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Abstract 

The increasing demand for public security, including forensic security, has resulted in a substantial 

growth in the presence of surveillance camera networks (i.e., closed-circuit televisions, or CCTVs) 

in public areas. Significant improvements in the computer vision and machine learning fields have 

advanced the traditional surveillance camera network system (i.e., monitored by people) towards 

an intelligent surveillance system involving automated person detection, person tracking, activity 

recognition, and person re-identification. The field of person re-identification has recently received 

much attention from computer vision researchers. Appearance model-based features, which are 

detection features that are built based on elements of the subject’s appearance, such as texture, 

colour, and clothes, are used in person re-identification. However, using the body shape (as one of 

the appearance model-based features) as a signature for person re-identification is an area of 

research still open for examination.  

 

This thesis presents the methodology, implementation, and experimental framework of a shape-

based person re-identification system. The proposed system segments the human silhouette into 

eight different parts: Body, Head & Neck, Shoulders, Middle, Lower, Upper Quarter, Upper Half, 

Torso, and Lower Half. These segmentations are built based on anthropometry studies. This system 

exploits the shape descriptor information of these segments to build a subject-unique signature for 

person re-identification using a Generic Fourier Descriptor (GFD). The discrimination level of 

shape-based signatures are assessed by classifying them using image-based and video-based 

approaches. The image-based system classifies the signatures on a frame-by-frame basis using 

Linear Discriminant Analysis (LDA), which evaluates the feasibility of re-identifying subjects 

based on their shape static feature. The video-based approach exploits the signatures of the entire 

sequence (i.e., multiple frames) to re-identify subjects based on their dynamic features that occur 

within a collection of frames using Dynamic Time Wrapping (DTW). Comprehensive system 

outcomes for image-based and video-based systems are analysed by comparing the performance 

of both systems for each segment individually. Finally, a rank list fusion method, which combines 

the image-based generated rank lists so that the lists generated by all frames in each sequence are 

replaced by one rank list for the entire sequence, is implemented for performance enhancement. 



ii 
 

 

Extensive experiments were conducted using publicly available dataset to evaluate the proposed 

shape-based person re-identification. In scenarios where a subject who maintains the same 

appearance is identified and re-identified from the same angle, the image-based and video-based 

approaches were found to outperform a number of state-of-art systems. In situations where the 

subject is identified and re-identified from different viewing angles (inter-view) and with a change 

in appearance (cross-scenario), the results reflected a comparable performance. The results of the 

rank list fusion implementation indicate superior performance enhancement in all situations, 

including the inter-view and cross-scenario.  
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Chapter 1  

Introduction 

 

 

 

1.1 Intelligent Surveillance and Computer Vision 

Monitoring cameras, such as closed-circuit televisions (CCTVs), are the common modalities for 

surveillance systems. Vast numbers of CCTVs have been installed to monitor critical public areas, 

such as airports, shopping malls, banking facilities, and college campuses. The CCTVs mainly 

monitor environments, people, events, and activities. These cameras provide an enormous amount 

of video footage that is conventionally monitored by enforcement officers. As human monitoring 

is prone to error due to factors such as fatigue, automated analysis of this video footage might 

improve the accuracy of surveillance efforts [1]. 

The field of computer vision through machine learning and artificial intelligence has recently 

inspired investments in automating manual surveillance systems to develop intelligent surveillance 

systems. People analysis is the umbrella term that involves research on various topics related to 

security and intelligent surveillance. This includes human detection, which is the process of finding 

the smallest bounding box that encloses each human in an image or video sequence. The detection 

process received a comprehensive exploration. In [2], multiple instances detection was examined, 

where in [3], environmental conditions of the surveillance were added to the human detection 

process. Various surveys have been conducted on this topic, such as [4] and [5]. Another currently 

hot research topic related to security and intelligent surveillance is human tracking, which involves 

tracking a person’s movements from one frame to another to predict subsequent steps using the 
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consistent temporal information [6], [7], [8]. Activity recognition is another topic gaining an 

impressive amount of attention in intelligent surveillance research [9], [10]. The aim of this field 

is to automatically analyse and classify human behaviour from one frame to another. A recent 

review on behaviour analysis can be found in [11].  

The most recent area of computer vision and intelligent surveillance research to emerge is person 

re-identification (re-id). Person re-id can be defined as the process of re-identifying people 

observed in a camera’s field of view (FOV) by matching them with people’s previously observed 

identities [1]. When the newly observed person does not exist in the enrolled identities, this 

person’s identity is automatically enrolled in the collection of previously observed people’s 

identities. Therefore, previously observed people’s identities comprise an evolving dataset into 

which new identities are added every time the system observes a new person. 

In general, any system is able to recognise a person as long as the person stays in the same camera 

FOV and when the person’s position, illumination, and background conditions are known to the 

system. However, in typical person re-id processes, the system is designed for a non-overlapping 

camera network; thus, a number of issues may arise, mainly concerning how the system identifies 

whether a subject in the current camera is the same subject seen previously in another camera of 

the same network. Therefore, the process of continually identifying people whose images were 

observed over a span of time and locations is called person re-id. Automatic person re-id for public 

surveillance systems poses many problems [12], as illustrated below. 

 

• Subject Detection. A typical automated person re-id system requires a human detection 

application. The detection process is the first step of the person re-id; it can be defined as 

detecting people instances in a digital image (single shot) or video stream (multiple shots). 

This process is, in fact, an extremely sensitive part of any person re-id, as the accuracy of 

detecting a subject directly influences the accuracy of identifying and re-identifying that 

subject.  

 

• Subject Appearance. The subject’s appearance, such as colour, texture, shape, clothes, and 

pose, is a common way to build his or her unique signature, as it does not require any 

interaction with the subject. This signature is used as an identifier for this subject in the 
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process of person re-id. However, human pose, and different camera characterisations in 

the same camera network may negatively affect the performance of these features. 

 

• Environmental Conditions. Uncontrollable environmental conditions, such as subject 

occlusion, scene illumination, camera resolution, and viewing angle, are other challenges 

that negatively affect the stability of a subject’s signature. 

 

• Distance Metrics. In the person re-id process, the subjects’ signatures are compared in 

order to be re-identified. Distance metrics are the responsible algorithms that compare 

signatures and assign subjects’ identities to them. The typical scene of a person re-id system 

is an evolving scene with new subjects who are monitored in a camera’s network. 

Simultaneously matching a large number of subjects with their identities from a camera’s 

network is a significant issue, as the signature is built under different circumstances (i.e., 

locations and time). In addition, the increasing number of subjects leads to an increase in 

the signature similarity between subjects, making the distance metrics work more difficult.  

 

It has only been a decade since person re-id application research started to become more prevalent. 

Considering the factors involved, as described, person re-id remains an unresolved challenge in 

surveillance system and computer vision research and design. 

 

The remainder of this chapter presents the motivation for this research and is organised as follows: 

Section 1.1 presents a brief introduction to intelligent surveillance and computer vision; the 

motivation for and objectives of this research are listed in Section 1.2 and 1.3, respectively. Section 

1.4 outlines the study’s contributions, and Section 1.5 describes the overall thesis structure. 

 

1.2 Research Motivation 

The increasing demand for public security, including forensic security, has resulted in a 

considerable growth in the presence of surveillance camera networks (CCTVs), including critical 

infrastructures, in public areas. Analysing the data gathered from CCTV footage is an essential 

part of evaluating people’s behaviour and activities captured on these networks. This analysis 
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enables multiple responses to suspicious events, such as real time alarms, incident retrieval, and 

increased security team awareness.  

Significant improvements in the computer vision and machine learning fields have advanced 

traditional surveillance camera network systems (i.e., manually monitored by people) towards the 

development of intelligent surveillance systems that have enhanced the monitoring process 

through automated person detection, person tracking, activity recognition, and person re-

identification. Consequently, this shifts the focus from post-reaction and incident retrieval to event 

prevention.  

Person re-identification (re-id) techniques can substantially improve intelligent surveillance. In the 

literature, many techniques have been proposed to examine various appearance-based features, 

such as colour, texture, and clothes. However, the use of the body and body parts shape as 

identifiers for person re-id remains subject to examination, prompting this research study.  

The system proposed in this study employs the extracted features of the body and body parts, 

utilising one of the well-known shape descriptors to be further processed and used as a unique 

signature for each subject in a scene. In order to assess the feasibility of the body shape descriptor, 

this signature is employed in two different systems. The first is the image-based system, which 

classifies signatures on a frame-by-frame basis. This system examines the discrimination level of 

the static variation in the body shape descriptor. The second system is the video-based system, 

which exploits the signatures of the entire sequence to examine the discrimination level of dynamic 

variations of the body shape descriptor.  

 

1.3 Research Objectives 

The objectives of this study are as follows: 

 

1. Determine if the body shape descriptor contains discriminative information for person re-

id. 
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2. Identify any factors that negatively affect the discrimination levels of the person re-id based 

on the body shape descriptor and determine to what extent these factors are influencing the 

performance.  

 

3. Investigate the discrimination levels of different parts of the body by applying a system of 

body segmentation, by examining whether the shape descriptors of different parts of the 

body could yield different levels of discriminations.   

 

4. Investigate the possibility of integrating (i.e., fusing) the results of the frames collection of 

one sequence for performance enhancement. 

 

5. Determine the dynamic feature that can be exploited in the shape descriptors of the frames 

of one sequence to classify subjects based on. 

 

6. Determine whether the dynamic feature can be exploited via the shape descriptor of the 

frame collection of a sequence to classify subjects.  

 

7.  Compare the performance of the developed system with published works on the same 

dataset.  

 

1.4 Contributions 

 

This thesis makes five main contributions to the shape-based person re-id, which are summarised 

as follows. 

 

First, a body segmentation mechanism is proposed to investigate the discrimination of the body 

and body parts shape descriptors for person re-id. This segmentation is designed based on multiple 

anthropometry studies.  

Second, shape descriptors of the body and proposed body segments are used as identifiers for 

person re-id. A Generic Fourier Descriptor (GFD) 4.2 is used to generate an individual shape 
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descriptor for each proposed body segment. These descriptors are exploited for the image-based 

system implementation. The re-identification process is implemented on a frame-by-frame basis 

in this system using Linear Discriminant Analysis (LDA) 4.2.3. This, in fact, assesses the 

feasibility of re-identifying a subject based on the subject’s shape static feature.  

Third, re-identifying subjects using the dynamic features of the shape descriptors of the subject’s 

body and body segments is explored. The GFD shape descriptors of the body and body parts are 

utilised in this experiment. The multidimensional Dynamic Time Wrapping (DTW) 5.2 algorithm 

is used on a sequence-by-sequence basis to re-identify subjects based on their dynamic variation.  

Fourth, comprehensive system outcomes of the image-based and video-based systems are 

analysed. The analysis compares the performance of both systems for each segment individually, 

revealing several significant findings.  

Fifth, the rank list fusion method 6.3 is proposed for performance enhancement for several aspects 

of this research. The fusion method combines the image-based generated rank lists so that the lists 

generated by all frames in each sequence are replaced by one rank list. The main purpose of the 

proposed rank list is to count the indices of each identity in the initial rank lists. The indices of 

each identity from each initial rank list are added together, and then the identity with the least total 

indices is placed in the frontal location of the new fused rank list. This method is implemented in 

four appearance related approaches including wearing clothes and bag.  

 

1.5 Structure of the Thesis 

This thesis is organised into seven chapters, which can be briefly summarised as follows: 

 

Chapter 1 introduces the topic of person re-identification and clarifies its place within biometric 

systems. This chapter also illustrates the motivation for and contributions of exploring the use of 

the body and body segments shape descriptors for the purpose of person re-identification. Finally, 

it presents the structure of the thesis. 
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Chapter 2 reviews the soft biometrics extraction methods and the method for using these features 

for person re-identification. It also describes revisions of the available methods for body 

segmentations and their advantages and disadvantages.  

 

Chapter 3 introduces the proposed shape-based person re-id system’s framework and discusses 

the stages involved in this system. This chapter also includes a review of the publicly available 

person re-identification datasets and justifies the reason behind using CASIA Dataset B 3.3. The 

proposed body segmentation method is presented in detail in this chapter, including the arithmetic 

operations that have been applied on the body silhouette in order to generate the proposed body 

segments. The segments’ length parameters are justified based on four anthropometrical studies in 

this chapter as well.  

 

Chapter 4 introduces the methodology for extracting the shape descriptor from the body and body 

segments shapes and for using them for re-identification, using a classifier that sorts them on a 

frame-by-frame basis. In addition, this chapter presents an examination of the inter-view scenario, 

where the subject’s identified shooting angle differs from the re-identified viewing angle. 

Moreover, the cross-scenario approach is inspected, where the subject’s appearance changes with 

the addition of wearing a coat or carrying a bag. The classification results of all mentioned 

scenarios are discussed in this chapter.  

 

Chapter 5 exploits the shape descriptor features of the body and body segments to examine person 

re-id based on the subject’s dynamic variation. This is applied using a time series analysis 

algorithm, and the re-id process is applied on a sequence-by-sequence basis. The results of this 

implementation are presented and discussed in this chapter. The inter-view and cross-scenario 

approaches are examined using the video-based system in this chapter, also.  

