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ABSTRACT 

Cancer is one of the primary causes of human death worldwide.  Acute myeloid leukaemia 

(AML), one of the most severe types of blood/bone marrow cancers, is derived from 

transformed human myeloid precursor cells which developed mechanisms allowing them to 

escape host immune surveillance by inactivating cytotoxic lymphoid cells. Further studies 

suggested that solid tumours operate similar immune escape strategies. Molecular mechanisms 

of the immune evasion by malignant cells are poorly understood, however a better 

comprehension of the biochemistry underlying these processes are vital for development of 

anti-cancer immunotherapy – a cure of new generation.  

Recent evidence suggested the crucial involvement of Tim-3 and galectin-9 proteins in the 

immunosuppression operated by malignant cells. Therefore, the aim of our work was to 

investigate the activity of Tim-3-galectin-9 immunosuppressive pathway in human malignant 

cells and biochemical functions of its crucial components. 

We discovered that triggering of the receptor called latrophilin (LPHN) 1, expressed in AML 

cells but absent in healthy leukocytes, induces biosynthesis and exocytosis of T-

cell immunoglobulin and mucin domain 3 (Tim-3) and galectin-9. Galectin-9 suppresses anti-

cancer immunity by impairing anti-cancer activities of cytotoxic lymphoid cells. Tim-3 is 

trafficking galectin-9 but also can act on its own and prevent generation of interleukin-2 (IL-

2) required for activation of cytotoxic lymphoid cells. Furthermore, AML cells recruit crucial 

components of normal human metabolism to escape surveillance and progress the disease. In 

particular, human adrenal cortex hormone cortisol upregulates LPHN1 expression in AML 

cells; blood-available fibronectin leucine rich transmembrane protein 3 (FLRT3) interacts with 

LPHN1 leading to galetin-9/Tim-3 synthesis and exocytosis in AML cells. Crucial components 

of FLRT3/LPHN/Tim-3/galectin-9 pathway are expressed in the majority of cancer cell lines 
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and thus may be common for a variety of malignant tumours.  Tim-3-galectin-9 pathway is 

active in breast cancer and variety of other solid tumour cells and is used to protect malignant 

cells from host immune attack. However, unlike some other members of galectin family of 

proteins (for example, galectin-3), galectin-9 doesn’t protect cancer cells against apoptosis via 

mitochondrial defunctionalisation. On the other hand, mitochondrial defunctionalisation 

reduces galectin-9 surface expression and leads to its accumulation in mitochondria in 

malignant cells but not in healthy ones. Therefore, targeted mitochondrial defunctionalisation 

may be a novel strategy for anti-cancer immunotherapy, since it would reduce galectin-9 

surface expression allowing better elimination of cancer cells by immune system cells. Taken 

together our work demonstrates for the first time that Tim-3-galectin-9 immunosuppressive 

pathway plays a pivotal role in protection of AML and various solid tumour cells towards host 

immune surveillance – the machinery operated by cytotoxic lymphoid cells.  
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ABBREVIATIONS 

Ab: Antibody 

Abl: Gene Abelson 

ADAM: a disintegrin and metalloproteinase domain-containing proteins 

AGEs: Advanced glycation end products 

ALL: Acute lymphoid leukaemia 

AML: Acute myeloid leukaemia 

Apaf-1: Apoptotic protease activating factor-1 
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ATL: Adult T-cell leukaemia 

BAK: BCL2-antagonist/killer 

Bat3: HLA- B associated transcript 3 

Bcl-xL: B-cell lymphoma-extra-large protein 

BCR: B cell receptors 

BCR: Breakpoint cluster region 

BID: BH3 Interacting Domain Death Agonist 

BSA: Bovine serum albumin 

CDK: Cyclin-dependent kinases 

CKI: Cyclin-dependent kinase inhibitors 

CML: Chronic myelogenous leukaemia 

CRD: Carbohydrate recognition domain 

CTC: Cytotoxic T cell 

CTL: Cytotoxic T cell 
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CTLA-4: Cytotoxic T lymphocyte antigen-4 

DAG: Diacyl glycerol 

DAMPs: Damage-associated molecular patterns 

DAP: 2,3-diaminophenazine 

DC: Dendritic cell 

DD: Death domain 

DED: Death effector domain 

DISC: Death-inducing signalling complex 

DTT: Dithiothreitol 

EBV: Epstein–Barr virus 

ECM: Extracellular matrix 

EDTA: Ethylenediaminetetraacetic acid 

eIF4E: Initiation factor 4E 

eIF4E-BP: eIF4E binding protein 

EMA: European Medicine Agency 

ER: Endoplasmic reticulum 

ERK: Extracellular signal–regulated kinases 

FACS: Fluorescence-activated cell sorting 

FADD: Fas-associated protein with death domain 

FasL: Fas ligand 

FBS: Foetal bovine serum 

FKU: Formyl-L-kynurenine 

FLRT3: Fibronectin leucine rich transmembrane protein 3 

HBV: Hepatitis B virus 

HCV: Hepatitis C virus 



xxxiii 

 

HD: Healthy donors 

HIF-1: Hypoxia-inducible factor 1 

HMGB1: High-mobility group box 1 

HPA: Hypothalamic-pituitary-adrenal axis 

HPV: Human genital papillomavirus 

HRP: Horse radish peroxidase 

HSC: Hematopoietic stem cell 

HTLV-1: Human T-lymphotropic virus-1 

IDO1: Indoleamine 2,3-dioxegenase 

IFN-γ: Interferon γ 

IgV: Immunoglobulin variable domain 

IL-1β: Interleukin 1β 

IL-6: Interleukin 6 

IL-8: Interleukin 8 

IP3: Inositol 1,4,5-trisphosphate 

KU: L-kynurenine 

LPHN: Latrophilin 

LRR: Leucin-rich repeats 

MDS: Myelodysplastic syndromes 

MHC: Major histocompatibility complex 

MICA: MHC class I chain-related protein A 

MICB: MHC class I chain-related protein B 

MSCs: Mesenchymal cells 

mTOR: Mammalian target of rapamycin 

MW: Molecular weight 
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NFκB: Nuclear factor kappa-B 

NK: Natural Killer 

NKG2D: Natural Killer Group 2D 

NSCLC: Non-small-cell lung carcinoma 

OPD: Orto-phenylenediamine 

PARP: Poly ADP ribose polymerase 

PBS: Phosphate-buffered saline 

PD-1: Protein cell death 1 

PDL: Poly-D-lysine 

PD-L1: PD ligand 1 

PD-L2: PD ligand 2 

PES: Phenazine ethosulfate 

PHDs: Prolyl hydroxylases 

PIP2: Phosphatidylinositol 4,5-bisphosphate 

PKCα: Protein kinase Cα 

PLC: Phospholipase C 

PMA: Phorbol 12-myristate 13-acetate 

PMSF: Phenylmethylsulfonyl fluoride 

PRRs: Pattern recognition receptors 

qRT-PCR: Reverse transcription polymerase chain reaction 

RAGE: Receptor for advanced glycation end products 

RB: Retinoblastoma 

S6K1: Ribosomal protein S6 kinase beta-1 (also called p70S6 kinase) 

SCCHN: Squamous cell cancer of the head and neck 

SCF: Stem cell factor 
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SDS: Sodium dodecyl sulphate 
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STS: Soft tissue sarcomas 
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TIR: Toll-interleukin 1 (IL-1) receptor domain 

TLR: Toll-like receptors 

TMB: 3,3′,5,5′-tetramethylbenzidine 

TNFR: TNF receptor 

TNF-α: Tumour necrosis factor α 

TPI: Triosephosphate isomerase 

VEGF: Vascular endothelial growth factor 
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1. INTRODUCTION 

Cancer is a wide group of systemic disorders resulting from growth of abnormal cells which 

have a potential to invade and/or spread to other parts of the body. 

Taken together, cancers are the second leading cause of death worldwide and remain a serious 

medical burden in countries of all income levels (WHO, 2018; IARC, 2018) 

Until the middle of XX century cancer incidence and mortality rates were almost the same. 

Since then, great effort has been made to uncover fundamental mechanisms underlying cancer 

physiopathology for the development of the treatments for different types of malignancies 

(Richiardi & Terracini, 2015). Although cancer prognosis is no longer as catastrophic as in the 

past, there are still a huge number of individuals dying because of the cancer each year. 

Approximately 18.1 million cancer diagnoses and 9.1 million cancer-associated deaths were 

registered in 2018 worldwide (IARC, 2018). Just ten years earlier (2008), these numbers were 

considerably lower: 12.7 million cancer cases and 7.6 cancer-related deaths (Ferlay et al., 

2010). Indeed, cancer incidence and mortality are unceasingly increasing globally as reported 

in Figure 1 (Ferlay et al., 2010; Fitzmaurice et al., 2015; IARC, 2018; Parkin et al., 2005; 

Parkin, 2001; Torre et al., 2016). Furthermore, cancers are expected to become the first leading 

cause of death, principally, as a result of considerable reduction in mortality rates of other 

major diseases, such as stroke and coronary diseases (Bray et al., 2018).  
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Figure 1: Cancer Global Incidence and Mortality. Incidence and mortality are reported as absolute 

numbers of new cancer cases and cancer-related deaths, respectively, per annum (Ferlay et al., 2010; 

Fitzmaurice et al., 2015; IARC, 2018; Parkin et al., 2005; Parkin, 2001; Torre et al., 2016). 

Although the absolute number of cancer-related deaths is increasing globally, the mortality 

rate, expressed as the ratio between the number of deaths and the number of new cancer cases, 

is plateauing or decreasing for various types of malignancies in higher income countries (HIC) 

(Fitzmaurice, 2017; Torre et al., 2016). This phenomenon is due to several factors. Firstly, the 

development of more effective treatments, as a result of massive advances in cancer research, 

has led to significant improvements in cancer survival rates (Arruebo et al., 2011; Falzone, 

Salomone, & Libra, 2018). Furthermore, the progress in medical technologies as well as the 

discovery of specific cancer antigens has given the opportunity to detect earlier and faster 

diverse malignancies contributing positively on patient life expectancy (Hazelton & Luebeck, 

2011; Hofvind, et al., 2013; Landy, et al., 2016; Loud & Murphy, 2017; Marmot et al., 2013; 

Ouakrim et al., 2015; Paci, Broeders, et al., 2012). Finally, the prevention has an important 

impact on cancer incidence and has the potential to considerably reduce future cancer burden. 

Epidemiological studies predict that promoting healthy life style (eliminating the habits of 

smoking tobacco, decreasing alcohol drinking, practicing regularly physical activity and 

keeping under control body mass index) could decrease of 30-50% cancer incidence (Arem & 
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Loftfield, 2018). Moreover, anti-cancer vaccination and effective treatments of cancer-

associated infections are expected to play an important role in prevention of neoplasia 

transformations (Doorakkers, et al., 2018; Howley, 2015; Wroblewski, et al., 2010; Zhao B, et 

al., 2019). 

However, despite great strides in the fight against cancer, much still needs to be achieved. 

Diagnosis of some types of malignancies, such as pancreatic or lung cancers, is frequently 

translated in a death sentence (Ansari et al., 2016; Bray et al., 2018; Wong, et al., 2017; Zappa 

& Mousa, 2016). In addition, current therapies frequently cause short and long term side effects 

(Devlin, et al., 2017; Nurgali, et al., 2018). Thus, the development of innovative anti-cancer 

strategies with higher efficiency and lower toxicity is required. Encouraging outcomes obtained 

from the molecularly targeted therapies suggest that this goal can be achieved through better 

exploration of the differences between malignant and healthy cells as well as the enhancement 

of host immune system defences (Arruebo et al., 2011; Falzone et al., 2018). 

1.1 Cancer development and metastasis (stages of cancer development) 

Most tissues in the human body possess the ability to regenerate (Rue & Martinez Arias, 2015).  

Older cells are continuously replaced with  new ones in the majority of our organs during 

physiological cell turnover (Pellettieri & Alvarado, 2007; Spalding, et al., 2005). Moreover, 

damaged tissues or partially or totally removed organs can regenerate reacquiring initial 

dimensions and functions (Baddour, et al., 2012). 

Since the number of the cells has to be usually constant in the adult organism, there has to be 

a balance between cell proliferation and programmed cell death (tissue homeostasis). Indeed, 

these processes are tightly controlled in the living beings, ensuring structural and functional 

stability of the systems forming any organism (Liu, et al., 2001; Rue & Martinez Arias, 2015). 
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Deregulation of the normal tissue homeostasis can lead to various consequences, including 

tumorigenesis. Organ or tissue enlargement, as a result of uncontrolled cell proliferation, can 

turn, initially, in primary tumour development, and then, might contribute to secondary tumour 

formation (metastasis) (Basanta & Anderson, 2017). 

Broadly, oncogenesis is a multistep process starting with a mutational event in a single cell and 

then progressing through acquisition of further genetic and/or epigenetic alterations, that are 

transmitted to the progeny of that cell when it divides (Barrett, 1993; Karakosta, 2005). These 

aberrations, typically, involve three types of genes (Pelengaris & Khan, 2013): 

- Proto-oncogenes – are the genes, which encode proteins participating in promotion of 

cell survival, growth and proliferation and thus have a potential to become oncogenic; 

- Tumour suppressor genes – are the genes responsible for inhibition of cell proliferation 

and/or activation of programmed cell death; 

- Caretaker genes – include genes implicated in detection and reparation of DNA 

damage. 

For instance, aberrations of the oncogene c-MYC, “master regulator” of cell growth, 

proliferation and dedifferentiation of pre-malignant cells during tumorigenesis, have been 

found in many human cancers, which prognosis is frequently conditioned by the rate of c-MYC 

oncoprotein expression (Chen, et al., 2018; Grotzer et al., 2001; Miller, et al., 2012; Schlotter, 

et al., 2003). Similarly, deregulations of the onco-suppressor p53, also called “the guardian of 

the genome”, have been observed in a number of malignancies and are recognised to be 

essential for cancer progression (Efeyan & Serrano, 2007). The fact that p53 possesses both, 

caretaker and tumour suppressor gene capabilities, renders it particularly important for the 

prevention of genome mutations required for malignant transformations (Ozaki & 

Nakagawara, 2011).  



 

5 

 

However, alterations of a single gene are, usually, insufficient for the transformation of a 

healthy cell into a malignant one. A cell needs to overcome numerous “obstacles” in order to 

be able (1) to avoid programmed death caused by various factors, (2) to proliferate and (3) to 

adapt to putative new microenvironments. Therefore, numerous mutations involving a variety 

of genes are required for tumorigenesis and cancer progression.  

In fact, natural selection theory has been widely accepted for cancer development. It assumes 

that cancer origin and advancement are evolutionary processes driven by acquisition of 

progressively more advantageous alterations, responsible for selective growth of the cells with 

better survival characteristics (Arneth, 2018). 

Initial genetic or epigenetic alterations are, frequently, phenotypically “silent” implying that 

the cell remains perfectly differentiated and completely functional within the tissue [Figure 2 

b)]. Further mutations affecting key regulatory genes might trigger oncogenic pathways and 

inhibit tumour suppressor ones [Figure 2 c)]. This results in clonal expansion of the 

premalignant cells consequentially followed by primary tumour formation (benign tumour) 

[Figure 2 d)]. An important feature of benign tumours consists in their inability to invade 

surrounding tissues. Indeed, the mass of cells composing benign tumour is well circumscribed 

and, usually, grows slowly. Although this type of tumour is generally not life-threatening, it 

provides a fertile ground for malignant transformation. Indeed, downregulation of DNA repair 

and tumour suppressive mechanisms, occurring during the early stages of benign tumour 

development, makes pre-malignant cells more susceptible to acquire new mutations compared 

to normal cells. Faster and easier accumulation of further alterations results, then, in the 

creation of various pre-malignant sub-clones with different survival characteristics, which are 

proportional to their cell population rates within the benign tumour. In addition, some 

mutations contribute to the acquisition of new properties, which allow those specific subclones 
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to infiltrate in the surrounding tissues [Figure 2 e)]. This results in malignant tumour formation 

(cancer) (Pelengaris & Khan, 2013).  

 

Figure 2: Schematic model of cancer initiation and progression – from a healthy tissue (a), to the first 

mutations of a single somatic cell (b and c), able to promote clonal expansion causing benign tumour 

formation (d), to further mutations, responsible of malignant transformation, and, finally, metastasis 

development (g). 
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Malignant transformation is usually accompanied by cell de-differentiation, which increases 

progressively during neighbouring tissue invasion. Importantly, malignancies with lower cell 

differentiation are more aggressive and are associated with poorer cancer survival rates (D. 

Yang et al., 2011; Yoshida, et al., 2011). Indeed, greater de-differentiation is also correlated 

with higher proliferation speed, which leads to faster cancer development (Jilkine & 

Gutenkunst, 2014).   

Abnormal proliferation occurring during both, pre-malignant and malignant stages, requires 

constant provision of oxygen and nutrients from blood vessels. However, energy requirements 

for effective cell growth and proliferation become insufficient over time, due to inadequate 

number of capillaries for the increased dimensions of the tumour. Therefore, blood vessels 

development (angiogenesis) plays a crucial role from the early stages of oncogenesis [Figure 

2d2) and 2f)]. Taken together, number of the tumour cells rapidly increases, while the number 

of blood vessels supplying oxygen/nutrients remains unchanged in the first instance. Thus the 

amount of oxygen delivered to each cell goes down and the way to overcome this issue is to: 

1) implement stress signalling relying mainly on glycolysis (oxygen-free glucose degradation 

resulting in ATP production; 2) build up new blood vessels (induce angiogenesis) in order to 

meet requirements of each cell in oxygen/nutrients.  

Indeed, reduced oxygen availability leads to activation of hypoxic signalling pathways 

requiring activation of hypoxia-inducible factor 1 (HIF-1). HIF-1 is a heterodimeric protein 

(transcription complex), composed of two subunits: HIF-1β, which is constitutively expressed, 

and HIF-1α, which is up-regulated in response to low oxygen concentrations. In normoxia 

conditions, HIF-1α is continuously hydroxylated by prolyl hydroxylases (PHDs), which 

employ cellular O2 as a co-substrate. Hydroxylated HIF-1α is, then, recognised and 

polyubiquitinated by specific complexes and, subsequently, degraded by proteasomes. This 

prevents HIF-1 dimerization, requirement necessary for its activation [Figure 3a)]. Hypoxic 
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environment, instead, leads to down-regulation of oxygen-dependent HIF-1α degradation due 

to restricted availability of O2. Activated HIF-1 complex, resulting from of HIF-1α and HIF-

1β dimerization, is, then, able to promote transcription of numerous genes, including vascular 

endothelial growth factor (VEGF). Finally, triggering of VEGF receptors expressed by vascular 

endothelial cells activates signalling pathways responsible for new blood vessel formation 

[Figure 3b)] (Krock, Skuli, & Simon, 2011). 

 

Figure 3: Processes underwent by HIF-1α protein under normal oxygen availability (a) and hypoxic 

conditions (b) 

In addition to the mechanism associated with decreased oxygen levels, neovascularization can 

be induced, directly, by mutations regarding key regulatory genes of angiogenesis and, 

indirectly, by oncogenes, such as RAS and Myc, able to upregulate expression of angiogenic 

factors (Hanahan & Weinberg, 2011; Uthoff et al., 2002). 

Formation of new blood vessels contributes as well to further steps of cancer progression: 

malignant cell dissemination from the original site of tumour formation to distant organs 

(metastasis) [Figure 2g)] (Bielenberg & Zetter, 2015).  
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However, before metastasis occur, malignant cells need to acquire a number of mutations 

allowing them (1) to win cell-cell and cell-extracellular matrix (ECM) interactions, (2) to 

survive in blood or lymphatic vessels and, finally, (3) to be able to invade (and to proliferate 

in) distant organs. Deregulation of metastases suppressor genes plays also a crucial role in 

cancer spread in different organs (Seyfried & Huysentruyt, 2013).  

Indeed, it is hypothesised that a number of various malignant subclones extravasate in 

lymphatic or blood vessels during cancer progression. Nonetheless, most of them don’t survive 

in the new environments for different reasons (Luzzi et al., 1998).  For example, wide 

population of cytotoxic CD8 T cells affects considerably survival and proliferation of 

malignant cells entering the lymph nodes (Pelengaris & Khan, 2013). Another factor 

responsible for the death of migrating cancer cells is represented by their biochemical 

incompatibility with a potential site of colonization, such as lack of specific adhesive 

interactions with the new microenvironment (Q. Liu et al., 2017; Pelengaris & Khan, 2013). 

Thus, only “the fittest” and most aggressive cancer cells are able to metastasise successfully. 

Indeed, the ability to adapt in the new “habitat” is correlated with improved avoidance of 

suicide pathways and evasion of host immune attack, rendering malignant cells stronger and 

capable to proliferate faster (Arneth, 2018). For this reason, metastatic cancers are associated 

with poorer prognosis and higher mortality rates. Approximately 90% of cancer deaths are due 

to secondary (metastases) rather than the primary tumours (Seyfried & Huysentruyt, 2013). 

Therefore, early detection of cancer, before it has spread, is critical for patient life expectancy 

(Coumans, Siesling, & Terstappen, 2013; Hiom, 2015). In addition, an accurate identification 

of malignancy type ensures the undertaking of correct therapeutic measurements, and 

consequently, increases the chances for successful outcome. 
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1.1.1 Types of cancer – “solid” and “liquid” tumours 

Cancers are classified by the type of tissue in which the initial malignant transformation occurs. 

Indeed, although the epigenetic plasticity and genetic diversity observed for a specific type of 

cancer in different patients, malignant cells almost always retain some of the peculiar features 

of the normal cell types from which they have originated. These specific features can be 

identified by histological and/or cytological examinations, allowing, in this way, to characterise 

the type of malignant neoplasm (Arneth, 2018; Ramsay, 1990; Weinberg, 2007). 

The commonest cancer types and corresponding healthy tissues from which they evolve are 

outlined in Table 1 (Ramsay, 1990). 

Table 1 Cancer classification (Ramsay, 1990)  

Tissue or cell derivation Malignant neoplasm 

Epithelia  

Squamous epithelium 

Glandular epithelium 

Carcinoma 

Squamous cell carcinoma 

Adenocarcinoma 

Mesenchyme 

Fibrous tissue 

Adipose tissue 

Striated muscle  

Smooth muscle  

Bone 

Cartilage 

Sarcoma 

Fibrosarcoma 

Liposarcoma 

Leiomyosarcoma 

Rhabdomyosarcoma 

Osteosarcoma 

Chondrosarcoma 

Nervous tissue 

Glial cells 

Primitive neural cells 

Astrocytes 

Oligodendrocytes 

Neuroectdermal tumours 

Glioma 

Neuroblastoma 

Astrocytoma 

Oligodendroglioma 

Blood-forming cells 

Lymphoid cells 

Myeloid cells 

Hematopoietic malignancies 

Lymphocytic leukaemia 

Myeloid leukaemia 

Melanocytes  Melanoma 

Germ cells Teratoma  
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Most of human tumours originate in epithelial tissues and are called carcinomas. These 

malignancies can be further sub-classified according to biological functions associated with 

epithelia. For instance, malignant transformations of glandular cells, sub-type of epithelial cells 

responsible for both exocrine and endocrine secretions, generate adenocarcinomas. On the 

other hand, tumorigenesis of epithelial cells with protective functions of the underlying tissues 

usually induces squamous cell carcinoma (Weinberg, 2007).   

Generally, organ main functions reflect the type of carcinoma that may develop with higher 

probability. Indeed, most cancers occurring in the organs, such as stomach or pancreas, which 

predominant role consists in the release of gastric or pancreatic juices by epithelial cells, are  

adenocarcinomas (Dicken et al., 2005; Smith, et al., 2015). Conversely, tumorigenesis of 

oropharyngeal epithelia, which provide mechanical barriers protecting from pathogens 

deriving from air or food, usually lead to squamous cell carcinoma (Panarese et al., 2019). 

However, mixed carcinomas, malignancies characterized by coexistence of both, 

adenocarcinoma and squamous carcinoma cells, have been also reported to develop in some 

organs, such as lung and cervix (Bastide, et al., 2010; Choo & Naylor, 1984).  

Another class of cancers arises from mesenchymal cells (MSCs). These malignancies, called 

sarcomas, constitute approximately 21% of all paediatric solid malignant cancers and around 

1% of all adult solid malignant cancers (Burningham, et al., 2012; Weinberg, 2007). Sarcomas 

can be also sub-classified into two groups: soft tissue sarcomas (STS) and sarcomas of the bone 

(Hui, 2016).  

The commonest soft tissue sarcomas include liposarcoma, tumour involving adipocyte 

oncogenesis, leiomyosarcoma and rhabdomyosarcoma, which arise from malignant 

transformations of striated and smooth muscle tissues, respectively (Hoang, et al., 2018). 
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Most frequent sarcomas of the bone are, instead, osteosarcoma and chondrosarcoma (Hui, 

2016). The former is thought to derive from osteoblastic lineages of cells or undifferentiated 

MSCs, while the latter develops from cartilage tumorigenesis. Osteosarcoma affects 

predominantly adolescents and children, while chondrosarcoma is more frequent in elderly 

population (Abarrategi et al., 2016; Hui, 2016).  

Third class of cancers regards oncogenesis of diverse elements composing nervous system 

(Weinberg, 2007). Glioblastoma, astrocytoma and oligodendroglioma, malignancies 

originating from various types of glial cells, are among the most frequent cancer types of this 

class (Patel et al., 2019).  

Another group of cancers is represented by haematopoietic malignancies. There are two main 

blood-forming lineages deriving from the differentiation of hematopoietic stem cells:  

lymphoid and myeloid lineages. Oncogenesis of these two categories of blood cells can induce 

four main types of haematopoietic tumours: acute lymphoblastic, acute myelogenous, chronic 

lymphocytic, and chronic myelogenous leukaemia. Acute lymphoblastic leukaemia is the 

commonest blood cancer in childhood, while acute myeloid leukaemia occurs more frequently 

in the adults (Davis, et al., 2014). 

This classification, based on the type of tissue/cell in which tumorigenesis initiates, reflects 

also some specific tissue-dependent gene mutations (Schaefer & Serrano, 2016). For example, 

aberrations of BRCA1 gene, which product is involved in DNA repair and apoptosis regulation, 

occur mostly in breast and ovarian cancers (E. Y.-H. P. Lee & Abbondante, 2014). Similarly, 

aberrations of ABL1, a gene encoding a tyrosine kinase implicated in a variety of cellular 

process, such as genome reparation and apoptosis regulation,  are predominantly associated 

with leukaemia (Dasgupta et al., 2016; Shaul & Ben-Yehoyada, 2005). 
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However, despite diverse cell origin, different cancer types can also share some common 

tissue-independent mutations (Schaefer & Serrano, 2016). Consequently, different categories 

of malignant neoplasms, might be unified under the same roof based on their mutations. For 

example, alterations of the genes coding for the tumour suppressor p53 were reported to occur 

quite in all the cancer types (Rivlin, et al., 2011). Similarly, aberrations of the oncogene c-Myc 

were found in more than 50% of human tumours (Chen et al., 2018).  

High conservation of some gene alterations in different cancer types is a consequence of their 

involvement in key pathways of cell cycle. Indeed, most oncogenic mutations regard genes 

implicated in crucial mechanisms enabling the cell to prevent abnormal cell growth and 

proliferation (Pelengaris & Khan, 2013). 

1.2 Normal physiological barriers preventing cancer development 

The human body is continuously exposed to a multitude of carcinogens able to promote genetic 

and/or epigenetic alterations (Pelengaris & Khan, 2013). Moreover, DNA replication is error 

prone (Tippin, et al., 2004). Nonetheless tumorigenesis is a relatively rare event considering 

the number of cells undergoing mitosis in the human body every day. Indeed, cells possess 

multiple quality-control mechanisms allowing them to prevent alterations during cell 

replication and abnormal cell proliferation. Moreover, an additional “extracellular” quality-

control system is available in case previous checkpoints result to be ineffective. This 

supplementary biological barrier is represented by immune system cells, which are able to 

eliminate promptly any anomalous cell appearing in the body (Pelengaris & Khan, 2013). 

Thus, it is possible to divide cancer biological barriers in two categories: 

- Cell-cycle checkpoints; 

- Immune system “quality control” or cancer immunosurveillance. 
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1.2.1 Cell-cycle checkpoints 

Each cell receives continuously various intra- and extra-cellular stimuli, which are then 

integrated to produce an adequate response. One part of the inputs intercepted by the cell is 

responsible for cell cycle regulation and progression. This part of signals can be broadly 

divided in inhibitory and stimulatory factors of cell proliferation. Indeed, the commitment of 

the cell to divide is meticulously regulated by the balance of negative and positive growth 

factors in the tissue microenvironment (Duronio & Xiong, 2013). 

When the proliferative inputs prevail on the inhibitory growth signals, the cell activates 

pathways which lead to DNA replication and cell division. These processes are part of cell 

cycle, which progresses through consecutive phases:  

1. G1 – “gap 1” period in which the cell synthetases mRNA and proteins necessary for 

genome replication; 

2. S – stage in which DNA synthesis occurs; 

3. G2 – “gap 2” phase in which the cell grows and prepares for mitosis; 

4. M – mitosis.  

The cell can stay in a quiescent state (phase G0) for a relatively indefinite interval of time, until 

the mixture of inputs favours proliferative signals, forcing such cell to re-enter in G1 phase, 

proceed through S and G2 stages, and, finally, to undergo mitosis  (Pelengaris & Khan, 2013). 

Intracellularly, this progression is associated with different levels of specific cyclins, proteins 

termed in this way because of their periodical synthesis and degradation related to the cell 

cycle. Indeed, the concentrations of three major types of cyclins (G1/S, S and M cyclins) 

oscillate during the cell cycle progression. 
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Growth factors can stimulate the synthesis of G1 cyclins, which are then able to bind specific 

cyclin-dependent kinases (CDK). These enzymes are usually inactive in resting cells and their 

levels are stable throughout the cell cycle. The interaction of specific cyclin with its respective 

CDK leads to the formation of an active complex able to phosphorylate a variety of proteins, 

essential for each stage of cell cycle [Figure 4] (Boyle, 2008). 

 

                                       Figure 4: Cell cycle progression (Boyle, 2008) 

Upon mitogenic stimulation, one of the first targets of G1 cyclin/CDK phosphorylation is 

retinoblastoma (RB) protein, tumour suppressor ubiquitously expressed in human body 

(Cordon-Cardo & Richont, 1994; Giacinti & Giordano, 2006).  

Prior to proliferative signals, unphosphorylated RB proteins are constitutively bound to E2 

transcription factors (E2Fs) that are required for expression of S-phase genes [Figure 5a)]. This 

interaction precludes E2F binding to DNA and, thus, prevents gene transcription. 

Phosphorylation of RB protein, upon growth factor downstream signalling, provokes 

conformational changes that decrease RB affinity to its natural E2F, and thus, cause RB-E2F 
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dissociation. In this way, E2F transcription factors, released from phosphorylated RB proteins, 

are able to interact with DNA and initiate specific gene transcription [Figure 5b)]. 

 

Figure 5: Restriction point – RB phosphorylation, conditioned by the levels of growth-regulating 

signals, represents the point in which the cell commits to cell-cycle division in extracellular-

independent manner. 

Therefore, the phosphorylation state of RB proteins, tumour suppressors responsive to the 

balance of growth-stimulatory and inhibitory factors, represents the first restriction point of 

cell division. After RB phosphorylation, followed by initiation of E2F-mediated transcription, 

the cell becomes irreversibly committed to enter S phase and to complete cell division without 

being any longer dependent on stimulation of external growth factors (Lara-Gonzalez, et al., 

2012).  

However, before genome replication initiates, some intracellular signals, such as “genotoxic 

stress” (DNA damage), can promote cell cycle arrest in G1 phase. This occurs generally through 

inhibition of cyclin/CDK complexes by cyclin-dependent kinase inhibitors (CKI). Indeed, 

accumulation of specific CKIs, consequent to detection of genome damage, leads to cell cycle 

arrest providing time “to fix” DNA before its replication. If DNA reparation is successful, the 
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cell recovers and proceeds in S phase, while if it fails, the cell usually undergoes apoptosis. 

These regulatory systems, responsible for control of DNA integrity before replication, belong 

to G1/S checkpoints. 

Importantly, DNA stability is verified during the whole progression of cell cycle through 

multiple control quality systems, which can be further grouped in intra-S and G2/M 

checkpoints. These regulatory mechanisms operate in analogous way to G1/S checkpoint, 

upregulating various types of CKI able to inhibit cell cycle-specific effectors necessary for cell 

cycle arrest and DNA reparation. General scheme of the mechanism through which all these 

control-quality systems operate is represented in Figure 6 (Pelengaris & Khan, 2013).  

 
Figure 6: General scheme of the mechanism through which cell cycle checkpoints operate. 

Finally, after genome replication, during M phase, chromosome partition between two daughter 

cells is controlled by so called “spindle” checkpoints. This group of control-quality systems 

assesses that mitotic spindle, necessary for chromosome partition, is assembled correctly 

ensuring that each daughter cell gets the right number and configuration of chromosomes 

(Lara-Gonzalez, et al., 2012). 
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Despite multiple checkpoints present during all the steps of cell cycle, some genome 

aberrations can be “missed” by these control-quality systems leading to survival of cells with 

acquired mutations. In this case host immune system plays a crucial role in detection and 

elimination of these aberrant cells. 

1.2.2 Immune system “quality” control 

Although tumours develop from healthy tissues recognised as self by the host immune system, 

cancer cells can still elicit an immune response through expression of anomalous products and 

through creation of an inflammatory environment, as a result of tissue disruption consequent 

to the invasion by malignant cells (Pelengaris & Khan, 2013). 

Tumours are complex microenvironments characterised by hypoxia and nutrition deprivation, 

which cause constant cellular stress. Consequently, despite the high proliferation rate, one part 

of malignant cells dies continuously because of metabolic adversities encountered during 

cancer development and progression. In addition, genomic instability, typical of oncogenic 

cells, may also contribute to the death of cancer clones which acquired disadvantageous 

mutations. Moreover, malignant cells, not only compete for nutrients with normal cells, but 

also damage them, when invading healthy tissues. Therefore, opposite processes, such as 

abnormal growth/proliferation, and apoptosis/necrosis, can be identified in tumorigenic tissues 

(Coussens & Werb, 2002; Fonseca & Dranoff, 2008; Reuter, et al., 2010). 

These events contribute to the generation of damage-associated molecular patterns (DAMPs), 

molecules released by stressed, dying or injured cells. These chemically unrelated mediators 

are usually retained intracellularly in healthy cells and released in the extracellular space only 

in specific circumstances, such as tissue damage and metabolic stress. Their main function, 

once liberated from the cells, consists in recruitment and activation of innate immune defences 

in tumorigenesis sites. Indeed, DAMPs elicit host immune response by binding specific pattern 
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recognition receptors (PRRs), expressed by Natural Killer (NK) cells, macrophages and 

dendritic cells (He et al., 2017; Roh & Sohn, 2018; Sato, et al., 2009). 

Major DAMPs and their respective receptors are reported in Table 2 (He et al., 2017; Roh & 

Sohn, 2018). 

Table 2: List of major DAMPs and their respective PRRs (Roh & Sohn, 2018). 

Intracellular location DAMP PPR 

cytosol S100 proteins TLR2, TLR4, RAGE 

HSP TLR2, TLR4, RAGE 

ATP P2X7, P2Y2 

Nucleus Histones  TLR2, TLR4 

HMGB1 TLR2, TLR4, RAGE, TIM-3 

HMGN1 TLR4 

DNA TLR9, AIM2 

RNA TLR3, TLR7, TLR8, RIG-I, MDA5 

Mitochondria ER mtDNA TLR9 

TFAM RAGE 

Importantly, all these molecules binding PRRs have different physiological intracellular roles 

and act as DAMPs only when released in extracellular space.  For example, high-mobility 

group box 1 (HMGB1), ubiquitously expressed non-histone DNA-binding protein, is normally 

located in the cell nucleus. HMGB1 is involved in many DNA activities, such as DNA repair 

and genome stability maintenance, when localised inside the nucleus (He et al., 2017).  

The human HMGB1 is a small protein of 245 aa, composed of three distinct domains: A box, 

B box and acidic C-terminal tail (containing numerous glutamic and aspartic acid residues) 

[Figure 7]. Nuclearly, HMGB1 binds directly to DNA employing its positively charged A and 

B boxes, while acidic C-terminal tail enhances the specificity of this interaction (He et al., 

2017; Wang, et al., 2007). 
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In addition to nuclear functions, HMGB1 is involved in the promotion of autophagy in response 

to oxidative stress, when translocated in cytosol. Increased ROS levels, consequent to hypoxia 

and cell starvation, cause oxidation of two highly conserved aminoacidic residues, cysteine 23 

(C23) and cysteine 45 (C45), leading to formation of disulphide bond in A box of HMGB1. 

Subsequently, ROS promote also its translocation from nucleus to cytosol, where disulphide 

bridge (C23/C45) is able to interact with Beclin-1, disrupting its interaction with Bcl-2 and, 

thus, promoting autophagy (D. Tang et al., 2010). 

Finally, in extracellular space, HMGB1 acts as an alarmin, able to recruit and activate the innate 

immune response. Once released, from dying or injured cell, HMGB1 interacts with following 

receptors (He et al., 2017):   

- the receptor for advanced glycation end products (RAGE), which binds residues 150-

183 of HMGB1; 

- Toll-like receptors (TLRs), TLR2 and TLR4, which bind residues 89-108 of HMGB1. 

 

Figure 7: HMGB1 structure 
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TLRs are transmembrane glycoproteins constituted of three main domains: extracellular 

domain containing leucine rich repeats (LRR), transmembrane domain and intracellular Toll-

interleukin 1 (IL-1) receptor domain (TIR). The interaction of LRR with the ligand induces 

conformational changes leading to dimerization of two receptors of TLR. This results in the 

association of two TIR domains, which together form a platform able to interact with specific 

intracellular adaptor proteins. Downstream signalling following TIR/adaptor protein complex 

formation leads to gene transcription and translation of different cytokines necessary at various 

stages of inflammation process (Dajon, et al., 2017).  

The TLR family comprises ten members (TLR1-TLR10), two of which, TLR2 and TLR4, have 

been reported to interact with HMGB1 (He et al., 2017; Moresco, et al., 2017). Main effects of 

TLR2/TLR4 triggering by this alarmin during the early stages of inflammation is reported in 

Figure 8 and Table 3 (Dumitriu, et al., 2006; He et al., 2017; G. Li, et al., 2013; J. Li et al., 

2003; S. Yang, et al., 2014).  

RAGE is a transmembrane protein able to bind a variety of ligands. The first ones to be 

identified were advanced glycation end products (AGEs), macromolecules obtained through 

non enzymatic reaction between reducing sugars and proteins, lipids or nucleic acids. 

Subsequently, RAGE has been reported to bind other ligands, such as HMGB1 and other 

DAMPs (Gkogkolou & Böhm, 2012; E. J. Lee & Park, 2013; Xie et al., 2008). 

RAGE is a member of the immunoglobulin superfamily and is ubiquitously expressed at low 

levels in adults but is upregulated following cellular stress. Triggering of RAGE stimulates the 

propagation of various intracellular signalling pathways leading to the activation of the 

transcription factor nuclear factor kappa-B (NFκB), which promotes expression of numerous 

genes during the inflammation process [Figure 8 and Table 3] (Kierdorf & Fritz, 2013; Narumi 

et al., 2015).  
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Figure 8: HMGB1 effects in early stages of inflammation 

Table 3: Main functions of HMGB1-induced cytokines in early stages of inflammation 

(Dinarello, 2009; Ding et al., 2011; Kursunel & Esendagli, 2016; Janeway, 2012; Tanaka, et 

al., 2014; van Horssen, et al., 2006) 

 IL-6 (interleukin 6) • promotes differentiation of naïve CD4 T cells into effector cells, 

of CD8 T cells into cytotoxic T cells and of activated B cells into 

antibody-producing plasma cells; 

• inhibits TGF-β-induced T regulatory differentiation; 

• promotes megakaryocyte maturation required for the platelets 

production. 

 TNF-α (tumour 

necrosis factor α) 

• induces programmed cell death of aberrant cells through direct 

interaction with TNF receptors (TNFR) ubiquitously expressed in 

different tissues of human body; 

• promotes dendritic cell maturation (CD80↑, CD83↑, MHC↑, 

CD40↑); 

• activates vascular endothelium and increases vascular 

permeability facilitating accumulation of immune system 

components in the site of tumorigenesis;  

• promotes synthesis of numerous pro-inflammatory cytokines. 

 IL-1β (interleukin 

1β) 

• activates vascular endothelium and increases vascular 

permeability 

• activates immune cells 

 IFN-γ (interferon γ) • promotes differentiation of T cells into effector cells; 

• upregulates MHC expression of antigen presenting cells (APCs); 

• stimulates further chemotactic factors production and promotes 

immune cells recruitment. 

 IL-8 (interleukin 8) • chemotactic factor  

 VEGF (vascular 

endothelial growth 

factor) 

• growth factor inducing new blood vessels formation 
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Activation and recruitment of NK cells, macrophages and dendritic cells leads usually to a 

rapid elimination of anomalous cells (H. Yang & Tracey, 2010). Indeed, stressed cells typically 

express danger-activated signals (DASs) on their surfaces, which can be recognised by innate 

immune system cells. DASs are self-proteins that are poorly expressed by healthy cells but are 

upregulated on the surface of stressed and transformed cells. Major histocompatibility complex 

(MHC) class I chain-related protein A and B (MICA and MICB) are among the commonest 

DASs, that can bind (Natural Killer Group 2D) NKG2D receptor present on NK cells. This 

interaction activates NK cells leading to instant death of carcinogenic cells (Corthay, 2014). 

MICA and MICB are considered non-classical MHC class I molecules, which are structurally 

similar to self-MHC-I expressed by almost all the cell types of the human body. Both, MICA/B 

and self-MHC-I contain one membrane-spanning α chain (heavy chain) consisting of three 

extracellular immunoglobulin-like domains, a transmembrane domain and intracellular 

cytoplasmatic tail. Differently from MICA/B, self-MHC-I is also bound to β2 micro-globulin 

(extracellular light chain) and exhibits a small oligopeptide (8-11 aa) obtained from self-protein 

proteasomal degradation occurring routinely in healthy cells [Figure 9] (Ghadially et al., 2017; 

Weinberg, 2007). 

 

Figure 9: Structure of MCH class I and MICA/B 
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Healthy cells display relatively high concentration of self-MHC class I molecules able to bind 

different types of NK inhibitory receptors, such as a subgroup of killer-cell immunoglobulin-

like receptors (KIRs). This inhibitory interaction prevents NK cells in destroying normal 

tissues. Contrarily, transformed cells frequently express significantly lower levels of self-MHC 

class I molecules or present aberrant oligopeptides, which aren’t recognised as self by immune 

system cells. Downregulation of inhibitory signals in addition to upregulation of activating 

ligands, such as MICA/B, on aberrant cells shifts the balance toward NK cell activation and 

consequent elimination of these anomalous cells [Figure 10] (Long, 2002; Pegram, Andrews, 

Smyth, Darcy, & Kershaw, 2011; Pelengaris & Khan, 2013).  

 

Figure 10: Discrimination between healthy and transformed cells by NK cells 

Upon recognition and activation, NK cells can induce apoptosis in transformed cells through 

(1) degranulation, process inducing release of cytotoxic molecules such as perforin and 

granzyme, or (2) through interaction of death receptors expressed by aberrant cells and their 

ligands upregulated in activated immune cells (Paul & Lal, 2017). 
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Perforin is 60-70-kDa glycoprotein, able to polymerise and form pores in target cells. Resulting 

disruption of the membrane, consequent to perforin congregation, leads to passive 

transportation of ions, water, enzymes and other molecules through the pores. Granzymes 

represent the most important components delivered by NK cells into transformed cells 

employing these non-selective passages (Osińska, et al., 2014; Paul & Lal, 2017). Granzymes 

belong to serine-protease family able to cleave specific peptide bonds dependent on the type of 

granzyme. For instance, granzyme B, the commonest enzyme of cytolytic granules, specifically 

cleaves peptide bonds after aspartic acid residues of their substrates. Indeed, once delivered 

into a target cell, granzyme B recognises and cleaves these peptide bonds in several substrates, 

such as the pro-apoptotic protein Bid and pro-caspase 3. Truncated Bid (tBid) proteins bind 

then their mitochondrial partners, such as B-cell lymphoma-extra-large (Bcl-xL) proteins, 

promoting oligomerization of no longer constrained mitochondrial transmembrane 

macromolecules, such as BAK proteins. Association of BAK proteins results in formation of 

channels, which allow cytochrome c release from mitochondria. Once liberated in the cytosol, 

cytochrome c binds apoptotic protease activating factor-1 (Apaf-1). Conformational changes 

resulting from this interaction uncover specific domains necessary for oligomerization of Apaf-

1/cytochrome c complex with consequent formation of apoptosome. This heterogeneous 

complex binds procaspase-9 molecules and converts them into active caspase 9 enzymes 

leading to construction of proteolytic platform (active apoptosome) able to catalyse procaspase 

3 cleavage. Active caspase 3 triggers proteolytic cascade which finally leads to cell death. In 

addition, as mentioned above, intrinsic pathway of NK cell-mediated apoptosis can occur 

through direct cleavage of procaspase 3 by granzyme B (Boyle, 2008; Krzewski & Coligan, 

2012; Wei et al., 2000).  

Moreover, upregulation of death receptor ligands on NK cells consequent to their activation 

during inflammation can promote extrinsic pathways of apoptosis in transformed cells. 



 

26 

 

One of the most studied death receptors expressed by human cells is apoptosis antigen 1 (Apo-

1), also called CD95 or Fas. This transmembrane receptor belongs to TNF receptor (TNFR) 

superfamily and is expressed by majority of human cells in inactive state (as monomer). Its 

interaction with trimeric Fas ligand (FasL) expressed by activated NK cells induces Fas 

trimerization in target cells. This provokes clustering of Fas cytoplasmatic death domains (DD) 

allowing to recruit intracellular adaptor proteins (FADD). Conformational changes resulting 

from the latter interaction leads to exposure of FADD death effector domains (DED) able to 

recruit the initiator caspases, such as pro-caspase 8. Following Fas–FADD–caspase 8 complex, 

called the death-inducing signalling complex (DISC), caspase 8 undergoes self-cleavage with 

consequent formation of active proteolytic enzyme. Activated caspase 8 is able then to catalyse 

cleavage of effector pro-apoptotic enzymes, such as caspase 3, leading to initiation of 

proteolytic cascade, which culminates with death of the transformed cell (Boyle, 2008; 

Kominami et al., 2012; Krzewski & Coligan, 2012; Susan, 2007).  

Schematic representation of NK-cell mediated extrinsic and intrinsic apoptosis pathways is 

illustrated in Figure 11. 
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Figure 11: NK cell-mediated apoptosis induction in anomalous cells 
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In addition to previously described recognition mechanisms typical during the early stages of 

inflammation (MHC I downregulation and DASs upregulation), NK cells can identify and kill 

anomalous cells through antibody-dependent cellular cytotoxicity (ADCC) in following stages 

of inflammation characterised by adaptive immune responses. In this case, NK cell surface 

receptor CD16 (FcγRIII) interacts with Fc region of the antibody (ab) bound to target antigens 

expressed by transformed cells. Triggering of CD16 induces the release of cytotoxic granules 

by NK cells leading to rapid elimination of abnormal cells (W. Wang, et al., 2015). 

Adaptive immune responses are initiated after antigen presenting cells (APCs), such as 

dendritic cells (DCs), migrate to the lymph nodes and interact with specific T and B cell 

subpopulation contributing to their activation and proliferation(Weinberg, 2007).  

APCs recognise transformed cells in similar way to NK cells. Triggering of their PRRs and 

stimulation by inflammatory cytokines induces DC maturation. This process involves 

(Pelengaris & Khan, 2013; ten Broeke, et al., 2013):   

- upregulation of MHC II molecules, bearing antigens derived from engulfed and 

phagocytosed anomalous cells; 

- upregulation of co-stimulatory T cell molecules, such as CD80, CD83, CD86 and 

CD40; 

- synthesis and release of cytokines facilitating T cell activation, such as IL-7 and IL-12; 

- increased potential to migrate from tumorigenic tissues to the neighbouring lymph 

nodes for the interaction with B and T cells. 

Indeed, DCs are amongst the few cell types able to express both MHC I and II class molecules. 

Once endocytosed soluble and particulate matter of tumorigenic environment or internalised 

aberrant cells, APCs fragment ingested proteins into small peptides of 18-22 aa, which are 

assembled intracellularly with MHC II molecules. The complex MHC II/antigen is then 
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expressed on APCs cell surface. Moreover, DCs possess a unique capacity to display antigens 

derived from endocytosed material also on MHC I molecules.  

Considering that malignant cells arise from healthy tissues, most of these oligopeptides carried 

on MHC I and MCH II molecules are self-protein and don’t evoke immune response. However, 

some of tumour-derived antigens are recognised as non-self upon interaction with specific B 

cell receptors (BCR) and T cell receptors (TCR) contributing to the activation and proliferation 

of featured lymphocytes.  

