runtime and a

better capacity to handle data sets with a large number of attributes.

There are a number of design questions when building a framework to combine

both archive-based and graph-based pheromone models. Ant-MinerMA uses the

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 93

archive-based pheromone model to sample rule term components, such as the

attribute, the operator and the value; By contrast, ants in cAnt-Miner traverse

the graph-based pheromone model to create rules, using the pheromone deposited

on each edge as an indication of the current best attributes-value pairs, and in the

case of continuous attributes, they use a dynamic discretisation procedure based

on the entropy measure.

Algorithm 7: High-level pseudocode of Ant-MinerMA+G.
input : training data
output: list of rules

1 RuleList ← {}
2 Restarted ← 0
3 while |TrainingData| < MaxUncovered do
4 SA ← Generate Random Rules
5 Restarted ← 0
6 while t <MaxIterations and Restarted <2 do
7 SAt ← {}
8 while i < number of ants do
9 Ri ← Create New Rule (Section 6.1.1)

10 Ri ← Prune(Ri) (Section 6.1.2)
11 SAt ← Ri

12 i← i+ 1
13 end
14 SA ← UpdateArchive(SA, SAt) (Section 6.1.4)
15 SA ← UpdateGraph(SA, SAt) (Section 6.1.4)
16 t← t+ 1
17 if stagnation() then
18 Restart(SA) (Section 6.1.5)
19 Restarted ← Restarted + 1
20 end
21 end
22 Rbest ← BestRule(SA) (Section 6.1.2)
23 RuleList ← RuleList + Rbest

24 TrainingData ← TrainingData − covered(Rbest)
25 end
26 return RuleList

The algorithm design questions that we are interested in this work are:

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 94

Table 11: Algorithmic components of the proposed Ant-MinerMA+G.
Design components
Ordinal attributes: 

1: Using ordinal attribute with <≤ condition
2: Using ordinal attribute without<≤ condition
3: Not using ordinal attribute

Operator selection: {
2: Using archive for sampling conditions
1: Using graph for choosing conditions

Categorical attributes: 
1: Archive sampling
2: Archive sampling and not equal condition
3: Using graph for choosing categorical value

Prune Quality Function:
See Table 12

Selection Quality Function:
See Table 12

Pheromone limits: {
1: Max-Min limits
2: No limits

Archive top rule updating graph pheromone model:
1: First iteration after the archive is created
2: At the end of each iteration
3: Never updates

Updating graph pheromone model with:{
1: Best iteration rule
2: All rules added to the archive

Value used to update graph pheromone model:{
1: Weight of the rule in the archive
2: Quality of the rule

Pheromone restart: {
1: Restart both the pheromone models
2: No restart

1. Should the archive pheromone model be used only for continuous values, or

should it also be used for nominal and ordinal values?

2. Should the operator be selected using the archive pheromone model, or should

it be added to the graph pheromone model?

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 95

3. How should both pheromone models be updated?

Instead of following a manual approach of testing each possible configuration of

Ant-MinerMA, which would require a large amount of human and computational

time, we propose the use of an automated algorithm configuration tool to ob-

tain a high-performing Ant-MinerMA variant. We have been inspired by the work

of López-Ibáñez and Stützle (2012), which used I/F-Race (Birattari et al. 2010;

López-Ibáñez et al. 2016) to deal with the automatic design and configuration

of parameters to obtain a multi-objective ant colony optimization algorithm. In

order to use an automatic configuration tool, we created a framework of design

algorithmic components from which new variants of Ant-MinerMA could be gen-

erated. These are presented on Table 5.

Algorithm 7 shows the high-level pseudocode of the Ant-MinerMA+G algorithm.

At a high level, Ant-MinerMA+G starts with an empty list of rules and iteratively

adds the best rule found along the iterative process while the number of uncovered

training examples is greater than a maximum value. It uses the same rule creation

loop as Ant-MinerMA. At each iteration, a single rule is created by a new procedure

combining both graph-based and archive-based pheromone models (lines 3–18).

Once m new rules have been generated, where m is the number of ants in the

colony, they are added into the solution archive (line 13). The graph is also

updated with the same rules (line 14). The R and m rules are sorted and the m

worst ones are removed from the archive. The procedure to create a new rule is

repeated until the maximum number of iterations has been reached.

The following subsections present the different design choices that were im-

plemented in Ant-MinerMA+G. We grouped the design choices into three main

categories: (1) rule construction; (2) rule quality function configurations; and (3)

pheromone model.

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 96

Table 12: Rule evaluation functions used for pruning and selection procedures.
Functions Parameter

Precision (P) TP
TP+FP -

Confidence Coverage (CC) TP
TP+FP + TP

S -

Cost measure (CM) (c× TP)− ((1− c)× FP) c = 0.437

Fmeasure (FM) (1+β2). T P
T P +F N . T P

T P +F P

β2. T P
T P +F N . T P

T P +F P

β = 0.5

Jaccard (J) TP
TP+FP+FN -

Klosgen (K) (TP+FP
S)ω.(TP

TP+FP −
TP+FN

S) ω = 0.4323

Laplace (L) TP+1
TP+FP+k k = number of classes

MEstimate (ME) TP+m.T P
S

TP+FP+m m = 22.466

Relative Cost Measure (RCM) cr × TP
TP+FN − (1− cr)× FP

TN+FP cr = 0.342

Precision Inverted (PI) (FP+TN)−TP
(S)−(TP+FP) -

MEstimate Inverted (MEI) (FP+TN)+m× T P +F N
S

(S)−(TP+FP+m) m = 22.466

Laplace Inverted (LI) (FP+TN)−FP+1
(S)−(TP+FP+k) k = number of classes

Sensitivity and Specificity(SS) TP
TP+FN ×

TN
TN+FP -

6.1.1 Rule Construction

A crucial design decision when combining both graph-based and archive-based

pheromone models is defining each pheromone model’s contribution to solution

creation. This problem is exacerbated by the fact that there are two different ways

to create a solution, each with their own strengths, and there are different ways

to combine them. This section shows different algorithmic choices for operator,

ordinal and categorical attribute selection. Note that we do not consider using a

graph-based model to select continuous attributes values, since this would involve

using a discretisation procedure.

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 97

The basic framework of Ant-MinerMA+G consists of a fully connected construc-

tion graph. Let ai be an attribute, i = 1, ..., n where n is the number of attributes;

each attribute is added as a node (ai) to the graph. Suppose an ant l is generating

a rule rl. It starts with an empty rule at node i and probabilistically chooses to

visit a node j based on the amount of pheromone on the edge Eij. There are

different strategies available for all attributes, as discussed next.

Continuous attributes

Ant-MinerMA+G has two possible approaches to handle operator selection, for the

continuous attributes:

1. The archive pheromone model is used to select the operator according to the

attribute configuration. For continuous attributes, one of the three possible

{≤, >, <≤} operators is selected.

2. The graph pheromone model is used to select the operator. In this case,

each node of the graph consists of a pair (attribute, operator). Let ar be a

continuous attribute, each attribute is associated with three operators and

three nodes will be added to the graph: (ar, ≤), (ar, >) and (ar, <≤). In this

special case for continuous attributes, the categorical and ordinal attributes

are affected as follows. Let ac be a categorical attribute, each attribute is

associated with the equal operator and added as a node to the graph: (ac,

=). Finally, let ao be an ordinal attribute, each attribute is associated with

two operators and two nodes will be added to the graph: (ao, ≤) and (ao,

≥).

After the attribute operator is selected, the attribute value selection is con-

figured, we always use the archive model to sample the continuous value, using a

continuous sampling procedure on the subset of the archive rules with that term

enabled using the same attribute and operator.

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 98

Ordinal attributes

The Ant-MinerMA+G algorithm implements a procedure for ordinal attributes,

where it uses the continuous sampling procedure from ACOMV. This was based on

ACOMV approach to benefit from the natural order of the ordinal attribute values.

The possible conditions for ordinal attributes are {ai ≤ v, ai > v, v1 < ai ≤ v2)}.

the Ant-MinerMA+G algorithm implements three possible approaches to handle

ordinal attributes:

1. Sampling from three possible operators: {≤, >, <≤};

2. Sampling from two possible operators: {≤, >};

3. Handling ordinal attributes as categorical attributes without any special

treatment—i.e., conditions are always in the form ai = v.

Categorical attributes

Ant-MinerMA+G implements a procedure for categorical attribute values, where it

uses the discrete sampling procedure from ACOMV. The possible conditions for

Ant-MinerMA+G categorical attributes are ai = v and ai 6= v. Ant-MinerMA+G

implements three possible approaches to handle categorical attributes:

1. The archive pheromone model is used to sample the value, using = as the

operator;

2. The archive pheromone model is used to sample the value and the operators

out of two possible operators: {=, 6=};

3. The graph pheromone model is used for categorical values — each categorical

node consist of a triple (attribute, =, value) and there is a node for each

value in the domain of the attribute.

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 99

6.1.2 Rule Evaluation Function

The rule quality function configurations used in the rule creation process typically

represent a trade off between consistency and coverage — i.e., the quality functions

promote rules that cover as few negative and as many positive instances as possible

(Fürnkranz 2005; Janssen and Fürnkranz 2010a). A rule quality function is used

in two different steps in this process: (i) evaluating rule quality in the pruning

process, where it influences the choice of terms to be removed from the current

rule; (ii) rule evaluation, where it influence the selection of the rules to be added

to the list of rules.

Stecher, Janssen and Fürnkranz (2014) argued that these tasks should be

treated separately and be performed using different rule quality functions. Where

each of those tasks could have different trade off between consistency and coverage.

In Ant-MinerMA+G rule-pruning quality function are used to evaluate the effect of

removing terms from the current rule, while rule selection functions are used in the

archive sorting and selection of rules to be added to the model. We implemented

13 different rule quality functions, presented in Table 12. The same function can

be used for both pruning and selection. For the parametric rule quality functions,

we used the default parameter values proposed in (Janssen and Fürnkranz 2010a)

— these are shown in the ‘Parameter’ column in Table 12. In this table we used

a series of shorthand notations to condense the equations, as follows:

• TP (True Positives): The number of instances covered by a rule that belong

to the class predicted by the rule (the positive class);

• FP (False Positives): The number of instances covered by a rule that do

not belong to the class predicted by the rule;

• TN (True Negatives): The number of instances not covered by a rule that

do not belong to the class predicted by the rule;

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 100

Table 13: Confusion Matrix

Rule TP FP TN FN S
1 6 2 4 3 15
2 7 3 3 2 15

Table 14: The effect of using different rule quality functions to measure the quality of
2 rules discussed in the text. For each function, a higher value indicates better quality.
Functions Rule 1 Rule 2
Precision (P) 0.75 0.70
Confidence Coverage (CC) 1.15 1.17
Cost measure (CM) 1.50 1.37
F-measure (FM) 0.68 0.76
Jaccard (J) 0.55 0.58
Klosgen (K) 0.11 0.08
Laplace (L) 0.70 0.67
MEstimate (ME) 0.49 0.54
Relative Cost Measure (RCM) 0.01 -0.06
Precision Inverted (PI) 0.00 -0.20
MEstimate Inverted (MEI) 0.58 0.58
Laplace Inverted (LI) 1.00 1.33
Sensitivity and Specificity(SS) 0.44 0.39

• FN (False Negatives): The number of instances not covered by a rule that

belong to the class predicted by the rule;

• S (TP + FP + TN + FN): The total number of training instances.

6.1.3 The Effect of Different Quality Functions

We refer to the same example used in section 5.1.4, involving the following 2 rules

RULE 1 : IF A1 = 0 Then 1

RULE 2 : IF A2 < 35 Then 1
(36)

The quality of these 2 rules differs according to different evaluation functions,

as shown in Table 14.

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 101

Therefore, a change in the function selection will affect the algorithm perfor-

mance. For example, using sensitivity and specificity, Rule 1 will have better

quality than Rule 2, resulting in Rule 1 having a better rank in the archive; while

if the F-measure is used, Rule 2 will have a better quality than Rule 1, and so their

ranks in the archive will change. This will affect which rule has more influence in

the archive (i.e., which rule ends up top of the archive) and it will change the rules

sampled by ants. Also, if a different function is used by the rule-pruning proce-

dure, the resulting rule can be different even if the same rule undergoes pruning.

For example, removing a term will increase or decrease rule quality differently

based on the function used.

6.1.4 Pheromone Model Configurations

There are three configurations regarding how the pheromone models are used in

Ant-MinerMA+G, as discussed next.

Graph Pheromone Model

In the Ant-MinerMA+G framework, there are two approaches for updating the

graph pheromone model:

1. MAX–MIN Ant System (MMAS) (Stützle and Hoos 2000), where the

update of the pheromone trail is done first by lowering the pheromone trail

by a constant factor of evaporation and then allowing the ants to deposit

pheromones on the terms they used in the rule based on the quality of the

rule. The pheromone trails have min and max boundary to avoid early

convergence.

2. Ant-Miner, where the pheromone associated with each term occurring in the

rule created by an ant is increased in proportion to the quality of the rule

in question; the pheromone associated with each term that does not occur

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 102

in the rule is decreased by normalizing all the pheromones values after the

update.

Updating Pheromone Models

The level of interaction between the two pheromone models could range from no

interaction at all (cases 1.3 and 2.1 and 3.2 in the following) to close interaction

between them, as follows:

1. The top archive rule updates the graph pheromone model:

1.1. In the first iteration after the archive is created;

1.2. At the end of each iteration;

1.3. Never updates the graph pheromone.

2. The graph pheromone model is updated with:

2.1. The iteration-best rule;

2.2. All rules that have been added to the archive.

3. The value used to update the graph pheromone model:

3.1. The weight of the rule in the archive;

3.2. A value proportional to the quality of the rule.

6.1.5 Restart Procedure

The restart procedure resets both pheromone models to the starting point without

forgetting the best-so-far solution in the archive. It is used to avoid premature

stagnation of the algorithm. The reset procedure is triggered (only once) by

observing a number of consecutive iterations without improvement on the quality

of the best-so-far rule. It works by randomly initializing the archive and resetting

graph pheromone values to their initial value.

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 103

Table 15: Range of parameter values in Ant-MinerMA+G.
Parameters range of Values
q (Local Search) [0.001, 1]
ξ (Convergence) [0.001, 1]
Archive size [5, 150]
Maximum iterations [500, 2500]
Uncovered instances [5, 25]
Minimum covered by rule [5, 25]
Ant colony size [5, 90]
Stagnation limit [10, 100]
Initial pheromone [1, 10]
Evaporate factor [0.001, 1]
Best pheromone [0.001, 1]

Table 16: Summary of the training data sets used to automatically generate configura-
tions of the Ant-MinerMA+G algorithm.
Data set Size Ordinal Categorical Continuous
ionosphere 351 0 0 34
dermatology 366 33 0 1
cylinder-bands 540 2 14 19
annealing 898 0 29 9
credit-g 1000 11 2 7
MiceProtein 1080 0 3 77
HillValley 1212 0 0 100
eb 45781 0 1 2
adult 48842 0 8 6
SkinNonSkin 245057 0 0 3

6.2 Experimental Results for Ant-MinerMA+G

The computational experiments were computed using 35 publicly available data

sets from the UCI Machine Learning Repository (Lichman 2013). The data sets

were divided into two sets: a training set (shown in Table 16) and a testing set

(shown in Table 17). When choosing the training set, we made sure we have

diversity in the sizes of attributes and instances.

In the first part the experiments, our goal is automatically design a better

variant for the Ant-MinerMA algorithm using the proposed configurable framework

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 104

Table 17: Summary of the testing data sets used by both the Ant-MinerMA and cAnt-
Miner.
Data set Size Ordinal Categorical Continuous
breast-tissue 106 0 0 9
iris 150 0 0 4
wine 178 0 0 13
parkinsons 195 0 0 22
glass 214 0 0 9
breast-l 286 4 5 0
heart-h 294 3 3 7
heart-c 303 3 3 7
liver-disorders 345 0 0 6
breast-w 569 0 0 30
balance-scale 625 4 0 0
credit-a 690 4 4 6
pima 768 0 0 8
MolecularBiology 3189 0 60 0
ChoralsHarmony 5665 0 13 1
Mushroom 8124 0 22 0
PenDigits 10992 0 0 16
Magic 19020 0 0 10
CardClients 30000 7 2 14
Nomao 34465 0 29 89
bank-additional 41188 0 10 10
connect4 67557 0 42 0
diabetes 101766 2 34 11
ForestType 581012 0 44 10
PokerHand 1025010 5 0 5

Ant-MinerMA+G discussed in Section 6.1 and the automatic configuration method

I/F-Race. I/F-Race is a state-of-the-art automatic configuration method to deal

with continuous, categorical, and discrete parameters (López-Ibáñez et al. 2016).

I/F-Race generates new candidate configurations and performs races to discard the

worst-performing ones. Within a single race of I/F-Race, candidate configurations

are run on different instances of the algorithm at a time and a Friedman test

followed by a post-test analysis is applied to discard configurations that show a

sufficient statistical evidence that they perform worse than the remaining ones.

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 105

After only a small number of configurations remain in the race, the race stops.

A new race starts with the best configurations previously found and with new

candidate configurations generated from the best configurations using a simple

probabilistic model. The automatic configuration process stops after reaching a

given maximum budget, usually specified as a maximum number of runs or a time

limit.

López-Ibáñez and Stützle (2012) showed that automating the selection of both

the algorithmic design components and ACO parameter settings has the advan-

tage of coping with the interaction between the design components and parameter

settings. We therefore followed a similar approach, where I/F-Race optimises both

the design components and ACO parameter settings—these are shown in Table

15. The configuration budget is set to 10000 runs. We perform five indepen-

dent repetitions of the configuration process using the classification accuracy (the

percentage of correctly classified instances) as the evaluation criterion. The best

configuration found in each of the five runs were then used as seed candidates for

a final I/F-Race configuration process. Therefore, we created six different con-

figurations through six I/F-Race processes. The data sets used by I/F-Race are

shown in Table 16.