 

Chapter 6 provides a comparison and discussion on the outputs of the image-based and video-

based systems outcomes. It also describes the proposed rank list fusion mechanism that exploits 

the multiple rank lists for each sequence to generate improved performance through one fused rank 

list for each sequence. The same mechanism is applied on the inter-view and cross-scenario 

approaches in pursuit of performance enhancements. 
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Chapter 7 highlights the contributions that are added to the field of person re-id research by this 

study. It also lists several limitations faced in this experimental work. Finally, it discusses further 

work needed to enhance the performance of shape-based person re-id.  
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Chapter 2  

Literature Review 

 

 

 

2.1 Introduction 

The main goal of this research is to investigate the power of using the shape of different parts (or 

segments) of the body to re-identify (re-id) human subjects in public areas; this will be assessed 

through image-based system (i.e., static features) and video-based system (i.e., dynamic features) 

contained within each segment shape descriptor. Drawing on the literature, this chapter explores 

three main areas undertaken in this research, namely Biometric Systems, Person re-id and Body 

Segmentation.  

The structure of this chapter is as follows: Section 2.2 provides a brief overview of biometric 

systems and the general performance evaluation. Section 2.3 focuses on what is person re-id and 

how fits the overarching concept of biometric modalities and use cases. Similar fields that overlap 

the concepts of person re-id are also illustrated. Also, it presents a general person re-identification 

(re-id) framework to address specific scenario-based challenges, details a number of ways of 

representing and classifying subjects and outlines deep learning methods and common evaluation 

metrics for the field. Section 2.4 reviews the concept of Body Segmentation in recognition systems, 

elaborating different techniques of segmenting individuals. Section 2.5 concludes the literature 

review, states the opening research questions and recommends areas for further development.  
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2.2 Biometric Systems 

A biometric system can be either a verification system or an identification system [13]. In a 

verification configuration, the subject claims a particular identity, and then the system compares 

the provided data with the stored template data of the claimed identity. This means that the 

verification process is a one-to-one mode, which tests the authenticity of the claimed identity. 

Biometric systems that operate by verification are common and examples include verifying the 

face [14], [15], fingerprints [16], [17] and iris [18], [19]; the first two modalities are widely used 

in the market. 

For identification-based configurations, the system recognises a subject by selecting the best match 

between the provided data and the data of each enrolled subject in a dataset. Thus, the identification 

process is considered a one-to-many comparison process for identifying a subject, without the 

explicit claim to an identity. Identification biometric applications are mostly relevant to forensic 

security [20]. Building security and door access control systems can recognise subjects by their 

voices [21]. The face is another biometric that can be used in identification [22] for law 

enforcement and surveillance. 

The performance of verification and identification systems is indicated using the receiver operating 

characteristic (ROC) curve. A ROC curve represents error rates, including false accept rates 

(FARs) and false rejection rates (FRRs). An FAR reflects a mistaken match of two biometric 

samples belonging to different persons; an FRR reflects the mistaken rejection of two biometrics 

samples belonging to the same person. 

Person re-identification (re-id) is another recent topic in biometric systems, which is the main 

focus of our research. A detailed survey on person re-id is conducted in Section 2.3 of this chapter. 

 

2.3 Person Re-id 

Public areas (such as airports, train stations and shopping malls) has received increased attention 

within computer vision research with the aim of enhancing the security levels. Installing and 

utilising CCTV networks within non-overlapped field of view provides enhanced coverage. These 

cameras provide an enormous amount of video footage that conventionally is manually monitored 
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by enforcement officers. As human monitoring is error prone through factors such as fatigue, 

automated analysis of these videos might improve or support the accuracy of surveillance. 

The person re-id process, which is a relatively new area of research in computer vision and 

intelligent surveillance, is one method for automating CCTV image monitoring and analysis. As a 

biometrics system, person re-id can be defined as the process of re-identifying people observed in 

a camera’s FOV by matching them with previously observed people’s identities using their 

signatures. When the newly observed person does not exist in the enrolled identities (i.e., watch 

list), this person’s identity is automatically enrolled in the previously observed people’s list. 

Therefore, this list is an evolving dataset, as it adds new identities every time the system observes 

a new person. A person re-id application primarily involves two main procedures: first, the 

methodological representation of the person in a camera’s FOV (i.e., constructing the signature); 

second, the evaluation of similarities between the person’s digital representation and those of 

previously observed subjects in non-overlapping camera networks that have no common FOV.  

When a re-identified (i.e., previously identified) subject disappears from a camera and re-enters 

the FOV of the same and/or another camera, the person re-id application should be able to 

determine that the subject had been observed previously and match the subject’s identity with the 

existing identity utilising the subject’s extracted features, or signatures. Therefore, the matching 

process, i.e., determining what previously observed identity is closest to the identity of the person 

being observed (who had already been seen), operates according to similarities in the features (or 

digital representations) that have been extracted from a single image (image-based approach) or 

multiple images (video-based approach).  

To highlight, the main differences between identification and re-identification applications are a) 

the identification system dataset contains a finite set of subjects, such as fingerprints and DNA 

datasets, unless manually updated, while the person re-id system dataset continually evolves as 

newly observed subjects are automatically added; b) identification configuration is a one-to-many 

process, as previously explained, while person re-id is a many-to-many process that compares all 

observed subjects with enrolled identities in an attempt to find a match.  

A close inspection of people analysis applications, especially person re-id, tracking people, and 

query-based image retrieval, may blur the boundaries between each. These concepts share several 
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constraints and interfere with each other. Tracking, for instance, uses consistent temporal 

information, which means appearance continuity is required to follow a subject’s movements from 

one frame to another, mainly to predict the subject’s next moves [2], [6], [7], [8]. This prediction 

is primarily based on the temporal information [23] and assumes that the FOV overlaps across 

cameras. In contrast, the purpose of person re-id is to match subjects’ identities, even if there are 

time delays and/or FOV changes [20].  

Image retrieval also shares a similar range of processes with person re-id [23]; they both seek to 

identify possible instances of a particular person. In fact, there are some approaches that can be 

applied to both image retrieval and person re-id [24]. However, image retrieval mainly focuses 

on searching for a digital image in a dataset based on a query of another digital image or semantic 

query provided by an end user, while person re-id continuously compares all image streams with 

existing previously recognised identities. Therefore, in image retrieval, all possible queries are 

learnt during the training process, whereas in person re-id, the application should learn about the 

similarity metrics of any given pair of image instances [12].  

 

2.3.1 Challenges of Person Re-identification 

In general, a system is able to recognise a person as long as they stay in the same camera FOV and 

when the subject position, illumination and background conditions are known to the system. 

However, in situations where the system is designed for a non-overlapping camera network, a 

number of issues may arise, mainly concerning how the system identifies whether a subject in the 

current camera is the same subject seen previously in another camera of the same network. The 

process of continually identifying people who are spread over time and location is called person 

re-id. Therefore, automatic person re-id for public surveillance systems poses many problems [12], 

as illustrated below. 

Re-id by humans is a straightforward action that is easily carried out on a daily basis. Humans are 

able to easily extract the features based on a person’s appearance (e.g. face, clothing, hair, voice 

and gait) and later re-identify them based on their descriptions. Re-id systems, however, require 

unique features extracted from the subjects in the scene, and an accurate corresponding signature 
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matching. Therefore the process of automating person re-id poses many issues, which are mainly 

related to either the descriptors and/or the similarity metrics [12], [25]. 

Any person re-id system can be divided into three main stages: (a) detecting the subject and 

segmenting the body into the identified sections [25], (b) building unique signature on the selected 

part(s) [26] and (c) learning a similarity metric which minimises intra-class and maximises inter-

class differences.  

Figure 2.1 illustrates a general framework of an automated person re-id system. Various tasks must 

be completed during each phase, which makes automating each stage of the process more 

challenging.  

 

 

Figure 2.1: Person re-id general framework 

 

Stage 1. In the first stage of a typical automated person re-id application, the subject must be 

detected, and then segmented into the concerned parts. The purpose of the detection process is to 

identify people instances in a digital image (single shot) or video stream (multiple shots). Person 

detection is a research field with unique issues and challenges; thus, it has been studied for decades 

[27], [4], [28], [2]. Automatic subject detection is a fundamental process to introduce an applicable 

re-id system to be applied on the field. However, the automatic detection process is a substantial 

field on its own in computer vision that could affect person re-id performance. Therefore, the 

research in person re-id tends to avoid the involvement of automatic subjects detection as it 

interferes with person re-id negatively. Instead, the studies in person re-id tend to manually detect 

the subjects in the image frames. The other process conducted during this stage is body 
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segmentation, which is performed only if a part of the body will be included in the representation 

and feature extraction. Body segmentation is discussed in detail in section 2.4 (Body 

Segmentation) of this chapter. 

 

Stage 2. The second stage of the re-id system is to extract features and to build a unique signature 

for each subject in the scene. The appearance based features of a person is the most obvious 

features that can be extracted from a video sequence, for instance, colour, texture and shape. 

However, the scene illumination, human pose and different camera characterisations in the same 

camera network may negatively affect these features performance. Clothing is another widely 

known appearance based descriptor, which can be a distinctive feature of short-period systems; 

thus, it may not be very suitable for long-period systems, which compare correspondences that are 

captured days or months apart. Besides, it is possible that people are dressed alike, which may lead 

to assigning the same features to different people. Additionally, the uncontrollable environmental 

conditions, such as subject occlusion, camera resolution, and viewing angle, are other challenges 

that need to be taken into account. Generally speaking, for any feature (or digital representation), 

factors exist that lead to maximising intra-class differences, which negatively affects the matching 

process between one subject’s instances.  

 

Stage 3. In the final phase of person re-id, subjects’ digital representations or descriptors are 

compared to find the closest match, with a view to generating the identities ranked list. Even if the 

features are effectively extracted, simultaneously matching a large number of subjects with their 

identities from a camera network is a significant task, as the features are extracted under different 

circumstances, e.g., locations and time. Also, as the number of subjects in the scene increases, the 

features specificity decreases, leading to an increased possibility of false matches. 

 

It has only been a decade since attention to person re-id applications has been increasing, and, 

recalling the above-mentioned issues, person re-id remains an unresolved challenge in surveillance 

systems and computer vision. The Sections bellow review the state-of-the-art of representation 

approaches and similarity metric learning methods. 
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2.3.2 Evaluation Metrics 
Before reviewing the feature extraction methods (i.e. representation) used for person re-id 

applications in this section, two evaluation metrics are discussed, as the evaluation metrics are 

used with each representation method to illustrate its performance accuracy.  

The most common evaluation metric used with re-id systems to evaluate and compare 

performances is the cumulative matching characteristics (CMC) curve [29]. CMC curves 

accumulate the number of the true re-id for each rank and show them on order. The CMC 

calculation of the true re-identifications in rank 𝑖 is: 

 

𝐶𝑀𝐶(𝑖) = 	∑ 𝑡𝑞(𝑟),
-./      (2.1) 

 

where 𝑡𝑞 is the true re-identified queries at rank 𝑟. For simplicity, a brief example is presented 

next: given 𝑛 identities (classes) and one frame including unknown identity subject (i.e. test frame) 

that belongs to the 𝑛 identities. This frame is compared with each class and produce one similarity 

score, where it estimates the similarity between the unknown subject and the tested class. The 

comparison of the tested frame with all the classes generates a list of 𝑛 scores, one score for each 

class. Then the list is arranged in descending order, where the larger score means the more 

similarity between the tested frame and the tested class and vice versa. This means that the score 

of the most similar identity is located at the beginning of list which called first rank. Also, the 

score of the least similar identity is located at the end of the list which called 𝑛th rank. Therefore, 

this list called rank list. Then, the scores in the list are replaced with their corresponding identities. 

Then the identity in each rank is compared with the ground truth identity of the subject in the test 

frame. If they match, the true match counter of the current rank increases by one. If they do not 

match, then the true match counter of the current rank remains the same. The equation (2.1) applies 

the same concept of the given example but on all the frames in the test set instead of one frame.   

One main advantage of CMC curves is that it can show the number of true re-identifications across 

all ranks. This allows the CMC curve to indicate the steep of the curve, illustrating the quality of 

the performance, where a steeper curve shows a better performance. Another evaluation metric 

that has recently been used is the mean average precision (mAP) evaluation [30]. This evaluation 
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metric is used with CMC in cases where the ground truth is more than one sample. In these cases, 

mAP evaluates and considers the distances between the true matches where CMC fails to do so.  

 

2.3.3 Feature Extraction 
Appearance-based approaches are widely used in the literature to establish a similarity between 

correspondences [12]. These approaches extract features from the subjects’ appearances, such as 

clothing colour, texture and type. In the next subsections, number of appearance-based model 

features are reviewed.  

 

2.3.3.1 Colour and Texture 

Colour spaces represent the image colour as a numerical value of certain bases. RGB [31] 

represents the red, green, and blue. Lab [32] expresses lightness, while a and b denote green–red 

and blue–yellow colour components. YCbCr [33] is another colour space, where Y stands for the 

luminance, Cb for the blue difference, and Cr for the red difference. HSV [34] represents the hue, 

saturation, and lightness of the RGB. These well-known colour spaces have been widely used in 

person re-id.  

In [35], an experiment was conducted on VIPeR dataset to illustrate the discrimination level of 

these colour spaces. The VIPeR dataset includes two cameras, each of which provides one image 

for each subject, with 632 total identities. In order to evaluate the performance of different colour 

spaces, a random forest evaluation method was built for each pair of images. This method evaluates 

the similarity of each pair images using the features of 6 colour spaces, namely RGB, normalised 

RGB, HSV, YCbCr, CIE XYZ and CIE Lab. The similarity function was then learnt for those 

images in order to match them.  

Table 2.1 shows the matching rate at the 1st, 5th, 10th and 30th ranks. From the table, it can be seen 

that HSV colour space outperforms other colours. However, the accuracy rate of using a colour 

space on its own for re-id application, in general, is considered low, mainly because colour spaces 

between different subjects tend to resemble one another and are affected by illumination. 