Broadly, cancer-related immunogenic oligopeptides derive from proteins that can be grouped 

in several classes (Blankenstein, Gilboa, & Jaffee, 2012; Vigneron, 2015): 

- phenotypically altered normal proteins; 

- virus oncoproteins; 

- macromolecules expressed exclusively during embryonic development; 

- proteins that are usually expressed at low concentrations but are upregulated during 

tumorigenesis. 

Genetic mutations can lead to altered amino acid sequences in tumour-expressed proteins, that 

have the potential to be identified as foreign and therefore induce adaptive immune responses. 

Indeed, numerous cytotoxic T cells (CTLs) and peculiar antibodies for tumour-specific 

antigens can be identified in the blood of cancer patients. Phenotypically altered protein can 

arise from modifications of nucleic sequence within one specific gene. For example, DNA 

alterations of the gene codifying for glycolytic enzyme triosephosphate isomerase (TPI) leads 

to chemically changed TPI mutant. Oligopeptides obtained from TPI processing by APCs has 

been reported to be highly immunogenic and represent tumour-specific melanoma antigens 

(Pieper et al., 1999). Moreover, structurally altered proteins can result also from chromosomal 

translocations occurring, for example, in chronic myelogenous leukaemia (CML). In the latter 

case, amino acid sequence of proteins codified by gene Abelson (Abl) normally present on 
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chromosome 9 and breakpoint cluster region (BCR) located on chromosome 22, are identical 

to those found in BCR-Abl fusion protein resulting from chromosomal translocation. 

Nevertheless, the small region where BCR and Abl are fused constitutes novel amino acid 

sequence that can be possibly recognised as non-self by immune system cells (Salesse & 

Verfaillie, 2002; Weinberg, 2007). 

Tumour-specific antigens can also arise from oncovirus-infected cells. Seven types of viruses 

have been found to be tumorigenic [Table 4]. Once internalised inside the cell, oncoviruses can 

stimulate oncogenic pathways inducing overexpression of already existing host proto-

oncogenes and/or producing specific oncoproteins codified by viral genes. Fragmentation of 

viral oncoproteins by APCs can give rise to immunogenic peptides able to stimulate anti-

tumour defences through specific T and B cell activation and proliferation (Chang, et al., 2017; 

Krump & You, 2018).  

Table 4: Virus associated tumours (Chang et al., 2017) 

Virus Main virus-induced malignancies 

Epstein–Barr virus (EBV) Several lymphoma types, nasopharyngeal and gastric cancers 

Hepatitis B virus (HBV) hepatocellular carcinoma 

Human T-lymphotropic 

virus-1 (HTLV-1) 

adult T-cell leukaemia (ATL) 

Human genital 

papillomavirus (HPV) 

cervical carcinoma, squamous cell head and neck cancers, 

squamous cell anal cancer, vulvar cancer 

Hepatitis C virus (HCV) hepatocellular carcinoma 

Carcinogenesis is usually associated with dedifferentiation, that somatic cells undergo 

acquiring proliferative capabilities typical of stem cells. Numerous cancer types have been also 

reported to activate embryonic pathways (Kelleher, et al., 2006). Some embryonic proteins are 

physiologically expressed only during early stages of embryonic progression, before 

immunological tolerance is developed. Therefore, it has been suggested that these proteins 

might be recognised as non-self if expressed in adults. Indeed, early foetal protein-derived 

oligopeptides don’t interact with specific immune cell receptors necessary for elimination of 
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autoreactive lymphocytes and thus can be highly immunogenic. Similarly, this concept has 

been proposed for proteins that are usually expressed at very low concentrations. In this case 

developing lymphocyte populations hardly encounter these proteins leading to survival of B 

and T cells, which are able to bind weakly expressed macromolecules. Upregulated levels of 

proteins, that are silent or expressed at very low levels in healthy tissues, have been found in 

different types of cancers and reported as possibly immunogenic (Aurisicchio et al., 2013; 

Criscitiello, 2012; John et al., 2008; Vigneron, 2015).  

As mentioned above, oligopeptides deriving from these cancer-specific proteins are displayed 

by APCs which present them to peculiar lymphocytes in the lymph nodes. This encounter 

stimulates activation of several types of lymphocytes: 

- CD4 or T helper (Th) cells, which are further classified in (1) Th1 lymphocytes 

responsible for CD8 T cell activation and (2) Th2 lymphocytes that induce B cell 

differentiation in plasma cells releasing cancer antigen-specific antibodies; 

- CD8 T cells, which differentiate in cytotoxic T cells upon their activation. 

T cell activation starts with the engagement of MHC-antigen complexes and specific T cell 

receptor (TCR), which leads to upregulation of CD40 ligand (CD40L) by TH1 cells. This 

interaction leads to increased expression of APCs surface molecules, such B7-1 (CD80) or B7-

2 (CD86), able to bind T cell receptor CD28 and promote further lymphocyte differentiation. 

Moreover, CD80/CD86-CD28 interaction enhances T-cell survival upregulating anti-apoptotic 

proteins, such BcL-xL. In addition, mature DCs release stimulatory cytokines, such as IL-12 

and IL-7, which contribute to T cell activation. However, complete CD8 T cell maturation and 

differentiation in cytotoxic T cells requires a supplementary CD4 T cell “licensing”. Indeed, 

IL-2 and other cytokines expression by activated Th1 cells are required for complete CD8 

activation and promotion of proliferation [Figure 12]  (Pelengaris & Khan, 2013). 
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Figure 12: T cell activation 

Once activated, cytotoxic T cells (CTCs) migrate in tumorigenic tissues to kill transformed 

cells. Upon antigen-specific recognition, CTCs can induce apoptosis in cancer cells by 

triggering their death receptors or releasing cytotoxic granules, similarly to NK cells. In 

addition to specific recognition of antigens expressed by malignant cells, CTCs can bind also 

DASs through their constitutively expressed receptors, such as NKGD2. 

Once eliminated tumorigenic cells, hyperactivated immune cells have to be “stopped” to 

prevent excessive tissue damage. Therefore, physiological immunosuppressive systems are 

activated in the final stages of the inflammation. In addition, tissue regeneration and reparation 

mechanisms are promoted with the purpose of restoring normal tissue functionality. 

1.3 Physiological immunosuppression and immune evasion of malignant cells 

Since tumorigenesis is usually accompanied by inflammation, malignant cell growth and 

development is continuously threatened by host immune systems. For this reason, only the 

clones that can successfully escape anti-tumour immunity are able to survive and proliferate. 

Indeed, cancer cells acquire mechanisms allowing them to upregulate immunosuppressive 
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systems and to shape inflammatory responses for their own growth advantages (Coussens & 

Werb, 2002). 

1.3.1 PD-1 and CTLA-4 mediated immunosuppression 

One of the mechanisms employed by cancer cells to escape host immune attack consists in 

expressing immunosuppressive proteins on their surfaces. Some of these inhibitory 

macromolecules belong to B7 family ligands and to their partner receptors. 

The members of B7 family are usually upregulated during inflammatory responses and can 

induce both costimulatory and coinhibitory signals in lymphocytes and NK cells. Major B7 

molecules and their binding partners are reported in Table 5 (Seliger, et al., 2008). 

Table 5: Major B7 ligands and their binding partners (Seliger et al., 2008) 

B7 ligand Cells expressing 

B7 ligand 

Binding partner 

of B7 molecule 

Cells expressing B7 

binding partner 

Function 

B7-1 (CD80) Activated APCs CD28 T cells Stimulation 

CTLA4 Activated T cells Inhibition 

B7-2 (CD86) Activated APCs CD28 T cells Stimulation 

  CTLA4 Activated T cells Inhibition 

B7-H1 (PD-L1) APCs, non-

lymphoid tissues 

PD-1 Activated T cells, B 

cells, NK cells 

Inhibition 

B7-DC (PD-L2) APCs PD-1 Activated T cells, B 

cells, NK cells 

Inhibition 

As mentioned above, B7-1 and B7-2, proteins upregulated on APCs surface after the 

stimulation by DAMPs or CD40 triggering, can interact with CD28 expressed on naïve T cells 

contributing to their activation in the initial stages of adaptive immune responses. However, 

this binding (B7-1 or B7-2 with CD28) triggers also transient surface expression of cytotoxic 

T lymphocyte antigen-4 (CTLA-4) on activated lymphocytes in delayed manner. CTLA-4 

(CD152) interacts with B7-1 and B7-2 with significantly higher affinity compared to CD28. 

Therefore, once expressed on the membrane, CTLA-4 replaces CD28 in the interaction with 

B7-1 and B7-2 proteins leading effector T cell inhibition (Chambers, et al., 2001). Indeed, 
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CTLA-4 downstream signalling blocks T cell proliferation by impeding its entry into cell cycle 

and downregulates the production of stimulatory cytokines, such as IL-2 (Sansom, 2000). 

Similarly, protein cell death 1 (PD-1), also called CD279, is upregulated on the surface of T 

cells constantly exposed to the antigen and on the membrane of hyper-stimulated NK cells. 

PD-1 triggering by PD ligands (PD-L1 and PD-L2), small B7 glycoproteins expressed on 

APCs, causes rapid inactivation of immune cells in analogous way to CTLA-4 signalling 

(Salmaninejad et al., 2019; Seliger, et al., 2008) [Figure 13]. 

 

Figure 13: Immune cell physiological inactivation 

Frequently, malignant cells employ these physiological pathways to escape the immune attack. 

Surface expression of PD-1 ligands and CD80/CD86 has been found in various cancer types. 

Therefore, monoclonal antibodies able to prevent inactivation of immune cells have been 

developed for this kind of malignancies and have shown efficacy for several types of cancer 

[Table 6, Figure 14] (Blank & Enk, 2014; Buchbinder & Desai, 2016; European Medicines 

Agency (EMA); Hsu et al., 2018; Seliger et al., 2008; Thomson, Allison, et al., 2006). 
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Table 6: Anti-CTLA-4 and anti-PD-1 monoclonal antibodies approved by European Medicine 

Agency (EMA) for cancer treatment 

Antibody (ab) Ab target Cancer types, for which the ab has been approved (EMA) 

Ipilimumab 

(Yervoy) 

CTLA-4 Melanoma and advanced renal cell carcinoma 

Nivolumab 

(Opdivo) 

PD-1 Melanoma, non-small-cell lung carcinoma (NSCLC), advanced renal 

carcinoma, Hodking lymphoma, squamous cell cancer of the head 

and neck (SCCHN), urothelial cancer 

Atezolizumab 

(Tecentriq) 

PD-1 NSCLC and urothelial cancer 

Pembrolizumab 

(Keytruda) 

PD-1 Melanoma, NSCLC, Hodking lymphoma, SCCHN, urothelial cancer 

Avelumab 

(Bavencio) 

PD-1 Merkel cell carcinoma 

 

Figure 14: Cancer cell evasion through surface expression of immunosuppressive molecules. 

Prolonged stimulation of immune cells by cancer cells can cause upregulated PD-1 and CTLA-4 

expression on the surface of CTCs and NK cells. Transformed cells can be still recognised and killed 

by hyper-activated immune cells, if the latter don’t encounter APCs or T regulatory cells, which are 

able to inhibit over-stimulated lymphocytes or NK cells (a). Cancer cells expressing CD80/CD86 and/or 

PD-L1/PD-L2 inactivate immune system cells and thus escape host anti-tumour immunity (b). Anti-

CTLA-4 and anti-PD-1 antibodies prevent inhibitory interactions of immune cells with cancer cells 

expressing CD80/CD86 and/or PD-L1/PD-L2 and thus facilitate malignant cells elimination by CTCs 

and NK cells (c). 
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1.3.2 Tim-3/galectin-9 mediated immunosuppression 

Another mechanism allowing tumorigenic cells to escape host immune attack consists in their 

increased surface expression of transmembrane protein T cell immunoglobulin and mucin 

domain 3 (Tim-3). Indeed, it has been reported that soluble form of Tim-3 (sTim-3) is able to 

attenuate immune cells proliferation and to reduce the secretion of IL-2, a crucial cytokine 

necessary for the activation of NK cells and effector T cells (Geng et al., 2006). Presumably, 

once shed from the membrane of malignant cells, sTim-3 is able to interact with surface 

receptors expressed by immune system cells and downregulate their anti-tumour responses. 

Indeed, Tim-3 upregulation by malignant cells is also often correlated with poorer patient 

prognosis (Du et al., 2017; Peng, Li, & Sun, 2017; Sumbayev et al., 2016; Zhuang et al., 2012).  

Human Tim-3 is a type 1 cell-surface glycoprotein containing 302 aa, that are structurally 

divided in four domains: extracellular N-terminal immunoglobulin variable (IgV) domain and 

a mucin domain, a transmembrane domain and a cytoplasmic tail containing six tyrosine 

residues and an Src homology 2 (SH2) binding motif (Kikushige & Miyamoto, 2013).  

In absence of Tim-3 binding ligands, the intracellular domain is bound to HLA- B associated 

transcript 3 (Bat3), which precludes the phosphorylation of Tyr256 and Tyr263 present in the 

cytoplasmatic tail preventing Tim-3 downstream signalling. The binding of Tim-3 extracellular 

domain by its endogenous ligands can induce conformational changes that result in the release 

of Bat-3 allowing the phosphorylation of specific tyrosine residues present in the cytoplasmatic 

tail of Tim-3. Phosphorylated intracellular Tim-3 domain is then able to recruit specific SH2 

domain-containing Src kinases which may lead to distinct downstream signalling depending 

on the Tim-3-bound ligand and on cell type expressing this transmembrane receptor (Das, et 

al., 2017; Ocaña-Guzman, et al., 2016) [Figure 15]. Indeed, Tim-3 has been associated with 
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both inhibitory and co-stimulatory function, depending in part on the specific cell type, in 

which this receptor is expressed (Banerjee, et al., 2018). 

In myeloid AML cells, triggering of membrane-associated Tim-3 by its endogenous ligand, 

galectin-9, a β-galactoside-binding lectin, induces an activating signalling. Indeed, Tim-3 

forms an autocrine loop with galectin-9 in AML cells inducing mammalian target of rapamycin 

(mTOR) pathway activation and promoting self-renewal and growth (Gonçalves Silva, et al., 

2016; Kikushige et al., 2015). 

In addition to myeloid cells, Tim-3 has been shown to be expressed in Th1 cells, cytotoxic T 

cells and NK cells. However, contrarily to myeloid cells, Tim-3 triggering in these lymphocytes 

and NK cells has been shown to induce inhibitory downstream responses (Das, et al., 2017; Du 

et al., 2017; Kang et al., 2015). Tim-3 surface upregulation was found in “exhausted” CTCs 

and in hyper-stimulated NK cells and its triggering can provoke functional inactivation and 

inhibition of cytokine production (Du et al., 2017; Gallois, et al., 2014, Kang et al., 2015). 

This differential signalling in distinct cell types might be explained by the fact that 

phosphorylated Tim-3 domain recruits different Src kinases in immune system cells and 

myeloid cells as proposed by Ocaña-Guzman and colleagues (Ocaña-Guzman, et al., 2016). 

As mentioned above, one of the endogenous ligands of Tim-3 is galectin-9. Thus, it is 

reasonable to assume that galectin-9 (and possibly other endogenous ligands) is involved in 

Tim-3 triggering also CTCs and NK cells. 

Importantly, galectin-9 can bind Tim-3 only when IgV domain is glycosylated (Ocaña-

Guzman, et al., 2016). Indeed, extracellular domains of Tim-3 can be subjected to O- and N-

glycosylation. For this reason, the molecular weight (MW) of Tim-3 can vary depending on 

the levels of glycosylation. The lowest MW of full-length Tim-3 is 33 kDa, which corresponds 
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to mono-glycosylated protein. Since the MW of each glycan is around 2-3 kDa, it is possible 

to estimate the number of sugars bound to Tim-3 considering the MW of the full-length 

glycoprotein (Clayton et al., 2015) [Figure 15]. 

 

Figure 15: Tim-3 structure and its interaction with galectin-9 on immune system cells. 

Since cancer is associated with chronic inflammation, prolonged hyperactivation of 

lymphocytes and NK cells leads to surface upregulation of Tim-3 during tumorigenesis.  This 

feature is frequently exploited by malignant cells, which suppress anti-tumour immunity 

through expression of galectin-9 using its intracellular trafficker Tim-3 (Gonçalves Silva, et 

al., 2016; Z. Liu et al., 2016).  Indeed, galectins lack signal sequence necessary for their 

transport into the endoplasmic reticulum (ER) and thus necessitate a trafficking protein for 

their surface expression (Gonçalves Silva et al., 2017). It means that Tim-3 acts as both, 

endogenous receptor and trafficking protein of galectin-9. 

To date, 15 mammalian galectins have been identified that all share a conserved carbohydrate 

recognition domain (CRD) and exhibit high affinity for β-galactosides present on 
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glycoconjugates. Galectins can be classified into 3 groups according to their structure and 

number of CRDs: 

- Prototype galectins, consisting of a single CRD; 

- tandem repeat galectins, consisting of 2 different but homologous CRDs, connected by 

a linker region;  

- chimera galectins, which have a tail of short tandem repeats fused to a single CRD. 

The prototype galectins (galectins -1, -2, -5, -7, -10, -11, -13) usually self-associate and form 

dimers. Tandem-repeat galectins (galectins -4, -6, -8, -9) contain CRDs connected by a variable 

length linker peptide. Usually, galectin-9 is monomeric. However, galectin-9 has been reported 

to self-associate and form dimers (in mouse) and multimers (in human). The only chimera Gal-

3 has a C-terminal CRD linked to N-terminal tail, that can exist as monomer, dimer or higher 

order oligomer state, such as tetramer and pentamer [Figure 16] (Dings, et al., 2018; N. et al., 

2007; Nagae et al., 2006; Thijssen, et al., 2007). 

Galectins are involved in various basic cellular mechanisms, such as cell aggregation, 

proliferation, migration and apoptosis. Deregulation of galectin levels has been observed in 

several malignancies. Indeed, galectins have been reported to contribute to tumour progression 

as a result of their immunosuppressive properties and control of cell proliferation/apoptosis 

(Thijssen et al., 2007). 
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Figure 16: Classification of galectins into three main groups based on their domain structural 

organisation (A) (Heusschen, Griffioen, & Thijssen, 2013). Galectin-9 structure: in green – sugar 

molecules, which can possible interact with a glycoprotein, are situated in proximity to carbohydrate 

binding sites (B) (Gonçalves Silva et al., 2017) 

As mentioned above, galectins accumulate intracellularly and are secreted only when bound to 

their cytoplasmatic traffickers. This suggests that galectins may have also an intracellular role. 

Recently it has been reported that galectin-3 is able to protect acute myeloid leukaemia (AML), 

prostate and colorectal cancer cells from anticancer drug-induced apoptosis (Fukumori et al., 

2006; Harazono, et al., 2014). Galectin-3 has been shown to sustain mitochondrial integrity 

possibly through direct binding to BCL2 proteins. Indeed, galectin-3 contains the NWGR anti-

death motif of the Bcl-2 family. Galectin-3 can bind to BCL2 proteins, such Bax, through the 

NWGR motif and inhibit cancer cell death induced by anticancer drugs. In addition, galectin-

3 has been reported to be able to decrease Bad expression preventing mitochondrial 

depolarization. Moreover, phosphorylated galectin-3, formation of which can result from DNA 

damage induced by anticancer drugs, is able to stimulate extracellular signal–regulated kinases 

(ERK) pathway and induce Bad phosphorylation, promoting mitochondrial stabilization 

(Harazono, et al., 2014; Ruvolo, 2016). However, this anti-apoptotic property hasn’t been 

investigated yet in other galectins, such as galectin-9.  
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In AML cells, it has been shown that galectin-9, in addition to immunosuppressive properties, 

forms an autocrine loop with its endogenous receptor and trafficker Tim-3, leading to the 

promotion of NF-ΚB and β-catenin signalling, which are critical for AML self-renewal and 

survival (Gonçalves Silva, et al., 2016; Yasinska, et al., 2018).  

Understanding the mechanisms implemented by malignant cells in order to escape host 

immune surveillance can be best achieved by the investigation of biochemical pathways 

implemented by blood cancer cells. Cells causing these systemic malignancies are under 

constant exposure to cytotoxic lymphoid cells and thus become a subject for immune attack.  

1.4 Blood cancer as a systemic malignancy facing permanent interaction with the 

immune system from the very beginning 

Intensive production of immunosuppressive molecules is pivotal for the progression of 

hematopoietic malignancies. Indeed, transformed blood cells are circulating in close contact to 

immune system cells, which can potentially eliminate cancer cells in absence of 

immunosuppressive mechanisms (Gonçalves Silva, et al., 2016; Yasinska, et al., 2018). 

It is assumed that leukaemia arises from accumulation of mutations in hematopoietic stem cells 

(HSCs) rather than in mature blood cells. This hypothesis is supported by the fact that 

leukaemia cells usually preserve the capacity to express the Kit receptor (stem cell factor 

receptor), which is responsible for cell self-renewal. Contrarily, differentiation of HSCs into 

specialised blood cells results in the loss of their ability in Kit receptor expression. For this 

reason mature blood cells can’t proliferate ensuring relatively constant number of specialised 

haematopoietic cells in the human body (Passegué, et al., 2003).   

Initial differentiation of HSCs can lead to myeloid stem cell or to lymphoid stem cell, both still 

expressing Kit receptor. The myeloid stem cells can then differentiate into myeloid leukocytes 
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(monocytes, neutrophils, eosinophils and basophils), erythrocytes and platelets. On the other 

hand, the maturation of lymphoid stem cells can lead to lymphocytes and NK cells development 

(Janeway et al., 2012). 

Based on the type of haematopoietic stem cell undergoing malignant transformation and on the 

velocity of progression (acute or chronic), leukaemia is classified in four main groups: acute 

myeloid leukaemia (AML), chronic myeloid leukaemia (CML), acute lymphoid leukaemia 

(ALL) and chronic lymphoid leukaemia (CLL) (Szczepański, et al., 2003).  

Among these four types of leukaemia, AML is the commonest one in the adults. Each year a 

significant number of new AML cases is registered all over the world. Unfortunately, the 

survival rates for this malignancy remain very low. Rapid progression and multiple 

immunosuppressive mechanisms characterising AML result, indeed, in poor prognosis and 

high mortality rates (Estey & Döhner, 2006; WHO, 2018). 

High proliferation rate and survival of AML cells is a consequence of specialised mechanisms 

acquisition by malignant cells, which leads to continuous self-renewal and protect from host 

immune attack. Indeed, AML cells express immunosuppressive ligands, such as CD86, PD-L1 

and PD-L2, able to inactivate lymphocytes and NK cells as described before [Figure 17] 

(Yasinska, et al., 2018).  
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Figure 17: Inhibitory interactions via PD-1 and CTLA-4 receptors lead to immune cells inactivation 

by direct binding to respective ligands and through suppression of IL-2 secretion 

Moreover, as previously described, AML cells express high surface levels of Tim-3/galectin-9 

complex, that can be shed leading to the release of Tim-3 and galectin-9, which can induce 

apoptosis in  T cells and inactivates NK cells circulating in the bloodstream (Yasinska, et al., 

2018). 

Moreover, it has been recently reported that galectin-9 can promote downstream signalling 

when interacting with its endogenous Tim-3 receptor on AML cells. Indeed, this complex 

formation on the surface of AML cells stimulates the phosphorylation in Ser2448 residue of 

mammalian target of rapamycin (mTOR) (Gonçalves Silva, I., et al., 2016). Active mTOR 

(phosphorylated in Ser2448) is then able to promote phosphorylation of various substrates, 

such as eukaryotic translation initiation factor 4E (eIF4E) binding protein (BP). Indeed, hypo-

phosphorylated eIF4E-BPs interacts avidly with eIF4E protein preventing its interaction with 

cap structure at 5’ end of specific mRNAs (Jossé, et al., 2016). Phosphorylation of Ser65, Thr70 

and possibly other aa residues of eIF4E-BP by active mTOR induces conformational changes 

in eIF4E-BPs that lead to the loss of affinity for eIF4E. Released eIF4E is then able to bind 

mRNAs and promote translation of various proteins necessary for AML cell survival and 
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proliferation. Another important target of active mTOR is the ribosomal protein S6 kinase beta-

1 (S6K1), also called p70S6 kinase. Active S6K1 promotes the phosphorylation of e S6 

ribosomal protein, which leads to specific protein synthesis. The mTOR induced protein 

synthesis leads to increased levels of various proteins, including Hif-1α, thus promoting VEGF 

transcription and future angiogenesis. Moreover, active mTOR positively affects glycolysis 

rendering it more efficient (Gonçalves Silva, et al., 2016, Prokhorov et al., 2015). 

Consequently, galectin-9/Tim-3 signalling is pivotal for AML progression. However, the 

mechanisms underlying its surface expression remains still unclear. Neuronal receptor 

neuronal receptor latrophilin 1 (LPHN1) has been proposed to be responsible for galectin-9 

secretion. 

LPHN1 is G-protein-coupled receptor physiologically expressed in neurons, where it is 

involved in neurotransmitter release in Ca2+ dependent manner. Recently, it was discovered 

that the neuronal receptor latrophilin 1 (LPHN1) is expressed in human monocytic cells (THP-

1) and in primary human AML cells, but is absent in mature healthy leukocytes. It has been 

shown that its triggering by latrotoxin, compound present in the venom of black widow spider, 

leads to Ca2+ mobilisation and cytokine exocytosis by AML cells (Sumbayev et al., 2016). 

Moreover, since these cells are circulating in the blood, it is obvious that LPHN1 ligands should 

be present as well in the vessels or expressed by endothelial cells. To date, two LPHN 

endogenous ligands of nervous tissue have been identified: Lasso/teneurin-2 and fibronectin 

leucine rich transmembrane protein 3 (FLRT3) (O’Sullivan et al. 2012; Silva et al. 2011). 

Western blot analysis of in myeloid leukaemia cell lines (THP-1 and U-937), primary healthy 

leukocytes or blood plasma obtained from healthy donors showed that teneurin-2 was absent 

(Sumbayev et al. 2016). For this reason, our second candidate as possible stimulatory LPHN1 
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ligand on AML cells was FLRT3. However, its presence in the blood or on circulating cells 

haven’t been examined yet. Also, FLRT3 effects on AML cells haven’t been studied yet. 

FLRTs are transmembrane proteins containing an extracellular leucine-rich repeat (LRR) 

domain, able to interact with proteins containing olfactomedin domain. Structural studies of 

LPHNs revealed the presence of an external olfactomedin domain in all the three isoforms of 

this receptor (LPHN1-3). Indeed, the interaction between FLRT3 LRR domain and LPHNs 

olfactomedin domain has been reported (Krasnoperov, et al. 1999; Lelianova, et al. 1997; 

O’Sullivan, et al. 2012). 

Additionally, the transcription factor(s) associated with LPHN1 expression in AML cells 

remain(s) still unknown.  

We hypothesised, that cortisol could be involved in LPHN1 regulation. Indeed, abnormal 

cortisol levels were detected in several cancer types, but these have never been reported for 

AML (Mazzoccoli, et al., 2003; Sephton, et al., 2013; Schrepf, et al., 2015).  

Cortisol is a glucocorticoid hormone produced by adrenal gland. The hypothalamic-pituitary-

adrenal (HPA) axis tightly controls cortisol levels, which increase in response to numerous 

stimuli such as stress and energetic deficiency (Bamberger, 1996).  

Cancer cells use high amounts of glucose, main energy source of the body, in order to 

proliferate rapidly. Therefore, anomalous reduction of hematic glucose occurs during cancer 

development. Hypoglycaemia, resulting from this process, stimulates HPA axis with 

consequent cortisol release by adrenal gland (Greenwood, et al., 1966; Koenig, et al., 2005). 

One of the cortisol functions, indeed, is to increase glucose levels in the blood, mainly by 

promoting glycogenolysis and gluconeogenesis (Garber, et al., 1976). 
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Although its concentration in the blood oscillates during the day, cortisol is an always 

circulating hormone and, thus, can regularly interact with glucocorticoid receptors present in 

myeloid and other blood cells. Depending on the cell type, this hormone can promote 

differential gene transcription leading to cell-specific responses. For instance, T cells activity 

and proliferation was found to be suppressed by glucocorticoid treatment (Herold, et al., 2006; 

Davis, et al., 2014). Contrarily, white blood cells proliferation was shown to be significantly 

upregulated by glucocorticoids. Indeed, it was found that glucocorticoids are able induce 

haematopoiesis of myeloid lineage cells (Rinehart, 1997). 

Thus, cortisol could potentially support AML cell progression by suppressing anti-tumour 

immunity and by stimulating malignant cells proliferation. In addition, as mentioned above, 

cortisol is able to stimulate the expression of numerous proteins inside the cells. 

For all these reasons, we thought to test cortisol also as a potential regulator of LPHN1 

expression. 

Finally, Tim-3 and galectin-9 proteins have been characterised in different solid tumours, but 

mechanisms underlying regulation of their biochemical activities remain unknown.
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2. AIMS AND OBJECTIVES 

The aim of this PhD programme was to investigate the Tim-3-galectin-9 immunosuppressive 

pathway in human malignant cells and the biochemical functions of its crucial components. 

The following objectives were addressed in order to achieve this aim: 

1) To investigate the biochemistry and function of the Tim-3-galectin-9 secretory pathway in 

human AML cells which are in permanent contact with cytotoxic lymphoid cells. 

2) To investigate the ability of human AML cells to recruit crucial components of normal 

metabolism to escape immune surveillance and progress the disease. In particular: 

A) To study the effects of cortisol (hormone of adrenal cortex with crucial physiological 

function) on the activation of galectin-9 secretion by AML cells and possible recruitment of 

this hormone as an AML cell survival/immune escape factor.  

B) To investigate the biochemical mechanisms underlying recruitment of stem cell factor (SCF, 

main normal haematopoietic growth factor) by human AML cells for the purposes of survival, 

proliferation and immune escape. In particular, the study focuses on the role of danger signal 

HMGB1 produced by AML cells in activation of SCF production by healthy tissues. 

3) To study the expression and activity of the Tim-3-galectin-9 immunosuppressive pathway 

in human solid tumour cells in order to understand whether is unique for AML or ubiquitous 

and common for a variety of malignant tumours.  

4) To investigate the behaviour of Tim-3-galectin-9 immunosuppressive pathway in healthy 

and malignant human cells in the case of mitochondrial dysfunction followed by apoptotic cell 

death and to understand whether galectin-9 could also plays intracellular anti-apoptotic role as 

some other members of the galectin family (for example galectin-3).



 

48 

 

3. MATERIALS AND METHODS 

3.1 Materials 

Tissue culture medium and supplements were purchased from Sigma-Aldrich (Sufflock, UK). 

Mouse monoclonal antibodies directed against mTOR and β-actin, and rabbit polyclonal 

antibodies against phospho-S2448 mTOR, RAGE, galectin-9, HRP-labelled rabbit anti-mouse 

secondary antibody were purchased from Abcam (Cambridge, UK). Rabbit polyclonal 

antibodies against LPHN1 (PAL1 and RL1) as well as rabbit polyclonal antibody against 

LPHN2 (PAL2) were previously described (Davydov et al., 2009; Volynski et al., 2000). Other 

two anti-LPHN1 antibodies, rabbit antibody against native form and mouse monoclonal 

antibody, were purchased respectively from Abcam and Santa Cruz Biotechnology (Dallas, 

Texas, USA). Another rabbit antibody against LPHN2 was obtained from Abcam. Human 

recombinant FLRT3 and mouse monoclonal anti-FLRT3 antibody were purchased from Santa 

Cruz Biotechnology. Antibodies against phospho-S65 and total eukaryotic initiation factor 4E 

binding protein 1 (eIF4E-BP1) were obtained from Cell Signalling Technology (Danvers, MA, 

USA). Goat anti-mouse and goat anti-rabbit fluorescence dye-labelled antibodies were 

purchased from LI-COR (Lincoln, Nebraska USA).  

Anti-Tim-3 mouse monoclonal antibody, its single chain variant, human Ig-like V-type domain 

of Tim-3 (amino acid residues 22–124), human HMGB1 and human SCF were a kind gift of 

Dr Luca Varani (Gonçalves Silva et al., 2017; Prokhorov et al., 2015; Yasinska, et al., 2018). 

A soluble extracellular fragment of LPHN1, LPH-51, was produced and purified as previously 

described (Volynski et al., 2000). 
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DOPAT transfection reagent, primers and galectin-9 silencing RNA (siRNA) were obtained 

from Sigma-Aldrich. Tim-3 silencing RNA (siRNA) was purchased from Santa Cruz 

Biotecnology. 

Maxisorp™ microtitre plates were provided either by Nunc (Roskilde, Denmark) an Oxley 

Hughes Ltd. (London, UK). ELISA-based assay kits for the detection of galectin-9, Tim-3, IL-

2, TNF-α, IL-1β, SCF and VEGF were purchased from Bio-Techne (R&D Systems, Abingdon, 

UK).  

Secondary antibodies for confocal laser microscopy, TRITC labelled antibody (goat anti-

mouse IgG) and t FITC labelled antibody (goat anti-rabbit IgG), were obtained from Abcam. 

Imaging flow cytometry (goat anti-mouse and goat anti-rabbit Alexa 488, Alexa 555 and Alexa 

647) were purchased from Invitrogen (Carlsbad, USA).  

All other chemicals purchased were of highest grade of purity and obtained from Fischer 

Scientific (Loughborough, UK) or Sigma (Sufflock, UK). 

3.2 Tissue culture 

3.2.1 Cells lines 

THP-1 human myeloid leukaemia monocytes, K562 chronic myelogenous leukaemia cells, 

Jurkat T cells, MCF-7 human epithelial breast cancer cells, Colo-205 human colorectal 

adenocarcinoma cells of epithelial origin, HEP G2 human hepatocarcinoma cells were obtained 

from the European Collection of Authenticated Cell Cultures (ECACC, Salisbury, UK). RC-

124 non-malignant human kidney cells of epithelial origin and renal clear cell carcinoma RCC-

FG1 cells were obtained from CLS Cell Lines Service GmbH (Eppelheim, Germany). Cells 

were cultured in RPMI 1640 medium (R8758 – Sigma-Aldrich) with L-glutamine and sodium 

bicarbonate and supplemented with 10% foetal bovine serum (FBS), penicillin (50 IU/ml) and 
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streptomycin sulphate (50 µg/ml). LAD2 mast cells were kindly provided by A. Kirshenbaum 

and D. Metcalfe (NIH, USA). Cells were cultured in StemPro-34 serum-free media in the 

presence of 100 ng/ml SCF (Kirshenbaum et al., 2003). Untransfected mouse neuroblastoma 

cells (NB2A) and those overexpressing the full-size LPHN1 (LPH-42) were cultured as 

previously described (Volynski et al., 2000). TALL-104 cytotoxic T lymphocytes derived from 

human acute lymphoblastic leukaemia were obtained from the American Tissue Culture 

Collection (ATCC). TALL-104 were cultured in ATCC-formulated Iscove’s Modified 

Dulbecco’s Medium supplemented with 100 units/ml recombinant IL-2, 2.5 µg/ml human 

albumin, 0.5 µg/ml D-mannitol and FBS to a final concentration of 20%. LN401 human 

glioblastoma cells, BC-8701 human breast cancer cells, MDA-MB-231 human breast 

adenocarcinoma cells, PC3 prostate adenocarcinoma cells, Calu 6 human pulmonary non-small 

cell carcinoma cells, BEAS-2B human bronchial epithelium cells, D10 human malignant 

melanoma and HaCaT human keratinocytes were obtained from ECACC, ATCC or CLS Cell 

Lines Service GmbH. All the cells were cultured at 37 ºC and 5% CO2. 

Cell lines were accompanied by identification test certificates and were cultured according to 

specific tissue culture protocols. The cells were cultured for maximum 25-30 passages. 

3.2.2 Primary human cells 

Primary human AML mononuclear blasts (AML-PB001F, newly diagnosed/untreated) were 

purchased from AllCells (Alameda, CA, USA) and handled in accordance with the 

manufacturer's instructions following ethical approval (REC reference: 16-SS-033). Other 

primary human AML cells were obtained from the sample bank of the University Medical 

Centre Hamburg-Eppendorf (Ethik-Kommission der Ärztekammer Hamburg, reference: 

PV3469). Cells were incubated in IMDM medium containing 15% BIT 9500 serum substitute, 
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100 μM mercaptoethanol, 100 ng/ml stem cell factor (SCF), 50 ng/ml FLT3, 20 ng/ml G-CSF, 

20 ng/ml IL-3, 1 μM UM729 and 500 nM stemregenin 1 (SR1). 

Primary human NK cells and primary human healthy leukocytes were purified from buffy coat 

blood (prepared from healthy donors) obtained from the National Health Blood and 

Transfusion Service (NHSBT, UK) following ethical approval (REC reference: 16-SS-033).  

Primary CD34-positive HSCs were obtained from Lonza (Basel, Switzerland).  

Primary cells were cultured for maximum 2-3 passages before being used for the experiments. 

3.2.3 Primary human blood plasma samples 

Blood plasma from healthy donors was provided by the National Health Blood and Transfusion 

Service (NHSBT, UK) following ethical approval (REC reference: 16-SS-033).  

Primary human AML plasma samples were obtained from the sample bank of University 

Medical Centre Hamburg-Eppendorf (Ethik-Kommission der Ärztekammer Hamburg, 

reference: PV3469). 

3.2.4 Bone marrow extracts 

Femur bones of six-week-old C57 BL16 mice (25 ± 2.5 g, kindly provided by Dr. Gurprit Lall, 

School of Pharmacy, University of Kent) were used for the experiments following approval by 

the Institutional Animal Welfare and Ethics Review Body. Animals were handled by 

authorized personnel in accordance with the Declaration of Helsinki protocols. Bone marrow 

was isolated from femur bone heads as described before (Swamydas & Lionakis, 2013). Cells 

were kept in RPMI 1640 medium supplemented with 10% FBS, penicillin (50 IU/ml) and 

streptomycin sulphate (50 µg/ml). In addition, whole extracts were obtained from isolated bone 

marrow with final protein concentration 1 mg/ml. 
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3.2.5 Human breast tissue samples 

Primary human tumour tissue samples paired together with peripheral tissues (also called 

“normal” or “healthy” of the same patients) were collected surgically from breast cancer 

patients treated at the Colchester General Hospital, following written consent taken before 

surgery. Paired normal (healthy) peripheral tissues were removed during macroscopic 

examination of a tumour by pathologists. Blood samples were collected before breast surgery 

from patients with primary breast cancer and before treatment from patients with metastatic 

breast cancer. Samples were also collected from healthy donors (individuals with no diagnosed 

pathology), which were used as control samples. Blood separation was performed using 

buoyancy density method employing Histopaque 1119-1 (Sigma, St. Louis, MO) according to 

the manufacturer’s protocol. Ethical approval documentation for these studies was obtained 

from the NRES Essex Research Ethics Committee and the Research & Innovation Department 

of the Colchester Hospitals University, NHS Foundation Trust [MH 363 (AM03) and 

09/H0301/37]. 

3.3 Cell lysis 

Cell pellets obtained after the centrifugation were re-suspended in lysis buffer (50 mM Tris-

HCl, 5 mM Ethylenediaminetetraacetic acid (EDTA), 150 mM NaCl, 0.5% Nonidet-40, 1 mM 

phenylmethylsulfonyl fluoride (PMSF), pH 8.0) and kept on the ice for 60-90 minutes. After 

the incubation on the ice, the samples were centrifuged. The supernatants containing protein 

extracts obtained after centrifugation were used straight after or stored at -80°C until future 

use. 
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3.4 Tissue lysis 

The lysates were prepared using 100 mg of each frozen tissue, which was initially grounded 

into a powder and then, homogenised with 100 µL of the tissue lysis buffer (20mM Tris/HEPES 

pH 8.0, 2 mm EDTA, 0.5 M NaCl, 0.5% sodium deoxycholate, 0.5% Triton X-100, 0.25 M 

Sucrose, supplemented with 50 mM 2-mercaptoethanol, 50 µM PMSF, 1 µM pepstatin 

supplied just before use). Tissues were homogenised using Polytron Homogenizer (Capitol 

Scientific, USA) and a syringe was used to obtain homogeneous cell suspension. These tissue 

suspension were then filtered through medical gauzes and centrifuged at +4ºC at 10,000 g for 

15 minutes. After the centrifugation, proteins present in supernatants were precipitated by 

incubation of the samples on ice for 30 minutes with equal volumes of ice-cold acetone. Protein 

pellets were obtained by centrifugation (4ºC, 10,000 g, 15 minutes) followed by air drying at 

room temperature and then suspended in the SDS-lysis buffer described in the section 3.3 

(D’Arcy et al., 2008). 

3.5 Protein quantification 

Protein concentration in the samples was measured using Bradford assay, which involves the 

addition of an acidic dye (Coomassie Brilliant Blue G-250) to the protein solutions.  

At the assay pH (under acidic conditions) the dye molecules are protonated and present the 

maximum of absorption at 465 nm (brownish colour) [Figure 18A]. When added to protein 

solutions, the Coomassie Brilliant Blue G-250 (CBB) can bind proteins via π-interactions 

(aromatic ring of CBB with aromatic aa residues of the protein) and via electrostatic attraction 

(negatively charged sulfonate groups of CBB with protonated basic aa residues of the protein).  

Protein-CBB complex formation leads to the shift of the dye maximum absorption from 465 

nm to 595 nm (blue colour) [Figure 18B] (Georgiou, et al., 2008). 
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Figure 18: Maximum of absorption of CBB alone and in complex with the protein. Protonated CBB 

has maximum of absorption at 465 nm (A). Deprotonation of CBB by basic amino acids leads to the 

formation of negatively charged sulfonate groups which can bind the protein through electrostatic 

interactions. In addition, aromatic residues, such as Trp, Tyr and Phe, can bind CBB through π-

interactions. Stabilisation of CBB-protein complex results in the shift of maximum of absorption of the 

dye from 465 nm to 595 nm (Adapted from Gregoriu, et al., 2008). 

For protein quantification, 5 µl of cell lysate were mixed with 150 µl of Bradford reagent 

(0.01% (w/v) Coomassie Brilliant Blue G-250, 4.7% (w/v) ethanol and 8.5% (w/v) phosphoric 

acid) in a microwell plate. Following 5 minutes of incubation, the optical density at 620 nm 

was read in the plate reader. 

3.6 Western Blot analysis1 

Tissue o cell lysates were mixed with 2X or 4X sample buffer (125 mM Tris-HCL, 2% sodium 

dodecyl sulphate (SDS), 10% glycine, 1 mM dithiothreitol (DTT), 0.002% bromophenol blue, 

pH6.9) and boiled 5 min at 95°C. 

The mixture of proteins was then separated according to their MW using sodium dodecyl 

sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). SDS is an anionic detergent that 

denatures (together with DTT) the proteins and “wraps” the obtained polypeptide chains. This 

binding results in the formation of negatively charged complexes with equal charge densities 

per unit length of protein, thereby eliminating the ionic charges of individual amino acids. In 

 
1 Buffers and other solutions used in this paragraph are reported in section 7.1 and 7.2 in Appendix 
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this way the proteins can be resolved on the SDS-PAGE gel according to their MW and not to 

their three-dimensional size or their individual charges. 

After loading the protein mixtures in the wells of the gel kept in the running buffer (described 

in Appendix), an electric field was applied to force negatively charged polypeptides to migrate 

from cathode (negative pole) to anode (positive pole) leading to the separation of proteins 

according to their MW. Constant voltage of 150-200 V was applied until the dye front was 

about 1 cm from the bottom of the gel. Proteins were resolved on 7.5%, 10% or 12% SDS-

polyacrylamide gels, prepared as described in section 7.1 in Appendix. Polyacrylamide gel 

percentage was chosen according to the molecular weight of the target protein: 

Protein target, (KDa) >250 90-250 50-90 20-50 <20 

Gel% 5 7.5 10 12 15 

After performing SDS-PAGE, the separated proteins in the gel were transferred to a 

nitrocellulose membrane using semi-dry (BioRad system) or wet (Invitrogen system) blotting. 

Filter paper and/or filter pads, together with nitrocellulose membrane were soaked in blotting 

buffer and assembled with obtained gel in the transfer cassette as illustrated in Figure 19. 

 

Figure 19: Schematic representation of gel/membrane/filter papers/filter pads assembly in semi-dry 

(A) and wet (B) transfers. 
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The blotting was performed in a semi-dry (BioRad system) or wet (Invitrogen system) 

environment at constant voltage and 0.07 Amp (semi-dry transfer) or 0.1 Amp (wet transfer), 

one to two hours, according to the gel and system used. 

After the blotting, the membranes were blocked with blocking buffer (tris-buffered saline, 0.1% 

Tween 20 (TBST), 2% bovine serum albumin (BSA)) for at least 1 h under constant agitation 

at room temperature to minimise unspecific binding of the antibodies on the membrane. 

Blocked membranes were then incubated with the antibodies for target proteins for at least two 

hours at room temperature. For all primary antibodies a 1:1000 dilution in blocking buffer was 

used, except those against LPHNs, FLRT3 (where a 1:500 dilution was used) and CD3 (where 

a 1:100 dilution was used). 

Following the incubation with primary antibodies, the membranes were washed with TBST 

buffer for at least 15 min, under constant agitation at room temperature and then incubated with 

Li-Cor goat secondary antibodies, conjugated with fluorescent dyes, diluted in TBST buffer 

(1: 2000 dilution). After the incubation with secondary antibodies (1h, room temperature), the 

membranes were washed with TBST buffer as described above and visualised using a Li-Cor 

Odyssey imaging system. The detection of the bands corresponding to target proteins is 

possible because of the fluorescent tags bound to the secondary antibodies. These fluorescent 

dyes, when excited with specific wavelengths of light in the near infrared spectrum, emit at 

different wavelengths, which can be detected by Odyssey Imaging System. In particular, this 

imaging system has two channels which can be employed for the detection of fluorescence 

corresponding to one of two specific monochromatic wave lengths (680 nm and 800 nm). 

Western blot data were qualitatively and quantitatively analysed using Odyssey software and 

values obtained were normalised against those of β-actin, employed to ascertain equal protein 
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loading into the wells of the gel. Molecular weights of target proteins were calibrated in 

proportion to the running distance of protein standard markers. 

Western blot analysis was employed to detect the components of the Tim-3, galectin-9, FLRT3, 

LPHNs 1-3, Gαq, CD3, Hif-1α and RAGE in cell or tissue lysates. 

In order to quantitatively analyse mTOR-dependent phosphorylation of eIF4E-BP using 

Western Blot analysis, levels of phospho-S65-eIF4E-BP and total eIF4E-BP were detected on 

different membranes to avoid the overlap of protein bands due to possible incomplete 

membrane stripping. Values obtained after densitometry analysis of the bands corresponding 

to phospho-S65-eIF4E-BP and total eIF4E-BP were normalised against those of β-actin for 

respective membranes. The levels of eIF4E-BP phosphorylation were then calculated using the 

ratio between normalised phospho-S65-eIF4E-BP and total eIF4E-BP as described in the 

following equation: 

𝐩𝐒𝟔𝟓 − 𝐞𝐈𝐅𝟒𝐄 − 𝐁𝐏 𝐥𝐞𝐯𝐞𝐥 =  
[𝐩𝐒𝟔𝟓 − 𝐞𝐈𝐅𝟒𝐄 − 𝐁𝐏]

[𝐀𝐜𝐭𝐢𝐧]
÷

[𝐞𝐈𝐅𝟒𝐄 − 𝐁𝐏 𝐭𝐨𝐭𝐚𝐥]

[𝐀𝐜𝐭𝐢𝐧]
 

This ratio in control samples was considered as 100%.  

3.7 Enzyme-linked immunosorbent assay (ELISA) 

ELISA was used for the detection and quantification of target proteins in the cell culture media, 

human plasma, and cell and tissue lysates. 

3.7.1 Determination of galectin-9, soluble Tim-3 (sTim-3), TNF-α, IL-1β, SCF, VEGF 

and IL-2 concentrations released by the cells 

Levels of galectin-9, soluble Tim-3 (sTim-3), TNF-α, IL-1β, SCF, VEGF and IL-2 in cell 

culture media or in human blood plasma were determined by solid phase sandwich ELISA 

(R&D Systems assay kits) according to the manufacturer’s protocol. Briefly, 100 µL of capture 
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antibody for specific target protein were added to each well of 96-well microplate coated with 

poly-D-lysine (PDL), which was then incubated overnight at room temperature. Prior to the 

well-loading, capture antibody was diluted in phosphate-buffered saline (PBS) solution 

obtaining an optimal concentration for ELISA performance as recommended in the 

manufacturer’s protocol. After the incubation with the capture antibody, the wells were blocked 

with ELISA blocking buffer (PBS/BSA 1%) for at least one hour under constant agitation at 

room temperature. 100 µL of sample (culture media or human blood plasma) were then added 

to each well and left for at least two hours under constant agitation at room temperature. 