The six best configurations found by the independent runs of I/F-Race are

shown in Table 18. The configuration values are presented in Table 11 and the

keys are used in Table 18 to describe the configurations found by I/F-Race.

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 106

Ta
bl

e
18

:
T

he
be

st
co

nfi
gu

ra
tio

ns
of

A
nt

-M
in

er
M

A
+

G
fo

un
d

by
I/

F-
R

ac
e,

w
he

re
th

e
st

ar
re

d
co

nfi
gu

ra
tio

ns
va

lu
es

ar
e

fo
un

d
in

Ta
bl

e
11

. C
on

fig
ur

at
io

ns
1

2
3

4
5

6

q
(L

oc
al

Se
ar

ch
)

0.
89

3
0.

41
2

0.
48

7
0.

11
8

0.
11

2
0.

96
4

ξ
(C

on
ve

rg
en

ce
)

0.
10

9
0.

71
5

0.
23

1
0.

75
4

0.
21

6
0.

80
8

A
rc

hi
ve

Si
ze

47
10

5
9

54
10

8
12

M
ax

It
er

at
io

ns
16

48
75

7
14

42
71

9
70

4
18

02

U
nc

ov
er

ed
In

st
an

ce
by

m
od

el
16

10
14

19
7

9

M
in

im
um

co
ve

re
d

by
ru

le
11

10
15

10
17

8

A
nt

C
ol

on
y

Si
ze

26
9

86
36

34
74

St
ag

na
ti

on
lim

it
s

26
78

32
82

15
18

P
ru

ne
Fu

nc
ti

on
Ja

cc
ar

d
C

on
fid

en
t

C
ov

-

er
ag

e

C
os

t
M

ea
su

re
La

pl
ac

e
In

-

ve
rt

ed

Se
ns

it
iv

ity
an

d

Sp
ec

ifi
ci

ty

Ja
cc

ar
d

Se
le

ct
io

n
Fu

nc
ti

on
Se

ns
it

iv
ity

an
d

Sp
ec

ifi
ci

ty

Se
ns

it
iv

ity
an

d

Sp
ec

ifi
ci

ty

Se
ns

it
iv

ity
an

d

Sp
ec

ifi
ci

ty

Se
ns

it
iv

ity
an

d

Sp
ec

ifi
ci

ty

Se
ns

it
iv

ity
an

d

Sp
ec

ifi
ci

ty

Se
ns

it
iv

ity
an

d

Sp
ec

ifi
ci

ty

O
rd

in
al

A
tt

ri
bu

te
s

O
rd

in
al

w
it

h

R
an

ge

O
rd

in
al

w
it

h-

ou
t

R
an

ge

N
o

O
rd

in
al

O
rd

in
al

w
it

h-

ou
t

R
an

ge

O
rd

in
al

w
it

h

R
an

ge

O
rd

in
al

w
it

h

R
an

ge

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 107

Ta
bl

e
18

:
T

he
be

st
co

nfi
gu

ra
tio

ns
of

A
nt

-M
in

er
M

A
+

G
fo

un
d

by
I/

F-
R

ac
e,

w
he

re
th

e
st

ar
re

d
co

nfi
gu

ra
tio

ns
va

lu
es

ar
e

fo
un

d
in

Ta
bl

e
11

. C
on

fig
ur

at
io

ns
1

2
3

4
5

6

O
pe

ra
to

r
Se

le
ct

io
n

U
si

ng
G

ra
ph

U
si

ng
G

ra
ph

U
si

ng
G

ra
ph

U
si

ng
G

ra
ph

U
si

ng
G

ra
ph

U
si

ng
G

ra
ph

C
at

eg
or

ic
al

A
tt

ri
bu

te
s

A
rc

hi
ve

w
it

h

no
t

eq
ua

l

co
nd

it
io

n

U
si

ng
G

ra
ph

A
rc

hi
ve

w
it

h

no
t

eq
ua

l

co
nd

it
io

n

A
rc

hi
ve

w
it

h

no
t

eq
ua

l

co
nd

it
io

n

U
si

ng
G

ra
ph

U
si

ng
G

ra
ph

A
rc

hi
ve

to
p

ru
le

up
da

te
s

gr
ap

h

ph
er

om
on

e
m

od
el

A
t

th
e

en
d

of

ea
ch

it
er

at
io

n

A
t

th
e

en
d

of

ea
ch

it
er

at
io

n

F
ir

st
it

er
-

at
io

n
af

te
r

th
e

ar
ch

iv
e

is

cr
ea

te
d

N
ev

er
up

da
te

s
A

t
th

e
en

d
of

ea
ch

it
er

at
io

n

A
t

th
e

en
d

of

ea
ch

it
er

at
io

n

U
pd

at
in

g
gr

ap
h

ph
er

om
on

e

m
od

el
w

it
h

B
es

t
it

er
at

io
n

ru
le

A
ll

ru
le

s
ad

de
d

to
th

e
ar

ch
iv

e

A
ll

ru
le

s
ad

de
d

to
th

e
ar

ch
iv

e

B
es

t
it

er
at

io
n

ru
le

B
es

t
it

er
at

io
n

ru
le

A
ll

ru
le

s
ad

de
d

to
th

e
ar

ch
iv

e

V
al

ue
us

ed
to

up
da

te
gr

ap
h

ph
er

om
on

e
m

od
el

W
ei

gh
t

of
th

e

ru
le

in
th

e

ar
ch

iv
e

W
ei

gh
t

of
th

e

ru
le

in
th

e

ar
ch

iv
e

W
ei

gh
t

of
th

e

ru
le

in
th

e

ar
ch

iv
e

W
ei

gh
t

of
th

e

ru
le

in
th

e

ar
ch

iv
e

W
ei

gh
t

of
th

e

ru
le

in
th

e

ar
ch

iv
e

W
ei

gh
t

of
th

e

ru
le

in
th

e

ar
ch

iv
e

R
es

ta
rt

P
ro

ce
du

re
N

o
R

es
ta

rt
N

o
R

es
ta

rt
N

o
R

es
ta

rt
N

o
R

es
ta

rt
N

o
R

es
ta

rt
N

o
R

es
ta

rt

P
he

ro
m

on
e

lim
it

s
N

o
lim

it
s

N
o

lim
it

s
N

o
lim

it
s

Li
m

it
s

N
o

lim
it

s
N

o
lim

it
s

P
he

ro
m

on
e

In
it

ia
l

N
A

N
A

N
A

2.
49

1
N

A
N

A

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 108

Ta
bl

e
18

:
T

he
be

st
co

nfi
gu

ra
tio

ns
of

A
nt

-M
in

er
M

A
+

G
fo

un
d

by
I/

F-
R

ac
e,

w
he

re
th

e
st

ar
re

d
co

nfi
gu

ra
tio

ns
va

lu
es

ar
e

fo
un

d
in

Ta
bl

e
11

. C
on

fig
ur

at
io

ns
1

2
3

4
5

6

P
he

ro
m

on
e

Fa
ct

or
N

A
N

A
N

A
0.

80
9

N
A

N
A

P
he

ro
m

on
e

B
es

t
N

A
N

A
N

A
0.

91
7

N
A

N
A

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 109

The resulting configurations did show the impact of using a graph pheromone

model, since the option of sampling operators using the graph was used in every

winning configuration. This provides evidence for our first assumption that the

graph pheromone model works well with nominal values. Categorical attributes

showed interesting results as two options where used frequently: (1) using the

graph to select the categorical value, which is the expected behaviour; and (2)

sampling from archive was used when we added the not equal (6=) operator. Also,

using the value of the rule weight of the archive proved to produce better configura-

tions. The configuration of the quality functions showed an interesting behaviour.

While different functions were considering when pruning rules, the sensitivity and

specificity dominated the configuration for evaluating rules for selection, provid-

ing a good indication of the benefit of using this function—it is the same function

used in the original Ant-Miner.

Those six configurations are evaluated on the testing data sets (shown in Table

17) by running them 15 times in a tenfold cross-validation (a total of 150 individual

runs) on every data set. The average results are shown in Table 19. We also

measured the average runtime of the algorithms, shown in Table 20.

A particular interesting data set to look at is the Nomao, which is one of the

largest data sets with 34465 instances and 118 attributes: This case was noted

in Ant-MinerMA, where it was believed that the number of attributes did affect

the Ant-MinerMA performance. Notably, the proposed Ant-MinerMA+G frame-

work generated an improvement in the configuration Ant-MinerMA+G (3), where

it achieved an accuracy of 90.99% and a runtime of 846 seconds.

6.3 Comparison Against Classical Algorithms

In this section, we compared Ant-MinerMA+G (3) — the automatic generated

configuration with the best ranking — to the classical Ant-MinerMA approach,

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 110

cAnt-Miner and three well-known rule induction algorithms from the literature:

Jrip, C5.0 rules and PART. The comparison was performed using the same 25

data sets presented in Table 17. Table 21 shows the average classification accuracy

over 15 runs of tenfold cross-validation for the ACO-based algorithms, while the

accuracies for the remaining algorithms (which are not stochastic) are averaged

over one run of the tenfold cross-validation procedure. Table 22 shows the results

considering the average number of rules in the models generated by the algorithms.

There is no comparsion between runtime preformance, due to the fact that the

classical algorithms are deterministic so the runtime will be fractions of the ant

colony apporaches. For statistical testing of the differences in predictive accuracy

and number of rules in the models, we used the Friedman test with Holm’s post-

hoc test (Demšar 2006). The Friedman test was used since we are comparing

multiple algorithms (more than 2) over multiple data sets; the Holm’s post-hoc

test is used to adjust the p value given that we are performing multiple pair-wise

comparison. The algorithm marked as ‘Control’ is the algorithm with best ranking

— the remaining algorithms are compared against the control algorithm.

As seen in Table 21, C5.0 rules obtained the best average rank among all the

algorithms and its performance is statistically significantly better compared to the

remaining algorithms; all other algorithms achieved similar performance regard-

ing predictive accuracy. Considering the ACO-based algorithms, the automatic

generated configuration Ant-MinerMA+G (3) achieved the best ranking.

Interestingly, as shown in Table 22, Ant-MinerMA+G(3) is the best rank algo-

rithm in terms of average number of rules in this case, with a rank of 1.7, and

its performance is statistically significantly better compared to all remaining al-

gorithms except Jrip. The size of the model, measured by the number of rules

in this case, can be used as a proxy measure of interpretability — models with

a larger number of rules tend to be less interpretable to users that smaller ones.

For example in the diabetes data set, as shown in Table 21, the accuracy of C5.0

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 111

rules is 57.90% while the quality of Ant-MinerMA+G(3) is 55.87%, which shows

C5.0 rules with an improvement of around 2%; in terms of the average accuracy.

However, Ant-MinerMA+G(3) has an average of 16 rules per model, while C5.0

rules has an average of 359 rules in the model. This supports example the idea

that if a domain expert would like to understand the data, they are able to choose

a model based on a trade-off between predictive accuracy and size.

6.4 Summary

In this chapter, we introduced the concept of combining the graph pheromone

model and the archive pheromone model, based on the Ant-MinerMA and cAnt-

Miner algorithms. The use of the solution archive allows the algorithm to deal with

continuous attributes without requiring a discretisation procedure, while using the

graph pheromone model improves the predictive performance of algorithm for data

sets containing a large number of attributes.

Instead of manually designing a new algorithm to combine both pheromone

models, we proposed a fully configurable framework Ant-MinerMA+G using an au-

tomatic design process. I/F-Race, which is a state-of-the-art automatic configura-

tion tool, was used to generate six different configurations for the Ant-MinerMA+G

algorithm. Each one of those automatically designed configurations performed

competitively well against several classical algorithms from the literature.

Our experimental results have shown that such an automatically configured

design outperforms the cAnt-Miner algorithm to a significant level, and addressed

the problem that Ant-MinerMA faced when dealing with data sets containing a

large number of attributes. The automatic framework also provides the flexibility

to design an algorithm specific to a given data set.

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 112

Table 19: Average classification accuracy measured over 15 runs of tenfold cross-
validation. The last row of the table shows the average rank of the algorithm. The
best value for each given data set is shown in bold.

Ant-MinerMA+G’s configurations
Data set 1 2 3 4 5 6
breast-tissue 64.81 63.35 66.07 65.83 65.84 66.93
iris 94.98 94.8 94.4 95.16 95.02 95.33
wine 92.61 93.05 92 92.69 92.72 93.34
parkinsons 83.77 86.06 84.71 82.4 84.39 84.09
glass 67.52 68.72 65.04 66.42 63.15 68.27
breast-l 71.95 73.73 72.24 72.94 70.23 72.54
heart-h 60.9 61.81 60.08 59.47 59.67 60.39
heart-c 55.59 55.99 55.97 55.64 55.99 55.36
liver-disorders 61.44 63.76 64.41 62.47 62.97 61.89
breast-w 93.58 93.22 93.29 91.67 93.75 93.48
balance-scale 73.56 74.38 73.3 73.34 74.97 74
credit-a 85.29 85.59 85.08 85.1 85.3 85.01
pima 73.81 73.51 74.45 72.8 73.63 72.75
MolecularBiology 84.09 69.92 83.46 79.46 83.66 84.52
ChoralsHarmony 61.42 60.44 62.18 61.31 60.16 62.51
Mushroom 97.46 97.05 98.89 96.82 93.98 98.52
PenDigits 82.15 81.07 86.18 79.21 85.76 86.28
Magic 80.65 81.35 81.74 80.1 81.31 80.61
CardClients 81.42 81.18 81.44 80.82 81.55 81.07
Nomao 88.74 89.76 90.99 86.84 88.68 90.77
bank-additional 90.6 90.32 90.74 90.41 90.57 90.62
connect4 67.9 67.42 69.51 67.72 67.49 68.37
diabetes 56.01 54.09 55.87 56.1 54.24 55.89
ForestType 68.92 67.25 69.51 67.02 69.09 69.15
PokerHand 50.23 50.25 51.39 51.56 51.74 50.24
Rank 3.76 3.57 2.88 4.38 3.3 3

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 113

Table 20: Average runtime measured over 15 runs of tenfold cross-validation. The last
row of the table shows the average rank of the algorithm. The best value for each given
data set is shown in bold.

Ant-MinerMA+G’s configurations

Data set 1 2 3 4 5 6
breast-tissue 1.19 1.34 1.41 1.97 1.36 0.86
iris 0.48 0.94 0.86 1.04 0.93 0.75
wine 1.13 1.19 1.13 1.46 1.16 0.85
parkinsons 1.18 1.51 1.68 1.73 1.58 1.36
glass 1.51 2.11 2.15 3.09 1.93 2
breast-l 1.17 1.12 1.82 1.9 1.55 1.11
heart-h 1.66 2.37 3.02 3.7 2.33 2.47
heart-c 2.05 2.6 3.21 3.44 2.6 3.03
liver-disorders 1.36 1.87 2.21 2.59 1.81 1.52
breast-w 3.04 2.64 4.25 4.07 3.31 2.64
balance-scale 1.12 1.33 2.12 2.09 1.55 1.34
credit-a 2.44 2.24 4.43 4.06 3.16 2.56
pima 2.46 2.59 3.61 3.43 2.74 2.6
MolecularBiology 23.96 52.34 32.47 23.29 63.77 26.95
ChoralsHarmony 148.98 102.07 258.18 284.83 100.44 229.8
Mushroom 11.08 4.91 25.36 22.28 4.6 19.6
PenDigits 173.83 107.12 294.15 176 164.38 251.87
Magic 198.34 145.74 199.7 197.71 161.93 158.76
CardClients 458.64 188.1 830.95 409.17 445.07 546.12
Nomao 564.9 310.67 846.17 804.15 391.73 433.15
bank-additional 240.03 121.2 338.18 307.17 242.78 355.86
connect4 1263.02 878.05 4304.96 1405.23 1475.85 2950.35
diabetes 4043.66 4723.35 7208.3 2470.67 9669.81 6363.74
ForestType 49580.33 29274.07 72685.69 35223.81 64891.29 59500.34
PokerHand 6109.91 3415.63 11183.9 10218.68 6755 7442.81
Average Rank 2.24 2.36 5.24 4.64 3.36 3.16

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 114

Table 21: Average classification accuracy measured over 15 runs of tenfold cross-
validation for the ACO-based algorithms, while the accuracies of the remaining al-
gorithms are averaged over one run of tenfold cross-validation. The last row of the table
shows the average rank of each algorithm. The best value for each given data set is
shown in bold.

