
Theoretical and Numerical Topics in the

Invariant Calculus of Variations

Michele Zadra

School of Mathematics, Statistics and Actuarial Science

University of Kent

This dissertation is submitted for the degree of

Doctor of Philosophy

March 2020

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university. This

dissertation is my own work, done in collaboration with my supervisor Prof. Elizabeth

Mansfield, and contains nothing which is the outcome of work done in collaboration with

others, except as specified in the text and Acknowledgements. In particular, the content of

Chapter 4 has been published in [56].

Michele Zadra

March 2020

Acknowledgements

First of all I would like to thank my supervisor, Prof. Elizabeth Mansfield, for introducing

me to this beautiful field of Mathematics, for her continuous support throughout these years,

and for transmitting me the passion of conducting mathematical research. Your guidance has

been instrumental in the accomplishment of this project.

I would like to acknowledge the EPSRC and the SMSAS department of the University of

Kent for the funding that made this project possible through the grant EP/M506540/1.

I am indebted to John Pearson and Kuan Xu for introducing me to Chebfun and kindly

assisting me when I had doubts on numerical topics.

I am grateful to Steffen Krusch, who has been the first one to introduce me to the field

of Geometric Integration and also gave a great deal of help during the final stages of this

project.

I am obliged to Claire Carter for the support throughout this project, and for the effort

she always puts in order to create a good atmosphere in the Department. I am also thankful

to Derek Baldwin for solving many IT issues, always with a very appreciated light–hearted

attitude.

Furthermore, I want to thank my colleagues, officemates, housemates and, most of all,

friends, Alan, Aniketh, Christos, Dimitris, Josè, Larry, and Nikitas. You have taught me so

many things in these years, that I will always be indebted to you.

My family has always been supporting me during this time abroad. To my parents,

Loredana and Camillo, and my brothers, Luca and Matteo, I want to express my gratitude.

iv

The physical distance that has separated us was hidden by your visits, calls and all the times

we were thinking of each other.

Finally, let me say how much I feel lucky to have met you, Dácil. Your unconditional

support, and love, have given me a purpose even in the most difficult times.

Table of contents

1 Introduction 1

2 Preliminaries 9

2.1 Introduction . 9

2.2 Lie group actions and moving frames . 10

2.2.1 Smooth manifolds and Lie group actions 10

2.2.2 Moving frames . 19

2.2.3 Invariant differentiation . 25

2.2.4 The Lie algebra . 27

2.2.5 Curvature Matrices . 29

2.2.6 Adjoint representation . 31

2.3 Invariant Calculus of Variations . 32

2.3.1 Invariantised Euler–Lagrange equations 32

2.3.2 Conservation laws . 36

3 Variational problems invariant under a linear action of SU(2) 39

3.1 Introduction . 39

3.2 The one–dimensional case . 40

3.2.1 Conservation laws . 48

3.2.2 Finding the minimisers . 50

Table of contents vi

3.3 Numerical examples . 58

3.3.1 Example 1 . 59

3.3.2 Example 2 . 63

3.3.3 Example 3 . 65

3.3.4 Example 4 . 67

3.4 The two–dimensional case . 68

4 Solutions to higher dimensional invariant variational problems 74

4.1 Introduction . 74

4.2 Lie group integrators . 76

4.2.1 Matrix ODEs . 77

4.2.2 The Magnus expansion . 80

4.2.3 Magnus expansion and coupled systems of PDEs 82

4.2.4 Magnus expansions commute up to order 5 83

4.3 Numerical examples . 91

4.3.1 An example using a linear action of SU(2) 92

4.3.2 Examples using the projective action of SL(2) 95

4.3.3 An example using the standard action of SE(2) 102

4.3.4 Considering bigger domains . 106

4.4 Final remarks and a conjecture . 108

5 Variational problems in multispaces 110

5.1 Lattice–based multispaces . 111

5.1.1 From first order Lagrange interpolation of functions to first order

multispace . 111

5.1.2 Lie group actions on multispaces 113

5.1.3 Infinitesimal actions on multispace 114

Table of contents vii

5.1.4 Lagrangians in multispaces . 116

5.1.5 Euler–Lagrange equations and Noether’s first theorem 117

5.2 Discretisation of invariant Lagrangians . 120

5.2.1 Discrete approximations to smooth differential invariants 124

5.2.2 Higher order approximations to smooth differential invariants . . . 128

5.2.3 Discrete approximation of derivatives of invariants 129

5.3 Lagrangians invariant under SE(2) . 133

5.3.1 Difference–Differential Syzygies 133

5.3.2 Euler–Lagrange equations and Conservation laws 137

5.3.3 Higher–order Lagrangians . 142

5.3.4 Constrained Lagrangians . 148

5.4 Numerical Examples . 153

5.4.1 An unconstrained Lagrangian . 154

5.4.2 A constrained Lagrangian . 155

5.4.3 Comments on the numerical examples 159

6 Conclusion and Future Work 160

References 164

Appendix A Appendix to Chapter 3 168

Appendix B Appendix to Chapter 4 192

Appendix C Appendix to Chapter 5 235

1. Introduction

In the mathematical field of the Calculus of Variations, one of the most important results

is 1918 Emmy Noether’s paper “Invariante Variationsprobleme”, [38]. The article contains

two theorems that are commonly known in the community as “first” and “second” Noether’s

theorems. Both statements focus on the consequences of the presence of symmetries in a

variational problem. The first theorem is about what Noether and her contemporaries used

to call “finite continuous groups”, nowadays known as Lie groups. In layman’s terms, the

theorem states that if the Lagrangian that defines the variational problem is invariant under a

n–dimensional Lie group, then there will be n quantities that will be preserved by the solution

to the variational problem. Important examples come from classical mechanics, where it

is often the case that a solution (a trajectory of a rigid body for instance) is sought such

that it conserves quantities like the total energy, the angular momentum or the momentum

itself. The second theorem considers the case of “infinite continuous groups”, which is when

the Lagrangian invariance is expressed with respect to some set of functions rather than

parameters. In this text we will make extensive use of the conservation laws arising from a

Lie group invariance. We will use them both to derive the solutions of the variational problem

and as checks on qualitative features of numerical solutions. In that sense, our focus will be

on the first of Noether’s theorems, rather than on the second.

1

Introduction 2

Theorem 1.0.1 (Noether’s First Theorem, [38]). Suppose that the one–dimensional La-

grangian

L =
∫

L(x,u,ux, ..)dx (1.1)

is invariant under the action of a one–parameter Lie group. Then, there is a first integral, i.e.

a quantity that is conserved by a minimiser of (1.1).

The main tool we will be using to study Lie group actions on Lagrangians is what is

called a moving frame. This is a generalisation of the theory started by Darboux and Cartan,

and developed in the context of differential geometry. The theory of moving frames that grew

from the studies of Fels and Olver, [19; 20], has encountered many applications in different

areas from the study of equivalence problems to the Calculus of Variations, [50]. The latter

is the application we will be mostly interested in this research. The name “Invariant Calculus

of Variations”, first introduced in [42], comes from the fact that it makes use of a moving

frame in order to express the key objects needed to study variational problems in terms of the

generating differential invariants of the Lie group action. Also the conservation laws can be

expressed in a more insightful way, as a linear action of the Adjoint representation of the

frame on an invariant vector, [22; 23; 24; 42]. Deriving the Euler–Lagrange equations and

conservation laws via moving frames, rather than in the original variables, can sometimes be

the difference between a problem that is computationally tractable and one that is not. So far,

moving frames have been used to completely solve one dimensional variational problems

that are invariant under actions of SL(2) or SE(2) and SE(3), [22; 23; 24; 42]. In this text

we consider first the case of a linear action of the Lie group SU(2), a group that is relevant in

the field of quantum mechanics as a way to model particles that have non–integer spin. We

will characterise the algebra of differential invariants of the action and use this to compute

the Euler–Lagrange equations and the conservation laws. Finally, our contribution in this

chapter is to show how the computations needed to solve conservation laws (expressed in

Introduction 3

terms of the Adjoint representation of the moving frame and a vector of invariants) can be

simplified making extensive use of the geometrical setting of the problem.

The study of the conservation laws arising from variational systems has been gaining a

lot of interest also among the numerical analysis community in the past thirty years, with

the birth of the field of Geometric Integration, [25]. Starting from the second half of 1900,

numerical analysts have been more and more involved in the investigation of qualitative

features of the numerical solutions. This led to a more geometric approach in the study of

the properties of the approximated solution, compared to the ones of the exact flow. As an

example, consider the following case, inspired by [25]. The Hamiltonian formulation of

the small–angle approximation to the classical harmonic oscillator can be described by the

following initial value problem 

d
dt q = v

d
dt v =−q

q(t0) = q0

v(t0) = v0

(1.2)

where q and p represent the position of the pendulum and its momentum respectively. If

Fig. 1.1 The orbit in the phase using an explicit Euler method with a step size ∆t = 10−2

is not a closed curve: the total energy is not conserved

Introduction 4

we try to approximate system (1.2) with an explicit Euler method, we would obtain that the

total energy of the system is not preserved. The fact that the trajectories in the phase space

are closed curves is equivalent to the total energy of the system being conserved. This is the

behaviour we would expect in the absence of dissipative forces. However, with an explicit

Euler method, the trajectories in the phase space are not closed curves, as we can see clearly

in Figure 1.1. Namely, the trajectory is spiralling outwards, meaning that the energy of the

pendulum is increasing, even in the absence of external forces. It is clear that a pendulum

that swings faster and faster is not a good approximations to the physical system we started

with. If we instead apply a semi–implicit Euler method to the same equations, then we will

have that the trajectories are closed curves and the total energy is preserved, see Figure 1.2.

Fig. 1.2 The orbit in the phase using a semi–implicit Euler scheme with a step size ∆t = 10−2

is a closed curve: the total energy is conserved

One of the aspects that has been studied in the geometric integration setting, is to better

understand the way numerical schemes for ODEs had been devised. An example of this is to

study the Butcher theory for the Runge–Kutta coefficients, [5], from an algebraic perspective,

[26]. It was noted that the “classical” integrators were built to solve equations evolving

in Rn. However, many important ODEs evolve on Lie groups, or even on generic smooth

manifolds. The difference between working in Rn or on a manifold, is that Rn is a linear

space, while a smooth manifold, in general, is not. This means that in general, we may not be

Introduction 5

able to do vector operations with vectors belonging to tangent spaces at two different points

in a manifold. For this reason, the “classical” numerical schemes struggle in retaining the

geometrical features of the solution when applied to manifolds that are not Rn. Therefore,

even if the initial datum of an initial value problem is taken to be on a specific manifold,

the solution might evolve outside the starting domain. Important results about the limits

of the classical Runge–Kutta schemes in preserving non–linear structures can be found

in [6; 13; 33; 34]. In order to solve this issue, the work of Crouch, [14] and Lewis [39]

has been studied and taken as inspiration for the next steps. Some modifications of the

Runge–Kutta with enhanced preservation features were derived, see [8; 52], but they required

some non–trivial order conditions on the coefficients. The approach we will focus in this

thesis is the one that maps the equation to the tangent space (the associated Lie algebra as our

focus is on Lie groups). Being the Lie algebra a vector space, hence linear, an adaptation of

the “classical” numerical schemes can now be used to solve the ODE. Once the solution has

been found, it is possible to map it to the Lie group smoothly via the exponential map (which

would give rise to a Magnus expansion), a composition of exponentials (Fer expansion) or

the Cayley map. In this research, we will give a closer look at how is it possible to extend

the theory of Lie group integrators based on the Magnus expansion, [40], from the context

of ODEs to the one of a class of compatible systems of PDEs. An important motivation for

this is in finding the solution of higher order variational problems in the presence of a Lie

group invariance. In this setting, it is possible to obtain coupled PDEs for the moving frame

in terms of the curvature matrices. Being a moving frame a map from the manifold to the Lie

group, these differential equations evolve on a Lie group. Hence, the need for a numerical

integrator that preserves the geometrical properties of the solution. Our original contribution

in this chapter is to show that the solution to some compatible systems of PDEs evolving on a

Lie group can be numerically approximated up to order 5 using the Magnus expansion, [56].

Aside from the Magnus expansion, another successful approach to differential equations

Introduction 6

evolving on Lie group is the one through Fer expansion. Broadly speaking, the difference

between this and the Magnus expansion is that the former “corrects” the solution in the Lie

group, while the latter does it in the Lie algebra. This topic will not be discussed in this work,

but the interested reader can find some of the fundamental results related to this approach in

[1; 32; 57; 58; 59].

The last topic we will discuss in this thesis is related to discrete variational problems that

are invariant under a Lie group action. As we have already mentioned above, the presence of

a symmetry can greatly simplify the process of finding a solution to the variational problem.

Moreover, it is guaranteed the existence of a set of conservation laws that can be used

either to compute the solution or as a solid check when devising a numerical scheme to

solve the problem at hand. One issue that could arise is how the symmetry is affected by

the process of discretising a smooth variational problem. It is not guaranteed in fact that

starting from a smooth variational problem that is invariant under a Lie group action, any

discretisation of it would lead to a discrete variational problem invariant under the same

action. The discretisation process can alter the geometrical features of the solution to the

variational problem, generating an outcome that is not consistent with the initial smooth

problem anymore. In order to overcome this problem, lattice–based multispaces, [44], have

been ideated as a setting where it is possible to continuously pass from a smooth problem to

a discrete one, retaining all the most–needed geometrical features of the smooth problem.

Research has been done on discrete variational problems with symmetry, [31; 43], and

we extend that focusing on how to discretise generating differential invariants and their

derivatives up to any order of accuracy and on how to compute solutions to some variational

problem in a more efficient way. Our contributions in this chapter are a formula for the

infinitesimal action on the multispace approximation of the directional derivative, a way to

construct discrete approximations of any order to smooth generating differential invariants and

their derivatives, the derivation of the Euler–Lagrange equations for higher order multispace

Introduction 7

variational problems and the introduction of a constraint in the SE(2)–invariant multispace

variational problems.

In Chapter 2 we will give an introduction to the theory of moving frames and their

application to the Calculus of Variations. Definitions, examples and main results from both

fields will be given, with special focus on how a moving frame can be used to study the

generating differential invariants of a prolonged Lie group action and how this makes for a

simplified treatment of the Euler–Lagrange equations and conservation laws.

The class of smooth one– and two–dimensional variational problems that are invariant

with respect to a linear action of SU(2) is the subject of Chapter 3. We will apply the

theory developed in the first chapter and compute the Euler–Lagrange and conservation

laws up to dimension 2. We will show how the conservation laws can be used, in the one–

dimensional case, in order to recover the solution of the variational problems only through

quadratures. Finally we will introduce the issues that arise in the two–dimensional (and in

general n–dimensional) case when trying to integrate and solve the conservation laws.

These issues will be addressed in Chapter 4, where we present an exposition of the theory

of the Lie group integrators based on the Magnus expansion. We will show how it is possible

to extend these methods to a class of two–dimensional (and in general n–dimensional)

compatible systems of PDEs arising in the theory of moving frames. The key to this

extension is to prove that these compatible systems of PDEs can be solved taking different

paths of integration. The proof of this result is given up to order 5 in the discretisation

variables, but it is conjectured that it actually holds up to any order. An important application

of this is to the solution of n–dimensional invariant variational problems.

Chapter 5 will treat the case of multispace variational problems. After a brief introduction

to the subject, variational problems that are invariant under the affine action of SE(2) are

considered. This case is also used as a running example in the subsequent section on a way

to use curvature matrices to discretise the generating differential invariants of a Lie group

Introduction 8

action. Higher order and constrained variational problems are then considered. The chapter

ends with some numerical examples.

Finally, in Chapter 6, we will provide a summary of the main topics that have been

studied and reflect on how the ideas presented in this work could be progressed in the future.

2. Preliminaries

2.1 Introduction

The case where the Lagrangian is invariant under a Lie group action, it is one of great

importance in the study of variational problems. There are at least two good reasons why this

is the case. The first one is that, as a consequence of Noether’s first theorem, the presence of

a Lie group invariance is related to the existence of a set of conservation laws. The latter are

quantities that are preserved on solutions of the Euler–Lagrange equations. The importance

of conservation laws cannot be overstated: they can be used, as we will see later on in the

following chapters, to solve for the Lagrangian minimisers. From a numerical point of view,

conservation laws are also crucial in providing quantitative and qualitative checks on the

approximated solution, as they usually correspond to some relevant features of physical

systems.

Another reason why Lie group symmetries are so important in the field of Calculus of

Variations, is that they allow to rewrite the variational problem in terms of the invariants of

the action. This has a major impact in the way the minimisers are found: the new variables

often simplify the computations and make problems that used to be not tractable in the

original variables, solvable.

In this chapter we introduce the theory of moving frames and its applications to the

Calculus of Variations. These two disciplines combined form what is called the Invariant

Calculus of Variations, [42]. We will begin presenting the basic theory of Lie group actions

9

Preliminaries 10

and moving frames. We continue the expositions providing definitions and examples of

differential invariants, curvature matrices and the adjoint representation. The chapter ends

with some important results regarding the application of moving frames to variational

problems. Comprehensive sources on moving frames and symmetries, and their applications,

are [19; 20; 42; 50; 51].

2.2 Lie group actions and moving frames

This section is devoted to present the basics of Lie group actions on smooth manifolds and

moving frames.

2.2.1 Smooth manifolds and Lie group actions

We will start giving the main definitions regarding Lie group actions on smooth manifolds.

These concepts will be useful later when introducing moving frames. For more details

regarding smooth manifolds and matrix Lie groups, see [28; 29].

Definition 2.2.1 ([29]). A manifold M of dimension n is a topological space that is locally

homeomorphic to Rn.

The naive idea behind a manifold is that of a space that can be more “complicated” in

some sense than Rn, but locally we could treat it as we were in Rn, at least from a topological

point of view. Well–known examples of manifolds are the n-dimensional sphere, the torus and

of course Rn. As we will see later on, a Lie group is also a manifold. Definition 2.2.1 implies

that there is an open cover {Ui}i of M such that for every Ui there is an homeomorphism φi to

an open set in Rn. The couple (Ui,φi) is called a chart and the set of all charts α = {(Ui),φi}i

is an atlas. Consider two charts, (Ui,φi),(U j,φ j) and their coordinate change map given by

ψi j = φiφ
−1
j : φ j

(
Ui ∩U j

)
→ φi

(
Ui ∩U j

)
.

Preliminaries 11

Note that the coordinate change map is defined between two open sets in Rn, so it does make

sense to study its differentiability. Suppose that all the ψi j, for every i, j in the atlas α are

of class Cr for some r ≥ 1. Then the couple (M,α) is said to be a smooth manifold. In the

following we will be referring to a smooth manifold only with the name of the topological

space, M in this case. As we mentioned above, a notable example of smooth manifold is

given by a Lie group.

Definition 2.2.2. A group G is a set equipped with an operation · : G×G → G, such that

the following axioms are satisfied:

G1 ∀a,b,c ∈ G, (a ·b) · c = a · (b · c),

G2 ∀a,b ∈ G, a ·b ∈ G,

G3 ∃e ∈ G s.t. ∀a ∈ G, a · e = e ·a = a. The element e is called the identity element,

G4 ∀a ∈ G ∃b ∈ G s.t. a · b = b · a = e. The element b is called the inverse of a and is

denoted as a−1.

Throughout this text we will be dealing with a special kind of groups that can be

represented as matrices with coefficients in C. The most general group of this type is given

by GL(n,C).

Lemma 2.2.3. The set of all n× n complex invertible matrices equipped with the matrix

product operation is a group. This group is denoted as GL(n,C) and is called the general

linear group over the complex numbers.

All the groups that we will look at hereafter are subgroups of GL(n,C). As our main

application will regard the Calculus of Variations, more structure on the group is needed.

Preliminaries 12

Definition 2.2.4. A Lie group is a smooth manifold M and a group, such that both the product

· : M×M → M and the inverse map a 7→ a−1 are smooth.

Lie groups take advantage of the smooth manifold structure in order to allow operations

as differentiation and integration, whereas these are not well–defined in a general group.

Example 2.2.5. Here are some examples of Lie groups that we will be studying in the next

chapters. They are all subgroups of GL(n,C) for some n.

• The special linear group is a (n2 −1)–dimensional Lie group given by

SL(n) = {A ∈ GL(n,R) : det(A) = 1} .

A particularly interesting example is given by

SL(2) =

A ∈ GL(2,R) : A =

a b

c 1+bc
a

 , a,b,c ∈ R ,a ̸= 0 , det(A) = 1

 .

If we denote by g(a,b,c) =

a b

c 1+bc
a

, consider two elements

g1 = g(a1,b1,c1) and g2 = g(a2,b2,c2); the group product is the matrix product and,

in terms of the group parameters can be expressed as

g1 ·g2 = g
(

a1a2 +b1c2,
(a1a2 +b1c2)b2 +b1

a2
,
a1a2c1 +b1c1c2 + c2

a1

)
.

The inverse element is found via the matrix inverse, that is guaranteed to exist as the

determinant is always equal to 1. The inverse function in terms of the group parameters

is

g(a,b,c)−1 = g
(

1+bc
a

,−b,−c
)
.

The identity element is e = g(1,0,0).

Preliminaries 13

• The special orthogonal group is a
n(n−1)

2
–dimensional Lie group defined as

SO(n) =
{

A ∈ GL(n,R) : AAT = AT A = I , det(A) = 1
}
.

The group operation is the matrix multiplication and the group inverse is the matrix

inverse (or transpose in this case).

The case where n = 2 can be represented as

SO(2) =

A ∈ GL(2,R) : A =

cos(θ) −sin(θ)

sin(θ) cos(θ)

 , θ ∈ R

 .

In terms of the group parameter, the group product is, using a notation analogous to

the example above,

g(θ1) ·g(θ2) = g(θ1 +θ2).

The inverse map is given by

g(θ)−1 = g(−θ).

The Lie group SO(2) is important in geometry as it is the group of rotations in R2.

• The Lie group U(n) is defined as

U(n) = {A ∈ GL(n,C) , AA∗ = A∗A = I} ,

where A∗ is the conjugate transpose of A. Consider the case where n = 2. An element

g ∈U(2) can be represented as

g =

 α β

−β̄ ᾱ

 ,

Preliminaries 14

where α,β ∈ C. The group multiplication in terms of the parameters is

g(α1,β1) ·g(α2,β2) = g(α1α2 −β1β̄2,α1β2 +β1ᾱ2)

and the inverse element is g(α,β)−1 = (|α|2 + |β |2)−1g(ᾱ,−β).

• Rn with the addition as the group operation, is a simple yet important example of Lie

group

It is also possible to combine Lie groups in order to create new ones. A fundamental

example that lies at the basis of the Euclidean geometry is the special Euclidean group. This

is defined in terms of the special orthogonal group and Rn, namely

SE(n) = SO(n)⋉Rn =

A ∈ GL(n+1,R) :

Rθ v

0 1

 , Rθ ∈ SO(n), v ∈ Rn

 .

where ⋉ stands for the semi–direct product. When n = 2, the group operation can be written

in terms of the group parameters as

g(θ1,a1,b1)·g(θ2,a2,b2)= g(θ1+θ2,cos(θ1)a2−sin(θ1)b2+a1,sin(θ1)a2+cos(θ1)b2+b1)

and the inverse mapping is given by

g(θ ,a,b)−1 = g(−θ ,−sin(θ1)b1 −a1 cos(θ1),−cos(θ1)b1 +a1 sin(θ1)).

Once we have group, we can define what is called an action on another set. This is a very

general construction, even though we will usually assume that we have a manifold rather

than a set. There are left and right actions and although the concepts are very similar there is

a difference in how products of group elements are treated.

Preliminaries 15

Definition 2.2.6. Given a group G, a set X and a function defined as

Φ : G×X → X

(g,x) 7→ Φ(g,x),

that satisfies the following property:

Φ(e,x) = x where e is the identity element of the group.

Φ is called a left action if

Φ(g,Φ(h,x)) = g · (h · x) = (gh) · x = Φ(gh,x) ∀g,h ∈ G.

Φ is called a right action if

Φ(g,Φ(hx)) = g⋆ (h⋆ x) = (hg)⋆ x = Φ(hg,x) ∀g,h ∈ G.

We will denote left actions with · and right actions with ⋆. Even though the theory is presented

below is mostly given for left actions, it can easily be extended to right actions.

An important subset of X is the one that contains the elements that are left identical by

the group action.

Definition 2.2.7. An invariant of a group action is an element x ∈ X such that g · x = x for

any g ∈ G.

The assumptions made in Definition 2.2.6 are very general, so we want to restrict our

study to some types of actions that have some “nice” properties. The first of these features is

defined in terms of the isotropy group.

Preliminaries 16

Definition 2.2.8. Given x ∈ X we define the isotropy group of x as

Gx = {g ∈ G|g · x = x}.

The first property we require on the group action is to be free.

Definition 2.2.9. A group action is said to be free if the isotropy group for every element in

X is the trivial one, i.e.

Gx = {e} ∀x ∈ X .

For the second property we need to define a tool which is useful to study the images of

the set elements under the group action.

Definition 2.2.10. The orbit of x ∈ X under the action of a group G is the set

O(z) := {g · z |g ∈ G}

Now we can pass to define the second and last property of the group actions we are going

to study.

Definition 2.2.11. A group action is said to be regular if the following two conditions are

satisfied:

1. all orbits have the same dimensions,

2. for each x ∈ X there is an arbitrarily small neighbourhood U (x) such that for all

x′ ∈ U (x), U (x)∩O(x′) is connected.

Preliminaries 17

Example 2.2.12. Consider the Lie group SO(2) acting on column vectors in R2 as

SO(2)×R2 → R2

(g,v) 7→ gv.

This is a left action: take g,h ∈ SO(2), z = (x,y)T ∈ R2 then it is easy to show that

g · (h · z) =

cos(θ1) −sin(θ1)

sin(θ1) cos(θ1)

 ·


cos(θ2) −sin(θ2)

sin(θ2) cos(θ2)

 ·

x

y




=


cos(θ1) −sin(θ1)

sin(θ1) cos(θ1)


cos(θ2) −sin(θ2)

sin(θ2) cos(θ2)


 ·

x

y


= (gh) · z.

The action is not free all over the domain as it can be clearly seen that z = (0,0) is a fixed

point, hence G(0,0) = G ̸= {e}.

Even if an action is not free in a particular domain, it is possible to modify the space

on which the Lie group is acting and make the action free in that space. For this reason we

introduce the jet space (or jet bundle). The idea that lies behind the jet space is to have a space

where a fixed number of derivatives of the dependent variables are well–defined and can be

treated as dependent variables themselves. Consider an open domain X ⊂ Rp of independent

variables with coordinates x = (x1, ..,xp) and a domain U ⊂ Rq of dependent variables with

coordinates u = (u1, ..,uq). Given a vector K = (k1, ..,kp) ∈ Np, define |K| = ∑i ki. The

notation we will use for the derivatives of the variables in U with respect to the variables in

X is

uα
K =

∂ |K|uα

∂ k1x1 · · ·∂ kpxp
.

Preliminaries 18

Definition 2.2.13. Assume the uα , α = 1, ..,q, can be continuously differentiated n times,

n ∈ N, with respect to x1, ..,xp. The n–th jet space, denoted as J n(X ×U), is the smooth

manifold whose points have coordinates

z = (x1, ..,xp,u1, ..,uq, . . .u1
K, ..) where |K| ≤ n.

For more details and geometrical features of the jet set, the reader is referred to [29]. The

jet set is the right space where variational problems can be defined and studied.

A Lie group action on M = X ×U can be prolonged to J n (X ×U) in the following way.

The operator ∂

∂xi
extends to the total differentiation operator Di acting on the algebra of the

smooth functions on J n(X ×U) as

Di =
∂

∂xi
+

q

∑
α=1

∑
K

uα
Ki

∂

uα
K
.

Consider a group action acting smoothly on the independent variables as g ·x = x̃ and its

Jacobian matrix

Dx̃ =


∂ x̃1
∂x1

· · · ∂ x̃1
∂xp

...
∂ x̃p
∂x1

· · · ∂ x̃p
∂xp

 .

It is possible to extend the total derivative operator to the transformed variables as

D̃i =
D

Dx̃i
= ∑

k
(Dx̃)−1

ik Dk. (2.1)

Definition 2.2.14. The prolonged action of G on J n(X ×U) is given by

g ·uα
K = ũα

K = D̃k1
1 · · · D̃kp

p (g ·uα). (2.2)

Preliminaries 19

Example 2.2.15. Consider the action of SL(2) on curves in the plane parametrised as

(x,u(x)), given by

x̃ =
(ax+b)a

1+(ax+b)c
ũ =

ua2

(acx+bc+1)2 . (2.3)

This action has been used in the context of the Invariant Calculus of Variations in [23]. Using

(2.1)–(2.2), which in this case amounts to use the chain rule, we have

D̃x =

(
Dx̃
Dx

)−1

Dx =
(acx+bc+1)2

a2 Dx.

Hence the prolongation of action (2.3) to ux is

ũx = D̃xũ =

(
Dx̃
Dx

)−1

Dxũ =
(1+(ax+b)c)ux −2uac

1+(ax+b)c
.

The invariants of a prolonged action are called differential invariants. They form an

algebra and we will see in the following how to find a set of generators. The prolongation of

a Lie group action is an important tool that can be used to produce free and regular extensions

starting from non–free or non–regular actions.

2.2.2 Moving frames

A moving frame is defined as follows.

Definition 2.2.16 ([42, p. 116]). Given a group G acting on a smooth manifold M, a moving

frame is an equivariant map ρ : M → G, namely if the group acts on the left, then the moving

frame is right equivariant, i.e

ρ(g · z) = ρ(z)g−1,

while for a right action, the equivariance of the frame is expressed as

ρ(g⋆ z) = g−1
ρ(z).

Preliminaries 20

.

The reason why we want the group action to be locally free and regular is because this is

a prerequisite for having the existence and uniqueness of a moving frame.

Theorem 2.2.17 ([42], p.117). If a group action is free and regular in Ω ∈ M, then for every

x ∈ Ω there is a neighbourhood U of x such that there exists a moving frame on U.

For a discussion about the converse of Theorem 2.2.17, see [42] Section 4.2. The

construction of a moving frame begins with a group action of a group G on a smooth

manifold M. Then, choose an element z ∈ M and a neighbourhood of it U (z) ⊂ M. This

construction produces in fact a local, and not global, map from the manifold to the group.

Definition 2.2.18. A cross section K , which is a surface on M, that crosses the orbits

transversally.

Remark 2.2.19. In the following, all the generic Lie groups we will consider will have

dimension n, unless differently stated.

Suppose the cross section is given by the system of equations

f1(z) = 0 , · · · , fn(z) = 0.

The cross section is arbitrary, and there is no prescribed way to choose the functions fi, i =

1..n. However, depending on the action at hand, there are some choices that can make

computations easier. Finally the moving frame for the cross section K is the group element

that solves the following set of equations, called normalisation equations:

f1(g · z) = 0, · · · , fn(g · z) = 0.

Preliminaries 21

We will denote this solution as ρ(z). It is a result that ρ is consistent with Definition 2.2.16,

meaning that it is guaranteed to be equivariant. This follows from the Implicit Function

Theorem, [42].

Remark 2.2.20. A moving frame is determined by the choice of the cross section, hence from

the normalisation equations

Example 2.2.21. Consider the action of SE(2) on curves z = (x,u(x)) in the real plane,

defined as

g · z =

cos(θ) −sin(θ)

sin(θ) cos(θ)


x

u

+

a

b

 . (2.4)

Action (2.4) is not free and regular in general, but we can make it so if we consider the

prolongation given by

ũx̃ =

(
Dx̃
Dx

)−1

Dxũ =
1

cosθ − sin(θ)ux
(sin(θ)+ cos(θ)ux) .

Define a cross section K as the solution set of

x = 0, u = 0, ux = 0.

Then a moving frame is the group element that satisfies


x̃ = cos(θ)x− sin(θ)u+a = 0

ũ = sin(θ)x+ cos(θ)u+b = 0

ũx =
1

cosθ − sin(θ)ux
(sin(θ)+ cos(θ)ux) = 0.

Preliminaries 22

In terms of the group parameters, the moving frame can be expressed as

a

b

=−Rθ

x

u

 , θ =−arctan(ux),

where we denoted with Rθ the rotation matrix Rθ =

cos(θ) −sin(θ)

sin(θ) cos(θ)

. Hence the

moving frame in the standard representation is given as


Rθ −Rθ

x

u


0 1

 .

Example 2.2.22. Consider the action of U(2) on pair of complex curves given by

g ·

u(t)

v(t)

=

 α β

−β̄ ᾱ


u(t)

v(t)

=

 αu+βv

−β̄u+ ᾱv

 ,

where the independent variable t is left invariant, i.e. t̃ = t. This action is free and regular in

a neighbourhood of (u,v) = (1,0). Take the cross section given by


u = 1

v = 0

Then the moving frame is the element g s.t.


g ·u = 1

g · v = 0.

Preliminaries 23

As an element of U(2), the moving frame is

ρ =

 ū v̄

−v u


.

Moving frames are an important tool to study invariants and differential invariants of the

Lie group action at hand as we will see in the following theorem.

Theorem 2.2.23 ([19]). If ρ(z) is a moving frame, then ρ(z) · z is invariant.

Proof. Consider a left action and a right frame. Then

ρ(g · z) · (g · z) = ρ(z)g−1 · (g · z) = (ρ(z)g−1g) · z = ρ(z) · z.

The proof for a right action or left-invariant moving frame is analogous.

Theorem 2.2.23 allows for the introduction of new coordinates in the jet bundle.

Definition 2.2.24. In the following, we will use the following notation for the invariantised

jet bundle coordinates

I(xi) = ρ(z) · xi = x̃i|g=ρ(z), I(uα
K) = ρ(z) ·uα

K = Iα
K .

By replacing the original variables with the invariantised ones, it is possible to match

historically known invariants.

Theorem 2.2.25 (Replacement Theorem, [20]). If f (z) is invariant with respect to a Lie

group action, then f (z) = f (I(z))

We end this subsection reporting the definition of infinitesimal of a Lie group action.

Preliminaries 24

Definition 2.2.26. Given a Lie group whose parameters, in a neighbourhood of the identity

element, are a1, ..,an, then the group infinitesimals with respect to the parameters are

ξ
j

i =
∂ x̃ j

∂ai

∣∣∣∣
g=e

, φ
α
i =

∂ ũα

∂ai

∣∣∣∣
g=e

, φ
α
K,i =

∂ ũα
K

∂ai

∣∣∣∣
g=e

. (2.5)

The matrix of infinitesimals is defined as

Ω =


ξ 1

1 . . . ξ
p
1 φ 1

1 . . .

...

ξ 1
n . . . ξ

p
n φ 1

n . . .

 ,

where the set of infinitesimal to be included in the matrix is defined by the problem at

hand. Given a moving frame for the action we are considering, the invariantised matrix of

infinitesimals is defined as Ω(I) = ρ ·Ω.

Example 2.2.27. Consider the action of SL(2,C) on pair of complex curves (x(s),u(s)) such

that s̃ = s and

x̃ =
(ax+b)a

acx+bc+1
, ũ =

(acx+bc+1)(6ac+u(acx+bc+1))
a2 .

An important application of this and other SL(2) actions can be found in [11].The matrix of

infinitesimals for this action is given by

Ω =



s x u xs us

a 0 2x −2u 2xs −2us

b 0 1 0 0 0

c 0 −x2 6+2ux −2xxs 2(usx+uxs)

.

Preliminaries 25

Define a frame for the action using the following normalisation equations

x̃ = 0, x̃s = 1, ũ = 0.

The invariantised matrix of infinitesimals is given evaluating Ω on the frame, namely

Ω(I) = ρ ·Ω =



s x u xs us

a 0 0 0 2 −2Iu
1

b 0 1 0 0 0

c 0 0 6 0 0

.

2.2.3 Invariant differentiation

In this subsection it is shown that the invariantisation operator does not commute with the

differentiation one. This will generate what is called syzygies, i.e. differential relations

between invariants.

We have seen in a previous section how the total differentiation operator Di extends to

the transformed variables as D̃i =
D

D(g·xi)
. Since the image of a moving frame is an element

of the group, it is possible to choose g = ρ in the definition of D̃i.

Definition 2.2.28 ([42]). The invariant differential operator is defined as

Di = D̃i
∣∣
g=ρ(z) =

D
D(g · xi)

∣∣∣∣
g=ρ(z)

.

Invariantised differential operators allow to compute derivatives of invariants in the

following way. Although it is trivial to differentiate the original variables in the jet space, e.g.

∂

∂xi
uα

K = uα
K+ei

,

Preliminaries 26

it is not so straightforward to differentiate invariantised points on the manifold. It can be

proved, [42], that

DiIα
K = Iα

K+ei
+Mα

K+ei
, (2.6)

where Mα
Ki is called correction term. Equation (2.6) is the reason why we stated above that

invariantisation and differentiation do not commute. Details on how the correction terms are

computed can be found in [42]. One of the main results that is worth highlighting, is that

the correction terms can be computed with the knowledge of only the matrix of infinitesimal

for the action and the normalisation equations used to define the frame. In other words, it

is not needed to solve explicitly for the frame in order to obtain Mα
Ki. In order to see this,

consider the left hand side of the n normalisation equations used to define the moving frame,

f1(z) = 0, .., fn(z) = 0. Denoting with ζ1, ..,ζs the variables that appear in the normalisation

equations, define

Ti j = I
(

D
Dxi

ζi

)
, Ωi j =

(
∂ (g ·ζi)

∂ai

)∣∣∣∣∣
g=ρ

, (2.7)

as the invariant total derivative matrix and the invariantised matrix of infinitesimal for the

variables ζ1, ..,ζs with respect to the group parameters a1, ..,an in a neighbourhood of the

identity. If Ji j =
∂ f j

∂ I(ζi)
is the Jacobian of the left hand side of the normalisation equations,

then it is possible to write the correction terms in (2.6) as

Mα
K+e j

=
n

∑
i=1

K jiφ
α
K,i(I), (2.8)

where

K =−T J (ΩJ)−1 . (2.9)

is called the correction matrix and φ α
K,i(I) are the invariantised infinitesimals defined in (2.5).

Software coded in Maple exists, [41], that computes the correction matrix and performs the

invariant differentiation process.

Preliminaries 27

If we consider two differential invariants Iα
J and Iα

L such that JK = LM, then we have,

from (2.6)

DKIα
J −Mα

JK = DMIα
L −Mα

LM (2.10)

as Iα
JK and Iα

LM cancel each other out. Equation (2.10) is an example of what is called a

syzygy, i.e. a differential relation between invariants. Syzygies will be used extensively in

the following as they play a pivotal role in the derivation of the invariantised Euler–Lagrange

equations of a variational system. We note that, in general, syzygies take the form of nonlinear

ODEs or PDEs, depending on the number of independent variables in the problem at hand.