Following the incubation with the samples, the wells were washed with TBST buffer and 

incubated with 100 µL of specific biotinylated detection antibody diluted in PBS/BSA 1% for 

at least two hours under constant agitation at room temperature. After the incubation with the 

detection antibody, the wells were washed with TBST buffer and incubated with 100 µL of 

streptavidin labelled with horse radish peroxidase (HRP) diluted in PBS/BSA 1% for at least 

30 minutes under constant agitation at room temperature. The wells were then washed with 

TBST buffer and then incubated with 100 µL of substrate solution (0.2% H2O2, 56 Mm orto-

phenylenediamine (OPD)) for maximum 10 minutes at room temperature protecting from light. 

The reaction was stopped by adding 100 µL of 1.8 M H2SO4 in each well when change colour 

was observed. Indeed, HRP catalyses the oxidation of OPD in presence of H2O2 leading to the 

formation of 2,3-diaminophenazine (DAP), which maximum absorbance wavelength depends 

on the pH of the solution. The pH lowering after the addition of H2SO4 leads to irreversible 

inactivation of HRP and to the formation of protonated form of DAP which absorbance can be 

measured between 450 nm and 500 nm [Figure 20] (Bovaird, Ngo, & Lenhoff, 1982; Fornera 

& Walde, 2010; Vanessa et al., 2018).  
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Figure 20: OPD oxidation catalysed by HRP leads to the formation of DAP, which absorbs wavelengths 

in the range 400 – 450 nm (corresponding to the violet colour) of visible light spectrum and reflects 

wavelengths in the range 560 – 590 nm donating the typical yellow colour to the solution. DAP 

protonation leads to the formation of the compound absorbing the wavelengths from 450 nm to 500 nm 

and reflecting wavelengths which together donate bright orange colour to the solution [structures were 

drawn using ChemSpace].  

Since DAP concentrations are directly proportional to the levels of HRP-labelled streptavidin 

in the well, obtained absorbance values are directly proportional to the concentration of the 

protein of interest contained in the sample. 

3.7.2 Determination of phospho-S2448 mTOR in cell lysates 

ELISA plate was initially coated with mouse anti-mTOR antibody and then blocked with 

PBS/BSA 2%. Subsequently, the wells were incubated with the cell lysates at room temperature 

for at least two hours. After washing the plate with TBST buffer, the wells were incubated with 

anti-phospho-S2448 mTOR antibody at room temperature for at least 2 h. The plate was then 

washed with TBST again and HRP-labelled goat anti-rabbit IgG (Abcam) was added to the 

wells and left to react for at least 30 min at room temperature. After washing the plate with 

HRP 
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TBST, bound secondary antibodies were detected by the peroxidase reaction (OPD/H2O2) as 

described above. 

3.7.3 Detection of Tim-3-galectin-9 complex in cell and tissue lysates 

Mouse single-chain antibody against Tim-3 was employed as capture antibody, instead of using 

the full-length anti-Tim3 antibody from R&D ELISA kit. The wells were then incubated with 

cell or tissue lysates at room temperature for at least two hours. After washing the plate with 

TBST, biotinylated goat antibody against galectin-9 (detection antibody of R&D Systems 

ELISA kit) was added to the wells and kept for at least two hours at room temperature. The 

plate was then washed and incubated with HRP-labelled streptavidin for at least 30 minutes. 

This step was followed by the development of peroxidase reaction and its visualization as 

described above. 

3.7.4 Detection of cortisol in human blood plasma 

Plasma cortisol was measured by ELISA using the Salimetrics assay kit according to the 

manufacturer’s protocols (Salimetrics, Suffolk, UK). Briefly, plasma samples were added to 

microtitre plate coated with monoclonal anti-cortisol antibodies. Cortisol enzyme conjugates 

(cortisol bound to HRP) were then added to the samples and incubated for at least one hour at 

room temperature. After the incubation the plate was washed and the chromogenic substrate 

3,3′,5,5′-tetramethylbenzidine (TMB) is added. The oxidation of TMB by HRP causes the 

development of the blue colour in the wells of microtiter plate. The reaction is stopped by 

adding an acidic solution, which leads to the yellow colour formation. The optical density can 

be then read at 450 nm. 

In this competitive immunoassay, plasma cortisol competes with cortisol conjugated to HRP 

for the antibody binding sites on a microtitre plate. Therefore, the levels of cortisol HRP 

conjugates are inversely proportional to the amount of cortisol present in the sample. 
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3.8 Determination of LPHN1 fragments in human blood plasma 

ELISA plates were initially coated with mouse monoclonal LPHN1 antibody and blocked with 

TBST/BSA 2%. Human plasma samples were then added to the wells of the microtitre plate 

and kept under constant agitation for 4 hour at room temperature. After the incubation the plate 

was washed with TBST. Bound proteins were then extracted using glycine-HCl pH lowering 

buffer (pH 2.0) and mixed with lysis buffer (pH 7.5) at ratio 1:1 and with 4x sample buffer 

(described previously). Following Western Blot analysis of the samples obtained, LPHN1 

fragments were detected using rabbit PAL1 anti-LPHN1 antibody. 

In addition to protein immunoprecipitation followed by Western Blot detection, LPHN1 in 

human plasma was determined by ELISA. Mouse monoclonal LPHN1 antibody was used as 

capture antibody, while PAL1 antibody was employed as detection antibody. After the 

incubation with PAL1 antibody, the plate was incubated with HRP-labelled anti-rabbit 

secondary antibody. LPHN1 fragments were then visualised through the development of the 

peroxidase reaction as previously described. 

3.9 Detection of Tim-3-galectin-9 complex in tissue culture medium 

ELISA plates were coated with mouse single-chain antibody against Tim-3and blocked with 

PBS/BSA 2%. RPMI-1640 medium, in which THP-1 cells were cultured, was then added to 

the wells of the plate. After 4 hour of incubation with the samples, the plate was washed with 

TBST and the proteins were extracted employing 0.2 M glycine-buffer. Obtained extracts were 

then neutralised with lysis buffer, mixed with lysis buffer and subjected to Western Blot 

analysis, as described above. The bands corresponding to Tim-3-galectin-9 complex were 

visualised using mouse anti-Tim-3 antibody and galectin-9 antibodies-. 
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3.10 Cell viability assay 

Promega (Southampton, UK) MTS (3-(4,5-dimethylthiazol-2-yl)-5(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay kit was used to evaluate cell 

viability. In this assay, MTS tetrazolium compound is converted to a coloured formazan 

product by dehydrogenases in metabolically active cells. This conversion is proportional to the 

amount of living cells and can be assessed by measuring the maximum absorbance of the 

reaction product at 490 nm (Riss et al., 2013) [Figure 21].      

 
Figure 21: Viable cells contain active dehydrogenases able to reduce NAD+ in NADH; then, 

electron coupling reagent phenazine ethosulfate (PES) transfers electrons from NADH in the 

cytoplasm to reduce MTS in the culture medium into an aqueous soluble formazan (Adapted 

from Riss et al., 2013).  

To assess cell viability, 20 µl of “One Solution Reagent” containing MTS and an electron 

coupling reagent (phenazine ethosulfate (PES)) were added to 100 µl of cell suspension into a 
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microwell of 96-well plate. After mixing, the plate was placed in the incubator at 37°C for 1-4 

hours, and the absorbance at 490 nm was then measured in accordance to the manufacturer’s 

protocol. 

3.11 Caspase 3 activity 

Caspase 3 activity was determined employing colorimetric assay kit (R&D Systems). This 

assay is based on the ability of the activated caspase 3 to cleave molecules that contain the 

amino acid motif DEVD such as poly ADP ribose polymerase (PARP).  

Indeed, in this colorimetric assay, caspase-specific peptide (containing DEVD motif) 

conjugated to the colour reporter molecule p-nitroaniline (pNA) is added to sample to verify 

caspase 3 activity. The cleavage of the peptide by the caspase leads to the release of the 

chromophore pNA, which can be quantitated spectrophotometrically at a wavelength of 405 

nm. The intensity of colour reaction is directly proportional to the level of caspase enzymatic 

activity in the cell lysate. 

Once added caspase lysis buffer to the cell pellets, the samples are incubated on the ice for 10 

minutes. After the incubation on the ice, the samples are centrifuged (10,000 x g for 1 minute) 

and the supernatants are transferred in the new tubes and kept on the ice. To 50 µL of sample 

are added 0.5 µL of 1 M solution of dithiothreitol (DTT), 50 µL of Reaction Buffer and 5 μL 

of Caspase-3 colorimetric substrate (DEVD-pNA) into a microwell of the 96-well plate. The 

plate is then incubated at 37 °C for 1-2 hours. After the incubation, the absorbance at 405 is 

measured in accordance to the manufacturer’s protocol. 

3.12 Granzyme B activity 

Granzyme B activity was determined using a fluorimetric assay kit (BioVision). This assay is 

based on the employment of synthetic substrate, containing the Granzyme B recognition 
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sequence along with a fluorescent label 7-Amino-4-trifluoromethylcoumarin (AFC). The 

cleavage of this specific recognition sequence by Granzyme B leads to the release of AFC, 

which then can be fluorometrically determined (Excitation wavelength = 380 nm; Emission 

wavelength = 500 nm). 

After homogenising the cells in specific assay buffer, the samples were kept on the ice for 10 

minutes and then centrifuged. Obtained supernatants were then transferred in the new tubes 

and placed on the ice. To 1 – 50 µL of sample supernatants were added 50 µL of the mixture 

Granzyme B substrate/Granzyme B Assay Buffer (1:10) into each well of 96-well plate. After 

the incubation for 30-60 min at 37⁰C (protected from light), the fluorescence was measured at 

Ex/Em = 380/500 nm. 

3.13 Mitochondria isolation 

Cellular mitochondria were isolated employing differential centrifugation (Nicholas, 

Coughlan, et al., 2011). The cells were initially homogenised in an isolation buffer containing 

0.32 M sucrose, 1 mM EDTA (K+ salt), and 10 mm Tris-HCl (pH 7.4). Homogenates were 

then centrifugated (1330 x g, 3 minutes) and obtained supernatants were further subjected to 

centrifugation (21,200 x g, 10 minutes). After the centrifugation, pellets (isolated 

mitochondria) were lysed in the cell lysis buffer. Protein content of the samples were then 

analysed using Bradford assay. 

3.14 Uptake of BH3I-1 by the cells 

Cells treated and untreated with 5-[(4-bromophenyl)methylene]-a-(1-methylethyl)-4-oxo-2-

thioxo-3-thiazolidineacetic acid (BH3I-1), a synthetic apoptosis inducer, were harvested and 

then centrifuged. After applying harsh reaction conditions (high temperature and low pH) to 

the obtained pellet, 125 µL of RPMI 1640 medium were added to Eppendorf tubes containing 
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the sample. Dibromine (Br2) resulting from the molecular disruption of BH3I-1, as a 

consequence of harsh conditions applied to the sample, can react with phenol red (λmac=428 

nm) contained in RPMI 1640 medium leading to the formation of bromophenol, which has the 

maximum of absorbance at 585 nm (Sollo, et al., 1971; Wever, et al., 2018). Therefore, it is 

possible to estimate amount of BH3I-1 molecules which entered the cell by measuring the 

absorbance of the sample containing bromophenol at 585 nm [Figure 22]. Indeed, quantity of 

bromophenol molecules resulting from bromination of phenol red are directly proportional to 

BH3I-1 molecules present inside the cell after the incubation with this apoptosis inducer. 

 

Figure 22: Dibromine (obtained after breaking BH3I-1 compound) reacts with phenol red 

(λmac=428 nm) leading to the formation of bromophenol blue (λmac=585-590 nm). (Adapted 

from Wever et al., 2018). 

3.15 Galectin-9 and Tim-3 knockdown 

For galectin-9 gene expression silencing, a specific siRNA target sequence (uga ggu gga cga 

ugu ggu ucc c) was employed. For Tim-3 knockdown, a commercially available siRNA 
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obtained from Santa Cruz Biotechnology, CA, USA, was used. Corresponding random siRNA 

(uac acc guu agc aga cac c dtd) was employed as a negative control. 

The cells were transfected with specific siRNAs using cationic liposome-forming compound 

DOTAP as recommended in manufacturer’s instructions. Briefly, the liposomes were prepared 

using 7 μg of siRNA, 20 μL of DOTAP and 74 μL of HEPES. After incubating these reagents 

for 30-60 minutes on the ice (to allow the formation of the liposomes), 15 μl of the mixture 

obtained were added to 3 ml of the culture media containing Colo-205 cells. 

3.16 Quantitative real-time PCR (qRT-PCR) 

Quantitative real-time PCR (qRT-PCR) was employed to monitor mRNA levels corresponding 

to target proteins. 

Total RNA was isolated from the cells using a GenEluteTM mammalian total RNA preparation 

kit (Sigma-Aldrich). Target mRNAs was then converted into DNA sequences and amplified 

through reverse transcriptase-polymerase chain reaction (RT-PCR) in accordance with 

manufacturer’s protocol. This was followed by quantitative real-time PCR. For Galectin-9 

following primers were employed: 5’-CTTTCATCACCACCATTCTG-3’ and 5’-

ATGTGGAACCTCTGAGCACTG-3’. For Tim-3 was used 5’-CATGTTTTCAC-

ATCTTCCC-3’ primer and for actin were employed 5’-TGACGGGGTCACCCACACTG-

TGCCCATCTA-3’ and 5’-CTAGAAGCATTTGCGGTCGACGATGGAGGG-3’ primers. 

For LPHN1 following primers were exploited: 5′-AGCCGCCCCGAGGCCGGAACCTA-3′ 

and 5′-AGGTTGGCCCCGCTGGCATAGAGGGAGTC-3′. Reactions were performed using 

a LightCycler® 480 real-time PCR system and respective SYBR Green I Master kit (Roche, 

Burgess Hill, UK). Analysis was performed according to the manufacturer’s protocol. Values 

representing galectin-9, Tim-3 and LPHN1 mRNA levels were normalised against β-actin. 
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3.17 Determination of PKC-α activity 

The catalytic activity of PKC-α was measured based on its ability to phosphorylate specific 

substrate (such as Histone IIIS) (Micol, et al., 1999). Briefly, ELISA plates were initially coated 

with 0.2 mg/ml Histone IIIS. Then the samples mixed with reaction buffer (20 mM Tris-HCl 

(pH 7.5), 200 µM CaCl2, 5 mM MgCl2 and 20 µM ATP) at ratio 1:5 were added to the wells 

and the plate was incubated for 30 minutes at 37°C. After washing with TBST, Histone IIIS 

phosphorylation was determined spectrophotometrically employing molybdenum blue reaction 

(Nagul, 2015). The values obtained from this colorimetric assay were then normalised against 

total protein present in each sample. 

3.18 Measurement of phospholipase C (PLC) activity 

The activity of PLC was determined based on the ability of this enzyme to catalyse hydrolysis 

of the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) with consequent formation 

of diacyl glycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). 

30 µL of cell or tissue lysates were mixed with 70 µL of assay buffer containing PIP2 (20 mM 

Tris-HCl buffer (pH 7.2), 0.1% sodium deoxycholate, 300 µM CaCl2, 100 µM EDTA, 100 mM 

NaCl) and incubated for 60 minutes at 37°C. After the incubation, to 100 µL of the sample 

obtained were added 100 µL of organic phase (heptane/isopropanol in ratio 13:7). The mixtures 

obtained were then left to reform the biphasic system. Extracted organic phase was then 

combined with lysis buffer and sample buffer and subjected to gel electrophoresis on 33% 

PAGE. PIP2 and its cleaved components were the visualised on PAGE employing blue 

toluidine staining. 

3.19 In-cell assay (also known as on-cell assay) 

The in-cell assay (ICA) was employed to characterise surface presence of Tim-3, galectin-9 

and CD8. Briefly, the cells were suspended in the culturing medium containing primary 
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antibodies against one of the target proteins and left to react for at least 3 h under constant 

agitation at room temperature. After washing with PBS or tissue culture medium, the cells were 

re-suspended in the fresh media containing Li-Cor goat secondary antibodies and incubated for 

at least 2 hours under constant agitation at room temperature. The cells were then washed and 

placed in a microtitre plate, which was scanned using Li-Cor Odyssey imaging system. Cells 

incubated only in presence of specific secondary antibody were employed as negative control. 

Li-COR on cell assay was also used to characterise the interaction of RL-1 antibody with the 

surface of THP-1 cells. 

3.20 Confocal microscopy and imaging flow cytometry 

THP-1 cells were grown on 12 mm cover slips in 24-well plates. Cells were treated overnight 

with PMA and then fixed/permeabilised for 20 min with ice-cold methanol (MeOH) or 

MeOH/acetone (purissimus). Alternatively, cells were fixed in a freshly prepared 2% 

paraformaldehyde, washed 3 times with PBS and then permeabilised with 0.1% triton X-100. 

Cover slips were then blocked for 1h at RT with 10% goat serum in PBS. 1 µg/ml anti-Tim-3 

antibody and anti-galectin-9 antibody were used as primary antibodies and incubated overnight 

at 4°C. Goat-anti-mouse Alexa Fluor 488 and goat-anti-rabbit Alexa Fluor 555 were used as 

secondary antibodies. Cells were incubated with secondary antibodies for 45 min at RT. The 

preparations were examined on Olympus laser scanning confocal microscope as described 

(Prokhorov et al., 2015; Fasler-Kan et al., 2010). Images were then collected and analysed 

using proprietary image acquisition software. Imaging flow cytometry was performed in 

accordance with a previously described protocol (Fasler-Kan et al., 2016). Briefly, 

permeabilised cells were stained with mouse anti-Tim-3 and rabbit anti-galectin-9 antibodies 

for 1 hour at room temperature. Goat anti-mouse Alexa Fluor 647 and goat-anti-rabbit Alexa 

Fluor 488 were used as secondary antibodies. Images were collected and analysed using 
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IDEAS analytical software on ImageStream X mark II (Amnis-EMD-Millipore, USA). This 

method described in Gonçalves Silva et al., 2017. 

For Tim-3-galectin-9 co-localisation assay in breast tissue slices, image acquisition, a Nikon 

A1si laser scanning confocal microscope was allied with a Plan Fluor DIC 40x magnifying, 

1.3-numerical aperture (N.A.) oil-immersion objective. NIS Elements software (version 

3.21.03, Nikon, Tokyo, Japan) was used to analyse the data. Cell images were acquired in three 

channels for DAPI (excitation at 399 nm with laser power 10 arbitrary units [AU], emission 

collection at 450 nm; nuclei labelling), Alexa Fluor 488 (excitation wavelength 488 nm with 

laser power 10 AU and, emission wavelength at 525 nm (corresponds to a green channel, 

galectin-9), Alexa Fluor 555 (excitation 561 nm with laser power 10 AU, emission collection 

at 595nm, red channel, Tim-3), with a photomultiplier tube gain of 100 AU. No offset was 

used, and pinhole size was set between 1.2 and 2 times the Airy disk size of the used objective, 

depending on the strength of a signal. This method is described in Yasinska et al., 2019. 

3.20.1 Tim-3 and galectin-9 characterisation in THP-1 cells 

THP-1 cells were cultivated in 12 mm cover glasses in 24-well plates. Cells were treated with 

phorbol 12-myristate 13-acetate (PMA) and fixed/permeabilised for 20 min with ice-cold 

methanol or a mixture methanol/acetone. Alternatively, cells were fixed in a freshly prepared 

2% paraformaldehyde, washed 3 times with PBS and permeabilised with 0.1%TX-100.   

Cover glasses were blocked for 1 hour at room temperature with 10% goat serum in PBS. The 

plates were then incubated overnight at 4°C with 1 µg/ml of anti-Tim-3 and anti-galectin-9 

antibodies. After washing, the cells were incubated for 45 min at room temperature with goat-

anti-mouse Alexa Fluor 488 and goat-anti-rabbit Alexa Fluor 555 secondary antibodies. 
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The preparations were examined using the Olympus laser scanning confocal microscope as 

described previously (Prokhorov et al., 2015). Obtained images analysed using the proprietary 

image acquisition software. 

3.20.2 Tim-3 and galectin-9 characterisation in primary human breast tissues 

Tissue sections were obtained using a freezing microtome with the cutting thickness of 5-6 µm. 

Each tissue section was sliced onto a poly-D-lysine-coated microscope slide (BDH). Acquired 

slides were then incubated in 3% H2O2 for 15 minutes to block endogenous peroxidase activity. 

Subsequently, the slides were permeabilised using PBS containing 0.26% Triton for 20 minutes 

at room temperature and blocked for at least 30 minutes in the blocking buffer (PBS, 0.05% 

Tween, 2% serum, 1% BSA). After blocking, the slides were incubated with anti-Tim-3 and 

anti-galectin-9 antibodies diluted in the blocking buffer (1:2000 dilution) for 2 h at room 

temperature. Then, the slides were washed three times with PBS and incubated in the dark for 

1 h with anti-IgG-FITC-labelled secondary antibody (1:400 dilution). Slide washing was then 

followed by Fluoro-Gel mounting media containing DAPI nuclei-staining reagent. Negative 

controls were prepared by incubating the slides with secondary antibody alone. Images were 

obtained employing Confocal Laser Scanning Microscopy (BioRad Hercules). 

For image acquisition, a Nikon A1si laser scanning confocal microscope was used with a Plan 

Fluor DIC 40x magnifying, 1.3-numerical aperture (N.A.) oil-immersion objective. NIS 

Elements software (version 3.21.03, Nikon, Tokyo, Japan) was employed for data analysis. 

Cell images were acquired in three channels for DAPI (excitation at 399 nm with laser power 

10 arbitrary units [AU], emission collection at 450 nm; nuclei labelling), Alexa Fluor 488 

(excitation wavelength 488 nm with laser power 10 AU and, emission wavelength at 525 nm 

(corresponds to a green channel, galectin-9), Alexa Fluor 555 (excitation 561 nm with laser 

power 10 AU, emission collection at 595nm, red channel, Tim-3), with a photomultiplier tube 
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gain of 100 AU. No offset was used, and pinhole size was set between 1.2 and 2 times the Airy 

disk size of the used objective, depending on signal strength. 

3.21 Fluorescence-activated cell sorting (FACS) 

Surface presence and total cellular levels of Tim-3 and galectin-9 were characterised using 

FACS. The cells were initially fixed with freshly prepared 2% paraformaldehyde, washed 3 

times with PBS and permeabilised with 0.1% TX-100. The cells were then incubated with 

mouse anti-Tim-3 and rabbit anti-galectin-9 antibodies overnight at 4ºC. Goat anti-mouse 

Alexa Fluor 647 and goat-anti-rabbit Alexa Fluor 488 were employed as secondary antibodies. 

Target protein characterisation was then analysed using FACS Calibur cytometer with 

CellQuestPro software (Becton Dickinson, USA). 

3.22 Synchrotron radiation circular dichroism spectroscopy (SRCDS) 

The interactions of Tim-3 with galectin-9 as well as the binding of LPHN1 and LPHN2 with 

FLRT3 were characterised employing SRCD spectroscopy at beamline B23, Diamond Light 

Source (Didcot, UK) [Figure 23]. 

SRCD measurements of human recombinant Tim-3 and human recombinant galectin-9 were 

performed using 0.2 μg/ml of samples in 10 cm path length cell, 3 mm aperture diameter and 

800 μl capacity using Module B with 1 nm increment, 1 s integration time, 1.2 nm bandwidth 

at 23 °C (Hussain, et al., 2012; Siligardi & Hussain, 2015). These macromolecules were 

analysed alone and as a mixture (with stoichiometry of 1:1 molar ratio). 

SRCD measurements of soluble extracellular fragment of LPHN1, LPH-51, alone or in 

combination with human recombinant FLRT3 (equimolar ratio) were carried out using 0.01 

µM sample of soluble LPH-51 in a 1 cm path length cell of 3 mm aperture diameter and 60 μl 

capacity using a Module B instrument with 1 nm increment, 1 s integration time and 1.2 nm 
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bandwidth at 23 ºC. Similarly, human recombinant LPHN2 (olfactomedin-like domain, 

MyBioSource, San Diego, Ca, USA) was analysed alone or mixed with FLRT3 by SRCD 

spectroscopy. In this case SRCD measurements were performed using 0.7 µM samples.  

The results obtained were processed using CDApps (Hussain et al., 2015) and OriginLab™. 

 

Figure 23: Beam light 23 at Diamond Light Source Synchrotron and scheme of Synchrotron 

radiation circular dichroism (SRCD) spectroscopy analysis (Gonçalves Silva et al., 2017). 
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3.23 Leukaemia cell protection assay 

K562 (chronic myeloid leukaemia cells not releasing galectin-9) and NK cells were cultivated 

separately or as a 1:2 co-culture (K562: NK) for 16 h, at 37°C, in the presence or absence of 

0.5 - 5 ng/ml of galectin-9. The unfixed cell cultures were then imaged under an inverted 

microscope (TE200, Nikon), using phase-contrast lighting, a digital camera and the WinFluor 

image acquisition software (J. Dempster, University of Strathclyde). 

Images were acquired at different focal planes and analysed using the ImageJ software. Since 

K562 cells are significantly larger than NK cells, it was possible to identify each cell type both 

in mono-cultures and in co-cultures, by optimising the ranges of particle sizes during automatic 

particle counting. Additionally, illumination correction, background substraction, overlapping 

cell separation, and particle size optimization were applied using ImageJ software. 

3.24 Statistical Analysis 

Each experiment was performed at least three times. Statistical analysis of the results obtained 

was performed using two-tailed Student’s t-test, when comparing two events at a time. One-

way ANOVA test was employed instead for multiple comparisons. Where applicable, a post-

hoc Bonferroni correction was used. Statistical probabilities (p) reflecting significant 

differences between individual events were expressed as * where p<0.05, ** where p<0.01 and 

*** where p<0.001. 
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4. Tim-3-galectin-9 immunosuppressive pathway and its 

pathophysiological role 

Recently it has been discovered that Tim-3-galectin-9 pathway is involved in the immune 

system suppression (Golden-Mason et al., 2013; Gonçalves Silva, Rüegg, Gibbs, Bardelli, 

Fruewirth, et al., 2016; Kikushige et al., 2015; F. Wang et al., 2007). However, the mechanisms 

implicated in the activation of biosynthesis of the components of the Tim-3-galectin-9 pathway, 

galectin-9 secretion and its effects on cytotoxic lymphocytes (NK cells and T cells) remain 

unclear. 

4.1 Free and galectin-9-bound Tim-3 are shed differentially from the cell surface  

It has been previously reported that Tim-3 can be shed from the cell surface by proteolytic 

enzymes, such as a disintegrin and metalloproteinase domain-containing proteins (ADAM) 

10/17 (Clayton et al., 2015; Möller-Hackbarth et al., 2013).  Therefore, proteolytic shedding 

was proposed as possible mechanism of secretion of both Tim-3 and Tim-3-galectin-9 complex 

by AML cells.  

For this reason, THP-1 cells were cultured for 16 h in presence or in absence of 100 nM phorbol 

12-myristate 13-acetate (PMA), compound known to induce proteolytical shedding of Tim-3 

from the cell surface and galectin-9 release (possibly consequent to the proteolysis of Tim-3-

galectin-9 complex expressed on the membrane) (Chabot et al., 2002; Möller-Hackbarth et al., 

2013). After the incubation, immunoprecipitation from the culture media was performed 

employing 96-well plates coated with mouse single-chain antibody against Tim-3 and the 

precipitate was extracted as described in Materials and Methods. Obtained extracts were then 

subjected to Western blot analysis. Following the incubation with anti- galectin-9 antibody, 

specific bands were detected at ~32 kDa (the molecular weight of galectin-9) and ~52 kDa 
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[Figure 24 A]. Following the incubation with anti-Tim-3 antibody, specific bands appeared at 

~33 kDa (the molecular weight of soluble Tim-3 – sTim-3), ~20 kDa and ~52 kDa [Figure 24 

A]. The fact that the band at 52 kDa is detectable by both antibodies suggests that it corresponds 

to the unbroken Tim-3-galectin-9 complex. Moreover, Tim-3 fragment of 20 kDa is likely to 

be shed in complex with galectin-9 (~32 kDa) from the cell surface and then disassociated from 

its ligand during the Western blot procedure. Therefore, Tim-3 is probably shed at different 

cleavage sites when bound to galectin-9 (Tim-3 band at 20 kDa) and when expressed on the 

cell surface in absence of its natural ligand (Tim-3 band at 33 kDa). Consequently, different 

enzymes should be involved in its surface shedding. 

To verify this hypothesis, ADAM 10/17 were investigated. The aim was to find out whether 

these proteases are involved in the release of free Tim-3 fragment and/or galectin-9-Tim-3 

complex. Thus, THP-1 cells were cultured for 16 h with or without 100 nM PMA, a compound 

known to upregulate the expression of proteolytic enzymes and other proteins. After 16 h of 

incubation, PMA-containing medium was removed and replaced with the fresh medium 

containing 100 µM GI254023X (ADAM 10 and 17 inhibitor) or 100 µM BB-94 (a matrix 

metalloproteinase inhibitor) and the cells were incubated for further 4 h. The levels of galectin-

9 and Tim-3 released in the media were then determined by ELISA kits as described in 

manufacturer’s protocol, while the concentration of soluble Tim-3-galectin-9 complex was 

measured using a single-chain anti-Tim-3 antibody for capturing and biotinylated anti-galectin-

9 antibody for detecting as outlined in Materials and Methods. Obtained data showed that PMA 

treatment significantly increased the release of Tim-3, galectin-9 and Tim-3-galectin-9 

complex [Figure 24 B]. However, subsequent treatment with protease inhibitors, GI254023X 

and BB-94, reduced the levels of soluble Tim-3 in the media but did not influence the release 

of galectin-9 and Tim-3-galectin-9 complex [Figure 24 B]. This suggests that different 

mechanisms are involved in the release of Tim-3-galectin-9 from the cell surface. 
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Figure 24: Tim-3 is shed differentially from the cell surface depending if expressed in complex with galectin-9 or as a free transmembrane protein. Following 

the treatment of THP-1 cells with 100 nM PMA for 16 h, the media was exchanged with the fresh one containing 100 µM GI254023X (ADAM10/17 inhibitor) 

or 100 µM BB-94 (matrix metalloproteinase inhibitor) and incubated for 4 h. (A) The media collected after 16 h of incubation was subjected to 

immunoprecipitation and Western blot analysis for galectin-9 and Tim-3 detection (as outlined in Material and Methods). (B) The media collected after 20 h of 

incubation (all the samples) was subjected to ELISA for galectin-9, Tim-3 and galectin-9-Tim-3 complex detection. Images are from one experiment 

representative of six which gave similar results. Quantitative data are mean values ±SEM (n=6) *p < 0.05; **p < 0.01 vs. control.
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Intracellular levels of Tim-3 and galectin-9 in THP-1 cells untreated and treated with PMA 

were also characterised employing Western blot analysis. The data obtained showed that 

despite the increase in the release of sTim-3, galectin-9 and Tim-3-galectin-9 complex by THP-

1 cells, the intracellular levels of these proteins decreased [Figure 25]. In addition, a specific 

band detectable by both anti-Tim-3 and anti-galectin-9 antibodies appeared at ~70 kDa 

(molecular weight corresponding to the sum of uncleaved Tim-3 and galectin-9) [Figure 25]. 

These results suggest that the complex between full Tim-3 and galectin-9 (~70 kDa) is first 

formed intracellularly and undergoes proteolytical shedding only after being expressed on the 

cell membrane leading to the release of soluble form of this complex (~52 kDa). 
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Figure 25. PMA induces generation and/or release of Tim-3, galectin-9 and Tim-3-galectin-9 complex. Following the treatment of THP-1 cell 

with 100 nM PMA (16 h incubation), secreted and intracellular levels of galectin-9, Tim-3 and Tim-3-galectin-9 complex were characterised by 

ELISA and Western blot. Comparative analysis (expressed in % control) of galectin-9 and Tim-3-galectin-9 complex levels secreted by PMA-

treated and untreated THP-1 cells are illustrated in the bar diagram on the top. Images are from one experiment representative of three which gave 

similar results. Quantitative data are mean values ±SEM (n=3) *p < 0.05; **p < 0.01; ***p < 0.001 vs. control.
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The presence of Tim-3-galectin-9 complex in THP-1 cells was also verified by co-localization 

assays using confocal microscopy [Figure 26]. Following PMA treatment and 

paraformaldehyde fixation, non-permeabilised and methanol-permeabilised THP-1 cells were 

analysed.  Areas full of either Tim-3 or galectin-9 were detected on non-permeabilised cells. 

However, no substantial co-localisation of these two proteins was observed on THP-1 cell 

surface. On the other hand, clear evidence of Tim-3 and galectin-9 co-localization was found 

in permeabilised cells [Figure 26]. 

 

Figure 26: Co-localization of Tim-3 and galectin-9 in THP-1 cells. PMA-activated and 

paraformaldehyde-fixed cells were analysed using confocal microscopy for the detection of Tim-3 

and/or galectin-9. Images are from one experiment representative of six which gave similar results. 

The results obtained by confocal microscopy were also confirmed using imaging flow 

cytometry: Tim-3 and galectin-9 were found co-localised in PMA-treated and permeabilised 

THP-1 cells [Figure 27].  
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Figure 27: Co-localization of galectin-9 and Tim-3 in THP-1 cells upon PMA activation. THP-1 cells 

stimulated with PMA were permeabilized and subjected to imaging flow cytometry as described in 

Materials and Methods. Images represent six selected single cells.  

The fact that the Tim-3-galectin-9 complex is detectable intracellularly, but not on the cell 

surface can be explained by the incapacity of the antibody to interact with the extracellular part 

of Tim-3 when it is bound to galectin-9 due to steric hindrance. Indeed, since galectin-9 is 

soluble, it is reasonable to assume that it must be bound to a transmembrane protein (such as 

Tim-3) in order to remain on the cell surface. 

Taken together these results indicate that Tim-3 can be externalised on its own or can act as a 

trafficker for galectin-9, which does not have the signal domain necessary for secretion and 

thus requires a trafficker for its surface expression. 

Tim-3 and galectin-9 were then analysed in plasma samples obtained from 98 AML patients 

and from 12 healthy donors. It was found that the levels of galectin-9 and Tim-3 were 

significantly higher in AML patients’ blood plasma compared to healthy donors’ ones [Figure 

28 A, B, E and F]. 
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Figure 28: Levels of galectin-9, sTim-3 and soluble Tim-3-galectin-9 complex are significantly higher in blood plasma of AML patients compared to that 

of healthy donors.  Galectin-9 and Tim-3 concentrations in blood plasma of 98 AML patients and of 12 healthy donors were analysed by ELISA (A, B, E and 

F). Five randomly chosen plasma samples of each group were used for Tim-3-galectin-9 ELISA-based detection (C and G). Five randomly selected blood 

plasma obtained from AML patients and healthy donors were sonicated, boiled for 5 minutes at 95⁰ C and subjected to Western blot analysis (D). Correlations 

between the levels of Tim-3 and galectin-9 as well as Tim-3-galectin-9 complex and galectin-9 in blood plasma were determined for both healthy donors (H 

and J) and AML patients (I and K). Images are from one experiment representative of five which gave similar results. Quantitative data are mean values ±SEM 

(n=3) *p < 0.05; **p < 0.01; ***p < 0.001 vs. control.



 

82 

 

Tim-3-galectin-9 complex was also characterised employing ELISA (as previously described) 

using five randomly selected plasma samples from the group of studied AML patients and five 

from the group of healthy donors. It was found that the levels of Tim-3-galectin-9 complex 

were significantly greater in AML patients and the grade of this elevation was similar to that 

of galectin-9 [Figure 28 C and G]. In addition to ELISA-based detection, Tim-3 and galectin-

9 were characterised by Western blot analysis using five randomly chosen plasma samples 

from each group. The bands corresponding to galectin-9 (32 kDa), Tim-3 fragment (20 kDa) 

and sTim-3 (33 kDa) appeared following the incubation with anti-Tim-3 or anti-galectin-9 

antibodies. A clear band at ~52 kDa was detected by both anti-Tim-3 and anti-galectin-9 

antibody. These results match those obtained with THP-1 cells and reinforce the theory 

according to which soluble Tim-3 and Tim-3 complexed with galectin-9 are differentially shed 

from plasma membranes of AML cells. Additionally, the correlations obtained between Tim-

3 and galectin-9 concentrations as well as Tim-3-galectin-9 complex and galectin-9 levels in 

blood plasma of both healthy donors and AML patients suggest a co-release of both proteins 

in both cohorts [Figure 28 H, I, J and K]. 

Recently, it has been shown by surface plasmon resonance (SPR) analysis that galectin-9 can 

bind non-glycosylated Tim-3 with nanomolar affinity (Kd= 2.8x108 M). However, this 

interaction is even greater if Tim-3 is glycosylated (Prokhorov et al., 2015). This is in line with 

the fact that galectin-9 is a β-galactoside binding protein and thus interacts strongly with 

glycosylated proteins, such as Tim-3. Schematic representation of Tim-3 and galectin-9 

structures is illustrated in Figure 29A. 

Galectin-9-Tim-3 interaction was also analysed by synchrotron radiation circular dichroism 

(SRCD) spectroscopy at Diamond Light Source. Galectin-9 and Tim-3 were mixed to a 

stoichiometry of 1:1 molar ratio [Figure 29 B]. 
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Figure 29: Interaction of Tim-3 with galectin-9 leads to major conformational changes increasing 

solubility of the protein complex. Galectin-9 (right) and extracellular domain of Tim-3 (left) are 

schematically represented in panel A. In Tim-3 structure, amino acid residues involved in galectin-9-

independent binding are highlighted in green., while those which can be potentially glycosylated are 

shown in red. In galectin-9 structure, sugar molecules possibly involved in the binding with the 

glycoprotein and located close to the close to the carbohydrate binding sites are illustrated in green (A). 

The SRCD spectroscopy of Tim-3, galectin-9 and Tim-3-galectin-9 interaction (both simulated and real 

curves are presented) (B). 

CD spectrum obtained after mixing galectin-9 with Tim-3 was significantly different from the 

simulated spectrum. This indicates that significant conformational changes occur in these 

proteins upon the binding. In particular, a clear increase in β-strand component was observed. 

These results suggest that Tim-3 may alter the conformation of galectin-9 leading to its 

increased ability to interact with other receptors in target cells. Indeed, galectin-9 is tandem 

protein containing two carbohydrate recognition domains (CRDs) and thus one sugar-binding 

domain could bind Tim-3 (or other proteins) leaving the other CRD free to interact with another 

transmembrane receptor of a target cell. 

4.2 Latrophilin 1, PKC-α and mTOR-dependent translation are crucial for Tim-3 

and galectin-9 production and secretion 

Recently it was discovered that the neuronal receptor LPHN1 is expressed in AML cells, but 

is absent in healthy leukocytes (Sumbayev et al., 2016). 
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To investigate whether LPHN1 triggering is involved in Tim-3 and galectin-9 expression, THP-

1 cells were exposed to 250 pM α-latrotoxin (α-LTX), a highly specific and potent ligand of 

LPHN1, for 16 hours. Obtained lysates were then subjected to Western blot and the media was 

analysed by ELISA. It was found that the levels of intracellular galectin-9 and Tim-3 were 

downregulated (though not significantly), while the secretion of these proteins was drastically 

increased [Figure 30 B and D]. 

Similar results were also obtained when THP-1 cells were exposed to 100 nM PMA, specific 

PKC-α activator [Figure 30 A and D]. Therefore, one-hour pre-treatment with 70 nM Gö6983 

(PKC-α inhibitor) before the exposure to PMA or LTX was performed. It was found that 70 

nM Gö6983 treatment following the exposure to PMA or LTX downregulated both secreted 

and intracellular levels of Tim-3 and galectin-9 [Figure 30 A, B and D]. However, basic release 

of galectin-9 and Tim-3 wasn’t affected by Gö6983 suggesting that it is PKCα independent 

[Figure 30 D]. 

It has been also shown that PMA promotes the activation of mTOR, a kinase essential for AML 

cell survival and proliferation (Gonçalves Silva et al., 2016; Prokhorov et al., 2015; Roux, et 

al., 2004). Therefore, the phosphorylation rate of mTOR in position Ser2448 (active form) was 

also investigated in these cell lysates. It was found that both PMA and LTX significantly 

increased the phosphorylation of mTOR at 2448. This stimulus-induced mTOR activation was 

attenuated when THP-1 cells were pre-treated with Gö6983 following the exposure to PMA or 

LTX. Interestingly, the level of phosphor-S2448-mTOR after the incubation with just Gö6983 

wasn’t different from the control one [Figure 30 A and B]. 
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Figure 30: LPHN1, PKCαand mTOR pathways are involved in Tim-3 and galectin-9 production and secretion in AML cells. THP-1 cells were exposed to 

100 nM PMA or 250 pM LTX for 16 h with or without 1 h pre-treatment with the PKCα inhibitor Gö6983 (A, B, D) or the mTOR inhibitor AZD2014 (C, D). 

Cellular levels of Tim-3 and galectin-9 were characterised by Western blot. The p-S2448 mTOR was measured by ELISA. Secreted Tim-3 and galectin-9 were 

detected by ELISA. Images are from one experiment representative of three which gave similar results. Quantitative data are the mean values ± SEM of three 

independent experiments; *p b 0.05; **p b 0.01; ***p b 0.001 vs. control. Symbols “a” or “b” are used instead of “*” to indicate differences vs. PMA and LTX-

treated cells, respectively. 
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To prove mTOR involvement in galectin-9 and Tim-3 production, THP-1 cells were pre-treated 

with 10 μM AZD2014 (a highly selective mTOR inhibitor), before the exposure to 100 nM 

PMA or to 250 µM α-LTX. It was found that 1 h pre-treatment of THP-1 cells with mTOR 

inhibitor followed by the exposure to PMA or LTX, reduced intracellular Tim-3 and galectin-

9 levels as well as release of both proteins [Figure 30 C and D]. This suggests that PMA or 

LTX-induced translation of galectin-9 and Tim-3 depends on the mTOR pathway. Importantly, 

the solvents employed to dissolve pharmacological inhibitors had no effect on any of the 

studied protein levels or their secretion (data not shown). 

To validate obtained results, primary human AML mononuclear blasts AML-PB001F were 

exposed for 24 h to 250 pM LTX. Western blot analysis showed that AML-PB0011F expressed 

LPHN1, which production wasn’t changing upon the incubation with LTX [Figure 31 B]. 

Secreted levels of galectin-9 and Tim-3 were significantly increased in LTX-treated AML cells 

[Figure 31 A] confirming the findings obtained in THP-1 cells. 

 

Figure 31: LTX induces Tim-3 and galectin-9 release in primary human AML cells. Primary human 

AML blasts (AML-PB001F) were incubated for 24 h with 250 pM LTX. The media was then subjected 

to ELISA for galectin-9 and Tim-3 detection (A). Harvested cells after the incubation were lysed and 

subjected to Western blot analysis and LPHN1 expression was characterised (B). Images are from one 

experiment representative of six which gave similar results. Quantitative data are mean values ± SEM 

of six independent experiments; **p < 0.01 vs. control. 
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Recently it was found that FLRT3 is one of the physiological ligands of LPHN1 (Boucard, 

2014). Thus, THP-1 cells were incubated with 10 nM FLRT3 for 16 h. It was found that FLRT3 

induced significant upregulation of galectin-9 and sTim-3 release [Figure 32 A]. To confirm 

that this effect was physiologically relevant, THP-1 cells were also exposed for 16 h to mouse 

bone marrow (mBM) extracts (containing FLRT3) [Fig. 32 B] with or without 1h pre-treatment 

with 5 μg/ml FLRT3 neutralizing mouse antibody. It was found that galectin-9 and sTim-3 

secretion by THP-1 cells was significantly increased after the exposure to mBM extract. 

However, this upregulation was attenuated, but not completely blocked, by FLRT3 neutralising 

antibody [Figure 32 B]. This suggests that BM contains, in addition to FLRT3, other inducers 

of galectin-9 secretion by AML cells. 

THP-1 cells were also co-cultured with FLRT3-expressing RCC-FG1 renal carcinoma cells in 

the ratio 1 : 2, respectively [Figure 32 C]. The cells were incubated for 16 h in the absence or 

presence of 5 μg/ml FLRT3 neutralizing antibody. The levels of galectin-9 and sTim-3 secreted 

in the media were measured by ELISA. It was found that the presence of RCC-FG1 cells 

significantly increased galectin-9 and sTim-3 release and FLRT3 neutralization attenuated 

these effects [Figure 32 C]. Since RCC-FG1 cells release almost undetectable amounts of 

galectin-9 and Tim3, the concentrations of these proteins in the media can be attributed quite 

exclusively to their secretion by THP-1 cells. These results confirm that FLRT3 stimulates the 

release of galectin-9 in AML cells. 
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Figure 32: FLRT3 induces galectin-9 and Tim-3 secretion in THP-1 cells. (A) THP-1 cells were treated for 16 h with 10 nM extracellular domain of human 

recombinant FLRT3. The concentrations of galectin-9 and Tim-3 in the media obtained were determined by ELISA. (B) THP-1 cells were incubated with mouse 

bone marrow (mBM) extracts (10 µg protein/ml) for 16 h with or without 1 h pre-treatment with 5 μg/ml anti-FLRT3 antibody. The presence of FLRT3 in 

mBM extracts was confirmed by Western blot analysis. The levels of Tim-3 and galectin-9 released in the media were measured by ELISA. (C) The presence 

of FLRT3 was also confirmed in RCC-FG1 cells by Western blot analysis. RCC-FG1 cells were co-cultured with THP-1 cells at a ratio of 1 THP-1:2 RCC-

FG1 with or without 1 h pre-treatment with 5 μg/ml FLRT3 neutralizing antibody. The levels of Tim-3 and galectin-9 released in the media were measured by 

ELISA. Images are from one experiment representative of three which gave similar results. Quantitative data depict mean values ± SEM of three independent 

experiments; *p b 0.05; **p b 0.01; ***p b 0.001 vs. control. Symbols “a” or “b” are used instead of “*” to indicate differences vs. cells treated with mBM 

extracts or co-cultured with RCC-FG1 cells, respectively.
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In addition, PKCα activity was determined (as outlined in materials and methods) in THP-1 

cells treated as described above. It was found that PMA, LTX and FLRT3 significantly 

upregulated PKCα activity [Figure 33 A]. Similarly, PKCα activity was increased in THP-1 

cells when co-cultured with RCC-FG1 cells; this effect was attenuated in presence of anti-

FLRT3 neutralising antibody [Figure 33 B]. These results indicate that FLRT3 induces 

galectin-9 secretion in THP-1 cells in PKCα-dependent manner. 

 

Figure 33: PMA, LTX and FLRT3 upregulate PKCα activity in THP-1 cells. (A) PKCα activity was 

analysed in resting THP-1 cells as well as those exposed for 16 h to 100 nM PMA, 250 pM LTX and 

10 nM FLRT-3. (B) PKCα activity was analysed in resting THP-1 cells and those co-cultured with 

RCC-FG1 cells (ratio 1 THP-1: 2 RCC-FG1) in the absence or presence of 5 µg/ml FLRT-3 neutralising 

antibody. Images are from one experiment representative of three which gave similar results. 

Quantitative data are mean values ± SEM of three independent experiments; *p < 0.05; **p < 0.01 vs. 

control. Symbol “bb” indicates p<0.01 vs. THP-1/RCC-FG1 co-culture. 

4.3 Galectin-9 protects AML cells from NK cell killing activity 

Recently, Tim-3 was found to be expressed in NK cells. In addition, it was shown that the 

exposure to galectin-9 (soluble or cell-surface associated) in presence or absence of anti-Tim-

3 antibody influences IFN-γ release by NK cells (Gleason et al., 2012). Thus, it has been 

speculated that Tim-3-galectin-9 interaction might be involved in the creation of 

immunological synapses between target cells and cytotoxic lymphoid cells. 

To investigate this hypothesis, LAD2 human mast cell sarcoma cells (expressing both Tim-3 

and galectin-9) and primary human NK cells were employed.  
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Comparative analysis of total and cell-surface levels of Tim-3 and galectin-9 suggest that these 

proteins are predominantly expressed on the membrane rather than inside LAD2 cells [Figure 

34]. In addition, it was found that resting LAD2 cells don’t secrete detectable amounts of 

galectin-9 but its release can be induced by IgE. Contrarily, intracellular levels of galectin-9 

and Tim-3 don’t change considerably when LAD2 cells are exposed to IgE [Figure 34].   

 

Figure 34. LAD2 cells express and externalize Tim-3 and galectin-9. Left panel: the levels of cell 

surface and total Tim-3 and galectin-9 in LAD2 cells were measured using LICOR in cell assay (ICA, 

non-permeabilized cells) and in cell Western (ICW, permeabilized cells). Right panel: LAD2 cells were 

cultured in presence or absence of 0.1 μg IgE; Tim-3 and galectin-9 intracellular levels were measured 

by Western blot analysis, while the amount of secreted galectin-9 was characterised by ELISA. Images 

are from one experiment representative of three which gave similar results. Quantitative data show 

mean values ± SEM of three independent experiments; ***p b 0.001 vs. control. 

Primary human NK cells instead express Tim-3 (several glycosylation variants) but do not 

produce detectable amounts of galectin-9 protein [Figure 35].  
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Figure 35: Primary human NK cells express Tim-3 but don’t produce detectable amounts of galectin-

9 in primary human NK cells. Expressions of both proteins were analysed in whole cell extracts by 

Western blot. Human recombinant galectin-9 was used as a positive control (PC). Images are from one 

experiment representative (two donors in each) of three which gave similar results. 

