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Vibrational Quantisation of Skyrmions

William Grummitt

Abstract

The Skyrme model can be used to describe atomic nuclei as topological soli-

tons known as Skyrmions. Since atomic nuclei are intrinsically quantum

objects, we must give a quantisation scheme for our Skyrmions in order to

fully realise this description. Until very recently, almost all such calculations

used an approach known as rigid body quantisation, which produces some

plausible results for small nuclei but has many problems. In this thesis we

consider a more involved quantisation scheme where we include some vibra-

tional modes which allow the Skyrmions to deform. We demonstrate that

this idea resolves some of the problems of the rigid body method.

The method of vibrational quantisation in the form that we will use is first

seen in a 2015 paper by Chris Halcrow, where he applies the method to the

Lithium-7 nucleus with promising results. Here we use a similar approach to

describe the deuteron. We present some results from numerical calculations,

and compare our results with previous work on the deuteron. In particular,

we compare our results with those of a paper that includes some vibrational

modes to quantise the deuteron, but does so in the instanton approximation.

We also consider the case of having a non-zero pion mass in the model, which
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is something that has not previously been analysed in detail.

We go on to consider the case of Oxygen-16. This nucleus has been

approached using a vibrational method in a 2016 paper by Chris Halcrow,

Chris King and Nick Manton. In this thesis we seek to generalise their method

by using a full two-dimensional numerical scheme by way of a finite element

method. This allows more general choices for the potential, specifically ones

motivated by the Skyrme model. We will discuss how this alpha particle

dynamics approach can be applied for other nuclei which have baryon number

equal to a multiple of 4. An example is Carbon-12, where we conjecture that

a suitable choice of manifold would be the three-punctured sphere.

Lastly, we also give a discussion of quantisation of Skyrmions using a

quantum graph description. This is a way of considerably simplifying the

numerical work by considering only certain key lines on the manifold of

configurations. This reduces the problem to solving an ODE with simple

endpoint boundary conditions, and we show that for Oxygen-16 this method

gives a reasonable approximation of the low energy states.
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Chapter 1

Introduction

The Skyrme model is a non-linear field theory of pions that was first proposed

by Tony Skyrme in the 1960s [62]. The model supports soliton solutions

which have non-trivial topology, and the minimal energy topological soliton

solutions are called Skyrmions. The Skyrmions are all labelled by an integer

topological charge, which we denote by B as we shall see that it is related

to the baryon number in nuclear physics. Skyrmions are static, spatially

localised field configurations which are generally highly stable due to the

topology of the system.

The key insight of Skyrme was to realise that Skyrmions could be iden-

tified with atomic nuclei through their topological charge. For example the

simplest Skyrmion with charge B = 1 could be identified with the simplest

atomic nucleus, Hydrogen, which consists of a single proton and so has baryon

number 1. Furthermore, we shall see that the B = 1 Skyrmion is spherically

1



symmetric and behaves essentially like a point particle at low energies (in-

deed we shall discuss shortly that the Skyrme model is really only applicable

in the low energy regime). It is also the case that the long range interaction

of two B = 1 Skyrmions is reminiscent of experimentally observed inter-

actions between two nucleons [65]. These basic observations indicate that

Skyrme’s insight of identifying Skyrmions with nuclei is plausible in at least

the simplest cases.

If we look at larger values of the topological charge, we see that Skyrmions

do not behave in quite the way we might naively expect. That is to say

that the minimal energy configurations are not simply clusters of B = 1

spheres, but rather the Skyrmions will coalesce together into lower energy

configurations, where one cannot easily identify the individual Skyrmions.

One example that will be important to much of the work done in this thesis

is that of the B = 4 Skyrmion. This can be identified with the Helium-4

nucleus (also known as the α-particle), and is described in the Skyrme model

not as a collection of four spheres but rather as a cubic configuration. This

is an important difference to many more conventional nuclear models which

are based on the idea of a set of distinct nucleons interacting through an

experimentally motivated potential.

In fact, it is a nice property of the Skyrme model that all of the dynamical

and interaction phenomena are determined by just the Skyrme Lagrangian,

which we shall see shortly. This Lagrangian has only a handful of free pa-

rameters (the exact number depends on whether we include any optional
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additional terms), and so an analysis of the Skyrme Lagrangian is less com-

plicated than in the case of many other nuclear models. This mathematical

convenience, in combination with the fact that the model unifies baryons

and mesons, meant that the theory was very popular when it was first pub-

lished. More recent developments by Witten and then by Sakai and Sugimoto

have demonstrated further connections between the Skyrme model and QCD.

Witten showed that in QCD theories with a large number of quark colours,

baryons behave like solitons in a way that is based upon how their masses

scale [68]. Sakai and Sugimoto demonstrated that the Skyrme Lagrangian

could be rederived from a holographic QCD model [61]. These discoveries

have kept interest in the Skyrme model alive, and will motivate our studies

of it.

It would be useful at this point to briefly discuss some other common

nuclear models, so as to provide a point of reference for comparisons and

contrasts with the Skyrme model. Ever since the discovery of the nucleus,

physicists and mathematicians have attempted to come up with theoretical

models that describe experimentally observed nuclear phenomena. It is now

understood that nuclear physics is well described by QCD, but since this is a

highly complex theory numerous models have been developed to approximate

nuclear physics in a way that is more mathematically tractable. We go

through a few examples here.

In the shell model atomic nuclei are described as collections of distinct

nucleons which interact only through an external potential (that is to say
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there is no explicit nucleon-nucleon interaction) [15]. Starting from this idea,

one can derive a Schrödinger equation and a discrete energy spectrum. Be-

cause of the Pauli Exclusion Principle, these levels are filled as the baryon

number increases and each level is called a shell. In certain cases, the num-

ber of protons or neutrons in a nucleus is such that shells are perfectly filled,

and these are called magic numbers. It turns out that the shell model works

very well for magic and nearly magic nuclei, but less well if one is further

away from a magic number. The first few magic numbers in the model are

B = 2, 8, 20, 28 and 50. For higher values, the magic numbers may be differ-

ent for protons and neutrons. There is also the special case of doubly magic

nuclei, where the number of protons and neutrons are both equal to a magic

number. Examples include Helium-4, with two protons and two neutrons,

and Oxygen-16, with eight protons and eight neutrons. The shell model pre-

dicts that these doubly magic nuclei should be highly stable, and this is seen

experimentally. For example, Helium-4 is among the most abundant and

stable nuclei in the universe [53].

The cluster model starts from a different principle. Rather than building

nuclei from individual nucleons, larger nuclei are built from smaller nuclei.

The best smaller nucleus to use as a building block is often considered to

be the Helium-4 nucleus (α-particle) as it is highly stable due to having a

very high binding energy [27]. The α-particles can then be glued together in

various different shapes to make larger nuclei where the baryon number B is

a multiple of four, and excitations of the nuclei are described by vibrations
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of the shapes.

Chiral perturbation theory is an effective field theory where one con-

structs a Lagrangian that has the relevant symmetry properties of full QCD,

namely an approximate chiral symmetry and symmetry under parity and

charge conjugation. One then writes down all of the terms that satisfy these

symmetries and keeps the leading order terms, discarding terms that are

above a certain order. To do this, one must specify a criterion in advance for

ranking the order of terms, and there are several different options for doing

this. The theory has been applied with some success to nucleons and mesons

[22] and to hadron-hadron interactions [46].

Another model is lattice QCD. This is a non-perturbative approach where

the QCD theory is formulated on a lattice of points. In the limit where

the lattice is taken to be infinitely large and the points infinitesimally close

together, the full QCD model is returned. However, if we do not take this

limit then we have a discrete version of QCD which naturally introduces a

cut-off for the momentum at 1/a if a is the spacing of the lattice points. This

model allows the investigation of phenomena which cannot be analysed by

perturbative models, such as quark confinement which is a non-perturbative

effect [67].

A last model to discuss is random matrix theory. Wigner introduced the

idea in [66] that random matrices could be used to model the nuclei of heavy

atoms. In particular he proposed that the spacings between spectral lines

in heavy nuclei could be related to the spacings between the eigenvalues of
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a random matrix. This idea works quite well for very large nuclei, and the

idea is discussed in detail in [51].

These models take different approaches but all have some successes in

different areas. For example, the shell model works well for magic nuclei, the

cluster model for nuclei with baryon number equal to a multiple of four and

random matrix theory for very large nuclei. Unfortunately no nuclear model

works well in all regimes, which is why a variety of models are used. We will

make particular use of the cluster model later in this thesis in our discussion

of the Oxygen-16 nucleus.

1.1 The Skyrme model

Let us now go into some of the basics of the Skyrme model itself. The model

is valid in the low energy limit of QCD as this is where the mesonic degrees of

freedom are dominant. Quark and gluon degrees of freedom can be ignored

as there are no free quarks or gluons at this energy. In particular, there

are no free quarks due to the phenomenon of confinement which we briefly

mentioned in our discussion of other nuclear models. At low energies quarks

must group together to form hadrons. There are no colour singlets as hadrons

consist of either a quark and anti-quark pair of the same colour (mesons) or

three quarks of the three different colours (baryons). In each case the colour

charges will cancel out.

In the Skyrme model we consider only pions, the lightest mesons, since
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this simplification is reasonable from a physics perspective and makes the

model more mathematically tractable. As such, the Skyrme Lagrangian is

constructed from pion fields. We define the Skyrme field U , which is an

SU(2) field, as

U(t,x) = σ(t,x) + iπ(t,x) · τ , (1.1)

where πi are the pion fields, τi are the Pauli matrices and σ is a scalar

field which is included so that U ∈ SU(2), meaning that it must satisfy the

constraint

σ2 + π · π = 1. (1.2)

When constructing the Skyrme Lagrangian, we begin with the motivation

that our Lagrangian should retain the properties of the QCD Lagrangian in

the low energy limit. In particular, the low energy QCD Lagrangian has

Lorentz and chiral symmetry. The chiral symmetry is responsible for up and

down quarks in QCD having equal mass, which in turn leads to pions having

zero mass. In nature there is in fact a small mass difference between up

and down quarks leading to a minor breaking of chiral symmetry, and hence

non-zero pion masses. Thus, when we build the Skyrme Lagrangian we begin

with a fully chirally symmetric Lagrangian and then add a pion mass term,

where the pion mass will be small enough that the chiral symmetry is only

broken slightly. Furthermore, we will require that our Lagrangian produces

Euler-Lagrange field equations which contain no higher than second order

time derivatives, as this is a requirement for physical models. Considering
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all of these points, a natural candidate for the Lagrangian is

L = −F
2
π

16
Tr(RµR

µ) +
1

32e2
Tr([Rµ, Rν ][R

µ, Rν ]) +
1

8
m2
πF

2
π Tr(U − 12), (1.3)

where Rµ = (∂µU)U † is the right current of the Skyrme field U , Fπ is the

pion decay constant, e is a dimensionless parameter that represents a coupling

constant, mπ is the pion mass and 12 is the two dimensional identity matrix.

Also, we have used the Einstein summation convention where repeated in-

dices are summed over, and this convention will be used throughout this

thesis. Note that this Lagrangian is not the only possible choice satisfying

the criteria we have outlined. For example, one could also include a term that

is sextic in derivatives of U , and some modifications to the Skyrme model

do consider this case. The mass term is also not unique, and can be chosen

differently.

It will be useful at this point to make a comment on calibration of the

model. We would like to fix the parameters Fπ, e and mπ. Experimentally

it is known that Fπ = 186 MeV and mπ = 138 MeV [6], so one could argue

that the only truly free parameter is e. In practice however, we treat Fπ as a

renormalised pion decay constant, which allows it to vary, and we also allow

e to vary with the baryon number, that is e = e(B). This allows us to get

better overall agreement with experiment. The values of our parameters can

then be fixed in a number of different ways. The most common method, first

proposed in [2] and [3], is to fit the model in the B = 1 sector to the masses
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of the proton and the delta resonance. A different method is proposed in

[50], where the calibration is done by fitting the mass and size of the B = 6

Skyrmion to the Lithium-6 nucleus, using the rational map ansatz. Indeed,

there have been numerous other methods used to calibrate the model, but

we will use the mainstream convention from [2] and [3]. The length and

classical energy scales of the model are 2/ (eFπ) and Fπ/ (4e) respectively. If

we convert our Lagrangian into these Skyrme units, it takes the tidier form

L = −1

2
Tr(RµR

µ) +
1

16
Tr([Rµ, Rν ][R

µ, Rν ]) +m2 Tr(U − 12), (1.4)

where we have also defined m = 2mπ/ (eFπ) as the dimensionless pion mass.

We keep mπ fixed at the experimental value, so whenever we make a choice

for the value of m we fix the length scale and the value of e.

The first term in (1.4) is quadratic in spatial derivatives, and if we include

only this term we have a sigma model. However, it turns out from a scaling

argument that such a model cannot admit stable soliton solutions. We shall

shortly present a scaling argument by Derrick that demonstrates that we

must include a term that contains higher powers of derivatives (the Skyrme

term which is the second term in (1.4)) in the Lagrangian in order obtain

stable soliton solutions.

If we consider the static energy of the Skyrme field we find that it is given
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by

E =

∫
−1

2
Tr(RiRj)−

1

16
Tr([Ri, Rj][Ri, Rj])−m2 Tr(U − 12)d

3x, (1.5)

where we have switched from Greek to Latin indices to indicate that we

are now working in spatial coordinates only. It can now be shown that the

presence of the pion mass term imposes the boundary condition requirement

for finite energy that U → 12 as |x| → ∞. Note that making a choice of

vacuum breaks chiral symmetry, which in general is given by the Lagrangian

being invariant under

U → AUB†, (1.6)

where A and B are constant SU(2) matrices. If we have a non-zero pion

mass however, the condition A = B is enforced, which reduces the full chi-

ral symmetry to an SU(2) symmetry, which we shall see later is related to

isopsin. We will enforce the boundary condition U → 12 as |x| → ∞ by

hand, so that the chiral symmetry is broken even for the Skyrme model with

massless pions. Note that finite energy forces U → 12 at spatial infinity as

the only possible choice of vacuum.

Another key point here is that we can now identify all of the points at

infinity as a single point as U takes the same value at all of these points.

This allows us to compactify physical space R3∪{∞} to the three-sphere S3.

It is also the case that the SU(2) target space has group manifold S3 [49],

and so our Skyrmions can be thought of as corresponding to maps from S3
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to S3. It is a well known result from homotopy theory that such maps are

indexed by an integer giving the degree of the map. In our case the quantity

is the one that we will come to identify with the baryon number and is given

by

B = − 1

24π2

∫
εijk Tr(RiRjRk)d

3x, (1.7)

and this quantity is topologically invariant. We refer to this as the topological

charge.

However, the existence of a topological charge is not sufficient to give us

stable soliton solutions. If we consider equation (1.5), we see that the three

terms are of degree two, four and zero respectively in spatial derivatives, that

is E = E2+E4+E0. Thus under rescaling by x→ λ−1x, the energy becomes

E =
1

λ
E2 + λE4 +

1

λ3
E0. (1.8)

We notice that the zeroth and second order terms both scale inversely with

lambda and so any solution could be scaled down to a point with zero energy.

However the fourth order Skyrme term scales in the opposite direction, and

so stabilises the solitons to some preferred scale. This tells us that we require

the second order kinetic term and the fourth order Skyrme term to obtain

stable solutions. The zeroth order term is not absolutely required (and if

we choose the pion mass to be zero it will vanish), but including it can yield

more physically relevant results. It should also be noted that the fourth order

term we have chosen is the unique fourth order term which satisfies Lorentz
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invariance and has at most two time derivatives.

One can also use a Bogomolny type argument (using completing the

square) to show that there is a lower bound on the energy of a static Skyrmion

configuration [17], given by

E ≥ 12π2B. (1.9)

The minimal energy configurations are generally close to this bound but

equality is never quite obtained for non-trivial configurations. For the B = 1

Skyrmion the minimal energy is 1.232 times this amount when m = 0 and

1.416 times this bound when m = 1. These numbers decrease somewhat

towards 1 as B increases but do not reach it, even asymptotically. For the

case of an infinite Skyrme crystal, Battye and Sutcliffe calculated in [7] an

energy per baryon of E/B = 1.036. The idea of the nuclear energy being

proportional to the baryon number is well supported by nuclear physics.

It will be useful to define what we mean by the binding energy of a

Skyrmion. In nuclear physics the binding energy is the energy required to

pull a nucleus apart into its constituent nucleons. In the Skyrme model it

is therefore natural to think of the classical binding energy as the energy

required to break a Skyrmion down into its constituent B = 1 Skyrmions.

This is defined simply as

Ebinding = BE1 − EB, (1.10)

where E1 is the energy of a single Skyrmion and EB is the energy of the
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charge B Skyrmion.

1.2 Classical Skyrmions

The Euler-Lagrange equations for the Skyrme model are not solvable analyt-

ically but can be solved numerically. In the interest of completeness, we will

show them here and they take the form

∂µ

(
Rµ +

1

4
[Rν , [Rν , R

µ]]

)
= 0. (1.11)

An alternative approach to looking for numerical solutions is to consider

the rational map ansatz which gives approximate solutions [32] but we will

not dwell on that here. When minimal energy configurations have been

numerically calculated we will want to display them, so we discuss techniques

for visualising solutions here.

1.2.1 Low charge Skyrmions and visualisation

There are two features of a Skyrmion that we want to see when we plot

solutions. The first is the baryon density. This is the integrand in equation

(1.7) and tells us where the nuclear matter is distributed and lets us see by

eye any symmetries the Skyrmion has. The second property we are interested

in is the direction of the pion fields π = (π1, π2, π3). It is a Skyrme model

convention to see this by colouring our baryon density surfaces, typically
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using the Runge colour sphere originally proposed by the German painter

Philipp Otto Runge in 1810 [60]. Using this colouring scheme gives the

convention of colouring the Skyrmion white where π3 = 1, black where π3 =

−1, and then red, green and blue for the combinations of π1 + iπ2 equal to

1, exp(2πi/3) and exp(−2πi/3) respectively. This precise colouring scheme

is first used for Skyrmions in [19].

We now consider the simplest cases as an example. The numerical so-

lutions for topological charges B = 1 to B = 4 have been well known for

some time, for example see [12], and we display the coloured baryon density

surfaces in Figure 1.1.

Figure 1.1: Plots for the first four minimal energy Skyrmions (from left to
right: B = 1 to B = 4) [35].

We see that this is a convenient way of visualising Skyrmions, as it allows

us to easily see the spherical, toroidal, tetrahedral and cubic symmetries of

the four respective Skyrmions. It also lets us see properties of the pion fields,

such as for the B = 1 Skyrmion we see that the third component of the field

is 1 at the north pole and -1 at the south pole, and then each other colour

appears once wrapping around the equator. We also note that the highly
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symmetric nature of the B = 4 cube gives it a high binding energy. This is

consistent with it needing to be identified with the α-particle, and also with

it potentially being used as a building block in a cluster model of the kind

popular in nuclear theory [10].

It is also now easier to explain what a symmetry of a Skyrmion is more

precisely. A symmetry is a pairing of a rotation and an isorotation that

leaves one of our pictures invariant. Rotations are rotating the Skyrmion in

physical space and isorotations can be thought of as a rotation of the colours

around the surface. Thus, for a symmetry of a Skyrmion it must be possible

to compensate for a rotation by a recolouring of the surface by reorienting the

Runge colour sphere. This notion of a symmetry will be important when we

come to discuss quantisation of Skyrmions, which is the topic of this thesis,

as it will provide constraints on the spin and isospin states that are permitted

after quantisation.

1.2.2 Higher charge Skyrmions

We can also produce similar pictures for higher charge Skyrmions. Motivated

by the cluster model, we can look at a few nuclei with B equal to a multiple of

four, to see if the Skyrme model agrees with the evidence from nuclear physics

that these nuclei are comprised of α-particle building blocks. Interestingly,

it does. For B = 8 we see an object that looks like two cubes glued together

and for B = 12, we find two configurations with very similar energies. One is

with three cubes arranged in a triangle and one has the three cubes arranged
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in a chain. In fact, it is known experimentally that Carbon-12 does indeed

have two low-lying states, the ground state and the Hoyle state, which can be

related to these two Skyrmion configurations. We show all of these pictures

in Figure 1.2.

Figure 1.2: A plot of the B = 8 Skyrmion (left) and the triangle and chain
configurations for B = 12 (centre and right respectively) [19],[58]. The tri-
angle and chain configurations have similar energies.

For B = 16 there are various ways of sticking together four B = 4 cubes,

and we display these in Figure 1.3. A key remark here is that experimentally

the tetrahedron should be the minimal energy arrangement, with the square

arrangement having slightly higher energy. However, in the Skyrme model

the ordering is the opposite way around, although the energy gap is still

small [31].

Figure 1.3: Plots for Skyrmion configurations with B = 16; the tetrahedron
and the square [30].
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One could go much further to plot much larger Skyrmions with B = 4N ,

and indeed as B tends to infinity it has been shown that Skyrmions form

crystals with an infinite lattice of B = 4 cubes [49].

It is important to note that these pictures were all calculated with pion

mass m = 1. For the case m = 0 things look somewhat different, as we do

not see clusters but rather we find shell type solutions [9]. As m is increased

from zero, we gradually transition from the shell type structures to cluster

type ones.

1.3 Modifications to the Skyrme model

Since we want to relate these Skyrmions to real atomic nuclei, there is an

important caveat to the model. The classical binding energies that we cal-

culate for Skyrmions are substantially larger than the binding energies for

real nuclei [47]. For example, in [9] it is calculated that the B = 2 Skyrmion

has its binding energy overstated by more than 20%. This has motivated

certain modifications that can be made to the Skyrme model in an attempt

to remedy this, at least partially.

A popular idea is to add a sixth order term in to the Lagrangian which

takes the form

L6 =
3

2
Tr([Rµ, R

ν ][Rν , R
λ][Rλ, R

µ]), (1.12)
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and then construct a Lagrangian

LBPS = L6 +mTr(1− U), (1.13)

and this is a BPS theory. For this particular case, the Bogomolny energy

bound (1.9) is in fact saturated, which means that for this modified model

the Skyrmions have zero binding energy. This now obviously understates

the binding energies, but we can allow a small binding energy by adding a

perturbative correction relating to the second order term

L = εL2 + L6 +mTr(1− U), (1.14)

where L2 is the same second order term we saw in the original model and

ε is a small parameter. The idea, proposed in [1], is then to solve for the

BPS solutions (where ε = 0) and then increase ε to include the perturbation.

However this is numerically very challenging as the BPS model is hard to

solve numerically, and for ε = 0 only the charge 1 solution is currently known,

so more work needs to be done.

Another modification we can make to the original model is to adjust the

potential (zeroth order) term. One well studied possibility is to take the new

zeroth order term to be Tr(1 − U)4 [24], [23]. This potential actually gives

binding energies close to the experimentally determined values but has some

different drawbacks. Firstly a quantisation of this model becomes very diffi-

cult as there are many local minima in each baryon sector, and so to include
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all of these when doing quantisation would make the procedure impractical.

Also, in this model the Skyrmions now look like collections of point parti-

cles, rather than the novel solutions we saw before where individual nucleons

were not distinguishable. Losing this unique feature of the Skyrme model is

undesirable.

Lastly, another idea is to include vector mesons by coupling them to the

original Skyrme model. As one includes more mesons, the model approaches

the BPS limit [64], and even the addition of just the first meson decreases

the classical binding energy of the B = 4 cube fourfold [63]. More recent

work by Naya and Sutcliffe in [54] and [55] has yielded further interesting

results.

These modifications both have scope to reduce Skyrmion binding energies

but come with other difficulties, and for the purposes of this thesis we shall

study the original Skyrme model given by (1.4). We shall see in Chapter

2 that the process of quantisation also goes some way to lowering the high

classical binding energies.

1.4 Thesis outline

So far we have discussed classical solutions of the Skyrme model, but clearly

if we are to complete the identification with atomic nuclei we must quantise

these solutions. It must be noted that one cannot quantise the Skyrme model

in the conventional way by using full quantum field theory, as the Skyrme
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model is not renormalisable. As such other methods must be considered. In

Chapter 2 we will introduce the concept of Skyrmion quantisation. The sim-

plest and most common approach is rigid body quantisation which produces

a few plausible results for small nuclei, but has some significant limitations.