Data set cAM AMMA AMMA+G PART Jrip C5.0 rules
(Control)

breast-tissue 64.24 63.15 66.07 64.36 59.18 64.17
iris 94.27 94.00 94.40 93.33 92.00 94.65
wine 93.52 91.39 92.00 91.54 92.68 92.71
parkinsons 85.22 85.50 84.71 86.05 84.53 80.87
glass 59.18 64.14 65.05 72.81 65.71 70.95
breast-l 76.17 71.85 72.25 68.94 69.26 73.06
heart-h 64.81 62.22 60.08 53.83 52.84 56.11
heart-c 57.42 56.46 55.97 53.83 52.84 56.11
liver-disorders 62.26 63.77 64.41 62.70 66.34 68.06
breast-w 94.28 93.41 93.29 94.19 93.67 93.65
balance-scale 68.34 76.70 73.30 77.12 73.92 72.15
credit-a 85.74 85.14 85.08 83.48 86.09 86.39
pima 67.45 74.88 74.45 71.73 73.55 74.70
MolecularBiology 71.14 69.78 83.46 92.66 93.29 94.43
ChoralsHarmony 60.59 63.16 62.18 73.57 69.83 73.53
Mushroom 98.23 99.30 98.89 100.00 99.98 100.00
PenDigits 56.90 78.87 86.18 96.89 96.35 97.12
Magic 70.41 82.21 81.74 85.57 84.55 86.30
CardClients 81.59 81.62 81.44 77.94 81.76 81.98
Nomao 90.66 89.38 90.99 95.97 95.39 95.24
bank-additional 89.87 90.11 90.74 89.71 91.26 91.29
connect4 67.83 68.84 69.51 78.93 75.43 81.83
diabetes 54.17 55.89 55.87 51.17 57.08 57.90
ForestType 63.07 69.06 69.85 93.48 89.55 94.68
PokerHand 50.20 51.70 51.38 74.44 59.13 82.60

Rank 4.28 3.96 3.92 3.34 3.40 2.10
p-value 3.7E-5 4.4E-4 5.8E-4 0.01 0.02 -
Holm’s α 0.01 0.0125 0.0167 0.025 0.05 -

CHAPTER 6. ANT-MINERMA+G FOR CLASSIFICATION 115

Table 22: Average number of rules measured over 15 runs of tenfold cross-validation for
ACO-based algorithms, while the results for the remaining algorithms are average over
one run of tenfold cross-validation. The last row of the table shows the average rank of
the algorithm. The best value for each given data set is shown in bold.

Data set cAM AMMA AMMA+G PART Jrip C5.0 rules
(Control)

breast-tissue 6.90 6.45 6.00 10.90 6.00 9.50
iris 4.99 4.61 4.37 3.80 3.30 3.90
wine 5.10 4.83 3.88 4.30 3.90 5.00
parkinsons 5.84 5.69 4.15 6.40 3.80 6.10
glass 10.08 7.84 7.88 15.20 7.20 14.00
breast-l 5.88 7.00 5.74 18.40 3.10 4.70
heart-h 8.26 7.74 6.89 41.30 3.30 25.00
heart-c 9.72 8.68 7.95 41.30 3.30 25.00
liver-disorders 7.72 8.01 6.07 7.50 4.30 13.10
breast-w 8.78 6.95 4.91 6.70 5.40 8.30
balance-scale 12.29 8.98 6.70 29.90 12.10 17.90
credit-a 7.56 8.44 6.30 33.40 4.10 9.50
pima 10.04 10.29 7.01 7.50 3.50 11.80
MolecularBiology 11.70 14.48 8.71 100.10 16.60 51.30
ChoralsHarmony 46.25 42.48 42.54 334.80 129.00 197.20
Mushroom 5.83 12.12 4.67 12.10 8.50 18.00
PenDigits 38.30 31.76 22.27 80.30 75.70 122.80
Magic 36.33 25.61 11.79 46.20 22.70 80.50
CardClients 14.33 25.46 12.80 1334.20 7.30 53.90
Nomao 15.17 27.88 12.53 315.30 53.80 75.30
bank-additional 14.74 22.85 12.82 1020.30 11.90 111.10
connect4 17.77 27.31 17.03 3624.70 137.00 1305.30
diabetes 18.45 54.91 16.99 14147.60 15.20 359.50
ForestType 52.40 74.28 28.08 6941.30 1392.14 5517.20
PokerHand 28.63 30.47 21.61 66463.10 103.00 9617.60
Rank 3.52 3.44 1.7 5.2 2.14 5.00
p-value 5.8E-4 0.001 - 3.7E-11 0.4 4.4E-10
Holm’s α 0.017 0.025 - 0.01 0.05 0.0125

Chapter 7

Data Stream Classification with

Ant Colony Optimization

Krempl et al. (2014) highlighted the need to create simpler models, considering not

only accuracy, but also considering the interpretability of the knowledge discovered

by data stream algorithms. This was one of the recommendations based on the

study of real-world applications and the shortcomings of the existing approaches.

Notably, current rule induction algorithms in the field are implemented in an

incremental approach (Gama and Kosina 2011; Stahl, Gaber and Salvador 2012),

which leads to large and hard to interpret models. Ensemble approaches are shown

to run successfully in data stream classification (Minku and Yao 2012; Baena-

Garcıa et al. 2006; Street and Kim 2001; Almeida, Kosina and Gama 2013), but

an ensemble architecture increases the complexity of the models produced. Our

aim in this work is to produce interpretable simple models to be used in data

stream classification.

The majority of Ant Colony Optimization (ACO) rule induction algorithms

have proved to be successful in producing both accurate and interpretable clas-

sification models. Considering that the ACO-based classification algorithms are

usually limited to cope only with categorical attributes, continuous attributes

116

CHAPTER 7. SANT-MINER DATA STREAM CLASSIFICATION 117

are usually discretised in a pre-processing stage. cAnt-Miner (Otero, Freitas and

Johnson 2008, 2009) was the first Ant-Miner extension to cope with continu-

ous attributes directly by employing a dynamic discretisation process, while Ant-

MinerMA (Helal and Otero 2016, 2017) used an archive-based pheromone model

to handle continuous attributes directly without discretisation process.

Both Ant-MinerMA and Ant-MinerMA+G approaches showed an improvement

in runtime and competitive performance without using discretisation procedures.

Attributes were treated directly as continuous, ordinal, or categorical, in the rule

creation process. Those approaches are the first step in applying ACO rule induc-

tion algorithms to data stream, where we do not have access to the whole data

sets and will not be able to discretise continuous attributes.

In this chapter, we propose to combine and integrate the archive and graph

pheromone models to implement a Pittsburgh-based approach—a learning proce-

dure which creates a rule list at each iteration (Section 2.3.2)—for data stream

mining. The rationale is to use a construction graph to select attributes and de-

termine their order, which is naturally a combinatorial problem; a solution archive

to select values to create attribute tests, which is a mixed-variable problem; and

the Pittsburgh-based learning approach to produce the best rule list, allowing the

algorithm to cope with both term and rule interactions.

7.1 Stream Ant-Miner

The proposed algorithm, called stream Ant-Miner (sAnt-Miner), is an anytime

prediction data stream algorithm, using a learning procedure where each ant cre-

ates a complete rule list in a single iteration. sAnt-Miner continuous learning

replaces the classification model (rule list) rather than incrementing it, as illus-

trated in Figure 11. The high-level view of the algorithm comprises 2 layers. The

CHAPTER 7. SANT-MINER DATA STREAM CLASSIFICATION 118

Figure 11: Overview of how sAnt-Miner works.

first layer is responsible for classifying the incoming data stream (anytime predic-

tion layer); the second layer is responsible to update the model used in the first

layer by learning from a subset of the labelled data (learning layer).

The learning layer consist of a buffer that stores the labelled data, which is

used to trigger the learning and update the model. When the buffer is full or a

high percentage of misclassification occurs, a learning procedure is triggered to

update the model from the anytime prediction layer, allowing the algorithm to

refine the model and/or adapt to a concept drift.

In real world scenarios, the unlabelled instances are first classified by the

model, then either in an automated or manual fashion, these instances are la-

belled and feedback to the algorithm to train on them. An example is a credit

score application, where an operation would be first classified by the algorithm,

then receive a label (e.g., fraudulent or not) after a period of time and feedback

to the model to learn from it.

CHAPTER 7. SANT-MINER DATA STREAM CLASSIFICATION 119

Algorithm 8: High-level pseudocode of the learning procedure of sAnt-
Miner
1 Rgb ← Current model
2 Rgb.Quality ← Evaluate(Buffer)
3 while t < number of iterations do
4 Rib ← Rgb

5 while m < Colony size do
6 Ri ← Create Rule List()
7 Ri.Quality ← Evaluate(Ri,Buffer)
8 if Rib.Quality <Ri.Quality then
9 Rib ← Ri

10 end
11 end
12 PheromoneModel.update(Rib)
13 if Rgb.Quality <Rib.Quality then
14 Rgb ← Rib

15 end
16 end
17 Buffer.Clear()
18 return Rgb

7.1.1 Overview of the approach

At the very first stage, the classifier used by sAnt-Miner is a majority classifier

based on the labelled instances and it remains so until a learning procedure is

triggered. Therefore, the initial prediction is a random choice between any of the

available class values, then as each labelled instance arrives, a majority classifier

is used. When a learning procedure is completed and a new classifier created, the

current classifier is replaced if the new classifier has a higher predictive quality.

Any subsequent prediction is then performed by the new classifier. Note that in

all cases, predictions at this layer are very fast even when a classifier different than

a majority one is used. Additionally, the classifier is not incrementally generated

as it occurs in algorithms such as VFDT (Domingos and Hulten 2003), VFDR

(Gama and Kosina 2011) and Ge-Rules (Le et al. 2014). Instead, the classifier is

replaced between executions of the learning phase. Therefore, the classifier used

CHAPTER 7. SANT-MINER DATA STREAM CLASSIFICATION 120

in this layer does not suffer from the potential problem of growing indefinitely

(Gama and Kosina 2011; Stahl, Gaber and Salvador 2012).

7.1.2 Learning Layer

The learning phase of sAnt-Miner uses the buffer of labelled instances and creates a

new classifier using an ACO-based procedure. This procedure uses a novel hybrid

graph and archive pheromone model, combining the strengths of both: the graph is

used to select the attributes to be used while individual archives are used to create

rule conditions. As shown in previous chapters (5,7), there are advantages in using

a hybrid integrated pheromone model, as the archive provides the possibility of

handling continuous attributes without the need to know the complete attribute

values’ distribution, while the graph helps to identify the best attributes to add

to the antecedent of rules and their sequence. A high-level pseudocode of the

learning algorithm is shown in Algorithm 8.

At the start of the learning procedure the current model is re-evaluated using

the buffer instances (line 2). Then, each ant in the colony samples a new rule

list from the current pheromone model (line 6). Once all rule lists are generated,

pruned and evaluated using the buffer instances, the iteration-best rule list is used

to deposit pheromone. If the quality of the iteration-best rule list is higher than

the current model (Rgb), it replaces the current model; otherwise, the algorithm

continues using the current model. Note that if the first iteration does not create

a model better than the current model (Rgb), the current model is used to update

the pheromones. The procedure to create a new rule list is repeated until the

maximum number of iterations has been reached. At the end of the learning

procedure, the buffer is cleared and the best model is returned. Note that the

returned model could potentially be the same model in use, if any of the created

models has not achieved better quality.

The learning procedure is designed to be fast, running a limited number of

CHAPTER 7. SANT-MINER DATA STREAM CLASSIFICATION 121

Figure 12: Simplified hybrid construction graph.

iterations each time it is triggered. If new instances requiring classification arrive

before it is completed, the current model (anytime layer) performs the classifica-

tion.

Pheromone Model

The hybrid construction graph consists of a fully connected graph, where each

attribute in the data set is represented by a node. Each node holds an archive

to sample values for the attribute. An additional archive is used by continuous

attribute nodes to sample an operator (e.g.,“≤” or “>”). Two additional nodes

are added to represent the start (S) and end (E) of the antecedent of a rule. The

pheromone model consists of several levels, which correspond to the indexes of

the rule being created (e.g., 1 for the first rule, 2 for the second rule and so forth).

This allows the algorithm to store pheromone and archive values for different

rules in order to create a Pittsburgh-style rule list (Otero, Freitas and Johnson

2013). Figure 12 illustrates the hybrid construction graph and the underlying

pheromone model. Pheromone is deposited on the edges of the construction graph,

representing the attributes and their order to create rules; the operator and values

CHAPTER 7. SANT-MINER DATA STREAM CLASSIFICATION 122

are sampled from individual archives.

Each archive is sorted by the quality of the rule where the entry (value/operator)

appears. The weight of an entry j is calculated by:

wj = 1
qK
√

2π
e
−(rank(j)−1)2

2q2K2 (37)

where q is a user-defined value used to control the extent of the top-ranked entry

influence on the sampling of new values and K is the size of the archive. The

weight of an entry is used during the sampling of new values as an indicator for

the level of attractiveness of this value. The greater the weight of an entry, the

higher the probability of sampling a new value around it.

Rule List Creation

The rule list creation is triggered when the buffer is full or the number of misclas-

sified instances of one class is E percent of the buffer. When the rule list creation

process starts, m ants create rule lists by traversing the construction graph. An

ant uses the pheromone model to create multiple rules covering different training

instances by specifying a tour identification, which corresponds to the index of

the rule being created—0 for the first rule, 1 for the second and so forth. This

way, each ant will use pheromone entries corresponding to the level of the rule

(tour) being created during the rule construction process. The pheromone entries

are stored in a pheromone matrix, where column and row indexes indicate the

edge between two vertex. The probability of an ant to follow the edge leading to

a vertex vj when creating the rule t and located at vertex vi is given by:

P t
vj

=
τ tvi,vj∑

k∈λvi

τ tvi,vk

(38)

where τ tvi,vj
is the amount of pheromone associated with the entry (t, vi, vj),

and λvi
is the set of neighbouring vertices of vertex vi. For each node selected by

CHAPTER 7. SANT-MINER DATA STREAM CLASSIFICATION 123

an ant, a term (operator, value) is sampled from the node’s archive(s) based on

the type of the attribute. The rule creation stops when the ant chooses to visit

the end node of the graph. At this point, the rule is pruned to remove irrelevant

attributes added due to the stochastic nature of the creation procedure, and the

value predicted by the rule (consequent) is set to the majority class value observed

among the covered instances. The instances covered by the rule are removed, and

another rule is created until the number of instances remaining is equal to or lower

than a user-defined threshold of uncovered instances.

This new hybrid model approach takes full advantage of the hybrid construc-

tion graph using the graph-based approach to select the attributes and their order,

and solution archives to determine operator and values for terms. Additionally,

the rule list creation process automatically learns the minimum number of at-

tributes required by each rule, since the construction graph includes an end (E)

node and pheromone is increased between the last attribute node in a rule and

the end node. Therefore, every time pruning removes attributes from a rule, the

pheromone update reflects this change. Over time, the creation process will not

include irrelevant attributes, relying less on the pruning procedure.

Archive Sampling

At start of the learning procedure, random values are used since the solution

archives are empty. Sampling only starts when an archive is full—the size of the

archive is determined by a user-defined parameter. For nominal attributes, the

relational operator is set to “equal” (=) and a value is sampled from the archive

based on ACOMV nominal value sampling as shown in Section 4.2.1.

For continuous attributes, each node has two archives: one for the relational

operator and another for the value. The relational operator is sampled using a

nominal sampling procedure, where the possible values are {≤, >}. The value is

sampled using a continuous sampling procedure as shown in Section 4.2.1.

CHAPTER 7. SANT-MINER DATA STREAM CLASSIFICATION 124

Pruning

After the creation of a rule, the rule is pruned using a single pass procedure

through the buffer to remove irrelevant rule terms. The pruning procedure calcu-

lates the coverage of each rule term based on the instances in the buffer. Then,

each term is added to a new rule one at a time in the same order until the quality

of the rule decreases or the addition of a term makes the rule cover less than a

user-specified minimum number of instances. The remaining unused terms are

then discarded.

For the purpose of pruning, the quality of a single rule is measured as sensitivity

× specificity, the same measure employed in Ant-Miner, given by:

Q =

Sensitivity︷ ︸︸ ︷
TP

TP + FN
×

Specificity︷ ︸︸ ︷
TN

FP + TN
(39)

where TP is the number of covered instances that are correctly classified; FN is

the number of instances that are not covered that have the same class as the rule;

FP is the number of covered instances that are incorrectly classified; TN is the

number of instances that are not covered and do not have the same class as the

rule.

Pheromone update

The pheromone update is divided into two steps: the first step updates the edges

of the construction graph, while the second updates each individual archive.

The graph update starts with pheromone evaporation, simulated by decreasing

the amount of pheromone of each entry by a user-defined factor ρ. Then, the

pheromone of the entries used in the iteration-best rule list is increased based on

the quality of the rule list, which corresponds to its predictive accuracy measured

CHAPTER 7. SANT-MINER DATA STREAM CLASSIFICATION 125

on the buffer instances. The pheromone update is given by:

τt,vi,vj
=


ρ× τt,vi,vj

, if(t, vi, vj) /∈ Rib

ρ× τt,vi,vj
+Q(Rib), if(t, vi, vj) ∈ Rib

(40)

where ρ is the user-defined evaporation factor, τt,vi,vj
is the amount of pheromone

associated with the entry (t, vi, vj), t is the tour identification (i.e., the t rule in the

rule list), vi is the start vertex of the edge, vj is the end vertex and Q(Rib) is the

quality of the iteration-best rule list. The values given by Equation (40) are limited

to the interval [τmin, τmax], following the same approach as the MAX −MIN

Ant System (MMAS) (Stützle and Hoos 2000). This procedure is the same as

the update procedure in the Pittsburgh-based cAnt-MinerPB (Otero, Freitas and

Johnson 2013).

After updating the graph edges, each individual archive of a node (attribute)

used in a rule is updated. The update consists of adding a pair (value, quality)

to the archive at the level t, where the quality corresponds to the rule list quality.

Note that for continuous attributes, a pair (operator, quality) is also added to

the operator archive. After all pairs are added, each archive is then sorted based

on the pairs’ quality. The weight associated with each pair is recalculated based

on their (updated) rank. Finally, the low quality pairs are removed to resize the

archive to K pairs.

7.1.3 Rule list creation walk-through

Let us consider a subset of the airline data set (Lichman 2013). This subset data

set has 2 attributes: a categorical attribute (A1); and a continuous attribute (A2).

The target class attribute has 2 values. Table 23 shows a subset of the data set.

After a number of iterations, the pheromone matrix has a depth of 2 (Table

24) as the algorithm needs to create only 2 rules to classify the data. In Table 24,

CHAPTER 7. SANT-MINER DATA STREAM CLASSIFICATION 126

Table 23: A subset of the airline data set.