Primary human NK cells were immobilised on ELISA plates and co-cultured in presence or 

absence of IgE-sensitized LAD2 cells (Sumbayev, et al., 2012) at a ratio of 1:1 with or without 

15 min pre-incubation with galectin-9 neutralizing antibody. To exclude IgG involvement in 

synapsis formation, LAD2 and NK cells were also incubated with isotype control antibody 

instead of anti-galectin-9 one [Figure 35].  

Since LAD2 cells, express high affinity IgE receptors (FcεRI), which are not present in NK 

cells, specific detection of LAD2 cells was possible by incubating the plate with IgE, and 

following incubations with mouse IgM anti-IgE and then anti-mouse LI-COR secondary 

antibody (the scheme of the experiment is illustrated in Figure 36). 

It was found that LAD2 cells bind NK cells and the presence of galectin-9 neutralizing antibody 

(but not isotype control antibody) abolished this effect [Figure 36]. These results confirm that 

galectin-9 expressed by LAD2 cells participates in the interaction with NK cells. 
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Figure 36: Galectin-9 participates in the formation of an “immunological synapse” between NK 

cells and LAD2 cells. Primary human NK cells were immobilized on the surface of Maxisorp plates. 

Cells were then co-cultured for 30 min with LAD2 cells with or without 30 min pre-treatment of LAD2 

cells with 5 μg/ml galectin-9 neutralizing antibody (or the same amount of isotype control antibody). 

LAD2 cells were then visualized using LI-COR assay as outlined in Materials and Methods. Images are 

from one experiment representative of five which gave similar results. Quantitative data represent mean 

values ± SEM of five independent experiments; *p < 0.05; **p < 0.01. 

To attest whether these immunological synapses participate or not in the prevention of AML 

cell killing by cytotoxic immune cells, the co-culture of K562 (chronic myeloid leukaemia 

cells, not secreting galectin-9) with NK cells was analysed.  

K562 cells were grown for 24 h in RPMI media containing 100 nM PMA. After the treatment 

of K562 cells with PMA (24 h), the media was replaced with the fresh one containing primary 

human NK cells at ratio of 1 K562:2 NK in the absence or presence of 5 ng/ml human 

recombinant galectin-9. Following 16 h of co-incubation, MTS test was performed to 

determine the cell viability of both cell lines. It was found that K562 viability was significantly 

decreased when co-cultured with NK cells in absence of galectin-9. This reduction was 

attenuated in presence of galectin-9 [Figure 37 A]. On the other hand, NK cells viability wasn’t 

affected by any of the described conditions [Figure 37 A]. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552242/#s0010
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Figure 37: Galectin-9 protects myeloid leukaemia K562 cells from being killed by primary human 

NK cells. K562 cells were incubated for 24 h with PMA in 96-well Maxisorp plates. (A) After 24 h, 

PMA-containing media was replaced with the media containing primary human NK cells. K562 and 

NK cells were then co-cultured (at ratio 1:2) for 16 h in the absence or presence of 5 ng/ml galectin-9. 

Viability of K562 and NK cells was measured using MTS test. Images are from one experiment 

representative of three which gave similar results. Quantitative data represent mean values ± SEM (n=3) 

independent experiments; ***p < 0.001 vs. control. (B) K562 cells co-incubated for 16 h with primary 

human NK cells, at a 1:2 ratio, in presence or absence of galectin-9 5 ng/ml. Cells were imaged using 

phase-contrast microscopy. The images are from one representative experiment of six (n = 6), which 

gave similar results. Scale bar (the same for all images), 50 μm. (C) NK cells induced aggregation of 

K562 cells was quantified as a function of galectin-9 concentration. Left, the per cent of cells found in 

aggregates in individual cultures and in the co-culture. Right, the size of cell aggregates in individual 

cultures and in the co-culture. The data represent the mean values ± SD of six independent experiments; 

*, p < 0.05; **, p < 0.01; ****, p < 0.0001 
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In addition, the cells (grown alone and in co-culture) with or without 5 ng/ml galectin-9 were 

visualised using phase contrast microscopy. Images obtained showed that NK cells induce the 

formation of massive K562 aggregates in absence of galectin-9. Indeed, none of the cell lines 

formed visible aggregates if cultured alone with or without galectin-9 [Figure 37 B]. Also, NK 

cell-induced aggregation of K562 cells was abrogated when the cells were co-cultured in 

presence of 5 ng/ml galectin-9 [Figure 37 B]. This effect was quantified using increasing 

concentrations of galectin-9 (in the range 0 – 5 ng/ml) in the co-culture. The data obtained 

showed that K562 aggregation induced by NK cells decreased in presence of galectin-9 in dose-

dependent manner until no K562 cell aggregation was detectable when galectin-9 concentration 

reached 5 ng/ml [Figure 37 C]. Thus, galectin-9 clearly protects myeloid leukaemia cells from 

being killed by NK cells.  

The interactions between AML THP-1 cells and NK cells were then investigated. THP-1 cells 

were treated with 100 nM PMA for 16 h. After the pre-treatment of THP-1 cells, their culture 

medium was replaced with PMA-free medium containing NK cells (ratio of 2 NK cells:1 THP-

1 cells) and the cells were co-incubated for 6 h with or without 5 μg/ml galectin-9-neutralising 

antibody. After the incubation, granzyme B and caspase-3 activities as well as the cell viability 

of THP-1 cells were characterised as described in Materials and Methods. It was found that the 

viability of THP-1 cells was significantly reduced when co-cultured with NK cells in presence 

of anti-galectin-9 neutralising antibody. The stimulation of AML cell death by NK cells was 

also confirmed by increased granzyme B and caspase-3 activities in THP-1 cells when co-

incubated in presence of anti-galectin-9 neutralising antibody [Figure 38]. However, the levels 

of galectin-9 secreted by THP-1 cells (measured by ELISA) didn’t change considerably in any 

of described conditions (galectin-9 bound to neutralising antibody was also detectable by 

ELISA) [Figure 38]. 
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In addition, cell lysates of isolated NK cells were subjected to Western blot analysis for specific 

detection of Tim-3 and galectin-9. It was confirmed that resting NK cells don’t produce 

detectable amounts of galectin-9. However, this protein on its own, and in the form of unbroken 

Tim-3-galectin-9 complex, was detectable in NK cells co-cultured with THP-1 cells. 

Furthermore, the levels of both, galectin-9 alone and in complex with Tim-3, were significantly 

reduced when the cells were co-incubated in the presence of galectin-9 neutralising antibody 

[Figure 38]. These results suggest that galectin-9 detected in NK cell lysates is most likely to 

derive from THP-1 cells, which release high amounts of this protein in the culture media. Once 

secreted, galectin-9 is able to bind to Tim-3 present on NK cell surface preventing granzyme 

B delivery in THP-1 cells, and thus inhibiting the caspase-3-dependent apoptotic pathway. 
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Figure 38: Cell-derived galectin-9 attenuates AML cell killing activity of primary human NK cells. 

PMA pre-treated THP-1 cells were co-cultured with primary human NK cells at 1:2 ratio for 6 h. After 

the incubation, MTS test was performed on isolated THP-1 cells. Granzyme B and caspase 3 activity 

was also characterised in THP-1 cell lysates as described in Materials and Methods (left panel). Galetin-

9 levels in the media were measured using ELISA (left panel). NK cells were subjected to Western blot 

analysis for specific detection of galectin-9 and Tim-3 (right panel). Images are from one experiment 

representative of three which gave similar results. Quantitative data show mean values ± SEM of three 

independent experiments; *p < 0.05; **p < 0.01; ***p < 0.001 vs control. 

In addition to galectin-9 function in inhibition of cytotoxic activity of NK cells (as described 

above), sTim-3 has been suggested to participate in the attenuation of cell-mediated immune 

response (Geng et al., 2006). Indeed, it was found that sTim-3 is able to attenuate immune cells 

proliferation and to reduce the secretion of IL-2, a cytokine, which activates cytotoxic activity 

of NK cells and T cells (Geng et al., 2006). 
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Since the levels of sTim-3 are considerably higher in the plasma AML patients compared to 

healthy donors [Figure 28 B], comparative analysis of IL-2 concentration between two groups 

was also performed. It was found that IL-2 levels are significantly lower in AML patients 

compared to healthy donors [Figure 39 A and B]. To confirm Tim-3 involvement in the 

reduction of IL-2 secretion by the immune cells, Jurkat T cells (producing detectable amounts 

of IL-2) were treated with increasing concentrations of sTim-3 for 24h. It was found significant 

downregulation of IL-2 secretion by Jurkat T cells in presence of increasing concentrations of 

sTim-3. These results suggest that sTim-3 is also involved in the immune escape of AML cells. 

 

Figure 39: Soluble Tim-3 attenuates IL-2 release. (A and B) The levels of IL-2 in blood plasma 

obtained from AML patients and healthy donors were measured by ELISA. (C) Jurkat T cells were 

treated with increasing concentration of Tim-3 for 24 h. After the treatment the media was subjected to 

ELISA for IL-2 detection. Data show mean values ± SEM of three independent experiments; *p < 0.05; 

**p < 0.01. 

4.4 Discussion 

AML cells are able to suppress anti-tumour immunity, but the biochemical mechanisms 

involved in this immune escape remain unclear. Recent evidences suggest that Tim-3 and 

galectin-9, two proteins highly secreted by AML cells, may participate in attenuation of NK 

and T cell cytotoxic activities (Golden-Mason et al., 2013; Gonçalves Silva, et al., 2016; 

Kikushige et al., 2015). However, stimuli required for Tim-3 and galectin-9 expression by 

AML cells as well as their release from the cell surface are poorly understood.  

It is known that galectin-9 lacks the signalling sequence necessary for its secretion and thus 

requires a trafficker in order to be expressed on the membrane or released by the cell (Delacour, 
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et al., 2009).Tim-3 has been proposed as a possible trafficker of galectin-9 (Gonçalves Silva, 

et al., 2016). 

Our results reinforced the assumption according to which Tim-3 is a galectin-9 trafficker. Tim-

3-galectin-9 complex was detected inside the cell (70 kDa) and in the culture media (52 kDa) 

[Figure 24 and 25]. Indeed, the bands at 70 kDa (cell lysates) and at 52 kDa (media) were 

recognised by both anti-Tim-3 and anti-galectin-9 antibodies. However, when the same blot 

was incubated sequentially with both antibodies, the second antibody failed to detect the 

respective protein in the same band (unless the first antibody is stripped off) due to steric 

hinderance. Moreover, confocal microscopy co-localisation analysis confirmed the presence of 

Tim-3-galectin-9 complex inside permeabilised THP-1 cells. Contrarily, surface presence of 

the complex wasn’t detectable by both antibodies using confocal microscopy co-localisation 

analysis [Figure 26]. This is in line with the previous observation (impossibility to detect the 

same band by sequential incubation with anti-Tim-3 and anti-galectin-9 antibodies and vice 

versa). In fact, when the complex is expressed on the cell surface, Tim-3 is covered by galectin-

9 and thus can’t bind anti-Tim-3 antibody (steric hinderance).  

The interaction of Tim-3 with galectin-9 was also characterised by SRCD spectroscopy. We 

found that the interaction between Tim-3 and galectin-9 leads to major conformational changes 

in these proteins [Figure 29]. In particular, a clear increase in β-strand has been observed. This 

suggests that Tim-3 binding alters galectin-9 conformation, possibly increasing its ability to 

interact with the target proteins. Since galectin-9 is a tandem protein containing two sugar-

binding domains, one of them could bind Tim-3 expressed on the membrane of AML cell, 

leaving the other sugar-binding domain free to interact with Tim-3 (or another receptor) present 

on the membrane of the target cell (e.g., NK cell).  
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Previously it was also reported that PKC-α is involved in the secretion of both Tim-3 and 

galectin-9 (Chabot et al., 2002). We confirmed these findings. PKC-α activation led to mTOR-

dependent synthesis of galectin-9 and Tim-3 as well as their increased release by THP-1 cells 

[Figure 24, 25 and 30].  The release of Tim-3-galectin-9 complex was also found to be 

considerably augmented following PKC-α activation in THP-1 cells [Figure 34, 25 and 30]. 

Tim-3 has been reported to be shed from the cell surface by ADAM 10/17 (Möller-Hackbarth 

et al., 2013). Therefore, we investigated whether these proteolytic enzymes are involved in the 

shedding of Tim-3 in its free form and/or in complex with galectin-9.  We found that ADAM 

10/17 contribute to considerably increased secretion of free Tim-3 (sTim-3), but don’t induce 

any significant changes in Tim-3-galectin-9 release from THP-1 cell surface [Figure 24]. 

Therefore, different proteolytic enzymes are involved in the shedding of Tim-3 depending 

whether it is bound or not to galectin-9. This deduction was also confirmed by the fact that two 

distinct bands were specifically detected by anti-Tim-3 antibody at 20 kDa and at 33 kDa in 

the blot containing immunoprecipitated media used for THP-1 cell culture. Since the band at 

~52 kDa was recognised by both anti-Tim-3 and anti-galectin-9 antibodies and the molecular 

weight of galectin-9 is ~32 kDa, the band at 20 kDa is likely to represent the fragment of Tim-

3 that is shed from the cell surface when this Ig is associated with galectin-9. Diversely, when 

Tim-3 is expressed on the membrane without galectin-9, it is shed at a different site and thus 

has a different molecular weight (~33 kDa) when compared to the fragment (frTim-3) partially 

dissociated from the complex during gel electrophoresis [Figure 24]. 

Recently it was discovered that LPHN1, a G-protein coupled neuronal receptor, is expressed 

in AML cells but is absent in healthy leukocytes. Moreover, triggering of LPHN1 in myeloid 

leukaemia cells was found to induce the secretion of IL-6, cytokine promoting survival and 
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proliferation of AML cells (Sumbayev et al., 2016). Therefore, the involvement of LPHN1 in 

galectin-9 and Tim-3 exocytosis was investigated.  

We found that both natural (FLRT3) and exogenous (LTX-α) ligands of LPHN1 induced 

mTOR-dependent synthesis of Tim-3 and galectin-9 as well as their exocytosis in AML cells 

[Figure 30, 31 and 32]. Moreover, LPHN1 triggering increased also PKC-α activity in AML 

cells [Figure 33]. PKC-α has been reported to induce the formation of SNARE complex 

responsible for exocytosis (Morgan et al., 2005; Stöckli, et al., 2011). Therefore, our results 

suggest that FLRT3, found to be physiologically expressed in the bone marrow [Figure 32], 

can interact with LPHN1 expressed by AML cells inducing galectin-9 and Tim-3 synthesis and 

their abundant secretion consequent to PKC-α activation. Thus, the presence of LPHN1 in 

AML cells, but not in healthy leukocytes, may explain considerably higher levels of Tim-3, 

galectin-9 and of the complex formed by these proteins in the blood plasma of AML patients 

when compared to healthy donors’ ones [Figure 28]. Importantly, high galectin-9 plasma levels 

have been correlated with lower overall survival rates in patients affected by myelodysplastic 

syndromes (MDS), a group of blood disorders frequently progressing to AML (Asayama et al., 

2017). In addition, AML cells expressing constitutively active PKC-α were also associated 

with poor prognosis and high mortality rate (Kurinna et al., 2006).  

Interestingly, increased PKC-α activation in THP-1 co-cultured with RCC-FG1 cells 

(expressing FLRT3) was abolished by FLRT3 neutralising antibody [Figure 33]. This is in line 

with the fact that FLRT3-induced increase of secreted galectin-9 and Tim-3 by THP-1 cells 

when co-incubated with RCC-FG1 cells was also abolished by FLRT3 neutralising antibody 

[Figure 32 C]. Diversely, FLRT3 neutralising antibody significantly reduced, but not 

abolished, PKC-α-induced increase of secreted galectin-9 and Tim-3 by THP-1 cells incubated 

with bone marrow [Figure 32 B]. This suggests that bone marrow may contain, in addition to 
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FLRT3, other PKC-α activating proteins, which can bind AML membrane receptors (LPHN1 

or others) and induce synthesis and exocytosis of Tim-3 and galectin-9.  

Once expressed on the cell surface or released in the culture media, galectin-9 protects AML 

cells from the immune attack. Indeed, the cell viability of K562 cells (chronic myeloid 

leukaemia cells not releasing detectable amounts of galectin-9) was significantly reduced by 

NK cells. On the other hand, cytotoxic activity of NK cells was abolished when the co-culture 

was performed in the presence of human recombinant galectin-9 [Figure 37].  

Galectin-9 involvement in the protection of AML cells from the immune attack was then 

confirmed using THP-1 cells co-cultured with NK cells in presence or absence of neutralising 

anti-galectin-9 antibody [Figure 38]. Indeed, the cell viability of THP-1 cells (expressing on 

their surface and releasing high amounts of galectin-9) was significantly decreased in presence 

of anti-galectin-9 neutralising antibody. 

It is known that NK cell cytotoxic activity consists mainly in the release of the granules 

containing granzyme B, which leads to the activation of caspase 3 inside the target cell and 

thus provokes apoptosis of malignant cells (as described in the Introduction). We found that 

the activities of both enzymes were significantly augmented in THP-1 cells when the co-culture 

was performed in presence of anti-galectin-9 neutralising antibody. This confirms that NK cells 

kill AML cells through the delivery of granzyme B inside the malignant cells. Our results 

suggest also that galectin-9 interacts with Tim-3 exposed on the membrane of NK cells (which 

don’t express galectin-9) preventing granzyme B delivery into AML cells.  

Possible mechanism through which galectin-9 binding to Tim-3 expressed on NK cell surface 

prevents the release of cytotoxic granules containing Granzyme B is illustrated in Figure 40. It 

is based on the recent finding regarding the capability of galectin-9 to induce NK cells to release 

IFN-γ (Gleason et al., 2012). The binding of IFN-γ with its respective receptor expressed on 
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the surface of AML cells leads to the activation of indoleamine 2,3-dioxegenase (IDO1), an 

enzyme which converts L-tryptophan into formyl-L-kynurenine, which is then converted into 

L-kynurenine (Corm et al., 2009; Folgiero et al., 2015; Mabuchi et al., 2016). This intermediate 

of tryptophan catabolism is then converted to L-kynurenine, which attenuates cytotoxic NK 

cell activity through the prevention of granzyme B delivery into AML cells. 

 

Figure 40: Possible biochemical interactions between AML and NK cells. Triggering of LPHN1 leads 

to the surface expression and release of galectin-9 by AML cells. Cell surface-associated or secreted 

galectin-9 binds then to the NK cell receptor (likely – Tim-3). This interaction induces NK cells to 

release of IFN-γ, which stimulates IDO1 to convert tryptophan (Trp) into formyl-kynurenine (FKU) 

inside AML cells. FKU is then further degraded into L-kynurenine (KU), which can be released by 

AML cells. KU attenuates the ability of NK cells to deliver granzyme B into AML cells in 

perforin/mannose-6-phosphate receptor (MPR)-dependent manner. If successfully delivered, granzyme 

B catalyses the cleavage of the protein Bid into tBid, which leads to mitochondrial disfunction with 

consequent release of cytochrome c from the mitochondria into the cytosol of malignant cells. Once 

liberated in the cytosol, cytochrome c induces apoptosome formation leading to the activation of 

caspase-3. Furthermore, granzyme B is capable of performing direct proteolytic activation of caspase-

3. These effects lead to AML cell apoptosis. However, this process is not taking place in presence of 

galectin-9, which impairs NK cell cytotoxic activity as described above. 

In addition to galectin-9-associated immune escape, we found that AML cells protect 

themselves from cytotoxic attack through the secretion of Tim-3. Our results suggest that 

soluble Tim-3 is capable of binding a target protein (or a group of target proteins) expressed 
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by T cells leading to their decreased secretion of IL-2, a cytokine required for activation of NK 

cells and cytotoxic T lymphocytes. This is in line with the results obtained from comparative 

analysis of sTim-3 and IL-2 levels in blood plasma of AML patients and healthy donors (HD). 

Indeed, we found considerably higher levels of sTim-3 and significantly lower concentration 

of IL-2 in the blood plasma of AML patients when compared to HD [Figure 28 and 39]. 

Schematic representation of the pathway derived from previously described findings is 

illustrated in Figure 41.  
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Figure 41: Pathobiochemical pathway allowing AML cells to escape host anti-cancer immunity. The 

interaction of FLRT3, expressed on the surface of endothelial cells (EC), with AML surface receptor, 

LPHN1, leads to the activation of Gq which then stimulates PLC. Activated PLC catalyses the 

hydrolysis of phosphatidyl-inositol-bisphosphate (PIP2) into inositol-trisphospate (IP3) and 

diacylglycerol (DAG). IP-3 is then able to bind ER-associated IP3 receptor (IP3R) leading to Ca2 + 

mobilization. Released IP3 and DAG activate PKC-α, which triggers mTOR translational pathway 

through downregulation of TSC1/TSC2. This leads to increased synthesis of galectin-9 and Tim-3. In 

addition, PKCα phosphorylates protein Munc18 leading to the formation of SNARE complexes, which 

tether cytosolic vesicles to the plasma membrane. This pre-activates the release machinery, and elevated 

cytosolic Ca2 + lead to exocytosis of free and galectin-9-associated Tim-3. Once expressed on the 

membrane of AML cells, both types of Tim-3 are differentially shed from the cell surface by proteolytic 

enzymes. Galectin-9 impairs the ability of NK cells to kill AML cells, while sTim-3 attenuates the 

release of IL-2, cytokine required for the activation of immune cells. 
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5. AML cells recruit normal physiological systems to progress 

the disease by preserving expression of stem cell proteins 

As previously described (Section 4.2), triggering of LPHN1, expressed in AML cells but not 

in healthy leukocytes, upregulates the expression and the secretion of Tim-3 and galectin-9 in 

AML cells allowing these malignant cells to escape host immune attack. However, the 

mechanisms underlying the regulation of LPHN1 expression in AML cells remain unclear. In 

addition, the presence of LPHN1 natural ligand (FLRT3) in blood hasn’t been investigated yet. 

5.1 Hematopoietic stem cells (HSCs) produce LPHN1, expression of which is 

preserved in malignant AML cells but not in healthy leukocytes 

Recently, LPHN1 mRNA was detected in primary human CD34-positive stem cells (Maiga et 

al., 2016). Thus, LPHN1 protein expression was also investigated in them. Western blot 

analysis confirmed the presence of LPHN1 in hematopoietic stem cells (HSCs) [Figure 42]. 

Interestingly, the molecular weight of LPHN1 found in HSCs was slightly higher (~140 kDa) 

compared to the one detected in THP-1 cells (~130 kDa) [Figure 42] or in primary AML cells 

(~130 kDa) (Sumbayev et al., 2016).  

Since triggering of LPHN1 induces Tim-3 and galectin-9 synthesis in AML cells, the 

expression of these proteins was also investigated in HSCs. Contrarily to THP-1, neither Tim-

3 nor galectin-9 were detectable in primary human CD34-positive stem cells [Figure 42]. 
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Figure 42: Characterisation of expression of LPHN1, Tim-3 and galectin-9 proteins in CD34-

positive human stem cells (HSCs) and THP-1 AML cells (positive control). Western blot analysis was 

employed for the detection of LPHN1, Tim-3 and galectin-9 proteins in CD34-positive HSCs and THP-

1 cells. Images are from one experiment representative of three which gave similar results. 

Comparative analysis of LPHN1 protein expression was then characterised in primary human 

AML cells, THP-1 cells and primary human leukocytes by Western blot analysis. As previously 

reported, LPHN1 wasn’t detectable by Western blot analysis in primary healthy leukocytes 

(Sumbayev et al., 2016). Clear bands were instead observed in the other two cell types and it 

was found that LPHN1 levels are considerably higher in primary human AML cells than in 

THP-1 cells [Figure 43]. 
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Figure 43: Comparative analysis of LPHN1 protein expression in primary human AML, THP-1 cells 

and PHL. Lysates of each cell type were subjected to Western blot analysis. Images are from one 

experiment representative of three which gave similar results. Data are the mean values ± SEM of three 

independent experiments; **p < 0.01 vs. AML cells. 

5.2 Cortisol induces LPHN1 expression in AML cells and HSCs, but not in healthy 

leukocytes 

Since AML cells and HSCs are typically present in the blood vessels or in bone marrow, the 

components normally circulating in the blood were taken under consideration as potential 

LPHN1 expression inducers. Cortisol, steroid hormone secreted in the bloodstream by adrenal 

glands, was proposed to stimulate LPHN1 expression in these cells. 

To investigate the effects of cortisol on LPHN1 transcription and translation, primary and THP-

1 human AML cells, primary human HSCs and primary healthy human leukocytes were 

incubated with 1 µM cortisol for 24 h. RNA extracts were then subjected to quantitative real-

time PCR (qRT-PCR) to characterise any changes in LPHN1 gene expression in the cells upon 

the exposure to 1 µM cortisol. Detectable amounts of LPHN1 mRNA were found in all the 

tested cell types, except primary healthy leukocytes, and in all these cases the levels were 

significantly upregulated by cortisol treatment [Figure 44]. 
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Figure 44: LPHN1 expression in human AML cells and haematopoietic stem cells, but not in primary 

healthy human leukocytes, is upregulated by cortisol. Primary human AML, THP-1 and 

haematopoietic stem cells as well as primary healthy leukocytes (PHL) were treated with 1 µM cortisol 

for 24 h. The levels of LPHN1 mRNA were measured by quantitative real-time PCR (A). LPHN1 

protein levels were characterised by Western blot analysis (B – primary AML cells, C – THP-1 cells 

and D – PHL). For PHL, lysates of LPHN1 overexpressing NB2A cells were used as a positive control. 

The concentrations of secreted galectin-9 were measured by ELISA (B, C, D). Images are from one 

experiment representative of four which gave similar results. Data represent mean values ± SEM for 

four independent experiments. *p < 0.05; **p < 0.01 vs. control. 

In addition, cell lysates of primary and THP-1 human AML cells, PHLs incubated for 24 h in 

presence or absence of 1 µM cortisol were subjected to Western blot analysis. It was found that 

LPHN1 protein levels were also upregulated by cortisol in primary and THP-1 human AML 

cells [Figure 44 B and C]. Contrarily, LPHN1 wasn’t detectable in PHLs by Western blot 

analysis (as shown previously) and its expression wasn’t induced by cortisol treatment [Figure 

44 D]. 
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The influence of cortisol in galectin-9 release by these three cell types was also investigated. 

ELISA analysis showed that cortisol treatment didn’t provoke any changes in galectin-9 

secretion by any of these cell types [Figure 44 B, C and D]. This suggests that LPHN1 needs 

to be activated by a ligand to induce galectin-9 release by AML cells.  

Cortisol and galectin-9 concentrations were then measured in blood plasma of AML patients 

and healthy donors. It was found that both, cortisol and galectin-9, were significantly higher in 

blood plasma of AML patients compared to healthy donors one [Figure 45]. 

  

Figure 45: The levels of cortisol and galectin-9 are significantly higher in blood plasma of AML 

patients compared to healthy donors one. Blood plasma of ten healthy donors and ten AML patients 

was collected at the same time of the day to avoid the influence of circadian dynamics ensuring 

comparability of cortisol levels. The levels of cortisol (left panel) and galectin-9 (right panel) were 

measured by ELISA, and the correlation between these two proteins was analysed. Data are the mean 

values ± SEM of ten independent experiments.; *p < 0.05; **p < 0.01; ***p < 0.01  vs control. 
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In addition, no correlation between cortisol and galectin-9 levels was observed in the blood 

plasma of healthy donors. Contrarily, a clear correlation between the levels of these two 

proteins was found in the blood plasma of AML patients suggesting that galectin-9 secretion 

might be linked to LPHN1 expression in this circumstance. 

5.3 Soluble LPHN1 fragments are detectable in AML blood plasma 

Since LPHN1 is expressed on the membrane of blood cells, it can possibly undergo 

proteolytical shedding and be released in the bloodstream. To investigate this, blood plasma of 

AML patients was subjected to immunoprecipitation followed by Western blot analysis using 

several LPHN1 antibodies. A clear band at ~67-68 kDa was detectable by anti-LPHN1 

antibody [Figure 46 A]. Also, the bands having lower molecular weight were observed after 

the incubation with these antibodies. Thus, once expressed on AML cell membrane, LPHN1 

(~120 kDa) can be subjected to proteolytical shedding, which leads to the release of LPHN1 

fragments (of ~67-68 kDa and of lower molecular weight) in the bloodstream. None of these 

bands was, instead, detectable by Western blot analysis in the immunoprecipitated extracts 

obtained from the blood plasma of healthy donors [Figure 46 A].  

The presence of soluble LPHN1 fragments in the blood of AML patients, but not in the one of 

healthy donors, was also confirmed by ELISA (as described in Materials and Methods) [Figure 

46 B]. 
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Figure 46: Soluble LPHN1 fragments are elevated in blood plasma of AML patients. Blood plasma 

of ten healthy donors and ten AML patients was subjected to immunoprecipitation employing Santa 

Cruz mouse monoclonal antibody as capture antibody. Obtained extracts were then subjected to 

Western blot analysis using rabbit anti-LPHN1 antibody (PAL-1 or Abcam anti-LPHN1 antibody) for 

detection (A). Specific detection of soluble LPHN1 fragments (in the same blood samples) was 

performed using ELISA as outlined in Material and Methods (B). Images are from one experiment 

representative of six which gave similar results. Data are the mean values ± SEM of ten independent 

experiments; *p < 0.05; **p < 0.01; ***p < 0.01 vs control. 

5.4 FLRT3 upregulates galectin-9 secretion in AML cells in a LPHN1-dependent 

manner 

As reported in Figure 32, FLRT3 induces galectin-9 secretion in THP-1 AML cells. To 

investigate whether this effect is LPHN1-associated or not, specific anti-LPHN1 neutralising 

antibody (clone name RL1) was employed.  

The specificity of this antibody was determined using THP-1 cells (expressing high amounts 

of LPHN1 on their surfaces) and NB2A cells, which don’t express LPHN1, as a negative 

control. The interaction of the antibody with THP-1 cell surface receptors, but with NB2A 
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ones, was characterised by Li-Cor on-cell assay (as described in Materials and Methods) 

[Figure 47].  

 

Figure 47: On cell detection of cell surface presence of rabbit polyclonal antibody recognising 

LPHN1 (clone name RL1). LPHN1 negative NB2A cells (negative control) and THP-1 cells were 

subjected to on cell assay using anti-rabbit Li-Cor secondary antibody. Images are from one experiment 

representative of three which gave similar results. 

To confirm neutralising properties of RL1, THP-1 cells were incubated in presence and absence 

of 1 µg/ml RL1 antibody for 16 h. After the incubation, the levels of secreted galectin-9 were 

measured by ELISA. It was found that galectin-9 secretion levels weren’t affected by RL-1 

antibody (data not shown), suggesting that this antibody doesn’t exert an LPHN1 agonistic 

effect. 

After assessing the specificity and neutralising properties of RL1 antibody, the involvement of 

LPHN1 in galectin-9 secretion by THP-1 AML cells was explored. THP-1 cells were incubated 

for 16 h with or without 10 nM FLRT3. This treatment was performed with or without 1 h pre-

exposure to 1 µg/ml RL1 antibody. After the incubation the levels of galectin-9 released in the 

culture media were measured by ELISA. It was found that RL1 antibody attenuated FLRT3-

induced galectin-9 release in THP-1 cells [Figure 48 A], confirming the involvement of LPHN1 

in this process. In addition, this assumption was further reinforced by the fact that FLRT3 

treatment didn’t upregulate galectin-9 release in primary healthy leukocytes (cells not 

expressing LPHN1, as shown in Figure 43) [Figure 48 A]. 
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Figure 48: FLRT3, component normally circulating in blood plasma, induces galectin-9 secretion in 

AML cells in a LPHN1-dependent manner. THP-1 cells and PHL were exposed to 10 nM human 

recombinant FLRT3 for 16 h followed by detection of secreted galectin-9 levels by ELISA. In THP-1 

cells, the treatment was performed with or without 1 h pre-exposure to 1 µg/ml RL1 anti-LPHN1 

polyclonal antibody (A). The levels of secreted FLRT3 and its fragments were analysed in the blood 

plasma of healthy donors and AML patients using Western blot (B). THP-1 cells were exposed for 16 

h to 10% blood plasma either from healthy donors or AML patients with or without pre-treatment with 

FLRT3 neutralising antibody. Levels of secreted galectin-9 were analysed using ELISA (C). Data are 

shown as mean values ± SEM from four independent experiments; *p < 0.05; **p < 0.01 vs. control. 

Blood plasma obtained from both, AML patients and healthy donors, was then subjected to 

Western blot analysis for specific detection of FLRT3. The bands at ~55 kDa and ~27-28 kDa 

were specifically detected by anti-FLRT3 antibody in both groups [Figure 48 B]. These bands 

correspond to soluble fragments of FLRT3, which are likely to be shed from the cell surface 

by proteolytic enzymes. Interestingly, the blood plasma from both, AML patients and healthy 

donors, contained approximately equal amounts of both FLRT3 fragments [Figure 48 B]. 

To investigate whether these blood-associated FLRT3 fragments are able to stimulate galectin-

9 secretion by AML cells in a LPHN1-dependent manner, THP-1 cells were cultured in RPMI 

1640 media containing antibiotics (as outlined in Materials and Methods) and 10 % blood 

plasma from either AML patients or healthy donors (instead of 10% FBS). THP-1 cells were 

incubated for 16 h with or without a 30 min pre-exposure to anti-FLRT3 neutralising antibody. 
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The concentration of galectin-9 released in culture media was then measured by ELISA. It was 

found that the levels of galectin-9 secreted by THP-1 cells were significantly higher when the 

cells were cultured with 10 % blood plasma than in presence of 10 % FBS (negative control). 

In addition, anti-FLRT3 neutralising antibody attenuated galectin-9 secretion [Figure 48 C]. 

FLRT3-LPHN1 interaction was also characterised using SRCD spectroscopy. CD spectrum 

obtained after mixing FLRT3 with LPHN1 was significantly different from the simulated 

spectrum suggesting that considerable conformational changes occur in these proteins upon the 

binding [Figure 49]. 

 
Figure 49: Interaction of FLRT3 with LPHN1 leads to significant conformational changes. SRCD 

spectroscopy of FLRT3, LPHN1 FLRT3-LPHN1 interaction (both simulated and real curves are 

presented). 

5.5 Discussion 

Taken together, our results demonstrate that cortisol upregulates LPHN1 expression in AML 

cells. Cortisol is a glucocorticoid hormone produced by the adrenal gland in response to 

numerous stimuli such as stress and energetic deficiency (Torpy & Chrousos, 1996). 

In AML, rapid progression of this malignancy leads to decreased glucose levels (Gonçalves 

Silva, Rüegg, Gibbs, Bardelli, Fruewirth, et al., 2016) and thus the HPA axis is continuously 

stimulated to release high amounts of cortisol in the bloodstream. This is in line with the fact 

that significantly higher cortisol levels were found in the blood of AML patients compared to 
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healthy donors one [Figure 45]. After being released, cortisol is employed by AML cells to 

upregulate their surface expression of LPHN1, which can then interact with FLRT3, an 

endogenous ligand of LPHN1 widely available in blood plasma, leading to the upregulation of 

galectin-9 release. The latter protects AML cells from cytotoxic immune cells (as outlined in 

Chapter 4) [Figure 50]. Thus, AML cells use crucial components of functional systems within 

the body to support their survival and attenuate anti-cancer activities of cytotoxic lymphoid 

cells. 

Interestingly, hematopoietic stem cells contain detectable amounts of LPHN1 mRNA and its 

transcription is also upregulated by cortisol [Figure 44]. Protein expression of LPHN1 was also 

detected in HSCs [Figure 42]. However, HSCs-associated LPHN1 has a higher MW (~140 

kDa) than AML-associated one (~120 kDa). Moreover, contrarily to AML cells, HSCs don’t 

express detectable amounts of galectin-9 and Tim-3 [Figure 42]. Thus, in HSCs, LPHN1 should 

be involved in different biochemical mechanisms. 

PHLs, instead, are able to synthesise and release detectable amounts of galectin-9, but this 

process occurs in a LPHN1-independent manner. Indeed, neither mRNA nor protein expression 

of LPHN1 were detectable in PHLs. In addition, cortisol didn’t induce LPHN1 

transcription/translation, possibly because of gene repression. 

Importantly, LPHN1 fragments were clearly detectable by both, Western blot and ELISA, in 

the blood plasma of AML patients but not in healthy donors. This difference in the composition 

of blood plasma can be exploited in the future for a faster AML diagnosis, although differential 

verification tests have yet to be performed. 
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Figure 50: Physiological cross-links leading to cortisol-induced upregulation of LPHN1 expression 

in AML cells followed by facilitation of galectin-9 secretion in a FLRT3-dependent manner. AML is 

associated with a decreased blood plasma glucose levels, which normally leads to upregulation of 

secretion of corticotropin-releasing hormone (CTRH) by hypothalamus. CTRH induces secretion of 

adrenocorticotropic hormone (ACTH) by pituitary gland. Secreted ACTH upregulates cortisol 

production by the adrenal cortex, thus leading to cortisol-induced upregulation of LPHN1 levels in 

AML cells. Galectin-9, secreted in FLRT3-LPHN1-dependent manner attenuates anti-cancer activity 

of cytotoxic T cells (CTC) and NK cells. 
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6. AML cells employ stress and danger signals to support 

overall malignant cell survival and proliferation 

Recently, it was found that the blood of AML patients contains significantly higher HMGB1 

concentration when compared to healthy donors. Moreover, AML cells were shown to express 

high levels of HMGB1, possibly because of the conditions associated with AML progression, 

which support its secretion (such as hypoxia and death of the cells in the tumour 

microenvironment) (Tang et al., 2017; Yu et al., 2012; Zhang, et al., 2017).  

As previously described (in the introduction), released HMGB1 can interact with several 

surface receptors, including TLR2, TLR4, RAGE and Tim-3 (highly expressed in AML cells). 

However, the role of HMGB1 in AML progression remains unclear. 

6.1 The effects induced in human AML cells by HMGB1 stimulation 

It has been reported that triggering of TLR2, TLR4, RAGE and Tim-3 induces the activation 

of several pathways including PI-3K/mTOR pathway in AML cells. Moreover, activation of 

this pathway has been shown (1) to upregulate production and secretion of a variety of 

cytokines including TNF-α and (2) to induce HIF-1α accumulation, which leads to increased 

glycolysis and angiogenesis (Nicholas, et al., 2011; Prokhorov et al., 2015; Silva, et al., 2015; 

Sumbayev & Nicholas, 2010; Yasinska, et al., 2014). However, the involvement of HMGB1 

on signalling events above described remains hypothetic and it hasn’t been investigated yet in 

AML cells. 

To explore this, THP-1 cells, expressing Tim-3 mostly at intracellular level rather than on the 

membrane [Figure 51, left panel], and primary human AML cells (AML-PB001F), expressing 

Tim-3 mostly on the cell surface [Figure 51, right panel], were employed.  
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Figure 51: Differential receptors are involved in HMGB1-induced biological responses of human 

AML cells. Total levels of the immune receptor Tim-3 and its surface presence were characterised in 

THP-1 and primary human AML-PB001F cells by in-cell Western (ICW) and in-cell (on-cell) assay 

(ICA) respectively. Both cell types were exposed to 1 µg/ml HMGB1 for 4 h with or without 1 h pre-

treatment with single chain anti-Tim-3 antibody (aTim-3 (-)) followed by Western blot analysis of 

phospho-S65 vs total eIF4E-BP1, HIF-1α and RAGE expression as well as by detection of phospho-

S2448 mTOR, release of TNF-α and VEGF using ELISA. PI-3 K activity was monitored by 

colorimetric assay. Images are from one experiment representative of five which gave similar results. 

Data is shown as mean values ± SEM of five independent experiments. * p < 0.05; **, p < 0.01 and *** 

when p < 0.001 vs control; a p< 0.05; aa, p < 0.01 vs HMGB1. 

To investigate specifically Tim-3-associated effects, the cells were exposed for 4 h to 1 µg/ml 

HMGB1 with or without 1 h pre-treatment with single-chain anti-Tim-3 neutralising antibody. 

Increased activation of PI-3K was found in both, THP-1 and primary human AML cells, upon 

HMGB1 stimulation and this effect was non-significantly downregulated by anti-Tim-3 

neutralising antibody [Figure 51]. Moderate activation of mTOR (phosphorylation at S2448) 
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and increased phosphorylation of mTOR substrate eukaryotic initiation factor 4 E binding 

protein 1 (eIF4E-BP1) were observed in both cell types following the incubation with HMGB1. 

Pre-treatment with anti-Tim-3 neutralising antibody didn’t provoke any changes in these 

processes.  

A moderate increase in mTOR phosphorylation in Ser2448 residue (active form) was also 

observed in both cell types after the treatment with HMGB1. In line with this finding, 

augmented phosphorylation of eIF4E-BP (one of mTOR substrates) was found in AML cells 

after the incubation with HMGB1. Moreover, significant increase in TNF-α secretion by both 

cell types was induced by HMGB1. The pre-treatment with anti-Tim-3 neutralising antibody 

didn’t affect any of these HMGB1-induced processes, suggesting that these effects are Tim-3-

independent [Figure 51]. 

In addition, HMGB1 induced the upregulation of Hif-1α accumulation in THP-1 cells but not 

in primary human AML cells [Figure 51]. This difference in Hif-1α accumulation can be 

explained by the fact that primary human AML cells possess high background levels of this 

transcription factor subunit and thus are incapable to respond to HMGB1. Despite this, a 

significant upregulation in VEGF secretion was observed in both cell types after HMGB1 

treatment. Interestingly, anti-Tim-3 neutralising antibody significantly attenuated HMGB1-

induced VEGF secretion, but did not reduce Hif-1α accumulation in AML cells. The level of 

downregulation in VEGF secretion was proportional to the amount of Tim-3 present on the 

surface of each cell type [Figure 51]. Intracellular levels of VEGF weren’t affected by anti-

Tim-3 neutralising antibody as confirmed by ELISA performed on the cell lysates (data not 

shown). These results suggest that HMGB1 induces VEGF release in AML cells by triggering 

Tim-3 receptor expressed on their surface. 
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Highly sensitive spectroscopic analysis of HMGB1-Tim-3 interactions confirmed that these 

two proteins interact with each other specifically. The SRCD spectrum of Tim-3/HMGB1 

mixture (at ratio 1 : 1) was significantly different from the simulated spectrum (obtained by 

summing SRCD spectra of the individual components), suggesting that complex formation 

causes considerable conformational change of the proteins with a clear increase in α-helical 

content [Figure 52 B]. SRCD spectroscopy was also employed to determine its binding affinity. 

200 nM HMGB1 was titrated with increasing amounts of Tim-3 and the changes in CD signal 

were monitored at 222 nm. The values of obtained CD signals were plotted against increasing 

Tim-3 concentrations and it was found that HMGB1 binds Tim-3 with high affinity (Kd is 

coming at nanomolar level 10−7 M) [Figure 52 A]. 

 

Figure 52: HMGB1 binds Tim-3 with a high binding affinity. Recombinant, purified Ig-like V-type 

domain of human Tim-3 (residues 22–124) and human HMGB1 were employed for these experiments. 

Interaction of HMGB1 protein with Tim-3 was analysed using SRCD spectroscopy-based titration 

which was conducted in the far UV region using 0.2 µM HMGB1 and increasing stoichiometric 

concentrations of Tim-3 (A). Changes in CD signal monitored at 222 nm were plotted against Tim 3 

concentration using Hill function. Qualitative binding was verified by analysis of interactions of 

equimolar concentrations of Tim-3 and HMGB1 using SRCD spectroscopy (B). 

As shown above, HMGB1-induced TNF-α secretion by AML cells doesn’t occur via Tim-3 

receptor [Figure 51]. Thus, other AML receptors binding HMGB1 were explored as possible 

inducers of TNF-α secretion. As previously described, AML cells express TLR2 and TLR4. 
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RAGE expression in AML cells was confirmed by Western blot analysis. Thus, THP-1 cells 

were exposed for 4 h to 1 µg/ml HMGB1 with or without 1 h pre-treatment with 2 µg/ml 

neutralising antibodies directed against TLR2, TLR4 and RAGE. It was found that TLR2 and 

TLR4, but not RAGE, are involved in HMGB1-induced TNF-α secretion [Figure 53]. 

However, it does not rule out the fact that during long-term exposure RAGE might contribute 

to HMGB1-induced intracellular TNF-α expression which can be upregulated by RAGE 

ligands (Rashid, et al., 2004). 

 

Figure 53: TLRs 2 and 4, but not RAGE, are involved in HMGB1-induced TNF-α secretion. THP-1 

cells were pre-treated for 1 h with the indicated concentrations of TLR2/4 and RAGE-neutralising 

antibodies followed by 4 h exposure to 1 µ/ml HMGB1. TNF-α concentrations were then measured in 

the culture medium by ELISA. Data are shown as mean values ± SEM for three independent 

experiments. * p<0.05; **, p<0.01 vs control; a p<0.05; aa, p<0.01 vs HMGB1. 

6.2 HMGB1 stimulates TNF-α secretion by human AML leading to upregulation 

of SCF production 

The effects of HMGB1-induced TNF-α were studied in primary healthy human leukocytes 

(PHLs). Cell culture medium containing TNF-α (obtained after the stimulation of THP-1 cells 
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with 1 µg/ml HMGB1) was employed to treat PHLs for 4 h with or without 1 h pre-treatment 

with 2 µg/ml TNF-α-neutralising antibody. After the incubation, IL-1β concentration was 

measured in the media by ELISA. It was found that in the absence of TNF-α-neutralising 

antibody, PHL released IL-1β, while in the presence of TNF-α-neutralising antibody PHL did 

not release detectable amounts of IL-1β [Figure 54 A]. 

Recently, it was reported that MCF-7 breast cancer epithelial cells express IL-1 receptor type 

1 and its triggering induces these cells to release stem cell factor (SCF) (Wyszynski, et al., 

2016). Therefore, MCF-7 cells were cultured for 24 h in the media containing IL-1β (obtained 

after culturing PHL in presence of TNF-α) with or without 2 µg/ml of IL-1β-neutralising 

antibody. After the incubation, collected media was subjected to ELISA for SCF detection. It 

was found that, in the presence of IL-1β-neutralising antibody, MCF-7 did not release 

detectable amounts of SCF, while in the absence of it SCF release was clearly detectable 

[Figure 54 A].  

Taken together, these results suggest HMGB1 induces the release of TNF-α by AML cells. 

TNF-α stimulates IL-1β secretion by PHL. Released IL-1β binds IL-1 receptor expressed by 

endothelial/epithelial cells and induces the release of SCF is required for proliferation of AML 

cells and thus supports leukaemia progression. 

To confirm that this effect was physiologically relevant, mouse bone marrow cells (ex vivo) 

were culture for 24 h in presence or absence of 1 µg/ml HMGB1. It was found that HMGB1 

significantly upregulated the release of TNF-α, IL-1β and SCF in mouse bone marrow cells 

[Figure 54 B].
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Figure 54:HMGB1 triggers an intercellular signalling cascade leading to SCF secretion. (A) Primary human AML cells (AML-PB-001F) were incubated  

for 4 h  with 1 µg/ml HMGB1 followed by collection of the culture medium (detection of TNF-α was performed in this medium using ELISA), which was used 

to culture primary human healthy leukocytes for 4 h in the absence or presence of TNF-α-neutralising antibody. Medium was collected (levels of IL-1β were 

measured by ELISA) and used to culture MCF-7 breast cancer epithelial cells for 4 h in the absence or presence of IL-1β-neutralising antibody. Following this 

exposure, medium was collected and SCF was measured in it by ELISA. (B) Primary mouse bone marrow cells (106 cells per 3 ml medium) were exposed for 

24 h to 1 µg/ml HMGB1 followed by detection of TNF-α, IL-1β and SCF by ELISA. (C – I). Levels of TNF-α, IL-1β and SCF were measured in the blood 

plasma of healthy donors and AML patients by ELISA. Mean values ± SEM are presented as well as levels of each protein in blood plasma of each analysed 

donor/patient. *p < 0.05; **p< 0.01 vs control. 
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The concentrations of TNF-α, IL-1β and SCF were then also measured in blood plasma of 10 

healthy human donors and 45 AML patients. It was found the levels of all three factors were 

significantly higher in the blood plasma of AML patients compared to healthy donors [Figure 

54 C – I]. In addition, a clear evidence of correlation between IL-1β vs TNF-α, SCF vs IL-1β 

and SCF vs TNF-α was observed in the blood plasma of both healthy donors and AML patients 

which contained detectable amounts of all the studied cytokines/SCF [Figure 54 C and 55].  

 

Figure 55: Correlation between TNF-α, IL-1β and SCF levels in the blood plasma of healthy donors 

and AML patients. Data were obtained from the blood plasma of healthy donors (n=10) and AML 

patients (n=30). Correlation analysis was performed using GraphPad Prism (R2 values are presented in 

Figure 54 C). 