In this thesis we want to build on recent work done on a method called vibra-

tional quantisation, and we will present some results for different Skyrmions

in this vibrational scheme.

We consider first a comparatively simple problem, namely B = 2. This is

already reasonably well described by the rigid body approximation, but we

apply the vibrational method to see if we can obtain some improved results.

We also investigate the B = 16 Skyrmion, identifiable with the Oxygen-

16 nucleus. Some work on this has already been done but we make several

significant generalisations. The general idea behind the improvements is

to use two-dimensional rather than one-dimensional numerics to solve the

problem, and this allows us to make an unrestricted choice for the potential,

rather than the highly restricted potential that could be chosen in the pre-

vious framework. We also discuss an interesting approximate approach for

Oxygen-16 using quantum graphs, that simplifies the problem considerably,

by reducing it to solving ODEs.

We then give a brief discussion about how a very similar numerical method

to that used for Oxygen-16 could be applied to Carbon-12 with only minor

alterations, before ending with some concluding remarks and an outlook for

potential future work in the area of vibrational quantisation.
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Chapter 2

Quantisation of Skyrmions

As argued in Chapter 1, if we wish to turn the Skyrme model into a plausible

model for atomic nuclei, we must give a quantum description of Skyrmions.

So far, all of the solutions we have shown have been classical solutions of the

model, and we will build on this base to construct a quantum description.

That is to say we will take the classical solutions and then add in quantum

corrections.

The simplest corrections arise from considering the zero modes of the

Skyrmion. These are any transformations under which the energy of the

configuration is invariant. Such transformations fall into four categories:

discrete symmetries, translations, rotations and isorotations. Translations

are trivial and we shall not consider them here. Parity is the relevant discrete

symmetry that we will consider, and will play an important role in our future

discussions. Rotation and isorotation zero modes lead to conserved angular
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momentum J and isoangular momentum I.

To illustrate the size of the quantum corrections consider a quantity such

as the mass of a nucleus. If one takes the classical mass of a Skyrmion as

the first approximation of the experimental nuclear mass, the rotational and

isorotational corrections give rise to a small corrections of order ~2, where as

usual ~ is the reduced Planck constant.

Further corrections to consider come from Skyrmion deformations. It is

known that a Skyrmion can deform quite significantly, and this gives rise to

extra degrees of freedom. Including general deformations is mathematically

challenging but one method is to model deformations as harmonic vibrations,

thus the corrections to the nuclear mass are of order ~. Lastly, interactions

between Skyrmions and the pions give rise to a Casimir energy, which also

leads to a correction of order ~.

Overall, the energy of a Skyrmion in the quantum picture is given schemat-

ically by its classical mass plus corrections as

E = MB + ~
∑
i

ωi

(
ni +

1

2

)
+ ~2EJ,I , (2.1)

where ωi are frequencies of the harmonic vibrations, MB is the mass of a

Skyrmion of charge B and EJ,I is the energy contribution from the spin and

isospin zero modes. A subtle point is that although we call MB a mass, it

is in fact the static energy of the minimal energy Skyrmion configuration of

charge B. This differentiates it from the pion mass, which is the mass of
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the pion field as derived from the field theory interpretation of the Skyrme

model. If we consider an infinite number of frequencies, then the constant

part of the second term is the zero point energy or Casimir energy, when

suitably renormalised.

The zero mode corrections have been well understood for some time but

the vibrational corrections have only recently started to be analysed, with a

notable early success being for the Lithium-7 nucleus in [29]. The calculation

of the Casimir correction presents significant difficulties, since calculating it

requires the Skyrme model to be renormalised but the model is not renormal-

isable. However it is a reasonable approximation that the Casimir correction

is roughly the same for each state with a given topological charge, and so

the correction does not change the order of states or the gaps between them

when one is calculating a spectrum. In particular the relative positions of

states should be accurate, and one can calibrate calculated values against

experiment in order to ensure the values of the energies are also reasonable.

Since we are going to be interested primarily in calculating energy spectra,

we will not concern ourselves with the Casimir correction. This is because

when we calculate a spectrum we are generally more interested in the relative

positions of the states rather than their absolute values, and the Casimir cor-

rection should not significantly effect these. However for an analysis of how

one might go about trying to include the Casimir term more rigorously, the

reader is referred to [39] where Krusch and Speight attempt to include the

Casimir energy correction for quantum lumps on the two-sphere. Another
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useful paper is [52], in which the Casimir energy of the B = 1 Skyrmion is

calculated, but nothing beyond this has been determined in the full Skyrme

model.

2.1 Zero modes

Let us now consider in detail the respective corrections we have just outlined.

Firstly, we consider the spin and isospin zero modes. To understand these

we must introduce coordinates to describe the orientation of a Skyrmion

in space and isospace. Both spaces can be parametrised by Euler angles

and by convention we use (ψ, θ, φ) for the rotational angles and (α, β, γ) for

the isorotational angles. A Skyrmion rotation can always be decomposed

into three simple rotations: a rotation of ψ about the (0, 0, 1) axis, then

a rotation of θ around (1, 0, 0) and finally a rotation of φ around the new

(0, 0, 1) axis. Similarly an isorotation can be decomposed in the same way,

but the isorotations act on the pion vectors rather than the Skyrmion itself,

and so can be visualised as moving the colours around the surface of the

Skyrmion.

It is worth noting at this point that the Skyrme Lagrangian (1.4) has

what is known as an isopsin symmetry. That is to say the Lagrangian is

invariant under the transformation

U → AUA†, (2.2)
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where A is a constant SU(2) matrix. We saw this previously as the reduc-

tion of the full chiral symmetry (1.6). If we denote the 3 × 3 rotation and

isorotation matrices by RJ and RI respectively, then RI is related to (2.2)

by

RI
ij =

1

2
Tr
(
τiAτjA

−1) . (2.3)

We can now write down the most general form of Skyrmion configurations

that can be generated from a given starting configuration U0(x) by rotations

and isorotations. It is given by

U(x;α, β, γ, ψ, θ, φ) = A(α, β, γ)U0(R
J(ψ, θ, φ)x)A(α, β, γ)†. (2.4)

We call this the zero mode configuration space of Skyrmions, and quantising

Skyrmions by including only these modes is known as zero-mode or rigid

body quantisation, with the latter name deriving from the fact that this

scheme allows the Skyrmions to rotate but not to deform or vibrate. We

will briefly outline how this method works here, but for a full discussion the

reader is referred to [48], where this method is first outlined for solitons, and

also to [3] where it is first applied to Skyrmions directly.

2.1.1 Rigid body quantisation

We will now describe the general idea behind rigid body quantisation. We

firstly allow all of our coordinates to depend on time, and then substitute
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the ansatz (2.4) into (1.4). This reduces the Lagrangian to the form

L = MB +
1

2
(a, c)Λ(a, c)T , (2.5)

where a and c are the classical isospin and spin velocities respectively. We

think of them as row vectors of the form a = (a1, a2, a3), and they can be

written down explicitly in component form as

aj = −iTr(τjA
†Ȧ) and cj = iTr(τjĊC

†), (2.6)

where C is the rotational analogue of the isospin matrix A in (2.2). Λ is the

moment of inertia tensor and is given by

Λ =

 U −W

−W T V

 , (2.7)

where U , V and W can be defined in component form as

Uij = −
∫

Tr

(
TiTj +

1

4
[Rk, Ti][Rk, Tj]

)
d3x (2.8)

Vij = −
∫
εilmεjnpxlxn Tr

(
RmRp +

1

4
[Rk, Rm][Rk, Rp]

)
d3x (2.9)

Wij =

∫
εjlmxl Tr

(
TiRm +

1

4
[Rk, Ti][Rk, Rm]

)
d3x, (2.10)

where Ti =
i

2
[τi, U0]U

−1
0 .
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If we now move into the Hamiltonian formulation, the classical Hamilto-

nian is now

H = MB +
1

2
(K,L)Λ−1(K,L)T , (2.11)

where K and L are the classical body-fixed isoangular and angular momenta

respectively. There are also the usual space-fixed equivalent momenta de-

noted respectively by I and J . These are related to the body-fixed momenta

through the rotation matrices by I = RIK and J = RJL.

The Hamiltonian (2.11) can then be quantised canonically. This means

that the momenta are now operators and the Hamiltonian becomes

Ĥ = MB +
~2

2
(K̂, L̂)Λ−1(K̂, L̂)T = MB −

~2

2
∇2, (2.12)

where∇2 is the Laplacian operator on the space of rotations and isorotations.

The momentum operators can be described using the angles we intro-

duced previously. If one consider the space-fixed momentum operators, the

third components can be written as Ĵ3 = −i~∂ψ and Î3 = −i~∂γ. These two

objects are particularly interesting as they both commute with the Hamilto-

nian, as do the squares of both angular momentum operators Ĵ · Ĵ = L̂ · L̂

and Î · Î = K̂ · K̂. This tells us that there are four conserved quantities for

each energy eigenstate. These are denoted by the quantum numbers J3, I3,

J(J + 1) and I(I + 1), where −J ≤ J3 ≤ J and −I ≤ I3 ≤ I.

We will not discuss in detail how to solve this Hamiltonian here, as it is

quite complicated, but has been studied in great depth elsewhere with a good
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source being [41]. It turns out that the Schrödinger equation corresponding to

(2.12) has solutions composed of Wigner-D functions that depend on the mo-

menta, denoted by DJ
L3,J3

(ψ, θ, φ) for the rotational basis and DI
K3,I3

(α, β, γ)

for the isorotational basis. Wavefunctions will then be

Ψ =
∑
L3,K3

cL3,K3D
J
L3,J3

(ψ, θ, φ)DI
K3,I3

(α, β, γ), (2.13)

which we abbreviate for convenience to

|Ψ〉 =
∑
L3,K3

cL3,K3 |J, L3, J3〉 |I,K3, I3〉 , (2.14)

where cL3,K3 are constants.

It can now be recognised that this wavefunction is the same as that of a

generalised rigid rotor, and so we can immediately write down the rotational

energy

Erot = −~2

2
〈Ψ| ∇2 |Ψ〉 , (2.15)

where |Ψ〉 here is an eigenfunction of the Laplacian.

In the case of Skyrmions however, there are many additional constraints

resulting from the symmetries of the Skyrmion configuration. These sym-

metries place restrictions on the allowed values of spin J and isospin I, and

also on the constants cL3,K3 . Indeed for highly symmetric configurations such

as B = 1 and B = 4 there are many constraints and these will tell us the

allowed quantum states |J, I〉 permitted by the rigid body quantisation of
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the Skyrme model, which we can then compare with experimental data.

2.1.2 Finkelstein-Rubinstein constraints

Let us now consider how these constraints work in practice. A single B = 1

Skyrmion is intended to model a single proton or neutron, both of which

are fermions and thus have half-integer spins. By contrast, bosons have

integer spins. More generally a Skyrmion of charge B can be thought of

as describing a nucleus of B nucleons, meaning that such a Skyrmion is a

fermion if B is odd (as it will consist of an odd number of constituent particles

with half-integer spins and so retain an overall half-integer spin) and a boson

if B is even (as it will consist of an even number of constituent particles

with half-integer spins and so have an overall integer spin). In quantum

mechanics, bosons and fermions are defined by their exchange statistics and

spins. For exchange statistics, the definition is that if two identical bosons are

exchanged in a system, the wavefunction is invariant, whereas an exchange

of two identical fermions will result in the wavefunction changing by a factor

of −1. It then follows from the spin-statistics theorem that bosons must have

integer spins and fermions must have half-integer spins. One further property

that results from these definitions is that we also have the constraint that the

wavefunction of a boson should be invariant under a 2π rotation, whereas for

a fermion the wavefunction should change by a factor of −1. In quantum field

theory, bosons are conventionally described by scalar, vector or tensor fields

whereas fermions are described by spinors. We want to quantise Skyrmions
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as atomic nuclei composed of fermions, but the Skyrme model is a scalar field

theory so this would seem to be a problem.

The first work on this subject was by Finkelstein and Rubinstein [20].

They realised that solitons could be quantised as fermions or bosons in a

consistent way. They suggested that one should look at the covering of

configuration space rather than the configuration space itself. Let us denote

the configuration space of Skyrmion configurations of charge B by QB, and

then note that this space has fundamental group π1(QB) ∼= Z2, which means

that the covering space CQB is a double cover.

Consider now two points q̃1 and q̃2 in CQB, corresponding to the point q

in QB, as shown in Figure 2.1.These two points are connected by a path in

CQB which projects to a non-contractible loop in QB. This insight allows

us to think of symmetries of configurations as induced loops in configuration

space, but the symmetry also acts on the covering space and the key point

is that if we apply the symmetry to q̃1 we get q̃1 if the induced loop is

contractible and q̃2 if it is not [38].

If we now define a wavefunction as a map ψ : CQB → C, q̃ 7−→ ψ(q̃),

we can impose the fermionic constraint that ψ(q̃1) = −ψ(q̃2). We call this

a Finkelstein-Rubinstein constraint, and we are now interested in how this

constraint affects general rotations and isorotations. It turns out that if we

consider a rotation by θJ about axis n in space combined with an isorotation
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Figure 2.1: A visual representation of the double covering space CQB in re-
lation to configuration space QB. We see that two points in CQB correspond
to the same point in QB [38].

by θI about axis N in isospace we find that

exp(−iθJn · Ĵ) exp(−iθIN · Î)ψ(q̃) = χFRψ(q̃), (2.16)

where χFR = +1 if the induced loop is contractible and −1 if it is not. This

process produces the correct basic results. It was shown in [25] that a 2π

rotation of a Skyrmion gives χFR = +1 for even B and −1 for odd B. In

[37] the same thing was shown for a 2π isorotation. Additionally Finkelstein

and Rubinstein themselves showed in [20] that an exchange of two identical

Skyrmions gives χFR = +1 for even B and −1 for odd B. These all agree

with the basic principles of quantum mechanics we discussed at the start

of this subsection. These restrictions tells us that a Skyrmion with even
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or odd baryon number B must have integer or half-integer spin and isospin

respectively.

Furthermore in addition to these well known quantum mechanical re-

sults that must always hold, there are additional constraints related to the

symmetry group of a Skyrmion. There are additional actions which leave

Skyrmions invariant beyond the ones just discussed. For example, for the

B = 4 Skyrmion, which has cubic symmetry, it can be seen that the Skyrmion

is invariant under the action of a 2π/3 rotation about the (1, 1, 1) axis fol-

lowed by a 2π/3 isorotation about the (0, 0, 1) axis. Using the same rules as

before, the wavefunction must satisfy

exp
((

2πi/
(
33/2

))
(1, 1, 1) · L̂

)
exp((2πi/3) K̂3) |Ψ〉 = (−1)N |Ψ〉 , (2.17)

where N is equal to 0 or 1. We call N the Finkelstein-Rubinstein number and

we call relations of this form Finkelstein-Rubinstein constraints. We can ask

how we determine N , and there are several ways of doing so. One method

is to approximate the Skyrmion using rational maps [32] and then use the

formula derived in [37] to obtain N . It is given by

N =
B

2π
(Bα− β), (2.18)

where α and β denote the angles of a rotation and isorotation respectively,

and the rational map is required to satisfy a suitable base condition [37].

This method has been generalised further in [36] to be applicable to Skyrme
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configurations composed of clusters of rational map Skyrmions, which ap-

proximate Skyrmions in Skyrme models with a pion mass.

One can derive Finkelstein-Rubinstein constraints for all of the symme-

tries of a particular Skyrmion, and once this is done we can deduce the al-

lowed spin and isospin values. A natural first step is to consider the ground

state predictions of rigid body quantisation, and compare them to the known

ground states found experimentally. We do this for the first nine Skyrmions

in Table 2.1. We see that we match the experimental states for B = 1 . . . 4

and B = 6 and 8 but the model fails for B = 5, 7 and 9. Recall that these

are only the predictions of the rigid body quantisation of the Skyrme model,

not the full predictions of the model. We must now consider how appropriate

rigid body quantisation is as a method, and this will give us some insight

into why the rigid body model does not agree with experiment for most odd

nuclei. We will next consider going beyond zero modes and including some

additional modes that allow the Skyrmions to deform and vibrate.

2.2 Vibrational modes

So far we have allowed our Skyrmions to spin and isospin as we quantise them.

However, this is obviously not the full picture, as we have already seen that

Skyrmions can deform, for example by breaking down into their constituent

B = 1 Skyrmions, or by changing their shape as they spin [5] or isospin [4].

As such we must consider the space of deformed Skyrmion configurations.
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B Model |J, I〉 Exp. |J, I〉 Nucleus Match?
1 |1/2, 1/2〉 |1/2, 1/2〉 1H Y
2 |1, 0〉 |1, 0〉 2H Y
3 |1/2, 1/2〉 |1/2, 1/2〉 3He Y
4 |0, 0〉 |0, 0〉 4He Y
5 |1/2, 1/2〉 |3/2, 1/2〉 5He N
6 |1, 0〉 |1, 0〉 6Li Y
7 |7/2, 1/2〉 |3/2, 1/2〉 7Li N
8 |0, 0〉 |0, 0〉 8Be Y
9 |1/2, 1/2〉 |3/2, 1/2〉 9Be N

Table 2.1: A table of the predicted and experimental ground state spins and
isospins for B = 1 to B = 9.

Since a single B = 1 Skyrmion has 6 degrees of freedom, three translational

and three isorotational, a charge B Skyrmion has 6B degrees of freedom if

we model the individual B = 1 Skyrmions as point particles with internal

isospin degrees of freedom. If we allow the individual Skyrmions themselves

to deform then this number will increase further [26]. Also note that the

zero modes are distinct from the deformations and can be separated out by

considering a vibrational manifold, which we denote byM, with the addition

of a fibre containing the zero modes.

The method of vibrational quantisation as we shall study it was proposed

by Halcrow for the B = 7 Skyrmion in [29]. The idea is that in order to

include deformations one must solve the Schrödinger equation on the total

space, rather than just considering the spaces of rotations and isorotations

as before. If we put a coordinate s on M along with a metric g, the kinetic

operator (for small energies) is the well known Laplace-Beltrami operator
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given by

∆ =
1√
|g|
∂i

(√
|g|gij∂j

)
, (2.19)

where ∂ =

(
∂

∂s
,∇
)

and ∇ is the gradient on the combined zero mode

space of rotations and isorotations. The potential energy is the static en-

ergy of the deformed Skyrmion at position s on M (for the minimal energy

Skyrmion configuration this is the MB that we saw in equation (2.1)), and

the Schrödinger equation takes the form

(
−~2

2
∆ + V (s)

)
Ψ = EΨ, (2.20)

where Ψ is the total wavefunction. This equation has been known about for

some time but is very difficult to work with and solve. The metric is 6B

dimensional and in general has no nice properties, and if we hope to solve

(2.20) then we must make some simplifying approximations. For example,

one simplified case is seen in [44], where (2.20) is solved on a one-dimensional

sub-manifold of the vibrational manifold for B = 2. A caveat here is that

the authors of this paper are working in the instanton approximation. This

work provides some new insight into the deuteron compared to rigid body

quantisation but can be generalised much further, as we shall discuss later

in this thesis.

In [29], Halcrow makes some further simplifications which we shall also

follow. He assumes that M is Euclidean and that the metric g is block
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diagonal, such that the kinetic operator separates into distinct rotational and

vibrational parts. This assumption ensures that wavefunctions will likewise

be separable into a vibrational part and a spin part, that is

Ψ =
∑
i

ui(s) |Θ〉i , (2.21)

where we call ui the vibrational wavefunctions and |Θ〉i the spin wavefunc-

tions. We refer to the total wavefunction as a rovibrational state. Note that

the spin states are precisely those spin states found for the zero modes, as the

vibrational contributions have been separated out. The rotational equation

is

−∇2 |Θ〉i = EJ,I(s) |Θ〉i , (2.22)

where EJ,I is the rotational contribution to the total energy and depends on

s via the moment of inertia tensor (2.7).

More interesting is the vibrational Schrödinger equation which is given

by

− ~2

2
∇2
Eu(s) +

(
V (s)− ~2

2
EJ,I(s)

)
u(s) = Evibu(s), (2.23)

where ∇2
E is the Laplacian on Euclidean space and Evib is the vibrational

contribution to the total energy.

This equation (2.23) can be solved exactly with the aid of two further

assumptions. First we assume that the deformations we are considering vary

the moment of inertia tensor only slightly, meaning that we can approximate
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EJ,I(s) to be constant, up to some small corrections that can be added in

later using perturbation theory. Secondly we must make a suitable choice for

the potential. The paper [29] argues that a good assumption for the potential

is to take it to be harmonic around its minimum (which is the minimal energy

Skyrmion configuration for the relevant value of B) which can be taken to

be at s = 0 without loss of generality. We will argue in this thesis that

this can be generalised further. Observe that both of these assumptions are

reasonable for small deformations. This is true near the origin of M, which

is where one would expect to find low energy solutions. As such, if we wish

to calculate an energy spectrum using this method, it should be valid to do

so for low energy states.

We will give some further details on the way in which to perform these

calculations in Chapter 3 when we consider applying this method to the

case of B = 2 but for further background the reader is referred to [29]. It

is useful at this point though, to make a brief reconnection with rigid body

quantisation and see how the two techniques compare. Clearly the method of

vibrational quantisation is much more involved than the rigid body approach,

so is this extra effort justified by additional insights? A positive observation is

that the binding energy of a Skyrmion that has been vibrationally quantised

will be lower than one that has been quantised in the rigid body scheme.

If we use a vibrational scheme where the Skyrmion is allowed to decompose

into its constituent B = 1 parts, then we must include 6B − 9 vibrational

modes [28]. By considering the terms in (2.1) and neglecting the Casimir
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term, the energy of a charge B Skyrmion will be

EB = MB +
1

2
~ω̄(6B − 9) +

~2

2
EJ,I , (2.24)

where ω̄ is an averaged frequency over the 6B − 9 vibrations, which are

approximated here to be harmonic. Again, MB is the mass of a charge B

Skyrmion. By comparison the energy of B charge one Skyrmions is given by

BE1 = BM1 +BEJ,I|B=1, (2.25)

where EJ,I|B=1 and M1 denote the rotational energy and mass of a B = 1

Skyrmion respectively. This formula is valid only for B ≥ 2, as we cannot

define a vibrational energy for B = 1 since it cannot be broken down any

further. From these formulae we can see that the binding energy (BE1 −

EB) of a charge B Skyrmion is lowered by an amount
1

2
~ω̄(6B − 9) in the

vibrational scheme compared to the rigid body scheme. This brings the

binding energies of the Skyrme model closer to those of experimental data.

One other point to make is that vibrational quantisation tells us some-

thing about where the rigid body regime is appropriate and where it falls

down. In particular it can be argued that rigid body quantisation fails if

there is more than one Skyrmion configuration for a given B with a high de-

gree of symmetry, and the effect is increased if the symmetric configurations

lie close together on M. For example, we shall later study the Oxygen-16

nucleus and for B = 16 there are multiple highly symmetric configurations
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as we saw in Figure 1.3. Because these configurations lie reasonably close

together on M the effect is significant and the rigid body approach does

not work well. A final remark is that zero mode quantisation always pre-

dicts an infinite tower of states, whereas vibrational quantisation for realistic

potentials will only give a finite number of bound states.

2.3 Summary

We have introduced the concept of quantisation in the Skyrme model and

observed some of the limitations of the rigid body approach. It predicts

incorrect spins for the B = 5 and B = 7 ground states, with the latter having

already been corrected by vibrational quantisation in [29]. We will consider

the cases of B = 2 and B = 16, as well as touching on B = 12. We must

also always recall that Skyrmion symmetries are important when discussing

quantisation, and Skyrmions with multiple highly symmetric configurations

must be treated with care.
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Chapter 3

Vibrational quantisation of the

B=2 Skyrmion

3.1 The B=2 Skyrmion

Let us consider the interaction of two charge one Skyrmions. Two separated

charge one Skyrmions will experience the greatest attractive force if one

Skyrmion is rotated by π radians relative to the second Skyrmion, around

a line perpendicular to the line joining them [44]. This set up is known

as the attractive channel, and for the B = 2 case the configuration will

interpolate between a pair of charge one Skyrmions and the toroidal B = 2

Skyrmion which is the lowest energy B = 2 configuration as shown in Figure

3.1. Note that for a head on collision, the two Skyrmions scatter at an angle

perpendicular to the line of their approach. In the case of off-centre collisions,
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the scattering is more complicated [21].