We end this subsection giving a result about the algebra of the differential invariants.

Given the set of zeroth–invariants, defined as

I 0 :=
{

I(x1), .., I(xp), I1, .., Iq} , (2.11)

then it can be proved that

Theorem 2.2.29 ([30]). Suppose the normalisation equations { fk = 0}k=1,...,n yield a frame

for a free and regular action on some open set of the prolonged space with coordinates

(x j,uα ,uα
K). Then the components of the correction matrix K, together with I 0, form a

generating set of differential invariants.

2.2.4 The Lie algebra

Any Lie group, being a smooth manifold, has a tangent space at each point. We consider

the one at the identity element, equipped with an operation called Lie bracket. This vector

space, equipped with a Lie bracket, is known as a Lie algebra, a fundamental space that will

often occur throughout this text. In the following, we will treat the case of matrix Lie groups,

although generalisations are possible.

Preliminaries 28

Definition 2.2.30. Given a Lie group G, its Lie algebra is given by (g, [,]), where g is TeG,

i.e. the tangent space to G at the identity element, and [,] is a function called Lie bracket,

defined as

[,] : g×g→ g

[A,B] 7→ AB−BA,

and such that for every A,B,C ∈ g and a,b,c ∈R, the Lie bracket satisfies the following three

properties:

• [aA+bB,C] = a[A,C]+b[B,C] and [A,bB+ cC] = b[A,B]+ c[A,C],

• [A,B] =−[B,A],

• [A, [B,C]]+ [B, [C,A]]+ [C, [A,B]] = 0. This relation is called Jacobi identity

Example 2.2.31. In the next chapters we will make extensive use of some notable Lie

algebras. An example of these is so(3), i.e. the Lie algebra associated to the Lie group SO(3).

It is defined as

so(3) =
{

A ∈ GL(3,R) : AT +A = 0
}
.

As a vector space, a basis is given by

v1 =


0 −1 0

1 0 0

0 0 0

 , v2 =


0 0 1

0 0 0

−1 0 0

 , v3 =


0 0 0

0 0 −1

0 1 0

 .

Preliminaries 29

The Lie bracket is defined as [A,B] = AB−BA. It is clearly bilinear and antisymmetric. The

Jacobi identity can be verified as follows on the elements of a basis. It is easy to verify that

[v1,v2] =−v3, [v2,v3] =−v1 and [v1,v3] = v2. Once at this point, it is straightforward to see

that, taken A = a1v1+a2v2+a3v3, B = b1v1+b2v2+b3v3, and C = c1v1+c2v2+c3v3, then

the Jacobi identity holds.

2.2.5 Curvature Matrices

Given a Lie group action of G with Lie algebra g consider the action of G on U ⊂ M. Let

s → z(s) ∈ U be a smooth path and assume that the parameter s is invariant under the group

action, so that d/ds is an invariant differential operator.

Proposition 2.2.32 ([42, p. 161]). If ρ : U ⊂ M → G is a right frame for a left action, then

1. The components of ρsρ
−1 are invariant,

2.
(d

dsρ
)

ρ−1 : U → g.

With this in mind we proceed to define the curvature matrices.

Definition 2.2.33. Under the assumptions stated above, the curvature matrices are defined as

Qi = (Diρ)ρ
−1, i = 1, .., p. (2.12)

It is possible to write the curvature matrices in terms of the correction matrix (2.9) and a

basis of the Lie algebra in which they live.

Theorem 2.2.34 ([42, p. 163]). Given a matrix representation of the Lie algebra g (induced

by a representation R of its associated Lie group) with basis v1, ..,vn, it holds

Qi = ∑
i, j

Ki jv j.

Preliminaries 30

The following result concerns a differential relation between curvature matrices, in the

presence of at least two independent variables.

Theorem 2.2.35 ([42, p. 165]).

D j(Q
i)−Di(Q

j) = ([D j,Di]ρ)ρ
−1 +[Q j,Qi].

The differential operators are applied to the curvature matrices term by term. In the case

of invariant independent variables, we have that Di and D j commute and the formula above

simplifies to

D j(Q
i)−Di(Q

j) = [Q j,Qi]. (2.13)

Equation (2.13) will play an important role in Chapter 4, where an application of Lie group

integrators to higher dimensional invariant variational problems is presented.

Example 2.2.36. Consider the action defined in (2.3) and the frame given by the normalisa-

tion equations 
x̃ = 0

ũ = 1

ũs = 0.

A basis for the Lie algebra sl(2) is

va =

1 0

0 −1

 , vb =

0 1

0 0

 , vc =

0 0

1 0

 .

and the correction matrix is

K =

(a b c

0 −Ix
1

1
2

Iu
11
Ix
1

)
.

Preliminaries 31

Hence, the curvature matrix for this action and these normalisation equations is obtained,

applying Theorem 2.2.34, as

Qs = 0va − Ix
1vb +

1
2

Iu
11
Ix
1

vc =

 0 −Ix
1

1
2

Iu
11
Ix
1

0


.

2.2.6 Adjoint representation

Another essential ingredient for our discussion is the Adjoint representation of an element

belonging to a Lie group. This is the representation of the moving frame that we will need in

order to express the conservation laws.

Consider X (M) as the set of all vector fields on a smooth manifold M. Then we can

define an action of a Lie group on it, called the Adjoint action.

Definition 2.2.37. Given a Lie group G acting on the manifold M, the Adjoint action of G

on X (M) is defined as

Ad : G×X (M)→ X (M)

(g,v) 7→ Adg(v)(z) = T g−1v(g · z),

where T g : T M → T M is the tangent map of the action (g,z) 7→ g · z.

It can be shown that if we fix g ∈ G, then Adg is a representation on X (M). However, we

are interested in a subgroup XG(M)⊂ X (M), which is an n–dimensional representation of

the Lie algebra g. To construct it, take the set of all smooth paths γ : [−ε,ε]→ G, ε > 0, such

that γ(0) = e. Define an equivalence relation on paths such that two paths are in the same

equivalence class if their derivative at t = 0 coincides. A smooth path γ(ε) ∈ G generates

Preliminaries 32

a smooth path in M by considering γ(ε) · z, for z ∈ M. The derivatives of these paths on M,

evaluated at t = 0, is a vector field, and it is denoted by XG(M).

Lemma 2.2.38 ([42], p.108). The function Adg : XG(M)→ XG(M) is a representation.

Consider a basis {vi}i of XG(M) and an element w ∈ XG(M) given by w = ∑i αivi.

Applying Adg we obtain

Adg(w) = Adg

(
∑

i
αivi

)
= ∑

i
αiAdg (vi) = ∑

i
α̃ivi. (2.14)

The last equality in (2.14) hints at the fact that in practice the Adjoint representation can be

computed as the induced action on the components of w. If we write w as a row vector, then

we have that

α̃αα = αααAd(g). (2.15)

2.3 Invariant Calculus of Variations

So far in the chapter we have introduced the basic concepts in the theory of moving frames

and prepared the ground for the main application we are interested in, which is the one to the

Calculus of Variations.

2.3.1 Invariantised Euler–Lagrange equations

Given a Lagrangian

L =
∫

D
L(x1, ..,xp,uα ,uα

1 ,u
α
2 , ..)dx,

where L depends only on a finite number of derivatives, and D is a bounded and simply

connected region in Rp, consider a Lie group G acting on M = J n(X ×U).

Preliminaries 33

Definition 2.3.1. The Lie group G is a variational symmetry group of (2.3.1) if

∫
g·D

L(g ·x1, ..,g ·xp,g ·uα ,g ·uα
1 ,g ·uα

2 , ..)d(g ·x) =
∫

D
L(x1, ..,xp,uα ,uα

1 ,u
α
2 , ..)dx. (2.16)

It is also said that L is invariant under the action of G. Our aim is to find a solution to

such variational problem, i.e. a function u that minimises the Lagrangian at hand. We are

interested in using the theory of moving frames developed so far in order to take advantage

of the invariantised variables and make the problem more tractable than using the original

variables.

Lemma 2.3.2 (Fundamental Lemma of Calculus of Variations, [21, p. 9]). If a function f ,

defined in a bounded and simply connected region D ⊂ Rn, satisfies

∫
D

f (x)h(x)dx = 0

for any compactly supported smooth function h on D, then f ≡ 0.

Remark 2.3.3. From here on, when specifying a domain of integration, we will denote by D

a simply connected region in Rp, for a suitable p ∈ N.

The Fundamental Lemma of Calculus of Variations is one of the main tools we will need

when deriving the invariantised Euler–Lagrange equations for a Lagrangian.

Denote the set of generating differential invariants with {Iα
K }α,K = {κi}i. We follow

[24]–[23] and introduce a dummy, independent and invariant variable τ . Formally, we have

the following equivalence for the first variation of L :

d
dε

L (u+ εv) =
d

dτ

∣∣∣∣
uτ=v

L (u). (2.17)

Preliminaries 34

The introduction of a new variable generates q new invariants, denoted as Iα
τ = g ·uα

τ

∣∣
g=ρ

,

α = 1, ..,q, and therefore q new syzygies, that can be written as

Dτ


κ1

...

κm

= H


I1
τ

...

Iq
τ

 , (2.18)

where H is a m×q linear differential operator containing only the generating differential

invariants κi, and their derivatives. Supposing we have independent invariant variables

x1, ..,xp, and denoting with κκκ the vector containing the generating differential invariants κi

and their derivatives, we can rewrite the Lagrangian as

L =
∫

D
L(x,κκκ)dx.

Remark 2.3.4. Throughout the present work we will assume that the Lagrangians are regular

enough to allow for the interchange of the integration and differentiation signs.

The computations that follow are taken from [42]. In order to obtain the invariantised

Euler–Lagrange equations, consider

d
dτ

L =
d

dτ

∫
D

L(x1, ..,xp,κκκ)dx

=
∫

D

d
dτ

L(x1, ..,xp,κκκ)dx

=
∫

D

(
∑
i,K

∂L
∂DKκi

DKDτκi

)
dx.

Preliminaries 35

After performing a first set of integration by parts, we obtain

∫
D

(
∑
i,K

∂L
∂DKκi

DKDτκi

)
dx

=
∫

D

(
∑
i,K
(−1)|K|DK

∂L
∂DKκ j

Dτκi

)
+Div(B1)dx,

where B1 stands for the boundary terms that arise from the integration by parts. The

integration by parts is a special case of the adjoint of a differential operator.

Definition 2.3.5. Given a differential operator A , then the adjoint of A is the operator A ∗

such that, given two smooth functions f ,g, it holds

∫
D

f A (g)dx =
∫

D
A ∗(f)g+div(BT)dx,

where div(BT) stands for some boundary terms .

In the following we will denote with

E i(L) = ∑
K
(−1)|K|DK

∂L
∂DKκi

, (2.19)

the Euler–Lagrange operator for the invariant κi. Resuming the computations, we express

Dτκ j in terms of the invariants relative to the dummy variable, via the syzygies in (2.18).

∫
D

(
∑

i
E i(L)Dτκ j

)
+Div(B1)dx

=
∫

D

(
∑
i,α

E i(L)Hi,αIα
τ

)
+Div(B1)dx

=
∫

D

(
∑
i,α

H ∗
i,αE i(L)Iα

τ

)
+Div(B1+B2)dx,

Preliminaries 36

where H ⋆ is the adjoint operator of H and B2 are the boundary terms arising from taking

the adjoint of H . Recall that we are computing the first variation as (2.17) and that the

Iα
τ are the invariantised form of the variables uα

τ , which are used to perform the variation.

Therefore, invoking Lemma 2.3.2, we have that the invariantised Euler–Lagrange equations

are

Eα(L) = ∑
i

H ∗
i,αE i(L).

2.3.2 Conservation laws

In the derivation of the invariantised Euler–Lagrange equations, there were two sets of

boundary terms, B1 and B2, that arose from performing integration by parts and from taking

the adjoint of the differential operator H . It will be shown in this subsection that these terms

can be rearranged into a divergence, i.e. some conservation laws. These can be expressed in

terms of the adjoint representation of the moving frame and a vector of invariants, [42].

Theorem 2.3.6 ([24], Thm. 2.9). Consider a Lagrangian L =
∫

D L(κ1,κ2, ..)dx that is

invariant under a Lie group action G×M →M, where M = Jn(X×U), that has κi, i= 1, ..,N,

as generating differential invariants and has g ·xi = xi, i = 1, .., p. Then, after introducing an

independent, invariant dummy variable τ , the first variation of the L can be written as

d
dτ

L =
∫

∑
α, j

Eα(L)Iα
τ +Div(P)dx (2.20)

where this defines the vector P, whose components are of the form

Pi = ∑
α, j

Iα
τJCα

i,J, i = 1, .., p

and the vectors C α
i = (Cα

i,J). Let (a1, ..,ar) be the coordinates of G near the identity e, and

vi, for i = 1, ..,r, the associated infinitesimal vector fields. Furthermore, let Ad(g) be the

Adjoint representation of G with respect to these vector fields. Then the r conservation laws

Preliminaries 37

obtained via Noether’s Theorem can be written in the form

∑
i

D
Dxi

Ad(ρ)−1v(I) = 0

where

v(I) = ∑
α

Ω
α(I)C α

i

Remark 2.3.7. In the case of one–dimensional invariant Lagrangians, the conservation laws

can be written as

Ad(ρ)−1v(I) = c

where c is a constant vector.

Example 2.3.8. To show how this theory works, we show an application taken from [24].

Consider the action of SL(2) acting on surfaces u = u(x, t) as

g · x = x g · t = t g ·u =
au+b
cx+d

(2.21)

where

g =

a b

c d

 , ad −bc = 1

Prolong the action to ux and uxx, then the moving frame for the cross section given by ũ = 0,

ũx = 1, and ũxx = 0 is

ρ =


1

√
ux

− u
√

ux
uxx

2u3/2
x

2u2
x −uuxx

2u3/2
x


The generating differential invariants are Iu

111 = σ , which is the Schwarzian derivative, and

Iu
2 = κ . Introducing a new independent, invariant variable τ , the syzygies between σ , κ and

Preliminaries 38

Iu
τ = ρ ·uτ can be written as

Dτ

σ

κ

=

H1

H2

 Iu
τ

where H1 = D3
x +2σDx +σx and H2 = Dt −κDx +κx.

Given a Lagrangian

L =
∫

L(σ ,κ,σx,σt ,κx,κt)dxdt

invariant under the action (2.21), then the invariantised Euler–Lagrange equations are

Eu(L) = H ∗
1 Eσ (L)+H ∗

2 Eκ(L)

where H ∗
1 and H ∗

2 are the adjoint operators of H1 and H2 respectively.

In this example, the invariantised matrix of infinitesimals is given by

Ω =


0 2 0 2σ 2κ

1 0 0 0 0

0 0 −2 0 0


and this allows to write the conservation laws as

Dx

Ad(ρ)−1


−2

d
dx

Eσ (L)

σEσ (L)−κEκ(L)+
d2

dx2 Eσ (L)

−2Eσ (L)


+Dt

Ad(ρ)−1


0

Eκ(L)

0


= 0

We will see another application in the next chapter, where we apply the theory of Invariant

Calculus of Variations to find the minimisers of a one–dimensional variational problem which

is invariant under a linear action of SU(2).

3. Variational problems invariant under

a linear action of SU(2)

3.1 Introduction

As we saw in the previous chapters, Noether’s first Theorem yields conservations laws for a

Lagrangian with a symmetry group. In [23; 24] it has been shown how to make use of the

machinery provided by the moving frames to obtain an invariantised version of the Euler–

Lagrange equations and a set of conservations laws in terms of the differential invariants of

the group action. On top of the theoretical interest of showing more clearly the mathematical

structure underlying the conservation laws, this approach has proved to be also of practical

application, as it can simplify the integration process needed to find extremal solutions. In

particular, so far this method has been applied to Lagrangians left invariants by action of the

Lie groups SL(2,C), SE(2) and SE(3), [22; 23; 24; 42].

The aim of this chapter is to provide another application in the context of variational

systems, this time considering the case where the Lagrangian is invariant under a linear

action of the Lie group SU(2) on complex curves. This work is motivated by the importance

that SU(2) has in quantum physics, for instance as a model for particles with non–integer

spin. The original contributions in this chapter can be found in Section 3.2.2 and Section

3.3, where we solve the conservation laws to find a minimiser and we show how this theory

39

Variational problems invariant under a linear action of SU(2) 40

works in practice with some numerical examples. Although the results themselves are already

known, we believe the way we solve the conservation laws for this specific example has not

been studied before.

3.2 The one–dimensional case

Consider the group SU(2) = {A ∈ GL(2,C) : AA∗ = I = A∗A , det(A) = 1}, where A∗ is the

conjugate transpose of A, acting linearly on pairs of complex curves (u(t),v(t)) as follows:

ũ(t)

ṽ(t)

= g ·

u(t)

v(t)

=

 α β

−β̄ ᾱ


u(t)

v(t)

=

 αu(t)+βv(t)

−β̄u(t)+ ᾱv(t)

 , (3.1)

with α,β ∈ C, |α|2 + |β |2 = 1, t̃ = t.

In this case, prolonging the action is straightforward as the independent variable t is left

invariant. Using the chain rule we get

g ·ut = ũt̃ = g · dũ
dt

dt
dt̃

=
dũ
dt

= ũt .

The prolonged action on the n-th derivative is

g ·u t..t︸︷︷︸
n times

= ũ t..t︸︷︷︸
n times

.

The prolongation to the derivatives of v(t) is defined in an analogous way. We want to find

the minimisers of the Lagrangian

L =
∫

D
L(t,u,v,ut ,vt ,utt , ..)dt

Variational problems invariant under a linear action of SU(2) 41

in the case where L is invariant under action (3.1). Note that in the following we will only

consider the case where L depends on a finite number of variables.

Consider M as the jet space with coordinates (t,u,v,ut ,vt ,utt ,vtt , ..). In order to define a

moving frame for action (3.1) we choose the following cross–section:


ρ ·u = 1

ρ · v = 0.
(3.2)

This gives us a frame for U(2). Since SU(2) is a 3-dimensional group and system (3.2)

comprises 4 equations, we will impose a condition on the solutions in order to retrieve the

moving frame as an element of SU(2). The solution to (3.2) is

ρ =
1

|u|2 + |v|2

 ū v̄

−v u

 .

We now impose the determinant to be equal to 1 in order to have an element of SU(2),

obtaining

|u|2 + |v|2 = 1, (3.3)

and therefore

ρ =

 ū v̄

−v u

 .

Two differential invariants of the action are given using Theorem 2.2.23, applying the

moving frame to the dependent variables ut and vt .

ρ ·

ut

vt

=

 ū v̄

−v u


ut

vt

=

ūut + v̄vt

uvt − vut

=

κu

κv



Variational problems invariant under a linear action of SU(2) 42

A closer look at κu reveals us that it is pure imaginary. To see this, rewrite equation (3.3) as

ūu+ v̄v = 1,

and differentiate with respect to t:

ūtu+ ūut + v̄tv+ v̄vt = 0.

Rearranging terms we have

ūtu+ v̄tv =−(ūut + v̄vt),

and hence

κu =−κ̄u,

which implies that κu is a pure imaginary number. We know that κu,κv are differential

invariants, as we obtained them applying the moving frames to coordinates, but we do

not know yet if they generate the whole algebra of differential invariants. However, using

Theorem 2.2.29, we have that the set

{ρ ·ut ,ρ · vt}= {κu,κv}

is a generating set of differential invariants by computing the correction matrix. Namely,

using the Indiff Maple package [41], we compute the correction matrix K for U(2) and then

we simplify the result using κu =−κ̄u, obtaining

K =

(
0 Iu2

1 −Iv1 Iv2
1

)
,

where we used the notation u = u1 + iu2 and v = v1 + iv2.

Variational problems invariant under a linear action of SU(2) 43

Denote a general element of SU(2) as

g =

 a+ ib c+ id

−c+ id a− ib

 ,

with a,b,c,d ∈ R and a2 + b2 + c2 + d2 = 1. We take as basis for the infinitesimal vector

field the derivatives of (3.1) with respect to the three parameters of SU(2), namely b,c,d and

a =
√

1−b2 − c2 −d2, computed at the identity. First we note that

∂a
∂b

∣∣∣
g=e

=
∂a
∂c

∣∣∣
g=e

=
∂a
∂d

∣∣∣
g=e

= 0,

so a basis for the vector field is given by

Vb =
∂ ũ
∂b

∣∣∣
g=e

∂u +
∂ ṽ
∂b

∣∣∣
g=e

∂v =−u2∂u1 + iu1∂u2 + v2∂v1 − iv1∂v2 , (3.4)

Vc =
∂ ũ
∂c

∣∣∣
g=e

∂u +
∂ ṽ
∂c

∣∣∣
g=e

∂v = v1∂u1 + iv2∂u2 −u1∂v1 − iu2∂v2, (3.5)

Vd =
∂ ũ
∂d

∣∣∣
g=e

∂u +
∂ ṽ
∂d

∣∣∣
g=e

∂v =−v2∂u1 + iv1∂u2 −u2∂v1 + iu1∂v2, (3.6)

and we apply action (3.1) to (3.4)–(3.5)–(3.6) in order to derive the adjoint representation,

defined by (2.15), namely


Ṽb

Ṽc

Ṽd

= Ad(g)


Vb

Vc

Vd

 .

Variational problems invariant under a linear action of SU(2) 44

In terms of the group parameters, the Adjoint representation is

Ad(g) =


2(a2 +b2)−1 −2(ad −bc) 2(ac+bd)

2(ad +bc) 2(a2 + c2)−1 −2(ab− cd)

2(bd −ac) 2(ab+ cd) 2(a2 +d2)−1

 . (3.7)

Bearing in mind that a2 +b2 + c2 +d2 = 1, matrix (3.7) is precisely the Cayley map, [18]. It

can be easily checked that det(Ad(g)) = 1 and Ad(g)T = Ad(g)−1, hence Ad(g) is a rotation

matrix.

We introduce a dummy independent and invariant variable τ , that we will use to perform

the variation and compute both the invariantised Euler–Lagrange equations for u and v. This

new variable generates a set of differential invariants given by

ρ ·

uτ

vτ

=

 ū v̄

−v u


uτ

vτ



=

 ūuτ + v̄vτ

−vuτ +uvτ



=

σu

σv

 .

We note that σu, as it was the case for κu, is a pure imaginary number and this can be seen in

an analogous way as we did for κu, using relation (3.3), this time differentiating with respect

to τ .

The introduction of the dummy variable τ also comes with a set of syzygies relating the

Variational problems invariant under a linear action of SU(2) 45

differential invariants:

d
dτ

κu

κv

= J

σu

σv

 . (3.8)

The operator J is going to be crucial in the computations of the invariantised Euler–

Lagrange equations. In order to derive J , we are going to first compute the curvature

matrices related to the two independent variables t and τ , and then use (2.13). Aiming at a

more clear exposition, we split the invariants into their real and imaginary part. The notation

for the differential invariants from now on will be:

κu = iκ1,

κv = κ2 + iκ3,

σu = iσ1,

σv = σ2 + iσ3,

where κ1,κ2,κ3,σ1,σ2,σ3 ∈ R, so that equation (3.8) now becomes

d
dτ


κ1

κ2

κ3

= H


σ1

σ2

σ3

 , (3.9)

Variational problems invariant under a linear action of SU(2) 46

where H plays the role of J , but now is a 3×3 matrix. The curvature matrix along the

direction of t is

Qt = ρtρ
−1 =

 ūt v̄t

−vt ut


u −v̄

v ū



=

uūt + vv̄t ūv̄t − v̄ūt

vut −uvt ūut + v̄vt



=

 κ̄u κ̄v

−κv κu



=

 −iκ1 κ2 − iκ3

−κ2 − iκ3 iκ1

 .

Analogously we derive the other curvature matrix as

Qτ = ρτρ
−1 =

 σ̄u σ̄v

−σv σu



=

 −iσ1 σ2 − iσ3

−σ2 − iσ3 iσ1

 .

The structure of the curvature matrices is something we were expecting: Proposition 2.2.32

says that the components of the curvature matrix can be expressed in terms of only the

differential invariants and their derivatives. Also note that both Qt and Qτ belong to su(2).

Using (2.13), since d
dt and d

dτ
commute, the following set of syzygies holds

d
dτ

Qt − d
dt

Qτ = [Qτ ,Qt], (3.10)

Variational problems invariant under a linear action of SU(2) 47

where [·, ·] is the usual Lie bracket. Expanding the commutator in (3.10) leads us to

d
dτ

 −iκ1 κ2 − iκ3

−κ2 − iκ3 iκ1

− d
dt

 −iσ1 σ2 − iσ3

−σ2 − iσ3 iσ1



= 2

 i(σ3κ2 −σ2κ3) iκ1σ2 +κ1σ3 −σ1κ3 − iσ1κ2

iκ1σ2 +σ1κ3 −κ1σ3 − iσ1κ2 i(σ2κ3 −σ3κ2)

 . (3.11)

Collecting terms in (3.11) we find that matrix H in (3.9) is

H =


d
dt 2κ3 −2κ2

−2κ3
d
dt 2κ1

2κ2 −2κ1
d
dt

 .

If we define the vector

q = 2


κ1

κ2

κ3

 ,

then the syzygies are

d
dτ


κ1

κ2

κ3

=


d
dt 2κ3 −2κ2

−2κ3
d
dt 2κ1

2κ2 −2κ1
d
dt




σ1

σ2

σ3

 (3.12)

=
d
dt


σ1

σ2

σ3

−q× (σ1,σ2,σ3)
T ,

Variational problems invariant under a linear action of SU(2) 48

where × stands for the usual cross product in R3.

As we established that {κ1,κ2,κ3} is a set of generating differential invariants, now it is

possible to reparametrise the Lagrangian (3.13) in terms of the differential invariants and

their derivatives, obtaining

L =
∫

D
L(t,κ1,κ2,κ3,κ1,t ,κ2,t , ...)dt =

∫
D

L(t,κκκ)dt. (3.13)

Now we can apply the result in (2.3.1) to obtain the system of invariantised Euler–Lagrange

equations, using the syzygy operator derived in (3.12), namely


− d

dtE
κ1(L)+2κ3E

κ2(L)−2κ2E
κ3(L) = 0

−2κ3E
κ1(L)− d

dtE
κ2(L)+2κ1E

κ3(L) = 0

2κ2E
κ1(L)−2κ1E

κ2(L)− d
dtE

κ3(L) = 0.

(3.14)

3.2.1 Conservation laws

In the previous subsection we derived the invariantised Euler–Lagrange equations in the same

spirit as we would do with the original variables. We saw in Chapter 2 how the conservation

laws arising from Noether’s first theorem, in the one–dimensional case, can be expressed as

Ad(ρ)−1w = k, (3.15)

Variational problems invariant under a linear action of SU(2) 49

where w is a vector of invariants and k is constant. To find w we need the matrix of

infinitesimal and its invariantised form. In this case we have

Ω =



u1 u2 v1 v2

a −u2 u1 v2 −v1

b v1 v2 −u1 −u2

c −v2 v1 −u2 u1

 (3.16)

and recall the invariantised version of (3.16) is obtained evaluating the matrix of infinitesimals

on g = ρ , i.e.

Ω(I) =


0 1 0 0

0 0 −1 0

0 0 0 1

 .

Now we can write the set of conservation laws as

0 =
d
dt

Eκ1(L)Ad(ρ)−1


1

0

0

+Eκ2(L)Ad(ρ)−1


0

−1

0

+Eκ3(L)Ad(ρ)−1


0

0

1




=
d
dt

Ad(ρ)−1


Eκ1(L)

−Eκ2(L)

Eκ3(L)


 . (3.17)

The vector appearing on the right hand side of (3.17) is the vector of invariants that we

denoted as w in (3.15). If we introduce also k, a vector of constants, then the conservation

laws can be expressed as

Ad(ρ)k = w. (3.18)

We note that ||k||= ||w||, Ad(ρ) being a rotation.

Variational problems invariant under a linear action of SU(2) 50

3.2.2 Finding the minimisers

Suppose now we have solved the invariantised Euler–Lagrange equations and therefore we

know the generating differential invariants in terms of the original variables. In practical ex-

amples, it is possible we will only have numerical solutions to the Euler–Lagrange equations.

Once we know the generating differential invariants, and we have chosen an appropriate

vector of constants k, then our aim is to recover the moving frame Ad(ρ), i.e. to solve for

the frame in the conservation laws

Ad(ρ)−1w = k. (3.19)

We are going to take advantage of the geometric setting given by the conservation laws

expressed as (3.18). This means we need to find first the rotation that takes the vector k to

the vector w, and then we will still have a degree of freedom given by the fact that we can

use w as a rotational axis, and perform another rotation around it. The information for this

last rotation is incorporated in the curvature matrix.

The main result of this section is the following.

Theorem 3.2.1. Given a Lagrangian invariant under action (3.1) and the conservation laws

(3.19), then the Adjoint representation of the moving frame is the product of two matrices,

namely

Ad(ρ) = BK, (3.20)

where K is the rotation which takes k to w and B is another rotation matrix around w.

Representing K as a Cayley map as in (3.7), the parameters a,b,c, and d are given by

a = 0,


b

c

d

=
w+k

||w+k||
,

Variational problems invariant under a linear action of SU(2) 51

and B, also represented as a Cayley map, is given by

a = sin
(
||k||

2

∫ t

t0

q · (k+w)

k · (k+w)
ds+ω

)
,


b

c

d

=
w

||w||
,

where q is a vector of invariants and ω is a constant of integration.

Proof. Both B and K can be thought as Cayley maps without loss of generality. To completely

describe K we decide to take as axis of rotation the vector w+k and perform a rotation

of angle π around it. For this option to be feasible, we have to assume that w+k ̸= 0. At

the end of this section we will provide an alternative way to proceed in the case where this

assumption does not hold.

The axis of rotation is the vector that is left fixed by the rotation. In algebraic terms, it is the

eigenvector related to the eigenvalue 1. Since we took K in the form of (3.7), the rotational

axis is given by 
b

c

d

= ψ


w1(t)+ k1

w2(t)+ k2

w3(t)+ k3

 , (3.21)

where ψ ∈ R is a normalisation factor, wi(t) and ki are the i–th components of w and k

respectively, and b,c,d are the group parameters as they appear in (3.7). The rotation angle

θ is “controlled” entirely by the group parameter a, as the trace of the Cayley matrix gives

Tr(K) = 4a2 −1 = 1+2cos(θ), (3.22)

Variational problems invariant under a linear action of SU(2) 52

where the first equality is given by just summing the elements on the main diagonal of (3.7),

and the second one is the trace of
cosθ +u2

x (1− cosθ) uxuy (1− cosθ)−uz sinθ uxuz (1− cosθ)+uy sinθ

uyux (1− cosθ)+uz sinθ cosθ +u2
y (1− cosθ) uyuz (1− cosθ)−ux sinθ

uzux (1− cosθ)−uy sinθ uzuy (1− cosθ)+ux sinθ cosθ +u2
z (1− cosθ)

 ,

which is the matrix representation of a rotation of angle θ around the normalised axis

(ux,uy,uz), see [18]. Equation (3.22) can be rewritten as

a =±cos
(

θ

2

)
,

where the ± sign keeps track of which direction we are taking to measure angles. In our

case this is irrelevant, as we rotate of π and cos(π

2) = 0, hence a = 0. In order to keep the

determinant equal to 1, we have the relation a2 +b2 + c2 +d2 = 1, that in this specific case

simplifies to b2 + c2 + d2 = 1. This, along with (3.21), gives us four equations for four

unknowns (b,c,d, and ψ). The constant ψ normalises w+k, namely,

ψ(t) =± 1
||w+k||

,

and we have two solutions as expected, but we can choose one, say the positive one, and

discard the other without loss of generality. Finally we recover K as

K =


2ψ2(k1 +w1)

2 −1 2ψ2(k1 +w1)(k2 +w2) 2ψ2(k1 +w1)(k3 +w3)

ψ2(k1 +w1)(k2 +w2) 1−2ψ2 (k2 +w2)
2 2ψ2(k3 +w3)(k2 +w2)

2ψ2(k1 +w1)(k3 +w3) 2ψ2(k3 +w3)(k2 +w2) 2ψ2(k3 +w3)
2 −1

 .

Variational problems invariant under a linear action of SU(2) 53

As we have completely characterised the matrix K, we focus on matrix B in (3.20), which is

a rotation that fixes w. As above, we know 3 parameters out of 4 from


b

c

d

=
1

||w||


w1(t)

w2(t)

w3(t)

 ,

but this time we do not know the angle the moving frame rotates around this axis, i.e. we

need to find the group parameter a. This information is contained in the curvature matrix

ρtρ
−1. In the following, our aim is to simplify the expressions contained in Qt in terms of

well–known geometric quantities. We begin computing the curvature matrix of the adjoint

representation of the frame.

Qt = Ad(ρ)tAd(ρ)−1 = 2


0 κ3 −κ2

−κ3 0 κ1

κ2 −κ1 0

 . (3.23)

To obtain the above expression we simplified with respect to Iu1
1 = Re(κu) = 0. On the other

hand, we have, using (3.20)

Qt = Ad(ρ)tAd(ρ)−1 = (BtK +BKt)K−1B−1 (3.24)

= BtB−1 +BKtK−1B−1.

The matrices appearing in (3.24) are very long and complicated functions of the quantities

appearing in the conservation laws. Any attempt to find a solution for the group parameter a

just via brute force is destined to fail. However, we show how it is possible to remarkably

simplify these expressions in terms of very well–known and easy to handle geometric

Variational problems invariant under a linear action of SU(2) 54

quantities. If we define

W =


0 w3 −w2

−w3 0 w1

w2 −w1 0

 , QW =


0 q3w1 −q1w2 q3w1 −q2w3

q1w2 −q3w1 0 q3w2 −q2w3

q2w3 −q3w1 −q3w2 +q2w3 0

 ,

then it can be proved that

KtK−1 = Qt − q · (k+w)

||k||2 +w ·k
W,

BtB−1 =
2

||k||2
√

1−a(t)2

(
||k||2

√
1−a(t)2(1−a(t)2)Qt

+

(
||k||a′(t)−q ·w

√
1−a(t)2(1−a(t)2)

)
W −||k||a(t)(1−a(t)2)QW

)
.

This is done by direct computation. More details are given in the Appendix A. To express

the term BKtK−1B−1 in a simpler way, we proceed as follows. In general, if R is a rotation

matrix and S is skew–symmetric, denote

S =


0 S3 −S2

−S3 0 S1

S2 −S1 0

 , s =


S1

S2

S3

 ,

then it is well known that RSRT = RSR−1 can be expressed as follows:

Variational problems invariant under a linear action of SU(2) 55

RSR−1 =


RT

1

RT
2

RT
3

S
(

R1 R2 R3

)

=−


RT

1

RT
2

RT
3


(

s×R1 s×R2 s×R3

)

=


0 s ·R3 −s ·R2

−s ·R3 0 s ·R1

s ·R2 −s ·R1 0

 .

Applying this computational trick to BKtK−1B−1, and recalling that Bw = w, we obtain

BKtK−1B−1 = QB− q · (k+w)

||k||2 +w ·k
W, (3.25)

where we defined QB as

QB =


0 q ·B3 −q ·B2

−q ·B3 0 q ·B1

q ·B2 −q ·B1 0

 ,

Variational problems invariant under a linear action of SU(2) 56

and Bi is the i− th column of B. If we substitute (3.23)–(3.25) into (3.24) we obtain

0 = BtB−1 +BKtK−1B−1 −Qt (3.26)

=
(
1−2a(t)2)Qt +

(
||k||a′(t)−q ·w

√
1−a(t)2(1−a(t)2)

1
2 ||k||2

√
1−a(t)2

− q · (k+w)

||k||2 +w ·k

)
W

− ||k||a(t)(1−a(t)2)
1
2 ||k||2

√
1−a(t)2

QW +QB.

Now we note that the matrices Qt , W and QW only have 3 degrees of freedom. Assuming

that Qt and W are linearly independent, then we have that (Qt ,W,QW) is a basis for R3 as a

subspace of R9. We can identify the triple (Qt ,W,QW) with (q,w,q×w), and this defines

an isomorphism. In R3 equation (3.26) becomes

(
1−2a(t)2)q+

(
||k||a′(t)−q ·w

√
1−a(t)2(1−a(t)2)

1
2 ||k||2

√
1−a(t)2

− q · (k+w)

||k||2 +w ·k

)
w−

− ||k||a(t)(1−a(t)2)
1
2 ||k||2

√
1−a(t)2

q×w+BT q = 0. (3.27)

Multiplying (3.27) everything on the left by wT , and recalling that wT BT = wT we obtain a

scalar ODE for a(t), the only parameter missing to reconstruct the moving frame Ad(ρ):

0 =
(
1−2a(t)2)wT q+

(
||k||a′(t)−q ·w

√
1−a(t)2(1−a(t)2)

1
2 ||k||2

√
1−a(t)2

− q · (k+w)

||k||2 +w ·k

)
||w||2 +wT q

= 2(1−a(t)2)q ·w+

(
||k||a′(t)−q ·w

√
1−a(t)2(1−a(t)2)

1
2 ||k||2

√
1−a(t)2

− q · (k+w)

||k||2 +w ·k

)
||w||2.

Variational problems invariant under a linear action of SU(2) 57

Finally we get an ODE for a(t) as

a′(t)√
1−a(t)2

=
||k||

2
q · (k+w)

||k||2 +k ·w

=
||k||

2
q · (k+w)

k · (k+w)
. (3.28)

Equation (3.28) can be solved by quadratures, as

∫ a′(t)√
1−a(t)2

dt = arcsin(a(t)) .

So the solution for a(t) is

a(t) = sin
(
||k||

2

∫ t

t0

q · (k+w)

k · (k+w)
ds+ω

)
, (3.29)

where ω is a constant of integration and t0 the initial time. This ends the proof.

Once we know Ad(ρ) it is possible to derive the minimising curves (u(t),v(t)) using the

normalisation equations (3.2). Recall we defined the frame as the solution of


ρ ·u = 1

ρ · v = 0.
(3.30)

Inverting the moving frame in (3.30), the minimisers of (3.13) are

u(t)

v(t)

= ρ
−1(t)

u(t)

v(t)

=

a− ib

c− id

 ,

Variational problems invariant under a linear action of SU(2) 58

where a,b,c, and d are the moving frame’s parameters, namely

ρ =

a b

c d

 .