A1 A2 Class
CO 269 1
US 1558 1
AA 2400 1
AA 2466 1
AS 108 0
CO 1094 1
DL 1768 0
DL 2722 0
DL 2606 0
AA 2538 1
CO 223 1
DL 1646 1

S and E denote the Start and End node in the path traversed by the ant. Table

25 presents the values on the individual archives for the attributes A1 and A2. In

order to create a new rule list, the algorithm performs the following steps.

Table 24: The pheromone matrix with 2 levels depth.

1 depth 2 depth
Source Target Node Target Node
node S A1 A2 E S A1 A2 E

S - 0.49 0.51 - - 0.56 0.44 -
A1 - - 0.42 0.58 - - 0.45 0.55
A2 - 0.28 - 0.72 - 0.33 - 0.67
E - - - - - - - -

Step 1(a): Starting from the Node S at depth 1, we consider the probability

that an ant will choose to visit either A1 or A2:

P 1
vA1

= 0.49

P 1
vA2

= 0.51
(41)

An ant will choose A1 with a probability of 0.49, and it will choose A2 with a

probability of 0.41. Lets consider for example, that a value of 0.51 is randomly

CHAPTER 7. SANT-MINER DATA STREAM CLASSIFICATION 127

Table 25: Individual archive values with 2 level depth.

1 depth

A1 A2
Value Operators Value

Weight Value Quality Weight Value Quality Weight Value Quality

0.379 DL 0.984 0.379 > 0.984 0.379 2373 0.984
0.241 AA 0.890 0.241 > 0.890 0.241 1608 0.890
0.062 CO 0.768 0.062 > 0.768 0.062 2224 0.768
0.007 US 0.443 0.007 > 0.443 0.007 696 0.443

2 depth

A1 A2
Value Operators Value

Weight Value Quality Weight Value Quality Weight Value Quality

0.379 AA 0.984 0.379 ≤ 0.984 0.379 3421 0.984
0.241 DL 0.890 0.241 > 0.890 0.241 1675 0.890
0.062 US 0.768 0.062 > 0.768 0.062 3347 0.768
0.007 CO 0.443 0.007 ≤ 0.443 0.007 1253 0.443

generated, this mean that the ant will choose A2 as the attribute for its first term.

Step 1(b): Since A2 is a continuous attribute, there are two archives: one

for the operator and one for the value. The first action is to select an operator

from the archive. Using Equations (16) and (17), the probability of choosing each

operator is given by1:

α1
A2>

= wji
uj
∗ q
κ

= 0.379
4 ∗ 0.263

1 = 0.025

α1
A2≤

= q

κ
= 0.26

P 1
A2>

= 0.025
0.285 = 0.087

P 1
A2≤

= 0.26
0.285 = 0.923

(42)

If the ant then uses e.g. the random number 0.43, the operator used will be ≤.

Step 1(c): The second action is to sample the value for attribute A2. The ant

starts by randomly choosing a rule to build the solution around. The probability
1The values we use for the archive configurations are K = 4 and q = 0.263 and ξ = 0.655.

CHAPTER 7. SANT-MINER DATA STREAM CLASSIFICATION 128

of choosing each entry of the archive is calculated using Equation (13), which

produces the values shown in Equation (43):

P 1
1 = 0.379

0.689 = 0.55

P 1
2 = 0.241

0.689 = 0.35

P 1
3 = 0.379

0.689 = 0.09

P 1
4 = 0.379

0.689 = 0.01

(43)

where P 1
1 is the probability to use the entry 1 at depth 1 for sampling the contin-

uous attribute, P 1
2 is the probability to use the entry 2 at depth 1 for sampling

the continuous attribute and so forth. Using the above probabilities, a randomly

generated number will decide on which value to use as the mean value in the

sampling of the new value. If the ants uses e.g. a random value of P = 0.685, the

new value for A2 will be sampled around the entry 2 (value 1608). The new value

is sampled using Equations (14) and (15), as shown in Equation (44):

δ1 = ξ
R∑

r=1,j 6=r

|Sj,a − Sr,a|
R− 1

= 0.655 ∗ 765 + 616 + 912
3

= 0.655 ∗ 254.7 = 166.88

V = Gaussian(1608, 166.88) = 1689

(44)

The final value selected is 1689, and then the ant adds the term A2 ≤ 1689 to

its current rule.

Step 1(d): Moving from attribute A2, we need to consider selecting another

CHAPTER 7. SANT-MINER DATA STREAM CLASSIFICATION 129

attribute or to end the construction of the rule:

P 1
vA1

= 0.424

P 1
vA2

= −

P 1
vE

= 0.58

(45)

An ant will choose A1 with a probability of 0.42, and it will choose the end

node with probability of 0.58. Lets consider that a random value of 0.77, for

example, is selected. This mean that the ant will select the end node, finishing

the construction of the rule.

Step 1(e): The final action is to calculate the rule consequent by finding the

instances that are covered by the rule. Looking at Table 23, instances {1, 2, 5, 6,

10, 11} have a value lower than or equal to 1689. Therefore, the majority class

value among those 6 instances is 1. The complete created rule is:

IF A2 ≤ 1689 Then Class 1 (46)

Step 2(a): Starting again from the node S but at depth 2, we consider the

probability that an ant will choose to visit either A1 or A2:

P 2
vA1

= 0.56

P 2
vA2

= 0.44
(47)

An ant will choose A1 with a probability of 0.56, while it will choose A2 with

a probability of 0.44. Lets consider the value 0.23 is randomly generated, this

means that the ant will choose A1 as its first term.

Step 2(b): Since A1 is a categorical attribute, there is only one archive for the

value; the operator in this case is =(equal). Selecting the value for the attribute is

CHAPTER 7. SANT-MINER DATA STREAM CLASSIFICATION 130

calculated using the Equations (16) and (17), as shown by the following equations:

α2
A1AA

= wji
uj
∗ q
κ

= 0.379
1 ∗ 0.263

1 = 0.1

α2
A1DL

= wji
uj
∗ q
κ

= 0.241
1 ∗ 0.263

1 = 0.06

α2
A1US

= wji
uj
∗ q
κ

= 0.062
1 ∗ 0.263

1 = 0.02

α2
A1CO

= wji
uj
∗ q
κ

= 0.007
1 ∗ 0.263

1 = 0.002

α2
A1AS

= q

κ
= 0.263

1 = 0.263

P 2
A1AA

= 0.1
0.4432 = 0.226

P 2
A1DL

= 0.06
0.4432 = 0.135

P 2
A1US

= 0.02
0.4432 = 0.045

P 2
A1CO

= 0.002
0.4432 = 0.005

P 2
A1AS

= 0.263
0.4432 = 0.593

(48)

If the ant then uses e.g. the random number 0.38, the value used will be “DL”.

The second rule will decide on its consequent using the remaining instances.

Step 2(c): Moving from attribute A1, we need to consider selecting another

attribute or to end the construction of the rule:

P 1
vA1

= −

P 1
vA2

= 45

P 1
vE

= 0.55

(49)

An ant will choose A2 with a probability of 0.45, and it will choose the end node

with probability of 0.55. Lets consider that the value 0.51 is randomly generated,

this mean that the ant will select the end node, finishing the construction of the

rule.

Step 2(d): The final action is to calculate the rule consequent by finding

CHAPTER 7. SANT-MINER DATA STREAM CLASSIFICATION 131

the instances that are covered by the rule. Looking at Table 23, instances {7,8,9}

have a value higher than 1689 and have A1 equal to “DL”. Therefore, the majority

class value among those 3 instances is 0. The complete created rule is:

IF A1 = DL Then Class 0 (50)

Step 3(a): Since there are only three remaining instances {3, 4, 12}, the

algorithm chooses to cover them using a default rule predicting the majority class

value among them (Class 1 in this case). The final rule list and its quality on the

training set are given below:

IF A2 ≤ 1689 Then 1

IF A1 = DL Then 0

IF no condition Then 1

(51)

Quality =Correctly Classified
Total = 11

12 = 0.91 (52)

7.2 Summary

In this chapter, we introduce sAnt-Miner for rule induction in data stream classifi-

cation. sAnt-Miner uses a novel hybrid pheromone model, combining both graph

and archive pheromone models to creating classification model from data streams.

sAnt-Miner’s hybrid pheromone model allowed the algorithm to benefit from the

archive model in creating continuous attributes without the need for discretisation

in a preprocessing step; and to benefit from the graph model in selecting the best

attributes to use when creating rules.

Chapter 8

Results for sAnt-Miner

The proposed sAnt-Miner was implemented1 using the Massive Online Analysis

(MOA) (Bifet et al. 2010) framework for data stream mining. MOA includes

a collection of machine learning algorithms — such as classification, regression,

clustering, outlier detection, concept drift detection and recommender systems

— as well as stream generators and evaluation measures. We used a total of 13

standard benchmark data sets in the evaluation: 6 real world data sets (Airplane,

Connect4, Electricity, Diabetes, ForestType, and PokerHand) available in the UCI

repository (Lichman 2013); the “Give Me Some Credit” (GMSC) data set from

Kaggle repository2; the spam corpus data created as the result of a text mining

process on an online news dissemination system (Katakis et al. 2009); and 5

synthetic data sets generated using the MOA random data generator. The details

of the data sets used on the experiments are shown in Table 26.

In order to determine optimal values for sAnt-Miner’s user-defined parameters,

we used the I/F-Race procedure (López-Ibáñez et al. 2016). To maintain the

comparison fair, 3 different synthetic data sets were used for tuning. Table 27

presents the details of the data sets used for tuning. The range of sAnt-Miner’s
1https://github.com/AyahHelal/StreamAntMiner
2https://www.kaggle.com/c/GiveMeSomeCredit

132

CHAPTER 8. RESULTS FOR SANT-MINER 133

Table 26: Summary of the data sets used in the experiments.

Attributes

Data set # Instances # Categorical # Continuous # Classes

Real world
Airplane 539383 4 3 2
Connect4 67557 42 0 3
Diabetes 101766 34 11 3
Electricity 45312 1 7 2
Forest Type 581012 44 10 7
GMSC 150000 0 10 2
Spam 9831 504 0 2
Poker Hand 829201 5 5 10

Artificial
Hyperplane Generator 1000000 0 10 2
LED Generator 1000000 0 24 10
Random RBF Generator 1000000 0 10 2
RT Generator 1000000 5 5 3
SEA Generator 1000000 0 3 2

Table 27: The data sets used in the I/F-Race procedure, all the data sets were generated
using the MOA data generator.

Attributes

Data set # Instances # Categorical # Continuous # Classes

Wave Form Generator 100000 0 40 3
Sine Generator 100000 0 4 2
Agrawal Generator 100000 3 6 2

Table 28: sAnt-Miner’s parameters range used by I/F-Race in the tuning phase.

Parameters Range Final value
Buffer Size [250, 1500] 1459
Colony Size [5, 20] 6
ξ [0.00, 1.00] 0.367
q [0.00, 1.00] 0.119
Archive Size [5, 50] 17
Max Iteration [5, 70] 54
Buffer Trigger [0.00, 1.00] 0.748
Minimum Cases [5, 30] 30
Uncovered Percentage [0.00, 0.2] 0.176

CHAPTER 8. RESULTS FOR SANT-MINER 134

parameter values used as input for I/F-Race and the final selected values of sAnt-

Miner’s parameters are presented in Table 28.

8.1 Experimental Setup

We compared sAnt-Miner against VFDR and Ge-Rules, both algorithms are well-

known rule induction data stream classification algorithms. VFDR is available

on MOA framework; Ge-Rules was downloaded from the Git-Hub repository3

and upgraded to work on (2016.10) version of MOA. We used the prequential

10-fold bootstrap validation with ADaptive WINdowing (ADWIN) (Bifet and

Gavalda 2007) evaluation window; ADWIN has theoretical guarantees that the

chosen size is optimal without the need to decide beforehand on the size of the

sliding window (Bifet et al. 2015). For both VFDR and Ge-Rules, the values

of a single ADWIN evaluation are averaged over the 10 folds; for sAnt-Miner the

values of 15 ADWIN evaluations are averaged over the 10-fold bootstrap validation

with ADWIN evaluation window — a total 150 evaluations — to count for the

stochastic nature of the algorithm.

1. Prequential accuracy: instances are first classified by the algorithm (test)

before they are available for the learning procedure (training);

2. Runtime: runtime of a single prequential 10-fold bootstrap validation with

ADWIN evaluation window;

3. Rules count: the number of rules in the generated model;

4. Kappa Statistics: it takes into account the class unbalance of the data

stream asdiscussed in Section 3.4.

In order to measure the statistical significance of the differences in algo-

rithms’ predictive performance, we used the non-parametric Friedman test with
3https://github.com/thienle2401/G-eRules

CHAPTER 8. RESULTS FOR SANT-MINER 135

the Holm’s post-hoc test (Demšar 2006). Tables 29-34 show the average values of

the ADWIN prequential evaluation for each of the different measures. In each of

these tables, the best value for each data set is shown in bold; the last three rows

presents the results of the Friedman statistical test.

Table 29: Average prequential accuracy computed over 15 runs of 10-folds bootstrap
validation with adwin evaluation window.

Data set Ge-Rules VFDR sAnt-Miner
Airplane 57.92 56.06 59.21
Connect4 69.27 65.67 66.49
Diabetes 50.81 53.83 56.06
Electricity 49.49 70.40 89.18
ForestType 63.48 64.35 70.30
GMSC 93.32 93.28 93.35
Spam 92.76 82.40 93.00
PokerHand 53.07 59.58 56.05
HyperplaneGenerator 50.00 71.00 69.60
LEDGenerator 51.28 47.72 47.86
RandomRBFGenerator 52.14 78.04 68.45
RTGenerator 64.58 60.76 57.62
SEAGenerator 66.68 80.29 84.02

Average rank 2.308 2.154 1.538
p-value 0.04986 0.11666 -
Holm’s α 0.025 0.05 -

Table 29 presents the results regarding the prequential accuracy. sAnt-Miner

is the most accurate algorithm, achieving an average rank of 1.54; VFDR ranked

second with 2.15, followed by Ge-Rules with 2.31. The p-value obtained by sAnt-

Miner compared to Ge-Rules 0.05 and VFDR 0.12 are not statistical significant

according to the non-parametric Friedman test with Holm’s post-hoc test at the

5% level. Overall, all algorithms achieved a similar prequential accuracy. In both

the Electricity and Forest Type data sets, sAnt-Miner achieved larger improve-

ment over VFDR and Ge-Rules, while in the Random RBF Generator data set

VFDR achieved a large improvement over sAnt-Miner and Ge-Rules.

CHAPTER 8. RESULTS FOR SANT-MINER 136

Table 30: Average runtime in seconds computed over 15 runs of 10-folds bootstrap
validation with adwin evaluation window.

Data set Ge-Rules VFDR sAnt-Miner
Airplane 2407.67 172.53 187.72
Connect4 101.52 13.30 65.40
Diabetes 1248.68 23.53 82.37
Electricity 15.13 45.72 20.79
ForestType 1099.44 566.90 538.75
GMSC 30.70 327.65 58.28
Spam 88.88 10.79 138.78
PokerHand 1570.68 1259.51 505.93
HyperplaneGenerator 180.85 2809.90 975.91
LEDGenerator 3009.83 3663.33 2027.74
RandomRBFGenerator 191.29 6660.39 440.59
RTGenerator 874.90 5874.18 1240.41
SEAGenerator 137.65 2383.27 678.19
Average rank 1.923 2.231 1.846
p-value 0.8445 0.3267 -
Holm’s α 0.05 0.025 -

Table 30 presents the results regarding the runtime. sAnt-Miner is the fastest

algorithm, achieving an average rank of 1.85; Ge-Rules ranked second (rank of

1.92) followed by VFDR (rank of 2.23). Again, no statistically significant dif-

ferences were observed with p-values 0.85 and 0.33 for Ge-Rules and VFDR re-

spectively. The results obtained by sAnt-Miner show that, although the proposed

approach has an iterative nature, it is still fast to run. Further improvement to

the runtime could be achieved by parallelising the ACO procedure.

The results of the Kappa measures depends on the nature of the data sets

used. The negative indicate the the compared algorithm perform worse than a

naive classifier. Table 31 presents the results regarding the Kappa measure. sAnt-

Miner is the most accurate algorithm, achieving an average rank of 1.54; VFDR

ranked second 2.15 followed by Ge-Rules 2.31. It is interesting to note that Ge-

Rules has negative kappa values in the PokerHand and Hyperplane generator data

CHAPTER 8. RESULTS FOR SANT-MINER 137

Table 31: Average Kappa computed over 15 runs of 10-folds bootstrap validation with
adwin evaluation window.

Data set Ge-Rules VFDR sAnt-Miner
Airplane 15.27 2.38 13.43
Connect4 22.18 0.00 8.92
Diabetes 2.94 0.04 9.63
Electricity 2.31 41.77 78.39
ForestType 10.27 13.05 29.41
GMSC 0.00 1.35 10.31
Spam 67.55 18.40 73.09
PokerHand -0.02 7.05 7.44
HyperplaneGenerator -0.08 42.01 39.20
LEDGenerator 45.89 41.95 42.09
RandomRBFGenerator 4.05 56.08 36.91
RTGenerator 40.42 32.93 28.54
SEAGenerator 9.42 54.79 64.06

Average rank 2.231 2.231 1.538
p-value 0.077 0.077 -
Holm’s α 0.025 0.05 -

sets, as negative values indicate that the algorithm is performing worse than a

chance classifier. No statistical significant differences were observed with p-values

of 0.077 for both Ge-Rules and VFDR.