Figure 3.1: A representation of the scattering of two B = 1 Skyrmions, which
coalesce together to form a B = 2 torus before moving apart perpendicular
to the original direction [21].

It is worth noting that the B = 2 configuration has a relatively high

degree of symmetry. There are certain combinations of reflections in space

and in isospace which leave the Skyrme field U invariant, which we will now

consider. Let us follow [44] by defining a transformationOai as a simultaneous

rotation by π around the a-th axis in isospace and the i-th axis in physical

space. Note that O0i denotes a rotation by π around the i-th axis in physical

space with no rotation in isospace and similarly Oa0 denotes a rotation by π

around the a-th axis in isospace with no rotation in physical space.

Let us also define the parity operator P as

P : U(x)→ U †(−x), (3.1)

noting that this is the combined parity operator in space and isospace, which
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we can think of as acting in the following way;

P : (π1, π2, π3)→ (−π1,−π2,−π3) and (x1, x2, x3)→ (−x1,−x2,−x3).

(3.2)

We can then define a transformation Pai = POai, and note that under cer-

tain such transformations the Skyrmion field remains invariant. In particular

these transformations are

P21 : (π1, π2, π3)→ (π1,−π2, π3) and (x1, x2, x3)→ (−x1, x2, x3), (3.3)

P22 : (π1, π2, π3)→ (π1,−π2, π3) and (x1, x2, x3)→ (x1,−x2, x3), (3.4)

P33 : (π1, π2, π3)→ (π1, π2,−π3) and (x1, x2, x3)→ (x1, x2,−x3), (3.5)

where πi are the pion fields, which we can think of as coordinates in isospace,

and xi are the coordinates in physical space [44].

These symmetries help us to determine what the Finkelstein-Rubinstein

constraints are for B = 2, in line with the discussion in Chapter 2. For

example, the O21 symmetry could be encoded as

eπiL̂1eπiK̂2Ψ = χFRΨ, (3.6)

where L̂1 and K̂2 are the relevant components of the angular momentum and

isoangular momentum operators. This can the be combined with parity. In

our case here we have χFR = +1 as B = 2 is even, and it is known that
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an even B produces a Finkelstein-Rubinstein number of +1 [38], [37]. The

symmetries of the configuration are of course important when we consider

quantisation because of the constraints they provide, but we shall see for our

vibrational quantisation they will restrict the form of the metric to something

manageable.

3.2 Vibrational quantisation for B = 2

Our goal is to quantise the B=2 Skyrmion configuration taking into con-

sideration one vibrational mode. In particular it makes sense to consider a

vibration along a direction that best preserves the toroidal symmetry of the

problem as this will be the lowest energy vibrational mode.

The manifold we must quantise can be thought of as being parametrised

by a vibrational coordinate, which as before denote by s so as to be consis-

tent with [29], as well as the three rotational (φ,θ,ψ) and three isorotational

(α,β,γ) angles that we saw before. As before we allow all of these param-

eters to vary with time, which allows us to define an isoangular velocity a

and angular velocity c. We can then express the kinetic energy in a way that

depends on the metric on our vibrational manifold which in turn depends on

s as

T =
1

2
(ṡ, a, c)g(s)(ṡ, a, c)T , (3.7)

where as usual the dots denote time derivatives, and where g(s) is the metric.

This is now the analogue of the second term in the Lagrangian (2.5).
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We then know from our previous discussion that the kinetic operator is

proportional to the Laplace-Beltrami operator (2.19) and the Schrödinger

equation takes the form (2.20).

In general for problems such as these we can split the metric into sub-

matrices whose forms are restricted by the symmetry of the configuration.

The standard convention is to write our 7-dimensional matrix as follows [11]

g =


λ 0 0

0 U −W

0 −W T V

 , (3.8)

where U , V and W are all 3 × 3 matrices and λ is a scalar. Observe that

the lower right 6 × 6 block of this matrix is exactly the moment of inertia

tensor (2.7) that we encountered for the rigid body case, and the quantity λ

is a new object unique to the vibrational method. It is defined [29] as

λ = −
∫

Tr(RτRτ + [Rτ , Ri][Rτ , Ri])d
3x. (3.9)

We make the assumptions outlined previously that the wavefunction is

separable into vibrational and rotational parts (2.21). We also notice that

for the B = 2 case the vibrational manifold is one-dimensional and is defined

simply by the separation of the two Skyrmions. This means that our param-

eter s is in fact a scalar quantity s. The Schrödinger equation thus becomes
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a 1-dimensional equation

(
− ~2

2
√
|g|

d

ds

(√
|g|
λ

d

ds

)
+ V (s) + EJ(s)

)
u(s) = Eu(s). (3.10)

In order to set about solving such an equation, we must first determine

g(s),V (s) and EJ(s) by using a numerical simulation. The two charge one

Skyrmions in the attractive channel represent our initial configuration, and

this is then evolved in fictitious time τ in such a way as to reduce the potential

energy of the system before ending at a stationary point.

It should be noted that once we have numerically determined the relevant

quantities it is prudent to change our variable from numerical time τ to a

more convenient distance parameter. We first define a distance d from τ

using

d(τ) =

∫ τ√
λ(τ ′)dτ ′. (3.11)

We call this distance measure a geodesic distance, and it has the advantage

of effectively scaling λ out of the Schrödinger equation by setting it to be

equal to one. There are other possible distance measures we could consider,

such as the distance between the centres of mass of the two Skyrmions or

the distance between pre-images of the anti-vacuum, but we shall use the

geodesic distance here.

We must be careful in choosing the limits of our integration as d and τ do

not behave in the same way. First we must observe that we start off at time

τ = 0 with two well separated Skyrmions, so we want this to correspond to d
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being maximal. If we take the equation (3.11) then d increase as τ increases,

so to get the inverse behaviour we want we perform a change of variables. If

we define dmax as the maximum value of d and τmax as the maximal value of

the numerical time, then we can define the new variable d̃ = dmax − d. This

new variable now has the correct relationship to τ , that is d̃ = dmax at τ = 0

and d̃ = 0 at τ = τmax.

A second point is that the distance measure d̃ does not yet define a

physical distance, only a numerical one. That is, if we took the two Skyrmions

to have an initial physical separation of smax we would not find our value

of dmax to be equal to smax. In order to scale the distance to be physically

meaningful, we will perform a second change of variables which will introduce

a scaling factor. We define a new variable s = βd̃, where β = smax/dmax, and

this new variable s now has the properties we desire. Relating back to the

original equation (3.11), the equation for s in terms of d is given by

s =
smax

dmax

(dmax − d) = β(dmax − d) = smax − βd. (3.12)

This new variable s is the rescaled geodesic distance, and in future when we

refer to the geodesic distance, this is the quantity we are referring to.

If we then expand (3.10) and perform the change of variables, the Schrödinger

equation becomes

(
−~2

2
β2 d

2

ds2
− ~2

4
β2 d

ds
(log(|g|)) d

ds
+ V (s) + EJ(s)

)
u(s) = Eu(s), (3.13)
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which we can more conveniently solve numerically. We observe that the

equation can be reformulated as a Sturm-Liouville problem

− d

ds

(
p(s)

du

ds

)
+ q(s)u(s) = Ew(s)u(s), (3.14)

where p,q and w are functions which can be determined from (3.13) and are

given by

p(s) =
√

(|g(s)|), (3.15)

q(s) =
2

β2~2
(V (s) + EJ(s))

√
(|g(s)|), (3.16)

w(s) =
2

β2~2
√

(|g(s)|). (3.17)

By considering the aforementioned symmetries of the B = 2 Skyrmion it

can be demonstrated that the only components of the metric that we need

to calculate are λ, U11, U22, U33, V11, V22, V33 and W33 as all of the other

components will be zero. As such, these functions were calculated using a

gradient flow numerical method 1. We begin the simulation with two B = 1

Skyrmions at a geodesic distance s = 5 apart (i.e at positions +2.5 and −2.5

such that smax = 5) and allow the configuration to relax into the B = 2

torus (s = 0). In doing so we numerically calculate the relevant functions as

functions of gradient flow time. Then using equation (3.12) we can obtain the

value of s at each time step, and hence easily convert all of our functions into

1Note that the gradient flow numerical data comes from Chris Halcrow, whereas the
use of this data to numerically solve the Sturm-Liouville problem was my own work.
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functions of the geodesic distance. We find that in our simulation the value

of dmax is 554.4, giving a value of β = 0.009019 to four significant figures.

We will also need to explicitly write down an expression for EJ(s) in

terms of the functions that we calculate numerically. The paper [44] will be

our guide here. The authors correctly identify that the possible two nucleon

bound states can fall into two possible categories, either having spin J =

1 and isospin I = 0 or spin J = 0 and isospin I = 1. The first case

((J, I) = (1, 0)) can be identified with the deuteron, and the second case

can be identified with an alternative nucleon-nucleon bound state. Since

the expression for EJ(s) will obviously depend on J , the expression will be

different for each of these two cases. If we adapt the notation from [44] into

our own style, the expressions we find are

EJ(s)(J = 1, I = 0) =
~2

2

(
1

V11
+

1

V22

)
(3.18)

and

EJ(s)(J = 0, I = 1) =
~2

2

(
1

U11

+
1

U22

)
, (3.19)

and we will use these expressions in calculating results.

Another point we need to consider before we can produce results is bound-

ary conditions. Obviously, we will want to impose the condition that as

s→∞ the wavefunction and its derivative will go to zero, that is u(∞) = 0

and u′(∞) = 0. However, we must also think about the condition we should

impose at s = 0. We know that the torus is the minimal energy configuration
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of the B = 2 Skyrmion and this corresponds to s = 0, so we would expect our

wavefunction to be maximal at that point. This gives us the boundary con-

dition u′(0) = 0. It is important to check when imposing this condition that

the torus is allowed by the Finkelstein-Rubinstein constraints, but it does

turn out that for both the (J, I) = (1, 0) and (J, I) = (0, 1) states the torus

is an allowed configuration. Therefore the derivative boundary condition is

perfectly reasonable, and that is what we shall use going forward.

3.3 Previous work on B = 2

Two notable papers that have done previous work on the B = 2 Skyrmion

are [44] and [11]. In particular [44] gives formulae for how all of the functions

we have calculated should behave asymptotically (with the exception of λ).

This will allow us to check that our numerically calculated functions look

plausible. A point of caution is that all of this work was for pion mass m = 0

whereas for our calculations we shall be using pion mass m = 1 in order to

break new ground. Explicit formulae for the asymptotics for m = 1 are not

known exactly, but are known to be qualitatively similar to the massless case

for leading order. In [44], they write down the following asymptotic formulae

for the spin (Vii) and isospin (Uii) moments of inertia

U11 ∼ 2Λ , U22 ∼ 2Λ , U33 ∼ 2Λ, (3.20)
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V11 ∼ 2Λ , V22 ∼ 2Λ +
1

2
Ms2 , V33 ∼ 2Λ +

1

2
Ms2, (3.21)

W33 ∼ −2Λ, (3.22)

where M is the mass of a single Skyrmion and Λ is the moment of inertia of a

single Skyrmion. For pion mass m = 1 these values are M = 1.416× 12π2 =

167.7 and Λ = 47.6 [8]. Some of these formulae have corrections of order 1/s

or 1/s3, but we do not include these here, and these corrections would in any

case be different for m 6= 0 and would include exponential factors of the form

exp(−ms). For the asymptotics of the energy, [21] gives the formula

V ∼ 2M − 2C2

3π
exp(−ms)(m2s2 + 2ms+ 2)

1

s3
, (3.23)

where C is a constant depending on m, and is given as C = 1.79 for m = 1.

The paper [44] also gives us a guide for calibration. We recall from Chap-

ter 1 that the length and energy scales of our model are Fπ/4e and 2/eFπ

respectively, and now in the quantum picture we have also introduced the

parameter ~. Using the values found in [2], we find that our Skyrme units

are related to physical units by

Fπ
4e

= 5.58 MeV and
2

eFπ
= 0.755fm, (3.24)
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and this leads us to

~ = 197.3 MeV fm = 46.8

(
Fπ
4e

)(
2

eFπ

)
. (3.25)

In these units, it therefore follows that ~ = 46.8, and following [44] this is

the value that we will take in our work on B = 2.

3.4 Results

3.4.1 The numerically generated functions

Keeping in mind the asymptotic formulae just given, we now display some

plots of the numerically generated functions. We display results in Figure

3.2.

We see that all of these plots match up with the asymptotics (where they

are known) to a reasonable degree of numerical accuracy, with the worst

matches being for U11 and U22 which still agree to within approximately 2%.

This gives us confidence to now go ahead and solve (3.10) for the vibrational

wavefunctions u(s). We do this by considering (3.10) as a Sturm Liouville

problem defined by equations (3.15) to (3.17), as this will allow us to use a

convenient MATLAB package to do our numerics.

We can also generate a plot for the determinant of the metric g. Using

the knowledge we have that many of the components of our 7× 7 matrix are
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(a) Energy (b) U11 (c) U22

(d) U33 (e) V11 (f) V22

(g) V33 (h) W33 (i) λ

Figure 3.2: Plots for the various functions that were numerically calculated
for B = 2 using gradient flow.
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zero, we can calculate that the determinant is given by

|g| = λU11U22V11V22(U33V33 −W 2
33), (3.26)

and a plot for this determinant is given in Figure 3.3, where we also give plots

for the rotational energies for the spin-0 and spin-1 states as expressed in

equations (3.18) and (3.19). We see that these rotational energy corrections

are relatively small in comparison to the overall energy, but not so small as

to be negligible. We also see that the rotational term for the isospin-1 state

is slightly larger, which is responsible for this state having a higher energy.

This is expected as we know that the ground state for B = 2 should be the

deuteron.

(a) |g| (b) EJ(s)(J = 1, I = 0) (c) EJ(s)(J = 0, I = 1)

Figure 3.3: Plots for the metric and rotational energy functions, that were
calculated from the numerically generated functions from Figure 3.2.

Lastly, in Figure 3.4, we display plots for the Sturm-Liouville functions p,

q and w, where we display two plots for q corresponding to the two different

possible EJ terms.
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(a) p (b) q (c) w

Figure 3.4: Plots for the Sturm-Liouville functions p, q and w. Notice that
we plot two functions for q, corresponding to the two different rotational
energy terms.

3.4.2 Wavefunctions

We now want to calculate vibrational wavefunctions for the deuteron and

the isospin-1 state. This is done numerically by solving the Sturm-Liouville

problem defined by equations (3.15) to (3.17). We display the two vibrational

wavefunctions in Figure 3.5. The numerical energies for the two states are

2.9221 and 2.9286 for the deuteron and isospin-1 state respectively. These

values are physically somewhat meaningless before calibration, but we do see

that the isospin-1 state has a slightly higher energy than the deuteron, as we

would expect.

3.4.3 Comparison with experiment

We want to calibrate these energies against experiment. Note that in na-

ture, the deuteron is the only bound state of two nucleons, but there is also

an isospin-1 state which is only marginally unbound. The paper [16] gives

the experimental binding energy of the deuteron as −2.225 MeV, and we
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(a) uJ=1,I=0(s) (b) uJ=0,I=1(s)

Figure 3.5: Plots for the wavefunctions for the deuteron and isospin-1 states.

must think about how to interpret our numerical energies in the context of a

binding energy. The energy of two well separated nucleons in the attractive

channel with total spin and isospin quantum numbers J = 1 and I = 0 is

given by 2M +~2/4Λ [44], where M and Λ are the mass and moment of iner-

tia of a single Skyrmion. For us, the values of the parameters are M = 167.7,

Λ = 47.6 [8] and ~ = 46.8. These differ from those seen in [44] as we are

considering the case of massive pions with m = 1, rather than the massless

case. This leads to an energy for two well separated Skyrmions of 346.90 in

Skyrme units. Recalling from equation (3.24) that to convert to a physical

energy in MeV we must multiply by a factor of 5.58, this gives us a physical

energy of 1935.7 MeV. We must next also convert the energy of our deuteron

bound state into MeV. Let us take the numerical energy for the deuteron,

which was 2.9221 × 12π2 = 346.08. The binding energy of the deuteron in

Skyrme units is then 346.08− 346.90 = −0.82. Converting this into physical
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units we get a binding energy of

Edeuteron = −0.82× 5.58 = −4.58 MeV. (3.27)

Using the same mechanism for the isospin-1 state, we calculate a binding

energy of

EI=1 = ((2.9286× 12π2)− 346.90)× 5.58 = −0.28 MeV. (3.28)

As expected, the model admits no other bound states. The deuteron binding

energy of −4.58 MeV compares relatively favourably with the experimental

value of −2.225 MeV, compared to the −6.18 MeV found in [44], although it

is still too large. We conjecture that this improvement may in part be due to

the inclusion of a pion mass, and it would be interesting to investigate in the

future whether the value can be further improved for larger pion masses than

the m = 1 we have used here. It is also the case that unlike [44] we work in

the full Skyrme model rather than the instanton approximation, so this may

also be relevant in our improved results. We find that the isospin-1 state is

also a bound state in our model, although only just. It is much less tightly

bound than the equivalent isospin-1 state found in [44], but physically this

state should be marginally unbound. Again it would be interesting to see if

this state becomes unbound as the pion mass is increased further.
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3.5 Remarks on the relative contributions of

the vibrational mode and the pion mass

term

One important remark to be made on the work presented in this chapter

is that we have made two fundamental changes to the work done in [44].

Specifically, we have worked in the full Skyrme model with a vibrational mode

rather than including a vibrational mode in the instanton approximation to

the Skyrme model, and we have also included a non-zero pion mass. We have

seen that the inclusion of these two refinements gives an improved value for

the binding energy, but it is not clear which of these factors makes the most

significant contribution to the improvement. Indeed, it could be the case

that only one of these refinements makes any appreciable difference, or even

that one of the changes has a negative effect which is more than offset by the

positive effect of the other change.

In order to investigate this there are two ideas that we could consider.

Firstly, we could rerun our simulation with a pion mass of zero, which would

give us the results in the full Skyrme model with a vibrational mode, to

compare directly with the results for the instanton approximation from [44].

Alternatively, we could investigate the results that we obtain if we neglect the

vibrational mode contribution but retain the non-zero pion mass. This latter

case is easier to investigate as we do not have to rerun the simulation but

57



instead remove the vibrational contribution by setting the function λ = 1,

and then solve the modified Schrödinger equation. It is also more physically

interesting as the ultimate purpose of this work was to consider a non-zero

pion mass case, so we wish to retain that feature. We now give a brief

discussion of this latter idea.

The equation (3.13) will take the same form as for the vibrational case,

but with the difference that s and β are defined differently. Let us consider

why this is so. In converting the Schrodinger equation from the form (3.10)

to the form (3.13), we effectively scale λ out of the equation through the

definition of the distance d in (3.11). We can now define λ = 1 in (3.11),

which reduces the equation to the rather trivial form

d(τ) =

∫ τ

dτ ′. (3.29)

This means that our distance d is now the same as our numerical time τ .

In our previous calculations our simulation had 1951 time steps, so we now

have that d takes integer values from 1 to 1951 with dmax = 1951. Our

geodesic distance s (3.12) takes the same form, with smax = 5 as before, but

now we have β = smax/dmax = 5/1951 = 0.002563, compared to the value of

β = 0.009019 we had previously.

We then solve the Schrödinger equation (3.13) again, with this new value

for β and a distance measure s that has been redefined through the change

in the definition of d. The process is much the same as before, and we do not
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show plots here as they are qualitatively very similar to the pictures produced

for the vibrational case. What we are interested in here are the values of the

calibrated energies of the two states. It turns out that the numerical values

we now obtain are 2.9207 and 2.9251 for the deuteron and the isospin-1 state

respectively. Using the same calibration idea as previously, these translate

to physical binding energies of −5.50 MeV for the deuteron and −2.59 MeV

for the isospin-1 state.

There are several remarks to be made about these values. Firstly we

notice that the deuteron binding energy here of −5.50 MeV is still an im-

provement on the −6.18 MeV found in [44], although less so than for the

vibrational case. This suggests that working in the full Skyrme model with

a pion mass, rather than the instanton approximation with massless pions,

is worthwhile, even without the inclusion of a vibrational mode. We also

see that the result when we include a vibrational mode (−4.58 MeV) gives

further improvement, and gets us closer to the experimental value of −2.225

MeV, which provides some justification for the method. From this we can

reasonably conjecture that both the inclusion of a vibrational mode in the

full Skyrme model and the inclusion of a pion mass are both making positive

contributions toward moving the binding energy closer to the experimental

value. This suggests that increasing the pion mass to higher values may yield

further improvement, and this should be investigated in the future. With re-

gard to the isospin-1 state, for this case we find that the state is still bound,

and more tightly so than before. Furthermore, the gap between the two
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states is now smaller at 2.91 MeV, compared to the gap of 4.30 MeV when

the vibrational mode was included. Since we ideally want the isospin-1 state

to be unbound, it seems that the inclusion of a vibrational mode is again

justified as it gets us closer to achieving this.

3.6 Discussion and outlook

The improvement to the deuteron binding energy is clearly a promising re-

sult, as is the fact that the isospin-1 state moves closer to becoming unbound.

There are other observable quantities that we might like to calculate in the

future to further investigate the accuracy of our model. Some obvious exam-

ples are the root mean square (rms) electric charge radius of the deuteron, its

electric quadrupole moment and its magnetic dipole moment. Expressions

for all of these observables are written down in [44], but for completeness we

will give them here in our notation. We first define the rms electric charge

radius of an attractive channel field, which is given by

r2rms(s) =
1

2

∫
|x|2B0(s,x)d3x, (3.30)

where B0(s,x) is the zeroth component of the conserved baryon number

current defined by

Bµ =
εµναβ

24π2
Tr(RνRαRβ). (3.31)
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Here εµναβ is the four-dimensional Levi-Civita symbol and Rµ are the same

fields we defined in equation (1.3). The electric charge radius of the deuteron

is then defined as

r2c =

∫ ∞
0

r2rmsu
2
d

√
|g|ds, (3.32)

where ud denotes the deuteron vibrational wavefunction. We can do some-

thing similar for the quadrupole tensor. For a general attractive channel field

we have

Qij =
1

2

∫ (
3xixj − |x|2δij

)
B0(s,x)d3x, (3.33)

where δij is the usual Kronecker delta symbol. From symmetries of the at-

tractive channel, one can deduce for our case that Q is diagonal and traceless.

It thus contains only two independent components, say Q11 and Q22, which

are equal at s = 0 [44]. The overall quadrupole tensor can then be expressed

as

Q =
1

5

∫ ∞
0

(Q11 +Q22)u
2
d

√
|g|ds. (3.34)

Finally, we consider the magnetic dipole moment, which is generally defined

as

µi(s) =
1

4

∫
εijkxjBk(s,x)d3x, (3.35)

where εijk is now the three-dimensional Levi-Civita symbol, and Bk are the

spatial components of the baryon number current. In the standard orienta-
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tion it can be expressed in terms of the quantities

Mia =
1

32π2

∫
xj Tr

(
[Ri, Rj][−

i

2
τa, U ]U †

)
d3x (3.36)

and

mik = − 1

32π2

∫
εkmnxjxm Tr ([Ri, Rj]Rn) d3x, (3.37)

where U is the Skyrme field defined in Chapter 1 and τa is one of the Pauli

matrices. Again, the symmetries of our case mean that in fact all of the Mia

are zero and the only non-zero components we need in order to write down

an expression for the magnetic dipole moment of the deuteron are m11 and

m22. These can be expressed explicitly as

m11 =
1

4

∫ (
x22 + x23

)
B0(s,x)d3x (3.38)

and

m22 =
1

4

∫ (
x21 + x23

)
B0(s,x)d3x. (3.39)

Then we can write down an expression for the magnetic dipole moment as

µ =
~
2

∫ ∞
0

(
m11

V11
+
m22

V22

)
u2d
√
|g|ds. (3.40)

As we did not calculate the baryon number current (3.31) during our

simulation, we do not calculate these quantities here, but it is a realistic

aspiration that this could be done in the near future. Experimental values
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for these quantities are rc = 2.095 fm, Q = 0.2859 fm2 and µ = 0.8574 nm

[16], so once these quantities are calculated within our model we can compare

them to these values.