Remark 3.2.2. Equation (3.29) holds when k ̸=−w. If this is not the case, we can take any

vector orthogonal to k as axis of rotation for K. In this way, the matrix K is independent of t,

hence:

Ad(ρ)tAd(ρ)−1 = BtB−1 +BKtK−1B−1

= BtB−1.

as Kt is the null matrix. This gives a singularity–free equation for a(t) as

a(t) = sin
(
||w||

2
q ·w

)
.

3.3 Numerical examples

To see how the theory presented in this chapter works in practice we are going to give some

explicit examples of how to solve a variational problem in this setting. In the following we

will study four simple Lagrangians that are invariant under action (3.1). The Maple code

used to generate the examples in this section can be found in Appendix A.

Variational problems invariant under a linear action of SU(2) 59

3.3.1 Example 1

The first example we will consider is

L =
∫

κ
2
1 (t)dt. (3.31)

To find κ1 in terms of the original variable t, we need to solve the Euler–Lagrange equations

(3.14), that in this case greatly simplify to

κ1,t = 0.

The solution is simply κ1 being constant and κ2,κ3 are free. We set them to zero. The vector

of invariants is

w =


Eκ1(L)

−Eκ2(L)

Eκ3(L)

=


2κ1

0

0

 ,

while as a vector of constant k we can choose any vector whose norm is 2|κ1|. We choose

k =


κ1

0
√

3κ1

 ,

so we are also guaranteed that w+k ̸= 0. The last vector we need is q, which contains the

components of the curvature matrix Qt . Recall it takes the form

q = 2


κ1

κ2

κ3

 .

Variational problems invariant under a linear action of SU(2) 60

Using (3.18) to find Ad(ρ), the first step is to find the matrix K, that rotates k onto w. In this

case we obtain

K =


1
2 0

√
3

2

0 −1 0
√

3
2 0 −1

2

 .

Then we solve the ODE for the rotation angle of B, which is the matrix that fixes w. As we

saw in (3.28), this is in general depending on k,w and q. In this case the ODE reduces to

a(t)′√
1−a(t)2

+κ1 = 0.

If we take the initial condition a(0) = 1
2 , the solution is

a(t) =−sin(tκ1).

Now we have everything to express B as

B =


1 0 0

0 2sin(tκ1)
2 −1 −

√
sin(tκ1)

4
(
1− sin(tκ1)

2)
κ

2
1

κ1

0 sin(tκ1)

√
4(1−sin(tκ1)2)

κ2
1

κ1 2sin(tκ1)
2 −1

 .

The adjoint representation of the moving frame is then given by Ad(ρ) = BK.

In order to find the couple of solution curves u(t),v(t), we need the frame in the standard

representation of SU(2)  a+ ib c+ id

−c+ id a− ib

 .

Variational problems invariant under a linear action of SU(2) 61

Given a Cayley map A, with a ̸= 0, it is possible to pass to SU(2) via

a =±
√

(Tr(A)+1)
4

,

b =− 1
4a

(A23 −A32) ,

c =− 1
4a

(A31 −A13) ,

d =− 1
4a

(A12 −A21) .

If a = 0, the parameters (b,c,d) are given from the axis of rotation, as we saw above. Due to

the choice of a sign in a, we have that two elements ρ and −ρ are mapped to the same image

by the Cayley map. After having found the corresponding element of SU(2), recall that the

solution curves are given as u

v

= ρ
−1

1

0

 .

where ρ−1 is the inverse of ρ in SU(2). Choosing κ1 = 2, a pair of minimisers of (3.31) is

u = a− ib =
−3i

2 (
√

−(sin(t)−1)(sin(t)+1)sin(t)− sin(t)2i+ i)√
−3(sin(t)−1)(sin(t)+1)

,

v = c− id =
− i

2

√
3(
√
−(sin(t)−1)(sin(t)+1)sin(t)− sin(t)2i+ i)√

−3(sin(t)−1)(sin(t)+1)
.

Both u(t) and v(t) are periodic functions, so the plots below do not change if we take a

bigger range for t. In this specific case, the range was t ∈ [−6,6]. The plot of u(t) is given in

Figure 3.1. A plot of v(t) is given in Figure 3.2.

Remark 3.3.1. The two different colours in Figure 3.1 and Figure 3.2 correspond to the

choice of ρ and −ρ to compute the solution. This applies for all the examples in this section.

Variational problems invariant under a linear action of SU(2) 62

Fig. 3.1 A plot of u(t), with t ∈ [−6,6]

Fig. 3.2 A plot of v(t), with t ∈ [−6,6]

Variational problems invariant under a linear action of SU(2) 63

3.3.2 Example 2

In this example we take the Lagrangian

L =
∫

κ
2
1,t dt.

The Euler–Lagrange equations also simplify in this case and we are left with the single scalar

ODE

κ1,ttt = 0.

the general integral of which is κ1(t) = f t2+gt+h, where f ,g,h are constants of integration.

For this example, the values of (f ,g,h) have been set to (−1,3,2). The vector of invariants

in this case is

w =


−2κ1,tt

0

0

=


4

0

0

 .

The vector of constants can be chosen within the set
{

t ∈ R3
∣∣ ||t||2 = 16

}
. We take

k =


−3

2

−
√

3

 .

so we will always have w+k ̸= 0 for all t ∈ I ⊂ R. The ODE for a(t) is

a′(t)√
1−a(t)2

=−t2 +3t +2.

Taking the initial condition a(0) = 1
2 , we get the solution

a(t) =−sin
(
−1

3
t3 − 3

2
t2 −2t

)
.

Variational problems invariant under a linear action of SU(2) 64

Fig. 3.3 A plot of u(t), with t ∈ [0.001,3.15].

Fig. 3.4 A plot of v(t), with t ∈ [0.001,3.15].

and we do not report B as it does not fit the page. The minimisers u(t) and v(t) are rational

functions of cos(t) and sin(t). In this examples, choosing the positive a, we obtain the plot

for u(t) displayed in Figure 3.3. while a plot for v(t) can be seen in Figure 3.4. The range of

the independent variable t used to draw the plots was t ∈ [−2,2].

Variational problems invariant under a linear action of SU(2) 65

3.3.3 Example 3

Consider now the Lagrangian

L =
∫ (

κ
2
1 (t)+κ

2
2 (t)

)
dt.

We find the generating differential invariants solving the Euler–Lagrange equations, that

now are a system of coupled of ODEs


d
dt κ1(t) = 2κ3(t)κ2(t)

d
dt κ2(t) =−2κ3(t)κ1(t).

(3.32)

If we choose as initial conditions 
κ1(0) = 1

κ2(0) = 0

κ3(0) = 0,

equations (3.32) are solved by

κ1(t) = cos
(

2
∫ t

0
κ3(t1)dt1

)
,

κ2(t) =−sin
(

2
∫ t

0
κ3(t1)dt1

)
,

where κ3 is free. The vector of invariants now is

w =


2κ1

−2κ2

0

 ,

Variational problems invariant under a linear action of SU(2) 66

Fig. 3.5 A plot of u(t), with t ∈ [0.001,3.15].

which has norm equal to 2 fo every t. So the vector of constants can be any vector with the

above norm, and we choose

k =


0

0

2

 .

In this setting, both the matrix K and B are quite complicated and it would be hard to fit

them in a readable way on this page. Assume we computed them and recall they both depend

on t, while in the previous examples this was the case only for B. It should be remarked that

the solution of this problem is influenced by the choice of the third generating differential

invariant, κ3. In the following plots, we chose the simple case where it is constant and we set

its value to κ3 = 2. A plot for u(t) is given in Figure 3.5. A plot of v(t) is shown in Figure

3.6. The range for the independent variable t used to draw the two plots was t ∈ [0.001,3.15].

It was chosen to avoid singularities in the solution, which correspond the the zeroes of a(t).

This can be seen from the plot in Appendix to Chapter 3, Example 3.

Variational problems invariant under a linear action of SU(2) 67

Fig. 3.6 A plot of v(t), with t ∈ [0.001,3.15].

3.3.4 Example 4

In this example we consider the Lagrangian

L =
∫ (

κ1(t)2 +κ2(t)2 +κ3(t)2) dt,

where all three generating differential invariants appear at the same time. The Euler–

Lagrange equations for this case simplify to



d
dt κ1 = 0

d
dt κ2 = 0

d
dt κ3 = 0.

The vector of invariants is

w = 2


κ1

−κ2

κ3

 .

Variational problems invariant under a linear action of SU(2) 68

Fig. 3.7 A plot of u(t), with t ∈ [−13,13].

Taking κ1 =−1, κ2 = 2 and κ3 = 1, we choose a vector of constant given by

k = 2


0

0
√

6

 .

Also in this case the matrices K and B do not fit easily this page, so we will just show the

plots of the solutions. The minimisers u(t) and v(t) are periodic functions, and the range

used to draw the plots below was t ∈ [−13,13]. The plot of u(t) is given in Figure 3.7 and a

plot of v(t) is shown in Figure 3.8.

3.4 The two–dimensional case

We focus now on the case where the variational problem is defined by a 2D Lagrangian.

Namely, we will be looking for surfaces (u(s, t),v(s, t)), rather than curves, that extremise

the Lagrangian.

Variational problems invariant under a linear action of SU(2) 69

Fig. 3.8 A plot of v(t), with t ∈ [−13,13].

Consider the Lagrangian

L =
∫

D
L(s, t,u(s, t),v(s, t),vs(s, t), ...)dsdt (3.33)

where L depends on a finite number of partial derivatives of u and v and D is a simply

connected open subset of R2. Consider the action of SU(2) on pairs of complex surfaces

defined by

 α β

−β̄ ᾱ

 ·

u1(s, t)+ iu2(s, t)

v1(s, t)+ iv2(s, t)

=

 α(u1 + iu2)+β (v1 + iv2)

−β̄ (u1 + iu2)+ ᾱ(v1 + iv2)

 . (3.34)

We will assume that the independent variables s, t are invariant. A frame for the action (3.34)

can be defined taking the normalisation equations


ρ ·u = 1

ρ · v = 0,
(3.35)

Variational problems invariant under a linear action of SU(2) 70

and applying the condition uū+ vv̄ = 1 we obtain

ρ =

 ū v̄

−v u

 ,

where we emphasise that now u = u(s, t) and v = v(s, t) are complex surfaces, as opposed

to (3.2), where u and v were complex curves. The set of generating differential invariants

is given by the generating differential invariants from the one–dimensional case plus the

ones arising from the introduction of the new variable t. Recall that in the one–dimensional

case we had that the generating differential invariants were κ1, κ2, and κ3. Introducing the

variable t, we have that also κ4 = ρ · d
dt u2, κ5 = ρ · d

dt v1, and κ6 = ρ · d
dt v2 are generating

differential invariants. Given the normalisation equations (3.35) and the action (3.34), the

curvature matrices with respect to s and t are

Qs =

 −iκ1 κ2 − iκ3

−κ2 − iκ3 iκ1

 Qt =

 −iκ4 κ5 − iκ6

−κ5 − iκ6 iκ4

 .

The curvature matrices above satisfy

d
ds

Qt − d
dt

Qs = [Qs,Qt]. (3.36)

Variational problems invariant under a linear action of SU(2) 71

Equation (3.36) allows us to find the syzygies equations between the invariants Is =(κ1,κ2,κ3)
T

and It = (κ4,κ5,κ6)
T . Namely, we have

d
dt

Is =


d
ds 2κ3 −2κ2

−2κ3
d
ds 2κ1

2κ2 2κ1
d
ds

It

= H It . (3.37)

Equation (3.37) is a system of 3 PDEs that has to be solved in conjunction with the invari-

antised Euler–Lagrange equations (that we still have to derive), in order to compute the

six generating differential invariants as functions of s and t. To obtain the invariantised

Euler–Lagrange equations, we let u and v depend also on a dummy independent and invariant

variable τ . With the introduction of the new variable, there are 3 new differential invariants

that we will denote as Iτ = (σ1,σ2,σ3). There are also new syzygies appearing, relating Is

and It to Iτ . They are obtained using (3.36) replacing first s and then t with τ . The syzygies

are

∂

∂τ
Is =


∂

∂ s 2κ3 −2κ2

−2κ3
∂

∂ s 2κ1

2κ2 2κ1
∂

∂ s

Iτ

= H Iτ ,

Variational problems invariant under a linear action of SU(2) 72

and

d
dτ

It =


d
ds 2κ6 −2κ5

−2κ6
d
ds 2κ4

2κ5 2κ4
d
ds

Iτ

= J Iτ .

After rewriting the Lagrangian (3.33) in terms of the generating differential invariants and

their derivatives, denote with κκκ = (κ1, · · · ,κ6) and consider a Lagrangian

L =
∫

D
L(s, t,κκκ,

∂

∂ s
κκκ,

∂

∂ t
κκκ, ...)dsdt, (3.38)

where L depends on a finite number of derivatives of the generating differential invariants.

Performing the variation with respect to the dummy variable τ and using (2.3.1), we have

d
dτ

L =
∫ d

dτ
L(s, t,κκκ,

d
ds

κκκ, ...)dsdt

=
∫ (

∑
i

H ∗
i Eκi(L)+J ∗

i Eκi+3(L)

)
Iτ +BT dsdt,

where BT stands for the boundary terms that arise from the integration by parts and from

taking the adjoint of H and J . The Euler–Lagrange equations relative to the Lagrangian

(3.38) can be written in full as


− d

dsEκ1(L)−2κ3Eκ2(L)+2κ2Eκ3(L)− d
dt Eκ4(L)−2κ6Eκ5(L)+2κ5Eκ6(L) = 0

2κ3Eκ1(L)− d
dsEκ2(L)−2κ1Eκ3(L)+2κ6Eκ4(L)− d

dt Eκ5(L)−2κ4Eκ6(L) = 0

−2κ2Eκ1(L)+2κ1Eκ2(L)− d
dsEκ3(L)−2κ5Eκ4(L)+2κ4Eκ5(L)− d

dt Eκ6(L) = 0.
(3.39)

Variational problems invariant under a linear action of SU(2) 73

A set of generating differential invariants is a solution to the system given by (3.37), (3.39)

and suitable boundary conditions. We will see in the next chapter how can we use such sets

to numerically compute the frame at every point in the solution’s domain. Once the frame

has been computed, a solution to the variational problem defined by the Lagrangian (3.38)

can be obtained inverting the normalisation equations (3.35) as done in the one–dimensional

case, namely u(s, t)

v(s, t)

= ρ
−1 ·

1

0

=

ᾱ

β̄

 ,

where ρ−1 is the inverse of ρ in SU(2).

In the previous sections of this chapter, we managed to compute solutions of invariant

variational problems using the fact that the conservation laws can be written as

d
dt

(
Ad(ρ)−1v

)
= 0, (3.40)

where v is a vector of invariants and Ad(ρ) is the adjoint representation of the moving frame.

Expression (3.40) allowed us to recover the moving frame ρ , after some simplification

dictated by the geometrical setting, using only quadratures. In the two–dimensional case,

this is not possible anymore, as the conservation laws become

d
ds

(
Ad(ρ)−1z

)
+

d
dt

(
Ad(ρ)−1w

)
= 0, (3.41)

where w and z are vector of invariants. Equation (3.41) does not lend itself to be integrated

anymore as we did in the one–dimensional case. Hence, we need to proceed in a different

way in order to find a solution to the variational problem. In the next chapter, we will show

how to use the invariantised Euler–Lagrange equations to solve invariant variational problems

of dimension two and higher.

4. Solutions to higher dimensional

invariant variational problems

4.1 Introduction

In Chapter 3 we have shown how to use the moving frame theory to solve one–dimensional

variational problems that are invariant under a linear action of SU(2). Lagrangians invariant

under actions of SL(2),SE(2), and SE(3) have been solved exactly using analogous methods

in [22; 23; 24; 42]. For a one–dimensional problem, Noether’s laws yield algebraic equations

for the frame and these can be used to ease the integration problem for the minimising solution.

However, for higher dimensional problems, the laws do not in general lend themselves to

finding exact solutions.

In this chapter we reduce the problem of finding the minimiser, to that of solving the

Euler–Lagrange equations for the invariants and then solving the compatible system of

differential equations, 
∂

∂xi
ρ = Qi

ρ, i = 1, . . . , p

ρ(x0) = ρ0

(4.1)

for ρ , where G is the Lie group, ρ : M → G is the moving frame, g is the Lie algebra of G,

and Qi : M → g are the curvature matrices. Once the frame has been found in the original

74

Solutions to higher dimensional invariant variational problems 75

variables, the minimiser is given by

uα
K = ρ(x)−1 · I(uα

K), (4.2)

where ρ(x)−1 is the group inverse of ρ(x) and the action is that appropriate for the jet

bundle coordinate, uα
K . The content of this chapter has been taken from [56]. The original

contributions can be found in Section 4.2.3, Section 4.2.4 and Section 4.3.

We begin providing a summary of the main results concerning the Magnus expansion, on

which an important class of Lie group integrators is based, for a matrix ODE system evolving

on a Lie group (see [2; 9; 10; 35] for surveys on the topic, [17] for numerical software).

We then present the main result: that the Magnus expansion solution may be used to

solve the compatible differential system (4.1) in the case p = 2, at least to order 5, in the

neighbourhood of a point where the components of the curvature matrices are regular. We do

this by showing that applying the expansion sequentially, yields a result which is independent

of the order in which the two differential equations are solved, to order 5. This then implies

directly, that for a set of p pairwise compatible equations of the form (4.1) the Magnus

expansion can be applied sequentially, with respect to each independent variable, yielding

a well defined result, at least to order 5. We chose to prove this result to order 5 for two

reasons: first of all, the computations’ complexity grows quickly with the order; second, most

of the numerical methods implemented in Diffman, [17] are of order less than 5. However, it

seems reasonable to think that the methods presented in this Chapter can be used to prove

the result to a higher order. We then demonstrate in a range of examples, that an efficient

implementation, [17], mirrors this result, to the relevant order of approximation.

We conclude with a conjecture, that compatibility of the system (4.1) implies that the

Magnus expansion may be used sequentially to obtain a well-defined result, to all orders, in

the neighbourhood of a point where the components of the curvature matrices equal their

Taylor series.

Solutions to higher dimensional invariant variational problems 76

4.2 Lie group integrators

We have seen in Chapter 2 how the curvature matrices are defined in terms of the moving

frames. Multiplying on the right both sides of (2.12) by ρ we obtain a system of first–order

PDEs for the frame, namely


∂

∂xi
ρ = Qi

ρ, i = 1, . . . , p

ρ(x0) = ρ0

where ρ0 is an initial condition that can be expressed in terms of the initial condition on the

minimiser, given in the definition of the variational problem at hand.

Standing Assumption. We assume throughout the chapter that the independent variables

are invariant under the Lie group action,

g · (x,u) = (x, ũ) = (x1, ..,xp, ũ1, .., ũq)

We have then that for all K = (k1, . . . ,kp),

g ·uα
K =

∂ |K|

∂xK ũα =
∂ |K|

∂ k1x1 · · ·∂ kpxp
ũα .

We discuss how to relax this assumption slightly, at the end of this section.

Definition 4.2.1. A system of PDEs is compatible if all the equations share a common

solution.

Given these assumptions, the invariant differential operators are standard, commutative

differential operators, hence compatibility for system (4.1) is guaranteed by (2.13), namely

∂

∂xi
Q j − ∂

∂x j
Qi = [Qi,Q j], (i, j) ∈ {1,2, .., p}2, i ̸= j (4.3)

Solutions to higher dimensional invariant variational problems 77

Remark 4.2.2. Our results extend readily to the case where the action on the independent

variables is translation, so that

g · (x,u) = (x+ ε, ũ) = (x1 + ε1, ..,xp + εp, ũ1, .., ũq)

in which case the operators
∂

∂xi
are still invariant, and the equations (4.3) still hold. The

only real difference is that the Lagrangian can not depend on the independent variables. The

moving frame for the group parameter ε is taken to be ε = c−x where c is constant, so that

I(xi) = ci. We note that the choice of the ci can lead to more or less complicated expressions,

and are often taken to be either zero or unity. More details on this can be found in [22].

4.2.1 Matrix ODEs

We have seen how the moving frame ρ is the solution of the compatible system, rewritten

here for the two dimensional case,



∂

∂x
ρ = Qx

ρ (4.4)

∂

∂y
ρ = Qy

ρ (4.5)

ρ(x0,y0) = ρ0

where the compatibility condition ∂

∂xQ
y − ∂

∂yQ
x − [Qx,Qy] = 0 is guaranteed to hold.

Equations (4.4)–(4.5) are linear coupled PDEs which evolve on a Lie group. However,

each equation contains only a derivative in a single direction. Hence, it is possible to solve

each of them numerically using numerical schemes developed to solve ODEs on Lie groups:

the so–called “Lie group integrators”. In the following subsection we review the main facts

concerning the theory of Lie group integrators. In–depth surveys on this can be found in

[2; 9; 35].

Solutions to higher dimensional invariant variational problems 78

As our focus is on matrix Lie group actions, we will assume we are dealing with matrix

Lie groups. Moreover, the matrices Qx and Qy depend only on the generating differential

invariants of the action and not on the moving frame itself. This means that equations

(4.4)–(4.5) form a system of linear PDEs.

Suppose we have a matrix Lie group G with Lie algebra g. We consider the initial value

problem on G, 
Y ′(t) = A(t)Y (t), t ≥ 0

Y (0) = Y0

(4.6)

where Y ∈ G and A : R→ g. The convergence of the Magnus expansion has been studied

also in [3]. To solve the initial value problem (4.6) it is necessary to extend the exponential

function to Lie algebras.

Definition 4.2.3 ([28]). If g is the Lie algebra of a Lie group G, then the exponential map is

defined as

exp : g→ G, A 7→
∞

∑
k=0

Ak

k!

It can be shown that the series exp(A) indeed maps into G. The exponential is one–to–one

only in a neighbourhood of 0 ∈ g. However, it is not globally one–to–one, nor surjective.

When it does exist, the inverse function is known as the logarithm and denoted as log.

Definition 4.2.4 ([35]). Suppose A : R → g is differentiable. Then the differential of

exp(A(t)), denoted by dexp, is given by

d
dt

exp(A(t)) = dexpA(t)(A
′(t)) exp(A(t))

Definition 4.2.5 ([35]). Given A ∈ g , the adjoint map adA is defined as

adA : g→ g, Y 7→ [A,Y].

Solutions to higher dimensional invariant variational problems 79

It can be proved [55], that dexpA is an analytic function of adA, namely

dexpA(B) =
∞

∑
i=0

adi
A B

(i+1)!
=

exp(z)−1
z

∣∣∣∣
z=adA

(B) (4.7)

and we used the notation

adi
A B = [A, [A, [A, .., [A︸ ︷︷ ︸

i−1times

, [A,B]]]] for i ∈ N

We follow [35] and read the ratio in the second equality of (4.7) in the sense of the power

series
exp(z)−1

z
=

∞

∑
i=0

z j

(j+1)!

where z is replaced by adA. As dexp is an analytic function, we can invert it and write

dexp−1
A =

z
exp(z)−1

∣∣∣∣
z=adA

This last equation should also be read as a power series, recalling that

z
exp(z)−1

=
∞

∑
i=0

Bi

i!
zi

where Bi is the ith–Bernoulli number [15, Eq. 24.2.1]. A sufficient condition for the radius

of convergence of (4.8) to be strictly positive is given in Theorem 4.2.6. Hence

dexp−1
A (B) =

∞

∑
i=0

Bi

i!
adi

A(B) (4.8)

We now state the fundamental result that lies behind the theory of the Lie group integrators.

Solutions to higher dimensional invariant variational problems 80

Theorem 4.2.6 ([35], [45]). Consider the initial value problem on G given in (4.6) and define

Tmax = sup
T

{∫ T

0
||A(ξ)||2 dξ < π

}

Then, for every t0 ∈ (0,Tmax), the solution of (4.6) in [0, t0] is given by

Y (t) = exp(Θ(t))Y0

and Θ(t) ∈ g is the solution of


Θ(t)′ = dexp−1

Θ(t)(A(t))

Θ(0) = 0
(4.9)

4.2.2 The Magnus expansion

We are interested in using a class of numerical methods that goes under the name of “Magnus

expansion methods” [36]. This is a particular case of the Runge–Kutta–Munthe–Kaas

methods developed in [46; 47; 48; 49]. In order to solve (4.9), the method of Picard iteration

is used, which relies on the concept of uniformly Lipschitz continuous function [27, p. 2]. We

recall the following definitions.

Definition 4.2.7 ([27]). A function f: Rm → Rn is said to be uniformly Lipschitz continuous

if there exists a constant L ≥ 0, such that, for every x,y ∈ Rm

|| f (x)− f (y)||Rn ≤ L||x− y||Rm

holds.

Solutions to higher dimensional invariant variational problems 81

Definition 4.2.8. For the initial value problem


y′(t) = f (t,y(t))

y(t0) = y0

(4.10)

the Picard iteration is defined as the sequence


u[0] = y0

u[m+1] = y0 +
∫ t

t0
f (s,u[m])ds m ≥ 0

(4.11)

The two definitions above play a central role in the Picard–Lindelöf theorem:

Theorem 4.2.9 (Picard–Lindelöf, [27]). Consider the initial value problem given by (4.10).

If f (t,y(t)) is uniformly Lipschitz continuous in y and continuous in t, then there exists ε > 0

such that there exists a unique solution to (4.10) on the interval [t0 − ε, t0 + ε]. Further, this

solution is the limit of the Picard iterations, i.e.

y(t) = lim
m→∞

u[m](t), (4.12)

where u[m](t) is defined in (4.11).

As seen in (4.8), the inverse of dexp can be written as a series involving powers of the ad

operator. Applying the Picard iterations to (4.9) yields


Θ[0] = 0

Θ[m+1] =
∫ t

0
dexp−1

Θ[m](ξ)
A(ξ)dξ =

∞

∑
i=0

Bi

i!

∫ t

0
adi

Θ[m](ξ)
A(ξ)dξ

for m = 0,1,2, ...

Solutions to higher dimensional invariant variational problems 82

In our case, the matrix function A(t) has no dependence on Y . Since it is assumed to be

smooth and hence continuous, in t, Picard’s theorem can be applied, to yield a unique local

solution to (4.9), namely Θ(t) = limm→∞ Θ[m](t). It can be seen [35], that it is possible to

rearrange the terms in Θ as

Θ(t) =
∞

∑
i=0

Hi(t) (4.13)

where Hi(t) comprises those terms involving precisely i commutators and i+1 integrals. The

expression defined in (4.13) is called the Magnus expansion.

4.2.3 Magnus expansion and coupled systems of PDEs

We now restrict to the two dimensional case, for simplicity. We are interested in applying the

theory of Lie group integrators based on the Magnus expansion to solve two–dimensional

variational problems. Let us recall we want to solve system (4.4)–(4.5) in order to find

the moving frame ρ . Equations (4.4)–(4.5) form a system of two linear matrix differential

equations to be solved in a suitable domain of R2 and we want the solution to belong to the

Lie group G at every point where it is defined. We also recall the compatibility condition

(2.13) for (4.4)–(4.5) to have a solution. We denote this condition by R, that is,

R =
∂

∂x
Qy − ∂

∂y
Qx − [Qx,Qy] (4.14)

which must be identically zero for the system to be compatible. We apply Lemma (4.2.6) to

equations (4.4)–(4.5), obtaining the coupled system of differential equations,


∂

∂x
Θ(x,y) = dexp−1

Θ(x,y)Q
x(x,y) (4.15)

∂

∂y
Θ(x,y) = dexp−1

Θ(x,y)Q
y(x,y) (4.16)

Solutions to higher dimensional invariant variational problems 83

The method of Picard iterations is applied to each of the differential equations (4.15)–(4.16)

to yield, 

Θx
[0] = 0

Θ
y
[0] = 0

Θx
[n+1] = ∑

∞
i=0

Bi

i!

∫ x

0
adi

Θx
[n](ξ ,y)

Qx(ξ ,y)dξ

Θ
y
[n+1] = ∑

∞
i=0

Bi

i!

∫ y

0
adi

Θ
y
[n](x,ξ)

Qy(x,ξ)dξ

for n = 0,1,2, ..., where the iterations of Θx and Θy solve the equation for (4.15) and (4.16)

respectively. We use the superscripts x and y to denote the integrations in the x and y direction

respectively. As in (4.13), we rearrange terms such that

Θ
x(y) =

∞

∑
i=0

Mx
i (y)

Θ
y(x) =

∞

∑
i=0

My
i (x)

where Mx
i , My

i comprise those terms containing exactly i commutators and i+1 integrals.

4.2.4 Magnus expansions commute up to order 5

We now show that the Magnus expansion, considered as an exact, albeit infinite series

solution, yields a well defined integration method for a system of the form (4.4)–(4.5), in the

neighbourhood of a point (x0,y0) for which the curvature matrices both have a Taylor series

expansion. We consider the result obtained by sequential integration in the two different

directions. We show, in fact, that the difference in the results obtained by changing the order

of integration, can be expressed in terms of a differential operator acting on the compatibility

condition, R, (4.14). The two different solutions are the same, then, provided R = 0. While

we show the result only to order 5, it is clear that the calculations may be continued to any

order, albeit they become increasingly complex.

Solutions to higher dimensional invariant variational problems 84

Definition 4.2.10. If Q ∈ g is a matrix Lie algebra element, then Q is of order n in h if

n = inf
{

j ∈ Z : lim
h→+∞

Q
h j+1 = 0

}

In our calculations, we will make strong use of the Baker–Campbell–Hausdorff (BCH)

formula which shows how two matrix exponentials may be multiplied to obtain a single

matrix exponential. Although we will use a truncated BCH expansion up to order 5, a

recursive formula to determine every term has been proved by Dynkin, [16].

Theorem 4.2.11. [BCH formula, [16; 54]] If ||X ||2 + ||Y ||2 < log2, then

log(exp(X)exp(Y)) =
∞

∑
n=1

(−1)n−1

n ∑
r1+s1>0

...
rn+sn>0

[X r1Y s1X r2Y s2 · · ·X rnY sn]

∑
n
i=1(ri + si)Π

n
i=1ri!si!

where

[X r1Y s1X r2Y s2 · · ·X rnY sn]

= [X , [X , · · · [X︸ ︷︷ ︸
r1

, [Y, [Y, · · · [Y︸ ︷︷ ︸
s1

, · · · [X , [X , · · · [X︸ ︷︷ ︸
rn

, [Y, [Y, · · ·Y︸ ︷︷ ︸
sn

]] · · ·]

Theorem 4.2.12. Let (x0,y0) be a point in the domain of the moving frame, for which the

curvature matrices have a (local) Taylor series expansion. Then in a neighbourhood of this

point, the Magnus expansion may be used sequentially, to yield a well–defined solution for

the compatible system (4.4)–(4.5), to order at least 5.

Proof. Consider a rectangular neighbourhood of (x0,y0), given by [x0,x0 +h]× [y0,y0 + k],

where h,k ∈ R are sufficiently small, that is, [x0,x0 +h]× [y0,y0 + k] lies within the domain

of validity of the Taylor series of the curvature matrices. In order to have a well–defined

solution, we need to prove that if we start from the initial datum ρ0 = ρ(x0,y0), then we

obtain a unique expression for ρ(x0 +h,y0 + k), regardless of the order of integration, that is,

regardless of whether we integrate first with respect to x or with respect to y.

Solutions to higher dimensional invariant variational problems 85

Fig. 4.1 The two different paths γ1,γ2.

Let us consider two paths, say γ1 and γ2, such that they both start at (x0,y0) and end at

(x0+h,y0+k) = (x1,y1), but γ1 first goes to (x0,y1) and then to (x1,y1), while γ2 travels first

to (x1,y0) before going to (x1,y1) (see Figure 4.1). We compute the solution ρ(x1,y1) along

the two paths, and compare the two results. We call ργ1(x1,y1) and ργ2(x1,y1) the solution

ρ(x1,y1) obtained along γ1 and γ2 respectively. To make the calculations tractable, we will

approximate the solutions ργ1 and ργ2 to order five.

Using Lemma (4.2.6) we compute ργ1(x1,y1) and ργ2(x1,y1) in two steps. First we obtain

the solution of 

∂

∂y
ρ

γ1 = Qy
ρ

γ1

ργ1(x0,y0) = ρ0

(x,y) ∈ {x0}× [y0,y1]



∂

∂x
ρ

γ2 = Qx
ρ

γ2

ργ2(x0,y0) = ρ0

(x,y) ∈ [x0,x1]×{y0}

Solutions to higher dimensional invariant variational problems 86

as

ρ
γ1(x0,y1) = exp(Θy(x0))ρ0

ρ
γ2(x1,y0) = exp(Θx(y0))ρ0

Then the following step is to solve the systems



∂

∂x
ργ1 = Qxργ1

ργ1(x0,y1) = exp(Θy(x0))ρ0

(x,y) ∈ [x0,x1]×{y1}



∂

∂y
ρ

γ2 = Qy
ρ

γ2

ργ2(x1,y0) = exp(Θx(y0))ρ0

(x,y) ∈ {x1}× [y0,y1]

and we obtain the two solutions that we want to compare, namely

ρ
γ1(x1,y1) = exp(Θx(y1))exp(Θy(x0))ρ0

ρ
γ2(x1,y1) = exp(Θy(x1))exp(Θx(y0))ρ0

Therefore, we consider

log(ργ1(x1,y1)ρ
−1
0)− log(ργ2(x1,y1)ρ

−1
0) = log(exp(Θx(y1))exp(Θy(x0)))

− log(exp(Θy(x1))exp(Θx(y0)))

(4.17)

We will show that the right hand side of (4.17) is zero up to order 5 in h, k. We will present the

computations only for log(ργ1(x1,y1)ρ
−1
0) as those for log(ργ2(x1,y1)ρ

−1
0) can be obtained

by interchanging x and y.

Solutions to higher dimensional invariant variational problems 87

We begin applying the BCH formula to the RHS of (4.17). As we truncate the expansion

at order 5, the terms that are relevant for our result are

log(ργ1(x1,y1)ρ
−1
0) = log(exp(Θx(y1))exp(Θy(x0)))

= Θ
x(y1)+Θ

y(x0)+
1
2
[Θx(y1),Θ

y(x0)]

+
1
2
([Θx(y1), [Θ

x(y1),Θ
y(x0)]]+ [Θy(x0), [Θ

y(x0),Θ
x(y1)]])

− 1
24

[Θy(x0), [Θ
y(x0), [Θ

x(y1),Θ
y(x0)]]]

− 1
720

[Θy(x0), [Θ
y(x0), [Θ

y(x0), [Θ
y(x0),Θ

x(y1)]]]]

− 1
720

[Θx(y1), [Θ
x(y1), [Θ

x(y1), [Θ
x(y1),Θ

y(x0)]]]]

+
1

360
[Θx(y1), [Θ

y(x0), [Θ
y(x0), [Θ

y(x0),Θ
x(y1)]]]]

+
1

360
[Θy(x0), [Θ

x(y1), [Θ
x(y1), [Θ

x(y1),Θ
y(x0)]]]]

+
1

120
[Θy(x0), [Θ

y(x0), [Θ
x(y1), [Θ

y(x0),Θ
x(y1)]]]]

+
1

120
[Θx(y1), [Θ

x(y1), [Θ
y(x0), [Θ

x(y1),Θ
y(x0)]]]]+h.o.t.

where ‘h.o.t’ stands for higher order terms. The expansion for log(ργ2(x1,y1)ρ
−1
0) is analo-

gous.

The second step is to express Θx(y1) and Θy(x1) as Taylor polynomials around y0 and x0

respectively.

Solutions to higher dimensional invariant variational problems 88

The terms we need for the Magnus expansion of Θx(y0) are,

Θ
x(y0) =

∫ x1

x0

Qx(ξ ,y0)dξ − 1
2

∫ x1

x0

[∫
ξ1

x0

Qx(ξ2,y0)dξ2,Q
x(ξ1,y0)

]
dξ1

+
1

12

∫ x1

x0

[∫
ξ1

x0

Qx(ξ2,y0)dξ2,

[∫
ξ1

x0

Qx(ξ2,y0),Q
x(ξ1,y0)

]]
dξ1

+
1
4

∫ x1

x0

[∫
ξ1

x0

[Qx(ξ3,y0)ξ3,Q
x(ξ2,y0)] dξ2,Q

x(ξ1,y0)

]
dξ1

− 1
24

∫ x1

x0

[∫
ξ1

x0

[∫
ξ2

x0

Qx(ξ3,y0)dξ3,

[∫
ξ2

x0

Qx(ξ3,y0)dξ3,Q
x(ξ2,y0)

]]
dξ2,

Qx(ξ1,y0)

]
dξ1

− 1
24

∫ x1

x0

[∫
ξ1

x0

[∫
ξ2

x0

Qx(ξ3,y0)dξ3,Q
x(ξ2,y0)

]
dξ2,

[∫
ξ1

x0

Qx(ξ2,y0)dξ2,

Qx(ξ1,y0)

]]
dξ1

− 1
24

∫ x1

x0

[∫
ξ1

x0

Qx(ξ2,y0),

[∫
ξ1

x0

[∫
ξ2

x0

Qx(ξ3,y0)dξ3,Q
x(ξ2,y0)

]
dξ2,

Qx(ξ1,y0)

]]
dξ1

− 1
8

∫ x1

x0

[∫
ξ1

x0

Qx(ξ2,y0),

[∫
ξ1

x0

Qx(ξ2,y0)dξ2,

[∫
ξ1

x0

Qx(ξ2,y0),Q
x(ξ1,y0)

]]]
dξ1

The expression for Θy(x0) is analogous.

The third step is to expand the integrand functions inside Θx(y0) and Θy(x0), that is,

Qx(ξ ,y0) and Qy(x0,ξ), around x0 and y0 respectively as Taylor polynomials up to order

5. The coefficients of this Taylor expansion are functions of the curvature matrices Qx and

Solutions to higher dimensional invariant variational problems 89

Qy and their partial derivatives evaluated at (x0,y0). After this step, it becomes trivial to

compute the integrals as they are polynomial in the dummy variables of integration, ξ , ξ1

and ξ2, and to collect terms of each order.

In this way, the right hand side of (4.17) may be written down in terms of Qx and Qy

and their partial derivatives, all evaluated at (x0,y0).

The final step is to write this resulting expression in terms of the compatibility expression

R defined in (4.14) and its partial derivatives, all evaluated at the arbitrary initial point

(x0,y0). We summarise the result in the table below, noting that the coefficient of hnkm can

be obtained from that of hmkn by interchanging x and y. It can be seen that every coefficient

is a differential expression in R which is identically zero when R is zero, and hence the right

hand side of (4.17) is zero. This ends the proof.