Therefore, colour spaces, as a representation, tend to be combined with other kinds of features.  
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Table 2.1: Matching rate (in percentage) of four common colour spaces at different ranks [35] 

Colour spaces  r = 1 r = 5 r = 10 r = 20 r = 30 

RGB 2.50  10.60  16.39  23.67  28.54 

HSV 12.63  26.11  35.10  46.11  54.81 

YCbCr  10.60  23.67  32.69  43.86  52.72 

Lab  11.08  25.73  31.87  39.91  46.87 

 

 

Texture information is another common feature that is combined with the colour features. For 

example, in [36], the HSV colour of the images and a Histogram of Oriented Gradient (HOG) [37] 

of the texture were extracted as combined descriptor in the training and testing sets of images. This 

means that the HSV feature combined with the HOG feature to create one descriptor for each 

image in the training and test sets. The similarity between the probe images descriptors and gallery 

image descriptors are measured using Cosine similarity. The main reason for using the cosine 

similarity is the efficiency of computing the features of high dimensions within a large dataset. 

Figure 2.2 shows the original images and their HSV correspondences. 

 

The experiment was conducted on three datasets, namely, VIPeR, ETHZ(SEQ2), and 

CAVIAR4REID. The ETHZ dataset images were collected from a moving camera with a small 

viewpoint variance. The illumination and scale variance and the occlusion level are considered 

high compared with other person re-id datasets. The CAVIAR4REID dataset images were 

collected from two surveillance cameras at a shopping mall with overlapping FOVs. The dataset 

includes 72 identities, 50 appearing in both cameras and the rest appearing in one of the two 

cameras. The experimental results demonstrated that this method outperformed the PRDC [38], 

ICT [39], and SDALF [40] methods.  
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Figure 2.2: Source images from VIPeR dataset and the  HSV colour space of the same images 

[36] 

 

In [41], HSV was also used with Lab colour space and Local Binary Patterns (LBP) as a texture 

descriptor. The experiment was conducted in VIPeR, PRID 2011 and ETHZ datasets. The PRID 

2011 dataset images were collected from two cameras, A and B; camera A included 386 

trajectories, and camera B included 749 trajectories. Two hundred subjects appeared in both 

cameras.  

Every image in these datasets presents a tight bounding box that only contains one subject. For 

this study, the image was sampled into 8x16 rectangular regions with a size of 4x8 pixels. For each 

rectangular patch, the average value of the colour channel was computed and then discretised to 

the range of 0 to 40. The texture information of each patch was also extracted using LBP. The 

colour and texture values were concatenated as one feature vector. All the vectors from different 

patches were then linked to generate one vector that represented that image. Figure 2.3 shows the 

global feature vector of one image.  
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In the classification stage, it was assumed that the probe image view was different from the gallery 

image views. The similarity between the probe images and gallery images was then computed 

using a proposed learning metric, which returned a gallery image with the smallest distance as a 

potential correspondence to the prop image. 

 

 

Figure 2.3: The image was sampled into rectangles patches. with a global image feature vector 

consisting of fused features (HSV, Lab, LBP) of each patch in the image [41] 

As RGB colour space is sensitive to lighting, in [42], using RGB infrared (RGB-IR) imaging in 

re-id was addressed by matching the RGB image with RGB-IR images. A new re-id dataset, called 

SYSU-MM01, was created, which included RGB images (the original image) as well as RGB-IR 

images from six cameras with 491 IDs. In total, 296 identities were selected for training, 99 for 

validation and 96 for testing. RGB images from cameras one, two and four were given as a gallery 

set and RGB-IR images from the cameras three and six were for probe set. Then, the similarity 

between each RGB-IR probe image and the RGB gallery images was computed. Next, a ranking 

list for each prop image was generated. The experiment showed that, despite comparable results, 

matching RGB images with RGB-IR images was a challenging process. Figure 2.4 shows images 

of RGB and IR taken by day and night.   
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Figure 2.4: The RGB images by day and night and the IR images by night [42] 

 

Finally, the main advantage of using colour and texture as descriptors or distinctive representations 

for person re-id lies in the convenience of extracting them in terms of the detection or the 

computational cost. The main drawback to these descriptors is the negative influence illumination 

has on their performance. Moreover, because people tend to dress differently on different days, 

clothes colour and texture features are more suitable for short-term person re-id applications. 

Combining these features with illumination invariant features and features that do not change over 

extended periods of time, such as body shape features, may be one way to address this issue.  

 

2.3.3.2 Clothes 

Compared with colour spaces and texture information, clothing types as an identifier have not been 

deeply explored [43]. In [44], human’s soft clothing attributes were analysed to explore their 

enhancement in subject retrieval. For human identification, in [45], the body was divided into 

seven different zones; each zone was then assigned different semantic attributes, categorical labels 

and comparative labels (see  Table 2.2).  

The Soton Gait Database [46] was used in this study by developing a web-based system that 

manually collect clothing attributes and comparisons of the subjects appearing in the Soton Gait 



21 
 

Dataset. The attribute collection process was completed by asking a number of users to describe a 

set of subjects from the dataset by selecting one label for each attribute. Using clothing comparison 

for re-id was not sufficient. However, subjects were listed according to one attribute; then, each 

subject was described using these ordered lists. This was accomplished by using soft-margin 

Ranking SVM method [47]. Clothing attributes were then augmented with body soft biometrics, 

which were explored in [48] that included age, gender, ethnicity and skin colour attributes. The 

performance of soft biometrics and clothing attributes augmentation was evaluated using CMC 

curve, which illustrated a 75% accuracy rate at the first rank and a 100% accuracy rate at rank 29.  

 

Table 2.3: Body zones and their semantic attributes, categorical and comparative annotations 

[45] 

 

Clothes have also been used to address the subject viewpoint variation in [49] to aid re-id 

applications. In the same context as in the previous study, an observed subject from multiple views 

is described by a verbal query. This query is used as a description to the probe image, which is 

then used to compare it with the gallery image descriptions. It should be noted that the probe image 

viewpoint is not included in the gallery image viewpoints. The query is constructed based on a 

group of clothes related traits integrated with other traits as shown in Table 2.4. The tradSoft in 

this table are the traditional soft biometrics including age, ethnicity, sex ans skin colour. The 

softBody traits are 13 body soft biometrics shown in Table 2.5 and the four tradSoft. The tradCat-

21 traits are the categorical labels of the 21 traits in Table 2.3 combined with tradSoft. The softCat-

21 traits are the categorical labels of the 21 traits in Table 2.3 combined with softBody. tradCmp 
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and softCmp are the seven comparative labels in Table 2.3 combined with tradSoft and softBody 

respectively.  

Figure 2.5 shows one query image example and its correct retrieval image at the first rank and 

another query image with its correct retrieval image at the 7th rank. The CMC curve shows that 

the categorical clothes group (SoftCat-6), including Head coverage, Sleeve length, Leg length, 

Neckline size and Heel Level, outperforms the other comparatively and categorically based 

groups. SoftCat-6 achieved 0.94 at the first rank, when it was combined with soft body biometrics, 

consisting of age, gender, ethnicity and skin colour attributes. 

 

Table 2.4: Different groups of clothes related traits [49] 

 

 In the same experimental context, the clothing attributes were fused with face and body features 

for person recognition in [50]. Clothes, face and body traits (i.e. age, gender, ethnicity and skin 

colour attributes) were collected using the web-based system by asking the participants to compare 

and categorise the attributes the subjects appearing the Soton Gait Dataset. In the implementation 

stage, the Euclidian distance was used between the prop image collected attributes and all gallery 

images collected attributes. For recognition, the image with the smallest distance was considered 

the correspondence identity to the probe image. For verification, the target gallery image was 

required to meet the predefined threshold or was rejected otherwise. For evaluation, Figure 2.6 

shows the individual performance of the categorised and comparative body, face and clothes 

attributes. The three different modalities are then fused under two scenarios, shown in Figure 2.7. 
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Figure 2.5: Two different queries and their correct retrieval ranked images [49] 

 

 

Figure 2.6: The separate performance of three different modalities, where (a) is the ategorical 

Body, Caterogical Face and Categorical clotheing attributes and (b) is the Comparative Body, 

Comparative Face and Comparative Clothes attributes [41]. Categorical and comparative labels 

can be found in  

 

Table 2.3. 
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Figure 2.7: The performance of fusing the categorical and comparative attributes listed in Table 

2.3 with the face and body traits using the probability density by Bayes theorem : (a) Fusion of 

the body, face and clothes (b) Fusion of body and clothes only without the face [50] 

 

In general, these studies showed that clothing attributes can be used in association with other soft 

biometrics for human identification performance enhancement. Clothes attributes, however, have 

been interpreted based on users’ manual observations, which means that the labels have been 

compared and categorised by users. Therefore, clothes attributes are not yet suitable for 

implementation for person re-id in public areas, as person re-id requires an automated 

representation of all subjects in the camera’s FOV. Consequently, the clothes attribute needs to be 

recognised, extracted, and analysed automatically so that it can be integrated with other 

appearance-based features for person re-id.  

 

2.3.3.3 Body shape 

Describing the shape of the body is another soft biometric, which has been used as a digital 

representation to identify subjects of interest. One way of arithmetically describing a shape is to 

use one of the wide range techniques of shape descriptor. Shape descriptors, in general, have been 

reviewed in [51] and [52]. However, no evidence has been found in the literature of any technique 

other than the Shape Context (SC) shape descriptor and Fourier descriptor (FD) (of shape 

descriptors) being used for person recognition purposes. The studies examining these methods are 

discussed in this subsection.  
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For person recognition, there are only a few studies that used shape descriptors to represent the 

human body shape. For example, in [53], a person was recognised through Millimetre Wave 

Imaging (mmW), using a combination of body shape description and texture information. The 

recognition system is illustrated in Figure 2.8. Texture representation was implemented using 

Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG). Shape was represented 

across a number of processes: (a) Contour Coordinate (CC) is the baseline feature that gives the 

coordinates of the pixels, located at the edges of the silhouette. It can be defined as: 𝐶𝐶(𝑛) =

(𝑥2, 𝑦2), 𝑛 = 1, … , 𝑛77 − 1, where 𝑛77 is the number of pixels; (b) Row and Column Profile (RCP) 

are computed as the number of pixels in the row and the column, which belong to the silhouette; 

(c) Shape Context (SC) shape descriptor describes each point at the edge by the angle in accordance 

with the distance to all the other points. The number of radial bins and theta bins are two parameters 

that should be pre-determined. Shape context was introduced in [54].  

 

 

Figure 2.8: The system in [53], showing the fusion of the texture and shape descriptions 

 

For matching, Dynamic Time Wrapping (DTW) and Modified Hausdorff Distance (MHD) were 

used, as they are two matchers that measure the similarity between the two sequences. The results 
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showed that the texture-based feature always outperformed the shape-based feature in this 

particular study. However, after configuring different fusion scenarios, the best results were either 

Contour Coordinate (i.e. the baseline feature that gives the coordinates of the pixels, located at the 

edges of the silhouette.) with MHD or Row and Column Profile (i.e. computed as the number of 

pixels in the row and the column, which belong to the silhouette) with Dynamic Time Wrapping 

(DTW), reaching EER = 1.50%. Shape context (SC) descriptor was also used in [55], using Canny 

edge technique to detect the edges.   

Fourier Descriptor (FD) [56] is another shape descriptor that has been used as a shape 

representation for person recognition. FD is a contour-based descriptor, which is translation, scale 

and rotation invariant. In [57], FD was one of the features that was used to explore body shape 

from millimetre waves (mmW) attained  images for person recognition. For each pixel located at 

the edge of the subject body shape, the coordinate (𝑥2, 𝑦2) was attained. The FD 𝑓(𝑙) was obtained 

thus: 

𝑓(𝑙) = 	∑ 𝑢2 exp ?−𝑗
AB
2CC
	𝑙𝑛)D , 𝑙 = 0, 1,… , 𝑛77

2CCF/
2.G − 1  (2.2) 

 

where	𝑢2 = 	𝑥2 + 𝑗𝑦2 and 𝑛77 is the number of pixels located at the shape contour. DTW and 

MHD were also used as distance-based matching techniques. Although the results showed that FD 

performed better with DTW than MHD, the performance of the FD with SVM classifier 

outperformed DTW and MHD. The results also indicated that the accuracy of FD was the lowest, 

compared with the other features, such as contour coordinate CC, row and column profile RCP 

and shape context.  

The experiment was conducted based on two scenarios: the first scenario involved either a frontal 

head pose or a lateral head pose, and the second, the cross-pose, included two poses for the purpose 

of examining the features against subject pose variations. For frontal side body orientation, the FD 

shape descriptor obtained at the first rank 48.50%, 36.50% and 54.00% for DTW, MHD and SVM, 

respectively. For cross-pose orientation, the results were 54.00%, 34.00% and 52.50% for DTW, 

MHD and SVM, respectively.  
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The accuracy of the body shape description was fused with that of other features for person 

identification in the three studies noted, which were the only experiments that used body shape 

descriptors for identification purposes. The results showed an initial consideration of what the 

performance of the body shape description would be in human identification. However, both 

studies used mmW images, which are high quality images. Therefore, there is a gap in the literature 

where experimental studies that explore the performance of using the body shape description as a 

digital representation on images that simulate the CCTV images’ quality is lacking. Consequently, 

the performance of using shape descriptors for person re-id has not been established.  

 

2.3.3.4 Other body traits 

Apart from the above-mentioned soft biometrics, there are other appearance-based traits that can 

be extracted at a distance (e.g. human height and weight). Estimating the height and weight is 

explored in soft biometrics field by either a numerical scale estimation or a list of categorical labels 

(i.e. very tall, tall and short).  