In summary, there is good evidence that this vibrational approach has

had a positive effect, raising the binding energy of both the deuteron and

isospin-1 state to be closer to their experimental values. An analysis of what

happens when the pion mass is varied is likely to be worthwhile, and we

might like to consider the cases m = 0.5, m = 1.5 and m = 2 in addition to

the cases m = 0 and m = 1 already seen. In particular we conjectured in the

previous section that increasing the pion mass further beyond m = 1 may

take us closer to the experimental binding energy. In [6], the authors argue

that the choice of m should be made such that the calculated mean charge

radius of the Skyrmion agrees with the experimental value of the zero isospin

nucleus for that value of B. They calculate the appropriate value of m for

several values of B, in particular for B = 4, 6, 8, 10 and 12, and find that m

should always take a value between 0.6 and 1.2. As such, although they do

not calculate a value for B = 2, it would seem sensible to look at values of

m around this range, or indeed to calculate the appropriate value. Finally,

a calculation of other physical observables will allow us to further test the

validity of the model against experiment.
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Chapter 4

Vibrational quantisation of the

Oxygen-16 nucleus

This work is based upon the paper [30] by Chris Halcrow, Chris King and Nick

Manton, and aims to reproduce and generalise some of the results it presents.

The idea is to treat the Oxygen-16 nucleus (which we model as a B = 16

Skyrmion) as a cluster of four alpha particles, which we can interpret as four

B = 4 Skyrmions that evolve according to the Skyrme model. In particular

if we collide two pairs of alpha particles we find that there is a dynamical

mode that passes through a tetrahedral configuration, then transitions into

a square configuration and a dual tetrahedron, before breaking back into

two pairs of alpha particles again as shown in Figure 4.1. This scattering

mode will now be used to construct a vibrational manifold and we can then

quantise the system in line with the vibrational approach seen in [29]. We
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Figure 4.1: The scattering mode for four alpha particles in the Skyrme model,
taken from [30] and using the colouring convention found in [19].

identify the degrees of freedom in our manifold as the positions of the alpha

particles, which lie on a surface, and note that each configuration has D2

symmetry. There are three scattering modes to consider which correspond

to lines passing through the three pairs of opposing faces of the tetrahedron.

As such we must choose as our manifold a surface which asymptotically

stretches out to infinity in six directions. The choice made in [30] is the

6-punctured sphere with constant negative curvature.

The D2 symmetry that we noted previously means that we can study one

quarter of the space, and the other three regions will be related by symmetry.

We call this quarter surface M . We then map M onto a region of the complex

upper half plane which we call F where F = H/Γ(2), where H is the entirety

of the complex upper half plane and Γ(2) is a modular subgroup. We show

the relevant surfaces in Figure 4.2 where we note that regions of the same

colouring are related by D2 symmetry and the solid black lines represent the

scattering mode from Figure 4.1. Tetrahedral configurations are at points

where three colours meet and square configurations are at points where four

colours meet.

We are now in a position to formulate the problem. Starting from the
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Figure 4.2: From left to right: the 6-punctured sphere, the surface M and
the region F [30].

standard Schrödinger equation

(
−~2

2
∆ + V (x)

)
ψ = Eψ, (4.1)

we can split the total wavefunction |Ψ〉 into a vibrational part φ and a com-

ponent |Θ〉 corresponding to the rigid body angular momentum states. The

angular part of the problem can be solved easily with solutions related to

spherical harmonics. We will be considering the vibrational problem for φ

which reduces to

−∆vibφ+ V (x)φ = (E − EJ)φ, (4.2)

where E is the total energy of |Ψ〉 and EJ is its rotational energy, which we

have to subtract from the total energy to give the vibrational energy. We

approximate EJ to be constant for each J . The EJ term provides a coupling

between the vibrational and spin equations, as it depends on the spin J of

the angular state and the moments of inertia of the Skyrme configurations.

We will neglect EJ for the time being and introduce it again at a later stage.
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We wish to solve (4.2) on our region F , and to do so we define a complex

coordinate z = η + iε on H. Our choice of metric on F is the hyperbolic

metric

ds2 =
dη2 + dε2

ε2
, (4.3)

which we use as an approximation to the Skyrme metric. The uniformisation

theorem allows us to equip any hyperbolic surface with a constant negative

curvature metric, so this choice is allowed and mathematically natural. How-

ever, it must be noted that the metric should ideally be the induced metric

from Skyrmion-Skyrmion scattering which might be very different. It is also

likely to be much more complicated to work with, so we use the simplifying

assumption of the hyperbolic metric here. Using this metric it can then be

shown [30] that the kinetic operator in (4.2) reduces to

−∆vib = −ε2
(
∂2

∂η2
+

∂2

∂ε2

)
. (4.4)

Here the prefactor of ε2 is a consequence of the choice of metric. We now

have an explicit form for our Schrödinger equation (4.2), up to a choice for

the potential which we shall make later.

4.1 The rigid body case for Oxygen-16

Before we begin an analysis of the vibrational quantisation method for B =

16, it might be useful to recap what is known for the rigid body case. It
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is well understood that all known Skyrmion configurations for B = 16 can

be thought of as being composed of four B = 4 cubes. The three most

notable configurations are the tetrahedron, the square and the bent square,

and these are displayed in Figure 4.3.They exhibit respectively Td, D4 and

D2 symmetries, and it is these symmetries which lead to constraints on the

permitted spin states allowed by rigid body quantisation.

The tetrahedral (Td) symmetry leads to the constraints

exp

(
2iπ

3
√

3
(L̂1 + L̂2 + L̂3)

)
exp

(
2iπ

3
√

3
(K̂1 + K̂2 + K̂3)

)
Ψ = Ψ (4.5)

exp
(
iπL̂3

)
Ψ = Ψ, (4.6)

for some wavefunction Ψ.

Similarly, the square (D4) symmetry leads to the constraints

exp

(
iπ

2
L̂3

)
exp

(
iπK̂1

)
Ψ = Ψ (4.7)

exp
(
iπL̂1

)
Ψ = Ψ, (4.8)

and the bent square (D2) symmetry leads to

exp
(
iπL̂3

)
Ψ = Ψ (4.9)

exp
(
iπL̂1

)
Ψ = Ψ. (4.10)
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Figure 4.3: Three important configurations of the B = 16 Skyrmion: from
left to right we have the tetrahedron, the square and the bent square [28].

If we apply these constraints in the rigid body scheme we obtain the

allowed spin states, and these are given in Table 4.1. Note that we only

consider isospin zero states here.

J Tetrahedron Square Bent Square
0 |0, 0〉 |0, 0〉 |0, 0〉

2 |2, 0〉 |2, 0〉
|2, 2〉+|2,−2〉

3 |3, 2〉 − |3,−2〉 |3, 2〉 − |3,−2〉

4 |4, 4〉+

√
14

5
|4, 0〉+ |4,−4〉

|4, 0〉
|4, 4〉+ |4,−4〉

|4, 0〉
|4, 2〉+ |4,−2〉
|4, 4〉+ |4,−4〉

5 |5, 4〉 − |5,−4〉 |5, 2〉 − |5,−2〉
|5, 4〉 − |5,−4〉

6
|6, 4〉 −

√
2

7
|6, 0〉+ |6,−4〉

√
5

11
|6, 6〉− |6, 2〉− |6,−2〉+

√
5

11
|6,−6〉

|6, 0〉
|6, 4〉+ |6,−4〉

|6, 0〉
|6, 2〉+ |6,−2〉
|6, 4〉+ |6,−4〉
|6, 6〉+ |6,−6〉

Table 4.1: A table listing the allowed rigid body spin states with zero isospin
for the three main B = 16 configurations.

Some comments to make here are that we expect vibrational quantisa-

tion to improve upon the rigid body picture, but clearly any new method

should still reproduce the well understood results from rigid body analysis.
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We observe that for the tetrahedron there is no allowed spin-2 state, and

for the square there is no allowed spin-3 state. As such, the wavefunctions

describing such states cannot be found from rigid body quantisation, and one

must instead consider a configuration space that contains both the tetrahe-

dron and the square, which we go on to do shortly. It will also turn out

in the vibrational picture that there are some vibrational wavefunctions (for

example for spin-2) which vanish at the tetrahedron, even when they are

not explicitly forbidden from being there. This does not occur in rigid body

quantisation. These are limitations of the rigid body approach, and demon-

strate how the rigid body scheme cannot fully capture all of the low lying

states for Oxygen-16.

4.2 Important properties of the region F

The region F has many interesting properties. Firstly observe that the full

six-punctured sphere has cubic symmetry O, and so the quarter of the sphere

M and its corresponding projection onto the complex plane F have O/D2
∼=

S3 symmetry. This S3 symmetry will be very important later on, when we

consider the different representations into which our solutions can fall. In

particular, the group S3 has three different representations which we shall

call the trivial, sign and standard representations, and we discuss these later.

We would like to understand more about the region F on which we will

solve our problem. We begin by noting that the region coincides with the
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fundamental domain of the modular subgroup Γ(2) [18]. This group is defined

as

Γ(2) =


a b

c d

 ∈ PSL(2,Z); a ≡ d ≡ 1(mod 2), b ≡ c ≡ 0(mod 2)

 .

(4.11)

This group is freely generated by two matrices, which we denote by A =0 −1

1 0

 and B =

1 1

0 1

. We also admit the inverses of these matrices,

and combinations of them. It then turns out that these matrices can be used

to map between different coloured regions in F . If we take the red region to

be the base region, with points in the red region defined by their complex

coordinate z, then such a point is related to points in the other coloured

regions by the mappings shown in Figure 4.4.

To acquire more of an understanding of how these matrices act, it is

helpful to realise that they can also be thought of as Möbius transformations.

If we consider a point z in the red region and think of it as the fraction z/1,

we then represent this as a 2-component column vector with the first entry

as the numerator and second entry as the denominator. We then act on this

vector with our matrices. For example, if we consider the matrix B we find

that

B(z) =

1 1

0 1


z

1

 =

z + 1

1

 , (4.12)

and it is now obvious that the matrix B takes a point z to the point z + 1.
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Figure 4.4: A figure showing the relationship between the different coloured
regions of F using the matrices A and B.

That is to say that B clearly acts as a simple translation by one unit in the

positive real direction. The inverse matrix B−1, then acts as the opposite

translation of one unit in the negative real direction. The matrix A is slightly

more complicated but we can do the same calculation to find that

A(z) =

0 −1

1 0


z

1

 =

−1

z

 , (4.13)

and so we see that A takes a point z to the point −1/z, acting as an inversion.

It turns out that for the inverse matrix A−1, we get the same transformation

as for A, namely z 7→ −1/z.
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We see that A and B represent fairly simple Möbius transformations,

but we also recall from Figure 4.4 that some of the mappings are described

by compositions of these matrices. For example the map from the red to

the green region is given by the matrix BA =

1 −1

1 0

 . Using the same

arguments as before, this is the Möbius transformation z 7→ (z−1)/z, and it

is less obvious how this acts. However we can understand the properties of

any Möbius transformation by recalling that it can be decomposed into four

simple transformations. For the transformation

f(z) =
az + b

cz + d
, (4.14)

we can write it as f(z) = f4 ◦ f3 ◦ f2 ◦ f1(z) where

f1(z) = z+d/c , f2(z) = 1/z , f3(z) =
bc− ad
c2

z and f4(z) = z+a/c. (4.15)

This decomposition can make many properties of the transformation more

obvious. It is now apparent that the transformation acts firstly as a trans-

lation by d/c, then f2 is an inversion and reflection with respect to the real

axis. The third part is a dilation and a rotation, and the fourth part is

another translation, this time by a/c. For the case of the transformation

characterised by BA, we have a = 1, b = −1, c = 1 and d = 0, yielding the

functions f1(z) = z, f2(z) = 1/z, f3(z) = −z and f4(z) = z + 1. We check
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this decomposition works for this example

f4 ◦ f3 ◦ f2 ◦ f1(z) = f4 ◦ f3 ◦ f2(z) = f4 ◦ f3(1/z) = f4(−1/z)

= (−1/z) + 1 =
z − 1

z
.

(4.16)

We can do this for any of the composite transformations to investigate how

they act on F . One could in fact take this even further and relate back to

the full six-punctured sphere. The projection of the full surface on to the

complex upper half-plane is shown in Figure 4.5. Again, the regions are all

related by combinations of the matrices A and B and their inverses, and for

the exact transformations the reader is referred to [18]. Regions of the same

colour are related by D2 symmetry as mentioned previously.

Figure 4.5: The full six-punctured sphere projected onto the complex upper
half-plane.

Let us now return to the quarter of the 6-punctured sphere, and note

some important points on our region F . As previously mentioned, points
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where three or four coloured regions meet are significant as they represent

the positions of tetrahedral and square configurations respectively. There are

tetrahedral configurations at the point 1/2 + i
√

3/2 where the red, blue and

green regions meet and the point −1/2 + i
√

3/2 where the light blue, yellow

and purple regions meet. There is clearly a square configuration at the point

i where the red, blue, light blue and yellow regions meet. More subtly there

are two halves of square configurations at the points 1 + i and −1 + i which

can be identified with each other, and so are effectively one point where the

red, green, purple an light blue regions meet. Similarly the points 1/2 + i/2

and −1/2+i/2 can be identified with each other and are effectively one point

where the blue, green, purple and yellow regions meet, so again each of these

points can be thought of as hosting half of a square configuration.

It will also be useful for later reference to formulate equations for the

boundaries of regions of F . Obviously the equations of the straight bound-

aries are trivial but we will list the equations of the curved boundaries below

for the sake of convenience. The red/green boundary is characterised by the

equation

ε =
√
η(2− η), (4.17)

the red/blue boundary by the equation

ε =
√

1− η2 (4.18)

75



and the lower right semicircle by

ε =
√
η(1− η). (4.19)

Similarly in the η < 0 region the light blue/yellow boundary is defined by

ε =
√

1− η2, (4.20)

the light blue/purple boundary by

ε =
√
−η(2 + η) (4.21)

and the lower left semicircle by

ε =
√
−η(1 + η). (4.22)

Now is a good moment to consider the way in which parity acts on M

and hence F . In general the parity operator acts such that (x, y, z) 7→

(−x,−y,−z). In this case due to D2 symmetry the action can be writ-

ten as (x, y, z) 7→ (x,−y, z), which corresponds to η 7→ −η on F , or in terms

of our complex coordinate or z 7→ −z̄. More formally we write the parity

operator as

Pφ(z) = φ(−z̄). (4.23)

If the wavefunction is invariant under this operator it has positive parity and
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if it picks up a minus sign then it has negative parity.

One other symmetry that we will be interested in is the η 7→ 1 − η

symmetry. If we look at the red region of F which runs from η = 0 to η = 1,

this symmetry is a symmetry about the line η = 1/2. We can think of it as

a combination of the translation symmetry described by B and parity. More

precisely

P (Bφ(z)) = P (φ(z − 1)) = ±φ(1− z̄) = ±φ(1− η, ε)

where the ± sign is dependent on the parity of the vibrational wavefunction

φ. We shall see that many of the states we discuss shall exhibit symmetry

or anti-symmetry under the the η 7→ 1 − η transformation, although for

states in the standard representation this will only be true for certain types

of solution.

4.3 The different representations

Since we have already alluded to them before, now would be a good time to

formally introduce the three different representations into which our states

may fall. As discussed previously, F has a overall S3 symmetry, and the

group S3 has three different representations which we call the trivial, sign and

standard representations. S3 actions can be broken down into two categories,

namely transpositions and permutations. If we number our group elements
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on which S3 acts as 1, 2, 3 then a transposition exchanges two elements (e.g.

1 7→ 2, 2 7→ 1 and 3 is fixed). A permutation cycles the three elements

around (e.g. 1 7→ 2, 2 7→ 3 and 3 7→ 1).

We say a vibrational wavefunction is in the trivial representation if it is

invariant under either of these actions. On the other hand a sign representa-

tion vibrational wavefunction is still invariant under permutations but picks

up a minus sign under transpositions.

The standard representation is two dimensional so we need some slightly

different notation. We label a full standard representation wavefunction as

|ψ〉 = u |Θ〉1 + v |Θ〉2 + w |Θ〉3 where the |Θ〉i are the spin states with which

the vibrational wavefunction has been combined. Here u, v and w describe

the vibrational wavefunction and are the elements on which S3 acts. It still

acts as either transpositions or permutations. For example, under a (1 2)

transposition the wavefunction becomes |ψ〉 = v |Θ〉1 + u |Θ〉2 + w |Θ〉3 (i.e.

elements 1 and 2 are permuted), and under a (1 2 3) permutation it becomes

|ψ〉 = v |Θ〉1+w |Θ〉2+u |Θ〉3 (i.e. the three elements are permuted cyclically).

We must also observe that this three-dimensional basis of objects is in fact

reduced to a two-dimensional one, since the vibrational wavefunction u+v+w

is invariant under both transpositions and permutations. This yields the

constraint

u+ v + w = 0. (4.24)

Note that when we calculate states in the standard representation we can
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calculate combinations of u, v and w. However as we shall see, only certain

combinations have boundary conditions which are convenient to work with

and only certain combinations exhibit symmetry or anti-symmetry under the

η 7→ 1− η transformation.

The different representations will be critical shortly when we discuss

boundary conditions. We should also be aware that vibrational wavefunctions

in the different representations act differently under Möbius transformations,

trivial states will be invariant under all transformations whereas sign states

can pick up a minus sign.

4.4 Boundary conditions on the vibrational

wavefunctions

Now that we understand the symmetries of our region F , we are in a position

to think about how these can be used to determine the boundary conditions

on our vibrational wavefunctions as we solve (4.2). As previously argued, F

has S3 symmetry and the group S3 has three representations called the trivial,

sign and standard representations. The potential (4.28) is invariant under

all elements of S3 meaning all vibrational wavefunctions can be labelled by

their representation and parity, and these properties will determine boundary

conditions.

Our technique for the trivial and sign representations will be to solve

(4.2) in the red region of F and then map the solution to the rest of F using
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A, B and parity. As such we need to fix conditions on the boundaries of

the red region. These boundaries consist of two vertical lines at η = 0 and

η = 1, and two arcs of circles on the lower boundary. The condition on

the vertical line at η = 0 is simple and is fixed entirely by parity. Because

parity is essentially a reflection about the line η = 0 in our coordinates,

states with positive parity must have vanishing derivative across the line

η = 0 whereas states with negative parity must themselves vanish on that

line. The condition on the line at η = 1 is also fixed by parity and will be

the same as for the line at η = 0. To understand why, observe Figure 4.6.

Consider a point z+ in the red region which is arbitrarily close to the line

Figure 4.6: A plot showing the region F . We use the relationship between
the points z+, z− and z0 to determine the conditions on the boundary line
η = 1.

η = 1. Then consider acting twice with the action B−1, which translates
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the point two units to the left so that it is now just outside (to the left of)

the region F altogether. We label this point z0. Since it can be shown that

B−1 acts as a (1 2) transposition, trivial wavefunctions will take the same

value at these two points. Sign wavefunctions pick up a minus sign under

a transposition, but since we act with B−1 twice this cancels out, so the

sign wavefunctions also take the same value at these two points. We then

consider acting with the parity operator on the new point, which takes it

to the point z−, which is now again arbitrarily close to the line η = 1, but

this time on the right hand side outside of the red region. If we take the

limiting case where these two points approach the line η = 1 we can deduce

a boundary condition. In particular the wavefunction at the two points takes

the same value if the state has positive parity, meaning that the derivative

of the wavefunction across the line must be zero. If the state has negative

parity then the wavefunction takes opposite signed values at the two points,

so in order for the wavefunction to be continuous it must vanish on the line.

These are the same conditions as for the line η = 0.

To understand the boundary conditions on the curved boundary we con-

sider Figure 4.7. We mark a boundary of interest in red, and label it C.

Note that the right hand part of the curve is related by the η 7→ 1 − η

symmetry so fixing the conditions on C is sufficient for the trivial and sign

representations. For the standard representation we will have to think a little

harder, as we explain shortly. We again consider three points z+, z− and z0.

The points z+ and z0 are now related by one action of the matrix A and
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Figure 4.7: A plot showing the region F . We use the relationship between
the points z+, z− and z0 to determine the conditions on the boundary curve
C.

then z0 and z− are related by parity. Again it can be shown that A acts as

a transposition, this time a (1 3) transposition. As a result, in the trivial

representation the wavefunction does not change in mapping from z+ to z0,

whereas in the sign representation the wavefunction will change sign. The

wavefunction then picks up a sign in mapping from z0 to z− corresponding to

the parity of the state. In fact, we discover that the value of the wavefunction

at the points z+ and z− are the same for positive parity trivial representation

states and negative parity sign representation states. Conversely they are of

equal magnitude but opposite sign for negative parity trivial representation

states and positive parity sign representation states. Because we require our

wavefunctions to be continuous and have continuous derivative across C we
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can conclude that for positive parity trivial states and negative parity sign

states the derivative must be zero across C whilst for negative parity trivial

states and positive parity sign states we find that the value of the function

must be zero. This can be summarised for the trivial representation as

φ(z) = 0 for negative parity and

∂⊥φ(z) = 0 for positive parity,

(4.25)

and for the sign representation as

φ(z) = 0 for positive parity and

∂⊥φ(z) = 0 for negative parity.

(4.26)

The condition on the right hand curved boundary will be related by the

η 7→ 1− η symmetry to the condition on C. Recalling that the symmetry is

a combination of the translation symmetry described by B (a transposition)

and parity, we can deduce that positive parity trivial states and negative par-

ity sign states exhibit symmetry under this action, and conversely negative

parity trivial states and positive parity sign states exhibit anti-symmetry un-

der this action. As such, positive parity trivial states and negative parity sign

states will have the same zero derivative condition on the right hand curve

as they had on C, whereas negative parity trivial states and positive parity

sign states should take the opposite value on the right hand curve. However,

since the condition for these states is that the wavefunction vanishes on these
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lines, this condition is in fact also replicated.

In summary we find that in the trivial representation the boundary con-

ditions are that for positive parity states the wavefunction has zero derivative

on all four boundaries of the red region and for negative parity states the

wavefunction vanishes on all four boundaries of the red region. For the sign

representation states with positive parity have the condition that the wave-

function has zero derivative on the vertical lines and vanishes on the curved

lines, whilst for negative parity states the wavefunction vanishes on the ver-

tical lines and has zero derivative on the curved lines.

For the standard representation things are more complicated. The con-

ditions on the vertical lines work in the same way. The condition on η = 0

is fixed simply by parity and the condition on η = 1 is fixed using the same

argument as before. Here we must take care to check that when acting twice

with B−1 our wavefunction is still invariant. Recalling that B−1 acts as a

(1 2) transposition, this means that after one action we take u 7→ v and

v 7→ u, but then after a second application this is undone, so the argument

applies as before.

However, for the curved lines we must be careful. We fixed the boundary

condition previously by considering a single action of A and parity to relate

points on either side of the curve C. For the standard representation though,

we will only be able to use this argument for certain combinations of u, v and

w, namely those which are invariant up to a change of sign under an action

of A. Since A acts as a (1 3) transposition, the combinations in question will
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be u + w, which will be invariant under A, and u − w, which will change

by a minus sign under A. We could consider more complicated functions

of u and w but these are the simplest and most convenient to work with.

However this argument leads to a further difficulty. We previously derived

the boundary condition on the right hand curve by using the condition on the

C plus the η 7→ 1− η symmetry. However the η 7→ 1− η symmetry does not

apply to the combinations u + w and u− w. This is because the symmetry

involves an action of B−1 which is a (1 2) transposition and so transforms

u + w and u − w into combinations involving v which cannot be related to

their original forms by a simple sign. In short, there is no reason to expect

that u+w and u−w should exhibit any kind of symmetry under η 7→ 1− η.

In fact, examples of standard representation states that would exhibit such a

symmetry are u+v (symmetric) and u−v (anti-symmetric), but these do not

allow us to derive a boundary condition on C in the first place for the reason

argued previously. To summarise, there is no combination of u, v and w for

which we can derive a boundary condition on both of the curved boundaries

simultaneously. Therefore for the standard representation we will do things

slightly differently by considering a slightly different region. We take the

continuation of the curve C down to its intersection with the line η = 1.