6.3 Discussion 

Our results show that HMGB1 stimulates the activity of the PI-3 K/mTOR pathway in both, a 

human AML cell line (THP-1 cells) and primary AML cells (AML-PB001F). This HMGB1-

induced activation leads to increased TNF-α secretion and accumulation of HIF-1α as well as 

VEGF release. However, except VEGF secretion, these effects are Tim-3-independent. Also, 

upregulation of VEGF secretion via Tim-3 receptor is HIF-1α-independent. Indeed, HMGB1-
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induced HIF-1α accumulation wasn’t attenuated by anti-Tim-3 neutralising antibody in AML 

cells. 

SRCD spectroscopic analysis showed that HMGB1 binds Tim-3 with nanomolar affinity (Kd = 

10−7 M). However, this affinity can be potentially increased by glycosides which normally bind 

to Tim-3 (the protein used in the studies was sugar-free). Interestingly, the formation of the 

HMGB1-Tim-3 complex was accompanied by an increase in α-helical content and consequent 

reduction in β-strand component. This considerable loss in β-strand structures is likely to occur 

in the Tim-3 protein. 

Our results showed also that TNF-α released from HMGB1-stimulated AML cells induce PHL 

to secrete IL-1β, which in turn stimulated epithelial/endothelial cells to produce/secrete SCF, 

factor able to bind Kit receptor and induce the survival/proliferation of AML cells [Figure 56]. 

 

Figure 56: HMGB1 induces SCF and VEGF production via interaction with differential signalling 

receptors. The scheme shows that secreted HMGB1 is capable of inducing TNF-α secretion by living 

AML cells (and possibly healthy leukocytes, based on results obtained in the experiments with mouse 

bone marrow samples). Secreted TNF-α induces IL-1β production by healthy leukocytes which then 

induces SCF release in endothelial cells. These processes are Tim-3-independent. HMGB1 also induces 

VEGF secretion by AML cells in Tim-3-dependent manner. 
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In addition, a clear evidence of correlation between TNF-α, IL-1β and SCF levels was observed 

in the blood plasma of AML patients and healthy donors, but the concentrations of these 

signalling proteins were significantly higher in the blood plasma of AML patients than in 

healthy donors. This in line with the fact that HMGB1 concentration in the blood plasma of 

AML patients is significantly higher than in healthy donors (Fucikova et al., 2016). However, 

since the levels of circulating HMGB1 in healthy donors are usually close to zero or anyway 

very low (Fucikova et al., 2016; Vicentino et al., 2018), other mechanisms (HMGB-1-

independent) could be involved in this intercellular signalling cascade. In addition, healthy 

bone marrow is unlikely to contain HMGB1, an “alarmin” secreted by stressed/dying or injured 

cells. Indeed, trypan blue exclusion assay showed that 95% of the cells in mouse bone marrow 

(sample used for our experiments) were viable (data not shown). Contrarily, in leukemic bone 

marrow (or in AML blood) stressing conditions, such as lack of oxygen, contribute to 

continuous release of HMGB1, that is able to activate this intercellular cascade (illustrated in 

Figure 56), which leads to increased levels of SCF, and thus supports leukaemia progression.  

HMGB1 has already been proposed as a possible therapeutic target for leukaemia treatment 

(Yu et al., 2012). In addition, inhibition of  HMGB1 has recently been shown to increase drug 

sensitivity in AML (Lu et al., 2014). Our findings demonstrate additional insights that HMGB1 

could be considered as a possible therapeutic target in AML and further confirm the efficiency 

of targeting Tim-3 (here to specifically block AML-induced angiogenesis) in anti-AML 

therapy. 
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7. Activity of Tim-3-galectin-9 pathway in solid tumours 

7.1 Biochemistry and functions of Tim-3-galectin-9 secretory pathway in human 

breast cancer cells 

Recently, breast cancer tissues were shown to be capable of expressing some of the key 

components of above described immunosuppressive pathway. In particular, LPHN2, one of 

LPHN isoforms, was found to be upregulated in breast tissues (White, et al., 1998). In addition, 

it was found that breast cancer cells express galectin-9, which was shown to be involved in cell 

aggregation, thus preventing metastasis (Yamauchi et al., 2006). 

Therefore, we decided to investigate whether the Tim-3-galectin-9 immunosuppressive 

pathway was specific solely to AML or was operating also in breast cancer, and possibly other 

solid tumours. 

7.1.1 Expression and activity of the FLRT3/LPHN/Tim3/galectin-9 pathway in breast 

tumours 

Breast cancer tissues lysates were subjected to Western blot analysis for specific detection of 

galectin-9, Tim-3, LPHN2, LPHN3 and FLRT3. It was found that all these proteins were 

expressed in breast cancer tissues [Figure 57 A&B, and 61 C]. Two bands were detected by 

anti-FLRT3 at ~75 kDa (full protein) and ~55 kDa (highlighted by a question mark). The latter 

may represent FLRT3 which underwent proteolytical processing. A clear band specifically 

detectable by anti-galectin-9 antibody appeared at ~55 kDa [Figure 57 A], when gel 

electrophoresis for protein separation was performed using 12% PAGE (concentration 

normally used to detect proteins having molecular weight of 20-50 kDa). Since the molecular 

weight of galectin-9 is ~31-32 kDa, we hypothesized that the band at ~55 kDa could correspond 

to Tim-3-galectin-9 complex. However, since this band wasn’t detectable by anti-Tim-3 
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antibody, it doesn’t represent Tim-3-galectin-9 complex, but probably a galectin-9 isoform 

bound to carbohydrates. Indeed, when the same sample was subjected to Western blot analysis 

using 10% PAGE, a specific band detectable by anti-galectin-9 antibody appeared slightly 

above 31 kDa [Figure 58]. This suggests that, in a 12 % gel, protein running was “delayed” 

possibly due to the presence of traces of glycosides or other post-translational modifications 

affecting the protein properties/shape but not the molecular weight.
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Figure 57: Expression of FLRT3/LPHN/Tim-3/galectin-9 pathway components and activities of PLC/PKCα and mTOR pathways in primary human breast 

tumours. Expression levels of Tim-3, galectin-9 (A), FLRT3 and LPHN2 (B) were analysed in primary breast malignant tumours and healthy breast tissues 

(HT) of five patients (n=5) by Western blot. Activities of PLC, PKCα and the levels of phospho-S2448 mTOR were detected as outlined in the Materials and 

Methods (C). The amounts of phospho-S65 and total eIF4E-BP (mTOR substrate) were analysed using Western blot (D). The levels of CD3 (biomarker of T 

cells) were also measured using lysate of Jurkat T cells as a positive control (E). Molecular weight markers (MW) are expressed in kDa. Images are from one 

experiment representative of five which gave similar results. Other results are shown as mean values ± SEM. * p<0.05; **, p<0.01 and *** when p<0.001 vs 

control. 
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Figure 58: Expression of galectin-9 in primary human breast tumours and healthy breast tissues. 

Lysates of primary breast malignant tumours and healthy breast tissues (HT) of five patients (n=5) were 

subjected to Western blot using 10 % PAGE. Specific detection of galectin-9 was performed employing 

Abcam rabbit anti-galectin-9 antibody. Images are from one experiment representative of five which 

gave similar results. Other results are shown as mean values ± SEM. *** p<0.001 vs HT. 

The levels of Tim-3, galectin-9, LPHN2 and FLRT3 found in primary breast malignant tumours 

were then compared to heathy tissues isolated from the same patients. Western blot analysis 

showed that the amounts of these components, except FLRT3, were significantly higher in 

malignant tissues compared to healthy ones [Figure 57 A, B and Figure 58]. 

The activities of PLC, PKC-α and mTOR were also measured in tumour and healthy breast 

homogenates. It was found that the activities of PLC and PKC-α were significantly higher in 

breast cancer tissues compared to healthy ones. The amounts of active mTOR form (mTOR 

phosphorylated at S2448) were similar in these tissue types [Figure 57 C]. The ratio between 

phospho-S65 eIF4E-BP and its total amount was also similar in both tissue types, although the 

amount of both phospho-S65 and total eIF4E-BP was higher in tumour tissues [Figure 57 D]. 

To confirm that all the protein characterised above are expressed by breast tumour cells and 

not by tumour-infiltrating lymphocytes, the samples were subjected to Western blot analysis 

for specific detection of CD3 (a marker of T cells). It was found that CD3 was undetectable in 

healthy and barely detectable in tumour tissue lysates, proving that the proteins characterised 

are associated with breast cells [Figure 58 E]. 
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The presence of Tim-3-galectin-9 complex was also verified in both tissue types (as described 

in material and methods). It was found that the complex was barely detectable in healthy tissue 

homogenates but was clearly detectable in malignant tissue extracts [Figure 59 A]. The 

presence of Tim-3-galectin-9 complex was also confirmed by confocal microscopy co-

localization analysis [Figure 59 B]. 

 

Figure 59: Expression, interaction and co-localisation of Tim-3 and galectin-9 in primary human 

breast tumours. (A) Presence of the Tim-3-galectin-9 complex in primary normal and tumour tissue 

extracts was analysed using ELISA as outlined in the Materials and Methods. (B) Expression and co-

localisation of galectin-9 and Tim-3 were analysed in primary human breast tumours and healthy tissues 

of the same patients using confocal microscopy (see Materials and Methods for further details). Images 

are from one experiment representative of five which gave similar results. Scale bars correspond to 20 

µm. 

Next, the levels of galectin-9, Tim-3 and IL-2 were measured in blood plasma of healthy donors 

(HD), primary (PBC) and metastatic breast cancer (MBC) patients. It was found that the levels 

of Tim-3 and galectin-9 were significantly lower in both, PBC and MBC, than in HD. The 

concentration of IL-2 was, instead, non-significantly higher in PBC and MBC compared to HD 

[Figure 60]. 
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Figure 60: Levels of galectin-9, Tim-3 and IL-2 in blood plasma of human healthy donors and 

patients suffering from primary and metastatic breast tumours. (A) Concentrations of galectin-9, 

soluble Tim-3 and IL-2 were analysed in blood plasma of healthy donors and breast cancer patients by 

ELISA. Data are shown as mean values ± SEM of 20 for healthy donors (HD), 42 for primary breast 

cancer (PBC) patients and 20 for metastatic breast cancer (MBC) patients. * - p<0.05; **, p<0.01 and 

vs HD. 

To explore whether the immunosuppressive mechanism described for AML cells can be also 

activated in breast tumour tissues, MCF-7 breast cancer cells were selected for the further 

investigations. Among the other breast cancer cell lines analysed [Table 7 and 8], MCF-7 cells 

were the only ones to express detectable amounts of both LPHNs 2 and 3 and the levels of 

these proteins were similar to their amounts found in primary breast tumours [Figure 57 B, 61 

A and C]. We also confirmed that MCF-7 cells, as primary breast tumours, express detectable 

amounts of Tim-3, galectin-9 and the complex formed by these proteins [Figure 61 A]. 

Comparative analysis of galectin-9 mRNA levels between healthy and tumour breast tissues, 

and MCF-7 cells was performed using qRT-PCR. It was found that the levels of galectin-9 

mRNA were significantly higher in both, MCF-7 cells and primary breast tumours, when 

compared to primary healthy breast tissues [Figure 61 B]. Importantly, the ratio of galectin-9 

mRNA in tumour and normal tissues was similar to the respective levels of protein detected 

[Figure 57 A and 61 B]. Taken together, these results suggest that MCF-7 cells as well as 

primary healthy and malignant cells express identical galectin-9, thus re-confirming that the 

same protein was detected by Western blot [Figure 57 A, 58, 61 A and B].  
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Figure 61: Expression of crucial components of FLRT3/LPHN/Tim-3/galectin-9 pathway in MCF-

7 cells and primary human breast tumours. (A) Expression of a key components of this pathway was 

characterised in MCF-7 cells and primary breast tumour tissue lysates using Western blot analysis. 

Beta-actin was used as a housekeeping protein. (B) Levels of galectin-9 mRNA were compared in 

normal and healthy breast tissues as well as in MCF-7 cells and normalised against those of β-actin. (C) 

Expression of LPHN3 was detected in primary human breast tumour tissue lysates and MCF-7 cells. 

(D) Expression of GαQ was detected in primary human breast tumour tissue lysates and MCF-7 cells. 

Images are from one experiment representative of at least three which gave similar results. Data are the 

mean values ± SEM of five independent experiments; **, p<0.01 and *** when p<0.001 vs control 

(HT). 

Since LPHN is a G-coupled receptor and thus requires an adaptor protein for the transduction 

of the signal, cells and tissue lysates were subjected to Western blot analysis for GαQ detection. 

It was confirmed that both, MCF cells and primary breast tumours, express GαQ [Figure 61 

B]. 

Once assessed that all the key components of FLRT3/LPHN/Tim-3/galectin-9 pathway are 

present in MCF-7 cells, the activation of this signalling system was investigated by exposing 

these cells to FLRT3, protein able to bind olfactomedin-like domain expressed by all three 

LPHN isoforms (as described in the Introduction). 
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MCF-7 cells were cultured in presence or absence of 10 nM human recombinant FLRT3 for 4 

h. After the incubation, PLC and PKC-α activities were measured as described in Materials 

and Methods. Cell lysates were also subjected to Western blot analysis for the detection of 

phospho-S2448 mTOR and phospho-S65/total eIF4E-BP. It was found that FLRT3 

significantly upregulated PLC and PKC-α activities but did not provoke any changes in the 

intracellular concentration of phosphor-S2440 mTOR and thus didn’t affect the 

phosphorylation eIF4E-BP (mTOR substrate) [Figure 62 A].  

 

Figure 62: FLRT3 induces translocation of galectin-9 onto the surface of MCF-7 breast cancer cells. 

(A) MCF-7 cells were exposed for 4 h to 10 nM FLRT3 and activities of PLC, PKCα, the levels of 

phospho-S2448 mTOR and the amounts of phospho-S65 and total eIF4E-BP (an mTOR substrate) were 

analysed as described in the Materials and Methods. (B) MCF-7 cells were exposed for 4 h to 10 nM 

FLRT3 with or without 1 h pre-treatment with 30 µM U73122 (PLC inhibitor) or 70 nM Gö6983 (PKCα 

inhibitor). Surface presence of galectin-9 was characterised by on-cell assay. (C) Secondary structure 

and conformational changes of LPHN2 olfacomedin-like domain, FLRT3, and the complex of the two 

proteins mixed at the equimolar ratio were characterised using SRCD spectroscopy as outlined in the 

Materials and Methods. An interaction between olfactomedin-like domain of LPHN3 and FLRT3 

generated by Swiss PDB viewer (5cmn.pdb file downloaded through PubMed database was used 

(Prokhorov et al., 2015)) is presented to illustrate the structural basis of this interaction. Images are 

from one experiment representative of four which gave similar results. Other results are shown as mean 

values ± SEM of at least three independent experiments. * p<0.05; **, p<0.01 vs control. 
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Since MCF-7 cells don’t release detectable amounts of galectin-9 to the culture media and its 

secretion is not induced by FLRT3 (data not shown), surface presence of this protein was 

characterised as illustrated in Figure 39 B. It was found that the levels of surface-based galectin-

9 were significantly upregulated by FLRT3 and this effect was considerably attenuated by 

U73122 (PLC inhibitor) or Gö6983 (PKCα inhibitor) [Figure 62 B]. This indicates that FLRT3-

induced translocation of galectin-9 onto the cell surface of MCF-7 cells is controlled by 

PLC/PKCα pathway. 

To confirm FLRT3-LPHN2 interaction, SRCD spectroscopy analysis of the olfactomedin-like 

domain of LPHN2 and FLRT3 alone and in their equimolar combination was performed. It 

was found that conformational changes occurring during FLRT3-LPHN2 interaction are 

similar to the ones taking place during FLRT3-LPHN1 complex formation [Figure 62 C]. This 

is in line with the fact that FLRT3 binds specifically olfactomedin-like domain, highly 

conserved extracellular domain common to all LPHNs. A 3D interaction of LPHN3 

olfactomedin-like domain with FLRT3 leucine-rich repeat (LRR) domain is illustrated in 

Figure 62 C. 

7.1.2 Galectin-9 protects breast cancer cells against cytotoxic immune attack 

We found that galectin-9 (both secreted and surface-based) was able to attenuate AML cell 

killing by cytotoxic NK cells [Figure 37 and 38]. Thus, we decided to assess this effect also in 

breast cancer cell lines. Since solid tumours are mainly infiltrated by T cells rather than NK 

cells, cytotoxic ALL-derived TALL-104 CD8 lymphocytes were employed to verify this effect. 

Indeed, MCF-7 cells (adherent) were co-cultured with TALL-104 cells (expressing Tim-3 but 

not galectin-9) for 16 h at ratio of 4 : 1 in presence or absence of 5 μg/ml galectin-9 neutralising 

antibody. After the incubation, TALL-104 cells were collected, lysed and subjected to Western 

blot analysis for the detection of full-length and cleaved PARP (marker of apoptosis).  



 

136 

 

It was found that PARP cleavage in TALL-104 cells was significantly increased when co-

cultured with MCF-7 cells and this effect was attenuated by anti-galectin-9 neutralising 

antibody [Figure 63 B]. Increased level of PARP cleavage indicates a higher number of 

apoptotic cells.  

 

Figure 63: Galectin-9 protects MCF-7 cells against T cell-dependent cytotoxic immune attack. (A) 

MCF-7 cells were co-cultured with TALL-104 cytotoxic T lymphocytes at a ratio of 4 : 1 for 16 h (the 

ratio was determined by the aggressive behaviour of TALL-104 cells) in the absence or presence of 5 

µg/ml galectin-9 neutralising antibody or 5 µg/ml isotype control antibody. (B) After the experiment 

TALL-104 cells were lysed and PARP cleavage, as an indicator of the rate of apoptotic cells, was 

measured using Western blot analysis.  (C) CD8 expressions (reflecting the infiltration of TALL-104 

into the MCF-7 layer) were measured by on-cell assay. (D) Galectin-9 surface presence was measured 

using on-cell assay in resting MCF-7 cells and those co-cultured with TALL-104 cells. (E) Viability of 

MCF-7 cells was measured by MTS test. Images are from one experiment representative of five which 

gave similar results. Other results are presented as mean values ± SEM of five independent experiments. 

* p<0.05 vs control. 

To investigate the effect of galectin-9 on the ability of cytotoxic lymphocytes to bind breast 

malignant cell (and thus kill them), on-cell assay of MCF-7 cells co-cultured with TALL-104 

in presence or absence of galectin-9 neutralising antibody was performed. It was confirmed 

that MCF-7 cells don’t express CD8, since it wasn’t detectable when these cells were cultured 

on their own. CD8 was instead detectable when MCF-7 were co-incubated with TALL-104 

and the levels of CD8 were significantly increased when the co-culture was performed in 
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presence of anti-galectin-9 neutralising antibody [Figure 63 C]. This suggests that the ability 

of cytotoxic T lymphocytes to bind breast malignant cells increases when galectin-9 activity is 

disabled, and thus their potential to kill cancer cells augments. Indeed, cell viability of MCF-7 

cells was significantly decreased when the co-culture was performed in presence of anti-

galectin-9 neutralising antibody (as measured by MTS test) [Figure 63 D]. Importantly, neither 

binding ability of TALL-104 cells neither cell viability of MCF-7 cells was affected by isotype 

control antibody [Figures 63 C and D], confirming that these effects are galectin-9 -specific. 

Interestingly, galectin-9 surface expression was significantly upregulated in MCF-7 cells when 

co-cultured with TALL-104 cells. 

Previously described results represent a strong indication that galectin-9 is capable of 

protecting breast tumour cells against cytotoxic cell-dependent killing. 

7.1.3 Discussion 

Our results demonstrate that FLRT3/LPHN/Tim-3/galectin-9 immunosuppressive pathway is 

activated in breast cancer tissues and protects malignant cells from cytotoxic immune attack. 

We found that FLRT3 binds LPHN (2 or 3) expressed on the surface of MCF-7 cells and 

upregulates PLC and PKCα activities, which induce a significant increase in galectin-9 surface 

expression. We confirmed that, as in AML, also in breast cancer cells, galectin-9 attenuates 

cytotoxic activity of immune cells. In addition, we found that galectin-9 surface expression was 

significantly increased by the presence of TALL-104 cells, suggesting that there are other 

pathways employed by MCF-7 cells to escape cytotoxic attack. Indeed, the biochemical 

pathway underlying this phenomenon remains to be identified.  

We found also that, contrarily to AML, mTOR activity wasn’t upregulated by FLRT3 4 h 

treatment. This can be explained by the fact that breast cancer cells don’t secrete galectin-9 in 

contrast to AML cells. Indeed, since AML is blood/bone marrow cancer, its malignant cells 
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are in constant contact with cytotoxic immune cells and thus require high amounts of galectin-

9 to be released and express on the surface in order to escape host immune attack, survive and 

proliferate. For this reason, mTOR activity is upregulated in AML cells and is continuously 

stimulated by blood-available endogenous ligand FLRT3. Contrarily, breast cancer is a solid 

tumour and thus needs “to fight” only with tissue-infiltrating T cells (significantly lower 

number than in the blood). Therefore, FLRT3-induced moderate PLC and PKC-α activation, 

which result in the translocation of Tim-3-galectin-9 complex on the surface of breast cancer 

cells is sufficient to attenuate anti-cancer immunity of cytotoxic lymphocytes.  

These results are in line with those obtained in breast tumours compared with healthy breast 

tissues obtained from the same patients. Indeed, LPHN2, Tim-3 and galectin-9 expression was 

significantly higher in breast tumours compared to healthy tissues. Tim-3-galectin-9 complex 

was also detectable by Western blot analysis and co-localisation confocal microscopy in breast 

tissues. Importantly, its levels were significantly higher in breast cancer tissues than in healthy 

ones. We found also that PLC and PKCα activities were significantly increased in breast cancer 

tissues, while mTOR phosphorylation levels were comparable in both tissue types. Also, in line 

with the results obtained in MCF-7 cells, galectin-9 levels were significantly lower in patients 

affected by breast cancer than in healthy donors. This confirms that galectin-9 is not released 

by breast cancer cells but is kept on the cell surface to protect themselves from host immune 

attack. Tim-3 blood plasma levels were also significantly lower in breast cancer patients 

compared to healthy donors. The levels of IL-2 were instead non-significantly upregulated in 

cancer patients compared to healthy donors. Indeed, lower levels of Tim-3 allow higher 

production of IL-2, which has been shown to be downregulated by sTim-3. This suggests that 

induction of the cytotoxic activity of NK cells and cytotoxic T cells can still take place. 
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The presence of active cytotoxic cells could explain also the anti-metastatic potential of 

galectin-9 previously reported (Yamauchi et al., 2006). Indeed, galectin-9, expressed on the 

breast cancer cells may induce NK cells to release IFN-γ, which could activate cytotoxic 

lymphoid cells located in the area of the tumour microenvironment. Activated cytotoxic 

lymphocytes could then attack and kill malignant cells breaking off from the tumour thus 

preventing their circulation and metastasis. Overall, it appears that galectin-9 could protect the 

tumour which produces it in order to evade host immune attack, but this may not promote 

metastasis. 

Schematic representation of Tim-3-galectin-9 pathway operating in breast cancer cells is 

represented in Figure 64. 
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Figure 64: Breast cancer cell-based pathobiochemical pathways showing LPHN-induced activation 

of PKCα, which triggers the translocation of Tim-3 and galectin-9 onto the cell surface which is 

required for immune escape. The interaction of FLRT3 with LPHN isoform leads to the activation of 

PKCα, most likely through the classic Gq/PLC/Ca2+pathway. Ligand-bound LPHN activates Gq, which 

in turn stimulates PLC. This leads to phosphatidyl-inositol-bisphosphate (PIP2) degradation and 

production of inositol-trisphospate (IP3) and diacylglycerol (DAG). PKCα is then activated by DAG 

and cytosolic Ca2+. PKCα provokes the formation of SNARE complexes that tether vesicles to the 

plasma membrane. Galectin-9 impairs the cancer cell killing activity of cytotoxic T cells (and other 

cytotoxic lymphocytes). Possible (not directly confirmed) interactions of galectin-9 with glycoside 

component and T cell receptor (TCR)/CD8, with MHC I and antigen are highlighted with question mark 

“?” to indicate the fact that it is a hypothetic interaction, since TALL-104 cells used in the study kill 

tumour cells in MHC-independent manner. 
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7.2 Expression of key components of the FLRT3/LPHN/Tim-3/galectin-9 pathway 

in solid and liquid tumours 

In addition to AML and breast cancer, Tim-3-galectin-9 pathway was shown to suppress anti-

cancer immunity in solid tumours, such as colon cancer (Kang et al., 2015). Therefore, we 

decided to investigate the expression of FLRT3, LPHNs, Tim-3 and galectin-9 (both cell-based 

and secreted) in various human cancer cell lines (derived from brain, colorectal, kidney, 

blood/mast cell, liver, breast, prostate, lung and skin tumours) and various non-malignant cell 

lines and primary cells.  

Cell lysates of various cell lines were subjected to Western blot analysis for specific detection 

of Tim-3, galectin-9, LPHNs 1, 2 and 3 as well as FLRT3 proteins, while galectin-9 released 

by these cells in the media was measured using ELISA. We found that most of the key 

components of this immunosuppressive pathway were present in cancer cell lines [Table 7 and 

Table 8].  The majority of the studied cells expressed at least one LPHN isoform. In some of 

the cells, in which was present at least on LPHN isoform, FLRT3 wasn’t detectable by Western 

blot analysis. We hypothesised that in this case LPHN-expressing cells can use blood-based 

soluble FLRT3 to trigger Tim-3-galectin-9 pathway. Indeed, Tim-3 and galectin-9 were found 

to be expressed in all the studied cancer cell lines, except for the chronic myeloid leukaemia 

(CML) cell line, K562, which expressed Tim-3 but only traces of cell-associated galectin-9. 

This could be one of the reasons why CML cells entering the circulation are rapidly eliminated 

by cytotoxic immune cells. 

Additional clarification regarding molecular weight, isoforms and glycosylation level of 

different proteins studied are illustrated in Figure 65. 
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Table 7:  Expression of Tim-3, galectin-9, LPHNs 1, 2 and 3 as well as FLRT3 proteins in brain, 

colorectal, kidney, blood/bone marrow cell lines. Cell lysates were subjected to Western blot analysis 

for specific detection of the proteins. The concentration of galectin-9 in the media used to culture these 

cells was measured by ELISA. 
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Table 8: Expression of Tim-3, galectin-9, LPHNs 1, 2 and 3 as well as FLRT3 proteins in liver, 

breast, prostate, lung and skin cell lines. Cell lysates were subjected to Western blot analysis for 

specific detection of the proteins. The concentration of galectin-9 in the media used to culture these 

cells was measured by ELISA. 
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Figure 65: Molecular weight, isoforms and glycosylation level of the proteins reported in Table 1 

and 2. Tim-3: lower band represents non-glycosylated protein, upper band(s), protein with differential 

levels of glycosylation; Galectin-9: multiple bands represent different isoforms of the same protein; 

FLRT3 – detectable between 80 and 95 kDa (upper band where applicable or the only visible band); 

another band (lower band; possibly extracellular domain) often appears at around 60 most likely 

reflecting levels of glycosylation in first two cases and proteolytic processing in the third. Traces – 

detectable expression which requires loading of >100 µg protein per well. 

Comparative analysis of the studied proteins in different cell lines shown in Table 1 and 2 were 

performed by measuring infrared fluorescence of the bands divided by the total quantity of the 

loaded proteins. All the results of this quantitative analysis are illustrated in Figure 66. 

Importantly, this comparative analysis evidenced that non-malignant cells expressed lower 

amounts of galectin-9 and Tim-3 compared to cancerous cells of similar origins.  

Taken together, our results suggest that FLRT3/LPHN/Tim-3/galectin-9 pathway could be 

operating in other cancer cell types in order to avoid host immune attack. However, further 

investigations are required to confirm this hypothesis. 
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Figure 66: Expression of Tim-3, galectin-9, LPHNs 1, 2 and 3 as well as FLRT3 proteins in various human cancer cell lines. Lysates of indicated cells 

were subjected to Western blot analysis as outlined in Materials and Methods (images are presented in Supplementary table 1). Detected infrared fluorescence 

of the bands divided by the total protein amounts loaded (measured using Bradford assay) was used as a measure of protein quantity. Levels of Tim-3 & total 

galectin-9 (A) and LPHNs 1, 2 & 3 (B) were expressed as a % of those levels present in THP-1 cells (expressed as 100%). Since THP-1 cells lack FLRT3 

expression, the levels of this protein were expressed as % RCC-FG1 (C), respectively considering FLRT3 level in these cells as 100%. Abbreviations used – 

Bn – brain, CR – colorectal, Ki – kidney, BBM – blood, bone marrow and mast cells, Li – liver, Br – breast, Pr – prostate, Lu – lung, Sk – skin. Data are 

presented as mean values ± SEM of three independent experiments. 
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8. Classic programmed cell death pathway downregulates Tim-

3-galectin-9 immunosuppressive pathway. 

Recently it was found some of the galectin family members, such as galectin-3, were able to 

protect AML and colorectal cancer cells against apoptosis through mitochondrial stabilisation 

in a B cell lymphoma protein (Bcl) 2-dependent manner (Lee, et al., 2013; Ruvolo, et al., 2016). 

Thus, we decided to investigate whether galectin-9 possesses this intracellular anti-apoptotic 

activity too. 

8.1 Pharmacologically induced mitochondrial defunctionalisation suppresses Tim-

3-galectin-9 secretory pathway in human colorectal cancer cells 

To conduct these studies, a pharmacological inhibitor 5-[(4-bromophenyl)methylene]-a-(1-

methylethyl)-4-oxo-2-thioxo-3-thiazolidineacetic acid (BH3I-1, Figure 67 A), a synthetic cell 

permeable Bcl-XL antagonist was employed as a pharmacological inducer of apoptosis. This 

compound induces apoptosis via inhibition of interactions between the BH3 domain and Bcl-

XL thus defunctionalysing mitochondria. 

Colorectal adenocarcinoma cells of epithelial origin, Colo-205, found to employ Tim-

3/galectin-9 to escape host immune attack, were incubated for 24 h with or without 100 μM 

BH3I-1. After the incubation, cell viability and caspase 3 activity were measured as described 

in material and methods. It was confirmed that BH3I-1 was capable of inducing apoptosis in 

Colo-205 (based on increased caspase-3 activity and decreased viability of the cell, Figure 67 

A). 
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Figure 67: Pro-apoptotic defunctionalisation of mitochondria reduces galectin-9 expression and 

leads to its redistribution in human Colo-205 colorectal adenocarcinoma cells. Colo-205 cells were 

exposed to 100 µM BH3I-1 for 24 h followed by (A) detection of cell viability using an MTS test and 

colorimetric assay of caspase 3 activity. Cell viability was also tested for normal and Tim-3 or galectin-

9 knockdown Colo-205 cells. (B) Following 24 h of exposure to BH3I-1 S65-phosphorylation levels of 

eIF4E-BP were analysed by Western blot. (C) Surface presence and total cellular levels of Tim-3 and 

galectin-9 were analysed in Colo-205 cells using FACS. (D) Secreted levels of galectin-9 were analysed 

in Colo-205 cells following 24 h of exposure to BH3I-1 by ELISA. (E) Surface levels of galectin-9 in 

non-treated and BH3I-1-stimulated Colo-205 cells were compared using an on-cell assay. (F) The 

presence of Tim-3-galectin-9 complex in Colo-205 cells was confirmed using Western blot analysis 

(bands were appearing at around 70 KDa). THP-1 cells were used as a positive and K562 as a negative 

control. (G) Levels of Tim-3 and galectin-9 were analysed in Colo-205 lysates following 24 h of 

exposure to BH3I-1 by Western blot. (H) Mitochondrial extracts were obtained from non-treated and 

BH3I-1-stimulated Colo-205 cells and subjected to Western blot analysis to detect Tim-3 and galectin-

9. Total protein levels were measured using a Bradford assay and equal protein amounts were loaded 

onto the gels. (I) Galectin-9 mRNA levels were analysed in non-treated Colo-205 cells and those 

exposed to BH3I-1 using qRT-PCR. Images are from one experiment representative of at least four 

which gave similar results. In the scheme galectin-9 is abbreviated as G9. Quantitative results are shown 

as mean values ± SEM of 3 - 6 independent experiments. * p<0.05; **, p<0.01 vs control. 



 

148 

 

To investigate whether galectin-9 (or possibly its receptor Tim-3) could protect the cells from 

apoptosis, knockdown either of galectin-9 either of Tim-3 was performed prior to BH3I-1 

exposure for 24 h. The efficiency of the knockdown was checked by qRT-PCR. It was found 

that silencing either galectin-9 or its receptor/trafficker Tim-3 did not affect the pro-apoptotic 

activity of BH3I-1 suggesting that galectin-9 is unlikely to be involved in cell protection in this 

case [Figure 67 A].  

Cell lysates from Colo-205 cultured in presence or absence of BH3I-1 were also subjected to 

Western blot analysis for specific detection of pS65-eIF4E-BP/ eIF4E-BP proteins. It was 

found that BH3I-1 didn’t affect the phosphorylation levels of eIF4E-BP [Figure 67 B]. Thus, 

BH3I-1 had no effect on the activity of mTOR, important for galectin-9/Tim-3 synthesis and 

secretion. Obviously, one could suggest that Colo-205 cells accumulate galectin-9 on their 

surface and inside the cells based on FACS analysis (Figure 67 C). Decreased levels of surface-

based Tim-3 might indicate its masking by galectin-9 (Yasinska et al., 2018). 

Next, galectin-9 release by Colo-205 with or without 24 h exposure to BH3I-1 was performed 

by ELISA. It was found that the BH3I-1 didn’t affect Colo-205 ability to secrete galectin-9 

[Figure 67 D]. Therefore, on-cell assay was performed to verify whether galectin-9 surface 

levels are affected by this compound. It was found that BH3I-1 significantly decreased 

galectin-9 surface expression in Colo-205 cells [Figure 67 E]. 

Then, we investigated whether Colo-205 cells are able to accumulate Tim-3-galectin-9 

complex at a level comparable to THP-1 AML cells. K562 were used as negative control. Thus, 

lysates of K562, Colo-205 and THP-1 cells were subjected to Western blot analysis. Bands 

detectable by both anti-Tim-3 and anti-galectin-9 antibodies confirmed that the presence of 

Tim-3-galectin-9 complex in Colo-205. In addition, we found that it was highly expressed in 

Colo-205 cells, at the level comparable to THP-1 AML cells [Figure 67 F].  
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Treatment with BH3I-1 significantly decreased galectin-9 intracellular level but didn’t affect 

Tim-3 concentration inside the cell (as confirmed by Western blot analysis) [Figure 67 G].  

Next, mitochondria of Colo-205 cells cultured in presence or in absence of BH3I-1 were 

isolated as described in material and methods. Isolated mitochondria lysates were then 

subjected to western blot analysis for Tim-3 and galectin-9 detection. Obtained results showed 

that the Tim-3-galectin-9 complex is accumulated in mitochondria upon stimulation with 

BH3I-1 [Figure 67 H].  

Quantitative real-time PCR on Colo-205 untreated and treated with BH3I-1 showed that 

galectin-9 mRNA levels were significantly reduced in presence of this compound [Figure 67 

I]. 

In addition, we observed that Colo-205 cells release lower amounts of galectin-9 in comparison 

to THP-1 cells. Importantly, these amounts are proportional to cellular Tim-3 levels [Figure 

68], supporting the conclusion regarding the involvement of Tim-3 in galectin-9 secretion. 

 
Figure 68: Total cellular levels of Tim-3 and galectin-9 and levels of secreted galectin-9 in THP-1 

human AML cells.  Total Tim-3 and galectin-9 levels were measured by FACS in permeabilised THP-

1 cells. The secreted levels of galectin-9 were also measured in culture medium, in which THP-1 cells 

were kept for 16 h and compared with those of Colo-205 cells cultured under the same conditions. 

Images are from one experiment representative of at least four which gave similar results. Other results 

are shown as mean values ± SEM of five independent experiments. ** p<0.01 vs control.   
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The accumulation of Tim-3-galectin-9 complex upon mitochondrial defunctionalisation was 

then investigated in two other types of epithelial cells – non-malignant kidney RC-124 and 

malignant HepG2 hepatoma cells (both abundant in mitochondria levels). However, we found 

that apoptosis stimulation by BH3I-1 in non-malignant kidney RC-124 cells wasn’t as efficient 

as in Colo-205 cells (data not shown). Indeed, we found that RC-124 cells were less permeable 

to this inhibitor in comparison to Colo-205 (as confirmed by direct chemical measurement of 

drug-associated uptake of bromine, data not shown). Therefore, H2O2 was used to 

defunctionalize mitochondria in these cells. HepG2 and RC-124 cells were incubated for 6h in 

presence or absence of 1 mM H2O2. It was found that galectin-9 levels were significantly 

reduced in both cell types, but the Tim-3-galectin-9 complex was only accumulated in the 

mitochondria of HepG2 cells and not in RC-124 [Figure 69]. 

 

Figure 69: Mitochondrial defunctionalisation reduces intracellular galectin-9 levels in both healthy 

(RC-124) and malignant (HepG2) epithelial cells but induces galectin-9 translocation into 

mitochondria only in malignant (HepG2) cells.  Cells were exposed to 1 mM H2O2 for 6 h followed 

by Western blot analysis of cellular and mitochondrial levels of Tim-3 and galectin-9 in both RC-124 

(A) and HepG2 (B) cells. In mitochondria of RC-124 cells Tim-3, galectin-9 and the complex of both 

proteins (MW ~ 70 KDa) was not detectable, while in mitochondria isolated from HepG2 cells a 

complex was clearly detectable in H2O2-stimulated cells. Images are from one experiment 

representative of at least four which gave similar results. Quantitative results are shown as mean values 

± SEM of four independent experiments. ** p<0.01 vs control. 
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8.2 Discussion 

Taken together, our results indicate pro-apoptotic mitochondrial dysfunction leads to a 

decreased transcription of galectin-9 mRNA leading to its reduced translation. In addition, this 

pharmacologically induced leads to a re-distribution of the Tim-3-galectin-9 complex into 

mitochondria where galectin-9 possibly interacts with mitochondrial glycoproteins.  The 

physiological relevance is still unclear. We proposed that   galectin-9 transfer in mitochondria 

and its decrease on the cell surface might be part of a regulated cell suicide program. Indeed, 

decrease in surface-associated galectin-9    would lead to a decreased protection of a dying cell 

thus allowing its smooth elimination. Importantly, this phenomenon was observed in both 

cancer cell line studied but not in non-malignant cells, suggesting that this mechanism could 

be cancer-specific. Therefore, targeted defunctionalisation of mitochondria in malignant cells 

may help cytotoxic lymphoid cells to eliminate more efficiently cancer cells since it would 

reduce cell surface presence of galectin-9 capable of suppressing anti-cancer activity of the 

immune system cells. 

Currently, several drugs targeting mitochondrial defunctionalisation have been shown to 

enhance conventional chemotherapy and radiotherapy treatment in haematological and solid 

tumours (Oltersdorf, et al., 2005; Konopleva, et al. 2006; Kang, et al., 2007; Hann, et al., 2008; 

Tse, et al., 2008; Lock, et al., 2008; Gandhi, et al., 2011; Liu, et al, 2009). We suggest that 

improved responses in patients undergoing this combinatorial treatment might be partly due to 

the mechanism here shown. 

.  
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9. CONCLUSIONS 

The following conclusions can be made from this research programme:  

1. Triggering of LPHN1, expressed in AML cells but absent in healthy leukocytes, 

activates Gαq/PLC/PKC and mTOR pathways leading to biosynthesis and exocytosis of Tim-

3 and galectin-9. Both proteins, Tim-3 and galectin-9 suppress anti-cancer immunity allowing 

AML cells to survive and proliferate. 

2. AML cells recruit crucial components of normal metabolism to escape surveillance and 

progress the disease. In particular: 

a) Human adrenal cortex hormone cortisol upregulates LPHN1 expression in AML cells; 

blood-available FLRT3 interacts with LPHN1 leading to galetin-9/Tim-3 synthesis and 

exocytosis in AML cells. 

b) HMGB1, released by dying or stressed cells, induces SCF and VEGF production via 

interaction with differential signalling receptors. Therefore, targeting HMGB1 in the 

treatment of AML may reduce SCF and VEGF, both factors pivotal for AML 

progression. 

3. Crucial components of FLRT3/LPHN/Tim-3/galectin-9 pathway are expressed in the 

majority of cancer cell lines and thus may be common for a variety of malignant tumours.  Tim-

3-galectin-9 pathway is active in breast cancer cells and is used to protect malignant cells from 

host immune attack. 

4. Galectin-9 doesn’t protect cancer cells against apoptosis via mitochondrial 

defunctionalisation. However, mitochondrial defunctionalisation reduces galectin-9 surface 

expression and leads to its accumulation in mitochondria in malignant cells but not in healthy 

ones. Therefore, targeted mitochondrial defunctionalisation may be a novel strategy for anti-



 

153 

 

cancer immunotherapy, since it would reduce galectin-9 surface expression allowing smooth 

elimination of cancer cells by immune system cells. 

5. Taken together our work demonstrates that Tim-3-galectin-9 immunosuppressive 

pathway plays a pivotal role in protection of AML and various solid tumour cells towards host 

immune surveillance operated by cytotoxic lymphoid cells.  
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11. APPENDIX 

11.1 Electrophoresis solutions 

11.1.1 SDS-polyacrylamide gels 

Table 9: PAGEs preparation 

 4% 7.5% 10% 12% 

H2O 3.2 ml 5.525 ml 4.9 ml 4.4 ml 

1.5 M Tris-HCl (pH 8.8) 1.25 ml 2.5 ml 2.5 ml 2.5 ml 

40% Acrylamide/Bis-acrylamide 0.5 ml 1.875 ml 2.5 ml 3.0 ml 

10% (w/v) SDS 50 µl 100 µl 100 µl 100 µl 

10% (w/v) APS 100 µl 125 µl 125 µl 125 µl 

TEMED 20 µl 25 µl 25 µl 25 µl 

11.1.2 1.5 M Tris-HCL pH 8.8 

Tris 181.5 g  

H2O 1 l  

Adjust pH to 8.8 with HCl. 

11.1.3 0.5 M Tris-HCL pH 6.8 

Tris 60.5 g  

H2O 1 l  

Adjust pH to 6.8 with HCl. 

11.1.4 10X Running buffer (8.3) 

Tris 30 g  

Glycine 144 g  

SDS 10 g  

Add distilled water until 1 l and check the pH. 

11.1.5 Sample buffer 

Table 10: Sample Buffer preparation 

 2X 

0.5 M Tris-HCl pH 6.8 1.25 ml 

10% SDS 2 ml 

Glycerol 2.5 ml 

Bromophenol 10 mg 

H2O 3.75 
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To this solution, DTT was added prior to use. For 4X sample buffer the quantity of chemical 

compounds was double. 

11.2 Western blot buffers 

11.2.1 10X Blotting Buffer (pH 8.3) 

Tris 30.3 g 

Glycine 144 g  

H2O 1 l  

Check if the pH is 8.3 but do not adjust it. 

11.2.2 1X Blotting Buffer (with 20% Methanol) 

10X Blotting buffer  

100 ml Methanol  

200 ml H2O 700 ml 

11.2.3 10X TBS buffer (9% NaCl, 100 mM Tris HCl, pH 7.4) 

Tris 12.11 g  

NaCl 90 g  

H2O 1 l  

Adjust the pH to 7.4, using HCl. 

11.2.4 1X TBST buffer (pH 7.4) 

10X TBS buffer  

100 ml Tween 20  

0.5 ml H2O 900 ml 

11.3 List of Publications 
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Acutemyeloid leukemia (AML) is a severe and often fatal systemicmalignancy. Malignant cells are capable of es-
caping host immune surveillance by inactivating cytotoxic lymphoid cells. In this work we discovered a funda-
mental molecular pathway, which includes ligand-dependent activation of ectopically expressed latrophilin 1
and possibly other G-protein coupled receptors leading to increased translation and exocytosis of the immune
receptor Tim-3 and its ligand galectin-9. This occurs in a protein kinase C and mTOR (mammalian target of
rapamycin)-dependent manner. Tim-3 participates in galectin-9 secretion and is also released in a free soluble
form. Galectin-9 impairs the anti-cancer activity of cytotoxic lymphoid cells including natural killer (NK) cells.
Soluble Tim-3 prevents secretion of interleukin-2 (IL-2) required for the activation of cytotoxic lymphoid cells.
These results were validated in ex vivo experiments using primary samples from AML patients. This pathway
provides reliable targets for both highly specific diagnosis and immune therapy of AML.

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Acutemyeloid leukemia (AML) is a blood/bonemarrow cancer orig-
inating from self-renewing malignant immature myeloid precursors,
which rapidly becomes a systemic malignancy. It is often a fatal disease
becausemalignant cells are capable of suppressing anti-cancer immuni-
ty by impairing the functional activity of natural killer (NK) cells and cy-
totoxic T cells (Golden-Mason et al., 2013;Wang et al., 2007; Khaznadar
et al., 2014). Recent evidence clearly demonstrated an involvement of
the T cell immunoglobulin and mucin domain 3 (Tim-3) - galectin-9
pathway in this immune escape mechanism (Golden-Mason et al.,
2013; Kikushige et al., 2015; Gonçalves Silva et al., 2016). Galectin-9 is
a β-galactoside-binding lectin, which has a tandem structure and

contains two carbohydrate recognition domains (CRDs) fused together
by a peptide (Delacour et al., 2009). Galectin-9 has a specific receptor
on AML cells known as Tim-3 which also could act as its possible traf-
ficker (galectin-9 as all other galectins lacks a signal sequence required
for transport into the endoplasmic reticulum (ER) and thus requires a
trafficking protein for its secretion (Hughes, 1999; Delacour et al.,
2009)). However, the mechanisms underlying the activation of biosyn-
thesis of the components of the Tim-3-galectin-9 autocrine loop,
galectin-9 secretion and its effects on cytotoxic lymphocytes (NK cells
and T cells) remain poorly understood.

Recently, we discovered that humanAML cells – but not healthy leu-
kocytes – express physiologically active latrophilin 1 (LPHN1;
Sumbayev et al., 2016). LPHN1, an adhesion G-protein-coupled recep-
tor, is highly expressed in neuronal axon terminals and in many secre-
tory cells (Davletov et al., 1998; Silva and Ushkaryov, 2010). In all cells
expressing this receptor, LPHN1 activation by its most potent agonist,
α-latrotoxin (LTX) from black widow spider venom (Ushkaryov,
2002), triggers intracellular Ca2+ signaling and exocytosis of neuro-
transmitters and hormones (Volynski et al., 2003). Similarly, ligand-
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induced activation of LPHN1 in AML cells facilitates exocytosis of cyto-
kines and growth factors (Sumbayev et al., 2016). Production of
LPHN1 in AML cells is controlled by themammalian target of rapamycin
(mTOR) (Sumbayev et al., 2016), a highly conserved serine/threonine
kinase that acts as a central regulator of growth and metabolism in
healthy and malignant human myeloid cells (Yasinska et al., 2014). To
function in cell-cell interactions and cell signaling, LPHN1 can interact
with at least two endogenous ligands, Lasso/teneurin-2 (Silva et al.,
2011) and fibronectin leucine rich transmembrane protein 3 (FLRT3)
(Boucard et al., 2014), although only FLRT3 seems to be expressed in pe-
ripheral tissues. In addition to triggering exocytosis by increasing cyto-
solic Ca2+, LPHN1 can enhance the sensitivity of the release machinery
by activating protein kinase C (Liu et al., 2005), which is also thought to
be involved in galectin-9 secretion (Chabot et al., 2002). Based on these
observations, we hypothesized that activation of LPHN1 by its ligands
can induce secretion of galectin-9, thus protecting AML cells against
NK and cytotoxic T cells. This hypothesis has been studied experimen-
tally in the present study.

Here we report that the Tim-3-galectin-9 autocrine loop is
activated in AML cells through protein kinase C (PKC)/mTOR
pathways. These pathways trigger translation of both Tim-3 and
galectin-9 and induce high levels of galectin-9 secretion as well as
the release of soluble Tim-3. Importantly, this effect was also verified
in the AML patients studied. Galectin-9 was found to impair AML cell
killing by primary human NK cells. Soluble Tim-3 reduced the ability
of T cells to secrete IL-2, a cytokine, which is required for the
activation of both NK cells and cytotoxic T cells (Dhupkar and
Gordon, 2017). Blood plasmas of AML patients contained
significantly lower amounts of IL-2 compared to those of healthy
donors. We confirmed that PKC activation occurred in AML cells in
a LPHN1-dependent manner. The LPHN1 agonist LTX and natural
ligand FLRT3 upregulated the Tim-3-galectin-9 autocrine loop in a
PKC-dependent manner. Based on our findings, we conclude that
LPHN1/PKC/mTOR/Tim-3-galectin-9 is a biosynthetic and secretory
pathway which is operated by human AML cells resulting in a
decrease of immune surveillance and promotion of disease
progression.