For example, [58] improved an approach based on [59] for body-based measurement which 

predicted a score for the human silhouette height and weight. The improvement included 

predicting a scale height and weight from a single view and low-rate frames. After extracting the 

silhouette, they calculated the height of a subject from a 2-D single view frame thus: 

𝑂J =	?
JK
L
D ∗ (𝑋O −	𝑋P)    (2.3) 

where 𝐻R	is the predefined parameter of the camera height, and 𝑋O and 𝑋P are the top and bottom 

of the silhouette boundary, respectively. Considering that 𝑋O and 𝑋P are points in different planes, 

their projection is the vanishing point 𝑉. The distribution of the estimated height around the actual 

height is shown in Figure 2.9.  

On the other hand, the researchers in [58] and [60] highlight that weight estimation methods are 

very limited, compared with height. In addition, the precise estimate of human weight is not always 

possible, mainly because weight is significantly affected by noise. To estimate weight, the subject 

silhouette was divided into head, torso and leg zones. Then, a further 12 features were calculated 

in addition to 𝑂J,	which represents the subject height. Figure 2.10 shows the 13 different regions 
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that were computed for calculating weight. The proposed height and weight methods were 

implemented on a private dataset, consisting of 80 subjects. The height method yielded a 1.57 cm 

error and a 3.6 cm standard deviation, which outperforms the techniques presented in [61]–[64] in 

either the error rate or the frame rate. In terms of weight, the error was 4.66 kg. 

In [65], the same methods proposed in [58] were integrated with facial shape feature and skin 

colour descriptor for the purpose of human identification. The schematic proposed system is shown 

in Figure 2.11. For each feature, a single descriptor was generated, combining all the information 

from several frames of the same subject, when they were in the camera’s sight. Consequently, the 

matching process was conducted separately for each feature to generate the similarity scores. Then, 

the scores were fused using a number of fusion techniques, which included the sum rule, weighted 

sum, fuzzy logic, Bayesian and SVM.  

 

 

Figure 2.9: The distribution of the estimated height around the actual height using the method 

presented in [58] 
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Figure 2.10: Collections of features for estimating weight [58] 

 

 

This experiment was conducted on Chokepoint dataset [66], which is considered the only publicly 

available face surveillance dataset (see [65]). The performance was evaluated in three scenarios, 

which included evaluating (a) individual features performance, (b) different feature combinations 

and (c) performance of multiple score fusion. The results of the single features showed that the 

height performance outperformed the weight and skin colour descriptors’ performance by a 30% 

first rank accuracy rate for height and 14.2% for weight and skin colour. However, the result of 

the facial shape descriptor is double that of height with a 64.3% accuracy rate at first rank. In terms 

of combining different features, the results showed that merging facial shape, height and weight 

descriptors outperforms other combinations. Figure 2.12 shows the performance of different 

descriptor combinations as well as the performance of different score fusion techniques. 
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Figure 2.11: Facial shape, skin colour, height and weight features fusion system framework 

proposed in [65] 

 
Figure 2.12: Left, combining different features, F = Facial, S = Skin colour, W = Weight, H = 

Height. Right, the performance of different score fusion techniques [65] 

 

Another way of estimating a numerical height value is through camera calibration and its intrinsic 

parameters. Several studies have introduced and improved such approaches (see [67], [68]). On 

the other hand, the human height, weight and other soft biometrics can be measured using a 

categorical label. For example, [69] examined a number of soft biometrics in short, medium and 

far distances between the subject and the camera. Each trait was manually annotated using one of 

the labels in Table 2.5. The annotation process involved asking an annotator; the annotations were 

subsequently fused with the face recognition system, which showed comparable performance 

enhancement.  
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In [70], a number of soft biometrics were automatically extracted from a single shot (i.e. one 

frame), which included height, shoulders and hips’ width, arm’s length, body complexion and hair 

colour. For each soft trait, there are several categorical labels (see Table 2.6). The dataset was used 

in [70],was Southampton Multi-Biometric Tunnel Dataset [71], containing 222 subjects. The 

height was extracted by measuring the distance between the top and bottom points of the y axis of 

the extracted subject silhouette. To evaluate performance, the ground truths were manually 

extracted by using one height label, which was either short, average or tall; these were then 

compared with automatic category of the same subject. SVM was used as a classifier to determine 

whether each subject was short, average or tall or otherwise. The performance evaluation showed 

promising results; the accuracy rate for height was 94.6%, with 24 (out of 222) wrongly classified 

results. The categorisation of height outperforms that of all the other soft traits included in this 

study.  

Generally, the studies presented showed that height and weight features are extracted based on the 

body shape of the subject. The literature showed that these features are represented as a scale 

number or by assigning a categorical label (i.e., average or medium). Most of the studies focus on 

improving the feature extraction methodology more than exploring the influence of using these 

features as identifiers for person re-identification. No evidence was found to indicate the prior use 

of height and weight as subject representations in any person re-id applications, individually or 

along with other features. A number of surveys, however, have been conducted on soft biometrics 

(e.g., [60], [72], [73]). 
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Table 2.5: Soft biometrics and their categorical labels (see [69]) 
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Table 2.6: Soft traits with their categorical labels [70] 

 
 

 

2.3.3.5 Behavioural cues  

Human gait is one of the most common behavioural biometrics. It is a valuable feature of person 

re-id, mainly because a deliberate change to it will look unnatural [25]. Although the walking 

speed, outfit type and mood are likely to affect gait, their influence on gait is consistent over short-

term re-id processes [25]. Gait techniques, are challenging traits because analysing gait requires a 

clear view side of a subject for at least one or two steps [25].  

In [74], the gait features were integrated with appearance-based features. The gait feature was 

extracted using Gait Energy Image (GEI), by drawing on the silhouettes’ sequences from different 

angles separately. The dataset used in this study was CASIA Dataset B, which was originally a 

gait dataset. However, this dataset has been used recently for person re-id applications. The image 

sequences of this dataset were collected by 11 overlapped cameras with different viewing angles. 

Figure 2.13 shows the GEI of the sequences from the 11 views. GEI was combined with HSV, as 

a colour descriptor, and Gabor filter, as a texture descriptor. Two different frameworks were used 

in this experiment. The first framework included score-level fusion, which fused the distances 

originating from the gait and appearance features. The second framework included feature-level 

fusion, which fused the features before obtaining the distances. Figure 2.14 shows the different 

flows of the frameworks. The performance of the method presented in [74] was implemented on 
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two frameworks over the three scenarios and compared with a number of other similar studies, 

such as SDALF [75], ELF, ITML, and LMNN [76].  

 

 

Figure 2.13: Gait Energy Image (GEI) of sequences of silhouettes from 11 different angles [74] 

 

 

 

Figure 2.14: (a) Score-level fusion framework; (b) Feature-level fusion framework [74] 

 

Several experiments were also conducted, using closed set and open set person re-id approaches. 

The closed set means that the gallery set size is fixed, whereas the open set person re-id means that 

the gallery set size evolves by time simulating the real scenario of person re-id. Figure 2.15 and 

Figure 2.16 show the CMC curves of the experiments conducted on closed and open set 

respectively and with the three scenarios namely bag, clothes and normal.  
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Figure 2.15: (a), (b) and (c) are closed set person re-id CMC curves of the implementation of 

feature level fusion and score level fusion, compared with a number of other techniques on ‘bag-

bag’, ‘clothes-clothes’ and ‘normal-normal’ scenarios, respectively [74]. 
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Figure 2.16: (a), (b) and (c) are the open set person re-id CMC curves of the implementation of 

feature level fusion and score level fusion, compared with a number of other techniques on ‘bag-

bag’, ‘clothes-clothes’ and ‘normal-normal’ scenarios, respectively [74]. 
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In  [77], the gait feature was also extracted using GEI. However, the distances were matched, using 

improved version of multi-dimensional DTW, called Multi-Dimensional Time Shift Dynamic 

Time Wrapping (MDTS-DTW). Instead of matching the whole two sequences in DTW, MDTS-

DTW was developed to iteratively and partially match the sequences. Figure 2.17 shows an 

illustration of MDTS-DTW, where 𝑋T is the probe sequence and 𝑋U is the gallery sequence. In 

this method, the distance between 𝑋Tand 𝑋U is computed at every time point Δt. This experiment 

was conducted on the PRID2011 and iLIDS-VID datasets. iLIDS-VID dataset consists of 300 

subjects recorded from two non-overlapped cameras in an open public area. The performance of 

this method was compared with other person re-id methods, known as SS-SDALF, MS-SDALF, 

ISR, eSDC and RDL. The performances shown in Table 2.7. 

 
Figure 2.17: Overview of MDTS-DTW, proposed in [77] 

 

Table 2.7: Comparing the performance of MDTS-DTW with other re-id methods [77] (in 

percentage) 
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Behavioural cues, gait features especially, are among the most used and investigated features in 

person re-id applications. The convenience of extracting these features is one reason for their 

popularity, as they can be extracted at a distance. Moreover, their performance efficiency is more 

accurate compared to colour, texture, and clothes features. Gait feature is one of the features that 

can be extracted based on the body shape, along with height, weight, and body shape description. 

Gait is the only trait out of all of these that is exploited for person re-id application. 

 

2.3.3.6 Temporal cues 

Entry, exit time, locations (i.e. positions), velocities and transition times between cameras are 

examples of temporal cues, used as enhancement for human re-id by either reducing the number 

of correspondences (limiting the size of the gallery set) or extracting the features for re-id.  

Assuming that humans in public areas follow the same path, the researchers in [78] and [79] 

developed a tracking system that exploits the entry and exit locations, using the velocities and the 

transition times to establish a link between the subjects’ inter-cameras. The system used camera 

topology rather than camera calibration. In addition, [80] used people trajectories to specify the 

regions of interest in the non-observed areas within the FOV of the cameras. This helped limit the 

number of the paths that the subjects might take, constraining the number of areas, in which the 

subjects would reappear. Figure 2.18 shows subjects’ trajectories evaluation results by detecting 

the existence and the absence of people on two camera frame streams.  

In general, less focus was placed on exploring the performance of temporal cues (i.e., entry and 

exit time, locations, velocities, transition times, and trajectories) in identification applications. 

Exploiting temporal cues for person re-id applications and their influence on performance can be 

a future topic of study to enhance the field.  
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Figure 2.18: Evaluating people’s trajectories from Camera 1 (Blue) and Camera 2 (Green), 

where the dotted lines are the non-observed areas [80] 

 

2.3.4 Distance Metrics and Classification for Similarity Estimation 

In the previews section 2.3.3, the focus was on the second stage of person re-id, shown in Figure 

2.1. It discussed what and how to represent and extract unique features from people who are 

moving in the FOV of the non-overlapping camera networks. This Section focuses on the third 

stage of person re-id, which includes the methods and techniques that have been used to compare 

the representations and match the most similar correspondences. 

Number of distance metrics have been used for different types of biometric applications, such as 

the sum of the quadratic distances [81], the sum of the absolute differences[82], [83], the 

correlation coefficients [84], the Bhattacharyya coefficients [85] and the Euclidean distances. 

However, these metrics share non-flexibility, which means that they deal with all the fed features 

equally, discarding the less useful features. In re-id, however, non-flexibility may lead to 

considerable limitations [25].  
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Therefore, Mahalanobis distance metric is a commonly used distance metrics in person re-id  

applications [25]. The advantage of Mahalanobis metrics is that it calculates and considers the 

correlations between the provided features’ vectors. Another popular metric learning method in 

person re-id is KISSME [86] which was based on Mahalanobis distance metric. In KISSME, a 

likelihood ratio test was formulated to determine whether a pair of vectors are similar or not. Large 

Margin Nearest Neighbour (LMNN) [76] is another learning method, which sets up a boundary 

for the match pair’s neighbour, assuming that they mostly belong to the same class. Inter-view 

Quadratic Discriminant Analysis (XQAD) [87] is another distance metric which is wieldy used 

for person re-id. XQAD learn a low dimensional subspaces using inter-view quadratic discriminant 

analysis. In [88], the optimal matching measures between a prop and gallery images is learned  a 

Relative Distance Comparison model (RCD). RCD maximises the probability of the true match 

pairs with a relatively smaller distance in a soft discriminant manner. Others also use learning 

methods such as Support Vector Machine (SVM), k-nearest neighbour KNN [89], structural SVM 

[90] and AdaBoost [91]. 

 

2.3.5 Deep Learning Person Re-id Systems 
The recent direction of person re-id inclines towards deep learning methods instead of the general 

framework, shown in  

Figure 2.1. Conventional Neural Networks (CNN) as deep learning models, were first used in re-

id in 2014 in [83] and [93] (see [94]). These models teach deep learning features and classify 

subjects according to an end-to-end model. One major issue with CNN models in re-id is the lack 

of training data; this is mainly because datasets mostly provide only a few numbers of images per 

identity. Therefore, re-id deep learning models focus on the Siamese model [95], which only uses 

double or triple images as input.  

In [93], Siamese CNN (SCNN) image input was horizontally divided into three parts, including 

head, body and leg. The parts underwent two convolution layers, two max pooling layers and a 

full connected layer. The fully connected layer fused with the output to generate a vector for the 

original input image. The similarity between the vectors was computed by cosine distance. Figure 

2.19 shows the SCNN used in this experiment. The experiment of using the Siamese CNN model 



41 
 

for person re-id was conducted in two manners: (a) training and testing, using the same dataset 

(e.g. VIPeR), which is actually a Single dataset and (b) using Cross datasets, using CUHK Campus 

for training and VIPeR for testing. The CMC of the performance of SCNN on Single and Cross 

datasets can be seen in  

Figure 2.20. The performance of SCNN is compared with a number of state-of-arts of the 

representation and matching methods as shown in Table 2.8.  