This gives us a region that now contains the red region of F and part of the

green region. In turn this means that when we solve the Schrödinger equation

on this region we will have to define the potential in a piecewise way, as it

takes a different form in the two coloured regions. This is not too difficult
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however, as the equations of the potential in the coloured regions are related

by the relevant Möbius transformation. Our redefined boundaries now divide

F into four rather than six regions, no longer entirely based on colouring,

and we can now make a similar type of argument to before. In Figure 4.8

we again consider two points z+ and z− arbitrarily close to C, related by a

Möbius transformation plus parity via a point z0. If the wavefunctions we

Figure 4.8: A plot showing the region F . We use the relationship between the
points z+, z− and z0 to determine the conditions on the extended boundary
curve C for standard representation states.

consider are of either the form u + w or u − w, then we can say that the

Matrix A, a (1 3) transposition which relates the points z+ and z−, leaves

the wavefunction u+w invariant and flips the sign of the wavefunction u−w.

If we then combine with parity, it emerges that u + w wavefunctions with

positive parity take the same value at z+ and z−, whereas those with negative
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parity are related by a minus sign. On the other hand, u−w wavefunctions

with negative parity take the same value at z+ and z− but ones with positive

parity are related by a minus sign. This leads to the boundary conditions

u− w = 0, ∂⊥(u+ w) = 0 for positive parity and

u+ w = 0, ∂⊥(u− w) = 0 for negative parity,

(4.27)

where ∂⊥ denotes a derivative normal to the curved boundary.

4.5 The potential

We must now make a choice for our potential function. There are many

possibilities for this, but the choice made in [30] is

V (η, ε) = ε2

(
ω2

(
η − 1

2

)2

+ µ2

)
, (4.28)

where ω and µ are constant parameters. This choice is motivated by two

ideas. Firstly, this potential is minimal at the tetrahedron, and this is desir-

able due to the physical observation that the minimal energy Oxygen-16 state

has a tetrahedral shape. Secondly, the overall prefactor of ε2 in (4.28) en-

sures that (4.2) is a separable equation, by cancelling with the prefactor in the

metric. We note that at the tetrahedron, given by (η, ε) = (1/2,
√

3/2), the

potential takes the value 96, and at the squares, given by (η, ε) = (0, 1), (1, 1)

and (1/2, 1/2), it takes the value 128.75. We plot the potential in Figure 4.9,
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with the tetrahedron and squares clearly marked and using the parameter

choice for ω and µ made in [30].

Figure 4.9: A 3D plot of the potential (4.28) for η > 0, with ω =
√

3 and
µ = 8

√
2. The red circle shows the position of the tetrahedral configuration

and the blue circles show the squares.

It is important to note that this expression for the potential applies only in

the top right (red) region of F . To obtain the potential for the other regions

we can define V to take the same value at points related by symmetry. We

see that the potential is continuous but not smooth across the boundaries of

the coloured regions, and this is in fact the best that we are able to do.

One comment to make is that our region F extends to∞ in the ε-direction

and this potential approaches ∞ as ε → ∞. This is not physically realistic

and also is not consistent with the standard Skyrmion potential which attains

a finite value at ∞.
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The use of a potential that yields a separable Schrödinger equation al-

lows Halcrow, King and Manton to use one-dimensional numerics to obtain

solutions to (4.2) in [30]. Our ambition is to use two-dimensional numerics

to solve (4.2), which allows us to make a more general choice of potential.

However let us first consider the potential (4.28) and other possible separable

potentials.

As stated previously, the Schrödinger equation for potential (4.28) is sep-

arable, and solutions take the form

φ(η, ε) =
∑
n

anHn(η)Gn(ε), (4.29)

where Hn and Gn actually have an analytic form (H are hypergeometric func-

tions and G are modified Bessel functions). However we solve the problem

numerically as the method is then able to be generalised to other separable

potentials that may not share this analytic property. The coefficients an are

determined by matching boundary conditions and symmetries on F .

4.6 Constructing solutions

In the interest of completeness, we will now briefly discuss the case of us-

ing separable potentials and one-dimensional numerics, before turning our

attention to the more complicated non-separable case later in this chapter.

We will now solve (4.2) with potential (4.28) by separation of variables.
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This leads to the following ordinary differential equations for G(ε) and H(η).

It is important to point out that we do not introduce a factor of
√
ε to (4.29)

as is seen in [30], as our method of obtaining solutions does not depend on

G being an analytic function (in this case a Bessel function). As such our

ODEs are

G′′(ε)

G(ε)
+
E

ε2
− k = 0, (4.30)

and

H ′′(η)

H(η)
=

(
η − 1

2

)2

ω2 + µ2 − k, (4.31)

where k is the constant associated with separation of variables, and we ob-

serve that E does not appear in the second equation. As such the only free

parameter in the ODE for H is k, and we can treat this equation as an eigen-

value problem to find values of k. We can in fact solve (4.31) by treating

it as a Sturm-Liouville Problem. As we saw previously in Chapter 3, this

involves rewriting the equation in the form

−
(
p(x)

dy

dx

)′
+ q(x)y = kw(x)y, (4.32)

where y is a function of x which we solve for. In our case the variable x is

replaced by η and the function y(x) replaced by H(η), and the functions p, q

and w can then be determined. It turns out that p(η) = w(η) = 1 and q(η)

is given by

q(η) = ω2

(
η − 1

2

)2

+ µ2. (4.33)
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We can then solve the Sturm-Liouville problem easily, and obtain a set of

eigenvalues k and corresponding eigenfunctions Hk.

We then obtain solutions of (4.30) numerically in Matlab, by imposing

the boundary conditions G(
√

3/2) = 1 (at the tetrahedron) and G(∞) = 0,

and solving the equation for each eigenvalue k to obtain a set of functions

Gk. As one would expect we find that for larger k the solutions become more

localised around the tetrahedron and tail off to zero more quickly. Note that

for numerical reasons we do not actually impose the boundary condition at

∞, but rather at a sufficiently large value of ε such that the functions have

all decayed to sufficiently near zero. It was found, by experimenting with

various values for the cutoff, that imposing the boundary condition at ε = 10

was adequate for this purpose.

In what follows we choose our parameters to be ω =
√

3 and µ = 8
√

2,

in line with [30], and we seek to solve our equation on only the red region of

F , and then later we will use the transformations we saw earlier to map to

the full solution on the whole of F .

For the various states that we will be interested in we have seen that there

will be two different types of boundary condition on the curved boundary of

the red region. For some states, including the ground state that we will

discuss shortly, the condition will be that the derivative of the wavefunction

normal to the boundary should be zero, and for other states it will be the

case that we require the value of the wavefunction itself to be zero on the

boundary.
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The procedure that we will use to calculate our energy E and coefficients

ai will be as follows. We first select m points (ηi, εi) on the curved boundary

from η = 0 to η = 1/2 where these points satisfy the equation of the red/blue

boundary (4.18) such that εi =
√

1− η2i . We recognise that the curved

boundary from η = 1/2 to η = 1 is then related by either symmetry or

antisymmetry depending on the parity of the state (symmetry in the case

of the ground state as it has positive parity). We also have n unknown

coefficients from a1 to an (in principle n should go to∞ but we can truncate

the sum at a finite point as the coefficients approach zero). We can then

construct an m × n matrix Π̃ whose entries take one of two possibilities

depending on the boundary conditions.

For the simpler case where we have the condition φ = 0 on the curved

boundary, the entries of Π̃ are

Π̃(i, j) = Hj(ηi)Gj(εi), (4.34)

for i = 1 . . .m and j = 1 . . . n. We use notation such that Gj and Hj are the

solutions of the respective ODEs corresponding to the jth eigenvalue kj. We

then define an n × 1 column vector Γ̃ whose entries are all the coefficients

from (4.29), that is

Γ̃(i) = ai, (4.35)

where i = 1 . . . n. We will then make a first guess for a value of the energy

E and look to solve the equation Π̃Γ̃ = 0 for the coefficients. We do however
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run into a couple of difficulties when doing this. Firstly, when attempting

to solve this system numerically we will always end up returning the trivial

solution, that is a1 = a2 · · · = an = 0. Clearly this is not the solution we are

interested in, and we get around this by fixing a1 = 1. This means we have

to slightly redefine Γ̃ and Π̃ as Γ and Π, and introduce a new vector Ω as

follows

Γ(i) = ai+1 for i = 1..n− 1, (4.36)

Π(i, j) = Hj+1(ηi)Gj+1(εi) for i = 1..m, j = 1..n− 1, (4.37)

Ω(i) = −H1(ηi)G1(εi) for i = 1..m, (4.38)

and then seek to solve the system

ΠΓ = Ω (4.39)

for the remaining n − 1 coefficients. We then observe a potential second

difficulty which is that we may have an overdetermined system. Solving

(4.39) essentially means solving m equations for n− 1 unknown coefficients.

Therefore in order for the system to be solvable we must have at least m =

n− 1 in which case the system is not overdetermined, but if we want to take

lots of boundary points which we might expect to improve accuracy, then

this would give m > n−1. Fortunately Matlab has a routine for solving such

a system even if it is overdetermined, using a least squares fitting method.

The routine also calculates an error associated with the fitting. Our aim is
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to find the value of E that minimises this error and this will be our energy

eigenvalue. We do this by sweeping through a range of values of E and

determining the error for these energies, and ultimately constructing an error

function of which we can then easily look for a minimum. We perform a wide

scale sweep to roughly identify the locations of the minima and then perform

a golden ratio bracketing search [57] to precisely identify the value of E at

which the minimum occurs, up to a desired degree of precision.

For the ∂⊥φ = 0 boundary conditions the approach is the same, but the

matrix Π and the vector Ω are different. The condition now is no longer

φ = 0 on the boundary but rather ∇φ.α̂ = 0 where

∇φ =

(∑
n

anH
′
n(η)Gn(ε),

∑
n

anHn(η)G′n(ε)

)
(4.40)

and α = (η,
√

(1− η2)) parametrises the curve. Ultimately it can be shown

that

Π(i, j) = ηiH
′
j+1(ηi)Gj+1(ε)+εiHj+1(ηi)G

′
j+1(εi) for i = 1..m, j = 1..n−1, (4.41)

Ω(i) = −(ηiH
′
1(ηi)G1(εi) + εiH1(ηi)G

′
1(εi)) for i = 1..m, (4.42)

and we then again seek to solve (4.39) with the modified Π and Ω.

We then have a value of E and coefficients ai and can construct our

solution φ in the red region. We can then use the various maps shown

previously to map the solution to the other coloured regions of F to get our
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full solution.

It is important to note that this numerical method is different to the one

used in [30]. They use a method that involves calculating the null eigenvector

of a matrix to give the coefficients. Clearly if our method is reasonable we

should produce the same results. One advantage of our method is that it is

less reliant on the ODEs for G and H having analytic solutions, as everything

is done numerically.

Let us briefly consider how we select our boundary points. There are

several ways we could do this. Remember we want to choose points along

the curve ε =
√

1− η2 from 0 to 1/2 which forms the left hand part of the

curved boundary of the red region. It is natural to take equally spaced points

as there is no obvious reason to concentrate the points at any particular part

of the curve, since there is no one part of the curve where the function is likely

to be significantly more complicated or interesting than elsewhere. We can

however ask exactly what we mean by equally spaced. One simple possibility

is to choose points equally spaced in the η direction (notice that choosing

equally spaced points in the ε direction is also possible but not as good, since

the ε distance is very small so the points get squashed together very quickly

and one gets very few points close to η = 0). However, although these points

are equally spaced in one direction, the distance along the curve between

each pair of points is not equal. We could change this relatively simply.

Note that the curve is a part of the unit circle so we can parametrise it by

η(t) = sin(t) and ε(t) = cos(t). This is a slightly unorthodox parametrisation
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as we are starting at the top of the circle rather than the right most point

as is conventional, since the right most point does not appear on the part

of the unit circle we are parametrising. It is nonetheless a perfectly good

parametrisation for t = 0..π/6. We could then take points which are equally

spaced along t and these would be spaced at equal distances along the curve.

A last and most complicated option comes from recalling that the complex

upper half plane H can be thought of as having hyperbolic geometry, and so

one can instead use hyperbolic distance measures to determine the distance

between boundary points. This means equipping a non-Euclidean metric

to H, and convention is to take ds2 = (dx2 + dy2)/y2. For this metric the

magnitude of the velocity along our boundary curve is given by

v(t) =
1

ε(t)

√(
dη

dt

)2

+

(
dε

dt

)2

, (4.43)

and we can then substitute in the parametrisation of our circle. Note that

for the Euclidean case we get v(t) = 1 as the curve is already arc length

parametrised. In the hyperbolic case we find v(t) = sec(t). We can then

determine the arc length parameter s by integrating the velocity to find

s =

∫ t

0

sec(τ)dτ = ln(sec(t) + tan(t)). (4.44)

We can then invert this function to find t as a function of s which yields

t = arccos(sech(s)), (4.45)

96



which we then substitute back into our curve parametrisation giving η(s) =

sin(arccos(sech(s))) and ε(s) = sech(s). One can check that this indeed

an arc length parametrisation of the boundary curve in Figure 4.10 when

using hyperbolic geometry. The range of s is s = 0 . . . ln(
√

3). We can now

consider taking points along the curve that are equally spaced along s and

these points would be at equal distances from each other along the curve

according to hyperbolic measures. For ease of comparison, all of the points

are plotted in Figure 4.10.

Figure 4.10: A plot showing ten boundary points as selected by the three
different methods. The red stars are equally spaced in η, the blue diamonds
are equally spaced along the curve using standard distance measures, and the
green circles are equally spaced along the curve using a hyperbolic distance
measure.

One could make reasonable arguments in favour of any of these three

methods of point selection. The first option has the advantage of being
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the simplest and the second is also relatively straightforward whilst looking

perhaps slightly neater. The third option is more mathematically involved

but is very elegant and uses the hyperbolic model of the complex upper

half plane which is a natural thing to do in our case as we are thinking of

our domain F ∈ H as being mapped from a punctured sphere which has

non-Euclidean geometry.

In practise however the choice seems to make essentially no difference to

the results or to the scale of the error, and so it seems sensible to pick the

simplest option of taking equally spaced points in the η direction which we

shall do from here on.

Let us now consider the first vibrational wavefunction in the trivial rep-

resentation. We expect this state to be the lowest energy vibrational wave-

function, which will eventually become the ground state once combined with

a suitable spin state. It should have positive parity. We also recall that posi-

tive parity states in the trivial representation exhibit the η 7→ 1−η symmetry

we discussed previously.

This last point is important. The η 7→ 1 − η symmetry allows us to say

something about the functions H(η) that we can take in our solution. The

solutions to the Sturm-Liouville problem come in an alternating series, with

the first entry having the η 7→ 1 − η symmetry, the second being antisym-

metric and so on. Therefore since we know in this case we are looking for

a symmetric state we include only the even numbered functions H0, H2... in

our sum. Similarly if we know we are looking for an antisymmetric state (as
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we will do later) then we include only the odd numbered functions.

We will first seek to solve (4.31) to obtain a set of functions H(η) cor-

responding to a set of eigenvalues k. Since we are looking for a state with

positive parity we know the boundary conditions on the straight lines at

η = 0 and η = 1 are that the derivative across the lines must be zero, and so

we are interested in even solutions H(η). The first few functions are shown

in Figure 4.11.

(a) H0 (b) H1

(c) H2 (d) H3

Figure 4.11: Plots for the first four even H functions we include in our ground
state wavefunction solution.

In Table 4.2 we give the first ten relevant eigenvalues k for the ground

state (that is to say we have set n = 10, which we justify later).
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kn Eigenvalue
k1 128.2488
k2 167.7673
k3 286.1733
k4 483.5600
k5 759.9071
k6 1115.212
k7 1549.474
k8 2062.693
k9 2654.869
k10 3326.002

Table 4.2: Eigenvalues k for the first ten symmetric functions with even
boundary conditions on H.

We can then use the procedure outlined earlier to construct the ground

state wavefunction in the red region of F . We first calculate ten functions

Gk corresponding to each of the ten eigenvalues k, and place these functions

into our sum (4.29). The first few Gk functions are shown in Figure 4.12,

and we see they approach zero increasingly quickly as k increases.

Figure 4.12: The first few functions Gk for the ground state solution.
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We fix the first coefficient a1 = 1 and choose m points on the boundary.

For the following calculation we choose m = 20 but we will discuss this

choice later. We then calculate Γ (4.36), Π (4.37) and (4.41), and Ω (4.38)

and (4.42), and solve our system.

We calculate an energy eigenvalue to three decimal places of E = 150.561,

with coefficients shown in Table 4.3. We see that the coefficients after a1 are

decreasing in magnitude as would be expected for the ground state, and

approach zero sufficiently rapidly for us to curtail the calculation at n = 10.

For some of the excited states later on, we shall have to increase the value of

n for which we truncate our sum as the coefficients do not approach zero so

rapidly, but n = 10 is clearly sufficient for the ground state. In fact it turns

out that a11 and higher coefficients are zero up to the four decimal places

quoted in Table 4.3.

Coefficient Value
a1 1
a2 -0.6078
a3 0.1130
a4 -0.0144
a5 0.0027
a6 -0.0009
a7 0.0002
a8 -0.0007
a9 -0.0008
a10 -0.0008

Table 4.3: Coefficients a for the ground state wavefunction.

The least squares 2-norm fitting error associated with this calculation is
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0.0015. Of course, the numerical value of the error will depend upon the

number of function n and boundary points m that are chosen, but for any

values of n and m the minimal value of the error is located at this value of

E to an acceptable level of precision.

In Figure 4.13 we display a contour plot of the ground state vibrational

wavefunction in the red region. We use the colouring convention that red

Figure 4.13: A contour plot of the ground state vibrational wavefunction in
the red region of F .

is positive, blue is negative and pale blue/green is zero. We now want to

be able to go from these pictures to ones on the whole of F which we shall

investigate in the next section.
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4.7 Mapping to the full solutions

At this point we appreciate the fact that we can use our matrices A and

B to map our red region solution to the full region F . If we could not do

this, obtaining the solution on the full space would be very laborious as we

would have to transform the kinetic operator ∆vib and the potential function,

and then re-solve the transformed Schrödinger equation. To demonstrate

the challenges this would entail we calculated the transformed potential and

kinetic operator and display them below. Recalling our original potential in

the red region as (4.28), which we will refer to here as Vred, the transformed

potentials are

Vgreen =
2ε2(13ε4 + 26ε2η2 + 13η4 − 50ε2η − 50η3 + 50η2)

(ε2 + η2)4
(4.46)

and

Vblue =
2ε2(13ε4 + 26ε2η2 + 13η4 − 2ε2η − 2η3 − 24ε2 − 22η2 − 2η + 13)

(ε2 + η2 − 2η + 1)4
.

(4.47)

The transformed kinetic operator is also far more complicated. Instead

of containing simply second order derivatives in η and ε with coefficient ε2,

it now contains additional first order terms with far more complicated coef-

ficients, although it should be noted that the mixed second derivative term

still remains zero. The coefficients were calculated but are too complicated

to list here. Clearly, solving the Schrödinger equation with these functions
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would be a tedious task but fortunately this is not necessary here. Instead we

apply the relevant transformations (see Figure 4.4) directly to our solution

and transport the wavefunction into the other coloured regions.

Doing this for the ground state we produce Figure 4.14. Note that as we

expect the ground state is fully localised around the two global minima at the

tetrahedral configurations. We can now go through the same process for the

Figure 4.14: A contour plot of the ground state vibrational wavefunction on
the full region F .

lowest energy state in the sign representation. We expect this to be a negative

parity state because as we argued previously states in the sign representation

with positive parity are forced to have nodes at the tetrahedron so are forced

away from the energy minima. recall that the lowest spin state allowed for the

sign representation is J = 3 so we can identify this with an experimental 3−
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state. For a negative parity sign state we have the same boundary conditions

on the curved boundaries as the ground state solution, from the arguments

previously discussed. We end up with Figure 4.15. Again we see this is

Figure 4.15: A contour plot of the lowest energy vibrational wavefunction in
the sign representation.

localised entirely around the tetrahedron, this time with one positive peak

and one negative peak, and a nodal line at η = 0 as a result of the negative

parity.

We now consider looking for some excited states with the same parity and

boundary conditions. In Figure 4.16 we display the first two excited states

in the trivial and sign representations. These states have the same boundary

conditions and parities as the lowest energy state in each representation. We

see that the excited states in the trivial representation now have additional
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(a) First excited trivial state (b) First excited sign state

(c) Second excited trivial state (d) Second excited sign state

Figure 4.16: Plots for excited vibrational wavefunctions in the trivial (left)
and sign (right) representations.
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localisations around the squares as well as the tetrahedron. This seems fairly

natural as we might expect the first excited state to seek out other local sta-

tionary points away from the global minimum. Furthermore, for the second

excited state we have additional excitations away from both the tetrahedron

and the square. Also notice that in the sign representation we get localisa-

tions close to but not at the squares. This is because the square is forbidden

for all negative parity states since the square sits at (0, 1) which lies on the

line η = 0, and negative parity states are forced to be zero on this line.

Notice that for the excited states we might want to include more functions,

as argued previously. As an example, we take n = 20 for this state and

show the coefficients calculated in Table 4.4. We see that the first couple of

coefficients are in fact larger in magnitude than a1, and that the rest of the

coefficients do not tail off to zero quite as quickly as for the ground state.

This justifies taking a larger value of n. This is something we will need to do

for most of the excited states we are about to see. Since our potential goes

off to∞ for large ε rather than approaching some finite value, we expect that

we would have an infinite spectrum of discrete states. This is indeed the case

but for higher excited states we find that we simply pick up extra oscillations

in the ε-direction. These are not especially interesting and do not seem to

correspond to any physical states so we do not go any further here. Note

that for all of the excited states we have just displayed, the key point is that

they are centred around more than one configuration and so could never have

been derived from rigid body quantisation alone. This means that these are
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Coefficient Value
a1 1
a2 -10.4451
a3 2.5588
a4 -0.1866
a5 0.0247
a6 -0.0069
a7 0.0055
a8 0.0005
a9 0.0035
a10 0.0007
a11 0.0026
a12 0.0069
a13 0.0137
a14 0.0273
a15 0.0498
a16 0.0674
a17 00623
a18 0.0318
a19 0.0045
a20 -0.0019

Table 4.4: The first twenty coefficients for the first excited vibrational wave-
function in the trivial representation.
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definitely new states to come out of this approach.

So far we have considered only positive parity trivial representation states

and negative parity sign representation states. The reason for this is that we

are primarily interested in the low energy spectrum for Oxygen-16, and we

expect that negative parity states in the trivial representation and positive

parity states in the sign representation will have much higher energies. The

reason for this is that these states are forbidden by boundary conditions

to be located around either the tetrahedral or square configurations, which

will force up their energies considerably. However, we can still consider these

cases as potential excited states. We display the first such states in the trivial

and sign representations in Figure 4.17. Both of these states are zero on the

(a) First negative parity trivial
state

(b) First positive parity sign state

Figure 4.17: Plots for excited vibrational wavefunctions in the trivial (left)
and sign (right) representations, with opposite parities.

curved internal boundaries, and as expected have much higher energies than

the first states with the more natural choice of parity.
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So far, we have not displayed any results for states in the standard rep-

resentation. Unfortunately, we ran into difficulties calculating the standard

representation states in MATLAB. The reason for this is to do with the

boundary conditions. Recall the method we outlined earlier in this section

for fixing the boundary conditions on standard representation states, where

we divided our region F into four regions, rather than the six we had used

for the other representations. The new larger region that we consider now

has a potential that must be defined in a piecewise way, as it is defined

differently in the two parts of the new region. However, because the bound-

ary separating the two parts of the potential is a curve relating both η and

ε, it is not possible to define the potential in a piecewise way that is also

separable. Therefore if we wish to use separation of variables, this method

of defining the boundary conditions is not practicable, but as we shall see

later in this section it is the correct method to use when considering a full

two-dimensional numerical approach. For separation of variables though, we

must consider trying to solve for the standard representation states only on

the original red region of F . For the trivial and sign representations, we

applied the boundary condition on the left hand curved boundary and used

a symmetry argument to fix conditions on the right hand curved boundary.