2. Materials and Methods

2.1. Materials

RPMI-1640 medium, fetal bovine serum and supplements and basic
laboratory chemicals were purchased from Sigma (Suffolk, UK).
Maxisorp™ microtitre plates were provided either by Nunc (Roskilde,
Denmark) and Oxley Hughes Ltd. (London, UK). Mousemonoclonal an-
tibodies directed against mTOR and β-actin, as well as rabbit polyclonal
antibodies against phospho-S2448 mTOR, galectin-9, HRP-labelled rab-
bit anti-mouse secondary antibody were purchased from Abcam (Cam-
bridge, UK). Mouse monoclonal antibody against FLRT3 was obtained
from Santa Cruz Biotechnology (Heidelberg, Germany). The polyclonal
rabbit anti-peptide antibody (PAL1) against LPHN1 was described pre-
viously (Davydov et al., 2009). LTXwas purified as previously described
(Ashton et al., 2000). Goat anti-mouse and goat anti-rabbit fluorescence
dye-labelled antibodies were obtained from LI-COR (Lincoln, Nebraska
USA). ELISA-based assay kits for the detection of galectin-9, Tim-3 and
IL-2 were purchased from Bio-Techne (R&D Systems, Abingdon, UK).
Anti-Tim-3 mouse monoclonal antibody, its single chain variant as
well as human Ig-like V-type domain of Tim-3 (amino acid residues
22–124), expressed and purified from E. coli (Prokhorov et al., 2015)
were used in our work. Secondary antibodies for confocal laser
microscopy and imaging flow cytometry (goat anti-mouse and goat
anti-rabbit Alexa 488, Alexa 555 and Alexa 647) were from Invitrogen
(Carlsbad, USA). All other chemicals purchased were of the highest
grade of purity.

2.2. Cell Lines and Primary Human Cells

THP-1 humanmyeloid leukemiamonocytes, K562 chronicmyeloge-
nous leukemia cells and Jurkat T cells were obtained from the European
Collection of Cell Cultures (Salisbury, UK). Renal clear cell carcinoma
RCC-FG1 cells were obtained from CLS Cell Lines Service (Eppelheim,
Germany). Cells were cultured in RPMI 1640 media supplemented
with 10% fetal bovine serum, penicillin (50 IU/ml) and streptomycin
sulfate (50 μg/ml). LAD2 mast cells were kindly provided by A.
Kirshenbaum and D. Metcalfe (NIH, USA). Cells were cultured in Stem-
Pro-34 serum-free media in the presence of 100 ng/ml SCF
(Kirshenbaum et al., 2003).

Primary human AMLmononuclear blasts (AML-PB001F, newly diag-
nosed/untreated)were purchased fromAllCells (Alameda, CA, USA) and
handled in accordance with the manufacturer's instructions. Primary
human NK cells were purified from buffy coat blood (prepared from
healthy donors) obtained from the National Health Blood and Transfu-
sion Service (NHSBT, UK) following ethical approval (REC reference:
16-SS-033). Primary CD34-positive HSCs were obtained from Lonza
(Basel, Switzerland).

Femur bones of six-week-old C57 BL16mice (25± 2.5 g, kindly pro-
vided by Dr. Gurprit Lall, School of Pharmacy, University of Kent) were
used for the experiments following approval by the Institutional Animal
Welfare and Ethics Review Body. Animals were handled by authorized
personnel in accordance with the Declaration of Helsinki protocols.
Bone marrow was isolated from femur bone heads as described before
(Swamydas and Lionakis, 2013) and whole extracts (1 mg protein/ml)
were then obtained.

2.3. Primary Human Plasma Samples

Blood plasma of healthy donors was obtained from buffy coat
blood (originated from healthy donors undergoing routine blood
donation) which was purchased from the National Health Blood
and Transfusion Service (NHSBT, UK) following ethical approval
(REC reference: 16-SS-033). Primary human AML plasma samples
were obtained from the sample bank of University Medical Centre
Hamburg-Eppendorf (Ethik-Kommission der Ärztekammer
Hamburg, reference: PV3469).

2.4. Western Blot Analysis

Tim-3, galectin-9, FLRT3, LPHN1 and Gαq were analyzed by
Western blot and compared to β-actin in order to verify equal pro-
tein loading, as previously described (Yasinska et al., 2014). Briefly,
cells were lysed using lysis buffer (50 mM Tris–HCl, 5 mM EDTA,
150 mM NaCl, 0.5% Nonidet-40, 1 mM PMSF, pH 8.0). After centrifu-
gation, the protein content in the supernatants was analyzed. Finally,
samples were added to the same volume of 2× sample buffer
(125 mM Tris–HCl, 2% sodium dodecyl sulfate (SDS), 10% glycerine,
1 mM dithiothreitol (DTT), 0.002% bromophenol blue, pH 6.9) and
boiled for 5 min. Proteins were resolved using SDS–polyacrylamide
gels followed by blotting onto nitrocellulose membranes. Molecular
weights were calibrated in proportion to the running distance of
rainbow markers. For all primary antibodies (see Materials section)
a 1:1000 dilution was used, except those against LPHN1 and FLRT3
(where a 1:500 dilution was used). β-actin staining was used to
confirm equal protein loading as described previously (Yasinska et
al., 2014). LI-COR goat secondary antibodies (dilution 1:2000),
conjugated with fluorescent dyes, were used in accordance with
manufacturer's protocol to visualize target proteins (using a LI-COR
Odyssey imaging system). Western blot data were quantitatively
analyzed using Odyssey software and values were subsequently
normalized against those of β-actin.
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2.5. Characterization of Tim-3 and Galectin-9 in Tissue Culture Medium

Secreted Tim-3 and galectin-9 were characterized in the RPMI-1640
mediumused to culture THP-1 cells. The proteinswere first precipitated
onMaxisorp ELISA plates (seeMaterials section). For this purpose ELISA
plateswere coated overnight using single-chain antibody against Tim-3.
Plates were then blocked with 2% BSA. Tissue culture mediumwas then
applied and incubated for 4 h at room temperature, followed by exten-
sivewashingwith TBST buffer. Proteinswere then extracted using 0.2M
glycine-HCl buffer (pH 2.0). Extracts were neutralized using lysis buffer
and subjected toWestern blot analysis usingmouse anti-Tim-3 and rab-
bit anti-galectin-9 antibodies as described before (Gonçalves Silva et al.,
2016) and above.

2.6. Enzyme-linked Immunosorbent Assays (ELISAs)

Galectin-9, sTim-3 and IL-2 were measured by ELISA using R&D Sys-
tems kits according to manufacturer's protocols. In all cases the proce-
dure involves specific detection of captured target proteins using
biotinylated detection antibody. The interaction was then analyzed
using streptavidin conjugated with horseradish peroxidase (HRP) ac-
cording to the manufacturer's protocol. Tim-3-galectin-9 complex was
also analyzed by ELISA. Single-chain antibody (described above, dilution
1:100)was used to capture the complex and biotinylated goat R&D Sys-
tems antibody against galectin-9 (detection antibody) was used to de-
tect galectin-9 bound to Tim-3. HRP-labelled streptavidin was then
used to perform quantitative analysis according to the R&D Systems
protocol for the galectin-9 assay kit. Phosphorylation of mTORwas ana-
lyzed by ELISA as previously described (Yasinska et al., 2014).

2.7. In Cell Assays and in Cell Westerns

Weemployed a standard LI-COR in-cellWestern (ICW) assay (meth-
anol was used as permiabilization agent) to analyze total Tim-3 and
galectin-9 expressions in the studied cells. The in-cell (ICA, also called
on-cell) assay was employed to characterize Tim-3 and galectin-9 sur-
face presence in the studied cells. We also used this assay to visualize
binding of LAD2 cells toNK cells. IgE-sensitized LAD2 cellswere exposed
for 5 min to 1 μg/ml, carefully washed with sterile PBS and exposed to
LI-COR goat anti-mouse labelled secondary antibody. Following wash-
ing with PBS, cells were scanned using a LI-COR Odyssey imaging sys-
tem (Gonçalves Silva et al., 2016).

2.8. Confocal Microscopy and Imaging Flow Cytometry

THP-1 cells were grown on 12 mm cover glasses in 24-well plates.
Cells were treated (o/n) with PMA and then fixed/permeabilized for
20 min with ice-cold MeOH or MeOH/acetone. Alternatively cells were
fixed in a freshly prepared 2% paraformaldehyde, washed 3 times with
PBS and then permeabilized with 0.1%TX-100. Cover glasses were
blocked for 1 h at RTwith 10% goat serum in PBS. 1 μg/ml anti-Tim-3 an-
tibody and anti-galectin-9 antibody were used as primary antibodies
and incubated o/n at 4 °C. Goat-anti-mouse Alexa Fluor 488 and goat-
anti-rabbit Alexa Fluor 555 were used as secondary antibodies. Cells
were incubated with secondary antibodies for 45 min at RT. The prepa-
rations were examined on Olympus laser scanning confocal microscope
as described (Prokhorov et al., 2015; Fasler-Kan et al., 2010). Images
were collected and analyzed using proprietary image acquisition soft-
ware. Imaging flow cytometry was performed in accordancewith a pre-
viously described protocol (Fasler-Kan et al., 2016). Briefly,
permiabilized cells were stained with mouse anti-Tim-3 and rabbit
anti-galectin-9 antibodies for 1 h at room temperature. Goat anti-
mouse Alexa Fluor 647 and goat-anti-rabbit Alexa Fluor 488 were
used as secondary antibodies. Images were collected and analyzed
using IDEAS analytical software on ImageStream X mark II (Amnis-
EMD-Millipore, USA).

2.9. Synchrotron Radiation Circular Dichroism Spectroscopy

Human recombinant Tim-3, human recombinant galectin-9 and
Tim-3-galectin-9 complex were analyzed using SRCD spectroscopy at
beam line 23, Diamond Light Source (Didcot, UK). SRCD measurements
were performed using 0.2 μg/ml of samples in 10 cm path length cell,
3 mm aperture diameter and 800 μl capacity using Module B with
1 nm increment, 1 s integration time, 1.2 nm bandwidth at 23 °C
(Hussain et al., 2012a, 2012b; Siligardi and Hussain, 2015). The results
obtained were processed using CDApps (Hussain et al., 2015) and
OriginLab™.

2.10. PKCα Activity Assay

The catalytic activity of PKCα was measured as described before
based on its ability to phosphorylate specific substrate in a reaction buff-
er containing 20mMTris-HCl (pH 7.5), 20 μMATP, 5mMMgCl2 and 200
μM CaCl2 (Micol et al., 1999). Phosphate groups attached to the sub-
strate were detected using colorimetric assay (Abooali et al., 2014).

2.11. Cell Viability Assay

Cell viability was analyzed using the Promega UK Ltd. (Southamp-
ton, UK) assay kit. We used an MTS colorimetric assay for assessing
cell metabolic activity. NAD(P)H-dependent cellular oxidoreductase en-
zymes playing crucial role in human myeloid cell survival (Sumbayev
and Nicholas, 2010), reflect the number of viable cells present. Cells
were incubated with 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS)
and then absorbance was measured at 490 nm in accordance with the
manufacturer's protocol.

2.12. Leukemia Cell Protection Assay

K562 and NK cells were cultured separately or as a 1:2 co-culture
(K562:NK) for 16 h, at 37 °C, in the absence or presence of 0.5–
5 ng/ml of galectin-9. The unfixed cell cultures were then imaged
under an inverted microscope (TE200, Nikon), using phase-contrast
lighting, a digital camera and the WinFluor image acquisition software
(J. Dempster, University of Strathclyde). Raw images were analyzed
using the ImageJ software (Schindelin et al., 2015), including illumina-
tion correction, background subtraction, overlapping cells separation,
edge artefacts elimination, and particle size optimization (based on
the size difference between K562 and NK cells). The selected areas
were then applied to the raw images for automatic cell counting.

2.13. Statistical Analysis

Each experiment was performed at least three times and statistical
analysis when comparing two events at a time was conducted using a
two-tailed Student's t-test. Multiple comparisons were performed
using ANOVA test. Post-hoc Bonferroni correction was applied. Statisti-
cal probabilities (p) were expressed as * where p b 0.05; **, p b 0.01 and
*** when p b 0.001.

3. Results

3.1. Differential Proteolytic Enzymes are Involved in the Secretion of the
Tim-3 and Galectin-9 Complex in Human AML Cells

We investigated differential proteolytic shedding of free and
galectin-9-bound Tim-3 from the surface of human AML cells as a pos-
sible mechanism for the secretion of these proteins. Firstly, we exam-
ined the medium used to culture THP-1 human AML cells with or
without 16 h exposure to 100 nM phorbol 12-myristate 13-acetate
(PMA) known to activate proteolytic shedding of Tim-3 (Moller-
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Hackbarth et al., 2013). We then immunoprecipitated Tim-3 from the
medium and extracted the precipitate as outlined in the Materials and
Methods. Extracts were subjected to Western blot analysis followed
by specific detection of galectin-9 and Tim-3. Specific galectin-9 bands
appeared at around 32 kDa (molecular weight of galectin-9) as well as
52 kDa (Fig. 1A). Interestingly, the 52 kDa band was also detectable by
anti-Tim-3 antibody (Fig. 1A), suggesting that this band corresponds
to the unbroken Tim-3-galectin-9 complex. Furthermore, specific Tim-
3 bands appeared at around 33 kDa (molecular weight of soluble Tim-
3 – sTim-3) and around 20 kDa. This 20 kDa band is likely to be a
fragment of Tim-3 shed together with galectin-9 being released from
the complex during theWestern blot procedure (Fig. 1A). This suggests
that the Tim-3 protein fragment complexed with galectin-9 might be
shed at different cleavage site(s). Interestingly, the amount of all the
proteins detected was clearly higher in PMA-treated samples.

It has recently been found that Tim-3 can be shed from the cell sur-
face by a disintegrin andmetalloproteinase domain-containing proteins
(ADAM) 10/17 (Moller-Hackbarth et al., 2013). We therefore investi-
gated whether these proteases are associated with release of free Tim-
3 and/or of the galectin-9-Tim-3 complex. We exposed THP-1 cells for
16 h to 100 nM PMA, after which the PMA-containing medium was re-
moved and replaced with the same medium containing 100 μM
GI254023X (ADAM 10 and 17 inhibitor) or 100 μMBB-94, a matrix me-
talloproteinase inhibitor. The cells were incubated for 4 h and levels of
Tim-3 and galectin-9 were then measured in the culture medium by
ELISA. We also measured soluble Tim-3-galectin-9 complex by captur-
ing Tim-3 using a single-chain antibody and then detecting galectin-9
using a biotinylated anti-galectin-9 antibody. We found that PMA

treatment significantly upregulated sTim-3 release as well as the release
of galectin-9 (a similar increase was observed in the Tim-3-galectin-9
complex, Fig. 1B). GI254023X and BB-94 decreased PMA-induced sTim-
3 release but did not affect the release of either galectin-9 or the Tim-3-
galectin-9 complex (Fig. 1B), suggesting that this complex is differentially
shed from the cell surface.

3.2. Protein Kinase C is Involved in the Activation of Tim-3 and Galectin-9
co-secretion by AML Cells

We considered the levels of Tim-3 and galectin-9 remaining in
THP-1 cells following 16 h of exposure to specific PKC activator
PMA. It was found that, despite the levels of released sTim-3,
galectin-9 and Tim-3-galectin-9 complex were increased in PMA-
treated cells, the levels of respective cell-associated proteins
decreased (Fig. 2). Interestingly, a specific band in the range of
70 kDa detectable by both anti-Tim-3 and anti-galectin-9 antibodies
was present in all the assays (Fig. 2). This molecular weight
corresponds to a sum of those of uncleaved Tim-3 and galectin-9.
This indicates that a complex between full Tim-3 and galectin-9 is
first formed before undergoing shedding, which results in a release
of its soluble form corresponding to the 52 kDa species, as described
above. Our observations were confirmed by co-localization assays
using confocal microscopy (Fig. 3). Following 24 h exposure to
100 nM PMA, paraformaldehyde-fixed non-permeabilized and
methanol-permeabilized THP-1 human AML cells were investigated.
We found that both galectin-9 and Tim-3 were present on the cell
surface. In permeabilized cells there was clear evidence of co-localization

Fig. 1. Free and galectin-9-bound Tim-3 is shed differentially from the cell surface. THP-1 cells were exposed for 16 h to 100 nM PMA; medium was then exchanged for fresh PMA-free
medium and cells exposed to the indicated concentrations of GI254023X (ADAM10/17 inhibitor) and BB-94 (matrix metalloproteinase inhibitor). Non treated THP-1 cells were
incubated for 16 h after which medium was changed and cells incubated for further 4 h and used as a control. Western blot characterization of galectin-9 and Tim-3 variants (20 kDa
fragment (Tim-3 (fr)) and 33 kDa (sTim-3)) was performed in medium collected after final 4 h of incubation of resting and PMA-pre-treated THP-1 cells as outlined in the Materials
and Methods (A). All the samples were subjected to ELISA-based detection of galectin-9, soluble Tim-3 and Tim-3-galectin-9 complex (B). Images are from one experiment
representative of six which gave similar results. Quantitative data represent mean values ± SEM of six independent experiments; *p b 0.05; **p b 0.01 vs. control.
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of both proteins. These findings were confirmed using imaging flow
cytometry (Supplementary Fig. 1). In non-permeabilized cells we saw
sectors full of either Tim-3 or galectin-9, without substantial co-localiza-
tion. Given that galectin-9 is soluble, it can remain on the cell surface
only if it is bound to its receptor, Tim-3 (Fig. 3). Taken together our
findings suggest that Tim-3 is either externalized on its own or acts as a
trafficker for galectin-9 (which lacks the signal domain required for
secretion and thus requires a trafficker). Given that PMA, a specific PKC
activator, significantly increases Tim-3 and galectin-9 secretion, it is likely
that PKC is involved in the Tim-3 and galectin-9 co-secretion process.

3.3. Levels of Soluble Tim-3 andGalectin-9 are Highly Increased in the Blood
Plasma of AML Patients: Characterization of the Tim-3-galectin-9 Complex
in Human Blood Plasma

We then sought to confirmourfindings in primary samples collected
from AML patients. We analyzed plasma samples from 98 AML patients
versus healthy donors and found that galectin-9 and Tim-3 levels were
strikingly increased in blood plasma of AMLpatients (Fig. 4A, B, E and F).
Five randomly selected plasma samples from the group of studied AML
patients and five from healthy donors were then subjected to detection

Fig. 2.PMAactivates Tim-3 andgalectin-9production and release aswell as generation of Tim-3-galectin-9 complex. THP-1 cellswere treatedwith 100nMPMA for 16 h.Non-treated THP-
1 cells were used as a control. Cells were then harvested and galectin-9 as well as Tim-3 were analyzed in whole cell extracts by Western blot. Both proteins and Tim-3-galectin-9
complexes were analyzed by ELISA in the medium used to treat the cells. The bar diagram on the top shows the comparative analysis (expressed in % control) of galectin-9 and Tim-3-
galectin-9 complex levels released by non-treated and PMA-treated THP-1 cells. Images are from one experiment representative of three which gave similar results. Quantitative data
are the mean values ± SEM of three independent experiments; *p b 0.05; **p b 0.01; ***p b 0.001 vs. control.

Fig. 3. Co-localization of Tim-3 and galectin-9 in PMA-activated THP-1 cells. Co-localization of Tim-3 and galectin-9 was analyzed in non-permeabilized and permeabilized THP-1 cells
following 24 h of exposure to 100 nM PMA using confocal microscopy (see Materials and Methods for details). Images are from one experiment representative of six which gave
similar results.
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of Tim-3-galectin-9 complex by ELISA as described above. The level of
increase in Tim-3-galectin-9 complex in AML samples was similar to
that of galectin-9 (Fig. 4C and G). We then randomly chose five plasma
samples from the group of studied AML patients and analyzed Tim-3
and galectin-9 levels by Western blot (Fig. 4D). Prior to loading onto
the SDS-PAGE, samples were sonicated and boiled for 5 min at 95 °C.
We found that sTim-3 and galectin-9 were clearly detectable. We
could also see a clear band (probably representing the soluble form of
the Tim-3-galectin-9 complex) at around 52 kDa (detectable by both
anti-Tim-3 and anti-galectin-9 antibodies). This suggests that the com-
plex released by THP-1 cells (Fig. 1) and the one found in blood plasma
is unlikely to be formed after secretion. If this had been the case, its mo-
lecular weight would have been around 65 kDa (33 kDa for sTim-3 and
32 kDa for galectin-9) rather than 52 kDa. A specific band was also de-
tectable at around 20 kDa (Fig. 4D). These results are in line with
those obtained for soluble forms of Tim-3, galectin-9 and Tim-3-
galectin-9 complex released by THP-1 cells confirming that sTim-3
and Tim-3 complexed with galectin-9 are likely to be differentially
shed from plasma membranes of AML cells. Interestingly, there is a
clear evidence of a correlation between Tim-3 and galectin-9 levels in
the plasma of both healthy donors and AML patients and these correla-
tion levels were very similar to each other (Fig. 4H and I) suggesting a
co-release of both proteins in both cohorts.

3.4. Tim-3 Binding Alters the Conformation of Galectin-9

In order to assess the biophysical properties of Tim-3, galectin-9 and
the Tim-3-galectin-9 complex we investigated them using synchrotron
radiation circular dichroism (SRCD) spectroscopy at Diamond Light
Source (Beam Line 23, Supplementary Fig. 2). Structural organization
of Tim-3 and galectin-9 as well as their interaction are schematically
presented in the Fig. 5A. Galectin-9 interacts with non-glycosylated
Tim-3 with nanomolar affinity (Kd = 2.8 × 10−8 M); the binding can
be further strengthened by interaction of galectin-9 with glycosylated
Tim-3 (Prokhorov et al., 2015). Indeed, the complex is detectable by
Western blot, which means that interaction between a lectin and

sugar is taking place. SRCD spectroscopy was also performed on
galectin-9 and Tim-3 mixed to a stoichiometry of 1:1 molar ratio (Fig.
5B). Galectin-9 when mixed with Tim-3 showed a CD spectrum signifi-
cantly different from the simulated spectrum indicating that the inter-
action of galectin-9 with Tim-3 causes significant conformational
change of the proteins with a clear increase in β-strand component.
Based on the above, one might speculate that Tim-3 binding could
alter the conformation of galectin-9, resulting in increased ability to in-
teract with receptors in target cells. Since galectin-9 is a tandem protein
with two sugar binding domains, one domain could bind Tim-3 (or
other proteins) and leave the other domain open for interaction with
a receptor molecule associated with the plasma membrane of a target
cell (for example membrane associated Tim-3).

3.5. Latrophilin 1, Protein Kinase C andmTOR-Dependent Translation Play a
Crucial Role in Tim-3 and Galectin-9 Production and Secretion

LPHN1mRNAwas found in primary humanCD34-positive stem cells
(Maiga et al., 2016).Wewere able to detect LPHN1 protein in them (at a
slightly highermolecular weight than in THP-1 cells (around 140 kDa)),
while in THP-1 it is detectable at 130 kDa (Supplementary Fig. 3) aswell
as in primary AML cells (Sumbayev et al., 2016). No Tim-3 or galectin-9
protein expression was detectable in primary human CD34-positive
stem cells (Supplementary Fig. 3).

For this experimental set-up we used THP-1 cells and exposed
them to 100 nM PMA or 250 pM α-latrotoxin (LTX, a highly specific
and potent ligand of LPHN1 (Sumbayev et al., 2016)). We found that
both PMA and LTX downregulated intracellular Tim-3 and galectin-9
levels (though not significantly) and significantly increased activat-
ing phosphorylation of the mammalian target of rapamycin
(mTOR) at S2448 (Fig. 6A and B). One hour pre-treatment of THP-1
cells with 70 nM Gö6983 (PKCα inhibitor) before exposure to PMA
or LTX led to attenuation of stimulus-induced mTOR activation and
downregulation of intracellular Tim-3 and galectin-9 levels.
Interestingly, in the cells exposed just to Gö6983, phospho-S2448
mTOR and intracellular Tim-3/galectin-9 levels were not different

Fig. 4. Levels of galectin-9 and soluble Tim-3 are highly increased in blood plasma of AML patients. Galectin-9 and Tim-3 were measured by ELISA in blood plasma obtained from healthy
donors and AML patients (A, B, E and F). The levels of Tim-3-galectin-9 complexweremeasured by ELISA in blood plasma of five randomly picked healthy donors and AML patients (C and
G). Tim-3 and galectin-9were characterized byWestern blot in blood plasma fromfive randomly chosen AML patients (D). Correlations between Tim-3 and galectin-9 aswell as between
galectin-9 andTim-3-galectin-9 complexwas then determined (H, I, J and K). Images are fromone experiment representative offivewhich gave similar results. Quantitativedata represent
mean values ± SEM of three independent experiments; *p b 0.05; **p b 0.01; ***p b 0.001 vs. control.
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from the control. Both PMA and LTX highly upregulated release of
both sTim-3 and galectin-9 from THP-1 cells. Gö6983 completely
attenuated this increase in both cases, but did not change basic levels
of Tim-3 and galectin-9 secretion, which suggests that basic
(background) release of galectin-9 and Tim-3 does not depend on
PKCα (Fig. 6D).

In summary, both PMA and LTX induce production of both Tim-3
and galectin-9 in THP-1 cells. We confirmed that THP-1 cells express
Gαq (Supplementary Fig. 4A) and PMA aswell as LTX induce highly sig-
nificant upregulation of PKCα kinase activity (Supplementary Fig. 4B).
Pre-treatment of THP-1 cells with 10 μM AZD2014 (a highly specific
mTOR inhibitor) before exposure to PMA or LTX reduced intracellular
Tim-3 and galectin-9 levels as well as release of both proteins (Fig. 6C
and D). This indicates that PMA or LTX-induced translation of both pro-
teins depends on the mTOR pathway. Importantly, the solvents used to

dissolve pharmacological inhibitors had no effect on any of the studied
protein levels or their secretion (data not shown).

These results were validated using primary human AML cells. For
this purpose we exposed primary human AML mononuclear blasts
AML-PB001F for 24 h to LTX followed by detection of secreted
galectin-9 and Tim-3. We found that AML-PB0011F expressed LPHN1
and the secreted levels of both proteins were significantly increased in
LTX-treated AML cells (Supplementary Fig. 5) confirming the findings
obtained in THP-1 cells.

To confirm the physiological role of LPHN1 in galectin-9 release we
exposed THP-1 cells to FLRT3, which is one of physiological ligands of
LPHN1 (Boucard et al., 2014). We found that 10 nM FLRT3 induced sig-
nificant upregulation of galectin-9 and sTim-3 release (Fig. 7A, a scheme
of the experiment is presented in Supplementary Fig. 6A); it also upreg-
ulated PKCα activity in THP-1 cells (Supplementary Fig. 4B). To confirm

Fig. 5. Interaction of Tim-3with galectin-9 leads to major conformational changes increasing solubility of the protein complex. (A) The schematic structural models of Tim-3 extracellular
domain (left) and galectin-9 (right). In the Tim-3 structure, amino acid residues involved in galectin-9-independent binding are highlighted in green. Residues, which are potential targets
for glycosylation, are highlighted in red. In galectin-9, sugarmolecules,which could potentially bind theprotein, located close to the carbohydrate binding sites are shown in green. (B) The
SRCD spectroscopy of Tim-3, galectin-9 and Tim-3-galectin-9 interaction (both simulated and real curves are presented).

Fig. 6. LPHN1, PKCα andmTOR pathways are involved in Tim-3 and galectin-9 production and secretion in AML cells. THP-1 cells were exposed to the indicated concentrations of PMA or
LTX for 16 h with or without 1 h pre-treatment with the PKCα inhibitor Gö6983 (A, B, D) or themTOR inhibitor AZD2014 (C, D). Cellular levels of Tim-3 and galectin-9 were analyzed by
Western blot. Released Tim-3 and galectin-9 were detected by ELISA. Images are from one experiment representative of three which gave similar results. Quantitative data are the mean
values ± SEM of three independent experiments; *p b 0.05; **p b 0.01; ***p b 0.001 vs. control. Symbols “a” or “b” are used instead of “*” to indicate differences vs. PMA and LTX-treated
cells, respectively.
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that this effect was physiologically relevant, we exposed THP-1 cells for
16 h to mouse bone marrow (mBM) extracts (10 μg protein/ml, which
contain FLRT3, Fig. 7B, a scheme of the experiment is presented in Sup-
plementary Fig. 6B) obtained as outlined in the Materials and Methods.
Treatments were conducted with or without 1 h pre-treatment with 5
μg/ml FLRT3 neutralizingmouse antibody.We found that mBMextracts
significantly upregulated galectin-9 and sTim-3 secretion in THP-1 cells.
FLRT3 neutralizingmouse antibody reduced the effects of mBM extracts
but did not block them (Fig. 7B). This means that BM contains several
activators of galectin-9 secretion in AML cells. Finally, we co-cultured
THP-1 cells with RCC-FG1 renal carcinoma cells (which are highly ad-
herent) in the ratio 1 THP-1:2 RCC-FG1. RCC-FG1 cells express high
levels of FLRT3 and release almost undetectable amounts of galectin-9
(Fig. 7C, a scheme of the experiment is presented in Supplementary

Fig. 6C). Cells were kept together for 16 h in the absence or presence
of 5 μg/ml FLRT3 neutralizing antibody and then galectin-9 and sTim-
3 secretion levels were analyzed. We found that the presence of RCC-
FG1 cells significantly increased galectin-9 and sTim-3 release and
FLRT3 neutralization attenuated these effects. The presence of RCC-
FG1 cells significantly upregulated PKCα activity, an effect that was
also attenuated by neutralization of the FLRT3 (Supplementary Fig.
4C). These results suggest that FLRT3 stimulates the release of
galectin-9 from AML cells.

3.6. Galectin-9 and sTim-3 Attenuate AML Cell Killing Activity of NK Cells

Recent evidence suggested that galectin-9 (either soluble or cell sur-
face associated) can interact with Tim-3 or possibly other receptors on

Fig. 7. FLRT3, a physiological ligand of LPHN1, induces galectin-9 and Tim-3 secretion. (A) THP-1 cells were exposed for 16 h to 10 nM extracellular domain of human recombinant FLRT3
followedbymeasurement of released Tim-3 and galectin-9 by ELISA. (B) THP-1 cellswere exposed tomouse bonemarrow (mBM) extracts for 16 hwith orwithout 1 h pre-treatmentwith
5 μg/ml anti-FLRT3 antibody. The presence of FLRT3 in mBM extracts was confirmed by Western blot analysis. Secreted Tim-3 and galectin-9 were measured by ELISA. (C, left) RCC-FG1
cells express FLRT3 as confirmed byWestern blotting. (C, right) RCC-FG1 cells were co-culturedwith THP-1 cells at a ratio of 1 THP-1:2 RCC-FG1with orwithout 1 h pre-treatmentwith 5
μg/ml FLRT3 neutralizing antibody. Secreted galectin-9 and Tim-3 were measured by ELISA. Images are from one experiment representative of three which gave similar results.
Quantitative data depict mean values ± SEM of three independent experiments; *p b 0.05; **p b 0.01; ***p b 0.001 vs. control. Symbols “a” or “b” are used instead of “*” to indicate
differences vs. cells treated with mBM extracts or co-cultured with RCC-FG1 cells, respectively.

Fig. 8. LAD2 cells express and externalize Tim-3 and galectin-9. Left panel: surface-based and total Tim-3 and galectin-9 were measured in LAD2 humanmast cell sarcoma cells using LI-
COR in cell assay (ICA, non-permeabilized cells) and in cell Western (ICW, permeabilized cells). Right panel: protein levels of Tim-3 and galectin-9 were measured in resting and IgE-
sensitized LAD2 cells by Western blot. Galectin-9 release was characterized using ELISA. Images are from one experiment representative of three which gave similar results.
Quantitative data show mean values ± SEM of three independent experiments; ***p b 0.001 vs. control.
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cytotoxic lymphoid cells including NK cells and cytotoxic T cells
(Gleason et al., 2012). Itmay be proposed that Tim-3-galectin-9 interac-
tion is involved in the creation of immunological synapses between tar-
get cells and cytotoxic lymphoid cells. To investigate this we used LAD2
humanmast cell sarcoma cells kindly provided by Prof. Metcalfe andDr.
Kirshenbaum (NAID, NIH, USA; Kirshenbaum et al., 2003). These cells
express both Tim-3 and galectin-9 with both proteins located mostly
on the cell surface (Fig. 8) and not rapidly shed. This can thus be used
to visualize the formation of immunological synapses between the
two cell types. They also express high affinity IgE receptors (FcɛRI)
which are not expressed by NK cells and thus can be used to distinguish
between the two cell types.

Resting LAD2 cells do not release detectable amounts of galectin-9
and sensitization with IgE (which was used in order to label the cells
for visualization) does not augment galectin-9 secretion considerably
(Fig. 8). We therefore immobilized primary human NK cells isolated
frombuffy coats of human blood on ELISA plates as outlined inMaterials
and Methods. NK cells express Tim-3 (several glycosylation variants,
Supplementary Fig. 7) but do not produce detectable amounts of
galectin-9 protein. We applied IgE-sensitized LAD2 cells (Sumbayev et
al., 2012) to the NK cells at a ratio of 1:1 with or without 15 min pre-in-
cubationwith galectin-9 neutralizing antibody. Isotype control antibody
was also used instead of galectin-9 antibody to rule out the IgG effect.
LAD2 cells were then flagged using mouse IgM anti-IgE followed by vi-
sualization using anti-mouse LI-COR secondary antibody (which recog-
nizes IgM, seeMaterials andMethods for further details).We found that
LAD2 cells were binding to NK cells and the presence of galectin-9 neu-
tralizing antibody (but not isotype control antibody) abrogated this ef-
fect (Fig. 9, a scheme of the experiment is presented in Supplementary
Fig. 8). These results confirm that galectin-9 produced by LAD2 cells
participates in their interactions with NK cells. Furthermore, abrogation
of the effect by anti-galectin-9 antibodies may indicate that the Tim-3-
galectin-9 interaction is the only pathway through which these cells
could interact. This is most likely a result of IgE sensitization of LAD2
cells which highly increases the presence of galectin-9 on their surface.

We then used K562 chronic myeloid leukemia cells which do not re-
lease detectable amounts of galectin-9 (as confirmed by ELISA). K562
cells were exposed to PMA for 24 h in 96well Maxisorp plates. Medium
was replaced with PMA-free RPMI-1640 medium containing isolated
primary humanNK cells at a ratio of 1 K562:2 NK in the absence or pres-
ence of 5 ng/ml human recombinant galectin-9. Cells were co-incubated
for 16 h and their viability was then assessed using an MTS test. We

found that the presence of NK cells significantly reduced the viability
of K562 cells however, the presence of galectin-9 attenuated K562 kill-
ing effect (Fig. 10A). Viability of NK cells was not affected in any of the
cases (Fig. 10A). Interestingly, the cytotoxic attack by NK cells also led
to a dramatic change in the behavior of K562 cells, causing theirmassive
aggregation. Usingphase contrastmicroscopy,we determined the effect
of galectin-9 on cell aggregation in individual or combined K562 andNK
cell cultures. In the absence of galectin-9, there was clear evidence of
K562 cells aggregating in the presence of NK cells (Fig. 10B). Galectin-
9, in a dose-dependent manner, decreased the aggregation of K562
cells by NK cells, such that no K562 cell aggregation was detectable in
the presence of 5 ng/ml galectin-9 (Fig. 10C). Galectin-9 itself had no
visible effect on either of the two cell types alone. Thus, galectin-9 clear-
ly protects myeloid leukemia cells from being killed by NK cells.

We then investigated the interactions between AML THP-1 cells and
primary human NK cells. THP-1 cells were exposed to 100 nM PMA for
16 h. The medium was then replaced with PMA-free medium contain-
ing NK cells at a ratio of 2 NK cells:1 THP-1 cells and left for 6 h in the
absence or presence of 5 μg/ml galectin-9-neutralizing antibody. Tim-
3 and galectin-9 were then measured in the NK cells by Western blot
analysis, and viability of THP-1 cells, activities of granzyme B, caspase-
3 and galectin-9 release were monitored. We found that THP-1 cell via-
bility was reduced when galectin-9 was neutralized (Fig. 11). This was
in line with increased caspase-3 activity and granzyme B activities.
Galectin-9 releasewas not affected (Fig. 11, galectin-9 bound to neutral-
izing antibody is detectable in our system). We confirmed that resting
NK cells did not produce detectable amounts of galectin-9. However,
this protein on its own, and in the form of unbroken Tim-3-galectin-9
complex, was detectable in NK cells co-cultured with THP-1 cells and
was reduced in the presence of galectin-9 neutralizing antibody. This
suggests that THP-1 cells were the source of galectin-9, which was
most likely bound to Tim-3 on the surface of NK cells, preventing the de-
livery of NK cell-derived granzyme B into THP-1 cells and inhibiting the
caspase-3-dependent apoptotic pathway.

Recently, a possible reciprocal link between levels of sTim-3 and IL-
2, a cytokine, which activates cytotoxic activity of NK cells and T cells,
was reported (Geng et al., 2006). We also found that in the plasma of
healthy donors the levels of sTim-3 were significantly lower compared
to AML patients (Fig. 4) whereas the levels of IL-2 were significantly
higher (Fig. 12A and B). To investigate a possible direct influence of
sTim-3, we exposed Jurkat T cells (resting Jurkat T cells produce detect-
able amounts of IL-2) to increasing concentrations of Tim-3 for 24 h.We
found a striking sTim-3 concentration-dependent and significant reduc-
tion of IL-2 release from Jurkat T cells. This indicates that sTim-3 is capa-
ble of binding a target protein (or a group of target proteins) and
reducing IL-2 production thus preventing induction of NK cell and T
lymphocyte anti-cancer activities.

Taken together, our results demonstrate a pathobiochemical path-
way in AML cells. It is associated with activation of PKCα by LPHN1
(or any other receptors with similar activity) leading to the expression
and exocytosis of sTim-3 and galectin-9, which prevent the activation
of cytotoxic lymphocytes and impair their malignant cell killing activity.

4. Discussion

AML is a malignancy affecting bone marrow and blood and is a se-
vere, and often fatal, systemic disease. AML cells escape host immune
attack involving NK and cytotoxic T cells by impairing their activity
(Golden-Mason et al., 2013; Kikushige et al., 2015; Gonçalves Silva et
al., 2016). However, the biochemical mechanisms underlying the im-
mune escape of malignant white blood cells remain unclear. Recently,
it was shown that AML cells express high levels of the immune receptor
Tim-3 and release galectin-9 which impairs the activity of NK cells and
cytotoxic T cells (Gonçalves Silva et al., 2016). We have also suggested
that Tim-3, as a membrane associated glycoprotein, might act as a traf-
ficker for galectin-9 (Gonçalves Silva et al., 2016). As for all galectins,

Fig. 9.Galectin-9participates in the formation of an “immunological synapse” betweenNK
cells and LAD2cells. Primary humanNK cellswere immobilized on the surface ofMaxisorp
plates. Cells were then co-incubated for 30 min with LAD2 cells with or without 30 min
pre-treatment of LAD2 cells with 5 μg/ml galectin-9 neutralizing antibody (or the same
amount of isotype control antibody). LAD2 cells were then visualized using LI-COR assay
as outlined in Materials and Methods. Images are from one experiment representative of
five which gave similar results. Quantitative data represent mean values ± SEM of five
independent experiments; *p b 0.05; **p b 0.01.
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galectin-9 is synthesized on free ribosomes and since it lacks the signal
domain required for secretion it thus needs a trafficker in order to be re-
leased (Delacour et al., 2009). When on the cell surface, Tim-3 is known
to be shed by ADAM 10/17 proteolytic enzymes thus producing sTim-3,
the function of which remains unknown (Moller-Hackbarth et al.,
2013). We found, that Tim-3 could be shed in its free form as well as
in complex with galectin-9; however, differential shedding is taking
place. The Tim-3 fragment in the complex is about 20 kDa molecular
weight, while sTim-3 is around 33 kDa. SRCD analysis of the complex
suggests that the interaction between Tim-3 and galectin-9 proteins
leads to major conformational change, possibly increasing the ability

of galectin-9 to interact with the target proteins. Since galectin-9 is a
tandem protein containing two domains (Delacour et al., 2009), one of
them might be interacting with Tim-3, while the other one could bind
to a target receptor molecule, for example another molecule of Tim-3
associated with the plasma membrane of the target cell (Nagae et al.,
2006). This may explain the high efficiency of galectin-9 in triggering
Tim-3 onNK cells, which do not express galectin-9 and thus contain un-
occupied Tim-3 on their surface.

Since we can observe the Tim-3-galectin-9 complex on Western
blots following denaturing SDS-gel electrophoresis (Figs. 1, 2 and 4;
~52 kDa soluble form and ~70 kDa cell-derived form), it is likely that

Fig. 10.Galectin-9 protectsmyeloid leukemia K562 cells frombeing killed by primary humanNK cells. (A) K562 cellswere co-cultured for 16 hwith primary humanNK cells (at a ratio of 1
K562:2 NK) in the absence or presence of 5 ng/ml galectin-9. Viability of K562 and NK cells was thenmeasured using anMTS test. Images are from one experiment representative of three
which gave similar results. Quantitative data represent mean values ± SEM of three independent experiments; ***p b 0.001 vs. control. (B) K562 cells were co-cultured for 16 h with
primary human NK cells (at a K562:NK ratio of 1:2) in the presence of different concentrations of galectin-9 (0–5 ng/ml). Cells were imaged using phase-contrast microscopy. The
images are from one representative experiment of six (n = 6), which gave similar results. Scale bar (the same for all images), 50 μm. (C) The NK cell-induced aggregation of K562 cells
was quantified as a function of galectin-9 concentration. Left panel: percent of cells found in aggregates in individual cultures and in co-culture. Right panel: the size of cell aggregates
in individual cultures and in co-culture. The data represent the mean values ± SD of six independent experiments; *, p b 0.05; **, p b 0.01; ****, p b 0.0001.
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the binding between proteins is further strengthened by the interaction
of galectin-9 with Tim-3-associated glycosides. Interestingly, the com-
plex is detectable by Western blot with both anti-Tim-3 and anti-
galectin-9 antibodies. However, when these antibodies are sequentially
applied to the same blot, the second antibody fails to detect the respec-
tive protein in the same band (unless the first antibody is stripped off),
due to steric hindrance. This effect explains why Tim-3 located on the

cell surface and covered by galectin-9 cannot be co-stained by the anti-
body in confocal microscopy co-localization analysis (Fig. 3). Another
point supporting this conclusion is that there was also clear evidence
of co-localization of Tim-3 and galectin-9 in permiabilized THP-1 cells
upon exposure to PMA (Fig. 3, Supplementary Fig. 1).

Previously it was reported that the release of both Tim-3 and
galectin-9 depends on PKCα and proteolysis (Chabot et al., 2002). Our

Fig. 11. Cell-derived galectin-9 attenuates AML cell killing activity of primary human NK cells. THP-1 cells were co-incubated with primary human NK cells (ratio – 1 THP-1:2 NK) for 6 h
followed by detection of THP-1 cell viability by the MTS test, measurement of activities of granzyme B and caspase 3 in THP-1 cell lysates and released galectin-9 (left panel). Galectin-9
levels from NK cells were determined by Western blot (right panel). Images are from one experiment representative of three which gave similar results. Quantitative data show mean
values ± SEM of three independent experiments; *p b 0.05; **p b 0.01; ***p b 0.001 vs control.

Fig. 12. Soluble Tim-3 attenuates IL-2 release. (A and B) IL-2 levels were measured by ELISA in blood serum of healthy donors and AML patients. (C) Jurkat T cells were exposed to the
increasing concentrations of Tim-3 for 24 h followed by detection of secreted IL-2 by ELISA. Data show mean values ± SEM of three independent experiments; *p b 0.05; **p b 0.01.
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results confirmed these findings. PMA treatments induced PKCα activa-
tion, which activated exocytosis of Tim-3 and galectin-9 as well as their
mTOR-dependent production in THP-1 AML cells (Fig. 6).

Interestingly, natural and exogenous ligands of LPHN1, a G-protein
coupled neuronal receptor expressed also in CD34-positive human
stem cells (Supplementary Fig. 3) and AML cells but not healthy white
blood cells, activated the PKCα pathway. They also induced both
mTOR-dependent translation of Tim-3 and galectin-9 as well as their
exocytosis. The effect was observed in THP-1 and primary human AML
blasts. PKCα is known to provoke agglomeration of SNARE complex re-
sponsible for exocytosis (Stockli et al., 2011; Morgan et al., 2005). Since
FLRT3, one of natural ligands of LPHN1, is present in bone marrow (Fig.
7) it might explain how LPHN1 causes PKCα activation. Interestingly,
constitutively active PKCα in malignant primary AML cells correlates
with a very poor prognosis and high mortality rate of patients
(Kurinna et al., 2006). This suggests that AML cells constantly release
high levels of Tim-3 and galectin-9. Bone marrow also expresses other
PKCα-activating proteins. When we exposed THP-1 cells to mouse
bone marrow extracts, galectin-9 release was significantly higher

compared to resting THP-1 cells. FLRT3 neutralizing antibody signifi-
cantly reduced but did not abolish FLRT3 induced PKCα-dependent
galectin-9 release. This suggests that galectin-9 and Tim-3 are synthe-
sized and exocytozed by AML cells in a PKCα and mTOR-dependent
manner, using available plasma membrane-associated PKCα activating
receptors (for example LPHN1) to induce the whole pathway.

Galectin-9 prevents thedelivery of granzymeB into AML cells (this is
a perforin and mannose-6-phosphate receptor-dependent process
(Supplementary Fig. 9)). Inside AML cells granzyme B performs cleav-
age of the protein Bid into tBid, thus inducing mitochondrial dysfunc-
tion and cytochrome C release followed by caspase 3 activation.
Proteolytic activation of caspase 3, in addition to the classic pathway,
might also be directly catalyzed by granzyme B (Lee et al., 2014). Our re-
sults with galectin-9 confirmed this concept (Fig. 11). Recently it was
reported that galectin-9 induces interferon-gamma (IFN-γ) release
from NK cells (Gleason et al., 2012). IFN-γ interacts with AML cells in-
ducing the activity of indoleamine 2,3-dioxygenase (IDO1), an enzyme
which converts L-tryptophan into formyl-L-kynurenine, which is then
converted into L-kynurenine and released (Corm et al., 2009; Folgiero

Fig. 13.AML cell-based pathobiochemical pathway showing LPHN1-induced classic activation of PKCα, which triggers translation of Tim-3 and galectin-9 aswell as their secretionwhich is
required for immune escape. The interaction of FLRT3 located on the surface of endothelial cells (EC)with LPHN1 leads to the activation of PKCα through the classic Gq/PLC/Ca2+ pathway.
Ligand-bound LPHN1 activates Gq, which in then stimulates PLC. This leads to phosphatidyl-inositol-bisphosphate (PIP2) degradation and production of inositol-trisphospate (IP3) and
diacylglycerol (DAG). IP3 interacts with ER-associated IP3 receptor (IP3R) leading to Ca2+ mobilization. PKCα is activated by DAG and Ca2+ activates mTOR translational pathway
through downregulation of TSC1/TSC2. mTOR controls translation of Tim-3 and galectin-9. PKCα also phosphorylates Munc18 exocytosis regulator protein which provokes formation
of SNARE complexes that tether vesicles to the plasma membrane. This pre-activates the release machinery, and elevated cytosolic Ca2+ lead to exocytosis of free and galectin-9-
complexed Tim-3. Both types of Tim-3 are differentially shed from the cell surface by proteolytic enzymes. Soluble Tim-3 prevents IL-2 secretion required for activation of NK cells and
cytotoxic T cells. Galectin-9 impairs AML cell killing activity of NK cells (and other cytotoxic lymphocytes).
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et al., 2015; Mabuchi et al., 2016). L-kynurenine affects the ability of NK
cells to kill AML cells, an effect which was seen in our experiments and
presented in Supplementary Fig. 9. Soluble Tim-3 was shown to
significantly downregulate production of IL-2, a cytokine required for
activation of NK cells and cytotoxic T lymphocytes.