 

 
Figure 2.19: Siamese SCNN model presented in [93] 

 

 

 
Figure 2.20: (a) Siamese SCNN performance on single dataset; (b) Siamese SCNN performance 

on multiple dataset [93] 
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Table 2.8: Performance comparison of several re-id methods and proposed methods [93] 

 
 

Another experiment that used SCNN for person re-id is presented in [92]. The difference between 

this experiment and the previous experiment is that the responses of the two images from the 

convolution layers are multiplied, using a patch-matching layer.   

In [96], the Siamese model improved cross-input neighbourhood variations by comparing the 

features of the first input image with all the close locations in the other input image. Then the 

output of the convolution layers were subtracted, using patch-matching layers to find the similarity.  

In [97], long short-term memory (LSTM) models are integrated into the Siamese network. In 

LSTM, the image segments are processed sequentially in order to memorise the spatial 

connections, which maximise the discrimination of the deep features.  

 

2.4 Body Segmentation 

Methods and techniques that have been developed to arithmetically describe people in public 

places tend to do so using the entire body or part of it. Dividing the human body into respective 

parts can be achieved through number of approaches. The first way involves partitioning the 

bounding box of the subject into fixed proportions [98]. In [99], the body was divided into three 

regions (i.e. head, torso and legs), using two asymmetrical axes. The first axis that divided the head 

and torso was determined by finding the maximum differences between the numbers of the pixels 

in two rectangles. The second axis that divided the torso and the leg parts was identified by the 

maximum colour differences. The torso section and leg sections were vertically partitioned into 
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left and right parts by weighting the pixels in each side. Figure 2.21 shows the proposed approach 

of body partitioning.   

 

Figure 2.21: Body partitioning using the proposed method in [99] 

The other way of segmenting the body is a spatial-temporal segmentation method that was 

developed in [26] to partition the subject’s silhouette using their edges. This method is invariant 

to clothes wrinkles and lighting variations. The human detection HOG technique was also used for 

the detection of body parts in [100] and [101] as shown in Figure 2.22. Similarly in human 

detection, the HOG method is trained on positive and negative samples of body parts.  

 

 

Figure 2.22: Examples of using HOG method for segmenting the body in [92] and [93]  
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2.5 Summary and Discussion  

This research involves investigating the accuracy of using body shape for the purpose of person 

re-id; it also intends to probe the stability level of body segment shapes. Because viewing angle 

plays a major role in influencing the individual representation of a subject, the impact of this factor 

upon the shape of the body parts is also examined. This experimental study involves a number of 

research areas, such as biometric systems, feature extraction and representation, similarity 

estimation methods, and body partitioning techniques. This literature review chapter addresses 

each of them.  

The first section of this chapter outlines the biometric systems categories; it focuses on person re-

id biometric systems. In the second section, a detailed survey on person re-id is presented, which 

includes evaluation metrics, representation techniques, distance metric methods, and deep learning 

methods in person re-id. The final section is concentrated on the number of body segmentation 

applications used in the literature.  

This literature review illustrates that the person re-id field is an underdeveloped research area, 

compared with the face and fingerprints verification methods and the enormous investments that 

they receive (see section 2.3.1 for performance challenges). As the first publication that 

independently worked on person re-id was [26] in 2006 and deep learning was only applied to it 

on 2014 (see [94]) 

A single situation for developing a person re-id system that addresses all the challenges does not 

yet exist. Most of the systems noted in the literature that use representation and similarity 

estimation tend to address one aspect of the problem, leading to a lack of end-to-end systems. The 

recent trend of person re-id towards exploiting deep learning methods can be interpreted as an 

attempt to address end-to-end systems.  

In general, the main characteristic of person re-id is the evolution of the gallery set, where the 

number of the enrolled subjects is not fixed. Therefore, the enrolment process is a fundamental 

step in a person re-id application. However, little attention has been paid to this stage of 

implementation in the literature. In addition, there are many datasets that were especially designed 

for person re-id implementation. However, every dataset was created for a certain investigation, 
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meaning there is a lack of datasets that are publicly available and can provide a wide range of 

appearance-based features’ ground truths.  

In terms of the person re-id approach, which involves feature representation and similarity 

estimation, studies on the state-of-art systems primarily focused on features such as colour, texture, 

and gait, while integrating clothing attributes with other person re-id traits received less attention. 

In addition, the body shape-related features, such as body shape description, height, and weight, 

have not been explored in any person re-id systems. These features require experimental study to 

examine the role of human body shape in person re-id and to inspect the effectiveness of body 

segments in person re-id with respect to viewing angle. Therefore, focus has been placed on these 

aspects in this research study. 
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Chapter 3  

Experimental Framework   

 

 

 

3.1 Introduction 

In this research, the human body shape is defined using the silhouette of the body. A silhouette 

frame in image processing is the image frame of a person that is represented as a solid shape of 

white colour, where the shape contour matches the outline of the subject’s shape. The inside area 

of the silhouette is featureless, and the background surrounding the subject is black. The silhouette 

frame can be obtained from the original, full-coloured image frame by detecting the subject in the 

image frame and assigning all the pixels belonging to the subject’s body shape a white colour. All 

other pixels in the image are converted to black as the background colour. A silhouette frame 

example can be found in Figure 3.1. 

Publicly available datasets were browsed to locate a dataset with images that met four main 

criteria: (a) the same subjects recorded from multiple camera views, i.e., the subjects’ image 

sequences were recorded from different viewing angles; (b) tracking sequences recorded of the 

same subject, i.e., image sequences that recorded a subject from one point in time to another, 

providing followed frames of the subject; (c) original, full-coloured image sequences with their 

corresponding silhouette image sequence frames; and d) the same subjects recorded with several 

different appearances. This chapter provides a review of existing person re-id datasets and 

describes selection of the target dataset based on the above-mentioned criteria.  
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This chapter also presents the calculation of the anatomical average value of the length parameters 

of non-overlapping parts of the human body, comprising Head and Neck, Shoulders, Middle, and 

Lower. The length parameters will be subsequently used to arithmetically segment the human body 

silhouettes into these four non-overlapped sections.  

 

Figure 3.1: Original frame on left, corresponding silhouette frame on right 

This chapter is organised as follows: Section 3.2 presents the proposed framework for the shape-

based person re-id system and a discussion on its stages; section 3.3 introduces publicly available 

person re-id datasets and the rationale behind selecting CASIA Dataset B as the examined dataset 

for this research. Section 3.4 provides a description of the proposed silhouette segmentation 

methodology, including the anatomical average length of each body segment based on multiple 

anthropological studies; in addition, the arithmetic operation that algorithmically divides the 

human body silhouette into the four suggested segments is illustrated.  

3.2 Proposed System 

The proposed shape-based person re-id system investigates the effectiveness of shape descriptors 

of the body and body parts (i.e., segments) of humans for person re-id. Hence, the first stage 

involves pre-processing the silhouette sequences by dividing the silhouettes into the corresponding 

segments, which is called the segmentation process. This leads to exploring the power of each 

segment separately, followed by discovering the factors that negatively affect the discrimination 

of each body segment. The segmentation process is applied mainly by finding the smallest 

bounding box around the subject’s silhouette frame. Then, the anatomical average length of each 

body segment is applied to a arithmetic operation that arithmetically and automatically segments 

all the silhouettes in the selected dataset into the proposed body sections. Body segmentations are 

explained in Section 3.4. 
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Figure 3.2: Proposed shape-based person re-id system framework 

The second stage of the proposed system involves the feature extraction process; the feature 

explored in this research is a shape descriptor of each body segment. The Generic Fourier 

Descriptor (GFD) shape descriptor is extracted from each segment individually. Shape descriptors 

in general are divided into contour-based shape descriptors and region-based shape descriptors. 

Contour-based descriptors only extract information located at the boundary; the interior content of 

the shape cannot be used. Therefore, contour-based descriptor applications are limited. The region-

based shape descriptors are extracted utilising all pixel information in the contour and inside a 

shape region. Region-based shape descriptors are implemented in more applications than contour-

based descriptors. The performance of the GFD was compared in [102] with the common contour-

based and region-based shape descriptors. The results showed that GFD outperformed the other 

two techniques. The details implementation of the GFD can be found in 4.2. In this stage, the data 

are split into training and test sets, as each subject has two different silhouette sequences, one for 

each set. 

The next stage of the proposed system is the assessment of the feasibility of the shape descriptors 

of the proposed body segments (i.e., classification stage). The system is designed for the 

assessment to be conducted through two approaches, image-based and video-based, as any person 

re-id application is designed as either an image-based system or a video-based system [103]. In 

the image-based system, the shape descriptors of the segments are classified using Linear 

Discernment Analysis (LDA) [104], resulting in an initial rank list for each body segment frame. 

LDA mainly maximises the distances between the mean of the classes and minimises the variation 
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within one class’s samples. LDA explanation can be found in 4.2.3. This part of the system 

examines the static variations of the segments, as the classification process is done on a frame-by-

frame basis.  

For the video-based system, multidimensional Dynamic Time Wrapping (DTW) [105] is applied 

to the GFD shape descriptor of each segment. DTW calculates the similarity between two temporal 

sequences. It returns a distance scalar of the two sequences’ optimal alignment. Detailed 

multidimensional-DTW can be found in 5.2. The shape descriptors of all the frames in one 

sequence in the training set are wrapped with all the sequences in the test set to find the most 

similar sequence. Through this process, the dynamic features of the shape descriptors within a 

sequence are examined, and then one rank list for each sequence is generated.  

The final stage of this system involves applying a proposed rank lists fusion method. The fusion 

method combines the image-based generated rank lists so that the lists generated by all frames in 

each sequence are replaced by one rank list. To develop the proposed rank list, the indices of each 

identity in the initial rank lists are counted, and the indices of each identity from each initial rank 

list are added together, and then the identity with the least total indices is placed in the frontal 

location of the new fused rank list. 

The methodologies and the experimental results of each stage are explained in detail in the next 

chapters. This chapter focuses on the pre-processing step, as highlighted in Figure 3.2. 

3.3 Dataset Description 

Finding a target dataset containing the characteristics necessary to answer the research questions 

is a fundamental matter in this study. In order to answer the research questions that interrogate the 

performance of the body shape descriptor, the power of each segment of the body, the factors 

influencing performance, and the silhouette shape of the human body are exploited. To facilitate 

this, a dataset that can provide the silhouettes’ frames as well as multiple viewpoint sequences that 

record the same subject from different viewing angles is needed.  

Another goal of this study is to explore the effectiveness of the body segments shape descriptors 

while the subjects are in different scenarios, such as appearing in different types of clothing in the 

same scene. Thus, a dataset that recorded the same subject in different scenarios is required. 
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Exploring the dynamic variation of the shape within a sequence is another investigation involved 

in this research. Hence, it is necessary to choose a dataset that provides tracking sequences. A 

tracking sequence is a recording of a subject from one point in time to another, including frames 

that follow the subject. There are, in fact, a number of datasets that provide these so-called 

tracklets, which are collections of images of the same subject from different points in time. For 

example, a tracklet can contain an image from each minute that the subject is in the camera’s FOV. 

The tracking sequence is a record of the subject for the entire length of time it is present in a 

camera’s FOV with a certain frame rate. The dynamic variation can be extracted from the tracking 

sequence, but missing frames may lead to performance failure.  

In the literature, there are many publicly available datasets that have been widely used in person 

re-id research (e.g., VIPeR [106], iLIDS [107], CAVIAR4ReID [108], CASIA C [109], CASIA D 

[110], CUHK01 [111], V47 [112], and PKU-Reid [113]). However, these datasets, in particular, 

include a limited number of viewpoints (camera angles). On the other hand, GRID [114], 3DPeS 

[115], CUHK02 [116], RAiD [117], Market1501 [30], PRW [118], Large Scale Person search 

[119], DukeMTMC [120], Airport [121], and MSMT17 [122] provide multiple camera angles; 

however, they only offer a single or multiple shots rather than a sequence of followed frames.  

 

Table 3.1 lists and summarises person re-id datasets that provide tracking sequences. A Provides 

Silhouettes column was added to the table to indicate whether the dataset offers the silhouettes’ 

sequences corresponding to the original sequences because this study utilises the silhouettes to 

investigate the silhouette shape.  

From  

Table 3.1, it is clear that CASIA Dataset B and SAIVT-Softbio are the only datasets that provide 

three of the desirable characteristics for this research, namely, multiple camera views, tracking 

sequences, and silhouettes. However, after having assessed CASIA Dataset B and SAIVT-Softbio, 

it became clear that SAIVT-Softbio silhouettes contain extreme noise. Therefore, since CASIA 

Dataset B is the only dataset that provides records of the same subjects under three different 
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scenarios, it is the selected dataset for this research, which is discussed in detail in the next 

subsection.  

3.3.1 CASIA Dataset B 

CASIA Dataset B [123] was captured by the National Laboratory of Pattern Recognition, China, 

in 2006. The dataset includes video recordings of 124 subjects captured in an indoor environment. 

The subject walking in a straight line was captured in three different scenarios: a) normal, b) 

wearing heavy clothes, and c) carrying a bag. Figure 3.3 shows the subjects’ appearance in the 

three scenarios. In each scenario, each subject was recorded from 11 angles. Figure 3.4 shows the 

point of view of each angle. For each scenario, the subject was asked to repeat the walk to be 

recorded under the same conditions to provide two different sequences, as one of the sequences is 

used for the training and the other is used for the test. This dataset also provides silhouette images 

corresponding to the original video sequences. The silhouettes are stored in a PNG format of 320 

x 240 pixels. In this research, and in each scenario, two different sequences are considered from 

each angle; the total number of subjects used for this study was 124, captured from 11 angles in 

three scenarios. Two different sequences per subject are included, bringing the number of 

sequences for investigation to 8,184, with an average of 68 frames per sequence.  