However, for the standard representation recall that the relevant symmetry,

η 7→ 1− η, is not exhibited by the combinations u+ w and u− w for which

we can fix a boundary condition on the left hand curve. The technique used

in [30] is to leave the right hand boundary curve open with no imposed con-
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dition. However, when we attempted to apply this method, we encountered

a problem, specifically that the eigenfunctions we calculated would concen-

trate themselves near the open boundary, and satisfy the condition on the

left hand boundary curve by always being essentially zero close to it. An ex-

ample of such an eigenfunction, intended to be the first u+w state, is shown

in Figure 4.18. This eigenfunction is clearly erroneous, and there is evidently

an error in our method. Fortunately, we shall shortly present a more rigorous

method for solving the problem using two-dimensional numerics, so we shall

not dwell on attempting to rectify this flaw in the separation of variables

calculation.

Figure 4.18: A failed attempt to calculate a standard representation state
using separation of variables.
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4.7.1 Comments on the parameters

So far we have made the same parameter choice for ω and µ found in [30].

However we can consider what happens if we change the parameter values.

For example we considered the pairing ω = 10 and µ = 1. Most of the

states look very similar, although the numerical energies we calculate are

very different before calibration. One visual difference we do notice for these

parameters is that we do not find states that look like the first excited states

we found previously for the trivial and sign representations. We instead find

that when we look for excited states we go immediately to states that have

oscillations in the ε-direction. For completeness, we display the contour plots

for these states in Figure 4.19.

(a) (b)

Figure 4.19: Plots for excited vibrational wavefunctions with ω = 10 and
µ = 1.

The rest of the states look very similar. The main reason for the choice of
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parameters made in [30] is that after calibration they yield a plausible spec-

trum for the Oxygen-16 nucleus when compared with experimental values,

as we shall see shortly.

4.8 Allowed spins in the different representa-

tions

We have been solving (4.2) to obtain vibrational wavefunctions, but these

must be combined with spin states to form rovibrational states [30]. The

combinations that are permitted depend upon the representation into which

the wavefunction falls.

We will denote a rovibrational wavefunction by φ |Θ〉, where φ is the

vibrational wavefunction and |Θ〉 is the spin wavefunction. Rovibrational

states in the trivial and sign representations can be determined quite easily.

For vibrational wavefunctions in the trivial representation, the attached spin

state must be invariant under all elements of S3, both transpositions and

permutations. On the other hand, the spin states that are attached to the

sign representation vibrational wavefunctions must be invariant under per-

mutations but change sign under transpositions. Ultimately, this sign factor

for sign representation states means that spin states with positive intrinsic

parity can be combined with trivial representation vibrational wavefunctions,

and spin states with negative intrinsic parity can be combined with sign rep-

resentation vibrational wavefunctions.
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As such, if we consider the states in Table 4.1, the first allowed states that

can be combined with lowest energy trivial representation state are spin-0

and spin-4 states

|0, 0〉 and |4, 4〉+

√
14

5
|4, 0〉+ |4,−4〉 , (4.48)

since these states are allowed at both the tetrahedral and square configu-

rations, as is necessary for this state which has positive intrinsic parity. In

the sign representation, we look for spin states with negative intrinsic parity,

meaning that they vanish at the squares. This tells us the first allowed spin

state that can be combined the lowest energy vibrational state in the sign

representation is a spin-3 state

|3, 2〉 − |3,−2〉 , (4.49)

which is permitted at the tetrahedron but forbidden at the square. If one

again consults Table 4.1, we can see that for spin-6 there are various combi-

nations of spin-6 states that can be combined with either of these vibrational

wavefunctions. We will not go beyond spin-6 in this thesis, since there is little

known experimental data for Oxygen-16 beyond this. We also will continue

to consider only isospin zero states for simplicity. Some work on states with

non-zero isospin has been touched on in [31].

For the excited trivial and sign vibrational wavefunctions, we can make

exactly the same argument for the first two excited states in each represen-
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tation with the same spin states being allowed in each case. We must also

consider the opposite parity states in each representation. For the trivial

representation wavefunction with negative parity we make an interesting ob-

servation. We denote a rovibrational state with the notation JP , where J

is the spin of the state and P is the parity denoted by either + or −. It

is possible to construct a 0− state by combining the |0, 0〉 spin state, which

has positive intrinsic parity, with this vibrational wavefunction as it vanishes

at all configurations with intrinsic parity. This is an important point as the

rigid body method does not allow for a 0− state, and such a state is known

to exist experimentally. This observation in fact holds for higher spin states

too. That is to say that because the vibrational wavefunction in question

vanishes at all points with intrinsic parity, it can readily be combined with

the same spin states (spin-4 and spin-6) as the lowest energy trivial wave-

function. This leads to 4− and 6− states. By a similar argument the positive

parity sign representation wavefunction is allowed to be combined the same

spin states (spin-3 and spin-6) as the lowest energy sign wavefunction, lead-

ing to 3+ and 6+ states. Again, a 3+ state is something that had previously

been forbidden by the Skyrme model using the rigid body regime.

In summary, the allowed spins J in the trivial representation are J =

0, 4, 6 . . . and the allowed spins in the sign representation are J = 3, 6 . . . ,

with either parity being possible by combination with the correct vibrational

wavefunction. Note also that if we combine the ground state vibrational

wavefunction with either the spin-0 or spin-4 state given above, or if we com-
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bine the lowest energy sign representation wavefunction with the spin-3 state

given above, then these states are all concentrated around the tetrahedron.

In rigid body quantisation these states, the 0+, 3− and 4+ states, form an

exact rotational band. In the vibrational picture this is only approximately

true, as the energy of the 3− state lies slightly above this band since the

vibrational wavefunction is more constrained by being forbidden to lie at the

square.

In the standard representation, we again use u, v and w to describe the

vibrational wavefunction and we denote the full rovibrational wavefunction

by u |Θ〉1 + v |Θ〉2 + w |Θ〉3. We demand that he spin states |Θ〉i transform

inversely under S3 compared to the vibrational wavefunctions, for example

under a cyclic (1 2 3) permutation they permute anti-cyclically as |Θ〉1 7→

|Θ〉3 7→ |Θ〉2. Let us consider the case of J = 2 as an example. For spin-2,

|Θ〉i are the states with zero projection on the ith axis, meaning they satisfy

L̂i |Θ〉i = 0 and |Θ〉1 + |Θ〉2 + |Θ〉3 = 0. (4.50)

If we consider the vibrational wavefunctions u + v and u − v (recall from

our discussion of boundary conditions that these are the combinations that

exhibit symmetry or anti-symmetry under η 7→ 1−η), and if we consider the

first positive parity state in the standard representation, then for spin-2 we
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can write down the full wavefunction

|Ψ〉 =

√
3

2
√

2
(u− v)(|2, 2〉+ |2,−2〉)− 3

2
(u+ v) |2, 0〉 . (4.51)

This wavefunction gives a 2+ state and is concentrated around the square

configurations. Indeed at the square, it is the case that u and v are equal

and so the first term in the above wavefunction vanishes, and the whole state

is proportional to |2, 0〉. This is as expected since this is the only spin-2 state

which is permitted at the flat square according to Table 4.1. Note that there

are no spin-0 states which are dominated by the square, so the square rota-

tional band begins at spin-2, not at spin-0. This is another difference from

rigid body quantisation. Observe also that the state constructed above is

written with a two-dimensional basis of spin states. This can also be done

for the first negative parity standard representation state. Here the vibra-

tional wavefunction vanishes at the squares so the overall parity is negative,

but it can still be combined with the above spin-2 state, with the result now

being a 2− rovibrational state. We can again make similar arguments for

higher spins and it turns out that the allowed spins for the standard rep-

resentation are J = 2, 4, 5, 6 . . . , with either parity again being allowed in

combination with the correct vibrational wavefunction.
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4.9 Energies

4.9.1 Vibrational energies

We now list the numerically calculated energy eigenvalues for the vibrational

states we have produced, and they are given in Table 4.5. At this point

these values have no physical meaning, but we will discuss shortly how to

calibrate them against experimental values, and include the rotational energy

corrections (in MeV), so as to give a physical spectrum. Also observe that we

do not give energies for the standard representation as these have not been

calculated, as discussed previously.

State (JP ) Numerical Energy

(a) 139.29
(e) 139.67
(b) 171.27
(f) 189.80
(h) 215.78
(c) 216.01
(d) 228.61
(g) 233.64

Table 4.5: The numerically calculated energies for the eight states we have
calculated so far. The states are labelled (a) through to (h). States (a) to (c)
are the first three states in the trivial representation in order of excitation,
with (d) being the trivial representation state with negative parity. Similarly
states (e) to (g) are the first three states in the sign representation with (h)
being the sign representation state with positive parity.

118



4.9.2 The rotational energy EJ

So far we have neglected the term EJ in our equation (4.2). The reason

for this is that this term depends on the spin J and the spin is in turn

dependent on the rotational state with which we choose to combine our

vibrational wavefunction. As discussed previously we can choose to combine

vibrational wavefunctions in the trivial representation with rotational states

of spin J = 0, 4, 6 . . . , vibrational wavefunctions in the sign representation

with rotational states of spin J = 3, 6 . . . and vibrational wavefunctions in

the standard representation with rotational states of spin J = 2, 4, 5, 6 . . . .

The term EJ then looks like

EJ =
~2

2Λtet

J(J + 1) + E
(1)
J (η, ε), (4.52)

where Λtet is the moment of inertia of the tetrahedral configuration. Note

that our solutions for Oxygen-16 are not solutions of the full Skyrme model

(specifically we do not use a Skyrme potential), but rather our idea is only

motivated by Skyrme model and physical observations concerning Oxygen-

16 and the B = 16 Skyrmion. Therefore we do not have the usual Skyrme

calibration of ~ = 46.8. Instead, we have the freedom to choose ~ arbitrarily,

and choosing ~ = 1 is the natural choice. This means that we have to think

about the process by which we calibrate our energies, which we discuss later.

The second term in equation (4.52) is a small correction term which can be
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derived from perturbation theory in line with [30]. It is given by

E
(1)
J = −~2

2

∫
〈Ψ| ∇2 |Ψ〉 dz − ~2

J(J + 1)

2Λtet

. (4.53)

However, since these corrections are relatively small in most cases we do not

calculate them here. We will work with only the zeroth order term E0 for

the rotational energy. For a full discussion of the first order term, the reader

is referred to [28].

We can clearly observe that if we take only this term, the rotational

energy scales like J2, and is zero for J = 0. This means that if we combine

our vibrational wavefunctions with a spin zero state (which we can do only

for the trivial representation) then there is no contribution from the EJ term.

Since the energies we calculated earlier were actually in effect Ẽ = E−EJ , it

is clear that higher spin states will have their actual energies increased by a

greater amount compared to what was calculated, as we would expect. The

value of Λ will be fixed when we calibrate our rotational energy units later.

4.9.3 Remarks on calibration

We want to calibrate our energies in such a way that they can be compared

to experiment. We will do this by first shifting the energies calculated in

Table 4.5 such that the ground state has zero energy. We then scale our

vibrational energies so that the first excited 0+ state (b) has energy 6.05

MeV to agree with experiment, and this fixes our vibrational energy units.
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When we include the spin state corrections, we scale the rotational energy

units such that the lowest lying spin 4+ state has energy 10.35 MeV, again

to agree with experiment. This will also fix a value for Λ in these units.

We will give a full table of the calibrated energies later, once we are in a

position to also give energies for the standard representation states. We will

remark that the calibrated energies of the states (a) to (h) that we have

calculated so far are in agreement with the energies originally calculated in

[30], up to some very minor differences that may be a result of our slightly

different numerical method. In particular, the main flaw highlighted by [30]

is that the energy calculated for the 0− state is too high. The vibrational

wavefunction corresponding to this state is (d), the trivial representation

state with negative parity. We calculate after calibration that this state has

energy 16.90 MeV, whereas the correct experimental value is known to be

10.96 MeV [33]. This overestimation for the energy of the 0− state is a flaw

that we would like to correct, and one possible way to do this is to investigate

alternative choices for the potential.

4.10 Alternative potentials

We also have the ambition of investigating what happens for a change of

potential. The key feature of the potential chosen in [30] is that it makes

the equation (4.2) separable, and so the problem can be reduced from a

PDE to two ODEs which is numerically much easier. Let us look at why
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the potential (4.28) makes (4.2) separable and if there are any other choices

which also have this property. To do this let us go through the process

of separation of variables for (4.2) in detail. We start by substituting the

ansatz φ(η, ε) = H(η)G(ε) into the equation. Using this and the form of the

operator given by (4.4) we obtain the equation

−ε2(H ′′(η)G(ε) +H(η)G′′(ε)) + V (η, ε)H(η)G(ε) = EH(η)G(ε).

Dividing through by a factor ε2H(η)G(ε) yields

−H
′′(η)

H(η)
− G′′(ε)

G(ε)
+
V (η, ε)

ε2
=
E

ε2
,

and we can see that this is separable into η and ε terms if and only if the

term V/ε2 is separable, as the other terms are already separated. We then

deduce that the most general form of the potential for which this condition

is satisfied is

V (η, ε) = ε2(f1(ε) + f2(η)), (4.54)

so that the prefactor of ε2 cancels with the denominator, leaving a term

separated into a function of only ε and a second function of only η. This

yields two separated ODEs

H ′′(η) = H(η)(f2(η)− k), (4.55)
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G′′(ε) = G(ε)

(
k + f1(ε)−

E

ε2

)
, (4.56)

where we note that the potential (4.28) that we have used so far has f1(ε) = 0

and f2(η) = ω2(η − 1/2)2 + µ2.

Let us now consider some interesting special cases of (4.54). The most

trivial special case is where f1(ε) and f2(η) are both identically zero and so

we have the zero potential. This yields the ODEs

H ′′(η) = −kH(η) (4.57)

G′′(ε) = G(ε)(k − E/ε2). (4.58)

We see that solutions to H(η) are solutions of the classical simple harmonic

oscillator problem (sine and cosine functions with suitably determined coef-

ficients) and the equation for G(ε) is the same as our original one and can

be solved numerically.

A second case is for us to choose a potential with no dependence on η.

That is to say we pick f2(η) = 0. Strictly speaking we could choose f2(η)

to be some non-zero constant, but if we were to do this we could actually

absorb the constant into f1(ε) and so rescale f2(η) to be zero in any case.

This gives the ODEs

H ′′(η) = −kH(η) (4.59)

G′′(ε) = G(ε)(k + f1(ε)− E/ε2), (4.60)
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where the H(η) equation is again that of the classical simple harmonic oscil-

lator and the equation for G(ε) is now slightly more complicated but can still

be solved numerically for reasonable choices of f1(ε). A natural candidate is

f̃1(ε) = ω2(ε −
√

3/2)2 + µ2, where we now write f̃1(ε) = ε2f1(ε) to absorb

the factor of ε2 for convenience. This choice gives a minimum at ε =
√

3/2,

the position of the tetrahedron.

We plot the full potential for this case in Figure 4.20a, and it should be

noted that the minimum here is in fact along the whole line ε =
√

3/2 rather

than specifically at the position of the tetrahedron.

A natural alternative special case to consider is the potential with no ε

dependence, but due to the prefactor of ε2 in (4.54) that is necessary to give

separability this is not in fact possible (except for the trivial case already dis-

cussed). We can consider removing any ε dependence from the sum however,

that is to say we can fix f1(ε) = 0. Notice that this particular special case

includes the potential that we have so far been considering, as the potential

(4.28) is simply a factor of ε2 multiplied by a function of η chosen in such a

way that there is a minimum at η = 1/2, the position of the tetrahedron.

For this case more generally, we obtain the ODEs

H ′′(η) = H(η)(f2(η)− k) (4.61)

G′′(ε) = G(ε)(k − E/ε2). (4.62)

Now it is the equation for H(η) that is more complicated, but it can still
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be solved as a Sturm Liouville problem for reasonable choices of f2(η). The

equation for G(ε) returns to being the same one we have solved previously.

An obvious candidate for the choice of f2(η) here is obviously the quadratic

chosen by Halcrow and King in [30], but another interesting if slightly more

complicated alternative is the quartic function f2(η) = −ω2((η − 1/2)4 +

0.5(η − 1/2)2) + µ2. The advantage of this choice is that it still provides a

minimum at η = 1/2 but now the function has the added benefit of having

local maxima at η = 0 and η = 1, which gives genuine saddle points at the

square configurations when the function is combined with the quadratic in

the ε-direction. We plot the full potential for this case in Figure 4.20b.

(a) Potential with f2(η) = 0. (b) Quartic Potential

Figure 4.20: 3D plots for the potential with no η dependence and the quartic
potential.

Another option for this special case is to choose a sextic potential in η.

This would allow us to have a global minimum at the tetrahedron and a
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local minimum (rather than a saddle) at the squares. Alternatively we could

choose to have a global minimum at the squares and a local minimum at the

tetrahedron. The first of these is more physical but the second is consistent

with some versions of the Skyrme model, depending on the choice of mass

parameters.

We define a sextic potential by taking f2(η) = a(η−1/2)6 + b(η−1/2)4 +

c(η − 1/2)2 + d. We can then vary the shape of our potential by varying the

parameters. Recall that for the potential (4.28) we had the square at a value

of 128.75 and the tetrahedron at 96. We use these values to motivate our

parameter choice for the sextic potential.

For the first case where we want a global minimum at the tetrahedron and

a higher local minimum at the squares we choose a = 5000,b = −2512,d =

128 and we require c = −(3a/16 + b/2) to give the right position for the

minima. This gives a value of 96 for the tetrahedron and 128.75 for the

squares as before.

For the second case where we want a global minimum at the square and a

higher local minimum at the tetrahedron we take a = 20000, b = −26416/3

and d = 512/3 with c as before. This puts the squares at 96 and the tetra-

hedra at 128.75.

We plot the two potentials in Figures 4.21a and 4.21b, and we notice

that the first case looks roughly similar to what we had seen before but

with small local minima at the squares. The second case on the other hand

looks markedly different with pronounced global minima at (0, 1), (1, 1) and
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(1/2, 1/2) where the square configurations lie.

(a) Sextic potential with global mini-
mum at the tetrahedron.

(b) Sextic potential with global
minimum at the square.

Figure 4.21: 3D plots of the two sextic potentials.

The two sextic potentials are the most interesting of the various spe-

cial cases we have discussed so we will now present some results for these

potentials.

4.10.1 Results for the first sextic potential

We now present contour plots for the same states that we calculated for the

original potential, although this time we only include one of the excited states

with the natural parity rather than two. For the first sextic potential the

ground state vibrational wavefunction and lowest sign representation wave-

function are displayed in Figures 4.22a and 4.22b. The first excited states

in each representation are displayed in Figures 4.23a and 4.23b. Finally, we
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(a) Trivial Representation (b) Sign representation

Figure 4.22: Contour plots for the lowest lying vibrational wavefunctions in
the trivial and sign representations respectively, for the first sextic potential.

(a) Trivial Representation (b) Sign representation

Figure 4.23: Contour plots for the first excited vibrational wavefunctions in
the trivial and sign representations respectively, for the first sextic potential.
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display the states with opposite parity in each representation in Figures 4.24a

and 4.24b. Again, we do not plot standard representation states here, due

(a) Trivial Representation (b) Sign representation

Figure 4.24: Contour plots for the excited vibrational wavefunctions in the
trivial and sign representations with the opposite parity condition, for the
first sextic potential.

to the same difficulties as before.

We notice that these pictures all look essentially very similar to the orig-

inal potential (4.28). This is to be expected as physically not a lot has been

changed, with the only difference that the square is now a stable minimum

in all directions rather than a saddle point. The shapes of some of the peaks

look slightly different but all of the states are still localised around the same

points as before.

We can check what this new potential does to our energies, in particular

the 0− state which we hope to correct. We find, after calibration, that the 0−
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state has an energy of 17.78 MeV, compared to the 16.90 MeV we calculated

previously. This is very similar and is still too high, so this choice of potential

does not correct this flaw.

4.10.2 Results for the second sextic potential

We now present contour plots for the same states for the second sextic po-

tential. The ground state vibrational wavefunction and lowest sign repre-

sentation wavefunction are displayed in Figures 4.25a and 4.25b. The first

(a) Trivial Representation (b) Sign representation

Figure 4.25: Contour plots for the lowest lying vibrational wavefunctions in
the trivial and sign representations respectively, for the second sextic poten-
tial.

excited states in each representation are displayed in Figures 4.26a and 4.26b.

Finally, we display the states with opposite parity in each representation in

Figures 4.27a and 4.27b.

We notice that these pictures now look somewhat different for some states.
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(a) Trivial Representation (b) Sign representation

Figure 4.26: Contour plots for the first excited vibrational wavefunctions in
the trivial and sign representations respectively, for the second sextic poten-
tial.

(a) Trivial Representation (b) Sign representation

Figure 4.27: Contour plots for the excited vibrational wavefunctions in the
trivial and sign representations with the opposite parity condition, for the
second sextic potential.

131



In particular the ground state is now primarily localised around the squares

as we would expect since it is now the global minimum. The first excited

trivial state also looks very different and turns out to have a rather higher

energy. This will make a difference when we do calibration as we use this state

to scale our vibrational units. We also observe that the sign representation

states look quite similar to before. The reason for this is that the lower sign

states have negative parity and this prevents them from being localised at

the squares, indeed they must vanish at those points. As a result they still

want to be localised around the tetrahedron as it is the next minimum energy

point.

We can again check what this new potential does to the energy of the

0− state. We find, after calibration, that the 0− state now has an energy of

6.72 MeV. This is radically different to before and is now too low, but it may

be possible for different parameter choices to find something that gives us a

value somewhere in the middle, to allow us to get close to the experimental

value of 10.96 MeV. This is something that we would like to investigate

further in the future, and is one possible avenue for future work. However,

we wish to focus for now on the approach laid out in the next section where

we use a full two-dimensional numerical approach to replace the separation

of variables idea. This will remove the constraints on our choice of potential,

and allow us to be much more general.
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4.11 A new approach: two-dimensional nu-

merics

So far, we have been severely constrained in the choice of potential we have

been allowed to make. However, ideally we would like our potential to sat-

isfy several key criteria. Firstly, we would like it to have a global minimum

at the tetrahedral configuration as this agrees with experimental evidence.

We would also like the potential to have stationary points at the squares.

Additionally, we would like the potential to be smooth (continuous and con-

tinuous in derivative) across the boundaries of the coloured regions, as well

as flattening off to a finite vacuum value at infinity. We note that the first

two criteria were satisfied for our previous choice, but the last two are im-

possible to satisfy for any separable potential. The smoothness condition is

extremely difficult to satisfy as it is very hard to construct a potential in

the red region of F that is then continuous in derivative when mapped to

the other coloured regions. The finite vacuum condition cannot be satisfied

due to the overall prefactor of ε2, as discussed previously. As such, we are

motivated to think about going beyond the separation of variables method

to solve our problem. This is numerically much more challenging, but we

have devised an approach using a finite element method in FreeFEM++ to

calculate solutions. The key difficulty in doing two-dimensional numerics for

this problem is the unusual boundary conditions, where we have to impose

a derivative that is zero normal to a curved boundary, but the finite element
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scheme gives us scope to do this.

4.11.1 A proof of concept

Here we will briefly present some results for this method with the original

choice of potential (4.28), in order to justify that this more involved method is

sound. We present these results in Figure 4.29, and also display the opposite

parity states in Figure 4.30. We must also make a remark on the colour

scheme that we are using in these figures. The colouring is done such that

areas where the wavefunction is negative are coloured blue, areas where the

wavefunction is positive are coloured red, and areas where the wavefunction

is zero are coloured magenta. A colour key is shown in Figure 4.28.

Figure 4.28: The colour key used in the production of the FreeFEM++
figures.

We see that our new plots look the same as for the one-dimensional

method, with the exception of a slight discrepancy in the orientation of the

darker parts of the blue rings in Figure 4.29e. We are not able to explain
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(a) (b) (c)

(d) (e) (f)

Figure 4.29: Plots for the trivial (left) and sign (right) vibrational wavefunc-
tions calculated using two-dimensional numerics, in order of excitation.
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(a) (b)

Figure 4.30: Plots for the trivial (left) and sign (right) opposite parity vibra-
tional wavefunctions calculated using two-dimensional numerics.

this difference, but we can say that the energies of all of the calculated states

agree with the energies listed in Table 4.6 up to two decimal places, so clearly

the methods are consistent.