Table 32 presents the results regarding the Kappa M measure. sAnt-Miner is

the most accurate algorithm, achieving an average rank of 1.69; VFDR ranked

second with 2.08 followed by Ge-Rules with 2.23. Note that there are eight imbal-

anced data sets, where a single class has a high proportion of instances: Airplane,

Connect4, Diabetes, Electricity, Forest Type, GMSC, Poker Hand and Hyperplane

Generator. It is expected that the majority class classifier perform relatively well

in those data sets. Out of the eight data sets, sAnt-Miner performs better than

both other algorithms in four (Airplane, Electricity, Diabetes and GMSC) while

VFDR performs better in three (ForestType, Poker Hand and Hyperplane Gener-

ator) and Ge-Rules perform better in one (Connect4). Note that a negative Kappa

CHAPTER 8. RESULTS FOR SANT-MINER 138

Table 32: Average Kappa M computed over 15 runs of 10-folds bootstrap validation
with adwin evaluation window.

Data set Ge-Rules VFDR sAnt-Miner
Airplane 2.23 -1.88 5.16
Connect4 10.06 -0.48 1.92
Diabetes -6.70 -0.15 4.68
Electricity -7.55 36.98 76.95
ForestType -274.71 -227.66 -298.48
GMSC -0.04 -0.73 0.32
Spam 65.39 15.93 66.57
PokerHand -36.75 -17.76 -28.28
HyperplaneGenerator -0.23 41.87 39.06
LEDGenerator 45.80 41.83 41.99
RandomRBFGenerator 3.82 55.87 36.61
RTGenerator 32.27 24.97 18.97
SEAGenerator 6.78 44.86 55.30

Average rank 2.231 2.076 1.692
p-value 0.1698 0.3268 -
Holm’s α 0.025 0.05 -

M value indicates that an algorithm is performing worse than a majority classifier;

sAnt-Miner obtained negative Kappa M values in only two data sets (Forest Type

and Poker Hand), while VFDR and Ge-Rules obtained negative Kappa M values 6

data sets, including the (Forest Type and Poker Hand) data sets. No statistically

significant differences were observed with p-values of 0.17 and 0.33 for Ge-Rules

and VFDR respectively.

Table 33 presents the results regarding the Kappa Temporal measure. Again,

sAnt-Miner is the most accurate algorithm, achieving an average rank of 1.54;

VFDR ranked second 2.15 followed by Ge-Rules 2.31. There are four data sets

with known temporal nature: Electricity, Forest Type, Spam, and Poker Hand.

sAnt-Miner shows the best performance compared to a persistent classifier in three

out of the four data sets (Electricity, Forest Type, Spam); VFDR performs best in

the remaining one (Poker Hand). Additionally, sAnt-Miner performed better than

CHAPTER 8. RESULTS FOR SANT-MINER 139

Table 33: Average Kappa temporal computed over 15 runs of 10-folds bootstrap valida-
tion with adwin evaluation window.

Data set Ge-Rules VFDR sAnt-Miner
Airplane 4.63 0.46 7.64
Connect4 37.77 30.48 32.13
Diabetes 14.67 19.91 23.77
Electricity -232.25 -94.69 28.79
ForestType -834.40 -800.35 -645.48
GMSC 48.72 48.38 48.92
Spam -115.45 -423.29 -108.11
PokerHand -77.20 -56.70 -67.45
HyperplaneGenerator 0.15 42.09 39.29
LEDGenerator 45.84 41.88 42.03
RandomRBFGenerator 4.34 56.11 36.95
RTGenerator 43.93 37.88 32.91
SEAGenerator 27.44 57.08 65.21

Average rank 2.307 2.153 1.538
p-value 0.04986 0.11666 -
Holm’s α 0.025 0.05 -

the persistent classifier (positive value) in the Electricity data set, while both Ge-

Rules and VFDR performed worse than the persistent classifier (negative values)

in that data set. No statistically significant differences were observed with p-values

of 0.05 and 0.11 for Ge-Rules and VFDR respectively.

In order to evaluate the simplicity of the discovered model, we focus on the

results regarding the rules count, presented in Table 34. In this case the lower

the number of rules, the simpler the model. sAnt-Miner discovers the smallest

models; achieving an average rank of 1.15; VFDR ranked second (2.15) followed by

Ge-Rules (2.69). The results obtained by sAnt-Miner are statistically significantly

better than (p-value 0.9E-5) Ge-Rules and (p-value 0.011) VFDR according to the

non-parametric Friedman test with Holm’s post-hoc test with at the 5% significant

level.

CHAPTER 8. RESULTS FOR SANT-MINER 140

Table 34: Average Rule count computed over 15 runs of 10-folds bootstrap validation
with adwin evaluation window.

Data set Ge-Rules VFDR sAnt-Miner
Airplane 2760.63 110.40 2.469
Connect4 915.10 19.70 2.939
Diabetes 1621.75 13.05 2.188
Electricity 368.30 26.90 3.127
ForestType 399.08 34.90 3.273
GMSC 315.00 44.00 1.781
Spam 181.60 2.50 3.318
PokerHand 1187.38 101.81 3.282
HyperplaneGenerator 5.74 162.64 6.564
LEDGenerator 121.43 22.13 8.669
RandomRBFGenerator 17.62 203.79 4.612
RTGenerator 400.45 110.97 7.645
SEAGenerator 50.22 213.22 5.112

Average rank 2.6923 2.1538 1.1538
p-value 0.876E-5 0.0108 -
Holm’s α 0.025 0.05 -

Overall, the results obtained by the proposed sAnt-Miner are positive. It dis-

covered smaller models while maintaining similar predictive accuracy when com-

pared to Ge-Rules and VFDR, the latter considered the state-of-the-art rule induc-

tion data stream classification algorithm—the importance of discovering smaller

models has been highlighted by Krempl et al. (2014). sAnt-Miner is competitive

regarding its runtime, despite being an iterative algorithm. We attribute this to

the proposed hybrid construction graph, where a solution archive handles contin-

uous values combined with a construction graph to select attributes to compose

rules. Previous work has indicated that using a solution archive only in data sets

with more than 50 attributes did not produce accurate models (Helal and Otero

2016, 2017). Our results indicate that the hybrid model allows the algorithm to

deal with a larger number of attributes effectively, while maintaining the advan-

tage of the solution archive in dealing with continuous attributes without requiring

CHAPTER 8. RESULTS FOR SANT-MINER 141

a discretisation procedure; in both Forest Type and Spam (data sets with more

than 50 attributes), sAnt-Miner achieved the highest prequential accuracy.

8.2 Summary

In this chapter, we compared sAnt-Miner for rule induction in data stream clas-

sification against VFDR and Ge-Rules using standard benchmark data sets. Our

results showed that sAnt-Miner models had competitive accuracy and reactivity

compared to VFDR and Ge-Rules models. Moreover, sAnt-Miner models were

smaller, and more concise models help understanding the rules currently created

to classify the data stream.

Chapter 9

Mixed-Attribute Ant-Miner for

Regression Rule Discovery

In this chapter, we propose the use of an archive-based pheromone model to

improve how continuous values are handled by an ACO algorithm in regression

problems. By incorporating a similar ACOMV strategy to the one used in Ant-

MinerMA (Chapter 5), different attributes types (categorical and continuous) can

be handled directly without requiring a discretisation procedure.

Brookhouse and Otero (2015) have successfully used an ACO-based algorithm,

called Ant-Miner-Reg, to create regression rules. Ant-Miner-Reg uses a sequen-

tial covering approach to create a rule list using an ACO rule creation procedure

with a graph-based pheromone model. In order to handle continuous attributes,

Ant-Miner-Reg uses a M5 (Quinlan et al. 1992) inspired dynamic discretisation

procedure during the rule creation process rather than requiring the discretisation

of continuous values as a pre-processing step. Computational experiments showed

that Ant-Miner-Reg significantly outperformed SeCoReg (Janssen and Fürnkranz

2010b), a greedy sequential covering algorithm, without increasing the average

number of terms required to classify an instance. This indicates that ACO algo-

rithms have the potential for being successful in creating regression rules.

142

CHAPTER 9. ANT-MINER-REGMA FOR REGRESSION 143

While we know that Ant-MinerMA improved the runtime compared to the

graph-based algorithm in classification problems, improvements on the quality of

the learned rule lists were not observed (Helal and Otero 2016). In this chapter,

we investigate the effects of using an archive-based pheromone model to create

regression rules, evaluating both the predictive performance and the runtime of

the algorithm.

9.1 Archive-based Ant-Miner-Reg

The proposed Archive-based Ant-Miner-Reg (Ant-Miner-RegMA) algorithm uses

the ACOMV pheromone model and search procedure to sample terms to create

regression rules. The high-level pseudocode of Ant-Miner-RegMA is shown in Al-

gorithm 9. Ant-Miner-RegMA starts with an empty list of rules (line 1). At each

iteration (lines 3-23), a single rule is created. The rule creation process starts by

initialising the archive with k randomly generated rules (line 3). At each itera-

tion, m new rules (lines 7-13) are generated, where m is the number of ants in

the colony. Rules are added to the archive and the k + m rules are sorted (line

14). The worst m rules are removed from the archive, limiting the archive to k

best rules found so far. The procedure to create new rules is repeated until the

maximum number of iterations has been reached or stagnation. Stagnation is

the failure of the algorithm to find better rules for a predefined number of itera-

tions. In the first occurrence of stagnation, a restart procedure is applied; if the

algorithm reaches stagnation for a second time, the rule creation procedure stops.

9.1.1 Rule Structure

A rule R consists of an n-dimensional term vector, where n is the number of

attributes in the data set. Each term ti (i in [1..n]) in R contains a flag to indicate

if this term is enable or not, an operator and value. For continuous attribute

CHAPTER 9. ANT-MINER-REGMA FOR REGRESSION 144

Algorithm 9: High-level pseudocode of Ant-Miner-RegMA.
Data: TrainingData
Result: RuleList

1 RuleList ← {}
2 while |TrainingData| > MaxUncovered do
3 A ← Generate Random Rules
4 Restarted ← 0
5 while t < MaxIterations and Restarted ≤ 1 do
6 At ← {}
7 while i < number of ants do
8 Ri ← Create New Rule
9 Ri ← Prune(Ri)

10 Ri ← Set Consequent(Ri)
11 At ← Ri

12 i← i+ 1
13 end
14 A ← UpdateArchive(At)
15 t← t+ 1
16 if stagnation() then
17 Restart(A)
18 Restarted ← Restarted + 1
19 end
20 end
21 Rbest ← BestRule(A)
22 RuleList ← RuleList + Rbest

23 TrainingData ← TrainingData − Covered(Rbest)
24 end
25 return RuleList

terms, the operator can be either ≤ or >, representing conditions where the

term’s attribute value is less than or equal to a specific real value (≤ x) or greater

than a specific real value (> x). Categorical attribute terms use a single operator

=, representing conditions where the term’s attribute value is equal to a specific

value in the domain of the attribute (= y). The consequent (prediction) of a rule

is a real value, calculated as the mean value of the target (class) attribute in the

instances covered by the rule on the training data.

CHAPTER 9. ANT-MINER-REGMA FOR REGRESSION 145

9.1.2 Rule Quality

The quality of a regression rule is based on two factors, the first is the quality of

the prediction measured using a Relative Root Mean Squared Error (RRMSE).

The RRMSE of a rule is defined as:

LRRMSE = LRMSE√
1
m
Ldefault

(53)

where LRMSE is the root mean square error and LDefault is a normalising factor

that will approximately bound the RRMSE between 0 and 1; m is the number of

instances covered by the rule. LRMSE and LDefault are defined as:

LRMSE =
√√√√ 1
m
·
m∑
i=1

(yi − ȳi)2

Ldefault =
m∑
i=1

(yi − y′)2

(54)

Where y is the value of the target (class) attribute in the current instance, ȳ is

the predicted value of the target (class) attribute in the current instance and y′

is the mean of the target (class) attribute over all instances in the data set. The

RRMSE approximately normalises the RMSE of a rule between 0 and 1, where a

value less than 1 corresponds to a rule making a prediction better than the mean

of the target (class) value of uncovered instances and a value greater than 1 is

worse than the mean.

The second factor is a measure of how generalised the rule is, i.e., number of

instances covered by the rule. Like RRMSE, the coverage of a rule is normalised

so that 0 represents a rule covering no instances and 1 is a rule that covers all of

the instances in the data set. The relative coverage of a rule R is defined as

relCov = 1
M
· coverage(R) (55)

CHAPTER 9. ANT-MINER-REGMA FOR REGRESSION 146

Where M is the total number of instances in the data set and coverage(R) is the

number of covered instances by rule R. Both the RRMSE and relative coverage

are combined into a single metric Q, which is used as a rule’s quality, defined as:

Q = α · (1− LRRMSE) + (1− α) · relCov (56)

where α sets the weighting between RRSME and relative coverage. Varying α

between 0 and 1 bias the rule quality towards either RRMSE (α = 1) or relative

coverage (α = 0).

9.1.3 Archive Structure and Initialisation

The archive consist of k rules sorted by their quality Q, so that Q(R1) ≥ Q(R2) ≥

. . . ≥ Q(Rk). Each rule (solution) j is associated with a weight ωj related to its

Q(Rj), where ωj is calculated using a Gaussian function given by:

ωj = 1
qk
√

2π
e
−(rank(j)−1)2

2q2k2 (57)

where q is used to control the influence of the top-ranked rules on the construction

of a new rule. When a new rule is created, it probabilistically samples values

around the rules with higher weights.

The archive is initialised with k random rules. Initialisation begins by ran-

domly enabling each term in the vector of allowed terms. These enabled terms

are then initialised according to their types. If the term is continuous, then an

unbiased random probability is used to set the operator from the set {≤, >}.

The value of the continuous term is a random value generated among the values

observed in the training data for that attribute. For categorical terms, only the

= is added and the value set randomly set to one of the values in the domain of

the attribute.

Rules are then pruned to disable irrelevant terms that might be enabled by

CHAPTER 9. ANT-MINER-REGMA FOR REGRESSION 147

the stochastic nature of the initialisation. If the number of instances covered by

a rule is greater or equal to a user-defined minimum limit, the rule is added to

the archive; if it doesn’t, a new rule is generated instead. Finally, rules are sorted

according to their quality.

9.1.4 Rule Creation

The rule creation process uses the solution archive to sample values. The sampling

procedures are the same as the ones used in Ant-MinerMA (Section 4.2.1). Rule

creation starts by choosing probabilistically whether to include each term or not.

The decision is handled using a categorical sampling to choose a value from {TRUE,

FALSE}. If the term is enabled (TRUE value), we set the operator according to the

attribute type. If the attribute is categorical, it is set to =. If it is continuous,

the decision is handled using a categorical sampling to choose an operator from

the set {≤, >}, with the only difference being that only the subset of rules that

have this term enabled are considered in Equation (17).

The value of the new rule’s term is then sampled. If the term is continuous,

we use the continuous sampling procedure only considering the subset of rules

that have this term enabled and use the same operator as the new term. If the

attribute is categorical, we use the categorical sampling procedure only considering

the subset of rules that have this term enabled.

After a term is created and added to the partial rule, we apply the rule to the

training data. If the number of instances covered by the rule after the addition of

the new term is less than the user-defined minimum covered instances, the term

is disabled. This process is repeated until all terms are considered.

Finally, a local search procedure is applied. The local search procedure is

inspired by the threshold-aware pruner (Otero, Freitas and Johnson 2009). Firstly,

the quality of the rule is calculated according to Equation (25). Then, the last

term is disabled and the quality re-calculated. If the quality of the (pruned)

CHAPTER 9. ANT-MINER-REGMA FOR REGRESSION 148

Table 35: Parameter values used in experiments. Ant-Miner-RegMA uses the first three
parameters in this table, while the remaining ones are used by both Ant-Miner-RegMA
and Ant-Miner-Reg.

Parameters Value
q 0.025495
ξ 0.6795
R 90
Minimum Covered 10
Max Uncovered 10
Max Iterations 1500
Number of Ants 60
Stagnation Test 10
α 0.59

rule decreases, the term is re-enabled and the procedure stops; otherwise, the

procedure is repeated until a decrease in quality is observed.

9.2 Comparison with Ant-Miner-Reg

We compared our proposed algorithm Ant-Miner-RegMA against Ant-Miner-Reg.

The experiments are conducted using nineteen regression data sets publicly avail-

able from the UCI Machine Learning Repository (Lichman 2013)—details are

shown in Table 36. Ant-Miner-RegMA uses the first three parameters in Table 35

for the archive setting, while the remaining parameters are used by both algo-

rithms. We ran both algorithms for five times with tenfold cross-validation each

time for a total of fifty runs for each data set, and reported the average perfor-

mance of the models produced by each algorithm—shown in Table 37 in terms

of relative root mean square error (RRMSE). The last row in Table 37 shows the

average rank of each algorithm. For statistical significance testing of the difference

in RRMSE and runtime, we used the Wilcoxon signed-rank test (Wilcoxon 1992)

at the 5% significant level. The result of the statistical testing is shown in Table

39.

CHAPTER 9. ANT-MINER-REGMA FOR REGRESSION 149

Table 36: Details of the nineteen data sets used in the experiments.

Attributes
Name Instances Categorical Continuous
WPBC r 194 0 33
CPU 209 1 8
Yacht 308 0 7
MPG 410 2 5
Housing 452 1 13
Forest Fire 517 2 11
Istanbul 536 0 8
Efficiency 768 0 9
Stock 950 0 10
Concrete 1030 0 9
Flare 1066 10 1
Airfoil 1503 0 6
Red Wine 1599 0 12
Skill Craft 3338 0 20
Elevator 9517 0 7
CCPP 9568 0 5
Bike Share 17379 0 13
Energy Data 19735 0 25
Pm 25 41757 1 12

In terms of RRMSE (Table 37), Ant-Miner-RegMA did not significantly im-

prove the RRMSE compared to Ant-Miner-Reg (p-value = 0.97) — although

Ant-Miner-RegMA does have a better average rank (1.42) than Ant-Miner-Reg

(1.52).