Table 3.1: Reviewing person re-id datasets that provide tracking sequences 

Name Subjects Views Scene Silhouettes 

ETH1, 2, 3 [124] 85, 35, 28   1 Moving camera with a small viewpoint 

variance 

No 

PRID2011 [125]      934   2 Only 200 subjects appear in both cameras No 

WARD [126]        70   3 Non-overlapping cameras No 

SAIVT-Softbio [127]      152   8 Uncontrolled environment  Yes 

iLIDS-VID [128]     300   2 Heavy occlusion No 

HDA Person Dataset 

[129] 

      85 13 Provides tight bounding boxes and 

occlusion flag 

No 

Shinpuhkan Dataset 

[130]  

     24 16 The tracklets are not followed frames No 

CASIA B [123]     124 11 The scenario includes normal variation in 

clothing and carrying a bag condition 

Yes 

MARS [131]  1,261   6 All bounding boxes and tracklets are 

automatically generated 

No 
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Figure 3.3: (a) normal scenario, (b) heavy clothes scenario, and (c) bag scenario [123] 

 

 

 

 

Figure 3.4: CASIA Dataset B viewing angles [123] 
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3.4 Silhouette Segmentation 

The literature on person re-id research illustrated in Chapter 2 shows that there are various ways 

to build a unique signature for each exiting subject in a scene. Most of the studies reported on 

signatures developed based on colour, texture, or gait features. However, reviewing the literature 

on use of body shape features revealed few studies in which shape descriptors on the human body 

shape were utilised, with [53], [55], and [57] being among them. These studies were mainly 

focused on identification (i.e., one-to-many process) using mmW images, which have a higher 

quality than normal CCTV video stream images, while the aim of this research is to re-identify 

subjects (many-to-many process) in public areas and to use images that simulate the quality of the 

CCTV images. Therefore, several research questions remain open as a result of this research gap:  

• What part/s of the human body (obtained through image segmentation) deliver the most 

discrimination information?  

 

• Considering the natural movement of people in a public area, viewing angle (the side from 

which the subject is recorded) is the main factor that might affect the shape of the human 

body. To what extent it is effective to use the digital description of the shape of these parts 

for true matching in an environment such as public areas?  

 

Consequently, it was decided that the shape of human body parts (segments) and their movement 

be investigated for person re-id. 

Current systems consider the human body in a silhouette frame as one single, connected region. 

This assumption increases motivation for body segmentation, mainly because segmenting the 

human silhouette allows for the independent discovery of the static and dynamic features of 

different segments of the human body. In the previous chapter, several human body segmentation 

methods were reviewed. One of the common body segmentation methods was to segment 

according to the length of the bounding box that surrounds the silhouette. in this research, the 

length of each segment is extracted from four anthropometry studies to justify the starting end 

points and length of each segment. 
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In this research, it is proposed that the human body is divided into four sections that do not overlap, 

meaning the segments have no common zones. The segments are designed to be non-overlapping 

to avoid performance duplication and to present a fair comparison between each segment’s 

accuracy.  

The human body can be divided into a number of different segments varying in length and size. 

Although all body parts move accordingly with a human’s motion, some parts of the body show 

motion more than others, such as the amount of the motion in the head and in the leg. Therefore, 

every part of the body that shows motion is segmented as a separate section for further 

investigation. Since in this research the accuracy of utilising the digital representation of the shape 

of the body parts is being examined, the proposed segments are Head and Neck, Shoulders, Middle 

and Lower.  

Figure 3.5Figure 3.2 shows the zone of each segment, and the precise length of each segment is 

explained in Section 3.4.2.  
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Figure 3.5: Locations of proposed segment zones with respect to the entire body: a) Head and 

Neck, b) Shoulders, c) Middle, and d) Lower 

Thus, this section explains the human body shape segmentation used in this research; four 

anthropometry studies for anatomical segmentation are reviewed, which illustrate how the 

silhouettes are arithmetically divided into four segments. It also describes what body segments are 

considered and what the justifications are for each segment.  

 

3.4.1 Body Segments’ Length Parameters in Anthropometry 

The human body consists of several segments or links connected by joints. Length, weight, and 

volume are values or parameters that describe these links or segments. Anthropometry is a branch 

of anthropology that deals with measuring human body parameters. This is mainly used in 

anthropological categorisations and comparisons between populations. 

There are many anthropometrical studies that measure body segments’ parameters. However, since 

the human body is being divided into parts based on the segment length parameter for this research, 

the studies that provide body part length percentages with respect to the entire body are most 

appropriate. Therefore, the results from four such studies are averaged and used for silhouette 

segmentations. A brief overview of these studies, including the number, gender, and ethnic group 

of the subjects, can be found in the following tables. Table 3.2 shows the anthropometrical studies 

reviewed, along with the total number of subjects, and provides a breakdown of the examined 

populations by gender and ethnicity.  

Table 3.2: Four anthropometrical studies synthesised and used for silhouette segmentations in 

this research. 

Study # Study By Total # Subjects Ethnicity  # Male # Female 

1 Drillis & Contini [132] 20 American 20 - 

2 Dempster [133] 9 White 9 - 

3 Contini [134] 29 American 21 8 

4 De Leva [135] 115 White 100 15 
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Table 3.3 summarises the average percentage length of each body segment, considered in this 

research from four anthropometry studies. The percentage shown in the table is the percentage of 

the segment with respect to the entire body. These lengths were collected from different ethnic 

groups as well as from both genders to ensure that the overall average length was generalised. The 

differences in the percentage length between males and females presented in Table 3.3 illustrate 

that the differences are insignificant (i.e., less than 1.5% in all studies) when comparing the 

percentage of the segment to the entire body. Therefore, the male and female percentage length 

parameters are equally averaged. The overall average percentage lengths for the proposed 

segments were then used for arithmetically dividing the silhouettes, as explained in the next 

subsection. 

Table 3.3: The percentage of each segment from the four anthropometrical studies 

Study # 1 2 3 4 Overall 
Avg. 

Segment M F M F M F M F 

Head and Neck 15.6 - 15.5 - 15.5 15 16.7 17.9 16% 

Shoulders 22.2 - 20.3 - 21.5 21.8 16.6 17.1 20% 

Middle 24.5 - 28.2 - 27.3 26.2 25.7 25.6 26.25% 

Lower  37.7 - 36 - 35.7 37 41 39.4 37.75% 

 

3.4.2 Segments Description 

This research explores the effectiveness of the entire body shape in person re-id; it also investigates 

the feasibility of different parts of the body shape and how factors such as viewpoint affect 

accuracy rates. Hence, the body silhouette is divided into the proposed four non-overlapping 

segments, which include Head and Neck, Shoulders, Middle, and Lower. 

These segments are designed to be non-overlapping to avoid performance duplication and to 

present a fair comparison between the segments. The precise start and end points and the length 

are built based on four anthropometry studies.  
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Table 3.4 presents the proposed segments, their length percentage with respect to the entire body, 

and the start and end percentage points according to the body. The table also gives a physical 

description that shows the precise zone in the body and the aimed shape and movement that this 

segment covers.  

Table 3.4: Summary of the proposed body segments 

Segment % of 

Total 

Body 

Starts% Ends% Seg. Description Seg. Coverage 

Head and 

Neck 

15.9 0 15.9 Starts from the top 

of the body (i.e., top 

of the head) and 

ends at the point that 

separates the neck 

from the trunk. 

The shape of the 

head and the neck  

Shoulders 20.25 15.9 36.1 Starts from the point 

that separates the 

neck from the trunk 

and ends at the line 

that connects the 

elbows. 

The shape of the 

shoulders, the 

upper arm  

Middle 26.3 36.1 62.4 Starts at the line that 

connects the elbows 

and ends at the line 

that connects the 

fingertips. 

The shape of the 

forearms and 

hands  

Lower 37.6 62.4 100 Starts at the line that 

connects the 

fingertips and ends 

at the bottom of the 

body (i.e., the sole). 

The shape of the 

feet, lower legs, 

and parts of the 

thighs, excluding 

the hand. 
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3.4.3 Arithmetic Silhouette Segmentation  

The silhouette sequences provided by CASIA Dataset B from 11 different views were used for this 

research. The silhouettes were algorithmically divided as follows: after detecting the silhouette in 

the image, the silhouette is cropped by finding the smallest bounding box, where the width 

(horizontal) and height (vertical) of the bounding box are represented as the 𝑥	and 𝑦 axis of the 

image, respectively. This means that the sizes of the bounding boxes were different, depending on 

the silhouettes’ sizes. Then the silhouettes were divided into the four proposed segments based on 

the height 𝑦 of the silhouette, with 𝑦 here representing the height of the entire body. These segments 

were chosen to represent the different non-overlapping sections of the human body to enable an 

examination of which delivered reliable person re-id data. The segments’ height measurements 

were based on the vertical extent of the bounding box. The extracted segments were Head and 

Neck, Shoulders, Middle, and Lower. To automate the segmentation, these segments were defined 

using arithmetic operations that normally used silhouette for gait recognition techniques [136]. 

The top segment (i.e., Head and Neck) is segmented thus: 

  

𝐼(𝑥, 𝑦) = 	 W
(𝑥, 𝑦)|𝑥7 −	

Y
A
≤ 𝑥 ≤ Y

A
,

	𝑦7 +	
[
A
≤ 𝑦 ≤ 𝑦7 +

[
A
− ℎ𝜖/

^    ( 3.1) 

 

where 𝐼(𝑥, 𝑦)	is the bounding box frame with width 𝑤 and height ℎ. Its centre is (𝑥7, 𝑦7)	and it can be 

computed thus:  

 

(𝑥7, 𝑦7) = 	 ?
Y
A
, [
A
D      ( 3.2) 

The middle segments (i.e., Shoulders and Middle) are computed as follows: 

 

𝐼(𝑥, 𝑦) = 	 W
(𝑥, 𝑦)|𝑥7 −	

Y
A
≤ 𝑥 ≤ Y

A
,

	𝑦7 +	
[
A
− ℎ𝜖/ < 𝑦 ≤ 𝑦7 +

[
A
− ℎ(𝜖/ + 𝜖A)

^   ( 3.3) 
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The bottom segment (i.e., Lower) can be extracted thus:  

 

𝐼(𝑥, 𝑦) = 	 W
(𝑥, 𝑦)|𝑥7 −	

Y
A
≤ 𝑥 ≤ Y

A
,

	𝑦7 +	
[
A
− ℎ(𝜖/ + 𝜖A) < 𝑦 ≤ 𝑦7 −

[
A

^            ( 3.4) 

 

where 𝜖/ and 𝜖A	are constants that can determine the height of each segment in relation to the entire 

bounding box. These constants are determined using the segments’ length parameters from the 

anthropometry studies, which was discussed in the previous subsection. 

 

3.4.4 Implementation  

Figure 3.2 shows the framework of the proposed shape-based person re-id. This Chapter focuses 

on the first stage of the proposed system, which is silhouette preparation and segmentation. The 

preparation processes is implemented using a graphical user interface (GUI) in MATLAB. First 

part involves obtaining the smallest bounding box that surrounds the subject in each frame in the 

dataset. This is applied using regionprops method that receives a silhouette frame containing one 

subject. Using the property BoundingBox with the method regionprops, it returns the smallest 

rectangle containing the subject’s silhouette. The segmentation process is presented in sections 

3.4.1, 3.4.2, and 3.4.3. In this Section the practical steps of implementing the preparation and 

segmentation processes are listed as follows:  

 

1. All 11 views provided in the dataset are included for each subject. 

 

2. Normal, wearing heavy clothes, and carrying a bag scenario are included. 

 

3. All the subjects in the dataset are included. 

 

4. Each subject is provided with two different sequences from each angle in each scenario. 
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5. For every frame, the bounding box, which is the closest box that surrounds the silhouette, 

is cropped (see Figure 3.6).  

 

6. The proposed silhouette segmentations are implemented as stated in Section 3.4.3 (see 

Figure 3.7).  

 

 

Figure 3.6: Extracting the smallest bounding box that surrounds the subject in each frame 

 

 

Figure 3.7: Segmentation implementation 
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3.5 Summary  

Investigating the accuracy of the shape descriptor as an identifier for body segments requires a 

silhouette segmentation that involves two pre-processing procedures. The first procedure involves 

finding the target dataset that provides (a) multiple viewing angles, (b) tracking sequences, (c) 

silhouette sequences corresponding to the original sequences, and (d) different appearance 

scenarios. This led to a review of the publicly available person re-id datasets, which then led to the 

identification of CASIA Dataset B as the target dataset.  

The other pre-processing procedure was the silhouette segmentation that divided the human body 

into four non-overlapping parts. In order to implement this, four anthropometrical studies were 

reviewed, which provided a numerical percentage for the length of each segment of the human 

body with respect to the whole body. Consequently, the proposed segments are Head and Neck, 

Shoulders, Middle, and Lower. Finally, the segmentation was implemented over the silhouettes 

from CASIA Dataset B using arithmetic operations. 
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Chapter 4  

Body Shape Static Variation Using Generic Fourier 

Descriptor 

 

 

 

4.1 Introduction 

The literature review revealed a number of important aspects of person re-identification (re-id) 

implementation. This is considered a new field relative to other biometrics applications, such as 

fingerprint and iris verification; as a result, there is a lack of knowledge on soft biometrics 

extraction and the performance of soft biometrics as identifiers for person re-id. One of the soft 

biometrics that has received limited attention in this context is the body shape descriptor. To 

address this gap in the literature, this chapter examines the performance of the shape descriptor of 

the body and body segments for person re-id. For this analysis, the general performance of the 

body shape descriptor is investigated. Factors that negatively and/or positively influence accuracy 

when utilising body shape descriptors in person re-id are explored as part of this examination. 