Using this new method, we were also finally able to calculate standard

representation states. This is very important as we recall that standard rep-

resentation states are the only vibrational wavefunctions that can be com-

bined with spin-2 states. As such, to produce these states in the Oxygen-16

spectrum, calculating the vibrational energies for these wavefunctions was

essential. Recalling that the combinations u + w and u − w were the ones

for which we could fix boundary conditions, we plot the first three u + w

and u− w wavefunctions with positive and negative parity. Note that these

wavefunctions come as energy doublets, that is to say the first u + w state

with positive parity has the same energy as the first u−w state with negative

parity, and so on for the other states. We plot positive parity u+w wavefunc-
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tions in Figure 4.31 and positive parity u− w wavefunctions in Figure 4.32.

Likewise, we plot negative parity u + w states in Figure 4.33 and negative

parity u − w states in Figure 4.34. Since [30] plots the wavefunctions u + v

and u − v for the standard representation, we are not able to compare our

plots with the previous results, but it will turn out after calibration that our

standard representation energies are consistent with [30].

(a) (b) (c)

Figure 4.31: Plots for the first three standard representation wavefunctions
u+ w with positive parity.

4.11.2 Calibration

We have already discussed the method for calibration, but now that we have

calculated energies for all of the states, including the standard representation,

we can calibrate all of our energies and generate a spectrum. In Table 4.6

we present the calibrated energies. We give the JP values of the state and

the corresponding vibrational wavefunction. States (a) to (h) correspond to

the same vibrational states as before, and now states (i) to (m) are standard
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(a) (b) (c)

Figure 4.32: Plots for the first three standard representation wavefunctions
u− w with positive parity.

(a) (b) (c)

Figure 4.33: Plots for the first three standard representation wavefunctions
u+ w with negative parity.
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(a) (b) (c)

Figure 4.34: Plots for the first three standard representation wavefunctions
u− w with negative parity.

representation wavefunctions. States (i) to (k) are the first three positive

parity standard representation states, and states (l) to (n) are the first three

negative parity states. We include the vibrational energy, the rotational

correction E0 and the total energy, as well as an experimental value for

comparison. The experimental values are taken from [33].

4.11.3 Spectrum

We are now in a position to display an energy spectrum based on our cal-

culations. This is displayed in Figure 4.35. We observe from this spectrum

that there is broadly a good agreement with experiment, especially for the

low energy states. In particular, we see that the lowest lying J = 2 states

have the correct order and energy gaps, and the ground state rotational band

is well produced.

The most obvious failure of this model is the energy of the first 0− state
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State (JP ) Vibrational State Evib E0 Etot Experimental
0+ (a) 0 0 0 0
0+ (b) 6.05 0 6.05 6.05
3− (e) 0.07 6.21 6.28 6.13
2+ (i) 4.15 3.10 7.25 6.92
2− (l) 5.32 3.10 8.42 8.87
4+ (a) 0 10.35 10.35 10.35
2+ (j) 8.83 3.10 11.93 11.52
4+ (i) 4.15 10.35 14.50 11.10
0+ (c) 14.52 0 14.52 -
2− (m) 11.55 3.10 14.65 12.53
4− (l) 5.32 10.35 15.67 14.30
3− (f) 9.56 6.21 15.77 -
2+ (k) 12.83 3.10 15.93 -
0− (d) 16.90 0 16.90 10.96
5+ (i) 4.15 15.53 19.68 -
3+ (h) 14.47 6.21 20.68 15.79
5− (l) 5.32 15.53 20.85 -
6+ (a) 0 21.74 21.74 21.05
6− (e) 0.07 21.74 21.81 -

Table 4.6: A table showing the calibrated energies for different states JP . We
also give the relevant vibrational state, and where the experimental value is
known this is listed for comparison. All energies are now given in MeV.
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Figure 4.35: A spectrum for Oxygen-16 using the energies calculated in Ta-
ble 4.6. Here circles represent states we have calculated in our model and
crosses represent experimental states. Blue symbols denote states with pos-
itive parity and red symbols denote states with negative parity.
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as mentioned previously, which is off by approximately 6 MeV. This differs

from the experimental value by around 54%. Since the ability to produce

a 0− state in the first place is one of the attractive features of this model,

as such a state cannot be found at all in rigid body quantisation, we would

like to produce it accurately. We have already discussed some alternative

potentials that change this value, but we now move on to a new method,

with the aim of improving our results further.

4.12 Constructing a new potential

If we want to construct a potential that satisfies the criteria we outlined pre-

viously, we must think how do this. In particular, the two conditions we were

previously unable to meet were for the potential to flatten off at infinity and

to be smooth across the boundaries of the coloured regions. Constructing a

function from scratch that satisfies these conditions is a daunting task, but

we have an advantage. We already know several functions that satisfy these

conditions, namely any eigenfunction of the Schrödinger equation. Therefore

we can build a potential as a combination of eigenfunctions of the Schrödinger

equation to achieve a potential with the desired features. Note that it does

not matter what potential we use to generate the eigenfunctions, so we will

take the zero potential as the simplest case. In particular we are looking to

use an eigenfunction centred entirely around the tetrahedra and an eigen-

function centred entirely around the squares. We can then build a linear
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combination of these two eigenfunctions to construct a function which has

minima at both configurations, of the form

V = c0 − V c1
tet − λV c2

sq , (4.63)

where we can adjust the parameter λ to change the relative values of the

potential at the tetrahedral and square configurations. We also include con-

stants c0, c1 and c2. Since both Vtet and Vsq vanish at infinity, the parameter

c0 will fix the value to which our potential flattens off at infinity. The powers

c1 and c2 should both be even in order to ensure that the tetrahedron and

square have minima rather than maxima, and taking a higher power will

make the potential more highly localised around these configurations. Note

also that Vsq is a standard representation state and is itself the sum of a u+w

state and a u−w state, and these are summed in such a way that the value

of Vsq is the same at all square configurations.

We display the two base functions in Figure 4.37, and then display the

constructed potential in Figure 4.38. In constructing this final potential

our motivation was for the tetrahedron and square to have the same values

as we used previously, specifically 96 at the tetrahedron and 128.75 at the

square, as this gave a good fit for the spectrum. However, we now have our

potential with local minima at both configurations, whereas previously the

square was only a saddle point, and it is also smooth across all of the internal

boundaries. It also flattens off at infinity to the value c0, in this case we have
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taken c0 = 300. We also take the parameters c1 = c2 = 6 and λ = 1.1,

as these parameters give a distinct separation between the tetrahedron and

square minima, and put the values of these minima in line with the values

we want. Note that the colour scheme we use for the potential is somewhat

different to that used for the wavefunctions in the previous section, as our

potential function is positive everywhere and so the colour key is shifted.

Blue now represents the minimal values of the potential (but still a positive

quantity), red the maximal values and magenta takes values in between. A

colour key for the new potential is shown in Figure 4.36.

Figure 4.36: The colour key used in the production of the new potential.

It can be observed from a careful consideration of Figure 4.38, that the

new potential is not perfectly symmetric under the symmetry η 7→ 1−η. This

may in part be due to a slight deviance in our numerics when we calculate

the square centred state (one can see from Figures 4.37 and 4.37 that the

tetrahedron centred potential is symmetric, but the square centred one is

not). However, it should also be pointed out that since the square centred
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(a) Vtet (b) Vsq

Figure 4.37: Plots for the two functions Vtet and Vsq from (4.63) that we will
use to construct our new potential.

Figure 4.38: The new potential, which is now smooth everywhere and finite
as ε→∞.
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potential is a standard representation u±w state, there is no reason to expect

that it would necessarily have this symmetry in any case. This is a slightly

unfortunate feature of this new potential as it will break the η 7→ 1 − η

symmetry of all of our states, causing them to look somewhat different. A

task for future work would be to consider how we might force this potential to

be symmetric, when it is composed of an asymmetric state. One possibility

is to seek a standard representation wavefunction of the type u ± v that is

centred entirely around the square, as we know that these states exhibit the

desired symmetry. Unfortunately, we have not yet identified such a state and

so we will continue to use the potential from Figure 4.38 in this thesis. One

other partial explanation for the asymmetry is that when we truncate our

region at ∞ for large values of ε, we also truncate at the point (0, 0) which

is related by mapping. However, we do not truncate at the points (1, 0)

or (−1, 0) which slightly distorts the symmetry, and breaks the η 7→ 1 − η

symmetry of the region we solve on. This can be seen in the plots we show in

the following section, and we hope to correct this in the near future. It should

be noted though that this will not fully correct the underlying problem of

the asymmetry of the square centred state. Bearing these small caveats in

mind, we are now ready to present some of the vibrational wavefunctions

calculated from this potential, which we do in the next section.
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4.12.1 Results

In Figures 4.39 and 4.40 we present the vibrational wavefunctions for the first

three states in the trivial and sign representations, and the first state in each

representation with opposite parity. In returning to plotting wavefunctions,

we revert to the colouring scheme for wavefunctions from Figure 4.28. If one

compares these pictures to the analogous pictures that we found for the old

potential in Figures 4.29 and 4.30, one immediately see two things. Firstly,

the new states are all qualitatively comparable to the old versions in terms

of the number of peaks and their approximate positions. Secondly, we see

that as we conjectured our new states are not symmetric under η 7→ 1 − η,

due to the asymmetric nature of our new potential breaking the symmetry of

the states. This symmetry breaking is only slightly noticeable for low energy

states, but becomes much more obvious for the higher energy states.

In Figures 4.41 and 4.42 we display the first two standard representation

vibrational wavefunctions u±w with positive parity. An immediate observa-

tion here is that we do not display the third such wavefunction as in Figures

4.31 and 4.32, because for our new potential this state does not exist. This is

one very clear difference between the original potential and our new choice.

Otherwise, these states appear to be quite similar, and since these states

were not symmetric under η 7→ 1 − η in the original case, the effect of the

symmetry breaking is less obvious.

Finally, in Figures 4.43 and 4.44 we display the first three standard repre-

sentation vibrational wavefunctions u±w with negative parity. Here we find
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(a) (b) (c)

(d) (e) (f)

Figure 4.39: Plots for the trivial (left) and sign (right) vibrational wavefunc-
tions for the new potential from Figure 4.38, in order of excitation.
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(a) (b)

Figure 4.40: Plots for the trivial (left) and sign (right) opposite parity vibra-
tional wavefunctions for the new potential from Figure 4.38.

(a) (b)

Figure 4.41: Plots for the first two standard representation wavefunctions
u+ w with positive parity for the new potential from Figure 4.38.
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(a) (b)

Figure 4.42: Plots for the first two standard representation wavefunctions
u− w with positive parity for the new potential from Figure 4.38.

that all three of the states analogous to the original ones found in Figures

4.33 and 4.34 do exist, and are again qualitatively similar.

(a) (b) (c)

Figure 4.43: Plots for the first three standard representation wavefunctions
u+ w with negative parity for the new potential from Figure 4.38.
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(a) (b) (c)

Figure 4.44: Plots for the first three standard representation wavefunctions
u− w with negative parity for the new potential from Figure 4.38.

4.12.2 Spectrum

We now want to produce a new energy spectrum based on the vibrational

energies we have calculated for these new states. We do this using the same

process for calibration as previously, and the resulting spectrum is displayed

in Figure 4.45.

4.13 Discussion and outlook

We recall that the primary failing of the original potential (4.28, was the

significant overstatement of the energy of the 0− state. We previously cal-

culated an energy for this state of 16.90 MeV compared to the experimental

value of 10.96 MeV, an error of approximately 54%. Our new prediction for

the energy of this state is 12.95 MeV which is still too large, but the error is

now reduced to approximately 18% which represents a considerable improve-
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Figure 4.45: The spectrum calculated for Oxygen-16 for the new potential
from Figure 4.38. As before, blue symbols denotes positive parity states and
red symbols denote negative parity states. Circles denote states predicted
by our model and crosses denote experimental energy values where they are
known.
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ment. We do notice however, that the energies of the two lowest lying spin-2

states are less well produced than before. These two states were previously

produced to within less than 0.5 MeV of the experimental value, but now

the energy of the 2+ and 2− states are out by approximately 2 MeV and 3

MeV respectively. For spin-3, the low-lying 3− state is now extremely accu-

rately produced (to within less than 0.1 MeV), although this was reasonably

well produced before in any case. For spin-4 we recall that the lowest-lying

state is fixed by our calibration, and we still do not accurately produce the

first excited 4+ state very well. This should have a similar energy to the

lowest lying 4+ state, with an energy difference of less than 1 MeV, but in

our case (for both the original potential and this new one) there is a gap of

several MeV. We also see that the ground state vibrational band is again well

produced.

Overall, the use of this new potential has yielded some interesting results.

In particular the improvement of the 0− state energy, whilst not entirely

corrected, is encouraging. It gives us reason to believe that if one experiments

further with the parameters (c0, c1 and c2) in our potential we may be able

to fix this state still more precisely. However, it may be the case that in

calibrating our parameters to describe this state, we distort the energies of

other states such as the low-lying spin-2 states. A full parameter analysis of

this potential to find the best possible match is something that we hope to do

in the future. One could also consider including additional free parameters

in the definition of the potential, which should allow more states to be fitted
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exactly to experiment. However, whether this improves predictions for any

remaining states is unclear, and we would like to keep our model as simple

as possible.

Finally, we must again remark on the asymmetric nature of our con-

structed potential. Ideally, this is clearly something that should be addressed,

and we will continue to investigate ways of enforcing the η 7→ 1−η symmetry

that we desire. The natural way to do this is to take the potential (4.63) we

defined previously and symmetrise it by hand. That is to say if we call the

potential (4.63) V (η, ε), then we can define a symmetrised potential Ṽ (η, ε)

by changing variables such that

Ṽ (η, ε) = V (1− η, ε) (4.64)

for η ≥ 0, and

Ṽ (η, ε) = V (−1− η, ε) (4.65)

for η < 0. The new potential Ṽ (η, ε) will then be symmetric in the region

from η = 0 to η = 1 about the vertical line η = 1/2, and also symmetric in

the region from η = −1 to η = 0 about the line η = −1/2. It will also be

continuous and smooth across the line η = 0, by construction.

Unfortunately, due to the way in which the code in FreeFEM++ is set up,

this idea has proven to be more challenging to implement than one might

imagine. This is due to the fact that the eigenfunctions that we use to

construct the potentials are stored as arrays rather than defined as functions,
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so performing a change of variables is not straightforward, and this idea is

left open to the interested reader.

Another alternative idea is not to use eigenfunctions at all, but to attempt

to construct a new potential from scratch that has the desired properties. It

may be possible to do this by choosing rational functions with the correct

minima, but this will require additional thought and we do not go into the

details of this approach here.

155



Chapter 5

A quantum graph approach for

Oxygen-16

5.1 Introducing the idea

A novel idea in the field of Skyrmion quantisation comes from a novel recent

paper by Rawlinson [58]. The idea is to restrict the Skyrmion to some man-

ifold as we have been doing up to now, but to then consider only certain key

lines on the manifold. This means that we consider only certain key deforma-

tions. Making this restriction leads to a restricted configuration space which

has the structure of a quantum graph, and quantum graph theory is used

in the construction of solutions. The paper [58] offers promising results, im-

proving on the Carbon-12 spectrum predicted by rigid body quantisation in

the Skyrme model by allowing states which are superpositions of various key
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configurations such as the triangle and linear chain. The paper also predicts

several new states not previously seen in the Skyrme model for Carbon-12.

An advantage of this method is that by solving the Schrödinger equation

only on certain key lines of the manifold, we reduce the problem to a series

of one-dimensional problems. That is to say, we have to solve relatively

simple ODEs with standard endpoint boundary conditions. This drastically

simplifies the numerical work involved, although at the cost of losing some

information about what happens away from the lines we consider.

We can quite easily conceive of a similar idea for Oxygen-16. We already

have the necessary manifold, which remains the six-punctured sphere with

constant negative curvature as before. We also already know some key lines

on the manifold. If we recall Figure 4.2, we marked on the manifold a solid

black line representing one of the scattering modes visualised in Figure 4.1.

We also remarked that there are in fact three such modes, corresponding to

lines passing through the three pairs of opposing faces of the tetrahedron.

We can mark all of these modes on a single copy of the region F , which

we do in Figure 5.1. The three scattering lines shown in Figure 5.1 are all

related by symmetry, and we expect that the Schrödinger equation we must

solve will be the same on each line. We also note that the three lines inter-

sect at the two tetrahedral configurations, which leads us to the quantum

graph structure shown in Figure 5.2. The graph contains fundamental nodes

at the two tetrahedra and three removable nodes at the square configura-

tions. The edges of the quantum graph are the scattering lines. The idea
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Figure 5.1: A plot of the region F with the three scattering modes clearly
marked.

Figure 5.2: A display of the quantum graph structure obtained from consid-
ering the three scattering lines in F .
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is to solve the Schrödinger equation on this graph. Since the three lines are

related by symmetry, it will be enough to solve the Schrödinger equation

on one of the lines, subject to boundary conditions that ensure matching at

the tetrahedral notes and the condition that the solutions should vanish at

infinity. The usual matching conditions in quantum graph theory are known

as Kirchhoff conditions [59], [40]. These conditions require that the solutions

be continuous across the nodes of the graph and that the sum of derivatives

of solutions entering the node is equal to the sum of derivatives of solutions

exiting the node. In our case, for the two fundamental nodes we have three

edges entering each node and three edges leaving it. Therefore if we denote a

coordinate on our graph by s and solutions on the three incoming nodes by

fi(s) and solutions on the outgoing nodes by gi(s), the Kirchhoff condition

[14], [13] states that
i=3∑
i=1

dfi
ds

=
i=3∑
i=1

dgi
ds
. (5.1)

Notice that this condition does not necessarily imply that the incoming and

outgoing derivatives of one particular solution must match, but for reasons

of symmetry it will turn out that they do, at least in the trivial and sign

representations. In fact it will turn out that for the case of the trivial and

sign representations the quantum graph can be separated into three separate

lines, as shown in Figure 5.3. These lines will each have the same Schrödinger

equation and the same boundary conditions, and it will be sufficient to just

consider one such line. For the standard representation this separation cannot
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be made as the wavefunction may take a different function of u, v and w on

each of the three lines so we must consider the full graph in this case, and be

careful with the boundary conditions. For the trivial and sign representations

Figure 5.3: The separated quantum graph for the trivial and sign represen-
tations.

the problem is now relatively simple. We write down the usual Schrödinger

equation on our graph

−~2

2

d2φ

ds2
+ V (s)φ = Eφ, (5.2)

where φ is the vibrational wavefunction as before. Again we see that we

no longer have to worry about separability as the problem is now a one-

dimensional one, so we can choose a more general potential if we want to. For

the separated trivial and sign representation cases, there are no fundamental

nodes at which we need to impose Kirchhoff conditions, so the only boundary

conditions we need are the usual ones at infinity, namely

φ(±∞) = 0 and
dφ

ds
|±∞ = 0. (5.3)
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The problem is now a simple second order ODE with standard endpoint

boundary conditions, which can easily be solved numerically as long as the

potential is a sensible function.

One final subtlety that should be mentioned is that in order to fully ensure

that the three separated lines are fully equivalent we will parametrise each of

them by arc length. As an example consider the straight line (we consider the

right hand portion of this line). Let us parametrise it first as (η, ε) = (1/2, t),

with t = 1/2 . . .∞. This is a perfectly valid parametrisation in its own right

but now we attempt to rewrite this in terms of an arc length parameter s.

We would also like the parametrisation to be such that the point s = 0 is the

position of the square configuration, as the square sits at the centre of each

of the scattering lines. We calculate the arc velocity on our line. Using the

equation (4.3) for the hyperbolic metric, we can deduce that the arc velocity

is given by

v(t) =

√
d2η

dt2
+
d2ε

dt2

ε(t)
. (5.4)

For our particular parametrisation this simplifies to v(t) = 1/t. We then

calculate s by integrating over the velocity

s =

∫ t

t0

v(τ)dτ. (5.5)

In our case we want s = 0 to be the square so we take t0 = 1/2 as that is the
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position of the square in t coordinates. Performing the integral we find that

s = ln(2) + ln(t), (5.6)

or rearranging

t =
es

2
. (5.7)

Therefore an arc length parametrisation of the line is

(η, ε) = (1/2, es/2) (5.8)

for s = 0 . . .∞. Note for negative s we need to consider the left straight line

and the parametrisation is symmetric. This parametrisation means that the

position of the tetrahedron is at the point log(3)/2 ≈ 0.55.

So far we have discussed only the trivial and sign representation states,

which are relatively straightforward as the graph separates into three single

lines. To consider the standard representation is somewhat more involved,

as this simple separation does not occur. The problem can still be broken

down somewhat from the most general version of the graph in Figure 5.2, by a

simple consideration of parity. Specifically, we know that the top and bottom

halves of the graph are related by parity. We therefore need only solve the

problem on one half of the graph (we will take the top half), which we show

in Figure 5.4. We see that this new graph now has only one fundamental

node, at the tetrahedron.
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Figure 5.4: The further reduced quantum graph, which now consists of only
one fundamental node.

We also know the boundary conditions at all of the end points of the

graph. At the three upper end points, which correspond to infinity, we must

have the condition that the wavefunction vanishes. At the three lower end

points, which are at the square configuration, the boundary condition will

depend on parity, but will be either that the wavefunction or its derivative

must vanish. Let us now say that a wavefunction on one of the upper branches

of the graph is denoted by ψ and a wavefunction on one of the lower branches

is denoted by φ. We must thus have on all three branches that ψ(∞) = 0

and either φ(0) = 0 or φ′(0) = 0 depending on parity, where we take s = 0 to

be the position of the square as before. Imposing the continuity condition,

we must have that

a1ψ(t) = a2ψ(t) = a3ψ(t) = b1φ(t) = b2φ(t) = b3φ(t), (5.9)

where t denotes the position of the tetrahedron. Also, we have the Kirchhoff
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condition for derivatives, which gives

a1ψ
′(t) + a2ψ

′(t) + a3ψ
′(t) = b1φ

′(t) + b2φ
′(t) + b3φ

′(t). (5.10)

One solution of this is if we have a1 = a2 = a3 = a and b1 = b2 = b3 = b,

with a and b then related by aψ(t) = bφ(t) and aψ′(t) = bφ′(t). In practice,

this means we can identify ψ and φ and the graph can be separated out into

the three lines we saw before. This set of solutions will thus yield the trivial

and sign representation states, depending on parity.

However, (5.9) and (5.10) also admit another kind of non-trivial solution,

specifically if one of ψ(t) or φ(t) is equal to zero (obviously if both are zero

then we have the trivial solution). Suppose that ψ(t) = 0 and φ(t) 6= 0,

then from (5.9) we must have b1 = b2 = b3 = 0. We also have the Kirchhoff

condition (5.10), which now tells us that

a1ψ
′(t) + a2ψ

′(t) + a3ψ
′(t) = 0, (5.11)

which implies a1 +a2 +a3 = 0. This equation has a two-dimensional solution

space. We now recall that in the standard representation we expect to find

two solutions with degenerate energies, such as u + v and u − v or u + w

and u − w. One way to obtain a degenerate pair of solutions from the two-

dimensional solution space is to take a1 = ±a2 and a3 fixed accordingly to

satisfy the conditions.

Alternatively, we could have considered the case φ(t) = 0 with ψ(t) 6=
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0. Then by the same arguments, we would have a1 = a2 = a3 = 0 and

b1 + b2 + b3 = 0. This yields the degenerate solutions b1 = ±b2 with b3 fixed.

These solutions will again be degenerate, but will have different energy to

the two solutions corresponding to ψ(t) = 0. These solutions thus represent

standard representation states with a different vibrational wavefunction.

If we consider this second case, since a1 = a2 = a3 = 0, the lower half of

the graph is the only non-trivial part, and so we solve on only that part of

the graph. This means we must impose boundary conditions at the square

(these are fixed by parity to be φ′(0) = 0 for positive parity or φ(0) = 0 for

negative parity, as outlined previously) and at the tetrahedron. Note that

previously we did not impose a boundary condition at the tetrahedron but

now we must do so. We can consider either the case φ(t) = 0 or φ′(t) = 0,

with the first case giving rise to states that vanish at the tetrahedron and

the second case giving rise to states that are maximal at the tetrahedron.