Solutions to higher dimensional invariant variational problems 90

Order Monomial Coefficient

2 hk R

3 h2k 1
2∂xR

4 h3k 1
6∂ 2

x R− 1
12 adQx(∂xR)+ 1

12 ad∂xQx(R)

h2k2 1
4∂x∂yR− 1

6 adadQx(Qy)(R)− 1
12 adQy(adQx(R))+1

4 [∂yQy,R]

5 h4k 1
24∂ 3

x R− 1
24 adQx(∂ 2

x R)+ 1
24 ad∂ 2

x Qx(R)

h3k2 1
12∂ 2

x ∂yR− 1
24 adQx(∂x∂yR)+ 1

24 ad∂xQx(∂yR)

− 1
24 adQx(adQy(∂xR))− 1

12 adR(∂xR)+ 1
12 ad∂xQy(∂xR)

+1
6 ad∂ 2

x Qy(R)− 1
24 adQy(ad∂xQx(R))− 1

24 ad∂xQy(adQx(R))

+1
8 ad[∂xQy,Qx](R)+

1
8 ad[Qy,∂xQx](R)

It can be seen that the calculations become increasingly complex as the order increases.

While obtaining a recursive expression for these expressions seems out of reach, nevertheless,

it seems reasonable to conjecture that the result holds to every order. Of interest is the

emergence of an operator acting on R at every order, which combines differential and ad

operators, both of which are derivations acting on the free Lie algebra generated not only by

Solutions to higher dimensional invariant variational problems 91

the curvature matrices but also their derivatives. Understanding the structure of the sequence

of operators acting on R, as exhibited in the Table, is an open problem.

4.3 Numerical examples

We showed in the previous section that the Magnus expansions commute at least up to order 5.

These hint that the Lie group integrators based on the Magnus expansion may also commute

to some related order, and we investigate some simple examples.

We consider four variational problems and, in order to solve the system of coupled matrix

PDEs for the frame, we use a sixth–order Magnus series method which is included in the

Matlab package DiffMan ([17], Algorithm A.2.5). This numerical scheme is cost efficient [4;

7; 37], which means that not all the terms in the Magnus expansion are used in the calculations.

This makes the multivariate integrals in the formulae, which in general are computationally

expensive to approximate, [12], computable in an efficient way. Moreover, the algorithm

numerically approximates integrals using a fifth–order Gauss–Legendre scheme. Further

research needs to be done in order to understand fully how the compatibility condition can

be used to prove, to some order, a result like Theorem (4.2.12) for the solvers implemented

in Diffman. However, as we will see in the numerical examples in this section, neither the

omission of some terms in the name of efficiency, nor the replacement of quadrature for exact

integration, appear to affect unduly the numerical compatibility.

In the following we will numerically solve some variational problems. We first find

a simple exact solution to the Euler–Lagrange equations which may readily be used as

components of the curvature matrices Qi in the software1. We then solve for the frame using

two different methods:
1Using a numerical solution seems to require the data representations to be aligned in some sense, for

example, that the meshes match. This is a development for the future.

Solutions to higher dimensional invariant variational problems 92

1 integrating first with respect to y along the line x = x0, and then, for j = 0, ..,n, use

the points ρ(x j,y0) as initial condition for the solution found integrating with respect

to x along the line y = y j.

2 integrating first with respect to x along the line y = y0, and then, for j = 0, ..,n, use

the points ρ(x0,y j) as initial condition for the solution found integrating with respect

to y along the line x = x j.

and we will compare the solutions obtained. Finally, we use (4.2) to plot the minimiser, given

the frame.

4.3.1 An example using a linear action of SU(2)

Recall that in Chapter 3, we studied a linear action of SU(2) on pair of complex surfaces

u(x, t) and v(x, t). A set of generating differential invariants, using the notation u = u1 + iu2,

v = v1 + iv2, is given by

κ1 = ρ · ∂u2

∂x
, κ2 = ρ · ∂v1

∂x
, κ3 = ρ · ∂v2

∂x

and

κ4 = ρ · ∂u2

∂ t
, κ5 = ρ · ∂v1

∂ t
, κ6 = ρ · ∂v2

∂ t

In order to find κi, i = 1, ..,6, in terms of the original variables, the following Euler–Lagrange

equations must be solved:


− d

dsEκ1(L)−2κ3Eκ2(L)+2κ2Eκ3(L)− d
dt Eκ4(L)−2κ6Eκ5(L)+2κ5Eκ6(L) = 0

2κ3Eκ1(L)− d
dsEκ2(L)−2κ1Eκ3(L)+2κ6Eκ4(L)− d

dt Eκ5(L)−2κ4Eκ6(L) = 0

−2κ2Eκ1(L)+2κ1Eκ2(L)− d
dsEκ3(L)−2κ5Eκ4(L)+2κ4Eκ5(L)− d

dt Eκ6(L) = 0
(4.18)

Solutions to higher dimensional invariant variational problems 93

along with the syzygies

d
dt


κ1

κ2

κ3

=


d
ds 2κ3 −2κ2

−2κ3
d
ds 2κ1

2κ2 2κ1
d
ds




κ4

κ5

κ6

 (4.19)

Consider the invariant Lagrangian

1
2

∫
D

κ
2
1 dxdt (4.20)

where D is the square [0,1]× [0,1], and note that a simple exact solution to the system

(4.18),(4.19), with boundary conditions



κ1(0, t) = t3

κ4(0, t) =−t2

κ5(0, t) =− t4

3

κ6(0, t) = t +5

is given by 

κ1 = t3

κ2 = κ3 = 0

κ4 = 3xt2 − t2

κ5 =−(t +5)sin(2t3x)− 1
3t4 cos(2t3x)

κ6 =−1
3t4 sin(2t3x)+(t +5)cos(2t3x)

Solutions to higher dimensional invariant variational problems 94

Fig. 4.2 2-Norm of the difference between the two moving frames

Since we do not impose initial data for (u,v) , we may take the (randomly chosen) initial

condition for the moving frame to be

ρ0 =

 −1
3 +

1
4 i 1

2 −
√

83
12 i

−1
2 −

√
83

12 i −1
3 −

1
4 i


We use Diffman to solve the system for the moving frame in two different ways; first

by solving the equation ρx = Qxρ for ρ(x,0), and then by solving the equation ρt = Qtρ

equation with ρ(x,0) as the initial data, and second, by reversing the order of integrations.

In order to keep the number of plots low (there are 4 surfaces corresponding to real and

imaginary parts of u and v, and 4 plots related to the difference between each surface

computed along the two paths), we show in Figure (4.2) the 2-norm of the difference of the

two moving frames computed. The step sizes in the x and y directions were chosen to be

h = k = 0.01. It can be seen that the two possible solutions to the equations for the frame,

coincide at least up to order 5.

Solutions to higher dimensional invariant variational problems 95

Fig. 4.3 The imaginary component of u

Once the frame has been computed on some domain, we may use the normalisation to

recover the minimisers of (4.20), namely

u

v

= ρ(x, t)−1

1

0


where ρ(x, t)−1 is the group inverse to ρ(x, t). In Figure 4.3 we plot the imaginary component

of u; the three other possible plots are similar.

4.3.2 Examples using the projective action of SL(2)

The next two examples are related to the Lie group SL(2), given by

SL(2) =

g =

a b

c d

 |ad −bc = 1



Solutions to higher dimensional invariant variational problems 96

and we let it act projectively on surfaces as

g · x = x, g · y = y, g ·u =
au+b
cu+d

This action and its use in the Calculus of Variations is studied in complete detail in [22; 42].

For convenience, we record here the information needed to complete the calculations.

Given the frame ρ defined by the normalisation equations g · u = 0, g · ux = 1 and

g ·uxx = 0, the generating differential invariants are,

κ(x,y) = ρ ·uy =
uy

ux

σ(x,y) = ρ ·uxxx =
uxxx

ux
− 3u2

xx
2u2

x
.

The two curvature matrices are

Qx =

 0 −1

1
2σ 0

 Qy =

 −1
2κx −κ

1
2 (κxx +σκ) 1

2κx


and the syzygy is

∂

∂y
σ =

(
∂ 3

∂x3 +2σ
∂

∂x
+σx

)
κ. (4.21)

Introducing a dummy variable τ to effect the variation yields the new invariant ω = uτ/ux

and the syzygies,

∂

∂τ

κ

σ

= H ω =


∂

∂y
−κ

∂

∂x
+κx

∂ 3

∂x3 +2σ
∂

∂x
+σx

ω.

The invariantised Euler–Lagrange equation is, [23],

−
(

∂ 3

∂x3 +2σ
∂

∂x
+σx

)
Eσ (L)+

(
− ∂

∂y
+κ

∂

∂x
+2κx

)
Eκ(L) = 0

Solutions to higher dimensional invariant variational problems 97

Finally, the equations for the moving frame ρ , are



∂

∂xρ = Qxρ

∂

∂yρ = Qyρ

ρ(x0,y0) = ρ0

(x,y) ∈ [x0,x1]× [y0,y1]

(4.22)

We now consider two different Lagrangians. Our aim here is to investigate the numerical

compatibility of the Lie group integrator in some simple examples. Therefore, the region D

for this example and the ones that follow have been chosen such that it is possible to compute

the solution in a reasonable time and the solution itself is well defined all over the domain.

Further, the boundary and initial conditions in the following examples have been chosen in

order to have the existence of a solution guaranteed and to make computations tractable.

Example 1

Consider the Lagrangian given by

L =
∫

D
κ

2(x,y) dxdy (4.23)

where D is the square [3,4]× [3,4] and we choose a step size equal in both directions

h = k = 0.01. The Euler–Lagrange equation is

κy = 3κκx (4.24)

and if we add a boundary condition as κ(x,1) = x, then a simple exact solution is

κ(x,y) =− x
3y−4

(4.25)

Solutions to higher dimensional invariant variational problems 98

Fig. 4.4 Plots of solutions to the variational problem defined by (4.23), computed integrating

the two different ways; the plots look identical to the naked eye.

Setting κ into the syzygy equation (4.21), we obtain an equation for σ ,

σy =−2
σ

(3y−4)
− xσx

(3y−4)

and if we impose that σ(1,y) = y, we obtain the solution

σ(x,y) =
4x3 +3y−4

3x5 (4.26)

Inserting (4.25) and (4.26) into (4.22), adding an initial condition

ρ0 =

 1
2

√
3

2

−
√

3
2

1
2


and integrating as we described using the two methods above, we obtain two surfaces,

identical to the naked eye, shown in Figure 4.4. A plot of the absolute difference between the

Solutions to higher dimensional invariant variational problems 99

Fig. 4.5 Absolute value of the difference between the two surfaces in Figure 4.4.

two surfaces is shown in Figure 4.5. We can see in this case, that the point–wise difference

of the two surfaces plotted in Figure 4.4 is of order at least 7 in h, k.

Remark 4.3.1. The Euler–Lagrange equation (4.24) is the inviscid Burgers equation, well–

known for its shock wave solutions. Such solutions lead to the curvature matrices not being

continuous, and hence not satisfying the hypotheses for the Picard iteration solution method

to be valid. The use of moving frames to study such extremal solutions is an open problem.

Example 2

Consider next the Lagrangian given by

L =
∫

D
σ

2
x (x,y) dxdy (4.27)

Solutions to higher dimensional invariant variational problems 100

where D is the square [1,2]× [1,2] and we choose a step size equal in both directions

h = k = 0.01. The Euler–Lagrange equation becomes

σxxxxx +2σσxxx +σxσxx = 0

and we notice that all summands in the differential equation above contain one factor with at

least a second order derivative in x. So a simple exact solution is

σ(x,y) = x− y (4.28)

Now we can substitute the expression for σ into the syzygy equation (4.21), obtaining an

equation for κ

κxxx +(2x−2y)κx +κ +1 = 0 (4.29)

and if we impose that 
κ(0,y) = y

κx(0,y) = 0

κxx(0,y) = 1
y

(4.30)

we obtain a solution in terms of the Airy functions of first and second kind (and their first

derivative). Inserting (4.28) and the solution to (4.29)–(4.30) into (4.22), adding an initial

condition

ρ0 =

 1
2

√
3

2

−
√

3
2

1
2


and integrating as we described in 1–2 above, we obtain the two surfaces shown in Figure

4.6. A plot of the absolute difference between the two surfaces is given in Figure 4.7. In this

example we obtain that the difference between the two surfaces is of order greater than 5.

Solutions to higher dimensional invariant variational problems 101

Fig. 4.6 Plots of solutions to the variational problem defined by (4.27), computed integrating

the two different ways; the plots look identical to the naked eye.

Fig. 4.7 Absolute value of the difference between the two surfaces in Figure 4.6.

Solutions to higher dimensional invariant variational problems 102

4.3.3 An example using the standard action of SE(2)

We end this section with a numerical example involving an action of SE(2) on parametrised

surfaces (s, t) → (x(s, t),u(s, t)). In many applications, we consider (x(s, t),u(s, t)) as an

evolving curve, (x(s),u(s)), in the (x,u) plane. In this case, it is common to take s to be arc

length. Here, we achieve this, while maintaining both
∂

∂ s
and

∂

∂ t
to be standard, commuting

operators, by taking x2
s +u2

s = 1 as a constraint in the Lagrangian.

Remark 4.3.2. If we define u = u(x, t) and take the standard arc length derivative,
∂

∂ s
=

(1+u2
x)

−1/2 ∂

∂x
, then

∂

∂ s
and

∂

∂ t
do not commute, since ut ̸= 0. In this case, the compatibility

condition will not take the form (4.14).

The action is given by

g ·


x

u

1

=


cos(θ) −sin(θ) a

sin(θ) cos(θ) b

0 0 1




x

u

1

 (4.31)

where (θ ,a,b) ∈ R3.

Moving frames for this and related actions and their use in the Calculus of Variations are

well studied, see [24; 42]. For convenience, we record here the information we need. Given

the normalisation equations

g · x = 0, g ·u = 0, g ·us = 0,

the frame is

ρ =
1

(x2
s +u2

s)
1/2


xs us −(xxs +uus)

−us xs usx− xsu

0 0 1

 .

Solutions to higher dimensional invariant variational problems 103

The normalisation equations give ρ ·x = I(x) = 0 and similarly I(u) = 0 and I(us) = 0, while

ρ · xs = I(xs) = (x2
s +u2

s)
1/2.

Calculating the curvature matrices and applying the Replacement Rule, Theorem 2.2.25,

yields

Qs =


0

κ1

κ2
−κ2

−κ1

κ2
0 0

0 0 0

 (4.32)

Qt =


0

I(ust)

κ2
−κ4

−I(ust)

κ2
0 −κ3

0 0 0

 (4.33)

where

ρ ·uss = κ1, ρ · xs = κ2, ρ ·ut = κ3, ρ · xt = κ4.

Calculating the syzygies from the compatibility condition yields

I(ust) = κ3,s +κ1κ4/κ2

and therefore, the generating invariants are κi, i = 1, . . . ,4, together with the invariant

independent variables.

The famous invariant of this action, the Euclidean curvature, can be expressed as κ1κ
−3
2 .

It is usual to set κ2 = (x2
s +u2

s)
1/2 = 1 to fix the parametrisation and ease the calculations.

Setting κ2 = 1, the syzygies for our invariants are κ4,s = κ1κ3 together with

∂

∂ t
κ1 =

∂

∂ s

(
∂

∂ s
κ3 +κ1κ4

)
.

Solutions to higher dimensional invariant variational problems 104

In order to effect the variation, we introduce a dummy invariant independent variable, τ .

We obtain two new invariants, σ1 = ρ ·uτ and σ2 = ρ · xτ , and then the syzygy operator H

needed to calculate the Euler–Lagrange equations is,

∂

∂τ



κ1

κ2

κ3

κ4


= H

σ1

σ2

=



∂ 2

∂ s2 κ1,s +κ1
∂

∂ s

−κ1
∂

∂ s
∂

∂ t
−κ4

∂

∂ s
κ3,s

κ3
∂

∂ s
−κ3,s −κ1κ4

∂

∂ t
+κ1κ3



σ1

σ2



where we have set κ2 = 1 in H .

Consider the Lagrangian

∫
D

1
2

(
∂

∂ t
κ1

)2

−λ (κ2 −1) dsdt (4.34)

where D = [1,2]× [1,2] and λ is a Lagrange multiplier for the constraint, κ2 = 1. Given

(4.34), the system to be solved is made of the two Euler–Lagrange equations for the invariants

and their syzygies, which in this case is



κ1λ −κ1,sstt = 0

λs −κ1κ1,stt = 0

κ4,s −κ1κ3 = 0

κ3,ss +κ1,sκ4 +κ2
1 κ3 −κ1,t = 0

(4.35)

A simple exact solution to (4.35) is

κ1 =−4(s+t)−1
λ = 24(s+t)−4

κ3 = s+t+sin(4ln(s+ t))+cos(4ln(s+ t)) (4.36)

Solutions to higher dimensional invariant variational problems 105

Fig. 4.8 2–norm of the difference between the two moving frames

and

κ4 = cos(4ln(s+ t))− sin(4ln(s+ t))+1−4(s+ t) (4.37)

Substituting (4.36)–(4.37) into (4.32)–(4.33), we solve system (4.22) using the procedure

described above, with a constant step size in both direction equal to h = k = 0.01. A plot of

the 2–norm of the difference of the two moving frames obtained in this way can be found in

Figure 4.8. From the plot it can be seen that in this case our theoretical result is mirrored in

the numerical result. Once the frame has been computed, recall the minimisers are given by


x(s, t)

u(s, t)

1

= ρ(s, t)−1


I(x)

I(u)

1

= ρ(s, t)−1


0

0

1


where the right–hand side is determined by the first two of the normalisation equations,

I(x) = ρ · x = 0 and I(u) = ρ · u = 0, which define the frame. A plot of the minimisers is

provided in Figure 4.9.

Solutions to higher dimensional invariant variational problems 106

Fig. 4.9 A plot of the minimiser as an evolving curve, (t,x(s, t),u(s, t))

4.3.4 Considering bigger domains

The examples above show that the theory we proved in this chapter is confirmed numerically.

However, as we wanted to use a reasonably small step size, we had to reduce the area we

were integrating. An interesting question that this approach leaves open is what happen when

the domain of integration gets bigger? Here we will consider a variational problems seen

already in this section and reduce the step size to h = k = 0.1, but taking as a domain of

integration a much bigger area.

Consider the variational problem studied in Section 4.3.3, with Lagrangian

∫ 1
2

(
∂

∂ t
κ1

)2

−λ (κ2 −1) dsdt

We look for a solution in [1,15]× [1,15], rather than in [1,2]× [1,2] as before. Recall we

lower the step size to h = k = 0.1, so a fifth–order error now will have magnitude of 10−5. A

plot of the solution can be found in Figure 4.10, while the 2–norm difference of the moving

frames can be found in Figure 4.11.

Solutions to higher dimensional invariant variational problems 107

Fig. 4.10 Solution to the variational problem (4.34) in [1,15]× [1,15]

Fig. 4.11 2–norm of the difference between the two moving frames in [1,15]× [1,15]

Solutions to higher dimensional invariant variational problems 108

Remark 4.3.3. Although these are preliminary results, they suggest that the method presented

in this section can be applied also to larger domains. More research will have to be done to

formally understand which are the limits of this method in terms of domain of integration.

We think that one of the biggest challenges is to understand the qualitative behaviour of the

approximated solution in order to predict if any singularities will appear and where.

4.4 Final remarks and a conjecture

In this chapter, we have shown that Magnus expansions may be used to solve the system of

equations for a moving frame, (4.1), which evolves on a Lie group, in the case where the

base space has two dimensions. Our result extends immediately to the system of equations

for a moving frame on an p-dimensional base space, p ≥ 2, as these equations are pairwise

compatible.

Our method can, in principle, be applied to any variational problem with a Lie group

symmetry, where

1. the Lie group action leaves the independent variables invariant or acts by translation on

them, so that the invariant differential operators are the standard, commuting operators,

2. which can be described and analysed using a Lie group based moving frame,

3. and for which the solutions of the Euler–Lagrange equations lead to continuous

curvature matrices,

with the caveat that our proof requires the curvature matrices to be smooth.

We have applied our result to find, numerically, simple extremal solutions for variational

problems which are invariant either under a linear action of SU(2), the projective action of

SL(2) or the affine action of SE(2). Cost efficient Lie group integrators [4; 7; 37] reduce the

number of commutators involved in the numerical computation, and the implementation we

Solutions to higher dimensional invariant variational problems 109

have used, [17], takes advantage of these ideas. The precise interplay between compatibility

and efficiency is a topic for further study. Further, the use of Lie group integrators for

the computation of the frame for numerical solutions of the Euler–Lagrange solutions will

depend on whether or not they may take as input, numerical coefficients in the matrices Qi

appearing in the equations for the frame.

While we have shown that the Magnus expansions are compatible to order 5, it is clear

that our proof of the compatibility (4.17) could have continued to higher orders. However,

the calculations become less and less tractable, and there is no clear, discernible, recursive

pattern. The object our calculations uncover, to wit, an infinite set of operators acting on

the compatibility condition R, involving not only the curvature matrices Qi but also their

derivatives, seems to be new. We conclude by stating the general result as a conjecture.

Conjecture 4.4.1. The Magnus expansions for compatible systems will commute to all

orders, that is, the right–hand side of (4.17) is identically zero to all orders of h, k.

We may state the conjecture more precisely, that the right–hand side of (4.17) is a

differential operator acting on the compatibility condition R given in (4.14), and which

therefore must be identically zero for the Magnus expansions to commute.

5. Variational problems in multispaces

In the previous chapters we have studied different ways to solve smooth invariant variational

problems. However, in many applications, it is necessary to pass from a smooth setting,

to a discrete one. Since we are most interested in variational problems invariant under a

Lie group action, how is it possible to be sure that the discretised problem still retains the

geometric features we want to study? This problem has been addressed in [44] with the

creation of lattice–based multispaces. These are spaces that contain both the jet bundle, as a

submanifold, and the space of lattices, as an open subset. When we restrict the quantities

we are studying to the jet bundle, then we are working in a smooth setting, while the lattice

provides a framework for the discretisation. Under some conditions, the authors showed that

the multispace is a smooth manifold and it is possible to have well–defined interpolating

Lagrange polynomials, whose coefficients can be used as coordinates.

This chapter starts with the basic definitions and notation related to the multispace

construction and how to introduce variational problems in this setting. In the presence of a

Lie group invariance, we will show how the formula for the induced infinitesimal action on

the first derivative can be generalised in the case of the multispace.

Since the discretisation process is so delicate and important, we move to study how to

build discrete approximants to the generating differential invariants of a Lie group action.

We show how it is possible to obtain discrete versions of the generating differential invariants

and their derivatives, up to any order of accuracy in the discretised variables.

110

Variational problems in multispaces 111

In the final part of the chapter we will study discrete variational problems that are invariant

under the standard action of SE(2). Motivated by the computational cost and difficulties

that arise in this case, we introduce a constraint in the Lagrangian and study its effect in the

numerical output.

The original contributions in this Chapter can be found in Section 5.1.3, Section 5.2.2,

Section 5.2.3, Section 5.3.3, Section 5.3.4 and Section 5.4.

5.1 Lattice–based multispaces

In this section the basic ideas in the theory of lattice–based multispaces will be presented,

along with the notation we will use. Most of the notation derives from the context of

Lagrangian interpolation, hence divided differences will play an important role. For more

details on divided difference and interpolation theory, see [53].

5.1.1 From first order Lagrange interpolation of functions to first or-

der multispace

Let U be an open domain in Rp which has coordinates x=(x1,x2, . . . ,xp). If xi =(xi
1,x

i
2, . . . ,x

i
p)∈

U for i = 0, . . . p, and Γ = {xi | i = 0, . . . , p}, then we denote as ∆(x0, . . . ,xp) the (p+1)×

(p+1) determinant

∆(x0, . . . ,xp) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x0
1 x0

2 · · · x0
p

1 x1
1 x1

2 · · · x1
p

...
...

...

1 xp
1 xp

2 · · · xp
p

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Variational problems in multispaces 112

Further for a function u : U → R, we define

∆k(x1, . . . ,xp;u) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x0
1 · · · x0

k−1 u(x0) x0
k+1 · · · x0

p

1 x1
1 · · · x1

k−1 u(x1) x1
k+1 · · · x1

p
...

...
...

...

1 xp
1 · · · xp

k−1 u(xp) xp
k+1 · · · xp

p

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Note that in ∆k, it is not xk which has been replaced, but rather, the column of the kth

components of the xi. Continuing, we define ∆k, j(x1, . . . ,xp;u,v) to be the value of the

determinant ∆ where the column of the kth co-ordinates of the xi has been replaced by

(u(x0),u(x1), . . . ,u(xp))T and the column of the jth coordinates has been replaced by

(v(x0),v(x1), . . . ,v(xp))T .

Definition 5.1.1. We say that Γ = {xi ∈U | i = 0, . . . p} is a multispace lattice with basepoint

x0 if ∆(x0,x1, · · · ,xp) ̸= 0.

Multispaces are based on the Lagrange interpolation; using the notation defined above,

the Lagrange interpolation theorem can be expressed as follows.

Proposition 5.1.2. Given u : U → R, the first order Lagrange approximation p(u) of the

function u based on interpolation at the p+1 points Γ is given by

p(u)(x) = u(x0)+
∆1(x0,x1, . . . ,xp;u)

∆(x0,x1, . . . ,xp)
(x1 − x0

1)+
∆2(x0,x1, . . . ,xp;u)

∆(x0,x1, . . . ,xp)
(x2 − x0

2)

+ · · ·+
∆p(x0,x1, . . . ,xp;u)

∆(x0,x1, . . . ,xp)
(xp − x0

p).

(5.1)

Further, if xi = hei then as h → 0, we have that the coefficient of (xi − x0
i) converges to

∂u/∂xi
∣∣
x=x0

.

The coefficient of (x j − x0
j) in the expression of p(u)(x) in Equation (5.1) is denoted

as M (u,x j), the multispace approximation to ∂u/∂x j. Points in the multispace have the

Variational problems in multispaces 113

coefficients of the Lagrange interpolation as coordinates, namely

z = (x0,x1, . . . ,xp,u(x0),M (u,x1), . . . ,M (u,xp)).

5.1.2 Lie group actions on multispaces

If g is an element of a Lie group G, an action on the multispace variables can be defined

as usual on the first p+1 coordinates. The induced action on the multispace coordinates

relative to the approximations of the derivative is

g ·M (uα ,xk) =
∆k(g ·x0,g ·x1, . . . ,g ·xp;g ·uα)

∆(g ·x0,g ·x1, . . . ,g ·xp)
.

Example 5.1.3. Consider the case where p = 1, x0 = (x0
1), x1 = (x1

1), ∆(x0,x1) =

∣∣∣∣∣∣∣
1 x0

1

1 x1
1

∣∣∣∣∣∣∣
and ∆1(x0,x1;u) =

∣∣∣∣∣∣∣
1 u(x0

1)

1 u(x1
1)

∣∣∣∣∣∣∣. We look at the group of scaling and translation, acting on

xi and u as

g ·x = eµx, g ·u = u+ ε,

where µ,ε ∈ R. The induced action is calculated as follows. The action is induced on the

divided difference elements as

∆(g ·x0,g ·x1) =

∣∣∣∣∣∣∣
1 eµx0

1

1 eµx1
1

∣∣∣∣∣∣∣= eµ
∆(x0,x1).

Variational problems in multispaces 114

From g ·u = u+ε we obtain g ·u(x0) = g ·u|x=x0,u=u(x0) = u(x0)+ε and denoting M (u,x1)

as M (u,x),

g ·M (u,x) =
∆1(g ·x0,g ·x1;g ·u)

∆(g ·x0,g ·x1)
=

∣∣∣∣∣∣∣
1 u(x0)+ ε

1 u(x1)+ ε

∣∣∣∣∣∣∣
eµ∆(x0,x1)

= e−µM (u,x).

5.1.3 Infinitesimal actions on multispace

Proposition 5.1.4 ([51, p. 110]). Given a Lie group action G×M×Rq → M×Rq and its

induced action on the jet bundle Jk(M,Rq), we let γ : [−1,1]→ G be a smooth path in G

with γ(0) = e, the identity of G, and define the infinitesimal actions as

d
dε

∣∣∣
ε=0

γ(ε)·xi = ξi(x,u),
d

dε

∣∣∣
ε=0

γ(ε)·uα = φ
α(x,u),

d
dε

∣∣∣
ε=0

γ(ε)·uα
K = φ

α
K (x,u).

Then, it is possible to prolong the infinitesimal action to the derivatives of uα in the following

way

φ
α
K =

D|K|

DxK1
1 DxK2

2 · · ·DxKp
p

(
φ

α −∑
i

uα
i ξi

)
+∑

i
uα

K+ei
ξi,

where uα
i = ∂uα/∂xi and D/Dxi is the total derivative with respect to xi. In particular,

φ
α
e j
=

Dφ α

Dx j
−∑

k
uα

k
Dξk

Dx j
.

We now obtain the infinitesimal action on the multispace coordinates.

Proposition 5.1.5. Given a Lie group G acting on a multispace Γ, let γ : [−1,1]→ G be a

smooth path in G with γ(0) = e, define the induced action on Γ as the action on each point,

i.e.
d

dε

∣∣∣
ε=0

γ(ε) ·xi = (ξ1, . . .ξp)
∣∣∣
(xi,u(xi))

Variational problems in multispaces 115

and further
d

dε

∣∣∣
ε=0

γ(ε) ·uα(x0) = φ
α(x0,u(x0)).

Then, it is possible to prolong the infinitesimal action to the multispace approximation of the

derivative of uα in the following way

d
dε

∣∣∣
ε=0

γ(ε) ·M (uα ,x j) = M (φ α ,x j)−∑
k

M (uα ,xk)M (ξk,x j).

Proof: To obtain the infinitesimal action on the M (uα ,x j), note that the infinitesimal

action on the ith column of ∆(x0, . . . ,xp) is (ξi(x0),ξi(x1), . . . ,ξi(xp))T and so we have,

setting x = (x0,x1, . . . ,xp) to ease the appearance of the formulae,

d
dε

∣∣∣
ε=0

γ(ε) ·M (uα ,x j)

=
∆ j(x;φ α)

∆(x)
+∑

i ̸= j

∆ j,i(x;uα ,ξi)

∆(x)
−∑

k

∆ j(x;uα)

∆(x)2 ∆k(x;ξk)

= M (φ α ,x j)−M (uα ,x j)M (ξ j,x j)+∑k ̸= j

[
∆ j,k(x;uα ,ξk)

∆(x)
−

∆ j(x;uα)

∆(x)2 ∆k(x;ξk)

]

= M (φ α ,x j)−M (uα ,x j)M (ξ j,x j)+∑k ̸= j

[
−∆k(x;uα)

∆(x)
∆ j(x;ξk)

∆(x)

]
= M (φ α ,x j)−∑k M (uα ,xk)M (ξ j,xk)

,

using the identity

∆ j,k(x; f ,g)∆(x) = ∆ j(x; f)∆k(x;g)−∆k(x; f)∆ j(x;g).

□

Variational problems in multispaces 116

5.1.4 Lagrangians in multispaces

We focus our attention on how to rewrite smooth dimensional Lagrangians in the multispace

formalism. We will restrict our attention to one–dimensional, first order Lagrangians, namely

L =
∫ b

a
L(x,u(x),ux)dx. (5.2)

In this case, the notation simplifies to x0 = (x0
1), x1 = (x1

1). Since there is only one

independent variable and there is no possibility for ambiguity, we will denote x0 and x1 as x0

and x1 respectively. Then we have

∆(x0,x1) =

∣∣∣∣∣∣∣
1 x0

1 x1

∣∣∣∣∣∣∣= x1 − x0, (5.3)

and we take (5.3) as the multispace analogue of dx. Next, we cover the interval [a,b] =

∪n[xn,xn+1] using a partition, a ≤ x0 < x1 < x2 < · · · < xN = b. By taking a sequence of

lattices Γn = {xn,xn+1} we can write a Lagrangian on multispace which is analogous to (5.2),

specifically,

Ln = ∑
Γn

L(xn,u(xn),M (u,x)|Γn)∆(xn,xn+1).

We now adopt standard practice which is to drop the index n and to write our multispace

Lagrangian as

Ln = ∑
Γ

L(x0,u(x0),M (u,x))∆(x0,x1), (5.4)

where in this sum, x0 is the basepoint of Γ and with an abuse of notation we denoted

M (u,x)|Γn with M (u,x).

Variational problems in multispaces 117

5.1.5 Euler–Lagrange equations and Noether’s first theorem

Suppose the multispace Lagrangian (5.4) is invariant, i.e. for all g ∈ G it holds

∑
Γ

L(g · x0,g ·u(x0),g ·M (u,x)|Γ) g ·∆(x0,x1) = ∑
Γ

L(x0,u(x0),M (u,x)|Γ)∆(x0,x1).

Equivalently, taking a path γ(−1,1)→ G with γ(0) = e, the identity element of G, we have,

setting ξi = ξ (xi,u(xi)) for i = 0,1, φ0 = φ(x0,u(x0))

0 = d
dε

∣∣
ε=0∑

Γ

L(γ(ε) · x0,γ(ε) ·u(x0),γ(ε) ·M (u,x))γ(ε) ·∆(x0,x1)

= ∑
Γ

{[
∂L
∂x0

ξ0 +
∂L

∂u(x0)
φ0 +

∂L
∂M (u,x)

(M (φ ,x)−M (u,x)M (ξ ,x))
]
(x1 − x0)

+L(ξ1 −ξ0)

}
,

where we have used Proposition 5.1.5. In this one dimensional case, we have

M (ξ ,x) =
ξ1 −ξ0

x1 − x0
, M (φ ,x) =

φ1 −φ0

x1 − x0
,

and so the above simplifies to

0 = ∑
Γ

[
∂L
∂x0

(x1 − x0)ξ0 +
∂L

∂u(x0)
(x1 − x0)φ0 +

∂L
∂M (u,x)

(φ1 −φ0)

+

(
L− ∂L

∂M (u,x)
M (u,x)

)
(ξ1 −ξ0)

]
.

(5.5)

Variational problems in multispaces 118

As the partition of the interval [a,b] introduces an ordering on the set Γ, we may thus define

a shift operator and its inverse as

S(f (xn)) = S(fn) = f (xn+1) = fn+1, (5.6)

S−1(f (xn)) = S−1(fn) = f (xn−1) = fn−1, (5.7)

for any function f that is defined for both xn and xn+1, where the (5.6)–(5.7) define fn and

fn−1. In the following, the composition of more shifts is denoted as

S j fn = S(S(· · ·S(fn)))︸ ︷︷ ︸
j times

, S− j fn = S−1(S−1(· · ·S−1(fn)))︸ ︷︷ ︸
j times

, j ∈ N.

In the derivation of the Euler–Lagrange equations of a smooth variational problem, we

made extensive use of integration by parts, see Section 2.3. As we are now in a discrete

setting, the shift operator allows for an analogous operation called summation by parts. Given

two functions f ,g that are defined at the points xn,xn−1 and xn+1, it holds

∑
n

fn(gn+1 −gn) = ∑
n
(fn−1 − fn)gn +(S− id)(fn−1gn),

where id is the identity operator id(fn) = fn. Applying summation by parts to (5.5) we obtain

0 = ∑Γ

{[
∂L
∂x0

(x1 − x0)+(S−1 − id)
(

L− ∂L
∂M (u,x)

M (u,x)
)]

ξ0

+

[
∂L

∂u(x0)
(x1 − x0)+(S−1 − id)

∂L
∂M (u,x)

]
φ0

+ (S− id)
[

S−1
(

L− ∂L
∂M (u,x)

M (u,x)
)

ξ0 +S−1
(

∂L
∂M (u,x)

)
φ0

]}
.

(5.8)

Variational problems in multispaces 119

Comparing (5.8) to the general smooth analogue,

0 =
∫ b

a

(
∑
α

QαEα(L)+
d
dx

A
)
,

we set

Ex(L) =
∂L
∂x0

(x1 − x0)+(S−1 − id)
(

L− ∂L
∂M (u,x)

M (u,x)
)
,

Eu(L) =
∂L

∂u(x0)
(x1 − x0)+(S−1 − id)

∂L
∂M (u,x)

,

A = S−1
(

L− ∂L
∂M (u,x)

M (u,x)
)

ξ0 +S−1
(

∂L
∂M (u,x)

)
φ0.

Remark 5.1.6. The appearance of an equation Ex(L) = 0 is justified by the fact that one can

formulate (5.2) as

L [x,u] =
∫ t1

t0
L
(

x(t),u(t),
ut

xt

)
xt dt. (5.9)

This sets x and u as dependent variables, and the standard result is

Ex(L) = xt
∂L
∂x

− d
dt

[
L− ut

xt
D3(L)

]
,

Eu(L) = xt
∂L
∂u

− d
dt

D3(L),

A =

(
L−ux

∂L
∂ux

)
ξ +

∂L
∂ux

φ .

where D3(L) is the standard way in the literature to express the partial derivative of L with

respect to its third argument,
ut

xt
. It can be also noted that the continuum limit of the above

quantities can be obtained in the multispace evaluating the same objects on the jet bundle.

Remark 5.1.7. No new information is introduced by writing (5.2) as (5.9). The smooth Euler

Lagrange equations of (5.9) satisfy

utEu(L)+ xtEx(L) = 0,

Variational problems in multispaces 120

by virtue of
dL
dt

= xt
∂L
∂x

+ut
∂L
∂u

+D3(L)
d
dt

(
ut

xt

)
.

On the other hand, the compatibility condition of the discrete Euler Lagrange equations is

(
id−S−1)L = (x1 − x0)

[
∂L
∂x0

+M (u,x)
∂L
∂u0

]
+S−1 ∂L

∂M (u,x)

(
id−S−1)(M (u,x))

,

showing that on solutions of the discrete Euler Lagrange equations, a relation having its

continuum limit to that of the total derivative operator acting on L holds.

5.2 Discretisation of invariant Lagrangians

In this section we will show how moving frames can be used in multispaces similarly to the

case where we the Lie group is acting on a jet bundle. We will use as a running example a

variational problem that is invariant under the affine action of SE(2). Unless otherwise stated,

the notation for the multispace approximation to the derivative of u, computed at x = x0, will

be denoted as M (u0), rather than M (u,x)|x=x0 . This allows for a more readable exposition

as the shifts can be expressed simply through the index of the variable u0. For instance, with

this notation we have S (M (u,x)|x=x0) = M (u1).