 

Another objective of this study is to identify the performance and effectiveness of shape 

descriptors for four proposed body segments, namely Head & Neck, Shoulders, Middle, and 

Lower, from different views (i.e. angles). Consequently, this examination presents the accuracy 

levels for each segment, with consideration of viewing angle changes. 
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Segment integration is another focus of this research. Segment integration is the process of joining 

two or more connected segments of the four originally proposed segments, the purpose of which 

is to determine the identification performance of using wider parts of the body. 

 

Several possible scenarios exist for capturing body images on CCTV camera networks in public 

areas. For example, a subject in motion might be recorded from one view at one scene and then 

from another view in the same or a different scene. There is a persistent requirement to examine 

the ability of the shape description to extract the uniqueness of the body and body segments shapes 

under such conditions to simulate a real scenario.  

 

Another possible situation for CCTV in public areas is that a subject is recorded in one scene 

walking normally and then recorded in another scene under different conditions, such as wearing 

heavy clothes or carrying a bag. Since conditions such as these affect body shape, these scenarios 

are considered in this research as well.  

 

This chapter assesses the feasibility of the shape descriptor of the body segments in person re-id 

applications through image-based approach. This approach apply the classification process in 

frame-by-frame basis, examining the static shape variation within one frame.  

 

This chapter is organised as follows: Section 4.2 details the methodology followed in this research, 

utilising the Generic Fourier Descriptor and the Linear Discriminant Analysis as classifier. Section 

4.3 presents the general performance of shape description utilising the body shape as an identifier 

for person re-id. Also included in this Section, the GFD descriptor is extracted from the four 

proposed segments, which are classified to show their performance stability. Section 4.3.3 presents 

the new segments added to the original set of proposed segments and investigates their accuracy 

rates. Section 4.4 demonstrates the inter-view performance, where the subject is recorded from 

two different views. Finally, Section 4.5 implements two scenarios, including carrying a bag and 

wearing heavy clothes, illustrating the segments most and least affected by changing the scenario.  
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4.2 Methodology 

The main objective of this research is to discover the performance of the shape descriptor as a soft 

biometric for person re-id. Therefore, the whole body and individual body segment shape 

descriptors are extracted separately. The four body segments proposed in this research are Head 

& Neck, Shoulders, Middle, and Lower. Body segmentation is explained and justified in Chapter 

3.  

The shape descriptor used in this experiment is the Generic Fourier Descriptor (GFD) [102]. Shape 

descriptors in general are divided into contour-based shape descriptors and region-based shape 

descriptors. Contour-based descriptors only extract information located at the boundary; the 

interior content of the shape cannot be used. Therefore, contour-based descriptor applications are 

limited. The region-based shape descriptors are extracted utilising all pixel information in the 

contour and inside a shape region. Region-based shape descriptors are implemented in more 

applications than contour-based descriptors. The performance of the GFD was compared in [102] 

with the common contour-based and region-based shape descriptors. The results showed that GFD 

outperformed the other two techniques.  

The dataset used in this research is CASIA Dataset B [123], discussed in detail in Chapter 3, which 

involves three scenarios, namely, walking in normal clothing, carrying a bag, and wearing heavy 

clothes. This dataset recorded subjects from 11 viewing angles and provided two different video 

records for each subject from each angle. The two videos were recorded under the same conditions 

but at different times. Having two different image sequences (videos) for the same subject under 

the same conditions enables the use of one of the sequences for training and the other for the test 

in the classification process. A Linear Discriminant Analysis (LDA) classifier [104] was applied 

to each GFD feature vector of an image segment individually. A separate GFD feature vector was 

extracted for each frame. After training the LDA on the input set (one of the sequences), the error 

rate was computed by testing the input set against the watch list (the other sequence). The results 

are shown using the CMC curve explained in Chapter 3.  
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4.2.1 Generic Fourier Descriptor Implementation 
 

 
Figure 4.1: Proposed shape-based person re-id system framework 

Figure 4.1 illustrates the experimental framework implemented in this research. After obtaining 

the proposed segments, the feature extraction step was implemented. In this chapter, the feature 

extracted from each image segment was the GFD. This shape descriptor extracts the properties on 

the contour and the region of the silhouette. It also generates a fixed length features vector, 

regardless of the silhouette size. The GFD technique is achieved using modified polar Fourier 

transform (MPFT) on the silhouette image. To implement MPFT, the original image in 

Cartesian space is converted into a rectangular image in polar space. The polar coordinates 

(𝑟, 𝜃) can be extracted from Cartesian coordinates (𝑥, 𝑦) as: 

 

𝑟 = 	b(𝑥 − 𝑔d)A + e𝑦 − 𝑔fg
A
            (4.1) 

e𝑔d, 𝑔fg is the centroid of the foreground image.  

 

𝜃, = 𝑖(2𝜋/𝑇)                           (4.2) 

where	0 ≤ 𝑟 < 𝑅.  

 

A 2D Discrete Fourier transform (DFT) is then applied on the polar images to extract Fourier 

coefficients. DFT are used to create the feature vector that represents the shape.  
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𝑝𝑓(ρ, φ)	= ∑ ∑ 𝑓(𝑟, 𝜃,)𝑒,- 𝑥𝑝 o𝑗2𝜋 ?-
p
ρ +	AB,

O
𝜑Dr          (4.3) 

 

where 𝑅 is the radial resolution and 𝑇 is the angular frequency. Then, for each image segment, the 

generated feature vector is represented as follows: 

 

𝐺𝐹𝐷 =	?Tv(G,/)
Tv(G,G)

, … , Tv(G,2)
Tv(G,G)

, … , Tv(w,G)
Tv(G,G)

, … , Tv(w,2)
Tv(G,G)

D      (4.4) 

 

where 𝑚 and 𝑛 are the maximum numbers selected of radial resolution and angular frequencies, 

respectively. By setting these two variables, we control the length of the generated feature vectors 

to be all of the same length.  

Table 4.1: Generic Fourier Descriptor Algorithm 

Generic Fourier Descriptor Algorithm 

 

Input: BW, X by Y binary image containing single object 

Input: m, denotes the radial frequency, where m > 0 

Input: n, denotes the angular frequency, where n > 0 

Output: Vector FD is (m*n+n+1) 

 

Let BW be logical 

Let the object in BW be centered 

Let FD be a zeros matrix of size ((m+1)*(n+1),1) 

Let FI be a zeros matrix of size (m+1,n+1) 

Let FR be a zeros matrix of size (m+1,n+1) 

 

i = 1 

% loop over all radial frequencies 

for rad = 0  to m do 

    %loop over all angular frequencies 

    for ang = 0 to n do 
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        % calculate FR and FI for rad and ang 

        tempR = BW*cos(2*pi*rad*radius+ang*theta) 

        tempI = -1*BW*sin(2*pi*rad*radius+ang*theta)         

        FR(rad+1,ang+1) = sum(tempR(:)); 

        FI(rad+1,ang+1) = sum(tempI(:)); 

        %calculate FD, where FD(end)=FD(0,0) --> rad == 0 & ang == 0 

        if  rad == 0 && ang == 0 

            % normalized by circle area 

            FD(i) = sqrt((FR(1,1)^2+FR(1,1)^2))/(pi*m^2); 

             

        else 

        % normalized by |FD(0,0)| 
        FD(i) = 

sqrt(((FR(rad+1,ang+1).^2+FI(rad+1,ang+1).^2)))/sqrt((FR(1,1)^2+FR(1,1)^2)); 

 

     end for 

     i = i + 1 

end for 

Return FD 

 

4.2.2 GFD resolution versus performance 

The number of the radial features and angular frequency are parameters that can determine the 

resolution of the GFD. In [102], the GFD shape descriptor was used for shape retrieval where the 

examined shapes are from different classes, such as leaves and animals; the researchers found that 

a small number of radial and angular features was sufficient to achieve a high level of retrieval 

accuracy. However, in this research, the GFD descriptor is used on human body and body 

segments, where all the shapes are within the same class which is human. Therefore, it is 

significant to select optimal values for the number of the radial and angular features for such shape. 

A range of numbers of radial and angular features were evaluated on the body shape of all subjects 

in the dataset; the range of the evaluated radial number was 1 to 10 features, and the range of the 
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angular number was 1 to 35 features. Figure 4.2 shows the relationship between the accuracy rate 

of the body GFD shape descriptor and the GFD resolution (i.e. the number of the radial and angular 

features’). For simplicity, the radial number presented in this figure are from 3 to 6 features and 

the angular number presented are from 10 to 28 features, where the highest accuracy levels were 

located. This figure shows the As depicted, the accuracy is achieved by employing various feature 

numbers using equation 

 𝑝𝑓(ρ, φ)	= ∑ ∑ 𝑓(𝑟, 𝜃,)𝑒,- 𝑥𝑝 o𝑗2𝜋 ?-
p
ρ+	AB,

O
𝜑Dr          (4.3)  

The accuracy rate is approximately 70%, even with a small number of features. However, the 

accuracy rate is more influenced by the number of the angular value (T) than by the number of the 

radial value (R). Performance is enhanced by increasing the number of the angular (T) to a certain 

level; then the accuracy rate is suddenly decreased. Consequently, the results reflect that the 

minimum optimal angular and radial values achieving an effective re-id performance are the value 

5 for the radial feature and the value 25 for the angular feature. This produces a GFD feature vector 

of 156 elements length for each image segment processed in this experiment.  

 
Figure 4.2: Number of features versus performance where R refers to the number of 

radial features and T refers to the number of angular features 
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4.2.3  GFD Performance Evaluation 

A Linear Discriminant Analysis (LDA) classifier [104] was applied to each GFD vector of an 

image segment individually. LDA mainly maximises the distances between the mean of the classes 

and minimises the variation within one class’s samples.  

A separate GFD feature vector was extracted for each frame. As above-mentioned, the CASIA 

Dataset B provided two sequences for each person that was recorded under the same conditions. 

The main reason of providing two sequences per person is to train the system on one sequence 

from each subject in the dataset and test the system based on the other sequence. This was 

implemented in this work; LDA classifier trained on the training set (i.e. the set containing the first 

sequence of each subject), and the error rate was then computed by testing the training set against 

the test set (i.e. the set containing the second sequence of each subject).  

The second step of evaluating the system is to compute the ranks, which was don as follows: 1) a 

matrix of 𝑚 ∗ 𝑛 was obtained, where 𝑚	equalled the number of samples in the training set, and 𝑛 

equalled the number of GFD samples in the test set; 2) this matrix contained the similarity scores 

of each sample in the test set against each sample in the training set; and 3) the values (scores) in 

each column of the matrix were then sorted in descending order; 4) replace the scores with their 

corresponding identities.   

 

4.3 Body and Body Segments in Image-based System 

 

4.3.1 Body Performance 

The objective of the first question in this research is to discover the performance of the GFD shape 

descriptor utilised on a sequence of body silhouettes and to compare its accuracy with state-of-the-

art person re-id using soft biometrics as an identifier. Therefore, the GFD of the entire body shape 

(i.e. silhouette) was extracted from the image sequences provided by CASIA Dataset B. This 

dataset is discussed in Chapter 3. The image sequences recorded subjects from 11 different views 

(i.e. angles). The normal scenario was used at this stage, where the subjects were asked to walk 
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normally from one side to another twice. This provides two different sequence for the same subject 

under the same conditions allowing to use one sequence for test and the other one for training.  The 

GFD shape descriptor corresponding to each segment frame were classified using LDA classifier. 

The classification process done through image-based approach which classify in frame-by-frame 

basis, examining the static shape variation within one frame. This, in fact, generates one rank list 

for each segment frame.  

In order to evaluate the performance, Cumulative Matching Characteristic (CMC) curves were 

used. CMC curves accumulated the numbers of the true re-id for each rank and displayed them in 

order. Figure 4.3 shows the performance of GFD employed on the body silhouettes from 11 

different views. Accordingly, the number of observations can be observed from the results in this 

figure.  

First, the accuracy when using the shape description for person re-id from all views at the first 

rank was 37-76% and reached the boundaries between 87-97% at rank 20. Second, regarding the 

individual view performance, the accuracy in the 0° and 180° views were the highest, compared 

with the other views. According to 0° and 180° view sequences, the subjects were recorded from 

a straight front or a straight back respectively, for the whole sequence. This means that the body 

orientation in these two views (i.e. 0° and 180°) remains the same within the sequence, while the 

rest of the views contained variation in body orientation within the same sequence. Therefore, it 

can be observed that the accuracy rates for the rest of the views were less than those in the 0° and 

180° views. It can be concluded, then, that body orientation is one factor that affects the accuracy 

rate when using the body shape description as an identifier in person re-id. 
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Figure 4.3: CMC curves showing the accuracy of the GFD descriptor used on the body 

silhouettes from 11 different viewing angles 

 

4.3.2 Segments Performance 

Extracting the GFD shape descriptor from the body silhouette for use as a soft biometrics identifier 

shows comparable results to state-of-the-art person re-id. This indicates a need to investigate the 

performance of different segments (or parts) of the body and whether the accuracy varies between 

the segments. Therefore, the four body segments (Head & Neck, Shoulders, Middle, and Lower) 

proposed and explained in Chapter 3 are employed in this research to answer this question. 