We could also consider the first case where b1 = b2 = b3 = 0, and the

non-trivial part of the graph is the top part, and construct solutions in this

way. Then we have to impose boundary conditions at the tetrahedron and

at infinity. Obviously at infinity we must have ψ(∞) = 0, and again at the

tetrahedron we can consider either the case ψ(t) = 0 or ψ′(t) = 0, such that

the wavefunction either vanishes or is maximal at the tetrahedron. In this

case however, it is not clear how to impose parity, as we normally do this by

fixing the boundary condition at the square, which we cannot do here.
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5.2 A proof of concept

Once again we will use the potential (4.28) as a proof of concept. We now

present some solutions of (5.3) subject to (5.2) with potential (4.28). We

first must point out that there are certain states which are not susceptible to

study via this approach. Specifically, these states are ones which are forced

to be zero on all of the quantum graph lines due to boundary conditions.

In particular these states are states with negative parity in the trivial repre-

sentation and states with positive parity in the sign representation. It also

includes certain combinations of u, v and w in the standard representation,

but not either of the combinations u+w or u−w with either parity, which are

the combinations we are interested in. We can however apply the quantum

graph method to all of the other states, and at this stage we are interested in

seeing how well the quantum graph method approximates the full solutions

which we have calculated previously. Clearly, we expect that some informa-

tion is lost, and this is particularly true for higher excited states where a

higher proportion of the wavefunctions are concentrated away from the scat-

tering lines. However for the low energy states, such as the ground state, the

quantum graph would be expected to give a good approximation.

5.2.1 Results

We now present some results where we plot a cross-section of the full two-

dimensional solution on one of the scattering lines and compare it with the
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quantum graph solution. For the full two-dimensional solution we plot a

thickened profile which represents the solution on a tube of thickness 0.2

centred on the line η = 1/2. We do this as it gives us an average value of the

profile on this line, and for the higher excited states taking this thickened

tube allows us to capture some of the off line excitations which we would

otherwise miss.

We now display the solutions in Figure 5.5. We use a Matlab fitting

algorithm to attach a scalar multiplier to the quantum graph solution that

gives the best fit to the full two-dimensional tube solution. As we shall see

from the resulting figures, the fit is quite good for lower energy states but

breaks down for higher excited states and we shall discuss reasons for this

later, along with other aspects of the results. We also display in Table 5.1

values of the calibrated vibrational energies for the states in the quantum

graph picture compared to the full two-dimensional situation.

It will be noted that have not given plots for any standard representation

states in the quantum graph picture, as these have not yet been produced.

We do however give energies for the three standard representation states of

each parity in Table 5.1. These energies were calculated on the lower part

of the graph from Figure 5.4, that is to say the case with a1 = a2 = a3 = 0.

One can also calculate solutions with b1 = b2 = b3 = 0, but since it is not

clear how to define parity in this case we do not consider these here. It can

be seen that the first states of each parity (labelled (i) and (l)) match up

quite well with the calculated vibrational energies, and the second and third
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Plots for the quantum graph solutions, again with trivial states
on the left and sign states on the right. The profile solution of the full solution
is in green and the quantum graph solution is in red. The dashed black line
denotes the position of the tetrahedron where we do not specifically impose
a boundary condition.
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Vibrational State Full Solution Energy Quantum Graph Energy
(a) 0 0
(b) 6.05 6.05
(c) 14.52 14.99
(e) 0.07 0.28
(f) 9.56 9.77
(g) 17.85 20.43
(i) 4.15 3.59
(j) 8.83 6.72
(k) 12.83 13.13
(l) 5.32 5.98

(m) 11.55 12.87
(n) 16.24 22.70

Table 5.1: A table comparing the vibrational energies of states using the
quantum graph and full two-dimensional methods.

states are plausible. However, the energy of the third negative parity state

(n) is considerably off.

5.2.2 Discussion

We see the results are roughly in line with what we expect. For the ground

state and the first state in the sign representation we see that the quantum

graph solution is qualitatively the same as the cross-section of the full so-

lution. Then for the first excited states in each representation we see that

the solutions look qualitatively similar near to the squares and tetrahedra,

but asymptotically the quantum graph does not quite capture the behaviour

of the full solutions. Then for the second excited states in each represen-

tation we see that the graph solutions match up much less well with their
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two-dimensional counterparts. In terms of the energies we observe that there

is good agreement between the quantum graph and the full solutions. Re-

calling that the exact matching for states (a) and (b) comes from the way

in which we calibrate the vibrational energies, we see that for states (c), (e)

and (f) the matching is very good and for state (g) the energy is at least in

the correct neighbourhood. Overall we can conclude that the quantum graph

description works very well for the lower energy states and only moderately

well for the higher excited states, whilst we also recall that there are some

states ((d) and (h)) for which the method does not work at all. For the stan-

dard representation we see a similar pattern, where the energies of the lower

energy states match well, but are further out for the higher energy states,

most notably state (n). We would like to produce some plots for standard

representation states in the quantum graph picture, for comparison with the

full states calculated in Chapter 4, and this will be a task for future work.

5.3 Other potentials

In addition to the fact that the numerical work is considerably simplified, a

further advantage of the quantum graph method is that because it automati-

cally gives us an ODE rather than a PDE to solve we no longer have to worry

about separability. As such, we are free to choose more general potentials, as

in our two-dimensional numerical work. However, we know that the original

potential (4.28) produced the Oxygen-16 very well with the exception of the
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0− state. Therefore any change of potential would be motivated by wanting

to correct this inaccuracy. Unfortunately, the 0− state is one of the states

which is not susceptible to analysis by the quantum graph method as it is

identically zero on all relevant lines due to boundary conditions. Therefore,

there is probably limited value in considering alternative potentials in the

quantum graph framework, and we do not do so here.
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Chapter 6

Carbon-12 and the

three-punctured sphere

We now briefly discuss the prospect of using the same framework as we have

been using for Oxygen-16 to quantise other Skyrmions. In particular, we

could plausibly think about considering any Skyrmion with baryon number

equal to a multiple of four. One possibility that turns out to be particularly

relevant is that of Carbon-12, because in this case not only can we use essen-

tially the same method as for Oxygen-16, but we can also make a very highly

related choice of manifold as we shall outline shortly. First, let us remember

that the B = 12 Skyrmion has two minimal energy configurations that are

roughly equal in energy, namely the triangle and the linear chain that we saw

in Figure 1.2. Physically, it is known that the triangle configuration should

be the minimal energy configuration, and the linear chain, also known as
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the Hoyle state, is an early excited state [69]. We will use this as the basis

for our upcoming proposal. Whereas in the case of Oxygen-16 we had the

global minimum of our potential situated at the tetrahedra with higher local

minima at the squares, now we will want to have a global minimum at the

triangle and a higher local minimum at the chain.

Recall that for Oxygen-16 we chose as our manifold the six-punctured

sphere with constant negative curvature. We chose this since this manifold

had three symmetry axes stretching out to infinity in each direction, corre-

sponding to the three symmetry axes of the tetrahedral configuration. In the

case of Carbon-12, we can instead choose the three-punctured sphere. We

colour the region in the same way that we did before, and now we consider

the points where three colours meet to be the position of the triangle con-

figurations and the points where two colours meet to be the position of the

chain configurations. The points at infinity now represent when the Carbon-

12 nucleus has separated into an alpha particle and a pair of alpha particles.

Note that there is a slight distinction in how we think about our manifold

between the Oxygen-16 and Carbon-12 cases. For Carbon-12, we do not

think in terms of scattering modes, but rather we think of the points on the

sphere as shapes of triangles (corresponding to the location of the three alpha

particles) and the three punctures are when two alpha particles lie on top of

each other.

Although the punctures on the 3-punctured sphere are in different places

compared to the 6-punctured sphere, the projection of the manifold onto the
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complex plane will in fact look like exactly one half of the 6-punctured sphere

[18]. We will also consider the projection not onto the complex upper half-

plane as before, but rather on to the Poincaré disk, as we want to think in

terms of triangles and the Poincaré disk makes this more obvious. In order to

fully realise this, we must consider the consequences of projecting our surface

onto the Poincaré disk rather than the plane as before. The mapping to go

between the complex plane and the Poincaré disk is well known, and the

formulae for taking a point (η, ε) from the plane to the disk and the disk to

the plane respectively are given by

(η, ε)→
(

2η

η2 + (1 + ε)2
,
η2 + ε2 − 1

η2 + (1 + ε)2

)
(6.1)

and

(η, ε)→
(

2η

η2 + (1− ε)2
,

1− (η2 + ε2

η2 + (1− ε)2

)
. (6.2)

The metric on the disk is also different to the metric on the plane. For the

plane the metric is ds2 = (dη2 + dε2)/ε2 which gives rise to the prefactor of

ε2 in the operator (4.4). For the disk the metric is ds2 = 4(dη2 + dε2)/(1 −

(η2 + ε2))2. This changes the form of the operator so that we now have

−∆vib = −
(

1− (η2 + ε2)2

4

)(
∂2

∂η2
+

∂2

∂ε2

)
. (6.3)

Lastly the boundary curves that we defined for our red region will be different

once it has been mapped to the Poincaré disk. It turns out if we apply the
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coordinate transformation above our region is now bounded by the curves

η = 0, ε = 0, ε = 1−
√
η(2− η) and ε = −1 +

√
η(4− η). Again this is two

straight lines and two arcs of circles, as we had before.

6.1 The three-punctured sphere as a vibra-

tional manifold

In Figure 6.1 we display the projection onto the complex upper half-plane

of the full three-punctured sphere and the quarter of the three-punctured

sphere that will be analogous to the region F we considered for Oxygen-16.

We also display the same region projected on to the Poincaré disk in Figure

6.2.

(a) (b)

Figure 6.1: Plots of the projection of the full three-punctured sphere onto
the complex upper half-plane (left) and the projection of one quarter of the
surface (right).
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Figure 6.2: A plot of the quarter of the three-punctured sphere from Figure
6.1b, but now displayed on the Poincaré disk.

6.2 The shape space of triangles

As alluded to previously, we want to think about Carbon-12 in terms of

triangles. That is to say, we consider the three alpha particles making up

Carbon-12 as the vertices of a triangle. The minimal energy configuration is

where this triangle is equilateral, and we can even think of the linear chain

as a triangle where the obtuse angle has opened out to 180 degrees. The

paper [34] discusses the theory of the shape space of triangles, and for a full

discussion the reader is referred there. An interesting analogy with Oxygen-

16 is to imagine that you are located on one of the four alpha-particles

making up the Oxygen-16 configuration, and looking out at the other three

particles. If you are at the tetrahedron (the minimum for Oxygen-16) you

will see the equilateral triangle, and if you are at the square you will see the

linear chain. As we expect based on our colouring, there is a clear analogy
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between the tetrahedron and triangle configurations and between the square

and chain configurations. As one transitions between the triangle and the

chain there are many isosceles triangle configurations. Another interesting

point to observe is that one can clearly see the quantum graph from [58] in

Figure 6.2. One has the equilateral triangle at the central point where three

colours meet and the linear chain at the centres of the three edges. A subtle

point is that as in the quantum graph from [58], the three linear chains are

slightly different. If one labels the three alpha particles, say 1, 2 and 3, then

the three chains each have a differently labelled alpha particle as the central

particle in the chain. In fact, the particles are identical so this makes no

practical difference, but it is a subtlety that is worth mentioning, in order to

connect with [58]. Whilst the shape space described in [34] is very natural

to describe the triangle, it is somewhat harder to claim that the continued

use of the hyperbolic metric is justified. It remains the most mathematically

natural choice to make, but there are no natural scattering trajectories as

for Oxygen-16 so this choice of metric has less physical relevance. It may

be interesting to consider equipping the 3-punctured sphere with alternative

metrics in the future, but we will continue to work with the hyperbolic metric

here as a matter of convenience.
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6.3 Symmetries and boundary conditions

We must think about how the symmetries and boundary conditions that we

established for Oxygen-16 on the 6-punctured sphere can be translated to

the 3-punctured sphere for Carbon-12. Our manifold has many of the same

symmetry properties as the 6-punctured sphere, in regard to the mappings

we can use to map between the different coloured regions. Since the differ-

ent representations into which our solutions fell for the Oxygen-16 problem

were related to the S3 symmetry, the fact that our 3-punctured sphere has the

same symmetries will mean that the vibrational wavefunctions for Carbon-12

will fall into the same three representations. The way in which the symmetry

conditions will work in the three representations must be considered. In the

trivial representation, the rotations that map between the different coloured

regions will work in exactly the same way as for the Oxygen-16 case, but

for the sign and standard representations we must be slightly more careful

and it will be necessary to give extra consideration to how the rotations act.

Note that as one moves along one of the boundaries between the coloured re-

gions, one moves from the tetrahedron to the square. These lines correspond

to isosceles triangles which have a natural C2 symmetry, mapping the two

equivalent corners into each other and keeping the remaining corner fixed.

The trivial representation transforms trivially under this symmetry, whereas

the sign representation picks up a factor of minus one and the effect on a

standard representation wavefunction will depend on precisely which wave-
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function is considered. The main difficulty is that although there is clearly a

natural action of S3 on the space of triangles, simply by exchanging labelled

vertices, this does not give rise to an obvious action of rotations. This will

need some additional thought in order to take this idea further.

Recall also that for Oxygen-16 our boundary conditions were derived

from parity and the various Möbius transformations relating the coloured

regions of F . Since these mappings are the same, the boundary conditions

for Carbon-12 states of a particular representation and parity will correspond

to the same boundary conditions as for Oxygen-16.

A key difference will be in our choice of potential, which we will want to

choose so as to produce the low-lying spectrum of Carbon-12. The structure

of this potential may be relatively similar to Oxygen-6 potentials, but cer-

tainly some parameter values will change. We might consider the potential

used in [58] as a good starting point.

6.4 Allowed spin states for Carbon-12

We can also ask ourselves what are the allowed states of a given spin and

parity for Carbon-12. Rawlinson does this in [58], and determines the bases

of allowed states for each JP to be those that we show in Table 6.1.

In [58], Rawlinson uses the C2 action exp (iπL2) to represent swapping

particles 2 and 3, and the action exp (iπL3) to represent parity. In particular,

he argues that all wavefunctions should be invariant under S3, which means
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JP Basis JP Basis
0+ |0, 0〉 0−

1+ 1− |1, 1〉+ |1,−1〉

2+ |2, 2〉+ |2,−2〉
|2, 0〉 2− |2, 1〉 − |2,−1〉

3+ |3, 2〉 − |3,−2〉 3−
|3, 3〉+ |3,−3〉
|3, 1〉+ |3,−1〉

4+

|4, 4〉+ |4,−4〉
|4, 2〉+ |4,−2〉
|4, 0〉

4−
|4, 3〉 − |4,−3〉
|4, 1〉 − |4,−1〉

5+ |5, 4〉 − |5,−4〉
|5, 2〉 − |5,−2〉 5−

|5, 5〉+ |5,−5〉
|5, 3〉+ |5,−3〉
|5, 1〉+ |5,−1〉

Table 6.1: A table listing bases of allowed spin states for each JP for Carbon-
12.

they will be invariant under exp (iπL2). The reason for this is that since

the alpha particles are identical, all wavefunctions should be invariant under

an exchange of alpha particles. This assumption means that in effect we

need only consider the trivial representation, and this will still be enough to

produce many states. Note also that this argument only works because alpha

particles are bosons, and so invariant under relabelling due to boson exchange

statistics. An alternative case to consider would be the Helium-3 nucleus,

which we could think of as being composed of three B = 1 Skyrmions rather

than three alpha particles. We could still use the three-punctured sphere and

the shape space of triangles, but now since B = 1 Skyrmions are fermions,

they would pick up a minus sign under relabelling due to fermion exchange

statistics. That is, the wavefunctions would always pick up a minus sign
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under S3, so we could consider only the sign representation.

6.5 Outlook

The idea is to solve the Schrödinger equation, which takes the same form

as before, but now with a potential that is more suitable for Carbon-12,

with the aim of fitting the known experimental spectrum for Carbon-12 as

successfully as possible. The process for doing this will employ the same

methods as for Oxygen-16, with the aim again being to use two-dimensional

numerics in order to allow a general choice of potential. Previous work done

on Carbon-12 in the Skyrme model can be found in [43] and also in the

paper [58] on quantum graphs, which motivated Chapter 5 of this thesis.

The paper [43] gives a good understanding of the ground state and Hoyle

state bands, as well as a good match to the known experimental value of the

ratio of root mean square radii of the two states. However, a full vibrational

quantisation of Carbon-12 has not yet been performed within the Skyrme

model, and it is conceivable that such work could lead to the prediction of

states not previously found in the Skyrme model. One point that is not

clearly understood about the B = 12 Skyrmion is which of the triangle and

chain configurations is actually the global minimum in the Skyrme model. In

[43], the writers cite the energy of the triangular configuration as 1816 and

the chain configuration as 1812 in Skyrme units, but with associated errors

of up to 0.2%. This means that the energies are 1816 ± 3.6 and 1812 ± 3.6
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respectively, so the ordering is unclear. Physically, it is understood that the

triangle ought to be the global minimum, and we hope that a full vibrational

quantisation may shed some light on this too. Another important point is

that we wish to build on the quantum graph approximation seen in [58], by

finding some states that may be missed. For example when we considered the

quantum graph approximation for Oxygen-16 in Chapter 5, we found that

two states were entirely missed, including the physically relevant 0− state.

We hope that this method may discover similar states that were missed by the

quantum graph model for Carbon-12. We do not give results for Carbon-12

in this thesis, but leave this idea open for future work.
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Chapter 7

Conclusion

7.1 Summary and discussion

In this thesis we have considered the vibrational quantisation of the Skyrme

model. We began by discussing the limitations of rigid body quantisa-

tion, and moved on to consider recent work on vibrational quantisation [29],

[30],[31]. We sought to generalise this method, which we have applied to the

B = 2 and B = 16 Skyrmions in this thesis, as well as outlining a concept

for how the method could be applied to B = 12. We argued that vibra-

tional quantisation goes some way to resolving a fundamental problem of the

Skyrme model, which is that the calculated binding energies of nuclei are too

high. We saw that including vibrational modes contributes to the zero point

energy of a Skyrmion, consequently lowering its binding energy.

In Chapter 3 we considered the B = 2 Skyrmion, with the aim of describ-
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ing it as the deuteron. We sought to conduct a full vibrational analysis, and

also included a pion mass term. This allowed us to go further than previ-

ous work done for the B = 2 sector, which conducted a limited vibrational

analysis in the instanton approximation, for the case of massless pions [44].

We found in our model that the value of the binding energy of the deuteron,

whilst still too large, was closer to the experimental value given in [16] than

in previous models. We also came close to making the isospin-1 state an

unbound state, as it is physically, and conjectured that for a slightly higher

pion mass this may well occur. We left this open as a task for future work,

along with the calculation of other physical observables of the deuteron such

as its electric charge radius, which is well known experimentally [16]. It

should be noted that this work was all done in the attractive channel config-

uration. This approximation could be improved by including more degrees of

freedom, but obviously this would be numerically more challenging. Another

open task would be to include the Coulomb interaction in the model, which

would have the effect of making the proton-proton state less bound than the

neutron-neutron state, and could be worth investigating. The incorporation

of the Coulomb effect into the Skyrme model has not been widely inves-

tigated before, but is considered in [45]. There have been some attempts

to gauge the Skyrme model, including the electromagnetic interaction, and

some discussion of this can be found in [56].

We then considered the B = 16 Skyrmion in Chapter 4, with the physi-

cal nucleus we were seeking to describe there being Oxygen-16. We sought
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to generalise some previous work done on vibrational quantisation for this

sector. In particular we aimed to address a specific weakness of this work

[30, 31], which was that the method used imposed severe restrictions on the

choice of potential, meaning that the potential chosen was not particularly

physical or related to the Skyrme model. It also had the undesirable feature

of not being smooth everywhere. We were able to circumvent these issues by

using a more involved two-dimensional numerical method to approach the

problem. We checked that this method was robust by first considering the

previously used potential with our new numerical method, and verified that

our results were consistent. We then constructed a new potential with more

desirable properties, specifically having minima at both of the minimal energy

Skyrmion configurations, flattening off to a finite value at infinity, and being

smooth everywhere. We found that the energy of the 0− state was consider-

ably improved compared to [30], although still slightly overstated compared

to experiment [33]. We also found that for our particular parameter set, the

energies of the two lowest lying spin-2 states were slightly adversely effected

by our new potential. We conjectured that varying the parameters in order

to precisely fix one state could have a detrimental effect on others, and that a

task for future work was to run a full parameter sweep on our new potential

to determine the best overall fit. Another point for future consideration in

this problem is the metric. In [30], not only the potential, but also the metric

term was restricted by the constraint that the equations had to be separa-

ble. Our method allows us to use any metric on the 6-punctured sphere. In
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particular, one could attempt to calculate the induced metric directly from

Skyrmion-Skyrmion scattering.

We next considered an alternative approach to the B = 16 sector in Chap-

ter 5, using a quantum graph approach based on the work done in [58]. This

idea is interesting because it considerably simplifies the vibrational quan-

tisation problem, although it should be noted that the results are only an

approximation, and information about certain states is entirely lost. How-

ever, the results are very promising for low-energy states. It is reasonable to

say that the quantum graph approximation is a sensible one, and could be

used in cases where a full numerical approach is too complicated to imple-

ment. We do however need to give a little more thought to how the standard

representation states can be plotted in this picture. All that is required for

the quantum graph method is the identification of a suitable vibrational man-

ifold and certain key lines on it, so it may be possible to apply this technique

to many other Skyrmion sectors.

Finally, in Chapter 6 we made some conjectures that the two-dimensional

vibrational method that was applied for Oxygen-16 in Chapter 4 could also

be applied to Carbon-12. We argued that a highly related manifold could

be used that would have many similar symmetry properties meaning that,

up to the choice of a different potential, the problem would be very similar

and employ essentially the same numerical methods. We noted in Chapters

4 and 5 that the quantum graph method entirely misses certain states that

are found using the full numerical method, such as the 0− state in the case
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of Oxygen-16. Our conjecture is that using the full numerical method for

Carbon-12 may uncover some states that were missed by [58]. We left this

idea open for future work.

7.2 Outlook

We are also in a position to consider some open questions that the work in

this thesis generates for future consideration. One possibility is to apply the

technique used for B = 2 in Chapter 3 to the B = 8 Skyrmion. In this case

we would be considering the scattering of two B = 4 cubes rather than two

single Skyrmions, but the approach and method would be similar. There

is no stable nucleus with baryon number B = 8, and the B = 8 Skyrmion

models the unstable Beryllium-8 nucleus, which decays into two α-particles.

The Finkelstein-Rubinstein constraints here would mean that the ground

state should have J = 0, I = 0, and it would be interesting to see whether

vibrational quantisation predicts this to be a bound state or not.

The approaches considered for Oxygen-16 in Chapters 4 and 5 could

also be applied to other Skyrmion sectors. In particular, a key feature of

Oxygen-16 in our approach was that it has two minimal energy configura-

tions with very similar energies, the tetrahedron and the square. As such,

other Skyrmions that share this property could be susceptible to this idea.

One possibility is the B = 20 Skyrmion that models Neon-20, which has two

minimal energy configurations separated by a potential barrier [42]. It is not
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completely obvious how to choose the scattering space, so this requires some

thought, but is certainly an avenue for future exploration. Other possibili-

ties include B = 24, which models Magnesium-24, and Helium-3. Helium-3

can be considered in much the same way as we discussed for Carbon-12 in

Chapter-6, except we would need to consider three B = 1 Skyrmions rather

than three α-particles. The three-punctured sphere could be used again, but

with different Finkelstein-Rubinstein constraints.

One final idea is to combine vibrational quantization with generalised

Skyrme models, with the additional features that we discussed in Chapters

1 and 2, such as BPS terms [1]. Efficient approximations, possibly based on

quantum graphs, would be very useful to determine which parameters give

the best match for the quantum states. All of the above ideas could be an

interesting basis for future work.
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