Consider the multispace Lagrangian

Ln = ∑L(x0,u0,M (u0)) ∆(x0,x1). (5.10)

Recall that, if g ∈ SE(2), the standard representation is

g =

Rθ0 v0

0 1

 ,

Variational problems in multispaces 121

where Rθ0 =

cos(θ0) −sin(θ0)

sin(θ0) cos(θ0)

 is the rotational part of g, while vT
0 = (a0,b0) is the

translation vector. We consider the action of SE(2) on the multispace coordinates defined as

g ·

x0

u0

= Rθ0 ·

x0

u0

+ v0. (5.11)

We prolong the action to M (u0) as follows:

g ·M (u0) =
g · (u1 −u0)

g · (x1 − x0)

=
sin(θ0)(x1 − x0)+ cos(θ0)(u1 −u0)

cos(θ0)(x1 − x0)− sin(θ0)(u1 −u0)

=
tan(θ0)+M (u0)

1− tan(θ0)M (u0)
.

Practically, moving frames can be introduced in multispaces using a similar procedure to

the one described for the jet bundles. More details on the moving frames’ construction

for multispaces can be found in [44], along with a discussion on the invariants and the

difference–differential relations between them. We will use later on these syzygies to derive

discrete approximants to smooth generating invariants.

As this is a free and regular action in a suitable neighbourhood of (x0 = 0,u0 = 0,M (u0)=

0), we can introduce a moving frame using the following normalisation equations:

g · x0 = 0, g ·u0 = 0, g ·M (u0) = 0. (5.12)

Variational problems in multispaces 122

From (5.11) we obtain


g · x0 = cos(θ0)x0 − sin(θ0)u0 +a0 = 0

g ·u0 = sin(θ0)x0 + cos(θ0)u0 +b0 = 0

g ·M (u0) =
tan(θ0)+M (u0)
1− tan(θ0)M (u0)

= 0.

(5.13)

We can solve equations (5.13) for the frame’s parameters, obtaining



θ0 =−arctan(M (u0))

a0 =−M (u0)u0 + x0√
1+M (u0)2

b0 =
M (u0)x0 −u0√

1+M (u0)2
.

(5.14)

Hence, the standard representation of the frame in multispace coordinates will be

ρ0 =


1√

1+M (u0)2

M (u0)√
1+M (u0)2

−M (u0)u0 + x0√
1+M (u0)2

− M (u0)√
1+M (u0)2

1√
1+M (u0)2

M (u0)x0 −u0√
1+M (u0)2

0 0 1

 . (5.15)

Comparing the frame obtained in the multispace setting to the one related to the smooth

equivalent to action (5.11), which using the following normalisation equations

g · x = 0, g ·u = 0, g ·ux = 0

Variational problems in multispaces 123

gives 

θ =−arctan(ux)

a =− x+uux√
1+u2

x

b =
xux −u√

1+u2
x

, (5.16)

we can see that the quantities (5.14) converge in limit to the ones in (5.16) as x1 − x0 → 0

and x0 → x. As we have seen in previous chapters, the smooth equivalent action of (5.11),

once the parametrisation through arc length has been been fixed, has a single generating

differential invariant, κ . In order to find the multispace equivalent of κ , we let ρ0 act on the

point (x1,u1,M (u1)), which is the shift of the point that we considered in the normalisation

equations (5.12). Namely, for the first two coordinates, we have

ρ0 ·


x1

u1

1

=


(u1−u0)M (u0)−x0+x1)√

(1+M (u0)2)

(x0−x1)M (u0)−u0+u1)√
(1+M (u0)2)

1



=


ℓ0

0

1

 , (5.17)

where in (5.17) we used (5.12) and we denoted with ℓ0 =
√

(x1 − x0)2 +(u1 −u0)2, the

discrete analogous of the arclength infinitesimal ds. Regarding the third coordinate, M (u1),

Variational problems in multispaces 124

we have

ρ0 ·M (u1) =
(x2 − x1)sin(θ0)+(u2 −u1)cos(θ0)

(x2 − x1)cos(θ0)− (u2 −u1)sin(θ0)

=
tan(θ0)−M (u1)

1− tan(θ0)M (u1)

=− (S− id)M (u0)

1+M (u0)M (u1)

=− tan(θ1 −θ0)

=− tan(∆θ0)

= κ0, (5.18)

where the last two equalities define ∆θ0 and κ0. Later in this chapter, we will use κ0 and ℓ0

to approximate the smooth generating differential invariant κ = uxx
(1+u2

x)
3/2 . Now that we have

found the invariants ℓ0 and κ0, we introduce a dummy variable, say t, and we want to derive

expressions for ∂ℓ0
∂ t and ∂κ0

∂ t , as these will be necessary when performing the first variation of

the Lagrangian. In fact now we can rewrite the Lagrangian (5.10) in terms of only κ0 and ℓ0

(and their shifts) and if we perform the total differentiation with respect to the variable t, we

have
∂L
∂ t

=
∂L
∂κ0

∂κ0

∂ t
+

∂L
∂ℓ0

∂ℓ0

∂ t
. (5.19)

5.2.1 Discrete approximations to smooth differential invariants

Recall now that in the smooth case, given a moving frame ρ(s), it is possible to define a

curvature matrix as ρsρ
−1. This is an element of the Lie algebra and its entries can be written

in terms of only the generating differential invariants and their derivatives. Then, given ∆s

Variational problems in multispaces 125

“small enough”, we can express the moving frame ρ(s) as a Taylor series, namely

ρ(s+∆s) = ρ(s)+∆sρs(s)+O
(
(∆s)2

)
.

Evaluating the smooth moving frame on points where the discrete one is defined, allows us

to compare the two, i.e.

ρ1 = ρ(s0 +(s1 − s0)) = ρ(s0)+(s1 − s0)ρs(s0)+O
(
(s1 − s0)

2
)

= ρ0 +(s1 − s0)ρ0,s +O
(
(s1 − s0)

2
)
, (5.20)

where we used the notation ρ0,s = ρs(s0). Even though the following is a general procedure

and could be adapted to any other Lie group action, we restrict our attention to the case where

G = SE(2). In this case, as it is common practice to parametrise the (smooth) moving frame

via the arclength, we identify s1 − s0 as the discrete version of ds, which we called above ℓ0.

Then we can rewrite (5.20) as

ρ1 = ρ0 + ℓ0ρ0,s +O
(
ℓ2

0
)
.

If we denote by K0 = ρ1ρ
−1
0 and by I the identity matrix of the correct dimension, we have

K0 = ρ1ρ
−1
0 = I + ℓ0ρ0,sρ

−1
0 +O

(
ℓ2

0
)
. (5.21)

Equation (5.21) can be read as (K0 − I)ℓ−1
0 gives a first–order approximation to the smooth

curvature matrix. This is going to be very important as it will give us a way to match the

Variational problems in multispaces 126

smooth and discrete invariants. Explicitly, in this setting, the matrix K0 is given by

K0 =



1+M (u0)M (u1)√
1+M (u0)2

√
1+M (u1)2

M (u1)−M (u0)√
1+M (u0)2

√
1+M (u1)2

−Rθ1

x1 − x0

u1 −u0


− M (u1)−M (u0)√

1+M (u0)2
√

1+M (u1)2

1+M (u0)M (u1)√
1+M (u0)2

√
1+M (u1)2

0 0 1


.

Using the fact that the (3,3)−minor of K0 must be equal to 1, we have the following

simplification in terms of the invariant κ0

√
1+M (u0)2

√
1+M (u1)2 = (1+M (u0)M (u1))

(√
1+κ2

0

)
. (5.22)

Another simplification can be performed on the matrix K:

Rθ1

x1 − x0

u1 −u0

= R∆θ0Rθ0

x1 − x0

u1 −u0



= R∆θ0

ℓ0

0



=


ℓ0√

1+κ2
0

− ℓ0κ0√
1+κ2

0

=

cos(∆θ0)ℓ0

sin(∆θ0)ℓ0

 . (5.23)

Therefore we can express all the entries of the matrix K in terms of only κ0 and ℓ0, as expected

from the comparison with the smooth curvature matrix. Substituting both (5.22)–(5.23) into

Variational problems in multispaces 127

the matrix K0, we have

K0 =



1√
1+κ2

0

κ0√
1+κ2

0

− ℓ0√
1+κ2

0

− κ0√
1+κ2

0

1√
1+κ2

0

ℓ0κ0√
1+κ2

0

0 0 1


.

Another useful way to express the components of the matrix K is in terms of ∆θ0 and ℓ0.

K0 =


cos(∆θ0) −sin(∆θ0) −ℓ0 cos(∆θ0)

sin(∆θ0) cos(∆θ0) −ℓ0 sin(∆θ0)

0 0 1

 (5.24)

=


R∆θ0 −R∆θ0

ℓ0

0


0 1

 .

A discrete approximation of the smooth generating differential invariant κ can be recov-

ered directly by the comparison between K0 and the curvature matrix ρsρ
−1. In this setting

we have

ρsρ
−1 =


0 κ −1

−κ 0 0

0 0 0

 . (5.25)

Substituting (5.25) and (5.24) into (5.21) we obtain a first–order discrete approximation of κ

as

κ =−sin(∆θ0)

ℓ0
+O(ℓ0). (5.26)

Variational problems in multispaces 128

5.2.2 Higher order approximations to smooth differential invariants

We can derive higher order approximations of κ if we take more terms in the expansion of

K0 in (5.21). First we consider one more term to expansion (5.21)

K = ρ1ρ
−1
0 = I + ℓ0ρ0,sρ

−1
0 +

ℓ2
0
2

ρ0,ssρ
−1 +O(ℓ3

0). (5.27)

Then we expand ρ−1ρ
−1
0 around s = s0. Recall that with the notation that has been used so

far, ℓ−1 = S−1ℓ0 and ρ−1 = S−1ρ0 and we assume that these quantities are well–defined.

ρ−1ρ
−1
0 = I − ℓ−1ρ0,sρ

−1
0 +

ℓ2
−1

2
ρ0,ssρ

−1
0 +O(ℓ3

−1). (5.28)

After suppressing the quadratic terms in ℓ0 and ℓ−1 in (5.27)–(5.28), we are left with

ℓ2
−1ρ1ρ

−1
0 − ℓ2

0ρ−1ρ
−1
0 = (ℓ2

0 − ℓ2
−1)I + ℓ0ℓ−1(ℓ0 + ℓ−1)ρ0,sρ

−1
0 +O(ℓ3

0ℓ
2
−1, ℓ

3
−1ℓ

2
0).

Isolating ρ0,sρ
−1
0 we obtain

ρ0,sρ
−1
0 =

(
ℓ2
−1ρ1ρ

−1
0 − ℓ2

0ρ−1ρ
−1
0 − (ℓ2

0 − ℓ2
−1)I

ℓ0ℓ−1(ℓ0 + ℓ−1)

)
+

1
ℓ0 + ℓ−1

O(ℓ2
0ℓ−1, ℓ

2
−1ℓ0). (5.29)

This is a second–order approximation in ℓ0 to the curvature matrix (5.25), from which we

can obtain a second–order approximation for the invariant κ . Computing the (1,2) entry in

the first term of the right-hand side of (5.29) gives

(
ℓ2
−1ρ1ρ

−1
0 − ℓ2

0ρ−1ρ
−1
0 − (ℓ2

0 − ℓ2
−1)I

ℓ0ℓ−1(ℓ0 + ℓ−1)

)
(1,2)

=−
(ℓ2

0 + ℓ2
−1)(sin(∆θ0)+ sin(∆θ−1))

ℓ0ℓ−1(ℓ0 + ℓ−1)

(5.30)

= κ +
1

ℓ0 + ℓ−1
O(ℓ2

0ℓ−1, ℓ
2
−1ℓ0).

Variational problems in multispaces 129

Equation (5.30) depends on ℓ0, ℓ−1,∆θ0,∆θ−1, rather than just on ℓ0 and ∆θ0. Hence, the

approximation in (5.30) can be used to produce a more accurate numerical scheme for

Lagrangians depending on κ , at the cost of having to solve for a higher–order system of

difference equations. In this way, invariants of any order of approximation can be built, just

taking in consideration more variables and adding the relevant terms in the Taylor expansion.

It can be seen, that for a nth–order approximant to κ , n points have to be considered and for

each of them n+1 terms are needed in the relative Taylor expansion.

5.2.3 Discrete approximation of derivatives of invariants

We focus now on a slightly different task. So far we have seen how to compute approximations

of any order to the generating differential invariants. This construction is useful when we

have a Lagrangian that is first–order (in the sense of the order of a Lagrangian). However, if

we want to consider variational problems defined by higher–order Lagrangians, we need to

also approximate the derivatives of the generating differential invariants. This will be enough,

as we have seen already that a Lagrangian that is invariant under some Lie group action, can

be rewritten in terms of only the generating differential invariants and their derivatives.

In the case of a multispace variational problem invariant under the affine action of SE(2),

recall the system


ρ1ρ

−1
0 = I + ℓ0ρ0,sρ

−1
0 +

ℓ2
0
2 ρ0,ssρ

−1 +O(ℓ3
0)

ρ−1ρ
−1
0 = I − ℓ−1ρ0,sρ

−1
0 +

ℓ2
−1
2 ρ0,ssρ

−1 +O(ℓ3
−1)

If we instead of suppressing the second–order term in ℓ0, ℓ−1, we remove the first–order one,

we obtain

2
ℓ0ℓ−1(ℓ0 + ℓ−1)

(
ℓ−1ρ1ρ

−1
0 + ℓ0ρ−1ρ

−1
0 − (ℓ0 + ℓ−1)I

)
= ρ0,ssρ

−1
0 +

1
ℓ0 + ℓ−1

O(ℓ2
0, ℓ

2
−1)

(5.31)

Variational problems in multispaces 130

which is a first–order approximation to ρ0,ssρ
−1
0 . The matrix ρ0,ssρ

−1 is not a curvature

matrix anymore, as it was the case of ρ0,sρ
−1
0 in the first–order expansion of K0 in (5.21).

In fact, ρ0,ssρ
−1
0 is not even a map to the Lie Algebra. A priori, it is not guaranteed that all

the element of ρ0,ssρ
−1
0 could be written in terms of only κ and its derivatives. However we

show that this is the case, namely

d
ds

(
ρ0,sρ

−1
0
)
= ρ0,ssρ

−1
0 −ρ0,sρ

−1
0 ρ0,sρ

−1
0

= ρ0,ssρ
−1
0 −

(
ρ0,sρ

−1
0
)2
,

hence

ρ0,ssρ
−1
0 =

d
ds

(
ρ0,sρ

−1
0
)
+
(
ρ0,sρ

−1
0
)2
, (5.32)

where the right–hand side of (5.32) can be written in terms only of the invariant κ and its

derivatives as it is a function of only the curvature matrix. This result can be generalised as

follows.

Lemma 5.2.1. Suppose ρ(s) is a smooth moving frame and denote
(

dn

dsn ρ

)
= ρ(n), for n ≥ 1.

Then ρ(n)ρ−1 can be written in terms of only the invariants of the action and its derivatives.

Proof. This can be proved by induction. For the case where n = 1 a proof can be found in

[42, Lemma 5.2.1].

If the statement holds for n = j, then we have

d
ds

(
ρ
(j)

ρ
−1
)
= ρ

(j+1)
ρ
−1 −ρ

(j)
ρ
−1

ρ
(1)

ρ
−1,

hence

ρ
(j+1)

ρ
−1 =

d
ds

(
ρ
(j)

ρ
−1
)
+ρ

(j)
ρ
−1

ρ
(1)

ρ
−1, (5.33)

Variational problems in multispaces 131

where the right–hand side can be written in terms of only the invariants of the action and its

derivatives because of the inductive hypothesis and the case n = 1.

Example 5.2.2. For practical purposes, now that we know that ρ(n)ρ−1
0 contains the invariant

κ and its derivatives, we need to explore if these expressions can lead us to approximants for

the derivatives of κ . Let us compute the first few elements of ρ(n)ρ−1, say for n = 2,3. We

have for n = 2

ρ
(2)

ρ
−1 =


−κ2 κs 0

−κs −κ2 κ

0 0 0

 , (5.34)

and its discrete counterpart from (5.31), which for layout reasons we will write as

2


A B C

−B A D

0 0 0

 ,

where 

A =
ℓ−1 cos(∆θ0)+ ℓ0 cos(∆θ−1)− ℓ−1 − ℓ0)

(ℓ2
−1ℓ0 + ℓ−1ℓ

2
0)

B =
−ℓ−1 sin(∆θ0)+ ℓ0 sin(∆θ−1)

ℓ2
−1ℓ0 + ℓ−1ℓ

2
0

(5.35)

C =
−cos(∆θ0)+1

ℓ0 + ℓ−1

D =−sin(∆θ0)

ℓ0 + ℓ−1
. (5.36)

Comparing the (2,3) entry in (5.34) and (5.36), we could construct an approximation for κ ,

but we have already seen how to do it efficiently and for higher order than this. However,

comparing the (1,2) entry in (5.34) and (5.35), we obtain a first–order approximation of κs,

Variational problems in multispaces 132

that could be used to study first–order (in the sense of the order of a Lagrangian) Lagrangians.

The approximation is

κs = 2
−ℓ−1 sin(∆θ0)+ ℓ0 sin(∆θ−1)

ℓ2
−1ℓ0 + ℓ−1ℓ

2
0

+
1

ℓ0 + ℓ−1
O(ℓ2

−1, ℓ
2
0).

For n = 3, we have

ρ
(3)

ρ
−1 =


−3κκs κss −κ3 κ2

−κss +κ3 −3κκs 2κs

0 0 0

 . (5.37)

This time we are interested in approximating κss. Consider the (1,2) entry in (5.37). It can

be noticed that we do not have expressions in only the invariant we want to approximate,

κss, rather also κ is appearing. Hence, we need to substitute a suitable approximation of κ

so that we can isolate κss. The order of the approximation of κ that is needed depends on

the required order of accuracy of the discrete analogue of κss. In the case of (5.37), we are

looking for a first–order approximant to κss, so we need at least a first–order expression for κ .

Any further degree of accuracy in κ would be lost and hence is not worth taking into account

a more sophisticated formula. As we want to eliminate the first– and second–order terms

in the Taylor expansion of ρ(s0 + ℓi)ρ
−1
0 , for i = −1,0,1, we will now consider a system

of three Taylor expansions around s0. We could also consider a system of four expansions

obtaining a central difference approximant. We have


ρ1ρ

−1
0 = I + ℓ0ρ0,sρ

−1
0 +

ℓ2
0
2

ρ0,ssρ
−1
0 +

ℓ3
0
6

ρ0,sssρ
−1
0 +O(ℓ4

0)

ρ−1ρ
−1
0 = I − ℓ−1ρ0,sρ

−1
0 +

ℓ2
−1

2
ρ0,ssρ

−1
0 −

ℓ3
−1

6
ρ0,sssρ

−1
0 +O(ℓ4

−1)

ρ2ρ
−1
0 = I +(ℓ0 + ℓ1)ρ0,sρ

−1
0 +

(ℓ0 + ℓ1)
2

2
ρ0,ssρ

−1
0 +

(ℓ0 + ℓ1)
3

6
ρ0,sssρ

−1
0 +O((ℓ0 + ℓ1)

4).

(5.38)

Variational problems in multispaces 133

We can eliminate the terms in ρ0,sρ
−1
0 and ρ0,ssρ

−1
0 and we are left with

ρ
(3)
0 ρ

−1
0 =

1
(ℓ0 + ℓ−1 + ℓ1)(ℓ0 + ℓ−1)ℓ1

(
−6(ℓ0 + ℓ1 + ℓ−1)ℓ

−1
0 ρ1ρ

−1
0 + ℓ1ℓ

−1
−1ρ−1ρ

−1
0

− (ℓ0 + ℓ−1)(ℓ0 + ℓ1)
−1 − (ℓ0 + ℓ−1)(ℓ0 + ℓ−1 + ℓ1)ℓ

−1
0 ℓ−1

−1(ℓ0 + ℓ1)
−1I
)
. (5.39)

Entry (1,2) in (5.39) will give us a first–order approximation of κss − κ3. Considering

again system (5.38), we could also eliminate the first– and third–order terms, obtaining a

second–order approximation for ρ0,ssρ
−1
0 , which we have seen containing κs. This strategy

can be carried forward, meaning that we can construct discrete approximants to κs with any

order of accuracy. The same holds for κss, and in general, discrete approximants of any order

of accuracy can be built for any derivative of κ .

Remark 5.2.3. Although we used the Lie group SE(2) as a running example, this method

to approximate differential invariants and their derivatives using Taylor approximations of

ρ(n)ρ−1 is valid for any matrix Lie group.

5.3 Lagrangians invariant under SE(2)

5.3.1 Difference–Differential Syzygies

As we have shown how it is possible to approximate the smooth generating differential

invariants, and their derivatives, we now go back where we left the computations for the

Euler–Lagrange equations in the SE(2) case. We ended the presentation with equation

(5.19), where a dummy variable t was introduced to perform the Lagrangian variation. The

Variational problems in multispaces 134

introduction of t generates two new invariants, namely


ρ0 ·

∂x0

∂ t
= σ

x
0

ρ0 ·
∂u0

∂ t
= σ

u
0 .

Consider now the matrix

N0 = ρ0,tρ
−1
0

and observe that it’s related to K0 = ρ1ρ
−1
0 in the following way

∂K0

∂ t
= ρ1,tρ

−1
0 −ρ1ρ

−1
0 ρ0,tρ

−1
0

= ρ1,tρ
−1
1 ρ1ρ

−1
0 −ρ1ρ

−1
0 ρ0,tρ

−1
0

= N1 ·K0 −K0 ·N0. (5.40)

This means that if we compute N0, and this is something that can be done directly by hand

or using Indiff, [43], we obtain expressions for the derivatives of the invariants κ0 and ℓ0

with respect to t. These derivatives play a crucial role in the derivation of the invariantised

Euler–Lagrange equations, as we have already mentioned above. In this context the matrix

N0 is

N0 =


0

ρ0 ·u1,t −σu
0

ℓ0
0

−
ρ0 ·u1,t −σu

0
ℓ0

0 −σu
0

0 0 0

 .

Variational problems in multispaces 135

The next step is to express ρ0 ·u1,t in terms of σ x
0 , σu

0 and their shifts. Let us rewrite it as

ρ0 ·


x1,t

u1,t

1

=
(
ρ0ρ

−1
1
)

ρ1


x1,t

u1,t

1



= K−1
0 S

ρ0 ·


x0,t

u0,t

1




= K−1
0


σ x

1

σu
1

1

 ,

then we have

ρ0 ·


x1,t

u1,t

1

= K−1
0


σ x

1

σu
1

1

 (5.41)

=



1√
1+κ2

0

− κ0√
1+κ2

0

ℓ0

κ0√
1+κ2

0

1√
1+κ2

0

0

0 0 1




σ x

1

σu
1

1



=
1√

1+κ2
0


σ x

1 −κ0σu
1 + ℓ0

κ0σ x
1 +σu

1√
1+κ2

0

 . (5.42)

Variational problems in multispaces 136

Comparing the left hand side of (5.41) to the right hand side of (5.42), we find that

ρ0 ·u1,t =
(κ0σ x

1 +σu
1)√

1+κ2
0

. (5.43)

Equation (5.43) is an expressions dependent only on κ0, ℓ0, σ x
0 , σu

0 and their shifts, as desired.

If we insert (5.43) into N0, and use N0 to compute equation (5.40), we obtain the following

formulae for
∂κ0

∂ t
and

∂ℓ0

∂ t
:


∂κ0

∂ t
= Aσ

u
0 +Bσ

u
1 +Cσ

u
2 +Dσ

x
1 +Eσ

x
2

∂ℓ0

∂ t
=−σ

x
0 +

σ x
1√

1+κ2
0

− κ0√
1+κ2

0

σ
u
1 =−σ

x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1 ,

(5.44)

where 

A =
1+κ2

0
ℓ0

B =−
ℓ0κ2

0 + ℓ1

√
1+κ2

0 + ℓ0

ℓ0ℓ1

C =
1+κ2

0

ℓ1

√
1+κ2

1

D =−
κ0

√
1+κ2

0

ℓ0

E =
κ1(1+κ2

0)

ℓ1

√
1+κ2

1

.

As the expression for ∂κ0
∂ t is quite complicated and can easily lead to some errors in the

numerical implementation stage, we simplify it. Recall from (5.18) that κ0 =− tan(∆θ0). If

Variational problems in multispaces 137

we substitute for κ0 =− tan(∆θ0) in the coefficients A,B,C,D,E above, we obtain

∂ tan(∆θ0)

∂ t
=

−1
cos(∆θ0)2

∂∆θ0

∂ t

=
1

cos2(∆θ0)

(
−

σu
0
ℓ0

+
(ℓ0 − ℓ1 cos(∆θ0))σ

u
1

ℓ1ℓ0
+

cos(∆θ1)σ
u
2

ℓ1
−

sin(∆θ0)σ
x
1

ℓ0
+

sin(∆θ1)σ
x
2

ℓ1

)

=
1

cos(∆θ0)2 (S− id)
[

1
ℓ0

(σu
0 − cos(∆θ0)σ

u
1 + sin(∆θ0)σ

x
1)

]
, (5.45)

hence
∂∆θ0

∂ t
= (S− id)

[
1
ℓ0

(σu
0 − cos(∆θ0)σ

u
1 + sin(∆θ0)σ

x
1)

]
.

5.3.2 Euler–Lagrange equations and Conservation laws

Now that we have a more compact expression for the derivatives of the invariants with respect

to t, we derive the invariantised Euler-Lagrange equations for the Lagrangian

Ln = ∑L(∆θ0, ℓ0)ℓ0 (5.46)

where we rewrote the Lagrangian in terms of the invariants needed to approximate the

generating differential invariant κ . Computations are as follows:

∑
∂L
∂ t

= ∑
∂L

∂∆θ0

∂∆θ0

∂ t
+

∂L
∂ℓ0

∂ℓ0

∂ t

= ∑
∂L

∂∆θ0

(
(S− id)

[
1
ℓ0

(σu
0 − cos(∆θ0)σ

u
1 + sin(∆θ0)σ

x
1)

])
+ (5.47)

+
∂L
∂ℓ0

(−σ
x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1) . (5.48)

Variational problems in multispaces 138

Now we perform a first summation by parts in order to remove the (S− id) operator. Recall

that given two functions f ,g, it holds

f Sg = gS−1 f +(S− id)(gS−1 f), (5.49)

f S2g = gS−2 f +(S− id)(SgS−1 f +gS−2 f). (5.50)

Equation (5.48) becomes

∑
∂L

∂∆θ0

(
(S− id)

[
1
ℓ0

(σu
0 − cos(∆θ0)σ

u
1 + sin(∆θ0)σ

x
1)

])

+
∂L
∂ℓ0

(−σ
x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1)

= ∑

(
S−1 − id

ℓ0

)(
∂L

∂∆θ0

)
[(σu

0 − cos(∆θ0)σ
u
1 + sin(∆θ0)σ

x
1)]

+
∂L
∂ℓ0

(−σ
x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1)

+(S− id)
(

1
ℓ0

(σu − cos(∆θ0)σ
u
1 + sin(∆θ0)σ

x
1)S−1

(
∂L

∂∆θ0

)
.

)
(5.51)

The next step is to perform another summation by parts in order to obtain something in the

following form

∑
∂L
∂ t

= ∑Ex(L)σ x
0 +Eu(L)σu

0 +(S− id)(BT 1), (5.52)

where we called ‘BT1’ the boundary terms arising from performing the two summation

by parts and (5.52) defines Ex(L), Eu(L), that stand for the invariantised Euler-Lagrange

Variational problems in multispaces 139

equations. Performing another summation by parts in (5.51) we obtain

∑

(
S−1 − id

ℓ0

)(
∂L

∂∆θ0

)
(σu − cos(∆θ0)Sσ

u + sin(∆θ0)Sσ
x)

+
∂L
∂ℓ0

(−σ
x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1)

+(S− id)
(

1
ℓ0

(σu − cos(∆θ0)σ
u
1 + sin(∆θ0)σ

x
1)S−1

(
∂L

∂∆θ0

))

= ∑σ
u
0

(
(S−1 − id)

ℓ0

(
∂L

∂∆θ0

)
+S−1

(
− cos∆θ0

ℓ0
(S−1 − id)

(
∂L

∂∆θ0

)
+ sin∆θ0

(
∂L
∂ℓ0

)))

+σ
x
0

(
− ∂L

∂ℓ0
+S−1

(
sin∆θ0

(
S−1 − id

)
ℓ0

(
∂L

∂∆θ0

)
+ cos∆θ0

(
∂L
∂ℓ0

)))

+(S− id)

(
1
ℓ0

(σu
0 − cos(∆θ0)σ

u
1 + sin(∆θ0)σ

x
0)S−1

(
∂L

∂∆θ0

)
(5.53)

+σ
u
0 S−1

(
− cos∆θ0

ℓ0
(S−1 − id)

(
∂L

∂∆θ0

)
+ sin(∆θ0)

∂L
∂ℓ0

)
(5.54)

+σ
x
0 S−1

(
sin∆θ0

(S−1 − id)
ℓ0

(
∂L

∂∆θ0

)
+ cos(∆θ0)

∂L
∂ℓ0

))
. (5.55)

Since we performed the variation with respect to σ x
0 and σu

0 , then the Euler–Lagrange

equations are

Eu(L) =
(S−1 − id)

ℓ0

(
∂L

∂∆θ0

)
+S−1

(
− cos∆θ0

ℓ0
(S−1 − id)

(
∂L

∂∆θ0

)
+ sin∆θ0

(
∂L
∂ℓ0

))
= 0,

(5.56)

Ex(L) =− ∂L
∂ℓ0

+S−1

(
sin∆θ0

(
S−1 − id

)
ℓ0

(
∂L

∂∆θ0

)
+ cos∆θ0

(
∂L
∂ℓ0

))
= 0. (5.57)

Variational problems in multispaces 140

Aiming at a more clear and insightful presentation of the the Euler–Lagrange equations, we

define a vector Z as

Z0 =


(

S−1−id
ℓ0

)(
∂L

∂∆θ0

)
∂L
∂ℓ0

 . (5.58)

If we consider (5.57) and the opposite of (5.56), then the Euler–Lagrange equations can be

written as Eu(L)

Ex(L)

= S−1 (R∆θ0Z0
)
−Z0 = 0, (5.59)

which is equivalent, applying the shift operator to both sides, to

R∆θ0Z0 = Z1.

Solutions of the Euler–Lagrange equations give us the invariants ∆θ0 and ℓ0 that we can use

to recover the curve that extremises the Lagrangian (5.46). Recall that

∆θ0 = θ1 −θ0 =⇒ θ1 = ∆θ0 +θ0,

hence, given a point (x0,u0,θ0) as initial datum, we can find the solution curve recursively as


x1 = x0 + ℓ0 cos(θ0)

u1 = u0 + ℓ0 sin(θ0).

If we take a closer look at the boundary terms in (5.53)–(5.54)–(5.55), we can express them

in terms of the invariantised matrix of infinitesimal of the Lie group action and the adjoint

representation of the moving frame we defined for that action. If we suppose that the Euler-

Lagrange equations are satisfied, then the boundary terms will give us the expression of the

Variational problems in multispaces 141

conservation laws arising from the Lie group symmetry, namely

1
ℓ0

(σu
0 − cos(∆θ0)σ

u
1 + sin(∆θ0)σ

x
1)S−1

(
∂L

∂∆θ0

)
+S−1 (R∆θ0Z0

)T

σu
0

σ x
0


= σ

x
0

(
S−1

(
sin(∆θ0)

(S−1 − id)
ℓ0

(
∂L

∂∆θ0

))
+ cos(∆θ0)

∂L
∂ℓ0

)

+σ
u
0

(
S−1

(
−cos(∆θ0)

(S−1 − id)
ℓ0

(
∂L

∂∆θ0

))
+ sin(∆θ0)

∂L
∂ℓ0

+
1
ℓ1

∂L
∂∆θ0

)
+

−S−1
(

∂L
∂∆θ0

)
cos(∆θ0)

ℓ0
σ

u
1 +S−1

(
∂L

∂∆θ0

)
sin(∆θ0)

ℓ0
σ

x
1 .

In the discrete case, the conservation laws can be written as, [43],

v(I)Ad(ρ) = c, (5.60)

where v(I) is a vector depending only on invariants of action (5.11), while Ad(ρ) is the

Adjoint representation of the frame (5.15) and c is a constant vector. In this setting, the

Adjoint representation of the frame is

Ad(ρ) =


cos(θ) −sin(θ) b

−sin(θ) cos(θ) −a

0 0 1

 .

Consider the matrix of infinitesimals for the action (5.11), given by

Φ0(x0,u0) =


a b θ

x0 1 0 −u0

u0 0 1 x0

,

Variational problems in multispaces 142

and its invariantised form

Φ0(I) =

1 0 0

0 1 0

 .

The vector v(I) in (5.60) is computed, [43], as

v(I) = ∑C j
α(S

j
Φ

α
0 (I))Ad(ρ jρ

−1
0), α = x,u (5.61)

where C j
α is the coefficient of σα

j in BT1. With this notation, the vector of invariants

v(I) = (v1,v2,v3) is given by

v1 = S−1

(
sin∆θ0

(S−1 − id)
ℓ0

(
∂L

∂∆θ0

)
+ cos∆θ0

(
∂L
∂ℓ0

))
,

v2 = S−1

(
− cos∆θ0

ℓ0
(S−1 − id)

(
∂L

∂∆θ0

)
+ sin∆θ0

(
∂L
∂ℓ0

))
,

v3 =−S−1
(

∂L
∂∆θ0

)
.

5.3.3 Higher–order Lagrangians

In the previous subsection, we have shown how to derive the Euler–Lagrange equations and

conservation laws for Lagrangians that depend only on ∆θ0 and ℓ0. We have seen though,

that we can construct either higher–order approximants to κ , or even discrete analogues to

derivatives of κ , that depend on shifts of ∆θ0 and ℓ0. In this paragraph we will discuss how

to adapt computations for the Euler–Lagrange equations and conservation laws seen in the

previous subsection, in order to take into consideration also the shift of the discrete invariants.

The key mathematical fact here is that the d
dt and S operators do commute. In the case of the

affine action of SE(2) the two invariants we need to consider in order to approximate κ are

Variational problems in multispaces 143

∆θ0 and ℓ0. For these two quantities, it holds that

d
dt

(∆θ−1) = S−1 d
dt

(∆θ0) , (5.62)

d
dt

(ℓ−1) = S−1 d
dt

(ℓ0) . (5.63)

Equation (5.62)–(5.63) also is true in the presence of multiple shifts. We proceed now to

compute the Euler–Lagrange equations and conservation laws for Lagragians that involve

∆θ0,∆θ−1, ℓ0, ℓ−1. An example of such Lagrangian is any Lagrangian that is a function of

a second–order approximation to κ . Euler–Lagrange equations and conservation laws for

Lagrangians containing composition of shifts of the invariants can be computed analogously.

Consider a Lagrangian of the form

Ln = ∑L(∆θ0,∆θ−1, ℓ0, ℓ−1).

Differentiating with respect to t both sides yields

d
dt

Ln =
d
dt ∑L(∆θ0,∆θ−1, ℓ0, ℓ−1)

= ∑
d
dt

L(∆θ0,∆θ−1, ℓ0, ℓ−1)

= ∑
∂L

∂∆θ0

∂∆θ0

∂ t
+

∂L
∂∆θ−1

∂∆θ−1

∂ t
+

∂L
∂ℓ0

∂ℓ0

∂ t
+

∂L
∂ℓ−1

∂ℓ−1

∂ t
. (5.64)

Variational problems in multispaces 144

Equations (5.62)–(5.63) can now be used to substitute in (5.64) for the syzygies relative to

∆θ−1 and ℓ−1, obtained just shifting the ones for ∆θ0 and ℓ0.

∑
∂L

∂∆θ0

∂∆θ0

∂ t
+

∂L
∂∆θ−1

∂∆θ−1

∂ t
+

∂L
∂ℓ0

∂ℓ0

∂ t
+

∂L
∂ℓ−1

∂ℓ−1

∂ t

=
∂L

∂∆θ0

(
(S− id)

[
1
ℓ0

(σu
0 − cos(∆θ0)σ

u
1 + sin(∆θ0)σ

x
1)

])

+
∂L

∂∆θ−1

(
(id−S−1)

[
1
ℓ0

(σu
0 − cos(∆θ0)σ

u
1 + sin(∆θ0)σ

x
1)

])

+
∂L
∂ℓ0

(−σ
x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1)

+
∂L

∂ℓ−1
S−1 (−σ

x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1) .

Recall that summation by parts can also be written as

f S−1g = gS f +(S−1 − id)(gS f), (5.65)

f S−2g = gS2 f +(S−1 − id)(S−1gS f +gS2 f). (5.66)

Variational problems in multispaces 145

Using (5.49)–(5.50)–(5.65)–(5.66) we perform the first summation by parts, obtaining

d
dt

Ln = ∑
(S−1 − id)

ℓ0

(
∂L

∂∆θ0

)
(σu

0 − cos(∆θ0)σ
u
1 + sin(∆θ0)σ

x
1)

+
(id−S)

ℓ0

(
∂L

∂∆θ−1

)
(σu

0 − cos(∆θ0)σ
u
1 + sin(∆θ0)σ

x
1)

+
∂L
∂ℓ0

(−σ
x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1)

+S
(

∂L
∂ℓ−1

)
(−σ

x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1)

+(S− id)
(

1
ℓ0

(σu
0 − cos(∆θ0)σ

u
1 + sin(∆θ0)σ

x
1)S−1

(
∂L

∂∆θ0

))

+(S−1 − id)
(

1
ℓ0

(σu
0 − cos(∆θ0)σ

u
1 + sin(∆θ0)σ

x
1)S

(
∂L

∂∆θ−1

)

+(−σ
x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1)S

(
∂L

∂ℓ−1

))
.