In terms of computational time (Table 38), Ant-Miner-RegMA shows an im-

provement in runtime compared to Ant-Miner-Reg, outperforming Ant-Miner-Reg

in eighteen of the nineteen data sets. Most notably, Ant-Miner-RegMA achieved

more than one order of magnitude improvement in both Pm 25 and Energy Data

data sets: Ant-Miner-RegMA’s runtime was 582.38 and 615.24 seconds; while Ant-

Miner-Reg’s runtime was 30669.21 and 55113.399 seconds, respectively. Based on

our results, it is clear that the introduction of an archive-based pheromone model

in Ant-Miner-RegMA resulted in an improvement in the model creation runtime.

CHAPTER 9. ANT-MINER-REGMA FOR REGRESSION 150

Table 37: Average RRMSE (average ± standard error) measured by five runs of tenfold
cross-validation. The value of the most accurate algorithm for a given data set is shown
in bold.

Data set Ant-Miner-Reg Ant-Miner-RegMA

WPBC r 1.13±0.052 1.04±0.016
CPU 0.76±0.048 0.50±0.012
Yacht 0.15±0.030 0.21±0.006
MPG 0.58±0.038 0.54±0.009
Housing 0.65±0.022 0.60±0.014
Forest Fire 1.28±0.087 1.53±0.160
Istanbul 0.82±0.016 0.79±0.012
Efficiency 0.34±0.009 0.23±0.006
Stock 0.36±0.011 0.33±0.004
Concrete 0.54±0.007 0.72±0.015
Flare 1.00±0.007 1.00±0.001
Airfoil 0.74±0.002 0.82±0.006
Red Wine 0.90±0.020 0.99±0.002
Skill Craft 0.88±0.013 0.85±0.005
Elevator 0.70±0.004 0.76±0.003
CCPP 0.42±0.003 0.36±0.002
Bike Share 0.83±0.002 0.64±0.001
Energy Data 0.89±0.001 0.98±0.001
Pm 25 0.89±0.006 0.94±0.001
Average Rank 1.57 1.42

This is similar to what was observed in classification problems, where the intro-

duction of an archive-based pheromone model did significantly improve the run-

time by eliminating the need for a discretisation procedure. Ant-Miner-Reg uses

the M5 dynamic discretisation procedure when creating terms for continuous at-

tributes, which is slow, while Ant-Miner-RegMA’s archive-based pheromone model

is responsible for generating and improving the values chosen for the continuous

attributes terms.

Table 39 shows that Ant-Miner-RegMA achieved a statistically significant im-

provement regarding the computational time at the 5% significance level (p =

0.00016) with respect to Ant-Miner-Reg, according to the Wilcoxon signed-rank

CHAPTER 9. ANT-MINER-REGMA FOR REGRESSION 151

Table 38: Average computational runtime (average ± standard error) in seconds mea-
sured by five runs of tenfold cross-validation. The value of the fastest algorithm for a
given data set is shown in bold.

Data set Ant-Miner-Reg Ant-Miner-RegMA

WPBC r 1.94±0.245 0.51±0.024
CPU 0.91±0.178 0.24±0.002
Yacht 0.55±0.088 0.20±0.004
MPG 2.03±0.432 0.26±0.003
Housing 8.80±0.631 0.44±0.011
Forest Fire 15.24±1.013 0.99±0.010
Istanbul 7.70±1.021 0.39±0.013
Efficiency 0.42±0.093 0.71±0.011
Stock 8.33±0.763 0.86±0.034
Concrete 38.12±1.250 1.29±0.048
Flare 13.26±1.751 0.85±0.027
Airfoil 11.75±0.314 0.93±0.030
Red Wine 136.49±9.473 0.94±0.016
Skill Craft 472.19±25.562 10.12±0.246
Elevator 208.35±13.446 4.65±0.219
CCPP 7.33±0.106 2.30±0.040
Bike Share 7,568.04±164.315 223.53±4.988
Energy Data 25,718.16±1,129.573 582.39±44.681
Pm 25 43,919.93±2,878.527 615.25±16.038

Rank 1.05 1.94

test. Although Ant-Miner-RegMA did not significantly improve the RRMSE of

the Ant-Miner-Reg, the significant improvement in runtime shows the advantage

of using an archive-based pheromone model in regression problems.

9.3 Summary

This chapter presented a new ACO-based regression algorithm, called Ant-Miner-

RegMA. Ant-Miner-RegMA is an extension of Ant-Miner-Reg, where the dynamic

discretisation procedure is replaced by the use of a solution archive. This modifica-

tion allows Ant-Miner-RegMA to cope with different attributes types (continuous

CHAPTER 9. ANT-MINER-REGMA FOR REGRESSION 152

Table 39: Results of the Wilcoxon Signed-Rank test at the α = 0.05 significance level
comparing Ant-Miner-RegMA and Ant-Miner-Reg. Statistically significant differences
are shown in bold, indicating the case where the performance of Ant-Miner-RegMA is
statistically significantly better than the one of Ant-Miner-Reg.

Sample size W+ W- Z p
RRMSE 19 94 96 0.0402 0.9681
Runtime 19 1 189 -3.7828 0.00016

and categorical) directly. Computational results showed that the proposed algo-

rithm significantly improved Ant-Miner-Reg’s computational time.

The effect of using a solution archive is similar to the one observed in Ant-

MinerMA (Chapter 5), where the archive-based algorithm has an improved com-

putational time without a negative impact on the predictive performance. This

is an important extension, since it allows the proposed algorithm to be applied to

larger data sets and/or used in domains where computational time is limited.

Chapter 10

Conclusion

In this thesis, we introduced novel Ant Colony Optimisation (ACO) algorithms

in the context of both classification and regression tasks. The research focused

on unexplored research areas: (1) extending ACO algorithms to cope with con-

tinuous attributes without the need of a discretisiation procedure, either static

(pre-processing) or dynamic, in both classification and regression; (2) extending

ACO algorithms to cope with data stream classification, where the data is not

stationary as in traditional mining algorithms and the storage of data is limited.

The aim in (1) is to improve the computational time of the algorithm, in

particular when handling large data sets, by removing the discretisation procedure.

At the same time, the predictive accuracy should not be negatively affected. It

should be noted that this is also important to allow ACO algorithms to handle

data stream problems, since both access to all the data and computational time

are limited. In (2), we extend the algorithm to cope with the challenges of data

stream mining. This takes advantage of the proposed mechanism to cope with

continuous attributes. All proposed algorithms discover IF-THEN rules, providing

the advantage of creating comprehensible models. They have been compared

against state-of-the-art algorithms from the literature in terms of both predictive

performance and size of the discovered model.

153

CHAPTER 10. CONCLUSION 154

10.1 Contributions

We started by proposing Ant-MinerMA to tackle mixed-attribute classification

problems based on ACOMV (Liao et al. 2014). The use of a solution archive

allows the algorithm to deal with categorical, continuous and ordinal attributes

directly, without a requiring discretisation procedure. The rule creation process

then uses ACOMV strategies to sample values for each attribute type to create

the antecedent of a rule. Ant-MinerMA was compared against cAnt-Miner, an

ACO-based classification algorithm capable of dealing with continuous attributes

employing a dynamic discretisation procedure, using 30 publicly available data

sets. Our results show that the proposed Ant-MinerMA statistically significantly

improves the computational time of cAnt-Miner with no negative effects on its

predictive accuracy—in most cases, an order of magnitude improvements were

observed. This enables Ant-MinerMA to be applied to much larger data sets,

mitigating the restriction on computational time.

Ant-MinerMA’s results indicated that in data sets with a relatively large num-

ber of attributes (greater than 50), there are no gains in computational time.

In cases where there is a large number of attributes but a smaller number of

instances, which results in the discretisation overhead being less noticeable, the

graph-based algorithms in combination with the dynamic discretisation performed

well. This observation indicates that the construction graph is useful to quickly

select attributes that are effective, while the archive has the advantage of being

able to handle multiple attribute types directly. To address the archive limitation,

we introduced a novel approach to combine both graph and archive pheromone

models. The use of the solution archive allows the algorithm to deal with all

attribute types directly, including continuous attributes without requiring a dis-

cretisation procedure, while the graph pheromone model improves the selection

of attribute conditions in data sets containing a large number of attributes. In-

stead of manually designing a new algorithm, we proposed a fully configurable

CHAPTER 10. CONCLUSION 155

framework (called Ant-MinerMA+G) using an automatic design process based on

I/F-Race (López-Ibáñez et al. 2016), which is a state-of-the-art automatic algo-

rithm configuration tool. Experiments using five different automatically designed

configurations of Ant-MinerMA+G show that the proposed framework performed

competitively well against baseline algorithms.

For data stream mining, we proposed the Stream Ant-Miner (sAnt-Miner) al-

gorithm for classification rule induction. sAnt-Miner uses a novel hybrid pheromone

model, combining both graph and archive pheromone models to create classifica-

tion rules. sAnt-Miner’s hybrid pheromone model allowed the algorithm to benefit

from the archive model for handling multiple attribute types and the graph model

for selecting the best attributes to use when creating rules. This also allowed

the rule construction process to be extended to include a Pittsburgh-based ap-

proach, where each ant creates a complete rule list and the search is guided by

the quality of the rule list instead of guided by the quality of individual rules. As

a result, the algorithm copes effectively with rule interactions (Otero, Freitas and

Johnson 2013). Additionally, given the gains in computational time by using the

archive to handle continuous attributes, sAnt-Miner iteratively improves the qual-

ity of the model using a sample of the data over a limited number of iterations —

the current model is replaced when an improved one is created. sAnt-Miner was

compared against the well-known VFDR (Gama and Kosina 2011) and Ge-Rules

(Le et al. 2014) using standard benchmarks data sets. Our results showed that

sAnt-Miner models had competitive predictive accuracy and reactivity1 compared

to VFDR and Ge-Rules models. Moreover, sAnt-Miner models were statistically

significantly smaller when compared to VFDR and Ge-Rules — smaller models

contribute to interpretability, potentially allowing users to understand the reasons

for the predictions of the model.
1Based on the Kappa measures in MOA, which measures how fast the algorithm can react

to different stream challenges.

CHAPTER 10. CONCLUSION 156

Finally, we proposed a new regression algorithm based on our work with mixed-

variable classification. The proposed algorithm Ant-Miner-RegMA, an extension of

Ant-Miner-Reg (Brookhouse and Otero 2015), uses an archive-based pheromone

model to handle both categorical and continuous attributes. Similarly to the

results in the classification task, Ant-Miner-RegMA results showed that the use of

an archive-based pheromone model improved the runtime without negative effects

on the algorithm’s predictive accuracy.

10.2 Future Research

Future investigation is required to realise the full potential of adding the archive-

based pheromone model to rule discovery in traditional data mining. Using an

archive-based pheromone model improved the runtime of the proposed ACO-based

algorithm. It would be interesting to further investigate the effect of incorporat-

ing a graph pheromone model in combination with an archive-based pheromone

model, where the graph pheromone model is responsible for selecting attributes

and the archive pheromone model for optimising their values, following a similar

approach to the one used in sAnt-Miner. Moreover, the Pittsburgh approach of

generating rule lists in each iteration of the algorithm, instead of a single rule,

allowing rule interactions to be optimised, is also an interesting research direction

worth further exploration. Pittsburgh-based rule construction procedures have

achieved good results in cAnt-MinerPB (Otero, Freitas and Johnson 2013) and in

the proposed sAnt-Miner. This research direction has the potential to lead to

improved ACO-based algorithms for both classification and regression tasks.

In relation to data stream mining, there are several interesting directions.

Currently the pheromone model on sAnt-Miner gets re-initialised when learning

on a new buffer of instances, while the only link between the two different learning

phases is the current best model. One possible extension is adding an adaptive

CHAPTER 10. CONCLUSION 157

evaporation rate on the graph, while keeping the pheromone between learning

phases. Moreover, we could add different sampling or archiving strategies to cope

with the unbalanced classes in the data sets, this was successfully implemented in

a GP stream algorithm (Khanchi, Heywood and Zincir-Heywood 2017).

Currently, sAnt-Miner generates many rule lists at each iteration, but only

one is used to make predictions. Instead of discarding older models, they could

form an ensemble and a voting approach could be used to make the predictions

— each rule list makes a prediction and the final prediction is a combination of

them (Dietterich 2000). A related approach is to extend sAnt-Miner to operate

as a rule ensemble (Hastie et al. 2005), where rules from different rule lists are

combined. Both approaches have the potential to improve the predictive accuracy

— although a trade-off between the size of the model (number of lists/rules) and

accuracy should be considered.

sAnt-Miner does not have an explicit mechanism to detect concept drift. The

current model gets replaced once a better one is created, but this only happens

when the buffer of instances is full and the learning procedure is executed. Using

an explicit mechanism to detect and trigger the model update could improve the

overall performance of the algorithm. We can make the analogy of concept drift to

dynamic optimisation problems, where the optimal solution dynamically changes

over time. ACO algorithms have been shown to perform well under dynamic opti-

misation problems, employing pheromone evaporation strategies and direct com-

munication mechanisms (Mavrovouniotis 2013; Mavrovouniotis and Yang 2014).

It would be interesting to see if these approaches can be incorporated to cope with

concept drift.

Finally, extending sAnt-Miner to work with regression problems is a research

direction worth further exportation and likely to lead to interesting research ques-

tions, such as how to detect concept drift, what sampling and archive polices are

more suitable. Our results show that ACO algorithms have the potential of being

CHAPTER 10. CONCLUSION 158

successful in dealing with data streams and we hope others would be encouraged

to improve them.

Bibliography

Abbass, H. A., Bacardit, J., Butz, M. V. and Llora, X. (2004). Online adaptation

in learning classifier systems: stream data mining. Illinois Genetic Algorithms

Laboratory, University of Illinois at Urbana-Champaign.

Abraham, A., Das, S. and Roy, S. (2008). Swarm intelligence algorithms for data

clustering. In Soft computing for knowledge discovery and data mining, Springer,

pp. 279–313.

Aggarwal, C. (2009). Data streams: An overview and scientific applications. Sci-

entific Data Mining and Knowledge Discovery, pp. 377–397.

Aggarwal, C. and Philip, S. (2005). Online analysis of community evolution in

data streams. SDM.

Aggarwal, C., Han, J., Wang, J. and Yu, P. (2006). A framework for on-demand

classification of evolving data streams. IEEE Transactions on Knowledge and

Data Engineering, 18(5), pp. 577–589.

Aggarwal, C. C. and Subbian, K. (2012). Event detection in social streams. In

Proceedings of the 2012 SIAM international conference on data mining, SIAM,

pp. 624–635.

Aggarwal, C. C., Han, J., Wang, J. and Yu, P. S. (2003). A framework for cluster-

ing evolving data streams. In Proceedings of the 29th International Conference

159

BIBLIOGRAPHY 160

on Very Large Data Bases - Volume 29, VLDB Endowment, VLDB ’03, pp.

81–92.

Aha, D. W., Kibler, D. and Albert, M. K. (1991). Instance-based learning algo-

rithms. Machine Learning, 6(1), pp. 37–66.

Al-Behadili, H. N. K., Ku-Mahamud, K. R. and Sagban, R. (2018). Rule pruning

techniques in the ant-miner classification algorithm and its variants: A review.

In 2018 IEEE Symposium on Computer Applications Industrial Electronics (IS-

CAIE), pp. 78–84.

Alcalá-Fdez, J. et al. (2009). Keel: a software tool to assess evolutionary algo-

rithms for data mining problems. Soft Computing, 13(3), pp. 307–318.

Almeida, E., Kosina, P. and Gama, J. (2013). Random rules from data streams. In

Proceedings of the 28th Annual ACM Symposium on Applied Computing, ACM,

pp. 813–814.

Alon, N., Matias, Y. and Szegedy, M. (1999). The space complexity of approx-

imating the frequency moments. Journal of Computer and System Sciences,

58(1), pp. 137 – 147.

Andreoni Lopez, M., Mattos, D. M., Duarte, O. C. M. and Pujolle, G. (2019).

Toward a monitoring and threat detection system based on stream processing as

a virtual network function for big data. Concurrency and Computation: Practice

and Experience, p. e5344.

Babcock, B., Babu, S., Datar, M., Motwani, R. and Widom, J. (2002). Models

and issues in data stream systems. In Proceedings of the Twenty-first ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

New York, NY, USA: ACM, PODS ’02, pp. 1–16.

BIBLIOGRAPHY 161

Baena-Garcıa, M. et al. (2006). Early drift detection method. In Fourth interna-

tional workshop on knowledge discovery from data streams, vol. 6, pp. 77–86.

Barnston, A. G. (1992). Correspondence among the correlation, rmse, and hei-

dke forecast verification measures; refinement of the heidke score. Weather and

Forecasting, 7(4), pp. 699–709.

Beckers, R., Holland, O. E. and Deneubourg, J.-L. (2000). Fom local actions

to global tasks: Stigmergy and collective robotics. In Prerational Intelligence:

Adaptive Behavior and Intelligent Systems Without Symbols and Logic, Vol-

ume 1, Volume 2 Prerational Intelligence: Interdisciplinary Perspectives on the

Behavior of Natural and Artificial Systems, Volume 3, Springer, pp. 1008–1022.

Bianchi, L., Gambardella, L. M. and Dorigo, M. (2002). An ant colony opti-

mization approach to the probabilistic traveling salesman problem. In Parallel

Problem Solving from Nature—PPSN VII, Springer, pp. 883–892.