Taken together, our results show that human AML cells possess a se-
cretory pathway which leads to the production and release of sTim-3
and galectin-9. Both proteins prevent the activation of NK cells and im-
pair their AML cell-killing activity. This pathway, which involves the
LPHN1-dependent activation of Tim-3 and galectin-9 production is
summarized in Fig. 13. The described pathway presents both bio-
markers for AML diagnostics and potential targets (both sTim-3 and
galectin-9) for AML immune therapy and thus can be considered as a
fundamental discovery.
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ABSTRACT
High mobility group box 1 (HMGB1) is a non-histone protein localised in the cell nucleus, where it interacts
with DNA and promotes nuclear transcription events. HMGB1 levels are elevated during acute myeloid
leukaemia (AML) progression followed by participation of this protein in triggering signalling events in
target cells as a pro-inflammatory stimulus. This mechanism was hypothesised to be employed as a
survival pathway by malignant blood cells and our aims were therefore to test this hypothesis
experimentally. Here we report that HMGB1 triggers the release of tumour necrosis factor alpha (TNF-a) by
primary human AML cells. TNF-a induces interleukin 1 beta (IL-1b) production by healthy leukocytes,
leading to IL-1b-induced secretion of stem cell factor (SCF) by competent cells (for example endothelial
cells). These results were verified in mouse bone marrow and primary human AML blood plasma samples.
In addition, HMGB1 was found to induce secretion of angiogenic vascular endothelial growth factor
(VEGF) and this process was dependent on the immune receptor Tim-3. We therefore conclude that
HMGB1 is critical for AML progression as a ligand of Tim-3 and other immune receptors thus supporting
survival/proliferation of AML cells and possibly the process of angiogenesis.
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High mobility group box 1 (HMGB1) is a non-histone protein
localised in the nucleus, where it binds DNA in order to pro-
mote nuclear transcription processes.1 In addition, HMGB1
was recently found to function as a damage-associated molec-
ular pattern (DAMP) when released passively from either
dead, dying/injured cells or secreted by immune/cancer cells
in response to endogenous and/or exogenous stimuli, such as
hypoxia, endotoxin etc..2-4 This process is followed by partici-
pation of HMGB1 in triggering signalling events in target
cells.1-4 Therefore, it is often called “alarmin” in order to
reflect its function as a factor secreted by cells affected by a
stressor.1 It has recently been found that HMGB1 levels are
significantly elevated during acute myeloid leukaemia (AML,
blood/bone marrow cancer).5,6 Moreover, AML cells were
shown to express high levels of HMGB1.5,6 Elevated levels of
secreted HMGB1 associated with AML progression are likely
to be caused by a combination of increased expression of this
protein in AML cells and conditions supporting its secretion
such as hypoxia and death of the cells in the tumour microen-
vironment.5-7

Upon release, HMGB1 can interact with several immune
receptors, including Toll-like receptors 2 and 4 (TLRs 2 and
4) as well as receptor of advanced glycation end products
(RAGE).8 Recent evidence has suggested a possible interac-
tion of HMGB1 with the immune receptor Tim-3 (T cell
immunoglobulin and mucin domain 3) which is highly
expressed in human acute myeloid leukaemia (AML) cells.1,2

However, the role of HMGB1 in leukaemia progression
remains unstudied. Interestingly, signalling pathways trig-
gered by TLRs 2/4, RAGE and Tim-3 include activation of the
phosphatidylinositol-3 kinase (PI-3 K)/mammalian target of
rapamycin (mTOR) pathway, which directly controls initia-
tion of translation of proteins crucial for cell survival as well
as cytokines including tumour necrosis factor a (TNF-a), a
pleiotropic inflammatory cytokine participating in a variety of
physiological processes associated with control of host
immune defence and respectively haematopoiesis.9-14 This
pathway also triggers accumulation of hypoxia-inducible fac-
tor-1 a (HIF-1a), an inducible subunit of HIF-1 transcription
complex, which induces glycolysis and angiogenesis on
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genomic level.9,12 However, the effects of HMGB1 on signal-
ling events described above remain hypothetic and are not
comprehensively or conceptually studied yet.

Here we report for the first time that HMGB1 triggers the
release of TNF-a by primary human AML cells independently
of Tim-3. TNF-a induces interleukin 1 beta (IL-1b) production
by healthy leukocytes and subsequent IL-1b-induced secretion
of stem cell factor (SCF) by competent cells (for example endo-
thelial cells). Treatment of mouse bone marrow cells with
HMGB1 led to significant increase in TNF-a, IL-1b and SCF
production. The levels of TNF-a, IL-1b and SCF in blood
plasma of AML patients were also significantly upregulated in
comparison to healthy individuals. SCF, a ligand of the Kit
growth factor receptor is required for survival and proliferation
of AML cells. We also show that HMGB1 induces the secretion
of angiogenic protein vascular endothelial growth factor
(VEGF) and this process is controlled by Tim-3. Synchrotron
radiation circular dichroism (SRCD) spectroscopy confirmed
that HMGB1 can specifically bind Tim-3. We conclude that
HMGB1 as an alarmin participates in AML progression by
interacting with Tim-3 and other immune receptors thus sup-
porting the survival/proliferation of AML cells and possibly the
process of angiogenesis.

Materials and methods

Materials

RPMI-1640 medium, foetal bovine serum, supplements as well
as basic laboratory chemicals were purchased from Sigma (Suf-
folk, UK). MaxisorpTM microtitre plates were obtained from
Nunc (Roskilde, Denmark) and Oxley Hughes Ltd (London,
UK). Mouse monoclonal antibodies directed against HIF-1a,
mTOR and b-actin, as well as rabbit polyclonal antibodies
against phospho-S2448 mTOR, RAGE and HRP-labelled rabbit
anti-mouse secondary antibody were purchased from Abcam
(Cambridge, UK). Antibodies against phospho-S65 and non-
phosphorylated (total) eukaryotic initiation factor 4E binding
protein 1 (eIF4E-BP1) were obtained from Cell Signaling Tech-
nology (Danvers, MA USA). Goat anti-mouse and goat anti-
rabbit fluorescence dye-labelled antibodies were obtained from
LI-COR (Lincoln, Nebraska USA). ELISA-based assay kits for
the detection of TNFa, IL-1b, SCF and VEGF were purchased
from Bio-Techne (R&D Systems, Abingdon, UK). Anti-Tim-3
mouse monoclonal antibody, its single chain variant as well as
human Ig-like V-type domain of Tim-3 (amino acid residues
22–124) and human HMGB1 expressed and purified from E.
coli (see below for more details) were used in our experi-
ments.11,15 All other chemicals purchased were of the highest
grade of purity commercially available.

Cell lines and primary cells

THP-1 human myeloid leukemia monocytes and MCF-7 epi-
thelial breast cancer cells were obtained from the European
Collection of Cell Cultures (Salisbury, UK). Cells were cultured
in RPMI 1640 medium (R8758 – Sigma (Suffolk, UK) with L-
glutamine and sodium bicarbonate, liquid, sterile-filtered, suit-
able for cell culture) supplemented with 10% foetal bovine

serum, penicillin (50 IU/ml) and streptomycin sulphate
(50 mg/ml).

Primary human AML mononuclear blasts (AML-PB001 F,
newly diagnosed/untreated) were purchased from AllCells
(Alameda, CA, USA) and handled in accordance with the man-
ufacturer’s instructions following ethical approval (REC refer-
ence: 16-SS-033).

Bone marrow was isolated from femur bones of six-week-
old C57 BL16 mice (25 § 2.5 g, kindly provided by Dr. Gurprit
Lall, School of Pharmacy, University of Kent) which were used
for the experiments following approval by the Institutional
Animal Welfare and Ethics Review Body. Animals were han-
dled by authorised personnel in accordance with the Declara-
tion of Helsinki protocols. Bone marrow was isolated from
femur bone heads as described before.15,16 Cells were kept in
RPMI 1640 medium supplemented with 10% foetal bovine
serum, penicillin (50 IU/ml) and streptomycin sulphate
(50 mg/ml).

Primary human blood plasma samples

Blood plasma from healthy donors was obtained from buffy coat
blood (which originated from donors undergoing routine blood
donation) provided by the National Health Blood and Transfu-
sion Service (NHSBT, UK) following ethical approval (REC ref-
erence: 16-SS-033). Primary human AML plasma samples were
obtained from the sample bank of University Medical Centre
Hamburg-Eppendorf (Ethik-Kommission der €Arztekammer
Hamburg, reference: PV3469).

HMGB1 purification

HMGB1 was produced and purified from E. Coli Rosetta DE2
competent. Cells were grown at 37�C in LB medium and har-
vested 3 hours after induction with isopropyl b-D-1-thiogalac-
topyranoside (IPTG) at OD600 0.7. The pellet was collected by
centrifugation, re-suspended and sonicated on ice with 5 £ 30
seconds of pulsing and 30 seconds rest (buffer contained
20 mM TrisHCl pH 8; 150 mM NaCl; 10 mM imidazole; 2
Beta-SH and 0.2% Triton X100). Following high-speed centri-
fugation, HMGB1 containing supernatant was subjected to Ni-
affinity and size exclusion chromatography. The protein was
then eluted at a volume consistent with monomeric HMGB1.

After size exclusion HMGB1 was passed through an anion
exchange (Q) column to ensure LPS removal, eluted in sodium
phosphate buffer with 1.5M NaCl and finally dialysed exten-
sively (at least 36 hours) against PBS buffer. Absence of LPS
contamination was confirmed using mammalian cell lines.

HMGB1 protein was prepared for structural studies and
hence highly pure. It was routinely tested for size and degrada-
tion by size exclusion (during purification) and dynamic light
scattering (final product). Sample concentration was deter-
mined by UV spectroscopy. Proper folding was controlled by
NMR and CD spectroscopy (all samples required a CD spec-
trum equivalent to that of the samples characterised with bidi-
mensional 15 N NMR spectroscopy). This protein displayed
activity similar to the human recombinant protein expressed in
HEK293 cells obtained from Sigma (Suffolk, UK, SRP6265, as
verified using THP-1 and primary human AML cells). The
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ability of HMGB1 to interact with TLRs seen in our experi-
ments confirmed similarities in the redox state of preparations
used in our work in comparison to the pro-inflammatory form
of HMGB1 released by dead/dying or stressed cancer/immune
and other cells.

Western blot analysis

Tim-3, HIF-1a, phospho-S65 and total eIF4E-BP1 as well as
RAGE were analysed using Western blot.13,14 b-actin stain-
ing was used to confirm equal protein loading as described
previously. LI-COR goat secondary antibodies (dilution
1:2000), conjugated with fluorescent dyes, were used in
accordance with manufacturer’s protocol to visualise target
proteins (using a LI-COR Odyssey imaging system). West-
ern blot data were quantitatively analysed using Odyssey
software and values were subsequently normalised against
those of b-actin. In order to quantitate levels of mTOR-
dependent phosphorylation of eukaryotic initiation factor 4
E binding protein 1 (eIF4E-BP), we measured phospho-S65-
eIF4E-BP and total quantity of eIF4E-BP on a different
membrane to avoid the influence of possible incomplete
membrane stripping following quantitative analysis. Values
were normalised against those of b-actin for corresponding
membranes. The ratio between normalised phospho-S65-
eIF4E-BP and total eIF4E-BP was calculated in order to
characterise eIF4E-BP phosphorylation levels. The following
equation was implemented:

pS65¡ eIF4E¡BP level D pS65¡ eIF4E¡BP½ �
Actin½ �

� ½eIF4E¡BP total�
Actin½ �

This ratio in control samples was considered as 100%.

Enzyme-linked immunosorbent assays (ELISAs)

Human or mouse TNF-a, IL-1b, SCF as well as human VEGF,
either in cell culture media or human blood plasma were mea-
sured by ELISA using R&D Systems kits according to manufac-
turer’s protocols. Phosphorylation of mTOR was analysed by
ELISA as previously described.13

In cell assays and in cell Westerns

We employed a standard LI-COR in-cell Western (ICW)
assay (methanol was used as permeabilization agent) to
characterise Tim-3 total levels in studied cells. The in-cell
(ICA, also called on-cell) assay was employed to detect
Tim-3 surface presence in the cells. Following washing with
PBS, cells were scanned using a LI-COR Odyssey imaging
system.17

Detection of PI-3K activity

PI-3K activity was measured in cell lysates as described
previously.18 Briefly, cell lysates were incubated with 30 ml

0.1 mg/ml substrate (PI-4,5-diphosphate emulsion) in kinase
assay buffer. The latter was prepared from 20 mM Tris (pH
7.5), 100 mM NaCl, 0.5 mM EDTA, 8 mM MgCl2 and
40 mM ATP in a total volume of 100 ml at 37�C with con-
stant agitation. Reactions were terminated by adding 1 ml of
hexane/isopropanol (13:7, v:v) mixture and 0.2 ml of a mix-
ture of 2 M KCl/HClconc (8:0.25, v:v). After vortexing the
organic phases were washed with HCl (0.5 ml; 0.1 M). This
was followed by detection of phosphate groups using a col-
orimetric assay. The values obtained in the control samples
of each experiment per 1 mg protein were counted as 100%
of the PI-3 K activity. Other values were normalised and
expressed as % control.

Synchrotron radiation circular dichroism (SRCD)
spectroscopy

Human recombinant Tim-3 and HMGB-1, either alone or
in combination, were analysed using SRCD spectroscopy at
beamline B23, Diamond Light Source (Didcot, UK). B23,
equipped with a highly collimated microbeam, allows for
the use of a small aperture long path length microcuvette
which is unattainable with benchtop instruments due to
divergent beams since samples available are of very low
volume and concentrations. SRCD measurements were per-
formed using 0.2 mM of samples in a 1 cm path length cell
of 3 mm aperture diameter and 60 ml capacity using a
Module B instrument with a 1 nm increment, 1 s integra-
tion time, 1.2 nm bandwidth at 23 �C.19-24 Temperature
denaturation measurements were collected over the temper-
atures 20�C – 95�C (in 5�C increments) for HMGB1, Tim-
3 and the 1:1 mixture. The results obtained were processed
using CDApps25 and OriginPro�. For thermal denaturation
measurements, change in CD (mdeg) at a specific wave-
length was plotted against the corresponding temperature
for fitting using the Gibbs-Helmholtz equation derived
from Boltzmann distribution,26,27 sigmoidal two-state dena-
turation curve to a Boltzmann distribution and the expres-
sion modified to include parameters for fitting of thermal
denaturation data for the calculation of the melting tem-
perature (Tm). Titration experiments were conducted as
described for standard far-UV measurements, with the
modification of measurements collected after the addition
of incremental volumes of Tim-3 stock as described previ-
ously.28 The change of CD (mdeg) at single wavelength
was plotted against respective ligand concentration (mM)
using OriginPro� and fitted with the Hill binding29 func-
tion to determine the Kd for binding.

Statistical analysis

Each ELISA and cell experiment was performed at least three
times and statistical analysis when comparing two events at a
time was conducted using a two-tailed Student’s t-test. Multiple
comparisons were performed using an ANOVA test. Post-hoc
Bonferroni correction was applied. Statistical probabilities (p)
were expressed as � where p < 0.05; ��, p < 0.01 and ��� when p
< 0.001.
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Results

HMGB1 induces moderate activation of PI3-K/mTOR
pathway, TNF-a and VEGF secretion in human AML cells

We used monocytic THP-1 human acute myeloid leukaemia
cells which express Tim-3, but keep most of it inside the cell
(Fig. 1 left panel), and primary human AML cells (AML-
PB001F) where most Tim-3 is expressed on the cell surface
(Fig. 1 right panel). Cells were exposed for 4 h to 1 mg/ml
HMGB1 with or without 1 h pre-treatment with single-chain
antibody against Tim-3, which does not display Tim-3 agonis-
tic properties and also prevents the interaction of other ligands

with it. We found that HMGB1 induced activation of PI-3K in
both THP-1 and primary human AML cells. In both cell types
this effect was non-significantly downregulated by the presence
of anti-Tim-3 antibody (Fig. 1). This was consistent with a
moderate activation of mTOR (phosphorylation at S2448) and
increased phosphorylation of mTOR substrate eukaryotic initi-
ation factor 4 E binding protein 1 (eIF4E-BP1). Increased TNF-
a secretion took place in both cases. Neither process observed
was influenced by the presence of anti-Tim-3 antibody, sug-
gesting that the effects observed are Tim-3-independent.

Pre-treatment of THP-1 cells for 1 h with 2 mg/ml neutralis-
ing antibodies directed against TLR2, TLR4 and RAGE

Figure 1. Differential receptors are involved in HMGB1-induced biological responses of human AML cells. Total levels of the immune receptor Tim-3 and its surface pres-
ence were characterised in THP-1 and primary human AML-PB001F cells by in-cell Western (ICW) and in-cell (on-cell) assay (ICA) respectively (see Materials and Methods
for details). Both cell types were exposed to 1 mg/ml HMGB1 for 4 h with or without 1 h pre-treatment with single chain anti-Tim-3 antibody (aTim-3 (-)) followed by
Western blot analysis of phospho-S65 vs total eIF4E-BP1, HIF-1a and RAGE expression as well as by detection of phospho-S2448 mTOR, release of TNF-a and VEGF using
ELISA. PI-3 K activity was monitored by colorimetric assay. Images are from one experiment representative of five which gave similar results. Data is shown as mean values
§ SEM of five independent experiments. � p < 0.05; ��, p < 0.01 and ��� when p < 0.001 vs control; a p < 0.05; aa, p < 0.01 vs HMGB1.
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followed by 4 h of exposure to 1 mg/ml HMGB1 showed that
TLRs 2 and 4, but not RAGE, are involved in HMGB1-induced
TNF-a secretion (Supplementary Fig. 1). However, it does not
rule out the fact that during long-term exposure RAGE might
contribute to HMGB1-induced intracellular TNF-a expression
which can be upregulated by RAGE ligands30

Consequently, we detected the activation of HIF-1a accu-
mulation in THP-1 cells but not in AML cells which had
high background levels of HIF-1a and thus probably did
not respond to HMGB1 treatment (Fig. 1). In both cell
types, however, we observed a significant increase in VEGF
secretion (Fig. 1) which was significantly reduced (but not
HIF-1a accumulation as seen from either Western blot data
or intracellular VEGF levels (this was verified by ELISA
performed on the cell lysates – data not shown)) by the
presence of anti-Tim-3 antibody. The level of downregula-
tion was proportional to the amount of Tim-3 present on
the surface of each cell type. THP-1 and primary AML cells
express TLRs 2 and 4. They also express high levels of
RAGE, as verified by Western blot analysis (Fig. 1), which
suggests that HMGB1 induces activation of the PI-3K/
mTOR pathway and HIF-1a accumulation as well as TNF-
a secretion through classic immune receptors like TLRs2/4,
and RAGE, while secretion of VEGF is a Tim-3-dependent
process.

Characterisation of HMGB1-Tim-3 interactions in vitro

We then sought to obtain confirmation of direct interac-
tions between HMGB1 and Tim-3 using the recombinant,
purified Ig-like V-type domain of human Tim-3 (residues
22–124) and human HMGB1. We employed SRCD spec-
troscopy for both qualitative and quantitative binding
assays. Titration of 200 nM HMGB1 with increasing
amounts of Tim-3 (Fig. 2A) indicated a high nanomolar
binding affinity (Kd D 10¡7 M). The SRCD spectrum of a
1:1 HMGB1-Tim-3 complex appeared different from the
sum of the SRCD spectra of the individual components
(Fig. 2B), suggesting the presence of conformational rear-
rangements upon formation of the complex. Far UV ther-
mal denaturation studies were also performed on the

complex, further supporting the above data (Supplementary
Figs. 2 and 3).

HMGB1 induces TNF-a secretion by human AML leading
to upregulation of SCF production

Since it was obvious that both the AML cell line (THP-1) and
primary AML cells secreted TNF-a in response to stimulation
with HMGB1, we studied the effects of released TNF-a on the
production of IL-1b by primary healthy human leukocytes
(PHL). Cell culture medium obtained after stimulation of
THP-1 cells with 1 mg/ml HMGB1 was used to treat primary
healthy leukocytes for 4 h with or without 1 h pre-treatment
with 2 mg/ml TNF-a-neutralising antibody. We found that in
the absence of TNF-a-neutralising antibody, PHL released IL-
1b, while in the presence of TNF-a-neutralising antibody PHL
did not release detectable amounts of IL-1b. Medium contain-
ing IL-1b was used to culture MCF-7 breast cancer epithelial
cells (these cells express IL-1 receptor type 1 and are capable of
releasing stem cell factor (SCF)) for 24 h in the absence or pres-
ence of 2 mg/ml of IL-1b-neutralising antibody. We found that,
in the presence of IL-1b-neutralising antibody, MCF-7 did not
release detectable amounts of SCF, while in the absence of it
SCF release was clearly detectable. These results (all shown in
Fig. 3A) suggest that HMGB1 induces the release of TNF-a by
AML cells. TNF-a induces IL-1b secretion by PHL. Released
IL-1b stimulates the production of SCF by endothelial/epithe-
lial cells. SCF is required for proliferation of AML cells and
thus supports leukaemia progression.

We sought to obtain confirmation of this biological test
using mouse bone marrow cells ex vivo. Mouse bone marrow
cells were exposed to 1 mg/ml HMGB1 for 24 h. We observed
that the levels of secreted TNF-a, IL-1b and SCF were signifi-
cantly increased compared to non-treated bone marrow cells
(Fig. 3B) and that the ratio between these cytokines was similar
to that observed in the biological test shown in Fig. 3A.

We then measured the levels of TNF-a, IL-1b and SCF in
the blood plasma of 10 healthy human donors and 45 AML
patients. We found that the levels of all three factors were sig-
nificantly increased (Fig. 3C – I). There was a clear evidence of
correlation between IL-1b vs TNF-a, SCF vs IL-1b and SCF vs

Figure 2. Interaction of HMGB1 and the immune receptor Tim-3. Interaction of HMGB1 protein with Tim-3 was analysed using SRCD spectroscopy-based titration which
was conducted in the far UV region using 0.2 mM HMGB1 and increasing stoichiometric concentrations of Tim-3 (A). Changes in CD signal monitored at 222 nm were plot-
ted against Tim 3 concentration using Hill function. Qualitative binding was verified by analysis of interactions of equimolar concentrations of Tim-3 and HMGB1 using
SRCD spectroscopy (B).
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TNF-a (Fig. 3C and Supplementary Fig. 4) in the blood plasma
of both healthy donors and AML patients which contained
detectable amounts of all the studied cytokines/SCF suggesting
that there is a link between these three factors regardless of the
presence of HMGB1. But the increase in all three factors sug-
gests that HMGB1 activates this intercellular cascade in order
to increase the levels of secreted SCF thus supporting leukaemia
progression.

Discussion

HMGB1 is an “alarmin” which can be secreted by stressed and
dying cells as well as cancer and immune cells, and thus was
suggested to play a role in leukaemia progression.1-7 Recent evi-
dence demonstrated that HMGB1 can also act as a ligand of the
immune receptor Tim-3 which is highly expressed on the sur-
face of human AML cells.1,2 However, the signalling activity of
HMGB1 in AML cells has not been elucidated and was thus the
main aim of our work.

In both, a human AML cell line (THP-1 cells) and primary
AML cells (AML-PB001F) we demonstrated that HMGB1
upregulates the activity of the PI-3 K/mTOR pathway, thus
leading to increased TNF-a secretion and accumulation of
HIF-1a as well as VEGF release (Fig. 1). However, except
VEGF secretion (not HIF-1a-dependent expression), these
effects were not Tim-3-mediated since Tim-3 neutralising
single-chain antibody did not affect any of the processes
described above (except for VEGF release). Importantly,
non-differentiated THP-1 cells express moderate levels of
Tim-3 on their surface – this process has to be induced by

activation of PKCa (for example PMA or latrophilin 1
ligands).15 Primary AML cells which use Tim-3/galectin-9
pathway in order to escape immune attack express much
higher levels of Tim-3 protein on their surface. This differ-
ence was proportional to that in HMGB1-induced VEGF
release in THP-1 and primary AML cells. Furthermore, neu-
tralisation of Tim-3 led to attenuation of HMGB1-induced
VEGF secretion in both cases suggesting that this is a Tim-3-
mediated process.

Highly sensitive SRCD spectroscopic analysis of HMGB1-
Tim-3 interactions confirmed that these two proteins interact
with each other specifically, but the apparent affinity was
moderately high (Kd D 10¡7 M). This affinity, however, can
be increased by glycosides which normally bind to Tim-3 (the
protein used in the studies was sugar-free). All these results
suggest that this interaction is probably rather more secretory
than a signal transduction event per se. Interestingly, the for-
mation of the protein complex was accompanied by an
increase in a-helical content at the expense of the b-strand
presumably arising mainly from the Tim-3 protein. Biological
tests demonstrated that TNF-a released from primary human
AML cells in an HMGB1-dependent manner is capable of
inducing IL-1b secretion by primary human healthy leuko-
cytes. This is in line with recent observations suggesting upre-
gulation of both TNF-a and IL-1b secretion in response to
stimulation with HMGB1.5,6 This reaction is a very important
step in AML progression since IL-1b interacts with IL-1
receptor type I and induces production and secretion of SCF
required for proliferation of AML cells. Human AML cells
express high levels of Kit receptor, which recognises SCF, and

Figure 3. HMGB1 induces an intercellular signalling cascade leading to SCF secretion. (A) Primary human AML cells (AML-PB-001F) were exposed for 4 h to HMGB1 fol-
lowed by collection of the culture medium (detection of TNF-a was performed in this medium using ELISA), which was used to culture primary human healthy leukocytes
for 4 h in the absence or presence of TNF-a-neutralising antibody. Medium was collected (levels of IL-1b were measured by ELISA) and used to culture MCF-7 breast can-
cer epithelial cells for 4 h in the absence or presence of IL-1b-neutralising antibody. Following this exposure, medium was collected and SCF was measured in it by ELISA.
(B) Primary mouse bone marrow cells (106 cells per 3 ml medium) were exposed for 24 h to 1 mg/ml HMGB1 followed by detection of TNF-a, IL-1b and SCF by ELISA.
(C – I). Levels of TNF-a, IL-1b and SCF were measured in the blood plasma of healthy donors and AML patients by ELISA. Mean values§ SEM are presented as well as lev-
els of each protein in blood plasma of each analysed donor/patient. �p < 0.05; ��p < 0.01 vs control.
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this haematopoietic factor thus becomes highly oncogenic
since AML cells are capable of inducing SCF production by
healthy cells. The same effect was seen in primary mouse
bone marrow cells. When exposed to HMGB1, levels of TNF-
a, IL-1b and SCF increased suggesting that HMGB1 can, in
principle, induce this effect in bone marrow too. However,
production of HMGB1 is not observed in healthy bone mar-
row1,2 since there are not enough stressed/dying or injured
cells in order to produce it (in our samples over 95% of cells
were viable as determined by trypan blue exclusion, data not
shown). However, in leukaemic bone marrow this process is
likely to take place due to lack of oxygen and increased
HMGB1 expression in transformed cells.

Finally, we found that in blood plasma of AML patients, the
levels of TNF-a, IL-1b and SCF were significantly higher com-
pared to blood plasma from healthy donors.

We therefore concluded that in human bone marrow
affected by AML, and respectively, by hypoxic conditions, cells
release HMGB1 which induces TNF-a production and subse-
quent secretion of IL-1b which stimulates SCF production/
secretion by endothelial cells. This SCF is used to further stimu-
late the survival/proliferation of AML cells. While these pro-
cesses are Tim-3-independent, HMGB-1 interacts with Tim-3
and induces VEGF secretion, which is required to induce
angiogenesis in bone marrow so that hypoxic conditions caused
by increasing AML cell numbers can be relieved. This mecha-
nism is summarised in the Fig. 4 (a more detailed scheme illus-
trating the possible interactions in the bone marrow is shown
in Supplementary Fig. 5).

HMGB1 has already been considered as a possible therapeu-
tic target for leukaemia treatment.7 Furthermore, targeting
HMGB1 has recently been shown to increase drug sensitivity in
AML.30 Our findings demonstrate additional insights that
HMGB1 could be considered as a possible therapeutic target in
AML and further confirm the efficiency of targeting Tim-3
(here to specifically block AML-induced angiogenesis) in anti-
AML therapy.
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CORRESPONDENCE

Cortisol facilitates the immune escape of human acute myeloid
leukemia cells by inducing latrophilin 1 expression
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Dear Editor,
The progression of acute myeloid leukemia (AML)—the most

severe blood/bone marrow cancer—is determined by the ability
of malignant cells to escape host immune surveillance. However,
the systemic regulatory mechanisms underlying this phenomenon
remain largely unknown. In this study, we discovered a funda-
mental systemic biochemical strategy that allows AML cells to
employ physiological systems within the body to survive and
escape immune attack. We found that AML cells use a crucial
human adrenal cortex hormone (cortisol) to induce the expression
of neuronal receptor latrophilin 1 (LPHN1), which facilitates
exocytosis. This receptor interacts with the blood plasma protein
fibronectin leucine rich transmembrane protein 3 (FLRT3) to cause
secretion of the immune suppressor galectin-9, which impairs the
anticancer activities of cytotoxic lymphoid cells.
AML is a cancer of the blood and bone marrow that originates

from self-renewing malignant immature myeloid cells and rapidly
progresses into a systemic, and very often fatal, malignancy.1 AML
cells employ physiological systems in the body to produce factors
required for proliferation/disease progression.2,3 This includes the
hijacking of stem cell factor (SCF), a major hematopoietic growth
factor that controls AML progression and thus can become highly
oncogenic.2,3 The expression and release of SCF can be triggered
by AML cells via cytokines (e.g., interleukin-1β).2 Recent evidence
clearly demonstrated that AML cells are also capable of impairing
the activities of cytotoxic lymphoid cells (e.g., natural killer (NK)
cells and cytotoxic T cells).4 One of the biochemical mechanisms
underlying this phenomenon lies in the ability of AML cells to
secrete the protein galectin-9. This tandem-type galectin binds the
immune receptor Tim-3 and induces a variety of intracellular and
cell-to-cell signaling events leading to the inactivation of NK cells,
as well as the death of cytotoxic T cells.4,5 We recently reported
that the process of galectin-9 secretion in AML cells is stimulated
by the unique G protein-coupled receptor LPHN1, which normally
functions in neurons to facilitate exocytosis.4,6 LPHN1 is also found
in hematopoietic stem cells (HSCs), but its expression disappears at
the early stages of their maturation.4,7 However, upon malignant
transformation, AML cells preserve their abilities to express LPHN1
and to produce high levels of galectin-9 and Tim-3, in which the
latter is involved in trafficking galectin-9 during the secretion
process (HSCs express neither galectin-9 nor Tim-34).
It is currently unknown which molecular mechanisms trigger

elevated levels of LPHN1 expression in primary human AML cells,

and in general, the mechanisms of upregulation of LPHN1
expression at the genomic level remain unclear. It is also unknown
whether FLRT3, a natural LPHN1 ligand,4,8 is present in human
blood plasma and in other tissues associated with AML.
Unraveling these mechanisms is crucial to understanding the
pathways that control the ability of AML cells to protect
themselves against cytotoxic lymphoid cells and, thus, was the
aim of the present study.

RESULTS AND DISCUSSION
To investigate the effects of cortisol on LPHN1 transcription, we
exposed primary and THP-1 human AML cells, primary human
HSCs and primary healthy human leukocytes to 1 µM cortisol for
24 h and subjected to cells to quantitative real-time PCR to
analyze LPHN1 mRNA levels. We found that all the tested cell
types, except primary healthy leukocytes, transcribed detectable
amounts of LPHN1 mRNA, and, in all these cases, the levels were
significantly upregulated by treatment with cortisol (Fig. 1a). In
both THP-1 and primary human AML cells, LPHN1 protein levels
were also clearly upregulated (Fig. 1b, c). In contrast, primary
human healthy leukocytes did not express detectable amounts of
LPHN1 protein, and this was not altered by the effects of cortisol
(Fig. 1d). Comparative analysis of LPHN1 protein expression in
primary human AML cells, THP-1 cells, and primary human healthy
leukocytes is shown in Supplementary figure 1.
Cortisol treatments did not upregulate galectin-9 secretion in

any of these cell types (Fig. 1b–d), suggesting that LPHN1 needs to
be activated by a ligand to induce galectin-9 release.
Analysis of blood plasma levels of cortisol in AML patients vs.

those in healthy donors (samples were collected at the same time
of the day to avoid the influence of circadian dynamics)
demonstrated that the cortisol levels were significantly higher in
the blood plasma of AML patients than in healthy donors (Fig. 1e).
Galectin-9 levels were also substantially higher in AML patients
(Fig. 1f), which is in line with our previous observations.4

Furthermore, there was no correlation between cortisol and
galectin-9 levels in the blood plasma of healthy donors, while in
AML patients, there was a clear correlation (Fig. 1g), suggesting
that galectin-9 secretion might be linked to LPHN1 expression in
this circumstance.
If LPHN1 is expressed on the surface of blood cells, it can also be

shed by proteolysis and therefore be present in the plasma.

Received: 18 May 2018 Accepted: 22 May 2018

1Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, UK; 2Beamline B23, Diamond Light Source, Didcot, UK; 3Department of Oncology,
Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg,
Germany and 4Department of Medicine, Dermatology and Allergology, University of Oldenburg, Oldenburg, Germany
Correspondence: Vadim V. Sumbayev (V.Sumbayev@kent.ac.uk)

www.nature.com/cmiCellular & Molecular Immunology

© CSI and USTC 2018

http://crossmark.crossref.org/dialog/?doi=10.1038/s41423-018-0053-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41423-018-0053-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41423-018-0053-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41423-018-0053-8&domain=pdf
mailto:V.Sumbayev@kent.ac.uk
www.nature.com/cmi


LPHN1 in blood plasma samples from AML patients was
immunoprecipitated, extracted, and subjected to Western blot
analysis using several LPHN1 antibodies. A clear fragment was
detectable at ∼67–68 kDa, and smaller fragments were detectable
as well, but only in plasma from AML patients, while in the blood
plasma from healthy donors, there was no evidence of the
presence of LPHN1 fragments (Fig. 1h). These fragments were also
detectable by ELISA (Fig. 1i, see Materials and Methods for
description of the ELISA format).
As reported before,4 we observed that exposure of THP-1 AML

cells to 10 nM FLRT3 for 16 h resulted in a significant increase in
galectin-9 secretion (Fig. 2a). This effect was not detectable in
primary healthy human leukocytes (Fig. 2a). Importantly, 1 h pre-
exposure of THP-1 cells to rabbit polyclonal antibody recognizing
LPHN1 (clone name RL19) prior to the 16-h treatment with 10 nM
FLRT3 attenuated FLRT3-induced galectin-9 release, confirming
the involvement of LPHN1 in this process (Fig. 2a). The antibody
employed specifically recognized target molecules on the surface
of THP-1 cells (Supplementary figure 2). We used the mouse
neuroblastoma cell line NB2A, which does not express LPHN1,10 as

a negative control and measured the interaction of the antibody
with the cell surface using a Li-Cor on-cell assay as described in
the Materials and Methods (please see supplementary informa-
tion). Exposure of THP-1 cells to 1 µg/ml RL1 for 16 h did not affect
galectin-9 secretion levels (data not shown), suggesting that this
antibody does not exert an LPHN1 agonistic effect.
Interestingly, we found that blood plasma from both healthy

donors and AML patients contains approximately equal amounts
of secreted FLRT3 (most likely by proteolytic shedding) with a
molecular weight of approximately 55 kDa (which corresponds to
the molecular weight of FLRT3 shed from the cell surface by
proteinases11). Another specific band was observed at ∼27–28
kDa, which most likely corresponds to a smaller cleavage fragment
of the FLRT3 extracellular domain (Fig. 2b). The amounts of this
smaller fragment were also equal in blood plasma from healthy
donors and AML patients (Fig. 2b). To explore which blood
plasma-based ligands can induce galectin-9 secretion in AML cells,
we cultured THP-1 cells in RPMI 1640 medium containing
antibiotics (as outlined in Materials and Methods—see supple-
mentary information) and replacing the 10% fetal bovine serum

Fig. 1 Cortisol induces LPHN1 expression in human AML cells and in hematopoietic stem cells but not in primary healthy human leukocytes.
Primary human AML cells, THP-1 cells, and hematopoietic stem cells, as well as primary healthy leukocytes were exposed to 1 µM cortisol for
24 h followed by analysis of LPHN1 gene transcription via quantitative real-time PCR (a) and Western blot analysis (b primary AML cells,
(c) THP-1 cells, (d) PHL). For PHL, lysates from LPHN1-overexpressing NB2A cells were used as a positive control. ELISA was used to measure
secreted galectin-9 levels. Blood plasma from 10 healthy donors and 10 AML patients was collected at the same time of the day to ensure
comparability of the cortisol levels. Cortisol (e) and galectin-9 (f) levels were measured by ELISA, and the correlation between the levels of
these two proteins was analyzed (g). Soluble LPHN1 fragments were immunoprecipitated and detected by Western blot (h) and ELISA (i), as
outlined in the Materials and Methods section. Images are from one experiment but are representative of 4–6 replicates, all of which showed
similar results. Data represent the mean values ± SEM of 6–10 independent experiments.; *p < 0.05; **p < 0.01; ***p < 0.01 vs. control
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(FBS) with blood plasma from either healthy donors or AML
patients. Cells were incubated for 16 h with or without a 30-min
preincubation with anti-FLRT3 antibody to neutralize FLRT3
activity. Galectin-9 secretion levels were significantly higher in
the presence of either sources of human blood plasma than in the
presence of FBS (negative control). Anti-FLRT3 antibody attenu-
ated galectin-9 secretion (Fig. 2c). The binding of LPHN1 and
FLRT3 was further confirmed using SRCD spectroscopy. We found
that the two proteins interact with each other with high affinity
such that a conformational change is induced in both proteins, as
seen from far UV synchrotron radiation circular dichroism (SRCD)
spectra (Fig. 2d). This is further confirmation of the high-affinity
interaction of LPHN1 and FLRT3 observed in previous studies8

using different techniques.
Taken together, our results demonstrate, for the first time, that

cortisol upregulates LPHN1 expression at the transcriptional level,
thus stimulating its translation in human AML cells. AML leads to
decreased blood plasma glucose levels,5 which normally leads to
upregulation of the secretion of corticotropin-releasing hormone
(CTRH) from the hypothalamus.12 CTRH induces the secretion of
adrenocorticotropic hormone (ACTH) from the pituitary gland.12

ACTH upregulates cortisol production in the adrenal cortex.12

Cortisol is then employed by AML cells. In healthy human
leukocytes, cortisol is not capable of inducing LPHN1 transcrip-
tion/translation, possibly because of gene repression. Interaction
of AML cell-derived LPHN1 with released FLRT3 available in blood
plasma facilitates the secretion of galectin-9. The latter protects
AML cells against immune attack, which could otherwise be
performed by NK cells or cytotoxic T cells (Supplementary figure 3).
Importantly, LPHN1 fragments are present in the blood plasma
from AML patients but not from healthy donors. These fragments
were detectable by both Western blot analysis and ELISA, which
indicates the possibility of detecting these fragments for a rapid
AML diagnosis, although differential verification tests have yet to
be performed. Our results suggest a fundamentally novel
mechanism used by AML cells to progress the disease. They use
a common endogenous human hormone (cortisol) to induce
LPHN1 expression by employing a widely available ligand (FLRT3,

which is always present in blood plasma) to escape host immune
surveillance. Thus, AML cells engage crucial functional systems of
the human body to support their survival and attenuate the
anticancer activities of cytotoxic lymphoid cells. Our work
indicates that galectin-9 and secreted FLRT3 are the most
promising targets for anti-AML immune therapy.
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The Tim-3-galectin-9 secretory pathway is known to protect various types of cancer

cells against host immune surveillance. We found that pharmacologically induced

mitochondrial dysfunction leads to a reduced galectin-9 expression/exocytosis in human

colorectal cancer cells and re-distribution of this protein (the effect described for various

cellular proteins) into mitochondria.

Keywords: galectin-9, Tim-3, immune surveillance, mitochondria, colorectal cancer

RESULTS

It has recently been discovered that the immune receptor Tim-3 (T cell immunoglobulin andmucin
domain-containing protein 3) and it’s ligand galectin-9 determines the capability of various types
of malignant cells [e.g., acute myeloid leukemia (AML), colorectal cancer] to escape host immune
surveillance (Kang et al., 2015; Gonçalves Silva et al., 2017; Sakhnevych et al., 2018; Yasinska et al.,
2018b). Also, some of the galectin family members (for example galectin-3) were found to be able
to protect AML and colorectal cancer cells against apoptosis through mitochondrial stabilization
in a B cell lymphoma protein (Bcl) 2-dependent manner (Lee et al., 2013; Ruvolo, 2016). We asked
whether galectin-9 has the same intracellular anti-apoptotic activity in addition to its extracellular
immunosuppressive role. We used a pharmacological inhibitor 5-[(4-bromophenyl)methylene]-
a-(1-methylethyl)-4-oxo-2-thioxo-3-thiazolidineacetic acid (BH3I-1, Figure 1A), a synthetic cell
permeable Bcl-XL antagonist, which induces apoptosis via inhibition of interactions between the
BH3 domain and Bcl-XL thus defunctionalyzing mitochondria. We found that BH3I-1 was capable
of inducing apoptosis in Colo 205 colorectal adenocarcinoma cells of epithelial origin (based
on increased caspase-3 activity and decreased viability of the cells, Figure 1A). Silencing either
galectin-9 or its receptor and possible trafficker Tim-3 did not affect the pro-apoptotic activity
of BH3I-1 suggesting that galectin-9 is unlikely to display anti-apoptotic activity in this case.
Interestingly, the action of BH3I-1 did not affect the activity of mammalian target of rapamycin
(mTOR) translational pathway as seen from its capability to phosphorylate eukaryotic initiation
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FIGURE 1 | Pro-apoptotic defunctionalization of mitochondria reduces galectin-9 expression and leads to its redistribution in human Colo 205 colorectal

adenocarcinoma cells. Colo 205 cells were exposed to 100µM BH3I-1 for 24 h followed by (A) detection of cell viability using an MTS test and colorimetric assay of

caspase-3 activity. Cell viability was also tested for normal and Tim-3 or galectin-9 knockdown Colo 205 cells. (B) Following 24 h of exposure to BH3I-1

S65-phosphorylation levels of eIF4E-BP were analyzed by Western blot. (C) Surface presence and total cellular levels of Tim-3 and galectin-9 were analyzed in Colo

205 cells using FACS. (D) Secreted levels of galectin-9 were analyzed in Colo 205 cells following 24 h of exposure to BH3I-1 by ELISA. (E) Surface levels of galectin-9

in non-treated and BH3I-1-stimulated Colo 205 cells were compared using an on-cell assay. (F) The presence of Tim-3-galectin-9 complex in Colo 205 cells was

confirmed using Western blot analysis (bands were appearing at around 70 KDa, better detectable when temperature denaturation is not applied). THP-1 cells were

used as a positive and K562 as a negative control. (G) Levels of Tim-3 and galectin-9 were analyzed in Colo 205 lysates following 24 h of exposure to BH3I-1 by

Western blot. (H) Mitochondrial extracts were obtained from non-treated and BH3I-1-stimulated Colo 205 cells and subjected to Western blot analysis to detect

Tim-3 and galectin-9. Total protein levels were measured using a Bradford assay and equal protein amounts were loaded onto the gels. (I) Galectin-9 mRNA levels

were analyzed in non-treated Colo 205 cells and those exposed to BH3I-1 using qRT-PCR. In the scheme galectin-9 is abbreviated as G9. Quantitative results are

shown as mean values (crucial mean values are written inside respective bars) ± SEM of 3–6 independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001 vs.

control. The scheme in the centre of the figure is based on our work on Tim-3-galectin-9 secretory pathway (Gonçalves Silva et al., 2017).

factor-4E-binding protein (eIF4E-BP, Figure 1B). Obviously, one
could suggest that Colo 205 cells accumulate galectin-9 on their
surface and inside the cells based on FACS analysis (Figure 1C).
Reduced levels of surface-based Tim-3might indicate its masking
by galectin-9 (Yasinska et al., 2018a). BH3I-1 does not affect

the ability of Colo 205 cells to secrete galectin-9 (Figure 1D)
but significantly reduces its surface presence (Figure 1E) as
measured by on-cell assay. Colo 205 cells accumulate the
Tim-3-galectin-9 complex (Figure 1F) at a level comparable to
THP-1 AML cells (K562 chronic ML cells expressing traces
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of galectin-9 were used as a negative control). Both proteins
are also clearly detectable in Colo 205 cells by Western blot
(Figure 1G) and treatment with BH3I-1 reduces intracellular
levels of galectin-9. Importantly, Western blot analysis of Colo
205 mitochondrial extracts showed that the Tim-3-galectin-9
complex is accumulated in mitochondria upon stimulation with
BH3I-1 (Figure 1H). The intracellular levels of galectin-9 mRNA
were significantly reduced upon stimulation with BH3I-1, as
detected by quantitative real-time PCR (qRT-PCR, Figure 1I).

Interestingly, the ability of Colo 205 cells to secrete galectin-
9 is lower compared to THP-1 AML cells and the levels
of secretion in both cell types are proportional to cellular
Tim-3 levels (Supplementary Figure 1). This further supports
conclusion regarding the involvement of Tim-3 in galectin-9
secretion (Gonçalves Silva et al., 2017).

We have also investigated two other types of epithelial
cells—non-malignant human kidney RC-124 and malignant
human HepG2 hepatoma cells. Both cell types have
abundant mitochondria, however they are often [especially
non-malignant, like RC-124—confirmed by a direct
chemical measurement as described of the drug-associated
bromine (Sollo et al., 1971) uptake in these cells, data
not shown] less permeable for inhibitors of this type
compared to colorectal cancer and AML cells. Therefore,
6 h of exposure to 1mM H2O2 was used in order to
defunctionalize mitochondria (Nicholas et al., 2011). We
found that galectin-9 levels were significantly reduced in
both cell types but the Tim-3-galectin-9 complex was only
accumulated in the mitochondria of HepG2 and not RC-124
cells (Supplementary Figure 2).

MATERIALS AND METHODS

Commercially available Colo 205, RC-124, HepG2, THP-1,
and K562, accompanied by authentication certificates, were
used in this study. Mitochondria isolation, Western blot,
on-cell assays, qRT-PCR, ELISA, and FACS analysis were
performed as described before (Nicholas et al., 2011; Gonçalves
Silva et al., 2016, 2017; Yasinska et al., 2018a). Detailed
description of materials and methods used is provided in
Supplementary Information.

DISCUSSION

Our results indicate that colorectal cancer cells operate the
Tim-3-galectin-9 secretory pathway, where Tim-3 acts as
a galectin-9 binding partner and possible trafficker. Pro-
apoptotic mitochondrial dysfunction leads to a decreased
transcription of galectin-9 mRNA leading to its reduced
translation. However, exocytosis of galectin-9 is affected by
mitochondrial defunctionalization leading to a re-distribution of
the Tim-3-galectin-9 complex into mitochondria where galectin-
9 could possibly interact with mitochondrial glycoproteins.
The physiological relevance of this process is unclear but
may well be a part of the regulated cell suicide programme
which might involve transfer of galectin-9 into mitochondria

so that it can’t be involved in protection of a dying cell
thus allowing its smooth elimination. Our further studies
indicate that this phenomenon might be applicable mainly to
malignant epithelial cells (Figure 1, Supplementary Figure 2).
Importantly, targeted defunctionalization of mitochondria
in malignant cells may be a novel strategy for anti-cancer
immunotherapy since it reduces cell surface presence of
galectin-9 capable of suppressing anti-cancer activity of
cytotoxic lymphoid cells.

AUTHOR CONTRIBUTIONS

SS performed majority of the experiments reported in the
Figure 1 and significant number of experiments reported in
Supplementary Figures 1, 2, analyzed the data and contributed
to manuscript writing. IY performed analysis of Tim-3-galectin-
9 interactions and significant amount of experiments reported
in Supplementary Figure 2, contributed to data analysis and
manuscript writing. EF-K contributed to study design, performed
FACS analysis, contributed to data analysis, and manuscript
writing. VS designed the study, supervised the whole project, put
the data together, wrote the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphar.
2019.00342/full#supplementary-material

REFERENCES

Gonçalves Silva, I., Ruegg, L., Gibbs, B. F., Bardelli, M., Fruewirth, A.,

Varani, L., et al. (2016). The immune receptor Tim-3 acts as a trafficker

in a Tim-3/galectin-9 autocrine loop in human myeloid leukaemia cells.

Oncoimmunology 5:e1195535. doi: 10.1080/2162402X.2016.1195535

Gonçalves Silva, I., Yasinska, I. M., Sakhnevych, S. S., Fiedler, W., Wellbrock, J.,

Bardelli, M., et al. (2017). The Tim-3-galectin-9 secretory pathway is involved

in the immune escape of human acute myeloid leukemia cells. EBio Med. 22,

44–57. doi: 10.1016/j.ebiom.2017.07.018

Kang, C.W., Dutta, A., Chang, L. Y., Mahalingam, J., Lin, Y. C., Chiang, J. M., et al.

(2015). Apoptosis of tumor infiltrating effector TIM-3+CD8+ T cells in colon

cancer. Sci. Rep. 5:15659. doi: 10.1038/srep15659

Lee, Y. K., Lin, T. H., Chang, C. F., and Lo, Y. L. (2013). Galectin-3 silencing

inhibits epirubicin-induced ATP binding cassette transporters and activates the

mitochondrial apoptosis pathway via beta-catenin/GSK-3beta modulation in

colorectal carcinoma. PLoS ONE 8:e82478. doi: 10.1371/journal.pone.0082478

Nicholas, S. A., Coughlan, K., Yasinska, I., Lall, G. S., Gibbs, B. F., Calzolai,

L., et al. (2011). Dysfunctional mitochondria contain endogenous high-

affinity human Toll-like receptor 4 (TLR4) ligands and induce TLR4-

mediated inflammatory reactions. Int. J. Biochem. Cell Biol. 43, 674–681.

doi: 10.1016/j.biocel.2011.01.012

Ruvolo, P. P. (2016). Galectin 3 as a guardian of the tumor microenvironment.