Variational problems in multispaces 146

Performing another series of summation by parts, we regroup the expressions in terms of the

invariants σu
0 ,σ

x
0 , namely

d
dt

Ln = ∑σ
u
0

(
(S−1 − id)

ℓ0

(
∂L

∂∆θ0

)
+

(id−S)
ℓ0

(
∂L

∂∆θ−1

)

+S−1
(
− cos(∆θ0)

(
(S−1 − id)

ℓ0

(
∂L

∂∆θ0

)
+

(id−S)
ℓ0

(
∂L

∂∆θ−1

))

+ sin(∆θ0)

(
∂L
∂ℓ0

+S
∂L

∂ℓ−1

))

+σ
x
0

(
−
(

∂L
∂ℓ0

+S
∂L

∂ℓ−1

)
+S−1

(
sin(∆θ0)

(
(S−1 − id)

ℓ0

(
∂L

∂∆θ0

)

+
(id−S)

ℓ0

(
∂L

∂∆θ−1

))
+ cos(∆θ0)

(
∂L
∂ℓ0

+S
∂L

∂ℓ−1

)))

+(S− id)
(

1
ℓ0

(σu
0 − cos(∆θ0)σ

u
1 + sin(∆θ0)σ

x
1)S−1

(
∂L

∂∆θ0

)

+σ
u
0 S−1

(
− cos(∆θ0)

(
(S−1 − id)

ℓ0

(
∂L

∂∆θ0

)
+

(id−S)
ℓ0

(
∂L

∂∆θ−1

))

+ sin(∆θ0)

(
∂L
∂ℓ0

+S
∂L

∂ℓ−1

))
+σ

x
0 S−1

(
sin(∆θ0)

(
(S−1 − id)

ℓ0

(
∂L

∂∆θ0

)

+
(id−S)

ℓ0

(
∂L

∂∆θ−1

))
+ cos(∆θ0)

(
∂L
∂ℓ0

+S
∂L

∂ℓ−1

)))
+(S−1 − id)

(
1
ℓ0

(σu
0 σ

u
1

− cos(∆θ0)+ sin(∆θ0)σ
x
1 S
(

∂L
∂∆θ−1

)
+(−σ

x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1)S

(
∂L

∂ℓ−1

))
. dotted

Notice that, given a sequence of points f0, then it holds

(S−1 − id) f0 =−(S− id) f−1.

Variational problems in multispaces 147

Hence we can rewrite the boundary terms in the expression above as

(S− id)

(
1
ℓ0

(σu
0 − cos(∆θ0)σ

u
1 + sin(∆θ0)σ

x
1)S−1

(
∂L

∂∆θ0

)

+σ
u
0 S−1

(
− cos(∆θ0)

(
(S−1 − id)

ℓ0

(
∂L

∂∆θ0

)
+

(id−S)
ℓ0

(
∂L

∂∆θ−1

))
+ sin(∆θ0)

(
∂L
∂ℓ0

+S
∂L

∂ℓ−1

))

+σ
x
0 S−1

(
sin(∆θ0)

(
(S−1 − id)

ℓ0

(
∂L

∂∆θ0

)
+

(id−S)
ℓ0

(
∂L

∂∆θ−1

))
+ cos(∆θ0)

(
∂L
∂ℓ0

+S
∂L

∂ℓ−1

))

−S−1
(

1
ℓ0

(σu
0 − cos(∆θ0)σ

u
1 + sin(∆θ0)σ

x
1)S

(
∂L

∂∆θ−1

)

+(−σ
x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1)S

(
∂L

∂ℓ−1

)))
.

Let us define the vectors

U0 =


(S−1 − id)

ℓ0

(
∂L

∂∆θ0

)
∂L
∂ℓ0

 , V0 =


(id−S)

ℓ0

(
∂L

∂∆θ−1

)
S

∂L
∂ℓ−1

 .

The Euler–Lagrange equations can be written as

Eu(L)

Ex(L)

= S−1 (R∆θ0 (U0 +V0)
)
− (U0 +V0).

Using (5.61) it is possible to write down the vector of invariant w(I) in the conservation laws.

For each solution of the Euler–Lagrange equations we have

w(I)Ad(ρ) = c,

Variational problems in multispaces 148

where c is a vector of constants and

w =C0
x


1

0

0


T

+Cx
u


0

1

0


T

+C1
x


1

0

0


T

Ad(K0)+C1
u


0

1

0


T

Ad(K0)

+C−1
x


1

0

0


T

Ad(K−1)
−1 +C−1

u


0

1

0


T

Ad(K−1)
−1,

where the C j
α are as in (5.61) and stand for the coefficients of σ

j
α in the boundary terms

above.

5.3.4 Constrained Lagrangians

Another way to approach the problem defined by (5.46), is to introduce a constraint on

the invariant ℓ0. We will show how this results in a computationally far simpler problem,

compared to the unconstrained one. Suppose we want to find solutions where ℓ0 is a constant,

say h > 0. This translates into considering a new Lagrangian given by

Ln = ∑(L(∆θ0, ℓ0)+λ0 (ℓ0 −h))ℓ0. (5.67)

From a geometric point of view, we are looking at discrete curves such that the distance

between two consecutive points is equal to h. In this case, in order to find the point (x1,u1)

we need only the previous point (x0,u0) and the angle between the two. Therefore, it is

expected that to find the minimising solution to (5.67), only one equation has to be solved.

Variational problems in multispaces 149

Computations for the Euler–Lagrange equations for (5.67) are as follows:

d
dt

Ln =
d
dt ∑(L(∆θ0, ℓ0)+λ0 (ℓ0 −h))ℓ0

= ∑
d
dt

((L(∆θ0, ℓ0)+λ0 (ℓ0 −h))ℓ0)

= ∑

(
dL

d∆θ0

d∆θ0

dt
+

dL
dℓ0

dℓ0

dt

)
ℓ0 +L

dℓ0

dt
+λ0ℓ0

dℓ0

dt
+λ0(ℓ0 −h)

dℓ0

dt

= ∑
dL

d∆θ0

d∆θ0

dt
ℓ0 +

(
dL
dℓ0

ℓ0 +L+λ0 +λ0(ℓ0 −h)
)

dℓ0

dt
. (5.68)

We substitute expressions (5.44)–(5.45) for
d∆θ0

dt
and

dℓ0

dt
into (5.68), obtaining

d
dt

Ln = ∑
dL

d∆θ0

d∆θ0

dt
ℓ0 +

(
dL
dℓ0

ℓ0 +L
)

dℓ0

dt

= ∑
dL

d∆θ0
(S-id)

(
σu

0 − cos(∆θ0)σ
u
1 + sin(∆θ0)σ

x
1

ℓ0

)
ℓ0

+

(
dL
dℓ0

ℓ0 +L+λ0 +λ0(ℓ0 −h)
)
(−σ

x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1) .

(5.69)

As in the non–constrained case, we use (5.49)–(5.50) with the aim to express (5.69) in terms

of σ x
0 and σu

0 . In doing so, we will need to add some boundary terms, that will give rise to

Variational problems in multispaces 150

conservation laws. The first summation by parts gives

= ∑
dL

d∆θ0
(S− id)

(
σu

0 − cos(∆θ0)σ
u
1 + sin(∆θ0)σ

x
1

ℓ0

)
ℓ0

+

(
dL
dℓ0

ℓ0 +L+λ0 +λ0(ℓ0 −h)
)
(−σ

x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1)

= ∑

(
S−1 − id

ℓ0

)(
dL

d∆θ0
ℓ0

)
(σu

0 − cos(∆θ0)σ
u
1 + sin(∆θ0)σ

x
1)

+

(
dL
dℓ0

ℓ0 +L+λ0 +λ0(ℓ0 −h)
)
(−σ

x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1)

+(S− id)
(
(σu

0 − cos(∆θ0)σ
u
1 + sin(∆θ0)σ

x
1ℓ0)S−1

(
dL

d∆θ0
ℓ0

))
.

Variational problems in multispaces 151

If we perform another summation by parts, we can express σ x
1 and σu

1 in terms of σ x
0 and σu

0

plus some other boundary terms. Computations are as follows:

= ∑

(
S−1 − id

ℓ0

)(
dL

d∆θ0
ℓ0

)
(σu

0 − cos(∆θ0)σ
u
1 + sin(∆θ0)σ

x
1)

+

(
dL
dℓ0

ℓ0 +L+λ0 +λ0(ℓ0 −h)
)
(−σ

x
0 + cos(∆θ0)σ

x
1 + sin(∆θ0)σ

u
1)

+(S− id)
((

σu
0 − cos(∆θ0)σ

u
1 + sin(∆θ0)σ

x
1

ℓ0

)
S−1

(
dL

d∆θ0
ℓ0

))

= ∑σ
u
0

(
−
(

S−1 − id
ℓ0

)(
dL

d∆θ0
ℓ0

)
+S−1

(
−cos(∆θ0)

(
S−1 − id

ℓ0

)(
dL

d∆θ0
ℓ0

))

+ sin(∆θ0)

(
dL
dℓ0

ℓ0 +L+λ0 +λ0(ℓ0 −h)
))

+σ
x
0

(
−
(

dL
dℓ0

ℓ0 +L+λ0 +λ0(ℓ0 −h)
)

+S−1
(

sin(∆θ0)

(
S−1 − id

ℓ0

)(
dL

d∆θ0
ℓ0

)
+ cos(∆θ0)

(
dL
dℓ0

ℓ0 +L+λ0 +λ0(ℓ0 −h)
)))

+(S− id)

((
σu

0 − cos(∆θ0)σ
u
1 + sin(∆θ0)σ

x
1

ℓ0

)
S−1

(
dL

d∆θ0
ℓ0

)

+σ
x
0 S−1

(
sin(∆θ0)

(
S−1 − id

ℓ0

)(
dL

d∆θ0
ℓ0

)
+ cos(∆θ0)

(
dL
dℓ0

ℓ0 +L+λ0 +λ0(ℓ0 −h)
))

+σ
u
0 S−1

(
− cos(∆θ0)

(
S−1 − id

ℓ0

)(
dL

d∆θ0
ℓ0

)
+ sin(∆θ0)

(
dL
dℓ0

ℓ0 +L+λ0 +λ0(ℓ0 −h)
)))

.

The expression above contains the Euler–Lagrange equations and the conservation laws of

the constrained problem. Since we introduced the constrain on ℓ0, we can now evaluate all

Variational problems in multispaces 152

the quantities at ℓ0 = h in order to obtain a first simplification as

d
dt

Ln = ∑σ
u
0

((
S−1 − id

)(dL
d∆θ0

)
+S−1

(
−cos(∆θ0)

(
S−1 − id

)(dL
d∆θ0

))

+ sin(∆θ0)

(
dL
dℓ0

h+L+λ0

))
+σ

x
0

(
−
(

dL
dℓ0

h+L+λ0

)

+S−1
(

sin(∆θ0)
(
S−1 − id

)(dL
d∆θ0

)
+ cos(∆θ0)

(
dL
dℓ0

h+L+λ0

)))

+(S− id)

(
(σu

0 − cos(∆θ0)σ
u
1 + sin(∆θ0)σ

x
1)S−1

(
dL

d∆θ0

)

+σ
x
0 S−1

(
sin(∆θ0)

(
S−1 − id

)(dL
d∆θ0

)
+ cos(∆θ0)

(
dL
dℓ0

h+L+λ0

))

+σ
u
0 S−1

(
− cos(∆θ0)

(
S−1 − id

)(dL
d∆θ0

)
+ sin(∆θ0)

(
dL
dℓ0

h+L+λ0

)))
.

We stress again the fact that all the quantities above are evaluated at ℓ0 = h, even if we do not

specify it with the usual notation to make it easier to read. We reduce it to a more compact

expression defining the vector

W =


(
S−1 − id

)(dL
d∆θ0

)
dL
dℓ0

h+L+λ0

 .

Hence, the Euler–Lagrange equations become

R∆θ0W0 =W1, (5.70)

where R∆θ0 is the rotation matrix with angle ∆θ0.

Variational problems in multispaces 153

Also the conservation laws can be written in a more compact form, as we did in the

unconstrained case. The invariantised matrix of infinitesimal depends only on the action

and the normalisation equations, so it stays the same as in the unconstrained case. However,

the vector of invariants includes the information contained in the constraint. Performing

analogous computations as the ones for the unconstrained case, we have that the conservation

laws can be expressed as

w(I)Ad(ρ) = c,

where in this case, the vector of invariants w(I) = (w1,w2,w3) is

w1 = S−1

(
sin(∆θ0)

(
S−1 − id

)(dL
d∆θ0

)
+ cos(∆θ0)

(
dL
dℓ0

h+L+λ0

))
,

w2 = S−1

(
− cos(∆θ0)

(
S−1 − id

)(dL
d∆θ0

)
+ sin(∆θ0)

(
dL
dℓ0

h+L+λ0

))
,

w3 =−S−1
(

∂L
∂∆θ0

)
.

5.4 Numerical Examples

In this section we will present two simple numerical examples to show how the theory

works in practice. Of particular interest is to see if there are some computional benefits in

introducing a constraint as we did in a previous section. Therefore, we will consider the same

Lagrangian, first unconstrained, and then with ℓ0 fixed.

Variational problems in multispaces 154

5.4.1 An unconstrained Lagrangian

Let us now look at the numerical aspects of the Euler-Lagrange equations for a SE(2)-

invariant Lagrangian. As a first example, let us consider the Lagrangian given by

Ln = ∑L(∆θ0, ℓ0) = ∑
sin2(∆θ0)

ℓ2
0

ℓ0. (5.71)

We have seen that we can match the generating invariants of the smooth action with the ones

of the discrete action, up to some order of accuracy in ℓ0 and its shifts. Recall from (5.26)

that

κ =−sin(∆θ0)

ℓ0
+O(ℓ0),

then the Lagrangian (5.71) is a first–order approximation of the smooth

L =
∫

κ
2 ds.

In order to compute the invariantised Euler-Lagrange equations for the Lagrangian (5.71) we

first compute the components of the vector Z in (5.58). We have

∂L
∂∆θ0

=
sin(2∆θ0)

ℓ0
,

∂L
∂ℓ0

=−sin2(∆θ0)

ℓ2
0

.

Hence,

Z0 =

(S−1−id)
ℓ0

(
sin2(∆θ0)

ℓ0

)
− sin2(∆θ0)

ℓ2
0

 . (5.72)

From (5.59) the Euler–Lagrange equations are

R∆θ0Z0 = Z1. (5.73)

Variational problems in multispaces 155

Equation (5.73) can be solved as an initial value problem. Given ∆θ0,∆θ−1, ℓ0, ℓ1, we are

able to compute R∆θ0Z0. Then R∆θ0Z0 = Z1 can be solved for the unknowns ℓ1,∆θ1 and thus

the procedure can be continued. This gives us an explicit numerical scheme for solving (5.73).

Consider now the vector Z1 = SZ0, where Z0 is as in (5.72). While there is no restriction

on the sign of the first component, the second component is always negative. Therefore the

rotation will always happen in the lower half of the circle C centered at the origin and with

radius ||Z0||, where || · || stands for the Euclidean norm. This induces a necessary condition

on the initial data as

− sin(∆θ1)
2

ℓ2
1

= sin(∆θ0)

(
S−1 − id

)
ℓ0

(
sin2(∆θ0)

ℓ0

)
− cos(∆θ0)

sin2(∆θ0)

ℓ2
0

< 0. (5.74)

If we assume that sin(∆θ0)< 0, as it is the case in the lower–half of the circle C, then (5.74)

implies that (
S−1 − id

)
ℓ0

(
sin2(∆θ0)

ℓ0

)
− sin(2∆θ0)

ℓ2
0

> 0.

We use MATLAB to code a routine that solves the Euler–Lagrange equations and compute

the curve that minimises (5.71). A plot of the first 250 points in [0,1] of the solution and the

correspondent conservation laws are given in Figure 5.1 and Figure 5.2 respectively.

5.4.2 A constrained Lagrangian

Consider the Lagrangian given by

Ln = ∑

(
sin2(∆θ0)

ℓ2
0

+λ0 (ℓ0 −h)
)
ℓ0. (5.75)

Variational problems in multispaces 156

Fig. 5.1 Plot of the solution (x(t),u(t)), with t ∈ [0,1]

Fig. 5.2 Plot of the conservation laws

Variational problems in multispaces 157

In this case, the vector W is

W0 =


(
S−1 − id

)(sin(2∆θ0)

h2

)
−sin2(∆θ0)

h2 +λ0

 . (5.76)

Recall that the solution to the variational problem defined by (5.75) can be constructed with

the knowledge of an initial point (x0,u0) and the expressions for ∆θ0 and ℓ0. Since in this

case we have fixed ℓ0 we just need to solve for ∆θ0.

Suppose we are given initial data for the difference equation (5.70), where W is specified

in (5.76). This means that we are given ∆θ0, ∆θ−1 and λ0. We can express W1 also as

W1 =

(id−S)
(

sin(2∆θ0)
h2

)
− sin2(∆θ1)

h2 +λ1

 . (5.77)

To find ∆θ1 we proceed as follows:

• Compute R∆θ0W0 using the initial data

• Solve for ∆θ1 in W1 = R∆θ0W0, where W1 is as in (5.77)

If we denote by W (1)
1 the first component of R∆θ0W0, then we have from (5.77) and (5.70)

W (1)
1 = (id−S)

(
sin(2∆θ0)

h2

)
,

which implies

∆θ1 =
arcsin

(
−W (1)

1 h2 + sin(2∆θ0)
)

2
.

We have an explicit formula to advance ∆θ0 and λ1 can be easily computed once ∆θ1 is

known. Plots for the first 250 points of the solution in [0,1] (with h = 0.0015) and its

conservation laws can be found in Figure 5.3 and Figure 5.4 respectively.

Variational problems in multispaces 158

Fig. 5.3 Plot of the solution (x(t),u(t)), with t ∈ [0,1]

Fig. 5.4 Plot of the conservation laws

Variational problems in multispaces 159

5.4.3 Comments on the numerical examples

The use of a constraint in a smooth Lagrangian that is invariant under the standard action

of SE(2) has already been studied in [24]. In the previous sections we have introduced an

analogous constraint, this time in a multispace setting. This makes for a computationally

simpler problem, compared to the unconstrained case. The Euler–Lagrange equations become

more tractable and the numerical execution is faster. The plots of the conservation laws

also hint at the fact that no preserved quantities have been lost with the introduction of the

constraint on ℓ0. However, there are differences between the two cases, as the behaviour

of ℓ0 can differ. It is not obvious how to compare the two solutions. This is because in the

unconstrained case, ℓ0 is left free to assume very small values, compared to the fixed value

ℓ0 = h in the constrained case. Hence, in the same number of points, the solution curve spans

less space. How to measure the error introduced with the constraint is still an open problem.

6. Conclusion and Future Work

This work is devoted to the study of some theoretical and numerical topics arising in the

Invariant Calculus of Variations.

In Chapter 2 we introduce the concept of manifold, Lie group and Lie group actions on

smooth manifolds. These concepts are the building blocks that allow for the construction of

a moving frame, i.e. an equivariant map from a suitable open set of a manifold to the Lie

group. We show how a moving frame can be used to find and study the invariants of the

action prolonged to jet bundle, the so–called differential invariants. Then we move to give

the definition of a curvature matrix, a map from the manifold to the Lie algebra. Curvature

matrices play an important role throughout this thesis as they both provide a set of generating

differential invariants and define some differential relations, called syzygies, between these

generators. After a brief review of the Adjoint representation of a Lie group, we enunciate

the main results needed to apply the moving frame theory invariant problems in the Calculus

of Variations. It is presented how the invariantised Euler–Lagrange equations can be derived

and how the conservation laws coming from Noether’s First Theorem can be written in terms

of the adjoint representation of the group and a vector of invariants.

One–dimensional variational problems that are invariant under a linear action of SU(2)

are the main subject of Chapter 3. We apply the theory presented in Chapter 2 and derive

a set of generating differential invariants, the invariantised Euler–Lagrange equations and

the conservation laws. The second part of the chapter is devoted to the solution of the

conservation laws in terms of the adjoint representation of the moving frame. In order to do

160

Conclusion and Future Work 161

so, we show how we can use the geometrical context in order to make computations tractable

and derive a solution for the minimisers. Numerical examples with some simple Lagrangians

show how this theory works in practice. We end the chapter deriving the invariantised Euler–

Lagrange equations for the two–dimensional case and introducing the issue of integrating the

conservation laws in higher dimensional problems.

Chapter 4 contains a discussion on how to find solutions to invariant variational problems

in higher dimension. In particular, the theory of Lie group integrators is presented, with

a specific focus on the Magnus expansion. The latter is a series such that its exponential

provides an exact solution of an ODE evolving on a manifold, in our case a Lie group. We

use the Magnus expansion to show that integrating sequentially the PDEs for the curvature

matrices provides a well–defined solution for the frame up to order 5 in the discretisation

variables. The chapter continues with some numerical examples where we solve for the

minimisers of two–dimensional variational problems invariant under actions of the Lie groups

SU(2), SE(2) and SL(2). Finally, we conjecture that our result does hold up to every order.

Our last contribution is exposed in Chapter 5, where the case of invariant variational

problems on lattice–based multispaces is considered. After introducing the basic definitions

and results about the multispace, we show how the formula for the prolongation of the

infinitesimal action to the first derivative can be extended in this setting. We then study first–

order invariant variational problems in multispace coordinates, with particular emphasis given

to the case of the affine action of SE(2) on curves. We show how to discretise generating

differential invariants, and their derivatives, up to any order, using the curvature matrices.

The chapter continues considering the case of higher order Lagrangians and the one where a

constraint is introduced to ease the computation for the affine action of SE(2). Finally, the

chapter ends with two numerical examples and some considerations on the introduction of

the above constraint.

Conclusion and Future Work 162

Given more time, some ideas on how to continue the research presented in this work are

the following:

• Apply the theory developed in Chapter 3 to variational systems invariant under some

other SU(2) actions, directly coming from applications in physics.

• For two or higher dimensional systems, use Stokes’ Theorem to develop a numerical

scheme for solving the conservation laws on a discretised grid.

• Lie group integrators, for efficiency reasons, are implemented in such a way that

some terms in the Magnus expansion are omitted. The very terms that are used to

compute numerical solutions in Diffman throughout this thesis can be found in [17,

Algorithm A.2.5]. How the compatibility condition can be used to prove an analogue

of Theorem 4.2.12 in this setting is an open problem.

• Related to Chapter 4, study the case where the independent variables are not left

invariant by the Lie group action.

• Prove Conjecture 4.4.1.

• From the numerical point of view, it would be interesting and useful to extend the

capabilities of the Diffman package. The package itself comprises already the imple-

mentation of many Lie groups, Lie algebras and Lie group integrators. However, it

is not immediate to code numerical inputs for the Lie algebra elements and to handle

systems of higher dimensions. There are some other features that could be included,

an example being the Lie brackets for all the implemented Lie algebras.

• Consider the Euler–Lagrange equations as boundary value problems, especially in the

multispace setting. The difficulties in this case lie in the nonlinearity of the equations,

often leading to issues in the convergence of the numerical scheme. It could be

interesting to utilise “shooting arguments” to explore the existence of some solutions.

Conclusion and Future Work 163

• A generalisation to higher–order and higher–dimensional Lagrangian then will expand

greatly the range of problems to which multispaces can be applied. It is worth studying

how to rewrite higher–order systems as it is done in the smooth case.

• From the numerical point of view, the introduction of a constraint in invariant problems

under SE(2) gives promising results, but there are still areas to look at as to provide an

estimate for the error and how to rigorously relate the unconstrained and constrained

solution.

References

[1] Résolution del l’equation matricielle u̇ = pu par produit infini d‘exponentielles ma-
tricielles. Bull. Classe des Sci. Acad. Royal Belg., 44:818 – 829, 1958.

[2] B. Blanes, F. Casas, J. A. Oteo, and J. Ros. The Magnus expansion and some of its
applications. Physics Reports, 470 (2009):151–238, 2009.

[3] S. Blanes, F. Casas, J. Oteo, and J. Ros. Magnus and fer expansions for matrix
differential equations: The convergence problem. Journal of Physics A: Mathematical
and General, 31:259, 1999.

[4] S. Blanes, F. Casas, and J. Ros. Improved high order integrators based
on the Magnus expansion. BIT Numerical Mathematics, 40:434–450, 2000.
https://doi.org/10.1023/A:1022311628317.

[5] J. C. Butcher. Coefficients for the study of runge-kutta integration processes. Journal
of the Australian Mathematical Society, 3(2):185–201, 1963.

[6] M. P. Calvo, A. Iserles, and A. Zanna. Numerical solution of isospectral flows. Math.
Comput., 66:1461–1486, 1997.

[7] F. Casas and B. Owren. Cost efficient Lie group integrators in the RKMK class. BIT
Numerical Mathematics, 43 (2003):723–742, 2003.

[8] E. Celledoni, A. Marthinsen, and B. Owren. Commutator-free lie group methods.
Future Gener. Comput. Syst., 19(3):341–352, 2003.

[9] E. Celledoni, H. Marthinsen, and B. Owren. An introduction to Lie group integrators
– basics, new developments and applications. Journal of Computational Physics,
257:1040–1061, 2014.

[10] S. H. Christiansen, H. Z. Munthe-Kaas, and B. Owren. Topics in structure-preserving
discretization. Acta Numerica, 20:1––119, 2011.

[11] P. Clarkson and P. Olver. Symmetry and the chazy equation. Journal of differential
equations, 124(1):225–246, 1996.

[12] R. Cools. Constructing cubature formulae: the science behind the art. Acta Numerica,
6:1–54, 1997.

[13] G. Cooper. Stability of Runge–Kutta methods for trajectory problems. IMA J. Num.
Anal., 7:1–13, 1987.

164

References 165

[14] P. E. Crouch and R. Grossman. Numerical integration of ordinary differential equations
on manifolds. Journal of Nonlinear Science, 3(1):1–33, 1993.

[15] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.21
of 2018-12-15. http://dlmf.nist.gov/.

[16] E. B. Dynkin. Calculation of the coefficients in the Campbell-Hausdorff formula.
Doklady Akademii Nauk SSSR (N.S.), 57:323–326, 1947. English translation available
at: http://people.math.umass.edu/~gunnells/S14/lie/dynkin-BCHfmla.pdf.

[17] K. Engø, A. Martinsen, and H. Z. Munthe-Kaas. Diffman: An object-oriented MAT-
LAB toolbox for solving differential equations on manifolds. Applied Numerical
Mathematics, 39 (2012):323–347, 2012.

[18] A. Fässler and E. Stiefel. Group Theoretical Methods and Their Applications.
Birkhäuser, Boston, 1992.

[19] M. Fels and P. J. Olver. Moving coframes: I. A practical algorithm. Acta Applicandae
Mathematicae, 51:161–213, 1998. https://doi.org/10.1023/A:1005878210297.

[20] M. Fels and P. J. Olver. Moving coframes: II. regularization and the-
oretical foundations. Acta Applicandae Mathematicae, 55:127–208, 1999.
https://doi.org/10.1023/A:1006195823000.

[21] I. M. Gelfand and S. V. Fomin. Calculus of Variations. Prentice–Hall, 1963.

[22] T. M. Gonçalves and E. L. Mansfield. Moving frames and Noether’s conservation laws
- the general case. Forum Math. Sigma, 4, 2016.

[23] T. M. N. Gonçalves and E. L. Mansfield. On moving frames and Noether’s conservation
laws. Studies in Applied Mathematics, 128:1–29, 2012.

[24] T. M. N. Gonçalves and E. L. Mansfield. Moving frames and conservation laws for
Euclidean invariant Lagrangians. Studies in Applied Mathematics, 130:134–166, 2013.

[25] E. Hairer, C. Lubich, and G. Wanner. Geometric Numerical Integration. Springer,
2006.

[26] E. Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I.
Nonstiff Problems. Springer, Berlin, 2nd rev. ed. 1993. corr. 3rd printing edition, 1993.

[27] J. K. Hale. Ordinary Differential Equations. Krieger Publishing Company, 1980.

[28] B. Hall. Lie Groups, Lie Algebras, and Representations: an elementary introduction.
Springer, 2015.

[29] M. W. Hirsch. Differential Topology. Springer, 1976.

[30] E. Hubert. Generation properties of Maurer-Cartan invariants. 2007.
https://hal.inria.fr/inria-00194528/en.

References 166

[31] P. E. Hydon and E. L. Mansfield. A variational complex for difference
equations. Foundations of Computational Mathematics, 4(2):187–217, 2004.
https://doi.org/10.1007/s10208-002-0071-9.

[32] A. Iserles. Solving linear ordinary differential equations by exponentials of iterated
commutators. Numerische Mathematik, 45(2):183–199, 1984.

[33] A. Iserles. Multistep methods on manifolds. Math. Comput., 66:1461–1486, 1997.

[34] A. Iserles. Multistep methods on manifolds. IMA Journal of Numerical Analysis,
21(1):407–419, 2001.

[35] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna. Lie–group methods. Acta
Numerica, 9:215–365, 2000.

[36] A. Iserles and S. P. Nørsett. On the solution of linear differential equations in Lie
groups. Philosophical transactions of the Royal Society: mathematical, physical and
engineering sciences, 357:983–1020, 1999.

[37] A. Iserles, S. P. Nørsett, and A. F. Rasmussen. Time symmetry and high–
order Magnus methods. Applied Numerical Mathematics, 39:379–401, 2001.
http://www.sciencedirect.com/science/article/pii/S0168927401000885.

[38] Y. Kosmann-Schwarzbach. The Noether Theorems. Springer-Verlag, New York, 2011.

[39] D. Lewis and J. C. Simo. Conserving algorithms for the dynamics of hamiltonian
systems on lie groups. Journal of Nonlinear Science, 4(1):253, 1994.

[40] W. Magnus. On the exponential solution of differential equations for a linear operator.
Communications on Pure and Applied Mathematics, 7(4):649–673, 1954.

[41] E. L. Mansfield. Algorithms for symmetric differential systems. E. Found. Comput.
Math., 1:335–383, 2001.

[42] E. L. Mansfield. A practical guide to invariant calculus. Cambridge University Press,
Cambridge, 2010.

[43] E. L. Mansfield, P. E. Hydon, L. Peng, and A. Rojo-Echeburua. Moving frames and
noether’s finite difference conservation laws I. Transactions of Mathematics and Its
Applications, 3, 2019.

[44] G. Marí Beffa and E. L. Mansfield. Discrete moving frames on lattice varieties and
lattice–based multispaces. J. Found Comput Math, 18(1):181–247, 2018.

[45] P. C. Moan and J. Niesen. Convergence of the Magnus series. J. Found Comput Math,
9 (3):291–301, 2009. https://doi.org/10.1007/s10208-007-9010-0.

[46] H. Z. Munthe-Kaas. Lie-Butcher theory for Runge-Kutta methods. BIT, 35, 1995.
https://doi.org/10.1007/BF01739828.

[47] H. Z. Munthe-Kaas. Runge-Kutta methods on Lie groups. BIT, 38, 1998.
https://doi.org/10.1007/BF02510919.

References 167

[48] H. Z. Munthe-Kaas. Higher order Runge-Kutta methods on manifolds. Appl. Numer.
Math., 29:115–127, 1999.

[49] H. Z. Munthe-Kaas and A. Zanna. Numerical integration of ordinary differential
equations on homogenous manifolds. Foundations of computational mathematics, 29,
1997. https://doi.org/10.1007/978-3-642-60539-024.

[50] P. J. Olver. A survey of moving frames. Lecture Notes in Computer Science, 3519:105–
138, 2004. https://doi.org/10.1007/1149925111.

[51] P. J. Olver. Applications of Lie groups to differential equations. Springer, 2013.

[52] B. Owren and A. Marthinsen. Runge-kutta methods adapted to manifolds and based on
rigid frames. BIT Numerical Mathematics, 39(1):116–142, 1999.

[53] L. Schumaker. Spline Functions: Basic Theory. Cambridge Mathematical Library.
Cambridge University Press, 3rd edition, 2007.

[54] M. Suzuki. On the convergence of exponential operators—the Zassenhaus formula,
BCH formula and systematic approximants. Commun.Math. Phys., 57(3):193–200,
1977. https://doi.org/10.1007/BF01614161.

[55] G. M. Tuynman. The derivation of the exponential map of matrices. Amer. Math.
Monthly, 102:818–820, 1995.

[56] M. Zadra and E. L. Mansfield. Using lie group integrators to solve two and higher
dimensional variational problems with symmetry. Journal of Computational Dynamics,
6(2):485–511, 2019.

[57] A. Zanna. The method of iterated commutators for ordinary differential equations on
Lie groups. Technical report, DAMTP, University of Cambridge, 1996.

[58] A. Zanna. On the Numerical Solution of Isospectral Flows. PhD thesis, University of
Cambridge, 1998.

[59] A. Zanna and H. Munthe-Kaas. Iterated commutators, lie’s reduction method and
ordinary differential equations on matrix lie groups. In F. Cucker and M. Shub, editors,
Foundations of Computational Mathematics, pages 434–441, Berlin, Heidelberg, 1997.
Springer Berlin Heidelberg.

A. Appendix to Chapter 3

Computations

The following Maple code details all the computations performed in the proof of Theorem

3.2.1. The code is commented thoroughly in order to make it more readable and understand-

able.The Maple file can be found on Zenodo at the following link: https://zenodo.org/record/

3661107/files/computations_second_chapter_final.mw?download=1.

168

https://zenodo.org/record/3661107/files/computations_second_chapter_final.mw?download=1
https://zenodo.org/record/3661107/files/computations_second_chapter_final.mw?download=1

(1)(1)

#Definition of the Cayley map, which is also the adjoint representation of the moving frame

#KK is the rotation that takes k to w. This is the matrix denoted with K in section 3.2.2

#eq1 is the equation ||\mathbf{w}||=||\mathbf{k}||, i.e. expressing the fact that the norms of \mathbf{v}
and \mathbf{k} are equal (as adj1 is a rotation)

#definition of the vector \mathbf{k}

#check that KK is the actual rotation matrix that takes \mathbf{k} to \mathbf{v}

#normalisation equation for the rotation axis of the operator BB, which is the rotation denoted as B in
Section 3.2.2

#definition of the vector \mathbf{w}

#check that BB is the rotation that fixes wM

(4)(4)

(2)(2)

(3)(3)

#a set of differential relations between invariants

#Differentiating BB and KK. The differentiated variables, Bz and Kz, correspond to B_t and K_t in
Section 3.2.2

#QQ is the curvature matrix, \mathcal{Q}^t in Section 3.2.2

#eq4 and eq5 are again the fact that kMt and wM have the same norm, which we call M

#definition of the dot product wMT \cdot wM, which we call WK

#definition of the dot product \mathbf{q} \cdot wM, which we call QW. \mathbf{q} can be found in
Section 3.2.2

#definition of the dot product \mathbf{q} \cdot kMT, which we call QK. \mathbf{q} can be found in
Section 3.2.2

#eq11, eq12, eq13 are the three components of the cross product \mathbf{q} \times wMT

#The following 6 lines are the computations to prove Lemma 1

1

(10)(10)

(7)(7)

(2)(2)

(6)(6)

(11)(11)

(8)(8)

(9)(9)

(5)(5)

#Simplifying BB \cdot \mathbf{q}

QW
#definition of \mathbf{q}

#This is the equation to solve for a(t) at the end of Section 3.2.2

#Solution to the differential equation above

(2)(2)

(11)(11)

Appendix to Chapter 3 173

Example 1

The following Maple code relates to Section 3.3.1and can be found at the following link: https:

//zenodo.org/record/3661107/files/app_second_first_example.mw?download=1.

https://zenodo.org/record/3661107/files/app_second_first_example.mw?download=1
https://zenodo.org/record/3661107/files/app_second_first_example.mw?download=1

(3)(3)

(1)(1)

> >

> >

> >

> >

> >

> >

> >

(2)(2)

(6)(6)

> >

(5)(5)

> >

> >

(4)(4)

> >

restart:
assume(h>0);

#Lagrangian definition
L=lambda^2;

#Solution to the Euler-Lagrange equations. In this case it's trivial to find it
lambda:=-h:
mu1:=0:
mu2:=0

#Definition of the vectors \mathbf{w} and \mathbf{k} in Section 3.2.2
w:=<-2*lambda,0,0>;

k:=<h,0,sqrt(3)*h>;

#The Cayley map, which in this case is the Adjoint representation of the moving frame
adj1 := (a, b, c, d) -> Matrix([[2*a^2 + 2*b^2 - 1, -2*a*d + 2*b*
c, 2*a*c + 2*b*d], [2*a*d + 2*b*c, 2*a^2 + 2*c^2 - 1, -2*b*a + 2*
c*d], [2*b*d - 2*a*c, 2*b*a + 2*c*d, 2*a^2 + 2*d^2 - 1]]);

#Matrix K in Section 3.2.2
KK := subs({k1=k[1],k2=k[2],k3=k[3],w1(z)=w[1],w2(z)=w[2],w3(z)=w
[3]},adj1(0, (k1+w1(z))/sqrt(2*k1^2+2*k2^2+2*k3^2+2*(k1*w1(z)+k2*
w2(z)+k3*w3(z))), (k2+w2(z))/sqrt(2*k1^2+2*k2^2+2*k3^2+2*(k1*w1
(z)+k2*w2(z)+k3*w3(z))),(k3+w3(z))/sqrt(2*k1^2+2*k2^2+2*k3^2+2*
(k1*w1(z)+k2*w2(z)+k3*w3(z)))));

#Check that KK takes k to w

> >

> >

(6)(6)

> >
(8)(8)

> >

(7)(7)

(9)(9)

> >

(10)(10)

#Definition of the vector \mathbf{q} in Section 3.2.2
q:=2*<lambda,mu1,mu2>:

#Equation for a(t)
eqaz:=subs({Q1(z)=q[1],Q2(z)=q[2],Q3(z)=q[3],M=norm(k,2),k1=k[1],
k2=k[2],k3=k[3],w1(z)=w[1],w2(z)=w[2],w3(z)=w[3]},(diff(a(z), z))
/sqrt(1-a(z)^2)-(1/2)*M*(Q1(z)*(k1+w1(z))+Q2(z)*(k2+w2(z))+Q3(z)*
(k3+w3(z)))/(k1*(k1+w1(z))+k2*(k2+w2(z))+k3*(k3+w3(z))))

#Solution for a(t)
sola:=rhs(dsolve({%,a(0)=0},a(z)))

#Matrix B in Section 3.2.2
BB := subs({Q1(z)=q[1],Q2(z)=q[2],Q3(z)=q[3],k1=k[1],k2=k[2],k3=k
[3],w1(z)=w[1],w2(z)=w[2],w3(z)=w[3],a(z)=sola},adj1(a(z), sqrt(1
-a(z)^2)*w1(z)/sqrt(k1^2+k2^2+k3^2), sqrt(1-a(z)^2)*w2(z)/sqrt
(k1^2+k2^2+k3^2),sqrt(1-a(z)^2)*w3(z)/sqrt(k1^2+k2^2+k3^2)));

#Definition of the adjoint representation of the moving frame, as the product of the two rotations BB
and KK

adrho:=BB.KK;

#Check that BB fixes w

> >

> >

(13)(13)

(15)(15)

> >

(6)(6)

> >

(17)(17)

(11)(11)

(12)(12)

(14)(14)

> >

> >

> >

> >

(16)(16)

(18)(18)

> >

(19)(19)

> >

#Check that the moving frame takes k to w

#Inversion of the Cayley map, in order to find the parameters a,b,c and d in Section 3.2.2
a1:=subs({h=1},1/2*sqrt(1+adrho[1,1]+adrho[2,2]+adrho[3,3]));