Bifet, A. and Gavalda, R. (2007). Learning from time-changing data with adaptive

windowing. In Proceedings of the 2007 SIAM international conference on data

mining, SIAM, pp. 443–448.

Bifet, A. and Gavaldà, R. (2009). Adaptive learning from evolving data streams.

In Proceedings of the 8th International Symposium on Intelligent Data Analysis:

Advances in Intelligent Data Analysis VIII, Berlin, Heidelberg: Springer-Verlag,

IDA ’09, pp. 249–260.

Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R. and Gavaldà, R. (2009). New

ensemble methods for evolving data streams. In Proceedings of the 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

New York, NY, USA: ACM, KDD ’09, pp. 139–148.

Bifet, A., Holmes, G., Kirkby, R. and Pfahringer, B. (2010). MOA: Massive online

analysis. Journal of Machine Learning Research, 11, pp. 1601–1604.

BIBLIOGRAPHY 162

Bifet, A., de Francisci Morales, G., Read, J., Holmes, G. and Pfahringer, B.

(2015). Efficient online evaluation of big data stream classifiers. In Proceedings

of the 21th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, New York, NY, USA: ACM, KDD ’15, pp. 59–68.

Birattari, M., Yuan, Z., Balaprakash, P. and Stützle, T. (2010). F-race and iter-

ated f-race: An overview. In Experimental Methods for the Analysis of Optimiza-

tion Algorithms, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 311–336.

Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics

of Life reviews, 2(4), pp. 353–373.

Booker, L., Goldberg, D. and Holland, J. (1989). Classifier systems and genetic

algorithms. Artificial Intelligence, 40(1), pp. 235 – 282.

Bouchachia, A. and Vanaret, C. (2014). GT2FC: An online growing interval type-

2 self-learning fuzzy classifier. IEEE Transactions on Fuzzy Systems, 22(4), pp.

999–1018.

Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and

Regression Trees. Wadsworth.

Brookhouse, J. and Otero, F. E. (2015). Discovering regression rules with ant

colony optimization. In Proceedings of the Companion Publication of the 2015

Annual Conference on Genetic and Evolutionary Computation, New York, NY,

USA: ACM, GECCO Companion ’15, pp. 1005–1012.

Brookhouse, J. and Otero, F. E. (2016). Using an ant colony optimization al-

gorithm for monotonic regression rule discovery. In Proceedings of the Genetic

and Evolutionary Computation Conference 2016, New York, NY, USA: ACM,

GECCO ’16, pp. 437–444.

BIBLIOGRAPHY 163

Brookhouse, J. and Otero, F. E. B. (2018). Post-processing methods to enforce

monotonic constraints in ant colony classification algorithms. In 2018 Interna-

tional Joint Conference on Neural Networks (IJCNN), pp. 1–8.

Brzeziński, D. (2010). Mining data streams with concept drift. Ph.D. thesis, MS

thesis, Dept. of Computing Science and Management, Poznan University of

Technology, Poznan, Poland.

Cao, F., Ester, M., Qian, W. and Zhou, A. (2006). Density-based clustering over

an evolving data stream with noise. In In 2006 SIAM Conference on Data

Mining, pp. 328–339.

Cendrowska, J. (1987). PRISM: An algorithm for inducing modular rules. Inter-

national Journal of Man-Machine Studies, 27(4), pp. 349 – 370.

Cervantes, A., Isasi, P., Gagné, C. and Parizeau, M. (2013). Learning from non-

stationary data using a growing network of prototypes. In Evolutionary Com-

putation (CEC), 2013 IEEE Congress on, pp. 2634–2641.

Chanda, P., Cho, Y., Zhang, A. and Ramanathan, M. (2009). Mining of attribute

interactions using information theoretic metrics. In 2009 IEEE International

Conference on Data Mining Workshops, pp. 350–355.

Chaudhuri, S., Motwani, R. and Narasayya, V. (1999). On random sampling over

joins. In Proceedings of the 1999 ACM SIGMOD International Conference on

Management of Data, New York, NY, USA: ACM, SIGMOD ’99, pp. 263–274.

Chen, L. and Shang, S. (2019). Region-based message exploration over spatio-

temporal data streams. In Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 33, pp. 873–880.

Chen, Y. and Tu, L. (2007). Density-based clustering for real-time stream data. In

BIBLIOGRAPHY 164

Proceedings of the 13th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, New York, NY, USA: ACM, KDD ’07, pp. 133–142.

Chien, S. and Immorlica, N. (2005). Semantic similarity between search engine

queries using temporal correlation. In Proceedings of the 14th international con-

ference on World Wide Web, ACM, pp. 2–11.

Cohen, W. W. (1995). Fast effective rule induction. In Machine learning proceed-

ings 1995, Elsevier, pp. 115–123.

Cui, W. et al. (2011). Textflow: Towards better understanding of evolving topics

in text. IEEE transactions on visualization and computer graphics, 17(12), pp.

2412–2421.

Dam, H. H. and Lokan, H. A., Chrisand Abbass (2007). Evolutionary online data

mining: An investigation in a dynamic environment. In Evolutionary Compu-

tation in Dynamic and Uncertain Environments, Berlin, Heidelberg: Springer

Berlin Heidelberg, pp. 153–178.

Dang, X. H., Lee, V., Ng, W. K., Ciptadi, A. and Ong, K. L. (2009). An em-based

algorithm for clustering data streams in sliding windows. In Proceedings of the

14th International Conference on Database Systems for Advanced Applications,

Berlin, Heidelberg: Springer-Verlag, DASFAA ’09, pp. 230–235.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets.

Journal of Machine learning research, 7(Jan), pp. 1–30.

Dietterich, T. G. (1997). Machine-learning research. AI magazine, 18(4), p. 97.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In International

workshop on multiple classifier systems, Springer, pp. 1–15.

BIBLIOGRAPHY 165

Domingos, P. and Hulten, G. (2000). Mining high-speed data streams. In Pro-

ceedings of the Sixth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, New York, NY, USA: ACM, KDD ’00, pp. 71–80.

Domingos, P. and Hulten, G. (2003). A general framework for mining massive data

streams. Journal of Computational and Graphical Statistics, 12(4), pp. 945–949.

Dorigo, M. and Gambardella, L. M. (1997). Ant colony system: a cooperative

learning approach to the traveling salesman problem. Evolutionary Computa-

tion, IEEE Transactions on, 1(1), pp. 53–66.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996). Ant system: optimization by a

colony of cooperating agents. Systems, Man, and Cybernetics, Part B: Cyber-

netics, IEEE Transactions on, 26(1), pp. 29–41.

Dorigo, M. and Stützle, T. (2004). Ant Colony Optimization. Cambridge: MIT

Press.

Doshi-Velez, F. and Kim, B. (2017). Towards A Rigorous Science of Interpretable

Machine Learning. arXiv e-prints, arXiv:1702.08608, 1702.08608.

Fahrmeir, L., Kneib, T., Lang, S. and Marx, B. (2013). Regression: models, meth-

ods and applications. Springer Science & Business Media.

Fan, W. and Bifet, A. (2013). Mining big data: Current status, and forecast to

the future. SIGKDD Explor Newsl, 14(2), pp. 1–5.

Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R. and Ullman, J. D.

(1998). Computing iceberg queries efficiently. In Proceedings of the 24rd In-

ternational Conference on Very Large Data Bases, San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., VLDB ’98, pp. 299–310.

Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. (1996). From data mining to

knowledge discovery in databases. AI magazine, 17(3), p. 37.

1702.08608

BIBLIOGRAPHY 166

Frank, E. and Witten, I. H. (1998). Generating accurate rule sets without global

optimization. In Proceedings of the Fifteenth International Conference on Ma-

chine Learning, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

ICML ’98, pp. 144–151.

Freitas, A. A. (2001). Understanding the crucial role of attribute interaction in

data mining. Artificial Intelligence Review, 16(3), pp. 177–199.

Freitas, A. A. (2002). Data Mining and Knowledge Discovery with Evolutionary

Algorithms. Berlin, Heidelberg: Springer-Verlag.

Freitas, A. A. (2014). Comprehensible classification models: A position paper.

SIGKDD Explor Newsl, 15(1), pp. 1–10.

Freitas, A. A., Wieser, D. C. and Apweiler, R. (2010). On the importance of com-

prehensible classification models for protein function prediction. IEEE/ACM

Transactions on Computational Biology and Bioinformatics (TCBB), 7(1), pp.

172–182.

Freund, Y. and Schapire, R. E. (1995). A decision-theoretic generalization of

on-line learning and an application to boosting. In Proceedings of the Second

European Conference on Computational Learning Theory, London, UK, UK:

Springer-Verlag, EuroCOLT ’95, pp. 23–37.

Fürnkranz, J. (2005). From local to global patterns: Evaluation issues in rule

learning algorithms. In Local pattern detection, Springer, pp. 20–38.

Gaber, M., Zaslavsky, A. and Krishnaswamy, S. (2005). Mining data streams: a

review. ACM Sigmod Record, 34(2), p. 18.

Gaber, M. M., Zaslavsky, A. and Krishnaswamy, S. (2007). A survey of classifica-

tion methods in data streams. In Data streams, Springer, pp. 39–59.

Gama, J. (2013). Data stream mining: the bounded rationality. Informatica, 37(1).

BIBLIOGRAPHY 167

Gama, J. and Gaber, M. M. (2007). Learning from data streams: processing tech-

niques in sensor networks. Springer.

Gama, J., Sebastião, R. and Rodrigues, P. (2012). On evaluating stream learning

algorithms. Mach Learn, 90(3), pp. 317–346.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M. and Bouchachia, A. (2014). A

survey on concept drift adaptation. Acm Comput Surv, 46(4), pp. 1–37.

Gama, J. a. and Kosina, P. (2011). Learning decision rules from data streams. In

Proceedings of the Twenty-Second International Joint Conference on Artificial

Intelligence - Volume Volume Two, AAAI Press, IJCAI’11, pp. 1255–1260.

Gambardella, L. M., Taillard, E. and Agazzi, G. (1999). Macs-vrptw: A multiple

ant colony system for vehicle routing problems with time windows. Tech. rep.,

Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale.

Gao, J., Fan, W., Han, J. and Philip, S. Y. (2007). A general framework for mining

concept-drifting data streams with skewed distributions. In SDM, SIAM, pp.

3–14.

Gilbert, A. C. et al. (2002). Fast, small-space algorithms for approximate his-

togram maintenance. In Proceedings of the Thiry-fourth Annual ACM Sympo-

sium on Theory of Computing, New York, NY, USA: ACM, STOC ’02, pp.

389–398.

Gomes, H. M. et al. (2017). Adaptive random forests for evolving data stream

classification. Machine Learning, 106(9), pp. 1469–1495.

Grassé, P.-P. (1959). La reconstruction du nid et les coordinations interindividu-

elles chezbellicositermes natalensis etcubitermes sp. la théorie de la stigmergie:

Essai d’interprétation du comportement des termites constructeurs. Insectes

Sociaux, 6(1), pp. 41–80.

BIBLIOGRAPHY 168

Greenwald, M. and Khanna, S. (2001). Space-efficient online computation of quan-

tile summaries. SIGMOD Rec, 30(2), pp. 58–66.

Guha, S., Kim, C. and Shim, K. (2004). Xwave: Optimal and approximate ex-

tended wavelets. In Proceedings of the Thirtieth International Conference on

Very Large Data Bases - Volume 30, VLDB Endowment, VLDB ’04, pp. 288–

299.

Guha, S., Mishra, N., Motwani, R. and O’Callaghan, L. (2000). Clustering data

streams. In Foundations of Computer Science, 2000. Proceedings. 41st Annual

Symposium on, pp. 359–366.

Guntsch, M. and Middendorf, M. (2001). Pheromone modification strategies for

ant algorithms applied to dynamic tsp. In E. Boers, ed., Applications of Evo-

lutionary Computing, Lecture Notes in Computer Science, vol. 2037, Springer

Berlin Heidelberg, pp. 213–222.

Guo, J., Zhang, P., Tan, J. and Guo, L. (2011). Mining frequent patterns across

multiple data streams. In Proceedings of the 20th ACM International Confer-

ence on Information and Knowledge Management, New York, NY, USA: ACM,

CIKM ’11, pp. 2325–2328.

Hall, M. et al. (2009). The weka data mining software: An update. SIGKDD

Explor Newsl, 11(1), pp. 10–18.

Hansen, L. K. and Salamon, P. (1990). Neural network ensembles. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 12(10), pp. 993–1001.

Hashemi, S., Yang, Y., Mirzamomen, Z. and Kangavari, M. (2009). Adapted one-

versus-all decision trees for data stream classification. IEEE Transactions on

Knowledge and Data Engineering, 21(5), pp. 624–637.

BIBLIOGRAPHY 169

Hastie, T., Tibshirani, R., Friedman, J. and Franklin, J. (2005). The elements of

statistical learning: data mining, inference and prediction. The Mathematical

Intelligencer, 27(2), pp. 83–85.

Helal, A., Brookhouse, J. and Otero, F. E. B. (2018). Archive-Based Pheromone

Model for Discovering Regression Rules with Ant Colony Optimization. In 2018

IEEE Congress on Evolutionary Computation (CEC), IEEE, pp. 1–7.

Helal, A. and Otero, F. E. (2016). A Mixed-Attribute Approach in Ant-Miner

Classification Rule Discovery Algorithm. In Proceedings of the Genetic and Evo-

lutionary Computation Conference 2016, ACM, GECCO ’16, pp. 13–20.

Helal, A. and Otero, F. E. B. (2017). Automatic Design of Ant-Miner Mixed

Attributes for Classification Rule Discovery. In Proceedings of the Genetic and

Evolutionary Computation Conference, ACM Press, GECCO ’17, pp. 433–440.

Helal, A. and Otero, F. E. B. (2019). Data Stream Classification with Ant Colony

Optimization, submitted to IEEE transactions on Evolutionary Computation,

under review.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random vari-

ables. Journal of the American Statistical Association, 58(301), pp. 13–30.

Hoens, T. R., Polikar, R. and Chawla, N. V. (2012). Learning from streaming

data with concept drift and imbalance: an overview. Progress in Artificial In-

telligence, 1(1), pp. 89–101.

Holmes, G., Donkin, A. and Witten, I. H. (1994). Weka: a machine learning

workbench. In Intelligent Information Systems,1994. Proceedings of the 1994

Second Australian and New Zealand Conference on, pp. 357–361.

Holmes, G., Hall, M. and Prank, E. (1999). Generating rule sets from model trees.

In Australasian Joint Conference on Artificial Intelligence, Springer, pp. 1–12.

BIBLIOGRAPHY 170

Hulten, G., Spencer, L. and Domingos, P. (2001). Mining time-changing data

streams. In Proceedings of the Seventh ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, New York, NY, USA: ACM, KDD

’01, pp. 97–106.

Jagadish, H. V. et al. (1998). Optimal histograms with quality guarantees. In

Proceedings of the 24rd International Conference on Very Large Data Bases,

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., VLDB ’98, pp.

275–286.

Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clustering Data. Upper

Saddle River, NJ, USA: Prentice-Hall, Inc.

Janssen, F. and Fürnkranz, J. (2010a). On the quest for optimal rule learning

heuristics. Machine Learning, 78(3), pp. 343–379.

Janssen, F. and Fürnkranz, J. (2010b). Separate-and-conquer regression. In LWA,

pp. 81–88.

Kantardzic, M. (2011). Data mining: concepts, models, methods, and algorithms.

John Wiley & Sons.

Katakis, I., Tsoumakas, G., Banos, E., Bassiliades, N. and Vlahavas, I. (2009).

An adaptive personalized news dissemination system. Journal of Intelligent In-

formation Systems, 32(2), pp. 191–212.

Kelly, M. G., Hand, D. J. and Adams, N. M. (1999). The impact of changing

populations on classifier performance. In Proceedings of the Fifth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New York,

NY, USA: ACM, KDD ’99, pp. 367–371.

Khanchi, S., Heywood, M. I. and Zincir-Heywood, A. N. (2017). Properties of

a gp active learning framework for streaming data with class imbalance. In

BIBLIOGRAPHY 171

Proceedings of the Genetic and Evolutionary Computation Conference, New

York, NY, USA: ACM, GECCO ’17, pp. 945–952.

Kisilevich, S., Mansmann, F., Nanni, M. and Rinzivillo, S. (2009). Spatio-temporal

clustering. In O. Maimon and L. Rokach, eds., Data Mining and Knowledge

Discovery Handbook, Boston, MA: Springer US, pp. 855–874.

Kolter, J. Z. and Maloof, M. A. (2007). Dynamic weighted majority: An ensemble

method for drifting concepts. J Mach Learn Res, 8, pp. 2755–2790.

Krempl, G. et al. (2014). Open challenges for data stream mining research.

SIGKDD Explor Newsl, 16(1), pp. 1–10.

Kudo, R. et al. (2019). Real-time event search using social stream for inbound

tourist corresponding to place and time. International Journal of Big Data

Intelligence, 6(3-4), pp. 248–258.

Lawler, E. (1985). The Travelling Salesman Problem: A Guided Tour of Com-

binatorial Optimization. Wiley-Interscience series in discrete mathematics and

optimization, John Wiley & sons.

Lazarescu, M. M., Venkatesh, S. and Bui, H. H. (2004). Using multiple windows

to track concept drift. Intell Data Anal, 8(1), pp. 29–59.

Le, T., Stahl, F., Gomes, J. B., Gaber, M. M. and Fatta, G. D. (2014). Research

and Development in Intelligent Systems XXXI: Incorporating Applications and

Innovations in Intelligent Systems XXII, Cham: Springer International Publish-

ing, chap. Computationally Efficient Rule-Based Classification for Continuous

Streaming Data. pp. 21–34.

Le, T., Stahl, F., Gaber, M. M., Gomes, J. B. and Fatta, G. D. (2017). On expres-

siveness and uncertainty awareness in rule-based classification for data streams.