Biochim. Biophys. Acta 1863, 427–437. doi: 10.1016/j.bbamcr.2015.08.008

Sakhnevych, S. S., Yasinska, I. M., Bratt, A. M., Benlaouer, O., Gonçalves Silva,

I., Hussain, R., et al. (2018). Cortisol facilitates the immune escape of human

Frontiers in Pharmacology | www.frontiersin.org 3 April 2019 | Volume 10 | Article 342

https://www.frontiersin.org/articles/10.3389/fphar.2019.00342/full#supplementary-material
https://doi.org/10.1080/2162402X.2016.1195535
https://doi.org/10.1016/j.ebiom.2017.07.018
https://doi.org/10.1038/srep15659
https://doi.org/10.1371/journal.pone.0082478
https://doi.org/10.1016/j.biocel.2011.01.012
https://doi.org/10.1016/j.bbamcr.2015.08.008
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Sakhnevych et al. Defunctionalization of Mitochondria Downregulates the Tim-3-Galectin-9 Pathway

acute myeloid leukemia cells by inducing latrophilin 1 expression. Cell. Mol.

Immunol. 15, 994–997. doi: 10.1038/s41423-018-0053-8

Sollo, F. W., Larson, T. E., and McGurk, F. F. (1971). Coloimetric methods for

bromine. Environ. Sci. Technol. 5, 240–246. doi: 10.1021/es60050a009

Yasinska, I. M., Ceccone, G., Ojea-Jimenez, I., Ponti, J., Hussain, R., and Siligardi,

G. (2018a). Highly specific targeting of human acute myeloid leukaemia

cells using pharmacologically active nanoconjugates. Nanoscale 10, 5827–5833.

doi: 10.1039/C7NR09436A

Yasinska, I. M., Gonzalves Silva, I., Sakhnevych, S. S., Ruegg, L., Hussain, R.,

Siligardi, G., et al. (2018b). High mobility group box 1 (HMGB1) acts as an

“alarmin” to promote acute myeloid leukaemia progression. Oncoimmunology

7:e1438109. doi: 10.1080/2162402X.2018.1438109

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Sakhnevych, Yasinska, Fasler-Kan and Sumbayev. This

is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction

in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Pharmacology | www.frontiersin.org 4 April 2019 | Volume 10 | Article 342

https://doi.org/10.1038/s41423-018-0053-8
https://doi.org/10.1021/es60050a009
https://doi.org/10.1039/C7NR09436A
https://doi.org/10.1080/2162402X.2018.1438109
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


ORIGINAL RESEARCH
published: 11 July 2019

doi: 10.3389/fimmu.2019.01594

Frontiers in Immunology | www.frontiersin.org 1 July 2019 | Volume 10 | Article 1594

Edited by:

Alexandr Bazhin,

Hospital of the University of

Munich, Germany

Reviewed by:

Mazdak Ganjalikhani Hakemi,

Isfahan University of Medical

Sciences, Iran

Stephen John Ralph,

Griffith Health,

Griffith University, Australia

*Correspondence:

Inna M. Yasinska

I.Yasinska-24@kent.ac.uk

Elizaveta Fasler-Kan

elizaveta.fasler@insel.ch

Elena Klenova

klenovae@essex.ac.uk

Vadim V. Sumbayev

V.Sumbayev@kent.ac.uk

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Cancer Immunity and Immunotherapy,

a section of the journal

Frontiers in Immunology

Received: 02 May 2019

Accepted: 26 June 2019

Published: 11 July 2019

Citation:

Yasinska IM, Sakhnevych SS,

Pavlova L, Teo Hansen Selnø A,

Teuscher Abeleira AM, Benlaouer O,

Gonçalves Silva I, Mosimann M,

Varani L, Bardelli M, Hussain R,

Siligardi G, Cholewa D, Berger SM,

Gibbs BF, Ushkaryov YA,

Fasler-Kan E, Klenova E and

Sumbayev VV (2019) The

Tim-3-Galectin-9 Pathway and Its

Regulatory Mechanisms in Human

Breast Cancer.

Front. Immunol. 10:1594.

doi: 10.3389/fimmu.2019.01594

The Tim-3-Galectin-9 Pathway and
Its Regulatory Mechanisms in Human
Breast Cancer
Inna M. Yasinska 1*†, Svetlana S. Sakhnevych 1†, Ludmila Pavlova 2†,

Anette Teo Hansen Selnø 1, Ana Maria Teuscher Abeleira 3,4, Ouafa Benlaouer 1,

Isabel Gonçalves Silva 1, Marianne Mosimann 3,4, Luca Varani 5, Marco Bardelli 5,

Rohanah Hussain 6, Giuliano Siligardi 6, Dietmar Cholewa 3, Steffen M. Berger 3,

Bernhard F. Gibbs 1,7, Yuri A. Ushkaryov 1, Elizaveta Fasler-Kan 3,8*, Elena Klenova 2* and

Vadim V. Sumbayev 1*

1Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom, 2 School of

Biological Sciences, University of Essex, Colchester, United Kingdom, 3Department of Pediatric Surgery, Department of

Biomedical Research, Children’s Hospital, Inselspital, University of Bern, Bern, Switzerland, 4 Zentrum Für

Medizinische Bildung, Biomedizinische Analytik HF, Bern, Switzerland, 5 Institute for Research in Biomedicine, Universita’ della

Svizzera italiana, Bellinzona, Switzerland, 6 Beamline B23, Diamond Light Source, Didcot, United Kingdom, 7Division of

Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany, 8Department of

Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland

Human cancer cells operate a variety of effective molecular and signaling mechanisms

which allow them to escape host immune surveillance and thus progress the disease. We

have recently reported that the immune receptor Tim-3 and its natural ligand galectin-9

are involved in the immune escape of human acute myeloid leukemia (AML) cells. These

cells use the neuronal receptor latrophilin 1 (LPHN1) and its ligand fibronectin leucine rich

transmembrane protein 3 (FLRT3, and possibly other ligands) to trigger the pathway.

We hypothesized that the Tim-3-galectin-9 pathway may be involved in the immune

escape of cancer cells of different origins. We found that studied breast tumors expressed

significantly higher levels of both galectin-9 and Tim-3 compared to healthy breast tissues

of the same patients and that these proteins were co-localized. Increased levels of LPHN2

and expressions of LPHN3 as well as FLRT3 were also detected in breast tumor cells.

Activation of this pathway facilitated the translocation of galectin-9 onto the tumor cell

surface, however no secretion of galectin-9 by tumor cells was observed. Surface-based

galectin-9 was able to protect breast carcinoma cells against cytotoxic T cell-induced

death. Furthermore, we found that cell lines from brain, colorectal, kidney, blood/mast

cell, liver, prostate, lung, and skin cancers expressed detectable amounts of both Tim-3

and galectin-9 proteins. The majority of cell lines expressed one of the LPHN isoforms

and FLRT3. We conclude that the Tim-3-galectin-9 pathway is operated by a wide range

of human cancer cells and is possibly involved in prevention of anti-tumor immunity.
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INTRODUCTION

Human malignant tumors have developed a variety of
biochemical mechanisms which allow them to escape host
immune surveillance, thus leading to disease progression
(1, 2). This applies to both liquid and solid tumors (1). It has
recently become evident that acute myeloid leukemia (AML)
cells, originating from self-renewing myeloid haematopoietic
precursors, operate an immunosuppressive pathway which
includes facilitation of exocytosis of the T cell immunoglobulin
and mucin domain containing protein 3 (Tim-3) and its natural
ligand, galectin-9 (2–4). Galectin-9 is a tandem protein which
contains two ligand-binding domains fused together by a peptide
linker (several isoforms have been identified) (5). As with other
galectins, galectin-9 lacks a secretory domain and thus requires
trafficking in order to be translocated onto the cell surface
where it could be secreted by proteolytic shedding (5). Tim-3
acts both as a receptor and a possible trafficker for galectin-9
(2, 4, 6). When associated with the plasma membrane, the Tim-
3-galectin-9 complex triggers downstream signaling contributing
to cell renewal, thus forming an autocrine loop (6). On the other
hand, proteolytic shedding results in release of both a soluble
form of Tim-3 and galectin-9 (2). Both Tim-3 and galectin-9
act to suppress anti-cancer immune surveillance (2). Secreted
galectin-9 contributes to anti-cancer immune suppression by
killing cytotoxic T lymphocytes and impairing the activity of
natural killer (NK) cells, thus allowing for disease progression
(2, 4). Soluble Tim-3 also downregulates the production of
interleukin-2 (IL-2), a cytokine required for the activation of
both NK cells and cytotoxic T lymphocytes (2).

AML cells express the G-protein coupled neuronal receptor
latrophilin 1 (LPHN1) which is produced by haematopoietic
stem cells (HSCs) but disappears upon their maturation (7,
8). In case that HSCs undergo malignant transformation, thus
becoming AML cells, they preserve the ability to express LPHN1
(7, 8). Interacting with its natural ligand, fibronectin leucine rich
transmembrane protein 3 (FLRT3) and possibly other ligands (2,
3), LPHN1 facilitates translocation of Tim-3 and galectin-9 onto
the cell surface via GαQ [G protein transducing the signal from
LPHN (7)]—phospholipase C (PLC)—protein kinase C alpha
(PKCα) biochemical pathway, which is followed by proteolytic
shedding of the complex or ligand-free Tim-3 (2), creating an
immune suppressive “double edged sword.” Translation of Tim-
3 and galectin-9 in these cells is controlled by the mammalian
target of rapamycin (mTOR) pathway (2), one of the master
regulators of protein biosynthesis.

Interestingly, other LPHN isoforms, in particular LPHN2,

were found to be ubiquitously expressed especially in breast

tumors (9). Human breast tumor cells were also found to express

galectin-9, where it was shown to be involved in cell aggregation,

thus preventing metastasis (10). On the other hand, the Tim-3-
galectin-9 pathway plays a role in suppressing cytotoxic T cells
in solid tumors, for example in colon cancer (11). However, the
biochemical events underlying these processes have not been
studied yet and it is therefore important to investigate whether
the activity of the Tim-3-galectin-9 secretory pathway is specific
solely to AML cells or whether it is also common for breast

and other solid tumors. This will help us to understand the
fundamental pathophysiological role of the pathway and its
underlying biochemistry.

Therefore, the aim of our work was to investigate the
biochemical activity of the Tim-3-galectin-9 pathway in human
breast cancer and its possible role in suppressing cytotoxic T cell
activity. In addition, we assessed the differential expression of
the components of the Tim-3-galectin-9 pathway in human solid
tumor cells.

Here we report that primary breast tumors express
significantly higher levels of Tim-3, and especially galectin-
9, compared to healthy tissues of the same patients. Importantly,
Tim-3 and galectin-9 were co-localized. Breast tumors also
expressed LPHN2 and LPHN3 as well as FLRT3. The PLC/PKC
secretory biochemical pathway was significantly upregulated in
breast tumors compared to healthy tissues. Breast cancer cell
lines expressed all these components and biochemical studies
were conducted using MCF-7 cells. Breast cancer cells were
unable to secrete galectin-9, but were capable of maintaining
its cell surface expression. The process of externalization was
upregulated by exogenous FLRT3 most likely in a PLC/PKC-
dependent manner. Surface-based galectin-9 was able to protect
MCF-7 cells against T cell-induced death. Furthermore, we
found that human cell lines originating from a wide range of
different cancers express detectable amounts of both Tim-3 and
galectin-9 proteins. The majority of these cell lines expressed at
least one of the LPHN isoforms as well as FLRT3, suggesting that
various types of solid and liquid tumors can in principle operate
the FLRT3/LPHN/Tim-3/galecting-9 pathway.

MATERIALS AND METHODS

Materials
RPMI-1640 medium, fetal bovine serum and supplements as
well as basic laboratory chemicals were purchased from Sigma

(Suffolk, UK). Maxisorp
TM

microtitre plates were provided
either by Oxley Hughes Ltd (London, UK) or Nunc (Roskilde,
Denmark). Mouse monoclonal antibodies directed against
mTOR and β-actin, as well as rabbit polyclonal antibodies
against phospho-S2448 mTOR, galectin-9, HRP-labeled rabbit
anti-mouse secondary antibody were purchased from Abcam
(Cambridge, UK). Mouse monoclonal antibody against FLRT3
was obtained from Santa Cruz Biotechnology (Heidelberg,
Germany). Antibodies against phospho-S65 and total eIF4E-
BP were obtained from Cell Signaling Technology (Danvers,
MA USA). The polyclonal rabbit anti-peptide antibodies (PAL1,
PAL2, and PAL3) against LPHN1, LPHN2, and LPHN3,
respectively, were previously described (12). Rabbit polyclonal
antibody against poly-(ADP-ribose)-polymerase (PAR) was
purchased from Enzo Life Sciences LTD (Exeter, UK). Goat anti-
mouse and goat anti-rabbit fluorescence dye-labeled antibodies
were obtained from LI-COR (Lincoln, Nebraska USA). ELISA
kits for the quantitation of galectin-9, Tim-3, and IL-2 were
purchased from Bio-Techne (R&D Systems, Abingdon, UK).
Anti-Tim-3 mouse monoclonal antibody was employed as
previously described (13). Secondary antibodies for confocal laser
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microscopy (TRITC labeled antibody (goat anti-mouse IgG) and
t FITC labeled antibody (goat anti-rabbit IgG) were from Abcam
(Cambridge, UK). All other chemicals purchased were of the
highest grade of purity.

Cell Lines and Primary Human Cells
Cell lines, listed in Supplementary Table 1, were obtained from
either European Collection of Cell Cultures, American Tissue
Culture Collection (ATTC) or CLS Cell Lines Service GmbH.
Cell lines were accompanied by identification test certificates and
were grown according to corresponding tissue culture collection
protocols. LAD2mast cells were kindly provided by ProfMetcalfe
andDr. Kirshenbaum (NAID, NHI, USA) and cultured according
to the protocol described before (14).

MCF-7 breast cancer cells were purchased from the European
Collection of Cell Cultures (the cell lines provided were
accompanied by identification test certificates). Cells were
cultured in RPMI 1640 media supplemented with 10% fetal
bovine serum, penicillin (50 IU/ml), and streptomycin sulfate
(50 µg/ml).

TALL-104 cytotoxic T lymphocytes derived from human
acute lymphoblastic leukemia (TALL) were purchased from
the American Tissue Culture Collection. Cells were cultured
according to the ATCC instructions. Briefly, ATCC-formulated
Iscove’s Modified Dulbecco’s Medium was used. To make the
complete growth medium we added 100 units/ml recombinant
human IL-2; 2.5µg/ml human albumin; 0.5µg/ml D-mannitol
and fetal bovine serum to a final concentration of 20%. Primary
human leukocytes (PHL) were isolated from buffy coat blood
(originated from healthy donors though routine blood donation).
The buffy coat blood was obtained from the National Health
Blood and Transfusion Service (NHSBT, UK) following ethical
approval (REC reference: 16-SS-033).

Human Tissue Samples
Primary human tumor tissue samples paired together with
peripheral tissues (also called “normal” or “healthy” of the same
patients) were collected surgically from breast cancer patients
treated at the Colchester General Hospital, following informed,
and written consent taken before surgery. Paired normal
(healthy) peripheral tissues were removed during macroscopic
examination of a tumor by pathologists. Blood samples were
collected before breast surgery from patients with primary breast
cancer (PBC) and before treatment from patients with metastatic
breast cancer (MBC). Samples were also collected from healthy
donors (individuals with no diagnosed pathology), which were
used as control samples. Blood separation was performed using
buoyancy density method employing Histopaque 1119-1 (Sigma,
St. Louis, MO) according to the manufacturer’s protocol. Ethical
approval documentation for these studies was obtained from the
NRES Essex Research Ethics Committee and the Research &
Innovation Department of the Colchester Hospitals University,
NHS Foundation Trust [MH 363 (AM03) and 09/H0301/37].

Western Blot Analysis
The components of the Tim-3, galectin-9, FLRT3, LPHNs 2/3,
and mTOR pathways as well as GαQ, PARP, and CD3 were

detected in cell and tissue lysates byWestern blot and normalized
to β-actin levels in order to confirm equal protein loading as
reported earlier (2). Cells were lysed in 50mM Tris–HCl, 5mM
EDTA, 150mM NaCl, 0.5% Nonidet-40, 1mM PMSF, pH 8.0.

Tissue lysates for Western blot analysis were prepared as
described previously (15). Briefly, 100mg of frozen tissues were
grounded into a powder in dry ice, followed by the addition
of 100 µl of the tissue lysis buffer (20mM Tris/HEPES pH
8.0, 2mM EDTA, 0.5M NaCl, 0.5% sodium deoxycholate,
0.5% Triton X-100, 0.25M Sucrose, supplemented with 50mM
2-mercaptoethanol, 50µM PMSF, 1µM pepstatin supplied
just before use). Tissues were homogenized using a Polytron
Homogenizer (Capitol Scientific, USA) and a syringe was used
in order to acquire a homogenous cell suspension. These tissue
suspensions were then filtered through medical gauzes and
centrifuged at +4◦C at 10,000 g for 15min. Proteins present in
supernatants were precipitated by incubation of the samples on
ice for 30min with equal volumes of ice-cold acetone. Protein
pellets were obtained by centrifugation at +4◦C, 10,000 g for
15min followed by air drying at room temperature and then lysed
using the SDS-lysis buffer described above.

Li-Cor goat secondary antibodies (dilution 1:2,000),
conjugated with infrared fluorescent dyes, were used as
described in the manufacturer’s protocol to visualize target
proteins (Li-Cor Odyssey imaging system was applied). Western
blot data were quantitatively analyzed using Odyssey software
and values were subsequently normalized against those of β-actin
or total protein loaded.

Enzyme-Linked Immunosorbent
Assays (ELISAs)
Galectin-9, soluble Tim3 (sTim-3) and IL-2 were measured by
ELISA using R&D Systems kits according to manufacturer’s
protocols. Phosphorylation of mTOR was analyzed by ELISA as
previously described (16).

ELISA was also used to detect Tim-3-galectin-9 complex as
described before (4) in the tissue homogenates. Homogenates
were prepared in the ratio 1 g of tissue and 4ml of lysis
(extraction) buffer containing 50mMTris pH 7.5, 150mMNaCl,
5mM EDTA, and 0.5% NP-40. Mouse anti-Tim-3 (mAnti-Tim-
3) was used as a capture antibody and biotinylated goat anti-
galectin-9 (gAnti-Galectin-9, R&D Systems) for detection. The
reaction was visualized using HRP-labeled streptavidin (R&D
Systems; Figure 2A—see the scheme). In all cases plates were
washed with TBST and bound secondary antibodies visualized
using peroxidase reaction (ortho-phenylenediamine/H2O2).

Quantitative Real-Time PCR (qRT-PCR)
To detect galectin-9 mRNA levels, we used qRT-PCR (4).

We isolated total RNA using a GenElute
TM

mammalian total
RNA preparation kit (Sigma-Aldrich), followed by reverse
transcriptase–polymerase chain reaction (RT-PCR) of a target
protein mRNA (performed according to the manufacturer’s
protocol). This was followed by qRT-PCR. The following primers
were used: Galectin-9, 5′-CTTTCATCACCACCATTCTG-3′ and
5′-ATGTGGAACCTCTGAGCACTG-3′ actin, 5′-TGACGGGG
TCACCCACACT-GTGCCCATCTA-3′, 5′-CTAGAAGCATTT
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GCGGTCG-ACGATGGAGGG-3′. Reactions were performed
using a LightCycler R© 480 qRT-PCR machine and SYBR Green I
Master kit (obtained from Roche, Burgess Hill, UK). The work
was performed according to the manufacturer’s protocol. Values
representing galectin-9 mRNA levels were normalized against
those of β-actin.

On Cell Assays
On cell assays were employed to detect surface presence of
galectin-9 and CD8. We used Li-Cor secondary antibody to
recognize anti CD8 primary antibody and then visualized as
described before (4, 17).

Confocal Microscopy
Tissue Sectioning
Tissue sections were produced using a freezing microtome with
the cutting thickness of 5–6µm. Each tissue section was sliced
onto a poly-D-lysine-coated microscope slide (BDH).

Immunofluorescence Staining for Bioimaging

Analysis
Endogenous peroxidase activity was blocked by incubating
slides in 3% in H2O2 for 15min. The slides were then
permeabilised using PBS containing 0.26% Triton for 20min
at room temperature and blocked with serum obtained from
the same species as the secondary antibody in the following
buffer: PBS, 0.05% Tween, 2% serum, 1% BSA for at least 30min.
Tim-3 and galectin-9 expressions were detected by incubating
slides with antibodies described above diluted in PBS (pH 7.4
containing 0.05% Tween, 1% BSA (1:200 dilution) for 2 h at
room temperature and washed three times with PBS. Slides
were then incubated in the dark for 1 h with anti-IgG-FITC-
labeled secondary antibody (1:400 dilution) and then washed
three times with PBS followed by Fluoro-Gel mounting media
containing DAPI nuclei-staining reagent. Negative controls were
prepared by incubating the slides with secondary antibody alone.
Images were taken using Confocal Laser Scanning Microscopy
(BioRad Hercules).

Fluorescence Co-localization Imaging
For image acquisition, a Nikon A1si laser scanning confocal
microscope was used with a Plan Fluor DIC 40x magnifying,
1.3-numerical aperture (N.A.) oil-immersion objective. NIS
Elements software (version 3.21.03, Nikon, Tokyo, Japan) was
employed for data analysis. Cell images were acquired in
three channels for DAPI (excitation at 399 nm with laser
power 10 arbitrary units [AU], emission collection at 450 nm;
nuclei labeling), Alexa Fluor 488 (excitation wavelength 488 nm
with laser power 10AU and, emission wavelength at 525 nm
(corresponds to a green channel, galectin-9), Alexa Fluor 555
(excitation 561 nm with laser power 10AU, emission collection
at 595 nm, red channel, Tim-3), with a photomultiplier tube gain
of 100AU. No offset was used, and pinhole size was set between
1.2 and 2 times the Airy disk size of the used objective, depending
on signal strength.

PLC and PKCα Activity Assays
The activity of PLC was measured based on the ability of
this enzyme to cleave the ester bond between glycerol and

phosphoric acid of the substrate phosphatidylinositol-4,5-bis-
phosphate (PIP2). PIP2 (150µM), was re-suspended in the assay
buffer containing 20mM Tris-HCl buffer (pH 7.2) containing
0.1% sodium deoxycholate, 300µM CaCl2, 100µM EDTA,
and 100mM NaCl by sonication. Reaction was started by
adding the substrate followed by incubation for 60min at
37◦C. Uncleaved substrate and IP3 (the reaction product) were
then measured using electrophoretic (33% polyacrylamide gel)
separation, followed by toluidine blue staining and colorimetric
assay (13, 18). The catalytic activity of PKCα was measured
as described before based on its ability to phosphorylate
specific substrate in a reaction buffer containing 20mM Tris-
HCl (pH7.5), 20µM ATP, 5mM MgCl2, and 200µM CaCl2
(19). Phosphate groups attached to the substrate were detected
spectrophotometrically (20).

Cell Viability Assay
Cell viability was analyzed using a commercial assay kit (Promega
UK Ltd., Southampton, UK). We used an MTS colorimetric
assay for assessing cell metabolic activity. NAD(P)H-dependent
cellular oxidoreductase enzymes playing a crucial role in human
myeloid cell survival reflect the number of viable cells present.
Cells were incubated with 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
(MTS) and then absorbance was measured at 490 nm in
accordance with the manufacturer’s protocol.

Synchrotron Radiation Circular Dichroism
(SRCD) Spectroscopy
Human recombinant LPHN2 (olfactomedin-like domain,
MyBioSource, San Diego, CA, USA) and FLRT3, either alone or
in combination (equimolar ratio), were analyzed using SRCD
spectroscopy at beamline B23, Diamond Light Source (Didcot,
UK) (3, 21, 22). SRCD measurements were performed using
0.7µM of samples in a 1 cm path length cell of 3mm aperture
diameter and 60 µl capacity using a Module B instrument
at 23◦C. Integration time was 1 s, the increment−1 nm and
bandwidth−1.2 nm. The results obtained were processed using
CDApps and OriginPro R©.

Statistical Analysis
Each experiment was performed at least three times and statistical
analysis when comparing two events at a time was conducted
using a two-tailed Student’s t-test. Multiple comparisons were
performed using ANOVA. Post-hoc Bonferroni correction was
applied. Statistical probabilities (p) were expressed as ∗ for p <

0.05; ∗∗ for p < 0.01, and ∗∗∗ for p < 0.001.

RESULTS

Expression and Activity of the
FLRT3/LPHN/Tim3/galectin-9 Pathway in
Breast Tumors
We found that primary breast tumors expressed galectin-9, Tim-
3, LPHN2, and FLRT3 (Figures 1A,B); as well as detectable
amounts of LPHN3 (Supplementary Figure 1). Interestingly, in
addition to a specific FLRT3 bands, a clear band appears at
around 55 kDa (highlighted by a question mark). This may
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FIGURE 1 | Expression of FLRT3/LPHN/Tim-3/galectin-9 pathway components and activities of PLC/PKCα and mTOR pathways in primary human breast tumors.

Expression levels of Tim-3, galectin-9 (A), FLRT3, and LPHN2 (B) were analyzed in primary breast malignant tumors and healthy breast tissues (HT) of five patients

(n = 5) by Western blot. Activities of PLC, PKCα, and the levels of phospho-S2448 mTOR were detected as outlined in the Materials and Methods (C). The amounts

of phospho-S65 and total eIF4E-BP (mTOR substrate) were analyzed using Western blot (D). The levels of CD3 (biomarker of T cells) were also measured using lysate

of Jurkat T cells as a positive control (E). Molecular weight markers (MW) are expressed in kDa. Images are from one experiment representative of five which gave

similar results. Other results are shown as mean values ± SEM. *p < 0.05; **p < 0.01, and ***when p < 0.001 vs. control.

represent FLRT3 which underwent proteolytic processing (3).
Importantly, expression levels of Tim-3, galectin-9 and LPHN2
were significantly higher (about 15–20 fold for galectin-9, p <

0.001, 2 fold for Tim-3, p < 0.05 and 2.5–3 fold for LPHN2,
p < 0.01) in tumors compared to healthy tissues isolated from
the same patients. A band specific for galectin-9 appeared at
around 55 kDa when 12% PAGE was used (this is the gel
concentration normally used for galectin-9 detection) in each
case and was not detectable by the anti-Tim-3 antibody. This
indicates that this band is not the Tim-3-galectin-9 complex
but probably a galectin-9 isoform bound to carbohydrates (as
a lectin) which is unlikely to be secreted. This was confirmed
when the same sample was ran using 10% PAGE and the
specific band appeared above 31 kDa molecular weight marker
(Supplementary Figure 2) confirming that, in a 12 % gel, protein
running was “delayed” possibly due to the presence of glycosides
or other post-translational modifications affecting the protein
properties/shape but not the molecular weight. Activities of PLC
and PKCα were significantly higher (p < 0.01 for PLC and p
< 0.001 for PKCα) in tumor tissue homogenates compared to
those of healthy tissues (Figure 1C). However, unlike in AML
cells (2), the S2448 phosphorylation level of mTOR was similar in
both healthy and tumor tissues (Figure 1C). The ratio between
phospho-S65 eIF4E-BP and its total amount was also similar in
both tissue types, although the amount of both phospho-S65 and
total eIF4E-BP was higher in tumor tissues (Figure 1D).

Importantly, analysis of CD3 (a marker of T cells)
demonstrated that this protein is undetectable in healthy
and barely detectable in tumor tissue lysates suggesting that the
analyzed proteins are mainly expressed by breast tumor cells and
not tumor-infiltrated lymphocytes (Figure 1E).

In order to assess if Tim-3 is complexed to galectin-9 as in
leukemia cells, we performed detection of the Tim-3-galectin-9
complex in tissue homogenates as outlined in the Materials and
Methods. We found that the complex was barely detectable in
normal tissue homogenates but was clearly detectable in tumor
tissue extracts (Figure 2A). Next, measurement of Tim-3 and
galectin-9 in tissues was performed using confocal microscopy.
In line with the data shown in Figures 1, 2A, we observed
that both proteins are abundant in tumor tissue slices and are
also co-localized (Figure 2B). Analysis of blood plasma samples
obtained from patients with both primary and metastatic breast
tumors showed that levels of galectin-9 and soluble Tim-3 were
lower compared to healthy donors (Figure 3). Respectively, both
patient groups demonstrated non-significantly higher levels of
IL-2 (Figure 3).

MCF-7, BC-8701, and MDA-MB-231 breast cancer cells
(Supplementary Table 1 and Supplementary Figure 1) all
expressed Tim-3, galectin-9, FLRT3, and at least one LPHN
isoform. The highest level of LPHN2was expressed byMDA-MB-
231 cells, which is in line with previously reported observations
(9). To further investigate the mechanism we selected MCF-7

Frontiers in Immunology | www.frontiersin.org 5 July 2019 | Volume 10 | Article 1594

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yasinska et al. The Tim-3-Galectin-9 Pathway in Breast Cancer

FIGURE 2 | Expression, interaction, and co-localization of Tim-3 and galectin-9 in primary human breast tumors. (A) Presence of the Tim-3-galectin-9 complex in

primary normal and tumor tissue extracts was analyzed using ELISA as outlined in the Materials and Methods. (B) Expression and co-localization of galectin-9 and

Tim-3 were analyzed in primary human breast tumors and healthy tissues of the same patients using confocal microscopy (see Materials and Methods for further

details). Images are from one experiment representative of five which gave similar results. Scale bars correspond to 20µm.

FIGURE 3 | Levels of galectin-9, Tim-3, and IL-2 in blood plasma of human healthy donors and patients suffering from primary and metastatic breast tumors.

Concentrations of galectin-9, soluble Tim-3, and IL-2 were analyzed in blood plasma of healthy donors and breast cancer patients by ELISA. Data are shown as mean

values ± SEM of 20 for healthy donors (HD), 42 for primary breast cancer (PBC) patients, and 20 for metastatic breast cancer (MBC) patients. *p < 0.05; **p < 0.01

and vs. HD.

breast cancer cells since they are the only cell line analyzed
which expressed detectable amounts of both LPHNs 2 and 3
(as in primary breast tumors, Supplementary Figures 1A,C).
They also expressed Tim-3 and galectin-9 (Tim-3-galectin-9
complex was also detectable, Figure 4A). Galectin-9 mRNA
levels in MCF-7 cells were also significantly higher compared
to normal human breast tissue (Supplementary Figure 1B).

The level of galectin-9 mRNA in primary human breast
tumor tissues was much higher compared to the normal tissue
(Supplementary Figure 1B) and, importantly, the ratio of
galectin-9 mRNA in tumor and normal tissues was similar to
the respective levels of protein detected (Figure 1A). Also these
results suggest that MCF-7 cells as well as primary healthy and
malignant cells express identical galectin-9, thus re-confirming
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FIGURE 4 | FLRT3 induces translocation of galectin-9 onto the surface of MCF-7 breast cancer cells. (A) MCF-7 cells were exposed for 4 h to 10 nM FLRT3 and

activities of PLC, PKCα, the levels of phospho-S2448 mTOR and the amounts of phospho-S65 and total eIF4E-BP (an mTOR substrate) were analyzed as described

in the Materials and Methods. (B) MCF-7 cells were exposed for 4 h to 10 nM FLRT3 with or without 1 h pre-treatment with 30µM U73122 (PLC inhibitor) or 70 nM

Gö6983 (PKCα inhibitor). Surface presence of galectin-9 was measured by on-cell assay. (C) Secondary structure and conformational changes of LPHN2

olfacomedin-like domain (FLRT3-inding region), FLRT3, and the complex of the two proteins mixed at the equimolar ratio were characterized using SRCD

spectroscopy as outlined in the Materials and Methods. An interaction between olfactomedin-like domain of LPHN3 and FLRT3 generated by Swiss PDB viewer

[5 cmn.pdb file downloaded through PubMed database was used (13)] is presented to illustrate the structural basis of this interaction. Images are from one experiment

representative of four which gave similar results. Other results are shown as mean values ± SEM of at least three independent experiments. *p < 0.05; **p < 0.01 vs.

control.

that the same protein was detected by Western blot (Figure 1
and Supplementary Figure 1A).

LPHN2 expression in MCF-7 cells was lower than in MDA-
MB-231 but comparable with primary tumors. Furthermore,
primary breast tumors and MCF-7 cells expressed comparable
amounts of LPHN3 (Supplementary Figure 1C). It is important
to mention that there are possible minor variations in LPHN2
gene in breast cancer cells lines (23) and possibly in primary
breast tumors, however the translated protein has no variations
in amino acid sequence. Both primary breast tumor and
MCF-7 cells expressed GαQ (Supplementary Figure 1D), which
indicates the presence of an adaptor protein required for
transduction of signals via G-protein-coupled receptors (LPHN
isoforms). Cells were also exposed for 4 h to 10 nM human
recombinant FLRT3 followed by detection of phospho-S65/total
eIF4E-BP, phospho-S2448 mTOR, activities of PLC and PKCα as
well as cell surface presence of galectin-9. As shown in Figure 4A,
exposure to FLRT3 did not affect mTOR activity but significantly
upregulated the activities of PLC and PKCα. Galectin-9 surface

presence was also significantly upregulated as measured by on-
cell assay (Figure 4B). Importantly, pre-treatment of the cells
for 1 h with 30µM U73122 (PLC inhibitor) and 70 nM Gö6983
(PKCα inhibitor) before 4 h exposure to 10 nM FLRT3 attenuated
FLRT3-induced galectin-9 translocation onto the cell surface
(Figure 4B). This confirms that FLRT3-induced translocation of
galectin-9 onto the surface of MCF-7 cells is controlled by the
PLC/PKCα pathway.

To further verify the interaction of FLRT3 with the
olfactomedin-like domain of LPHN2 [for LPHNs 1 and 3 this
has already been confirmed (3, 24–26)] we performed SRCD
spectroscopy analyzing spectra (thus characterizing secondary
structure and conformational changes) of the olfactomedin-
like domain of LPHN2 and FLRT3 alone and their equimolar
combination. We found that binding of FLRT3 took place in a
similar fashion as previously reported for LPHN1 (Figure 4C).
This suggests that all three LPHN isoforms interact with FLRT3
in a similar way (a 3D interaction of LPHN3 oflactomedin-like
domain and FLRT3 is presented in Figure 4C).

Frontiers in Immunology | www.frontiersin.org 7 July 2019 | Volume 10 | Article 1594

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Yasinska et al. The Tim-3-Galectin-9 Pathway in Breast Cancer

Galectin-9 Protects Breast Cancer Cells
Against Cytotoxic Immune Attack
To assess the effect of galectin-9 in protecting breast cancer cells
against cytotoxic cell-dependent killing we co-cultured MCF-
7 cells (adherent) with cytotoxic ALL-derived TALL-104 CD8-
positive T lymphocytes (we used these rather than NK cells since
mainly T cells infiltrate solid tumors; as NK cells, TALL-104 cells
express Tim-3, and not galectin-9) for 16 h at a ratio of 4 MCF-
7 cells: 1 TALL-104 cells (Figure 5A—this ratio was selected
experimentally to achieve moderate effects in order to be able to
trace biochemical mechanisms). The co-culture was performed in
either the absence or presence of 5µg/ml galectin-9 neutralizing
antibody to evaluate the contribution of surface-based galectin-
9. Following the treatment TALL-104 cells were collected, lysed,
and subjected to Western blot analysis of full-length and cleaved
PARP (marker of apoptosis). We found that in TALL-104 cells
co-cultured with MCF-7 cells the level of PARP cleavage was
significantly (about 3 fold, p < 0.05) increased and the presence
of anti-galectin-9 antibody attenuated the effect (Figure 5B).
Increased level of PARP cleavage indicates a higher number of
apoptotic cells. An on-cell assay was used to assess the level of
infiltration of TALL-104 cells into the MCF-7 cell monolayer. We
observed that CD8 was absent in the MCF-7 cells when cultured
on their own, but it was detected when MCF-7 cells were co-
cultured with TALL-104. It was further significantly increased
when the cells were co-cultured in the presence of galectin-9
neutralizing antibody, suggesting that the ability of TALL-104
cells to attack MCF-7 cells is increased when galectin-9 activity is
disabled (Figure 5B). Isotype control antibody (used at the same
concentration of 5µg/ml) did not affect interactions between
TALL-104 and MCF-7 cells, confirming the role of galectin-9 in
this process (Figure 5C). Importantly, cell surface presence of
galectin-9 was significantly upregulated in the presence of TALL-
104 cells as measured by the on-cell assay (Figure 5D). Similar
effect was observed before in other solid tumors (27). Viability of
MCF-7 cells was also decreased in the presence of TALL-104 cells
and galectin-9 neutralizing antibody (but not isotype control) as
measured by an MTS test (Figure 5E). This is a strong indication
that galectin-9 is capable of protecting breast tumor cells against
cytotoxic cell-dependent killing.

The Majority of Solid and Liquid Tumors
Express Key Components of the
FLRT3/LPHN/Tim-3/galectin-9 Pathway
To investigate the expression of FLRT3/LPHN/Tim-3/galectin-
9 pathway components in cancer cells of different origins,
we screened various human cancer cell lines (derived from
brain, colorectal, kidney, blood/mast cell, liver, breast, prostate,
lung, and skin tumors) and various non-malignant cell lines
and primary cells, using Western blot analysis. Comparative
analysis was performed by measuring infrared fluorescence
of the bands divided by the total quantity of the loaded
protein. This approach was taken because the cells analyzed
originated from different tissues and thus the levels of each
housekeeping protein (such as beta-actin, for example) vary

depending on the origin of the cells. Results of quantitative
analysis are summarized in Figure 6 and Western blot images
are presented in Supplementary Table 1. Tim-3 and galectin-
9 were present in all the studied cancer cells, except for
the chronic myeloid leukemia (CML) cell line, K562, which
expressed Tim-3 but only traces of galectin-9, in agreement
with previously reported observations (2). Of note, this could
be one of the reasons why CML cells entering the circulation
are rapidly eliminated by cytotoxic lymphoid cells. As indicated
above, we also measured the levels of secreted galectin-9 in
different cells lines and observed variations dependent on
their origin (Supplementary Table 1). The highest levels of
galectin-9 were detected in hematological (except for K562
cells) and colorectal cancer cells. Other cell types expressed
moderate levels and prostate cancer cells expressed lower but
detectable levels of at least one variant of galectin-9 (Figure 6,
Supplementary Table 1). Non-malignant cells, expressed lower
amounts of galectin-9 and also Tim-3 compared to cancerous
cells of similar origins. Furthermore, the majority of the cells
expressed at least one LPHN isoform, as well as FLRT3. Some
of the cells did not express FLRT3 but expressed LPHN isoforms
(Figure 6, Supplementary Table 1). This most likely means that
LPHN expressing cells use blood-based soluble FLRT3 to trigger
the pathway since blood does not contain the other LPHN ligand
teneurin-2 (7).

DISCUSSION

The molecular mechanisms underlying the ability of cancer cells
to escape host immune surveillance remain poorly understood.
Recent evidence clearly demonstrated that some tumor cells
(AML in particular) operate the Tim-3-galectin-9 secretory
pathway which is capable of disabling cytotoxic lymphoid cells
(2, 3). However, a growing body of evidence suggests that some
solid tumors [for example colorectal tumors (11)] also express
Tim-3 and galectin-9 and use these proteins to escape host
immune attack. We studied the activity of this pathway in
breast and other solid and liquid tumors. We also investigated
the pathway in both breast tumors and healthy breast tissues
obtained from the same patients as well as in breast tumor
cell lines.

Using Western blot analysis and confocal microscopy we
found very low levels of galectin-9 in human breast tissue cells
peripheral to tumor (Figures 1, 2), which were significantly
increased in tumor cells. Importantly, as in AML cells, Tim-3, and
galectin-9 are co-localized in breast tumor cells and are capable
to form complex (Figure 2A and Supplementary Figure 1A).
However, this tumor-associated galectin-9 is unlikely to be
secreted since blood plasma levels of galectin-9 are lower than
in healthy donors. Interestingly, high levels of Tim-3 are known
to be expressed by solid tumor-infiltrating lymphocytes (27,
28), which could be used by tumor-derived galectin-9 to kill
them. Our results have confirmed that Tim-3 and galectin-9 are
expressed mainly by tumor cells, since CD3 (a T cell biomarker)
was barely detectable in tumor and undetectable in healthy
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FIGURE 5 | Galectin-9 protects MCF-7 cells against T cell-dependent cytotoxic immune attack. (A) MCF-7 cells were co-cultured with TALL-104 cytotoxic T

lymphocytes at a ratio of 4 : 1 for 16 h (the ratio was determined by the aggressive behavior of TALL-104 cells) in the absence or presence of 5µg/ml galectin-9

neutralizing antibody or 5µg/ml isotype control antibody. (B) After the experiment TALL-104 cells were lysed and PARP cleavage, as an indicator of the rate of

apoptotic cells, was measured using Western blot analysis. (C) CD8 expressions (reflecting the infiltration of TALL-104 into the MCF-7 layer) were measured by on-cell

assay. (D) Galectin-9 surface presence was measured using on-cell assay in resting MCF-7 cells and those co-cultured with TALL-104 cells (E) Viability of MCF-7 cells

was measured by MTS test. Images are from one experiment representative of five which gave similar results. Other results are presented as mean values ± SEM of

five independent experiments. *p < 0.05 vs. control.

FIGURE 6 | Expression of Tim-3, galectin-9, LPHNs 1, 2, and 3 as well as FLRT3 proteins in various human cancer cell lines. Lysates of indicated cells were

subjected to Western blot analysis as outlined in Materials and Methods (images are presented in Supplementary Table 1). Detected infrared fluorescence of the

bands divided by the total protein amounts loaded (measured using Bradford assay) was used as a measure of protein quantity. Levels of Tim-3 & total galectin-9

(A) and LPHNs 1, 2, & 3 (B) were expressed as a % of those levels present in THP-1 cells (expressed as 100%). Since THP-1 cells lack FLRT3 expression, the levels

of this protein were expressed as % RCC-FG1 (C), respectively considering FLRT3 level in these cells as 100%. Bn, brain; CR, colorectal; Ki, kidney; BBM, blood,

bone marrow and mast cells; Li, liver; Br, breast; Pr, prostate; Lu, lung; Sk, skin. Data are presented as mean values ± SEM of three independent experiments.

tissue lysates (Figure 1E). Furthermore, both proteins are co-
localized suggesting that they are expressed by the same cells
(Figure 2B). Levels of soluble Tim-3 were also downregulated

in blood plasma of breast cancer patients which is in line with
galectin-9 values. Importantly, as indicated above, our results
indicate that galectin-9 is unlikely to be secreted by breast tumors,
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since its levels do not increase in patient blood plasma and the
studied human breast cancer cell lines were incapable of secreting
galectin-9. Furthermore, the molecular weight of tissue-based
galectin-9 suggests that it is most likely associated with plasma
membrane-based glycosides, as previously described in somatic
cells (29–31). This binding would of course keep it attached to
the cell surface and prevent its release.

Taken together, these results suggest that the FLRT3/LPHN/
Tim-3/galectin-9 pathway possibly functions mainly to transfer
galectin-9 onto the cell surface rather than to secrete it as in the
case with AML cells. This would explain the lower level of mTOR
pathway activation in breast tumor cells compared to AML
cells (2), where secretion takes place and subsequently requires
replacement of the proteins through biosynthesis. Interestingly,
the findings reported here on the protein level are in line with

gene expression data for human breast cancer presented in The
Cancer Genome Atlas.

Remarkably, the level of IL-2 was non-significantly increased
in blood plasma of breast cancer patients, but not in AML
patients, including those with primary and metastatic breast
tumors. This suggests that induction of the cytotoxic activity of
NK cells and cytotoxic T cells can still take place. This observation
is supported by the fact that plasma levels of soluble Tim-3 are
also lower, since Tim-3 was shown to downregulate IL-2 secretion
by specialized T cells (2).

Tumor tissue cells expressed LPHN2 (significantly higher
levels compared to healthy tissues), LPHN3, and FLRT3 (LPHN
ligand). In line with this, the activities of PLC and PKCα were
significantly higher in tumors compared to healthy tissues. The
activity of mTOR was not upregulated, although basal levels

FIGURE 7 | Breast cancer cell-based pathobiochemical pathways showing LPHN-induced activation of PKCα, which triggers the translocation of Tim-3 and galectin-9

onto the cell surface which is required for immune escape. The interaction of FLRT3 with LPHN isoform leads to the activation of PKCα, most likely through the classic

Gq/PLC/Ca2+pathway. Ligand-bound LPHN activates Gq, which in turn stimulates PLC. This leads to phosphatidyl-inositol-bisphosphate (PIP2) degradation and

production of inositol-trisphospate (IP3) and diacylglycerol (DAG). PKCα is then activated by DAG and cytosolic Ca2+. PKCα provokes the formation of SNARE

complexes that tether vesicles to the plasma membrane. Galectin-9 impairs the cancer cell killing activity of cytotoxic T cells (and other cytotoxic lymphocytes).

Possible (not directly confirmed) interactions of galectin-9 with glycoside component and T cell receptor (TCR)/CD8, with MHC I, and antigen are highlighted with

question mark “?” to indicate the fact that it is a hypothetic interaction, since TALL-104 cells used in the study kill tumor cells in MHC-independent manner (32).
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of the mTOR substrate (eIF4E-BP) were significantly higher in
tumor cells.

We found that exposure of MCF-7 breast cancer cells to
10 nM FLRT3 induces activation of PLC and PKCα. Recently
it has been found that FLRT3 activates the PKCα pathway via
LPHN isoforms (2). The activity of mTOR was not increased
after 4 h of exposure to FLRT3. FLRT3-induced externalization
of galectin-9 onto the cell surface was observed. This is in
line with previous observations made in AML cells where
galectin-9 secretion was shown to be triggered by LPHN in a
PKCα-dependent manner (2). Importantly, in both leukemia
(2) and MCF-7 cells FLRT-3-induced effects are moderate.
The effects observed with latrotoxin (a LPHN1 ligand) in
AML cells are much stronger compared to those of FLRT3
(2). These moderate effects indicate that they are most likely
continuous and thus keep the pathway operating in order
to protect malignant cells against cytotoxic lymphoid cells
on an ongoing basis but in a manner that does not allow
exhaustion of the cell. On the other hand, there are clearly
other pathways operated by breast cancer cells to suppress
the activity of cytotoxic immune cells. For example presence
of TALL-104 cells significantly upregulates galectin-9 surface
presence in MCF-7 breast cancer cells. Biochemical pathways
underlying this phenomenon remain to be identified. Based
on these observations, it can be concluded that the FLRT3-
LPHN-Tim-3-galectin-9 pathway is functional in other cancer
cells and in particular in breast cancer cell lines and primary
tumors. In this case, however, we do not observe a FLRT3-
LPHN-dependent activation of mTOR but rather a moderate,
yet significant, activation of PLC/PKCα. In contrast, FLRT3-
LPHN1 interactions in AML cells are capable of activating the
mTOR pathway. The biological effect of LPHN2-FLRT3 results
in the translocation of the Tim-3-galectin-9 complex onto the
cell surface but since there is no proteolytic shedding/secretion,
constant protein renewal is not required as it is in AML cells.
A scheme representing the involvement of FLRT3-LPHN and
other possible interactions in the activation of Tim-3-galectin-9
immunosuppressive pathway is shown in Figure 7. Intriguingly,
in line with our observations that galectin-9 levels in PC3 prostate
cancer cells are low compared to other cancer cells, these cells
were recently reported to be rapidly killed by TALL-104 cells used
in our work (32).

Interestingly, it has been previously reported that galectin-
9 demonstrates anti-metastatic potential in breast cancer
(10, 33). Possible reasons underlying such an activity were
suggested to be galectin-9-induced cell aggregation and reduced
adhesion of breast cancer cells to the extracellular matrix (10).
These studies support our hypothesis regarding the possible
interaction of galectin-9 with membrane-associated glycosides,
since this process is known to participate in determining the
membrane potential (30, 31, 34), which is a crucial factor
affecting cell aggregation. Importantly, as a result of alternative
splicing, galectin-9 may be present in three main isoforms
characterized by the length of the linker peptide: long (49
amino acids), medium (27 amino acids) and short (15 amino
acids) (5, 29–31, 33, 34). As one can see from the data
reported in Supplementary Table 1, some of the cell types can

express only one isoform, others two, or all three but the
biochemical reasons underlying this phenomenon remain to
be understood.

Additionally, NK cells interacting with galectin-9 on the
breast cancer cell surface may release interferon gamma (IFN-
γ) in response (2, 35) which could activate cytotoxic lymphoid
cells located in the area of the tumor microenvironment. These
cells can attack and kill malignant cells breaking off from the
tumor thus preventing their circulation and metastasis. Overall,
it appears that galectin-9 could protect the tumor which produces
it in order to evade host immune attack, but this may not
promote metastasis.

CONCLUSION

Our findings demonstrate the activity of the Tim-3-galectin-
9 biochemical pathway in breast and various other types of
human cancer cells and its possible implication in suppression
of host anti-cancer immune surveillance. This pathway can be
recommended for targeting in order to design novel anti-cancer
immunotherapeutic approaches based on inhibiting the Tim3-
galectin-9 pathobiochemical pathway thus enabling the immune
system to attack and eradicate malignant tumors.
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