#Check that the squared parameters sum to 1 (it holds for h=1)

#compute the minimisers u and v as done at the end of Section 3.2.2
u:=subs(h=1,a1-I*b1):factor(%);

v:=subs(h=1,c1-I*d1):factor(%);

#Plot the minimisers
plot([[evalc(Re(u)),evalc(Im(u)),z=-6..6],[-evalc(Re(u)),-evalc

> >

(6)(6)

> >

(11)(11)

> >
(Im(u)),z=-6..6]],labels=["Re(u)","Im(u)"],labeldirections=
[horizontal,vertical],color=["black","green"]):
plot([[evalc(Re(v)),evalc(Im(v)),z=-6..6],[-evalc(Re(v)),-evalc
(Im(v)),z=-6..6]],labels=["Re(v)","Im(v)"],labeldirections=
[horizontal,vertical],color=["black","green"]):

Appendix to Chapter 3 178

Example 2

The following Maple code relates to Section 3.3.2and can be found at the following link: https:

//zenodo.org/record/3661107/files/app_second_second_example.mw?download=1.

https://zenodo.org/record/3661107/files/app_second_second_example.mw?download=1
https://zenodo.org/record/3661107/files/app_second_second_example.mw?download=1

> >

> >

(1)(1)

(5)(5)

(4)(4)

> >

(3)(3)

> >

> >

> >

> >

> >

(6)(6)

> >

> >

(2)(2)

restart:
#Lambda, mu1 and mu2 can be easily derived from the Euler-Lagrange equations for this example

lambda:=f*z^2+g*z+h;

mu1:=0:
mu2:=0:

#Definition of the vectors \mathbf{w} and \mathbf{k} in Section 3.2.2
w:=<-2*diff(lambda,z,z),0,0>;

k:=<-3,2,-sqrt(3)>;

#Definition of the Cayley map, which is the adjoint representation of the moving frame in this case
adj1 := (a, b, c, d) -> Matrix([[2*a^2 + 2*b^2 - 1, -2*a*d + 2*b*
c, 2*a*c + 2*b*d], [2*a*d + 2*b*c, 2*a^2 + 2*c^2 - 1, -2*b*a + 2*
c*d], [2*b*d - 2*a*c, 2*b*a + 2*c*d, 2*a^2 + 2*d^2 - 1]]);

#Definition of matrix K in section 3.2.2
KK := subs({k1=k[1],k2=k[2],k3=k[3],w1(z)=w[1],w2(z)=w[2],w3(z)=w
[3]},adj1(0, (k1+w1(z))/sqrt(2*k1^2+2*k2^2+2*k3^2+2*(k1*w1(z)+k2*
w2(z)+k3*w3(z))), (k2+w2(z))/sqrt(2*k1^2+2*k2^2+2*k3^2+2*(k1*w1
(z)+k2*w2(z)+k3*w3(z))),(k3+w3(z))/sqrt(2*k1^2+2*k2^2+2*k3^2+2*
(k1*w1(z)+k2*w2(z)+k3*w3(z)))));

#Check that KK takes k to w

#Definition of vector \mathbf{q} in Section 3.2.2

(9)(9)

> >

(8)(8)

> >

> >

> >

(7)(7)

> >

(10)(10)

(11)(11)

> >

q:=2*<lambda,mu1,mu2>:
#Equation for a(t)
eqaz:=subs({Q1(z)=q[1],Q2(z)=q[2],Q3(z)=q[3],M=norm(k,2),k1=k[1],
k2=k[2],k3=k[3],w1(z)=w[1],w2(z)=w[2],w3(z)=w[3]},(diff(a(z), z))
/sqrt(1-a(z)^2)-(1/2)*M*(Q1(z)*(k1+w1(z))+Q2(z)*(k2+w2(z))+Q3(z)*
(k3+w3(z)))/(k1*(k1+w1(z))+k2*(k2+w2(z))+k3*(k3+w3(z))))

sola:=rhs(dsolve({%,a(0)=1/2},a(z)))

#Definition of the matrix B in Section 3.2.2
BB := subs({Q1(z)=q[1],Q2(z)=q[2],Q3(z)=q[3],k1=k[1],k2=k[2],k3=k
[3],w1(z)=w[1],w2(z)=w[2],w3(z)=w[3],a(z)=sola},adj1(a(z), sqrt(1
-a(z)^2)*w1(z)/sqrt(k1^2+k2^2+k3^2), sqrt(1-a(z)^2)*w2(z)/sqrt
(k1^2+k2^2+k3^2),sqrt(1-a(z)^2)*w3(z)/sqrt(k1^2+k2^2+k3^2)));

#Check that BB fixes w

 #Definition of the moving frame
adrho:=BB.KK;

(11)(11)

(12)(12)

> >

> >
#Check that the moving frame takes k to w

> >

> >

> >

(15)(15)

(13)(13)

(11)(11)

> >

> >

(14)(14)

> >

(16)(16)

(17)(17)

#Inverting the Cayley map to obtain the frame in terms of the parameters
a1:=1/2*sqrt(1+adrho[1,1]+adrho[2,2]+adrho[3,3]);

1

#Computing the minimisers as done at the end of Section 3.2.2
u:=a1-I*b1;

> >

(19)(19)

> >

(18)(18)
> >

(11)(11)

> >

> >

(17)(17)

v:=c1-I*d1;

#Plot the minimisers

#Check that the parameters sum to 1

1

Appendix to Chapter 3 184

Example 3

The following Maple code relates to Section 3.3.3and can be found at the following link: https:

//zenodo.org/record/3661107/files/app_second_third_example_1.mw?download=1.

https://zenodo.org/record/3661107/files/app_second_third_example_1.mw?download=1
https://zenodo.org/record/3661107/files/app_second_third_example_1.mw?download=1

> >

(6)(6)

> >

> >

(1)(1)

(4)(4)

> >

> >

(5)(5)

(3)(3)

> >

> >

> >

(2)(2)

> >

(7)(7)

> >

> >

restart:
#Euler-Lagrange equations for this example
el1:=-diff(lambda(z),z)+2*mu2(z)*mu1(z):
el2:=diff(mu1(z),z)+2*mu2(z)*lambda(z):

#Solution to the Euler-Lagrange equations
elsol:=dsolve({el1,el2,lambda(0)=1,mu1(0)=0},{lambda(z),mu1(z)});

lambda:=evalc(rhs(elsol[1]));

mu1:=evalc(rhs(elsol[2]));

mu2(_z1):=1:
#Definition of the vectors w and k in Section 3.2.2
w:=<2*lambda,-2*mu1,0>;

k:=<0,0,2>;

#Definition of the Cayley map
adj1 := (a, b, c, d) -> Matrix([[2*a^2 + 2*b^2 - 1, -2*a*d + 2*b*
c, 2*a*c + 2*b*d], [2*a*d + 2*b*c, 2*a^2 + 2*c^2 - 1, -2*b*a + 2*
c*d], [2*b*d - 2*a*c, 2*b*a + 2*c*d, 2*a^2 + 2*d^2 - 1]]);

#Definition of the matrix K from Section 3.2.2
KK := subs({k1=k[1],k2=k[2],k3=k[3],w1(z)=w[1],w2(z)=w[2],w3(z)=w
[3]},adj1(0, (k1+w1(z))/sqrt(2*k1^2+2*k2^2+2*k3^2+2*(k1*w1(z)+k2*

> >

> >

(10)(10)

> >

(9)(9)

(8)(8)

> >

> >

> >

> >

> >

(7)(7)

w2(z)+k3*w3(z))), (k2+w2(z))/sqrt(2*k1^2+2*k2^2+2*k3^2+2*(k1*w1
(z)+k2*w2(z)+k3*w3(z))),(k3+w3(z))/sqrt(2*k1^2+2*k2^2+2*k3^2+2*
(k1*w1(z)+k2*w2(z)+k3*w3(z)))));

 #Check that K takes k to w
KK.k: map(simplify,%);

#Definition of the vector q from Section 3.2.2
q:=2*<lambda,mu1,mu2(_z1)>:

#Equation for a(t) from Section 3.2.2
eqaz:=subs({Q1(z)=q[1],Q2(z)=q[2],Q3(z)=q[3],M=norm(k,2),k1=k[1],
k2=k[2],k3=k[3],w1(z)=w[1],w2(z)=w[2],w3(z)=w[3]},(diff(a(z), z))
/sqrt(1-a(z)^2)-(1/2)*M*(Q1(z)*(k1+w1(z))+Q2(z)*(k2+w2(z))+Q3(z)*
(k3+w3(z)))/(k1*(k1+w1(z))+k2*(k2+w2(z))+k3*(k3+w3(z))));

#Solving for a(t)
sola:=rhs(dsolve({%,a(0)=1},a(z)));

#Definition of Matrix B from Section 3.2.2
BB := subs({Q1(z)=q[1],Q2(z)=q[2],Q3(z)=q[3],k1=k[1],k2=k[2],k3=k
[3],w1(z)=w[1],w2(z)=w[2],w3(z)=w[3],a(z)=sola},adj1(a(z), sqrt(1
-a(z)^2)*w1(z)/sqrt(k1^2+k2^2+k3^2),sqrt(1-a(z)^2)*w2(z)/sqrt
(k1^2+k2^2+k3^2),sqrt(1-a(z)^2)*w3(z)/sqrt(k1^2+k2^2+k3^2))):

#Definition of the moving frame
adrho:=BB.KK:

#Inverting the Cayley map to get the frame in terms of the parameters
a1:=1/2*sqrt(1+adrho[1,1]+adrho[2,2]+adrho[3,3]):

> >

> >

> >

> >

> >

> >

> >

> >

> >
> >

(7)(7)

#The Cayley map is only locally invertible in general. That's why we need to pay attention to the zeroes
of a(t), as those are the points where it's not invertible

#Computing the minimisers as done at the end of Section 3.2.2
u:=a1-I*b1:
v:=c1-I*d1:

#Plotting the minimisers
with(plots):
plot([[a1,-b1,z=0.001..3.15],[-a1,b1,z=0.001..3.15]],labels=["Re
(u)","Im(u)"],labeldirections=[horizontal,vertical],color=
["black","green"]):
plot([[c1,-d1,z=0.001..3.15],[-c1,d1,z=0.001..3.15]],labels=["Re
(v)","Im(v)"],labeldirections=[horizontal,vertical],color=
["black","green"]):

Appendix to Chapter 3 188

Example 4

The following Maple code relates to Section 3.3.4and can be found at the following link: https:

//zenodo.org/record/3661107/files/app_second_fourth_example.mw?download=1.

https://zenodo.org/record/3661107/files/app_second_fourth_example.mw?download=1
https://zenodo.org/record/3661107/files/app_second_fourth_example.mw?download=1

(2)(2)

> >

> >

> >

(4)(4)

> >

> >

> >

(5)(5)

(3)(3)

> >

> >

(1)(1)

> >

> >

restart:
#Defining the generating differential invariants for this example (trivial to obtain them from the Euler-
Lagrange equations)

lambda:=-1:
mu1:=2:
mu2:=1:

#Definition of the vectors w and k from Section 3.2.2
w:=<-2*lambda,-2*mu1,2*mu2>;

k:=<0,0,sqrt(24)>;

#Definition of the Cayley map
adj1 := (a, b, c, d) -> Matrix([[2*a^2 + 2*b^2 - 1, -2*a*d + 2*b*
c, 2*a*c + 2*b*d], [2*a*d + 2*b*c, 2*a^2 + 2*c^2 - 1, -2*b*a + 2*
c*d], [2*b*d - 2*a*c, 2*b*a + 2*c*d, 2*a^2 + 2*d^2 - 1]]);

#Definition of the matrix K from Section 3.2.2
KK := subs({k1=k[1],k2=k[2],k3=k[3],w1(z)=w[1],w2(z)=w[2],w3(z)=w
[3]},adj1(0, (k1+w1(z))/sqrt(2*k1^2+2*k2^2+2*k3^2+2*(k1*w1(z)+k2*
w2(z)+k3*w3(z))), (k2+w2(z))/sqrt(2*k1^2+2*k2^2+2*k3^2+2*(k1*w1
(z)+k2*w2(z)+k3*w3(z))),(k3+w3(z))/sqrt(2*k1^2+2*k2^2+2*k3^2+2*
(k1*w1(z)+k2*w2(z)+k3*w3(z)))));

#Check that the matrix K takes k to w

#Definition of the vector q from Section 3.2.2
q:=2*<lambda,mu1,mu2>:

> >

> >

(8)(8)

> >

(6)(6)

> >

> >

> >

> >

> >

> >

> >

> >

(9)(9)

> >

(7)(7)

> >

> >

> >

#Equation for a(t)
eqaz:=subs({Q1(z)=q[1],Q2(z)=q[2],Q3(z)=q[3],M=norm(k,2),k1=k[1],
k2=k[2],k3=k[3],w1(z)=w[1],w2(z)=w[2],w3(z)=w[3]},(diff(a(z), z))
/sqrt(1-a(z)^2)-(1/2)*M*(Q1(z)*(k1+w1(z))+Q2(z)*(k2+w2(z))+Q3(z)*
(k3+w3(z)))/(k1*(k1+w1(z))+k2*(k2+w2(z))+k3*(k3+w3(z))));

sola:=rhs(dsolve({%,a(0)=1/2},a(z)));

 #Definition of matrix B from Section 3.2.2
BB := subs({Q1(z)=q[1],Q2(z)=q[2],Q3(z)=q[3],k1=k[1],k2=k[2],k3=k
[3],w1(z)=w[1],w2(z)=w[2],w3(z)=w[3],a(z)=sola},adj1(a(z), sqrt(1
-a(z)^2)*w1(z)/sqrt(k1^2+k2^2+k3^2),sqrt(1-a(z)^2)*w2(z)/sqrt
(k1^2+k2^2+k3^2),sqrt(1-a(z)^2)*w3(z)/sqrt(k1^2+k2^2+k3^2))):

#check that BB fixes w

#Definition of the moving frame for this example
adrho:=BB.KK:

#Inverting the Cayley map to obtain the frame in terms of the parameters
a1:=1/2*sqrt(1+adrho[1,1]+adrho[2,2]+adrho[3,3]):

#Computing the minimisers u and v as done at the end of Section 3.2.2
u:=a1-I*b1:
v:=c1-I*d1:

#Plotting the minimisers
with(plots):
plot([[a1,-b1,z=-13..13],[-a1,b1,z=-13..13]],labels=["Re(u)","Im
(u)"],labeldirections=[horizontal,vertical],color=["black",
"green"]):
plot([[c1,-d1,z=-14..15],[-c1,d1,z=-14..15]],labels=["Re(v)","Im
(v)"],labeldirections=[horizontal,vertical],color=["black",
"green"]):

#Check the frame parameters sum to 1

1

B. Appendix to Chapter 4

Computations

The following Maple code relates to Section 4.2.4. The Maple file can be found at: https:

//zenodo.org/record/3661107/files/app_third_1.mw?download=1 .

Below we include pseudocode for the most important routines in the algorithm presented at

the end of this section.

Fig. B.1 Pseudocode for the routine myHx

The function myHy works exactly as myHx, but replacing x with y, ξ with x0 and y with

ξ .

192

https://zenodo.org/record/3661107/files/app_third_1.mw?download=1
https://zenodo.org/record/3661107/files/app_third_1.mw?download=1

Appendix to Chapter 4 193

Fig. B.2 Pseudocode for the routine myTerms

Fig. B.3 Pseudocode for the routine Comm2

All the other functions with the name starting as “Comm” work in a similar way. Their aim

is to isolate the terms of order [ordera] in [a] and [orderb] in [b] from a specific commutator

appearing in the Magnus expansion. The relevant commutator is specified in the code with a

comment before each routine.

Appendix to Chapter 4 194

Fig. B.4 Pseudocode for the routine LOOP

We think the rest of the code is easier to understand looking at the comments in it. We

define the differential relation myR and use it, and its derivatives, to simplify the different

instances of LOOP(orderh,orderk).

> >

> >
> >

> >

myHx creates the terms up to order [orderh] in h and [orderk] in k for the matrix Q^x evaluated at the
point ([x],[y]). It works up to [orderh]+[orderk]=4

myHy creates the terms up to order [orderh] in h and [orderk] in k for the matrix Q^v evaluated at the
point ([x],[y]). It works up to [orderh]+[orderk]=4

> >

> >

> >

myTerms isolates the expressions of order [ordera] in [a] and [orderb] in [b] in an expression [term]

All the following routines up to the routine Comm2Hx (excluded) serve the function of creating the
commutators appearing in the magnus expansions of Theta^h and Theta^v up to order 5 in h,k. They
are all called by the functions myHx and myHy
Comm2 picks the expressions of order [ordera] in [a] and [orderb] in [b] from the commutator [A,B]

> >

> >

> >

> >

> >

> >

Comm3 picks the expressions of order [ordera] in [a] and [orderb] in [b] from the commutator [A,[B,C]
]

Comm3intx picks the expressions of order [ordera] in [a] and [orderb] in [b] from the commutator [\int
[A,B],C] where \int is horizontal integration

Comm3inty picks the expressions of order [ordera] in [a] and [orderb] in [b] from the commutator [\int
[A,B],C] where \int is vertical integration

Comm41x picks the expressions of order [ordera] in [a] and [orderb] in [b] from the commutator [[A,
[B,C]],DD]

> >

> >

> >

> >

> >

> >

> >

Comm42x picks the expressions of order [ordera] in [a] and [orderb] in [b] from the commutator [[A,
B],[C,DD]]

Comm43x picks the expressions of order [ordera] in [a] and [orderb] in [b] from the commutator [A,
[\int[B,C],DD]], where \int is horizontal integration

Comm44x picks the expressions of order [ordera] in [a] and [orderb] in [b] from the commutator [A,[B,
[C,DD]]]

Comm41y picks the expressions of order [ordera] in [a] and [orderb] in [b] from the commutator [[A,
[B,C]],DD]

Comm42y picks the expressions of order [ordera] in [a] and [orderb] in [b] from the commutator [\int

> >

> >

> >

> >

> >

> >

> >

[A,B],[C,DD]], where \int is vertical integration

Comm43y picks the expressions of order [ordera] in [a] and [orderb] in [b] from the commutator [A,
[\int[B,C],DD]]

Comm44y picks the expressions of order [ordera] in [a] and [orderb] in [b] from the commutator [A,[B,
[C,DD]]]

The following set of routines up to Loop (excluded) create the terms we need in the BCH truncated
expansion of rho^gamma1(x1,y1) and rho^gamma2(x1,y1)
Comm2Hx picks the terms of order [orderh] in h and [orderk] in k of [Theta^h(xx,xy),Theta^v(yx,yy)]

> >

> >

> >

> >

> >

> >

> >

Comm2Hy picks the terms of order [orderh] in h and [orderk] in k of [Theta^v(yx,yy),Theta^h(xx,xy)]

Comm3Hx picks the terms of order [orderh] in h and [orderk] in k of [Theta^h(xx,xy),[Theta^h(xx,xy),
Theta^v(yx,yy)]]

Comm3Hy picks the terms of order [orderh] in h and [orderk] in k of [Theta^v(yx,yy),[Theta^v(yx,yy),
Theta^h(xx,xy)]]

> >

> >

> >

> >

> >

> >

> >

> >

Comm4Hyxxy picks the terms of order [orderh] in h and [orderk] in k of [Theta^v(yx,yy),[Theta^h(xx,
xy),[Theta^h(xx,xy),Theta^v(yx,yy)]]]

Comm4Hxyyx picks the terms of order [orderh] in h and [orderk] in k of [Theta^h(xx,xy),[Theta^v(yx,
yy),[Theta^v(xy,yy),Theta^h(xx,xy)]]]

Comm4Hyyyx picks the terms of order [orderh] in h and [orderk] in k of [Theta^v(yx,yy),[Theta^v(yx,
yy),[Theta^v(xy,yy),Theta^h(xx,xy)]]]

Comm4Hxxxy picks the terms of order [orderh] in h and [orderk] in k of [Theta^h(xx,xy),[Theta^h(xx,
xy),[Theta^h(xx,xy),Theta^v(yx,yy)]]]

> >

> >

> >

> >

> >

> >

> >

> >

Comm4Hxyxy picks the terms of order [orderh] in h and [orderk] in k of [Theta^h(xx,xy),[Theta^v(yx,
yy),[Theta^h(xx,xy),Theta^v(yx,yy)]]]

Comm4Hyxyx picks the terms of order [orderh] in h and [orderk] in k of [Theta^v(yx,yy),[Theta^h(xx,
xy),[Theta^v(yx,yy),Theta^h(xx,xy)]]]

Comm5Hyyyyx picks the terms of order [orderh] in h and [orderk] in k of [Theta^v,[Theta^v(yx,yy),
[Theta^v(yx,yy),[Theta^v(xy,yy),Theta^h(xx,xy)]]]]

> >

> >

> >

> >

> >

> >

> >

> >

> >

Comm5Hxxxxy picks the terms of order [orderh] in h and [orderk] in k of [Theta^h,[Theta^h(xx,xy),
[Theta^h(xx,xy),[Theta^h(xx,xy),Theta^v(yx,yy)]]]]

Comm5Hxyyyx picks the terms of order [orderh] in h and [orderk] in k of [Theta^h(xx,xy),[Theta^v
(yx,yy),[Theta^v(yx,yy),[Theta^v(yx,yy),Theta^h(xx,xy)]]]]

Comm5Hyxxxy picks the terms of order [orderh] in h and [orderk] in k of [Theta^v(yx,yy),[Theta^h
(xx,xy),[Theta^h(xx,xy),[Theta^h(xx,xy),Theta^v(yx,yy)]]]]

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

Comm5Hyxyxy picks the terms of order [orderh] in h and [orderk] in k of [Theta^v(yx,yy),[Theta^h
(xx,xy),[Theta^v(yx,yy),[Theta^h(xx,xy),Theta^v(yx,yy)]]]]

Comm5Hxyxyx picks the terms of order [orderh] in h and [orderk] in k of [Theta^h(xx,xy),[Theta^v
(yx,yy),[Theta^h(xx,xy),[Theta^v(yx,yy),Theta^h(xx,xy)]]]]

Loop uses the routines defined above to compute the terms of order [orderh] in h and [orderk] in k of
(rho^gamma1(x1,y1)-rho^gamma2(x1,y1))

> >

> >

> >

> >

> >

> >

> >

> >

Warning, `HX00` is implicitly declared local to procedure `Loop`
Warning, `HX01` is implicitly declared local to procedure `Loop`
Warning, `HY00` is implicitly declared local to procedure `Loop`
Warning, `HY10` is implicitly declared local to procedure `Loop`
Warning, `COMM21` is implicitly declared local to procedure
`Loop`
Warning, `COMM22` is implicitly declared local to procedure
`Loop`
Warning, `COMM31` is implicitly declared local to procedure
`Loop`
Warning, `COMM32` is implicitly declared local to procedure
`Loop`
Warning, `COMM33` is implicitly declared local to procedure
`Loop`

> >

> >

> >

> >

(3)(3)

> >

> >

> >

> >

> >

(1)(1)

> >

(2)(2)

> >

> >

(4)(4)

Warning, `COMM34` is implicitly declared local to procedure
`Loop`
Warning, `COMM41` is implicitly declared local to procedure
`Loop`
Warning, `COMM42` is implicitly declared local to procedure
`Loop`
Warning, `COMM511` is implicitly declared local to procedure
`Loop`
Warning, `COMM521` is implicitly declared local to procedure
`Loop`
Warning, `COMM531` is implicitly declared local to procedure
`Loop`
Warning, `COMM541` is implicitly declared local to procedure
`Loop`
Warning, `COMM551` is implicitly declared local to procedure
`Loop`
Warning, `COMM561` is implicitly declared local to procedure
`Loop`
Warning, `COMM512` is implicitly declared local to procedure
`Loop`
Warning, `COMM522` is implicitly declared local to procedure
`Loop`
Warning, `COMM532` is implicitly declared local to procedure
`Loop`
Warning, `COMM542` is implicitly declared local to procedure
`Loop`
Warning, `COMM552` is implicitly declared local to procedure
`Loop`
Warning, `COMM562` is implicitly declared local to procedure
`Loop`
Warning, `LOOP1` is implicitly declared local to procedure
`Loop`
Warning, `LOOP2` is implicitly declared local to procedure
`Loop`
Warning, `LOOP` is implicitly declared local to procedure `Loop`
Define the "zero-curvature" relation (red R in the table in the text)

This is the substitution to rewrite in terms of R

Order 2 terms (h*k)

> >

> >

(9)(9)

> >

> >

(5)(5)

> >

> >

> >

> >

> >

> >

(7)(7)

> >

(11)(11)

> >

> >

(10)(10)

> >

> >

(6)(6)

(8)(8)

0
Order 3 terms (h^2*k)

2
Order 4 terms (h^3*k,h^2*k^2)

0

0
Order 5 terms (h^4*k,h^3*k^2)

0

> >

> >

> >

(11)(11)

> >

> >

(5)(5)

> >

> >

> >

> >

> >

0

Appendix to Chapter 4 209

Example with SL(2) - part 1

The following MATLAB code relates to Example 1 in Section 4.3.2 and can be found at

the following link: https://zenodo.org/record/3661107/files/new_ex_both.m?download=1. It

requires the Diffman package,[17],available at http://www.diffman.no. We think that the most

efficient way to help the reader in understanding the following code is through commenting

it. We tried to add some pseudocode, but as there are no routines and most of the commands

are quite intuitive, it would have mimicked very closely the original code. Therefore, the

code has been thoroughly commented, in order not to leave any doubts. The other Matlab

codes presented in this section are analogous and the reader can refer to the comments on

the following code in case there were any doubts. The two main changes are the Lie group

object that are initialised and the way the solutions and errors are plotted.

https://zenodo.org/record/3661107/files/new_ex_both.m?download=1
http://www.diffman.no

clear all;
close all;

%initial conditions for the moving frame and initialisation of the
 discrete grid and auxiliary variables
rho0x=[1/2,sqrt(3)/2; -sqrt(3)/2, 1/2];
double x0;
double x1;
double y0;
double y1;
double h;
x0=3; %here we specify the parameters for the grid
x1=4;
y0=3;
y1=4;
h=0.01; %h and hy are the step sizes in the x and y direction
 respectively
hy=0.01;
[X,Y]=meshgrid(x0:h:x1,y0:hy:y1); %create the discrete grid
N=round((x1-x0)/h); %the grid is made by (N+1)*(M+1) points
M=round((y1-y0)/hy);
sol=zeros(M+1,N+1); %these are auxiliary variables used to store the
 solution and
sol1=zeros(M+1,N+1);%perform checks on it
solrho=zeros(2,2,N+1,N+1);
comp=zeros(N+1,2);
detrho=zeros(N+1,N+1);

%This part of the code takes an initial condition for the moving frame
%and solve the equation Y'=AY for Y on the line given by y=y0
dminit; %Initialise the Diffman toolbox
y=hmlie(lgsl(2)); %Create an object in SL(2)
setdata(y,rho0x); %Set the initial condition to rho0x
vf=vectorfield(y); %Initialise a vector field object
seteqntype(vf,'L'); %Set the differential equation type to linear
fid1 = fopen('vfsl2x.m', 'wt'); %Define the vector field
fprintf(fid1, 'function [la] = vfsl2x(x,y); la=liealgebra(y);
 dat=[0, -1; (4*x.^3+3.*%f-4)./(6*x.^5), 0]; setdata(la,dat);
 end',y0);
fclose(fid1);
setfm2g(vf,'vfsl2x'); %Set the vector field defined in the step
 above as the A in Y'=AY
ts=tsmagnus; %Specify the timestepper we want to use is the Magnus
 Expansion one
setmethod(ts,'M6a'); %Specify the order of the Magnus expansion to
 6 (highest possible here)
f=flow; %Initialise a flow object
setcoordinate(ts,'exp'); %Specify we want to use the exponential
 map to pass from the Lie algebra to the Lie group
setvectorfield(f,vf); %Construct the equation Y'=AY

1

settimestepper(f,ts); %Specify we want to solve the equation
 constructed in the step above with a Magnus expansion of order 6
curve=f(y,x0,x1,h); %Solve the equation with the parameters specified
 above in the interval [x0,x1]
dati4=getdata(curve.y); %Obtain the solution as a vector

%Once we have obtained the solution, which is the moving frame, we can
%compute the minimisers as indicated at the end of section 4.3.1
for i=1:N+1
sol(1,i)=squeeze(-dati4(1,2,i)./dati4(1,1,i));
detrho(1,i)=det(dati4(:,:,i)); % a check on the solution belonging to
 SU(2) at all points
end

%As we solved for rho on y=y0, we use that solution as an initial
 condition
%to solve for rho on the lines given by x=x_i, where x_i are all the
 points
%included in the grid between x0 and x1 included
u=hmlie(lgsl(2)); %create an element of SL(2)
for j=1:N+1
setdata(u,dati4(:,:,j)); %set the initial data to rho(x_i,y0) found in
 the previous step
vf=vectorfield(u); %initialise a vector field object
seteqntype(vf,'L'); %set the equation type to linear
fid = fopen('vfsl2y.m', 'wt'); %define the vector field as an
 element of the Lie algebra
fprintf(fid, 'function [la] = vfsl2y(t,u); la=liealgebra(u);
 dat=[1./(2*(3.*t-4)), (%f+ (%f-1) *%f)./(3*t-4); -(4*(%f+ (%f-1) *
%f).^3+3*t-4)./(6*(3.*t-4).*(%f+ (%f-1) *%f).^4), -1./(2*(3*t-4))];
 setdata(la,dat); return',x0, j,h, x0, j,h, x0, j,h);
fclose(fid);
setfm2g(vf,'vfsl2y'); %associate the defined vector field to the
 initialised vector field object
ts=tsmagnus; %specify we want to use a Magnus expansion time
 stepper
setmethod(ts,'M6a'); %specify we want to use a sixth-order Magnus
 expansion
f=flow; %initialise a flow object
setcoordinate(ts,'exp'); %specify we want to use the exp map to go
 from the Lie algebra to the Lie group
setvectorfield(f,vf); %construct the equation Y'=AY
settimestepper(f,ts); %specify we want to solve the equation with the
 chosen time stepper
curve=f(u,y0,y1,hy); %solve the equation in the interval [y0,y1] on
 the line x=x_i
dati3=getdata(curve.y); %obtain the solution as a vector

%Once we have the moving frame we can compute the minisers as
 specified at
%the end of Section 4.3.1 as follows
for k=2:M+1
sol(k,j)=squeeze(-dati3(1,2,k)./dati3(1,1,k));

2

detrho(k,j)=det(dati3(:,:,k)); %a check on the determinant
end
end

%As we computed the moving frame, and the minisers, solving the
%differential equation first on y=y0 and then on x=x_i, now we first
 solve
%the Lie group differential equation on the line x=x0 and then we use
 that
%solution to solve the DE for the moving frame on y=y_i, where y_i are
 all
%the points in the grid between y0 and y1 included.

rho0y=[1/2,sqrt(3)/2; -sqrt(3)/2, 1/2]; %specify an initial condition
 for rho(x0,y0)
yy=hmlie(lgsl(2)); %initialise an object in SL(2)
setdata(yy,rho0y); %set the initial data to rho0y
vf=vectorfield(yy); %initialise a vector field object
seteqntype(vf,'L'); %set the differential equation type to linear
fid1 = fopen('vfsl2y1.m', 'wt'); %define the vector field
fprintf(fid1, 'function [la] = vfsl2y1(t,yy); la=liealgebra(yy);
 dat=[1./(2*(3.*t-4)), %f./(3*t-4); -(4*%f.^3+3*t-4)./(6*(3*t-4).*
%f.^4), -1./(2*(3*t-4))]; setdata(la,dat); return',x0,x0,x0);
fclose(fid1);
setfm2g(vf,'vfsl2y1'); %assigned the defined vector field to the
 initialised vector field object
ts=tsmagnus; %select a Magnus expansion time stepper
setmethod(ts,'M6a'); %choose a sixth-order Magnus expansion
f=flow; %initialise a flow object
setcoordinate(ts,'exp'); %specify we want to use exp map to pass from
 the Lie algebra to the Lie group
setvectorfield(f,vf); % construct the differential equation
settimestepper(f,ts); % specify we want to solve the differential
 equation with the chosen time stepper
curve=f(yy,y0,y1,hy);%solve the differential equation
dati=getdata(curve.y);%obtain the solution as a vector
for i=1:M+1 % obtain the minimisers as specified at the end of Section
 4.3.1
sol1(i,1)=squeeze(-dati(1,2,i)./dati(1,1,i));
detrho1(i,1)=det(dati(:,:,i)); %check the determinant of the moving
 frame is 1 at every point
end

%As we solved for the line x=x0, we use that solution to solve the
%Lie group differential equation on the lines y=y_i, where y_i are all
 the
%points in the grid between y0 and y1 included.
u1=hmlie(lgsl(2)); %initialise an element of SL(2)
for j=1:M+1
setdata(u1,dati(:,:,j)); %set the initial condition of the SL(2)
 element to the respective element of the solution found in the
 previous step
vf=vectorfield(u1); %initialise a vector field object

3

seteqntype(vf,'L'); %Set the equation type to linear
fid = fopen('vfsl2x1.m', 'wt'); %define the vector field A in
 Y'=AY
fprintf(fid, 'function [la] = vfsl2x1(x,u1); la=liealgebra(u1);
 dat=[0, -1; (4*x.^3+3*(%f+(%f-1)*%f)-4)./(6*x.^5), 0];
 setdata(la,dat); end',y0, j,h);
fclose(fid);
setfm2g(vf,'vfsl2x1');
ts=tsmagnus; %choose a Magnus expansion time stepper
setmethod(ts,'M6a'); %specify we want a sixth-order Magnus expansion
f=flow; %initialise a flow object
setcoordinate(ts,'exp'); %use exponential map to go to the Lie group
 from the Lie algebra
setvectorfield(f,vf); %build the equation Y'=AY
settimestepper(f,ts); %choose to solve the equation with the specified
 time stepper
curve=f(u1,x0,x1,h); %solve the equation for the moving frame Y
dati1=getdata(curve.y); %store the solution into a vector
for k=2:N+1 %compute the minimisers as shown at the end of Section
 4.3.1
sol1(j,k)=squeeze(-dati1(1,2,k)./dati1(1,1,k));
detrho1(j,k)=det(dati1(:,:,k));
end
end

%After all the computations have been performer, now it is time to
 plot the
%relevant figures
% figure();
% surf(X,Y,sol); %plot rho^{\gamma_1}
% hold on;
% surf(X,Y,sol1); %plot rho^{\gamma_2} on the same figure as the
 previous plot
% colormap summer;
% xlabel('x') % x-axis label
% ylabel('y') % y-axis label
% zlabel('u') % z-axis label
% hold off;
% figure();
% surf(X,Y,abs(sol-sol1)); %plot the absolute value of the pointwise
 difference of the two solutions

 DiffMan Version 2.01 is initialized - 2012.05.01

 Please report any problems and/or bugs to:
 help@diffman.no

 For more information and how to get started, try:
 >> dmtutorial
 >> dmhelp
 >> demo

4

Published with MATLAB® R2019a

5

Appendix to Chapter 4 215

Example with SL(2) - part 2

The following MATLAB code relates to Example 2 in Section 4.3.2 and can be found at the

following link: https://zenodo.org/record/3661107/files/sigma_x_new_v2.m?download=1. It

requires the Diffman package,[17], available at http://www.diffman.no.

https://zenodo.org/record/3661107/files/sigma_x_new_v2.m?download=1
http://www.diffman.no

clear all;
close all;

%initial condition and initialisation of grid and variables
rho0x=[1/2,sqrt(3)/2; -sqrt(3)/2, 1/2];
double x0;
double x1;
double y0;
double y1;
double h;
x0=3;
x1=4;
y0=3;
y1=4;
h=0.01;
hy=0.01;
[X,Y]=meshgrid(x0:h:x1,y0:hy:y1);
N=round((x1-x0)/h);
M=round((y1-y0)/hy);
sol=zeros(M+1,N+1);
sol1=zeros(M+1,N+1);
solrho=zeros(2,2,N+1,N+1);
comp=zeros(N+1,2);
detrho=zeros(N+1,N+1);

%solve for the line y=y0 given an initial data rho(xo,yo)
dminit;
y=hmlie(lgsl(2));
setdata(y,rho0x);
vf=vectorfield(y);
seteqntype(vf,'L');
fid1 = fopen('vfsl2x.m', 'wt');
fprintf(fid1, 'function [la] = vfsl2x(x,y); la=liealgebra(y);
 dat=[0, -1; (4*x.^3+3.*%f-4)./(6*x.^5), 0]; setdata(la,dat);
 end',y0);
fclose(fid1);
setfm2g(vf,'vfsl2x');
ts=tsmagnus;
setmethod(ts,'M6a');
f=flow;
setcoordinate(ts,'exp')
setvectorfield(f,vf);
settimestepper(f,ts);
curve=f(y,x0,x1,h);
dati4=getdata(curve.y);
for i=1:N+1
sol(1,i)=squeeze(-dati4(1,2,i)./dati4(1,1,i));
detrho(1,i)=det(dati4(:,:,i));
end

1

%solve for rho(xi,y) given as initial data rho(xi,y0) computed in the
%previous step
u=hmlie(lgsl(2));
for j=1:N+1
setdata(u,dati4(:,:,j));
vf=vectorfield(u);
seteqntype(vf,'L');
fid = fopen('vfsl2y.m', 'wt');
fprintf(fid, 'function [la] = vfsl2y(t,u); la=liealgebra(u);
 dat=[1./(2*(3.*t-4)), (%f+ (%f-1) *%f)./(3*t-4); -(4*(%f+ (%f-1) *
%f).^3+3*t-4)./(6*(3.*t-4).*(%f+ (%f-1) *%f).^4), -1./(2*(3*t-4))];
 setdata(la,dat); return',x0, j,h, x0, j,h, x0, j,h);
fclose(fid);
setfm2g(vf,'vfsl2y');
ts=tsmagnus;
setmethod(ts,'M6a');
f=flow;
setcoordinate(ts,'exp')
setvectorfield(f,vf);
settimestepper(f,ts);
curve=f(u,y0,y1,hy);
dati3=getdata(curve.y);
for k=2:M+1
sol(k,j)=squeeze(-dati3(1,2,k)./dati3(1,1,k));
detrho(k,j)=det(dati3(:,:,k));
end
end

rho0y=[1/2,sqrt(3)/2; -sqrt(3)/2, 1/2];

yy=hmlie(lgsl(2));
%solve for the line y=y0 given an initial data rho(xo,yo)
setdata(yy,rho0y);
vf=vectorfield(yy);
seteqntype(vf,'L');
fid1 = fopen('vfsl2y1.m', 'wt');
fprintf(fid1, 'function [la] = vfsl2y1(t,yy); la=liealgebra(yy);
 dat=[1./(2*(3.*t-4)), %f./(3*t-4); -(4*%f.^3+3*t-4)./(6*(3*t-4).*
%f.^4), -1./(2*(3*t-4))]; setdata(la,dat); return',x0,x0,x0);
fclose(fid1);
setfm2g(vf,'vfsl2y1');
ts=tsmagnus;
setmethod(ts,'M6a');
f=flow;
setcoordinate(ts,'exp')
setvectorfield(f,vf);
settimestepper(f,ts);
curve=f(yy,y0,y1,hy);
dati=getdata(curve.y);
for i=1:M+1
sol1(i,1)=squeeze(-dati(1,2,i)./dati(1,1,i));
detrho1(i,1)=det(dati(:,:,i));