BIBLIOGRAPHY 172

Neurocomputing, 265, pp. 127 – 141, new Trends for Pattern Recognition: The-

ory & Applications.

Lee, D.-S. (2005). Effective gaussian mixture learning for video background sub-

traction. IEEE Transactions on Pattern Analysis and Machine Intelligence,

27(5), pp. 827–832.

Leite, D., Costa, P. and Gomide, F. (2010). Evolving granular neural network for

semi-supervised data stream classification. In Neural Networks (IJCNN), The

2010 International Joint Conference on, pp. 1–8.

Leite, D. F., Jr, P. and Gomide, F. (2009). Evolving granular classification neural

networks for semi-supervised data stream classification. IEEE, pp. 1736–1743.

Liang, N.-Y., Huang, G.-B., Saratchandran, P. and Sundararajan, N. (2006). A

fast and accurate online sequential learning algorithm for feedforward networks.

IEEE Transactions on Neural Networks, 17(6), pp. 1411–1423, cited By 1112.

Liang, Z. et al. (2016). A novel multiple rule sets data classification algorithm

based on ant colony algorithm. Appl Soft Comput, 38(C), pp. 1000–1011.

Liao, T., Socha, K., Montes de Oca, M., Stutzle, T. and Dorigo, M. (2014).

Ant colony optimization for mixed-variable optimization problems. Evolution-

ary Computation, IEEE Transactions on, 18(4), pp. 503–518.

Lichman, M. (2013). UCI Machine Learning Repository. Irvine, CA: Uni-

versity of California, School of Information and Computer Science.

[http://archive.ics.uci.edu/ml].

Liu, B., Abbas, H. and McKay, B. (2003). Classification rule discovery with

ant colony optimization. In Intelligent Agent Technology, 2003. IAT 2003.

IEEE/WIC International Conference on, pp. 83–88.

BIBLIOGRAPHY 173

Liu, B., Abbass, H. A. and McKay, B. (2002). Density-based heuristic for rule dis-

covery with ant-miner. In The 6th Australia-Japan joint workshop on intelligent

and evolutionary system, vol. 184, Citeseer, pp. 180–184.

López-Ibáñez, M. and Stützle, T. (2012). The automatic design of multiobjec-

tive ant colony optimization algorithms. IEEE Transactions on Evolutionary

Computation, 16(6), pp. 861–875.

López-Ibáñez, M., Dubois-Lacoste, J., Caceres, L. P., Stützle, T. and Birattari,

M. (2016). The irace package: Iterated racing for automatic algorithm configu-

ration. Operations Research Perspectives, 3, pp. 43–58.

Lühr, S. and Lazarescu, M. (2009). Incremental clustering of dynamic data streams

using connectivity based representative points. Data Knowl Eng, 68(1), pp. 1–

27.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate

observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical

Statistics and Probability, Volume 1: Statistics, Berkeley, Calif.: University of

California Press, pp. 281–297.

Maimon, O. and Rokach, L. (2010). Data Mining and Knowledge Discovery Hand-

book. Springer Publishing Company, Incorporated, 2nd edn.

Malerba, D., Esposito, F. and Semeraro, G. (1996). A further comparison of sim-

plification methods for decision-tree induction. In Learning from data, Springer,

pp. 365–374.

Martens, D., Baesens, B. and Fawcett, T. (2011). Editorial survey: swarm intel-

ligence for data mining. Machine Learning, 82(1), pp. 1–42.

Martens, D. et al. (2007). Classification with ant colony optimization. Evolution-

ary Computation, IEEE Transactions on, 11(5), pp. 651–665.

BIBLIOGRAPHY 174

Martin, B. (1995). Instance-based learning : Nearest neighbor with generalization.

Tech. rep., University of Waikato Research Commons, working Paper.

Mavrovouniotis, M. (2013). Ant Colony Optimization in Stationary and Dynamic

Environments. Ph.D. thesis, University of Leicester.

Mavrovouniotis, M. and Yang, S. (2014). Interactive and non-interactive hybrid

immigrants schemes for ant algorithms in dynamic environments. In Evolution-

ary Computation (CEC), 2014 IEEE Congress on, IEEE, pp. 1542–1549.

Merkle, D., Middendorf, M. and Schmeck, H. (2002). Ant colony optimization

for resource-constrained project scheduling. Evolutionary Computation, IEEE

Transactions on, 6(4), pp. 333–346.

Mingers, J. (1989). An empirical comparison of pruning methods for decision tree

induction. Machine Learning, 4(2), pp. 227–243.

Minku, L. and Yao, X. (2012). DDD: A new ensemble approach for dealing with

concept drift. Knowledge and Data Engineering, IEEE Transactions on, 24(4),

pp. 619–633.

Minku, L. L., White, A. P. and Yao, X. (2010). The impact of diversity on on-

line ensemble learning in the presence of concept drift. IEEE Transactions on

Knowledge and Data Engineering, 22(5), pp. 730–742.

Mitchell, T. M. (1997). Machine Learning. New York, NY, USA: McGraw-Hill,

Inc., 1st edn.

Motwani, R. and Raghavan, P. (1995). Randomized Algorithms. New York, NY,

USA: Cambridge University Press.

Mundhe, R. V. and Manwade, K. B. (2018). Continuous top-k monitoring on

document streams. In 2018 International Conference on Inventive Research in

Computing Applications (ICIRCA), pp. 1008–1013.

BIBLIOGRAPHY 175

Muthukrishnan, S. (2003). Data streams: Algorithms and applications. In Proceed-

ings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,

Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, SODA

’03, pp. 413–413.

Nguyen, H., Woon, Y. and Ng, W. (2015). A survey on data stream clustering

and classification. Knowledge and information systems.

Nguyen, H.-L., Woon, Y.-K., Ng, W.-K. and Wan, L. (2012). Heterogeneous en-

semble for feature drifts in data streams. In Proceedings of the 16th Pacific-Asia

Conference on Advances in Knowledge Discovery and Data Mining - Volume

Part II, Berlin, Heidelberg: Springer-Verlag, PAKDD’12, pp. 1–12.

Olmo, J., Romero, J. and Ventura, S. (2012). Classification rule mining using ant

programming guided by grammar with multiple pareto fronts. Soft Computing,

16(12), pp. 2143–2163.

Olmo, J. L., Romero, J. R. and Ventura, S. (2011). Using ant programming guided

by grammar for building rule-based classifiers. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 41(6), pp. 1585–1599.

Otero, F. E., Freitas, A. A. and Johnson, C. G. (2008). cant-miner: An ant

colony classification algorithm to cope with continuous attributes. In M. Dorigo,

M. Birattari, C. Blum, M. Clerc, T. Stützle and A. Winfield, eds., Ant Colony

Optimization and Swarm Intelligence, Lecture Notes in Computer Science, vol.

5217, Springer Berlin Heidelberg, pp. 48–59.

Otero, F. E., Freitas, A. A. and Johnson, C. G. (2009). Handling continuous

attributes in ant colony classification algorithms. In Computational Intelligence

and Data Mining, 2009. CIDM ’09. IEEE Symposium on, pp. 225–231.

Otero, F. E., Freitas, A. A. and Johnson, C. G. (2013). A new sequential covering

BIBLIOGRAPHY 176

strategy for inducing classification rules with ant colony algorithms. IEEE Trans

Evolutionary Computation, 17(1), pp. 64–76.

Oza, N. C. (2005). Online bagging and boosting. In Systems, Man and Cybernetics,

2005 IEEE International Conference on, vol. 3, pp. 2340–2345 Vol. 3.

Papadimitriou, C. H. and Steiglitz, K. (1998). Combinatorial optimization: algo-

rithms and complexity. Courier Corporation.

Park, N. H. and Lee, W. S. (2004). Statistical grid-based clustering over data

streams. SIGMOD Rec, 33(1), pp. 32–37.

Parpinelli, R., Lopes, H. and Freitas, A. (2002). Data mining with an ant colony

optimization algorithm. Evolutionary Computation, IEEE Transactions on,

6(4), pp. 321–332.

Pazzani, M. J., Mani, S. and Shankle, W. R. (2001). Acceptance of rules gener-

ated by machine learning among medical experts. Methods of information in

medicine, 40(05), pp. 380–385.

Piateski, G. and Frawley, W. (1991). Knowledge discovery in databases. MIT press.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992).

Numerical Recipes in C (2Nd Ed.): The Art of Scientific Computing. New York,

NY, USA: Cambridge University Press.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), pp.

81–106.

Quinlan, J. R. (1987). Generating production rules from decision trees. In ijcai,

vol. 87, Citeseer, pp. 304–307.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc.

BIBLIOGRAPHY 177

Quinlan, J. R. et al. (1992). Learning with continuous classes. In 5th Australian

joint conference on artificial intelligence, vol. 92, World Scientific, pp. 343–348.

Rai, P., Daumé, H. and Venkatasubramanian, S. (2009). Streamed learning: One-

pass svms. In Proceedings of the 21st International Jont Conference on Artifical

Intelligence, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., IJ-

CAI’09, pp. 1211–1216.

Sakaki, T., Okazaki, M. and Matsuo, Y. (2010). Earthquake shakes twitter users:

Real-time event detection by social sensors. In Proceedings of the 19th Inter-

national Conference on World Wide Web, New York, NY, USA: ACM, WWW

’10, pp. 851–860.

Salama, K. M., Abdelbar, A. M., Otero, F. E. and Freitas, A. A. (2013). Uti-

lizing multiple pheromones in an ant-based algorithm for continuous-attribute

classification rule discovery. Applied Soft Computing, 13(1), pp. 667 – 675.

Salganicoff, M. (1997). Tolerating concept and sampling shift in lazy learning

usingprediction error context switching. Artif Intell Rev, 11(1-5), pp. 133–155.

Sancho-Asensio, A., Orriols-Puig, A. and Golobardes, E. (2014). Robust on-line

neural learning classifier system for data stream classification tasks. Soft Com-

puting, 18(8), pp. 1441–1461.

Schapire, R. E. (1990). The strength of weak learnability. Mach Learn, 5(2), pp.

197–227.

Seidlova, R., Poživil, J. and Seidl, J. (2019). Marketing and business intelligence

with help of ant colony algorithm. Journal of Strategic Marketing, 27(5), pp.

451–463.

Shelokar, P., Jayaraman, V. and Kulkarni, B. (2004). An ant colony approach for

clustering. Analytica Chimica Acta, 509(2), pp. 187 – 195.

BIBLIOGRAPHY 178

Smith, S. F. (1983). Flexible learning of problem solving heuristics through adap-

tive search. In Proceedings of the Eighth International Joint Conference on Ar-

tificial Intelligence - Volume 1, San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., IJCAI’83, pp. 422–425.

Smith, T. and Alahakoon, D. (2009). Foundations of Computational Intelligence

Volume 4: Bio-Inspired Data Mining, Berlin, Heidelberg: Springer Berlin Hei-

delberg, chap. Growing Self-Organizing Map for Online Continuous Clustering.

pp. 49–83.

Socha, K. and Dorigo, M. (2008). Ant colony optimization for continuous domains.

European Journal of Operational Research, 185(3), pp. 1155 – 1173.

Sow, D., Biem, A., Blount, M., Ebling, M. and Verscheure, O. (2010). Body sensor

data processing using stream computing. In Proceedings of the International

Conference on Multimedia Information Retrieval, New York, NY, USA: ACM,

MIR ’10, pp. 449–458.

Stahl, F., Gaber, M. M. and Salvador, M. M. (2012). Research and Develop-

ment in Intelligent Systems XXIX: Incorporating Applications and Innovations

in Intelligent Systems XX Proceedings of AI-2012, The Thirty-second SGAI

International Conference on Innovative Techniques and Applications of Artifi-

cial Intelligence, London: Springer London, chap. eRules: A Modular Adaptive

Classification Rule Learning Algorithm for Data Streams. pp. 65–78.

Stecher, J., Janssen, F. and Fürnkranz, J. (2014). Separating rule refinement and

rule selection heuristics in inductive rule learning. In T. Calders, F. Esposito,

E. Hüllermeier and R. Meo, eds., Machine Learning and Knowledge Discovery

in Databases, Lecture Notes in Computer Science, vol. 8726, Springer Berlin

Heidelberg, pp. 114–129.

BIBLIOGRAPHY 179

Street, W. N. and Kim, Y. (2001). A streaming ensemble algorithm (SEA) for

large-scale classification. In Proceedings of the Seventh ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Mining, New York, NY,

USA: ACM, KDD ’01, pp. 377–382.

Stützle, T. and Hoos, H. H. (2000). Max-min ant system. Future Gener Comput

Syst, 16(9), pp. 889–914.

Sun, J., Faloutsos, C. and Papadimitriou, S. (2007). Graphscope: parameter-free

mining of large time-evolving graphs. Proceedings of the 13th

Tasoulis, D. K., Ross, G. and Adams, N. M. (2007). Visualising the cluster struc-

ture of data streams. In Proceedings of the 7th International Conference on

Intelligent Data Analysis, Berlin, Heidelberg: Springer-Verlag, IDA’07, pp. 81–

92.

ur Rehman, M. H., Chang, V., Batool, A. and Wah, T. Y. (2016). Big data

reduction framework for value creation in sustainable enterprises. International

Journal of Information Management, 36(6), pp. 917–928.

Utgoff, P. E., Berkman, N. C. and Clouse, J. A. (1997). Decision tree induction

based on efficient tree restructuring. Mach Learn, 29(1), pp. 5–44.

Vahdat, A., Atwater, A., McIntyre, A. R. and Heywood, M. I. (2014a). On the

application of gp to streaming data classification tasks with label budgets. In

Proceedings of the Companion Publication of the 2014 Annual Conference on

Genetic and Evolutionary Computation, New York, NY, USA: ACM, GECCO

Comp ’14, pp. 1287–1294.

Vahdat, A., Atwater, A., McIntyre, A. R. and Heywood, M. I. (2014b). On the

application of GP to streaming data classification tasks with label budgets. In

Proceedings of the Companion Publication of the 2014 Annual Conference on

BIBLIOGRAPHY 180

Genetic and Evolutionary Computation, New York, NY, USA: ACM, GECCO

Comp ’14, pp. 1287–1294.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. New York, NY,

USA: Springer-Verlag New York, Inc.

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Trans Math Softw,

11(1), pp. 37–57.

Vivekanandan, P. and Nedunchezhian, R. (2011). Mining data streams with con-

cept drifts using genetic algorithm. Artificial Intelligence Review, 36(3), pp.

163–178.

Wang, H., Fan, W., Yu, P. S. and Han, J. (2003). Mining concept-drifting data

streams using ensemble classifiers. In Proceedings of the Ninth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New York,

NY, USA: ACM, KDD ’03, pp. 226–235.

Weiss, S. M. and Kulikowski, C. A. (1991). Computer Systems That Learn: Classi-

fication and Prediction Methods from Statistics, Neural Nets, Machine Learning,

and Expert Systems. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Break-

throughs in statistics, Springer, pp. 196–202.

Wilson, S. W. (1995). Classifier fitness based on accuracy. Evol Comput, 3(2), pp.

149–175.

Witten, I. H., Frank, E., Hall, M. A. and Pal, C. J. (2016). Data Mining: Prac-

tical machine learning tools and techniques. San Francisco, CA, USA: Morgan

Kaufmann.

BIBLIOGRAPHY 181

Wu, X. et al. (2008). Top 10 algorithms in data mining. Knowledge and informa-

tion systems, 14(1), pp. 1–37.

Xu, S. and Wang, J. (2017). Dynamic extreme learning machine for data stream

classification. Neurocomput, 238(C), pp. 433–449.

Yang, L., Li, K., Zhang, W. and Ke, Z. (2017). Ant colony classification min-

ing algorithm based on pheromone attraction and exclusion. Soft Computing,

21(19), pp. 5741–5753.

Yu, H., Sun, X. and Wang, J. (2019). Ensemble os-elm based on combination

weight for data stream classification. Applied Intelligence, 49(6), pp. 2382–2390.

Zeng, H.-J., He, Q.-C., Chen, Z., Ma, W.-Y. and Ma, J. (2004). Learning to cluster

web search results. In Proceedings of the 27th annual international ACM SIGIR

conference on Research and development in information retrieval, ACM, pp.

210–217.

Zhang, P., Zhu, X., Shi, Y. and Wu, X. (2009). Advances in Knowledge Discov-

ery and Data Mining: 13th Pacific-Asia Conference, PAKDD 2009 Bangkok,

Thailand, April 27-30, 2009 Proceedings, Berlin, Heidelberg: Springer Berlin

Heidelberg, chap. An Aggregate Ensemble for Mining Concept Drifting Data

Streams with Noise. pp. 1021–1029.

Zhang, P., Gao, B. J., Zhu, X. and Guo, L. (2011a). Enabling fast lazy learn-

ing for data streams. In Data Mining (ICDM), 2011 IEEE 11th International

Conference on, pp. 932–941.

Zhang, P. et al. (2011b). Enabling fast prediction for ensemble models on data

streams. In Proceedings of the 17th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, New York, NY, USA: ACM, KDD

2011, pp. 177–185.

BIBLIOGRAPHY 182

Zhang, P., Zhu, X., Shi, Y., Guo, L. and Wu, X. (2011c). Robust ensemble learning

for mining noisy data streams. Decis Support Syst, 50(2), pp. 469–479.

Zhang, Z. and Zhang, R. (2008). Multimedia data mining: a systematic introduc-

tion to concepts and theory. Chapman and Hall/CRC.

Zhou, A., Cao, F., Qian, W. and Jin, C. (2007). Tracking clusters in evolving data

streams over sliding windows. Knowledge and Information Systems, 15(2), pp.

181–214.