2

end

%solve for rho(xi,y) given as initial data rho(xi,y0) computed in the
%previous step
u1=hmlie(lgsl(2));
for j=1:M+1
setdata(u1,dati(:,:,j));
vf=vectorfield(u1);
seteqntype(vf,'L');
fid = fopen('vfsl2x1.m', 'wt');
fprintf(fid, 'function [la] = vfsl2x1(x,u1); la=liealgebra(u1);
 dat=[0, -1; (4*x.^3+3*(%f+(%f-1)*%f)-4)./(6*x.^5), 0];
 setdata(la,dat); end',y0, j,h);
fclose(fid);
setfm2g(vf,'vfsl2x1');
ts=tsmagnus;
setmethod(ts,'M6a');
f=flow;
setcoordinate(ts,'exp')
setvectorfield(f,vf);
settimestepper(f,ts);
curve=f(u1,x0,x1,h);
dati1=getdata(curve.y);
for k=2:N+1
sol1(j,k)=squeeze(-dati1(1,2,k)./dati1(1,1,k));
detrho1(j,k)=det(dati1(:,:,k));
end
end

% diff=abs(sol-sol1);
% figure;
% surf(X,Y,sol);
% hold on;
% surf(X,Y,sol1);
% hold off;
% figure;
% surf(X,Y,diff);
% xlabel('x') % x-axis label
% ylabel('y') % y-axis label
% zlabel('|u1-u2|') % z-axis label

 DiffMan Version 2.01 is initialized - 2012.05.01

 Please report any problems and/or bugs to:
 help@diffman.no

 For more information and how to get started, try:
 >> dmtutorial
 >> dmhelp
 >> demo

3

Published with MATLAB® R2019a

4

Appendix to Chapter 4 220

Example with SU(2)

The following MATLAB code relates to Section 4.3.1 and can be found at the following link:

https://zenodo.org/record/3661107/files/su_2_2nd_ex_su2.m?download=1. It requires the

Diffman package,[17], available at http://www.diffman.no.

https://zenodo.org/record/3661107/files/su_2_2nd_ex_su2.m?download=1
http://www.diffman.no

clear all;
close all;

%initial condition and initialisation of grid and variables
rho0x=[-1/3+1i*1/4,1/2-1i*sqrt(83)/12;-1/2-1i*sqrt(83)/12,-1/3-1i*1/4];
x0=0;
x1=1;
y0=0;
y1=1;
h=0.01;
hy=0.01;
[X,Y]=meshgrid(x0:h:x1,y0:hy:y1);
N=floor((x1-x0)/h);
M=floor((y1-y0)/hy);
solu=zeros(M+1,N+1);
solv=zeros(M+1,N+1);
solu1=zeros(M+1,N+1);
solv1=zeros(M+1,N+1);
solrho=zeros(2,2,M+1,N+1);
solrho1=zeros(2,2,M+1,N+1);
comp=zeros(N+1,2);
detrho=zeros(M+1,N+1);

%solve for rho on the line y=y0 given an initial data rho(x0,y0)
dminit;
y=hmlie(lgsu(2));
setdata(y,rho0x);
vf=vectorfield(y);
seteqntype(vf,'L');
fid1 = fopen('vfsu2x.m', 'w');
fprintf(fid1, 'function [la] = vfsu2x(x,y); la=liealgebra(y);
 dat=[-1i*%f.^3,0;0, 1i*%f.^3]; setdata(la,dat); end',y0,y0);
fclose(fid1);
setfm2g(vf,'vfsu2x');
ts=tsmagnus;
setmethod(ts,'M6a');
f=flow;
setcoordinate(ts,'exp')
setvectorfield(f,vf);
settimestepper(f,ts);
curve=f(y,x0,x1,h);
dati=getdata(curve.y);
for j=1:N+1
 solrho(:,:,1,j)=dati(:,:,j);
 solu(1,j)=real(dati(1,1,j))-1i*imag(dati(1,1,j));
 solv(1,j)=real(dati(1,2,j))-1i*imag(dati(1,2,j));
 detrho(1,j)=det(dati(:,:,j));
end

1

%solve for rho(x,y) given as initial data rho(x,y0) computed in the
%previous step
u=hmlie(lgsu(2));
for j=1:N+1
setdata(u,dati(:,:,j));
vf=vectorfield(u);
seteqntype(vf,'L');
string1=['function [la] = vfsu2y(t,u); la=liealgebra(u);' ...
 'qy11=-1i.*(3.*(%f+(%f-1)*%f).*t.^2 - t.^2);'...
 'qy12=-(t + 5).*sin(2.*t.^3.*(%f+(%f-1)*%f)) -
 t.^4.*cos(2.*t.^3.*(%f+(%f-1)*%f))./3 - (-t.^4.*sin(2.*t.^3.*(%f
+(%f-1)*%f))./3 + (t + 5).*cos(2.*t.^3.*(%f+(%f-1)*%f))).*1i;'...
 'qy21=(t + 5).*sin(2.*t.^3.*(%f+(%f-1)*%f)) +
 t.^4.*cos(2.*t.^3.*(%f+(%f-1)*%f))./3 - (-t.^4.*sin(2.*t.^3.*(%f
+(%f-1)*%f))./3 + (t + 5).*cos(2.*t.^3.*(%f+(%f-1)*%f))).*1i;'...
 'qy22=(3.*(%f+(%f-1)*%f).*t.^2 - t.^2).*1i;'...
 'dat=[qy11,qy12; qy21,qy22]; setdata(la,dat); end'];
fid = fopen('vfsu2y.m', 'w');
fprintf(fid,
 string1,x0,j,h,x0,j,h,x0,j,h,x0,j,h,x0,j,h,x0,j,h,x0,j,h,x0,j,h,x0,j,h,x0,j,h);
fclose(fid);
setfm2g(vf,'vfsu2y');
ts=tsmagnus;
setmethod(ts,'M6a');
f=flow;
setcoordinate(ts,'exp')
setvectorfield(f,vf);
settimestepper(f,ts);
curve=f(u,y0,y1,hy);
dati1=getdata(curve.y);
for k=2:M+1
 solrho(:,:,k,j)=dati1(:,:,k);
 solu(k,j)=real(dati1(1,1,k))-1i*imag(dati1(1,1,k));
 solv(k,j)=real(dati1(1,2,k))-1i*imag(dati1(1,2,k));
 detrho(k,j)=det(dati1(:,:,k));
end
end

rho0y=rho0x;

%solve for the line x=x0 given an initial data rho(x0,y0)
yy=hmlie(lgsu(2));
setdata(yy,rho0y);
vf=vectorfield(yy);
seteqntype(vf,'L');
string2=['function [la] = vfsu2y1 (t,yy); la=liealgebra(yy);' ...
 'qy11=-1i.*(3.*(%f).*t.^2 - t.^2);'...
 'qy12=-(t + 5).*sin(2.*t.^3.*(%f)) - t.^4.*cos(2.*t.^3.*(%f))./3 -
 (-t.^4.*sin(2.*t.^3.*(%f))./3 + (t + 5).*cos(2.*t.^3.*(%f))).*1i;'...
 'qy21=(t + 5).*sin(2.*t.^3.*(%f)) + t.^4.*cos(2.*t.^3.*(%f))./3 -
 (-t.^4.*sin(2.*t.^3.*(%f))./3 + (t + 5).*cos(2.*t.^3.*(%f))).*1i;'...
 'qy22=(3.*(%f).*t.^2 - t.^2).*1i;'...
 'dat=[qy11,qy12; qy21,qy22]; setdata(la,dat); end'];

2

fid2 = fopen('vfsu2y1.m', 'w');
fprintf(fid2, string2,x0,x0,x0,x0,x0,x0,x0,x0,x0,x0);
fclose(fid2);
setfm2g(vf,'vfsu2y1');
ts=tsmagnus;
setmethod(ts,'M6a');
f=flow;
setcoordinate(ts,'exp')
setvectorfield(f,vf);
settimestepper(f,ts);
curve=f(yy,y0,y1,hy);
dati=getdata(curve.y);
for j=1:M+1
 solrho1(:,:,j,1)=dati(:,:,j);
 solu1(j,1)=real(dati(1,1,j))-1i*imag(dati(1,1,j));
 solv1(j,1)=real(dati(1,2,j))-1i*imag(dati(1,2,j));
 detrho1(j,1)=det(dati(:,:,j));
end

%solve for rho(x,y) given as initial data rho(x0,y) computed in the
%previous step
u1=hmlie(lgsu(2));
for j=1:M+1
setdata(u1,dati(:,:,j));
vf=vectorfield(u1);
seteqntype(vf,'L');
fid1 = fopen('vfsu2x1.m', 'w');
fprintf(fid1, 'function [la] = vfsu2x1(x,y); la=liealgebra(y);
 dat=[-1i*(%f+(%f-1)*%f).^3,0;0, 1i*(%f+(%f-1)*%f).^3];
 setdata(la,dat); end',y0,j,h,y0,j,h);
fclose(fid1);
setfm2g(vf,'vfsu2x1');
ts=tsmagnus;
setmethod(ts,'M6a');
f=flow;
setcoordinate(ts,'exp')
setvectorfield(f,vf);
settimestepper(f,ts);
curve=f(u1,x0,x1,h);
dati1=getdata(curve.y);
for k=2:N+1
 solrho1(:,:,j,k)=dati1(:,:,k);
 solu1(j,k)=real(dati1(1,1,k))-1i*imag(dati1(1,1,k));
 solv1(j,k)=real(dati1(1,2,k))-1i*imag(dati1(1,2,k));
 detrho1(j,k)=det(dati1(:,:,k));
end
end

for j=1:M+1
 for l=1:N+1
 diffrho(:,:,j,l)=solrho(:,:,j,l)-solrho1(:,:,j,l);
 normrho(j,l)=norm(solrho(:,:,j,l));

3

 normrho1(j,l)=norm(solrho1(:,:,j,l));
 normdiffrho(j,l)=norm(diffrho(:,:,j,l));
 end
end
% figure();
% surf(X,Y,normdiffrho);
% xlabel('x') % x-axis label
% ylabel('t') % y-axis label
% zlabel('rho^{gamma1}-rho^{gamma2}') % z-axis label
% figure();
% surf(X,Y,imag(solu));
% xlabel('x') % x-axis label
% ylabel('t') % y-axis label
% zlabel('Im(solu)') % z-axis label

 DiffMan Version 2.01 is initialized - 2012.05.01

 Please report any problems and/or bugs to:
 help@diffman.no

 For more information and how to get started, try:
 >> dmtutorial
 >> dmhelp
 >> demo

Published with MATLAB® R2019a

4

Appendix to Chapter 4 225

Example with SE(2) - Maple part

The following Maple code is an example of how to use Indiff, [41], in order to compute

the curvature matrices in the case of the standard action of SE(2) on a pair of evolving

curves. The code has been fully commented so that the reader could also work out the

details for other examples if needed. The code can be found at the following link: https:

//zenodo.org/record/3661107/files/curvmatrixse2_surfaces.mw?download=1.

https://zenodo.org/record/3661107/files/curvmatrixse2_surfaces.mw?download=1
https://zenodo.org/record/3661107/files/curvmatrixse2_surfaces.mw?download=1

> >

(1)(1)

(8)(8)

(4)(4)

> >

> >

> >

(7)(7)

(2)(2)

(6)(6)

(3)(3)

> >

> >

> >

(5)(5)

> >

restart: read "D:/indiff-src-2";read
"C:/Users/hausl/Dropbox/uni/Indiff/indiff-src-2"; #initialising
the Indiff package

Error, unable to read `D:/indiff-src-2`
Error, (in with) package Groebner does not export normalf
Error, (in with) package Groebner does not export gsolve
Error, (in with) package Groebner does not export inter_reduce

Error, (in with) package Groebner does not export gbasis
Error, (in with) package Groebner does not export termorder

#Specifying the indepent variables (tau is a dummy variable used for the application to the Calculus of
Variations)

vars:=[s,t,tau];

#specifying the dependent variables
ukns:=[x,u];

#group parameters. In this case we are considering SE(2), so three parameters
GroupP:=[theta,a,b];

#The matrix of infinitesimals of the action
XiPhis:=Matrix([[0,0,0,-u(s,t,tau),x(s,t,tau)],[0,0,0,1,0],[0,0,
0,0,1]]);

#The normalisation equations used to define the moving frame. In this case they read, from left to right,
as x=0, u=0, u_s=0.

Neqs:=[In[x,[]],In[u,[]],In[u,[1]]];

#choose the order for the system reduction
HNI([[1,2,3],[x,u]],ttdeg);

This command returns the error matrix K defined in Section 2.2.3, from which we can construct the
curvature matrices. It contains the generating differential invariants

K:=Kmat()

(11)(11)

(8)(8)

> >

> >

> >

> >

> >

(12)(12)

> >

(9)(9)

(13)(13)

(10)(10)

(14)(14)

#Next three commands define a basis for the Lie algebra se(2)
gtheta:=Matrix([[0,-1,0],[1,0,0],[0,0,0]]);

ga:=Matrix([[0,0,1],[0,0,0],[0,0,0]]);

gb:=Matrix([[0,0,0],[0,0,1],[0,0,0]]);

#Following 3 commands construct the curvature matrices given a basis of the Lie algebra and the
matrix K, as shown in Theorem 2.2.34.

Qs:=-K[1,1]*gtheta-K[1,2]*ga-K[1,3]*gb;

Qt:=-K[2,1]*gtheta-K[2,2]*ga-K[2,3]*gb;

Qtau:=-K[3,1]*gtheta-K[3,2]*ga-K[3,3]*gb;

> >

(17)(17)

> >

(16)(16)

(8)(8)

> >

> >

(15)(15)

> >

(14)(14)

(18)(18)

(19)(19)

#The following 3 commands check that Theorem 2.2.35 is satisfied
map(Idiff,Qs,2)-map(Idiff,Qt,1)-Qt.Qs+Qs.Qt: map(simplify,%);

map(Idiff,Qtau,2)-map(Idiff,Qt,3)-Qt.Qtau+Qtau.Qt: map(simplify,
%);

map(Idiff,Qs,3)-map(Idiff,Qtau,1)-Qtau.Qs+Qs.Qtau: map(simplify,
%);

Use Theorem 2.2.35 to find the syzygies between the generating differential invariants
Qt.Qs-Qs.Qt+map(Diff,Qt,s): map(simplify,%);

map(Diff,Qs,t)

> >

(20)(20)

(8)(8)

(21)(21)

(14)(14)

> >

A couple of examples of how to simplify expressions in Qt.Qs-Qs.Qt+map(Diff,Qt,s) and rewrite them
in terms of only the generating differential invariants

Idiff(In[u, [2]],1)

In

Idiff(In[x, [1]],3)
In

Appendix to Chapter 4 230

Example with SE(2) - Matlab part

The following MATLAB code relates to Section 4.3.3 and can be found at the following link:

https://zenodo.org/record/3661107/files/se_2_2D_kappa_t_GL3.m?download=1. It requires

the Diffman package,[17], available at http://www.diffman.no.

https://zenodo.org/record/3661107/files/se_2_2D_kappa_t_GL3.m?download=1
http://www.diffman.no

clear all;
close all;

%initial condition and initialisation of grid and variables
rho0x=[1/2, -sqrt(3)/2, -0.4; sqrt(3)/2, 1/2, 0.2; 0,0,1];
x0=1;
x1=2;
y0=1;
y1=2;
h=0.01;
hy=0.01;
[X,Y]=meshgrid(x0:h:x1,y0:hy:y1);
N=floor((x1-x0)/h);
M=floor((y1-y0)/hy);
rho=zeros(3,3,M+1,N+1);
rho1=zeros(3,3,M+1,N+1);
detrho=zeros(N+1,N+1);

%solve for rho on the line y=y0 given an initial data rho(x0,y0)
dminit;
y=hmlie(lggl(3));
setdata(y,rho0x);
vf=vectorfield(y);
seteqntype(vf,'L');
fid1 = fopen('vfse3x.m', 'w');
fprintf(fid1, 'function [la] = vfse3x(x,y); la=liealgebra(y);
 dat=[0,-4./(x + %f),-1;4./(x + %f),0,0;0,0,0]; setdata(la,dat);
 end',y0,y0);
fclose(fid1);
setfm2g(vf,'vfse3x');
ts=tsmagnus;
setmethod(ts,'M6a');
f=flow;
setcoordinate(ts,'exp')
setvectorfield(f,vf);
settimestepper(f,ts);
curve=f(y,x0,x1,h);
dati=getdata(curve.y);
for i=1:N+1
 rho(:,:,1,i)=dati(:,:,i);
end

%solve for rho(x,y) given as initial data rho(x,y0) computed in the
%previous step
u=hmlie(lggl(3));
for j=1:N+1
setdata(u,rho(:,:,1,j));
vf=vectorfield(u);
seteqntype(vf,'L');
string1=['function [la] = vfse3y(t,u); la=liealgebra(u);' ...

1

 'qy11=0;'...
 'qy12=(17*(%f+(%f-1).*%f) + 17*t - 4)./((%f+(%f-1).*%f) + t);'...
 'qy13=-cos(4*log((%f+(%f-1).*%f) + t)) + sin(4*log((%f+(%f-1).*%f)
 + t)) - 1 + 4*(%f+(%f-1).*%f) + 4*t;'...
 'qy21=-(17*(%f+(%f-1).*%f) + 17*t - 4)./((%f+(%f-1).*%f) + t);'...
 'qy22=0;'...
 'qy23=-(%f+(%f-1).*%f) - t - sin(4*log((%f+(%f-1).*%f) + t)) -
 cos(4*log((%f+(%f-1).*%f) + t));'...
 'qy31=0;'...
 'qy32=0;'...
 'qy33=0;'...
 'dat=[qy11,qy12,qy13;qy21,qy22,qy23;qy31,qy32,qy33];
 setdata(la,dat); end'];
fid = fopen('vfse3y.m','w');
fprintf(fid,string1,x0,j,h,x0,j,h,x0,j,h,x0,j,h,x0,j,h,x0,j,h,x0,j,h,x0,j,h,x0,j,h,x0,j,h);
fclose(fid);
setfm2g(vf,'vfse3y');
ts=tsmagnus;
setmethod(ts,'M6a');
f=flow;
setcoordinate(ts,'exp')
setvectorfield(f,vf);
settimestepper(f,ts);
curve=f(u,y0,y1,hy);
dati=getdata(curve.y);
for k=2:M+1
 rho(:,:,k,j)=dati(:,:,k);
end
end

%solve for the line x=x0 given an initial data rho(x0,y0)
yy=hmlie(lggl(3));
setdata(yy,rho0x);
vf=vectorfield(yy);
seteqntype(vf,'L');
string2=['function [la] = vfse3y1 (t,yy); la=liealgebra(yy);' ...
 'qy11=0;'...
 'qy12=(17*(%f) + 17*t - 4)./((%f) + t);'...
 'qy13=-cos(4*log((%f) + t)) + sin(4*log((%f) + t)) - 1 + 4*(%f) +
 4*t;'...
 'qy21=-(17*(%f) + 17*t - 4)./((%f) + t);'...
 'qy22=0;'...
 'qy23=-(%f) - t - sin(4*log((%f) + t)) - cos(4*log((%f) + t));'...
 'qy31=0;'...
 'qy32=0;'...
 'qy33=0;'...
 'dat=[qy11,qy12,qy13;qy21,qy22,qy23;qy31,qy32,qy33];
 setdata(la,dat); end'];
fid2 = fopen('vfse3y1.m', 'w');
fprintf(fid2, string2,x0,x0,x0,x0,x0,x0,x0,x0,x0,x0);
fclose(fid2);
setfm2g(vf,'vfse3y1');
ts=tsmagnus;

2

setmethod(ts,'M6a');
f=flow;
setcoordinate(ts,'exp')
setvectorfield(f,vf);
settimestepper(f,ts);
curve=f(yy,y0,y1,hy);
dati=getdata(curve.y);
for i=1:M+1
 rho1(:,:,i,1)=dati(:,:,i);
end

%solve for rho(x,y) given as initial data rho(x0,y) computed in the
%previous step
u1=hmlie(lggl(3));
for j=1:M+1
setdata(u1,rho1(:,:,j,1));
vf=vectorfield(u1);
seteqntype(vf,'L');
fid1 = fopen('vfse3x1.m', 'w');
fprintf(fid1, 'function [la] = vfse3x1(x,y); la=liealgebra(y);
 dat=[0,-4./(x + (%f+(%f-1)*%f)),-1;4./(x + (%f+(%f-1)*
%f)),0,0;0,0,0]; setdata(la,dat); end',y0,j,h,y0,j,h);
fclose(fid1);
setfm2g(vf,'vfse3x1');
ts=tsmagnus;
setmethod(ts,'M6a');
f=flow;
setcoordinate(ts,'exp')
setvectorfield(f,vf);
settimestepper(f,ts);
curve=f(u1,x0,x1,h);
dati=getdata(curve.y);
for k=2:N+1
 rho1(:,:,j,k)=dati(:,:,k);
end
end

for j=1:M+1
 for l=1:N+1
 diffrho(:,:,j,l)=rho(:,:,j,l)-rho1(:,:,j,l);
 normrho(j,l)=norm(rho(:,:,j,l));
 normrho1(j,l)=norm(rho1(:,:,j,l));
 normdiffrho(j,l)=norm(diffrho(:,:,j,l));
 solx(j,l)=rho(1,2,j,l).*rho(2,3,j,l)-
rho(1,3,j,l).*rho(1,1,j,l);
 solx1(j,l)=rho1(1,2,j,l).*rho1(2,3,j,l)-
rho1(1,3,j,l).*rho1(1,1,j,l);

3

 solu(j,l)=-
rho(2,3,j,l).*rho(1,1,j,l)+rho(1,3,j,l).*rho(2,1,j,l);
 solu1(j,l)=-
rho1(2,3,j,l).*rho1(1,1,j,l)+rho1(1,3,j,l).*rho1(2,1,j,l);
 end
end

% figure();
% surf1=surf(X,Y,normdiffrho);
% xlabel('s') % x-axis label
% ylabel('t') % y-axis label
% zlabel('rho^{gamma1}-rho^{gamma2}') % z-axis label
% figure();
% surf2=surf(solx,solu,Y);
% set(surf2,'LineStyle','none')
% xlabel('x') % x-axis label
% ylabel('u') % y-axis label
% zlabel('t') % z-axis label

 DiffMan Version 2.01 is initialized - 2012.05.01

 Please report any problems and/or bugs to:
 help@diffman.no

 For more information and how to get started, try:
 >> dmtutorial
 >> dmhelp
 >> demo

Published with MATLAB® R2019a

4

C. Appendix to Chapter 5

Example 1

The following MATLAB code relates to Section 5.4.1. The code has been thoroughly

commented to provide a better readability for the reader. The Matlab file can be found at

https://zenodo.org/record/3661107/files/RZSZ_explicit_v11.m?download=1.

235

https://zenodo.org/record/3661107/files/RZSZ_explicit_v11.m?download=1

clear all;

%initial conditions and auxiliary variables
a=0; %initial point
b=1; %endpoint
n=250; %number of points in [a,b]
s=linspace(a,b,n+1);
thetam1=0.001; %initial conditions for theta
theta0=0.002;
theta1=0.0025;
theta=zeros(n+1,1);
theta(1)=thetam1;
theta(2)=theta0;
theta(3)=theta1;
ell=zeros(n+1,1); %initial conditions for \ell
ell(1)=0.0015;
ell(2)=0.0013;
dt=zeros(n+1,1); %initialising \Delta \Theta
dt(1)=theta(2)-theta(1);
dt(2)=theta(3)-theta(2);
Z=zeros(2,1,n+1); %this is the vector called W in section 5.4.2
x0=0; %we can choose arbitrarily where do we want the minimisers (x,u)
 to start
u0=0;
x=zeros(n+1,1); %initialising the minimisers
u=zeros(n+1,1);
x(1)=x0;
u(1)=u0; %setting the initial point for the minimisers

Rdt0=[cos(dt(2)) -sin(dt(2)); sin(dt(2)) cos(dt(2))]; %rotation matrix
 for dt0

z1=2/ell(2)*(sin(dt(1))*cos(dt(1))/ell(1)-sin(dt(2))*cos(dt(2))/
ell(2)); %first Euler-Lagrange equation
z2=-sin(dt(2))^2/ell(2)^2; %second Euler-Lagrange equation
Z(:,:,1)=[z1 ; z2]; % updating the vector Z (vector W in Section
 5.4.2)
Z(:,:,2)=Rdt0*Z(:,:,1); %computing the next step
z1=Z(1,1,2);
z2=Z(2,1,2);
syms l dtheta %initialising symbolic variables. These are the unknowns
 we need to find to compute the next point of the solution
d=0; %two parameters that keep track of where is the solution and in
 which direction are we going
scen=0;

for k=3:n+1
 if abs(dt(k-1))<1e-7 %we need to distinguish this case as the
 solver would pick a zero solution if we're too close to 0
 if scen==3 %parameters that keep track of which quadrant are
 we solving the equations in
 scen=4;

1

 elseif scen==1
 scen=5;
 end
 eq1=Z(1,1,k-1)*l^2-l*sin(2*dt(k-1))/ell(k-1)+2*dtheta; %E-L
 equation 1
 eq2=-dtheta^2+Z(2,1,k-1)*l^2; %E-L equation 2. We're solving for
 dtheta and l
 eq=[eq1 eq2];
 initguess=[ell(k-1) -20*dt(k-1)]; %initial guess for the solver
 if mod(d,2)==0
 sol=vpasolve(eq,[l dtheta], [1e-6 1e-2;-0.7 -1e-8]); %solution
 if we're going lockwise
 else
 sol=vpasolve(eq,[l dtheta], [1e-6 1e-2;1e-8 2.7]); %solution
 if we're going anticlockwise
 end
 dt(k)=sol.dtheta;%storing the solution
 ell(k)=sol.l;
 d=d+1;
 elseif z2<0 %same as before, for z2<0 (which means we are in the
 upper half plane)
 scen=1;
 eq1=Z(1,1,k-1)*l^2-l*sin(2*dt(k-1))/ell(k-1)+sin(2*dtheta);
 eq2=-sin(dtheta)^2-Z(2,1,k-1)*l^2;
 initguess=[ell(k-1) dt(k-1)];
 if dt(k-1)<0
 initguess=[ell(k-1) -dt(k-1)];
 end
 sol=vpasolve(eq,[l dtheta],[1e-6 1e-2;1e-6 2]);
 dt(k)=sol.dtheta;
 ell(k)=sol.l;
 elseif z2>0 %same as before, for z2>0 (which means we are in the
 lower half plane)
 if scen==5
 scen=5;
 else scen=3;
 end
 eq1=Z(1,1,k-1)*l^2-l*sin(2*dt(k-1))/ell(k-1)+sin(2*dtheta);
 eq2=-sin(dtheta)^2+Z(2,1,k-1)*l^2;
 eq=[eq1 eq2];
 initguess=[ell(k-1) dt(k-1)];
 if dt(k-1)>0 && scen~=4 && scen~=3
 initguess=[ell(k-1) -20*dt(k-1)];
 end
 sol=vpasolve(eq,[l dtheta],initguess);
 dt(k)=sol.dtheta;
 ell(k)=sol.l;
 end

 if scen==1 %advancing the solution if we are going
 anticlockwise
 Z(:,:,k)=[cos(dt(k)) -sin(dt(k)); sin(dt(k))
 cos(dt(k))]*[Z(1,1,k-1);Z(2,1,k-1)];

2

 elseif scen==3 || scen==4 %advancing the solution if we are going
 clockwise
 Z(:,:,k)=[cos(dt(k)) sin(dt(k)); -sin(dt(k))
 cos(dt(k))]*[Z(1,1,k-1);Z(2,1,k-1)];
 end
 z1=Z(1,1,k);
 z2=Z(2,1,k);
end

for l=2:n-1
 theta(l+2)=dt(l+1)+theta(l+1); %extract the angles theta as we
 have computed the difference theta(l+2)-theta(l+1)=dtheta(l+1)
end

for j=2:n+1
 x(j)=x(j-1)+cos(theta(j-1))*ell(j-1); %computing the minimisers
 u(j)=u(j-1)-sin(theta(j-1))*ell(j-1);
end

for m=1:n+1
 normZ(m)=norm(Z(1:2,1,m)); %check the norm of Z (we have been
 rotating Z, so the norm should stay constant)
end

%conservationb laws
c=zeros(1,3,n+1);
Ad=zeros(3,3,n+1); %initialise the adjoint representation of the
 moving frame
for k=3:n
%v1,v2 and v3 are the three components of the vector of invariants
 appearing in the
%conservation laws
v1(k)=-cos(dt(k-1))*sin(dt(k-1))^2/ell(k-1)^2+sin(dt(k-1))/
ell(k-1)*(sin(2*dt(k-2))/ell(k-2)-sin(2*dt(k-1))/ell(k-1));
v2(k)=-sin(dt(k-1))^3/ell(k-1)^2-cos(dt(k-1))/
ell(k-1)*(sin(2*dt(k-2))/ell(k-2)-sin(2*dt(k-1))/ell(k-1));
v3(k)=-sin(2*dt(k-1))/ell(k-1);
%defining the moving frame
Ad(:,:,k)=[cos(theta(k)),-sin(theta(k)),-sin(theta(k))*x(k)-
cos(theta(k))*u(k);sin(theta(k)),cos(theta(k)),cos(theta(k))*x(k)-
sin(theta(k))*u(k);0,0,1];
v=[v1(k),v2(k),v3(k)];
c(1,:,k)=v*Ad(:,:,k); %computing the conservation laws
end

for m=10:n-3 %computing the difference between the m-th and 0th
 elements of the cons laws
 c1diff(m)= abs(c(1,1,m)-c(1,1,10));
 c2diff(m)= abs(c(1,2,m)-c(1,2,10));
 c3diff(m)= abs(c(1,3,m)-c(1,3,10));
end

3

% figure(); %plot the evolution of the difference in the conservation
 laws
% subplot(2,2,1);
% plot(x(5:end),c1diff);
% xlabel('t');
% ylabel('|c_1(t)-c_1(t_0)|');
% subplot(2,2,2);
% plot(x(5:end),c2diff);
% xlabel('t');
% ylabel('|c_2(t)-c_2(t_0)|');
% subplot(2,2,3);
% plot(x(5:end),c3diff);
% xlabel('t');
% ylabel('|c_3(t)-c_3(t_0)|')
% sgtitle('Conservation Laws')
% figure();
% plot(x,u); %plot the minimisers as (x,u)
% xlabel('x');
% ylabel('u');
% title('Solution')

Published with MATLAB® R2019a

4

Appendix to Chapter 5 240

Example 2

The following MATLAB code relates to Section 5.4.2. The code has been thoroughly

commented to provide a better readability for the reader. The Matlab file can be found at

https://zenodo.org/record/3661107/files/example_constrained_1.m?download=1.

https://zenodo.org/record/3661107/files/example_constrained_1.m?download=1

clear all;
%setting initial conditions
a=0;
b=1;
n=250; %number of points
h=0.0015;
s=linspace(a,b,n+1);
thetam1=0.001; %initial conditions for the angle
theta0=0.002;
theta1=0.0025;
theta=zeros(n+1,1);
theta(1)=thetam1;
theta(2)=theta0;
theta(3)=theta1;
lambda=zeros(n+1,1);
lambda(2)=0.0015;
dt=zeros(n+1,1);
dt(1)=theta(2)-theta(1); %defining \Delta \Theta
dt(2)=theta(3)-theta(2);
Z=zeros(2,1,n+1);
x0=0;
u0=0;
x=zeros(n+1,1);
u=zeros(n+1,1);
x(1)=x0;
u(1)=u0;
dt1=zeros(n+1,1);
syms dtheta;

Rdt0=[cos(dt(3)) -sin(dt(3)); sin(dt(3)) cos(dt(3))]; %Rotation matrix

z1=2*(sin(dt(1))*cos(dt(1))-sin(dt(2))*cos(dt(2)))/h^2; %Euler-
Lagrange equation 1
z2=lambda(2)*h-sin(dt(2))^2/h^2; %Euler-Lagrange equation 2
Z(:,:,1)=[z1 ; z2];
Z(:,:,2)=Rdt0*Z(:,:,1); %advancing the solution

for k=3:n+1
 dt(k)=asin(sin(2*dt(k-1))-Z(1,1,k-1)*h^2)/2; %in this case we can
 explicitely solve for dt
 lambda(k)=Z(2,1,k-1)+sin(dt(k))^2/h^2; %and for lambda too
 Z(:,:,k)=[cos(dt(k)) -sin(dt(k)); sin(dt(k))
 cos(dt(k))]*Z(:,:,k-1); %advancing the solution
end

for l=2:n-2
 theta(l+2)=dt(l+1)+theta(l+1); %extracting the thetas from the dt
end

for j=1:n %constructing the minimisers (x,u)
 x(j+1)=x(j)+cos(theta(j))*h;
 u(j+1)=u(j)-sin(theta(j))*h;

1

end

for m=1:n+1
 normZ(m)=norm(Z(1:2,1,m)); %check the norm of Z stayed constant
end

%conservation laws
Ad=zeros(3,3,n+1); %initialising the moving frame
for k=3:n
 %v1,v2 and v3 are the three invariant components of the vector of
 %invariants in the conservation laws
v1(k)=-cos(dt(k-1))*(sin(dt(k-1))^2/h^2-lambda(k-1))+sin(dt(k-1))/
h*(sin(2*dt(k-2))/h-sin(2*dt(k-1))/h);
v2(k)=-sin(dt(k-1))*(sin(dt(k-1))^2/h^2-lambda(k-1))-cos(dt(k-1))/
h*(sin(2*dt(k-2))/h-sin(2*dt(k-1))/h);
v3(k)=-sin(2*dt(k-1))/h;
%defining the moving frame
Ad(:,:,k)=[cos(theta(k)),-sin(theta(k)),-sin(theta(k))*x(k)-
cos(theta(k))*u(k);sin(theta(k)),cos(theta(k)),cos(theta(k))*x(k)-
sin(theta(k))*u(k);0,0,1];
v=[v1(k),v2(k),v3(k)];
c(:,1,k)=v*Ad(:,:,k); %computing the conservation laws
end

for m=10:n-3 %computing the difference between the m-th and 0-th
 elements of the conservation laws
 c1diff(m)= abs(c(1,1,m)-c(1,1,10));
 c2diff(m)= abs(c(2,1,m)-c(2,1,10));
 c3diff(m)= abs(c(3,1,m)-c(3,1,10));
end

% figure(); %plot the conservation laws
% subplot(2,2,1);
% plot(s(5:end),c1diff);
% xlabel('t');
% ylabel('|c_1(t)-c_1(t_0)|');
% subplot(2,2,2);
% plot(s(5:end),c2diff);
% xlabel('t');
% ylabel('|c_2(t)-c_2(t_0)|');
% subplot(2,2,3);
% plot(s(5:end),c3diff);
% xlabel('t');
% ylabel('|c_3(t)-c_3(t_0)|')
% sgtitle('Conservation Laws')
% figure();
% plot(x,u);
% xlabel('x'); %plot the minimisers as (x,u)
% ylabel('u');
% title('Solution')

2

Published with MATLAB® R2019a

3

	Table of contents
	1 Introduction
	2 Preliminaries
	2.1 Introduction
	2.2 Lie group actions and moving frames
	2.2.1 Smooth manifolds and Lie group actions
	2.2.2 Moving frames
	2.2.3 Invariant differentiation
	2.2.4 The Lie algebra
	2.2.5 Curvature Matrices
	2.2.6 Adjoint representation

	2.3 Invariant Calculus of Variations
	2.3.1 Invariantised Euler–Lagrange equations
	2.3.2 Conservation laws

	3 Variational problems invariant under a linear action of SU(2)
	3.1 Introduction
	3.2 The one–dimensional case
	3.2.1 Conservation laws
	3.2.2 Finding the minimisers

	3.3 Numerical examples
	3.3.1 Example 1
	3.3.2 Example 2
	3.3.3 Example 3
	3.3.4 Example 4

	3.4 The two–dimensional case

	4 Solutions to higher dimensional invariant variational problems
	4.1 Introduction
	4.2 Lie group integrators
	4.2.1 Matrix ODEs
	4.2.2 The Magnus expansion
	4.2.3 Magnus expansion and coupled systems of PDEs
	4.2.4 Magnus expansions commute up to order 5

	4.3 Numerical examples
	4.3.1 An example using a linear action of SU(2)
	4.3.2 Examples using the projective action of SL(2)
	4.3.3 An example using the standard action of SE(2)
	4.3.4 Considering bigger domains

	4.4 Final remarks and a conjecture

	5 Variational problems in multispaces
	5.1 Lattice–based multispaces
	5.1.1 From first order Lagrange interpolation of functions to first order multispace
	5.1.2 Lie group actions on multispaces
	5.1.3 Infinitesimal actions on multispace
	5.1.4 Lagrangians in multispaces
	5.1.5 Euler–Lagrange equations and Noether's first theorem

	5.2 Discretisation of invariant Lagrangians
	5.2.1 Discrete approximations to smooth differential invariants
	5.2.2 Higher order approximations to smooth differential invariants
	5.2.3 Discrete approximation of derivatives of invariants

	5.3 Lagrangians invariant under SE(2)
	5.3.1 Difference–Differential Syzygies
	5.3.2 Euler–Lagrange equations and Conservation laws
	5.3.3 Higher–order Lagrangians
	5.3.4 Constrained Lagrangians

	5.4 Numerical Examples
	5.4.1 An unconstrained Lagrangian
	5.4.2 A constrained Lagrangian
	5.4.3 Comments on the numerical examples

	6 Conclusion and Future Work
	References
	Appendix A Appendix to Chapter 3
	Appendix B Appendix to Chapter 4
	Appendix C Appendix to Chapter 5