Each segment is processed as a separate silhouette frame, where the GFD descriptor is extracted 

and classified using the LDA classifier, following the whole-body shape methodology. The 

accuracy rate of each segment is individually presented using CMC curves.  
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The results are depicted in four segments that form 11 views to display. All results of the first rank 

accuracy rate from each segment are shown in Table 4.3. To reduce the ambiguity, only four views 

are visually presented, including 0°, 54°, 90°, and 162°, where the main observations lie. The rest 

of the views delivered similar outcomes to the presented views. 

 

 

Figure 4.4 - Figure 4.7 demonstrate the accuracy rates of the Body, Head & Neck, Shoulders, 

Middle, and Lower segments from 0°, 54°, 90°, and 162° views respectively.  

 

 
Figure 4.4: The performance of the Body, Head & Neck, Shoulders, and Middle segments from 

the view 0° 
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Figure 4.5:  The performance of the Body, Head & Neck, Shoulders, and Middle segments from 

the view 54° 

 

 
Figure 4.6: The performance of the Body, Head & Neck, Shoulders, and Middle segments from 

the view 90° 
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Figure 4.7: The performance of the Body, Head & Neck, Shoulders, and Middle segments from 

the view 162° 

 

Based on the curves shown in 

Figure 4.4 - Figure 4.7, a number of findings can be observed. However, the main observation is 

the variation in the distinction levels in between the segments, as different segments within the 

same body displayed different accuracy rates. In the following subsections, each segment is 

analysed in terms of its stability, performance accuracy, and main influences. All results of the 

first rank accuracy rate from each segment are shown in Table 4.3.  

 

Body; Compared to the other segments, the Body segment outperformed in the straight views (i.e. 

0° and 180°) when the body orientation does not change within the sequence. In the straight views, 

the Body segment achieved 67% and 76% accuracy rates, respectively. Also, the Body shape 

accuracy rates decreased in the side view, primarily because the hand and leg shape, when the 

subject is in motion, have more influence on the side view than on the straight views. Thus, the 

Body segment produced unstable levels of accuracy influenced by body orientation and the hand 

and leg shape. Yet high accuracy rate comparing to other segments.  
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Head & Neck; In general, the Head & Neck segment maintained more stable levels of accuracy 

in all views than the Body segment. This means that body orientation has less impact on this 

segment than on the Body segment. Consequently, the Head & Neck segment outperformed the 

Body segment in the view where body orientation negatively affected Body segment performance 

(i.e. 54°, 72°, 90°, 108°, and 126°).  

 

Shoulders; The Shoulders segment also exhibited performance stability between the views with 

slight improvements in the side views, especially at 90°. Therefore, the Shoulders segment was 

not influenced by body orientation, either. However, the Body and Head & Neck segments 

performed better than the Shoulders segment in all views. 

 

Middle; The Middle segment is the second least discriminative of the segments because of the low 

level of accuracy rates. The Middle segment is affected by the shape variation caused by hand 

motion. However, it displayed a performance improvement in the straight views (i.e. 0° and 180°), 

which means that body orientation is another factor that influences the Middle segment.  

 

Lower; Compared to other segments, the Lower segment consistently showed the lowest accuracy 

rates, achieving around 10% in all views, because this segment contains the highest shape variation 

in the body due to leg movement while the subject in motion. Mainly, this experiment extracted 

the GFD shape descriptor of the segments and processed the classification using the LDA 

classifier, which means that this study examined the static variation of the shape between one 

frame and another. Therefore, the Lower segment reflected the lowest level of discrimination and 

accuracy rates in all angles.  

 

4.3.3 Segments Integration  

In the preview section, the performance of the individual body segments’ shape description was 

discovered, and the results indicated that different segments within the same body have different 

accuracy rates. For example, the Head & Neck and Shoulders segments consistently performed 

better than the Middle and Lower segments in all views. This finding prompted the integration of 
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two or more connected segments from the proposed segments to produce new segments. Two 

important reasons justify introducing the new segments at this point in the research. First, the new 

proposed segments were not presented as separate segments in the anthropometrics studies 

reviewed in this research. They are proposed here as a fusion based on the number of 

anthropometrical segments. Second, the new segments consist of two or more connected parts of 

the body, which means that the new segments overlap with the original segments. For a fair 

comparison, the non-overlapped segments (i.e. the original proposed segments) were presented 

and examined first.  

The newly proposed segments consist of two or three connected segments, which can be used to 

examine the performance of wider parts of the body and to demonstrate the performance of the 

outperforming segments integration. The four new segments proposed are Upper quarter (Upper 

Q), Upper half (Upper H), Torso, and Lower half (Lower H), see Table 4.2. The body parts 

encompassed in each segment are shown in Figure 4.8 - Figure 4.11 display the accuracy rates of 

the new segments along with the original segments from views 0°, 54°, 90°, and 162°. The first 

rank of the accuracy in each segment from all views is stated in Table 4.3, as well as the start and 

end of each. 

The curves presented in the views 0°, 54°, 90°, and 162° demonstrate the number of findings, 

mostly reflecting improvements in many aspects. In the following section, each segment is 

analysed in terms of its stability, performance accuracy, and main influences. All results of the 

first rank accuracy rate from each segment are shown in Table 4.3. 

Technically, these segments follow the same arithmetic operation (explained in Chapter 3) used to 

segment the originally proposed segments. The GFD shape descriptor was individually extracted 

from the new segments in the same manner as it was from the original segments. The classification 

process using the LDA classifier was also implemented on the training and test sets of the GFD 

feature vectors of each segment, where different image sequences were assigned to the training 

and test sets. The performance of the new segments is presented using CMC curves and the 

generated rank lists.  

 



77 
 

Table 4.2: Description of the new proposed segments 

New Seg. Name Consists of Starts Ends 

Upper Quarter 

(Upper Q) 

Upper part of the body without lower arms and 

hands, including Head & Neck and Shoulders 

segments 

Head & Neck Shoulders 

Upper Half 

(Upper H) 

Upper part of the body with lower arms and 

hands, including Head & Neck, Shoulders, and 

Middle segments 

Head & Neck Middle 

Torso Upper and lower arms, hands, and trunk, 

including Shoulders and Middle segments 

Shoulders Middle 

Lower Half 

(Lower H) 

Lower part of the body, including the lower arms 

and the legs, including Middle and Lower 

segments 

Middle Lower 

 

 

Upper Q; this segment includes the Head & Neck and Shoulders segments, covering the shape of 

the upper part of the body, excluding the hands. In general, the Upper Q segment demonstrated a 

stable level of accuracy in all views, as the Head & Neck and Shoulders segments showed in 

section 4.3.2. The Upper Q segment outperformed the Body segment in all views except the 

straight views.  

Upper H; this segment includes the Head & Neck, Shoulders, and Middle segments, covering the 

shape of the upper part of the body, including the hands. The Upper H segment indicated the best 

discrimination levels compared with the other segments, with results very close to the side views 

of the Upper Q segment. Comparing the results of the Upper Q and Upper H segments reveals that 

adding the lower arms and hands improves the performance by 6% on average.  

Torso; the Torso segment consists of the Shoulders and Middle segments. This segment covers 

the performance of the integration of the shoulders, upper arms, lower arms, and hands. Although 

the Torso segment resulted in lower accuracy rates than the top accurate segments (i.e. Upper Q 

and Upper H segments), the Torso segment demonstrated performance improvements to the 

Shoulders and Middle segments as its encompassed segments.  
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Lower H; Although the Lower segment presented very low accuracy rates in comparison with all 

segments, adding the lower arms and hand slightly improved the performance. While both the 

Lower and Middle segments contained considerable shape variation, integrating them improved 

Lower H discrimination. This improvement may be due to the increase in the covered area, which 

increases the chance of extracting accurate features as well.  

To summurise, experimenting the performance of different segments of the same body showed 

variations of the performance of body segments. In addition to the entire body shape descriptor, 

the Head & Neck segment provides an acceptable level of discrimination, outperforming 

Shoulders, Middle and Lower segments in the side views. These results encouraged the integration 

of different segmentations, where two or three connected segments are joined together thus 

producing four more segments, which are Upper H, Upper Q, Torso and Lower Half. The 

performance of the added segments indicates a significant improvement, even in the segments that 

contained high shape variations, such as the Lower Half and Torso segments, caused by the 

subject’s motion. In general, segments performed better in the straight views than the side views, 

mostly due to body orientation within the same sequence. 

 
Figure 4.8: CMC curves of performance of the new segments along with original segments from 

the view 0° 
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Figure 4.9: CMC curves of performance of the new segments along with original segments from 

the view 54° 

 

Figure 4.10: CMC curves of performance of the new segments along with original segments 

from the view 90° 
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Figure 4.11: CMC curves of performance of the new segments along with original segments 

from the view 90° 

Table 4.3: The first rank of the accuracy rates (in percentage) from all the views (angles) 
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Angle 

0° 0.67 0.35 0.32 0.29 0.16 0.61 0.72 0.50 0.38 
18° 0.44 0.34 0.26 0.18 0.10 0.48 0.54 0.36 0.24 
36° 0.39 0.36 0.23 0.16 0.1 0.47 0.53 0.32 0.20 
54° 0.38 0.42 0.24 0.17 0.11 0.48 0.53 0.29 0.19 
72° 0.43 0.49 0.32 0.17 0.15 0.57 0.56 0.35 0.23 
90° 0.49 0.55 0.42 0.19 0.16 0.62 0.60 0.42 0.24 

108° 0.44 0.51 0.33 0.18 0.13 0.57 0.56 0.35 0.20 
126° 0.40 0.44 0.25 0.17 0.10 0.55 0.57 0.34 0.18 
144° 0.46 0.46 0.28 0.19 0.09 0.58 0.62 0.38 0.22 
162° 0.60 0.45 0.31 0.23 0.12 0.61 0.68 0.45 0.32 
180° 0.76 0.45 0.24 0.34 0.20 0.73 0.79 0.55 0.48 
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4.4 Inter-views Performance 

In the previous section, the general performance of the body shape descriptor indicated comparable 

accuracy rates for the state-of-the-art person re-id using soft biometrics as an identifier. In addition, 

it was proven that the shape description of the proposed segments taken from the same body have 

different levels of discrimination. Consequently, four new segments were added to the original 

segments, demonstrating wider parts of the body and presenting the performance of the integration 

of the outperforming segments.  

So far, all performances illustrated are considered view-based classifications. This means that the 

subject image sequences assigned to the training and test sets at the classification stage were taken 

from the same view. Accordingly, to reveal the answer to the next research question, the capability 

of GFD shape descriptors of the body and body segments when the subject is recorded from 

different views was investigated. This is, in fact, a possible scenario for CCTV camera networks 

in public areas, where a subject in transition might be recorded from one view in one scene and 

then from another view in the same or a different scene. In order to simulate realistic scenarios, 

there is a persistent requirement to examine the ability of the shape description under such 

conditions towards shape based person re-id.  

In order to implement the inter-view classification, all the 11 views were tested against each other, 

the 11 different views can be found in Figure 3.4. The GFD descriptor of each segment was 

calculated from all views, in the same way as discussed in Sections 4.3.1, 4.3.2, and 4.3.3. Within 

a segment, each view was tested against all views. This means that if the training set was assigned 

to a certain view, the test set was assigned to a different view. Each view was tested against the 

rest of the views for the same body segment. The results are shown based on each segment, for the 

purpose of identifying how each segment handled the subject view change. Figure 4.12 presents 

the inter-view segment-based classification as a coloured map. In this figure, the classification of 

each segment of the originally proposed segments and the new added segments are individually 

shown.  
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Figure 4.12: Inter-view performance of shape description of the segments 

 

First, the coloured maps depicted in Figure 4.12 demonstrate the general performance of each 

segment. In general, the coloured maps of all segments reflect a number of findings. Most 

importantly, the more the tested view is close to the training view, the more the performance is 

improved, and vice versa. This is clearly illustrated in the coloured maps: the diagonal cells present 

the view-based classification, where the highest performance occurred (i.e. the training and test 

sets were from the same view). The cells around the diagonal reflect the performance of the current 

view against the previous and subsequent views; for example, the views around 90° are 72° and 

108°.  

Regarding the individual segment performance, the Upper H and Upper Q segments achieved 

higher accuracy rates; comparing them with their encompassed segments (i.e., Head & Neck, 

Shoulders, and Middle) indicates clear accuracy enhancement. However, comparing the results of 

the Lower and Middle segments with their integration in the Lower H segment signifies that the 
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Lower H segment slightly outperformed the Lower segment but not the Middle segment. Similarly, 

the Torso segment did not indicate that performance improved from its original segments—the 

Shoulders and Middle segments. 

4.5 Cross-Scenarios  

In public area CCTVs, one possible situation is that a subject is recorded in one scene walking 

normally and then in another scene under different conditions, such as wearing heavy clothes or 

carrying a bag. As wearing different clothes and carrying a bag affect the body shape, these 

scenarios are considered in this research.  

CASIA Dataset B provided three scenarios, namely, Normal, Bag, and Clothes scenarios. In the 

Normal scenario, the subjects were simultaneously recorded from 11 views while they walked 

normally. This scenario is the one utilised in all the preview experiments. The Bag scenario is 

recorded under the same environmental conditions of the Normal scenario; however, the subjects 

were asked to carry either a handbag or backpack on their shoulder(s). The Clothes scenario was 

recorded in the same way as the Normal scenario, but the subjects were asked to wear heavy clothes 

(coats) while they were walking. The Normal, Bag and Clothes scenarios were shown Figure 3.3. 

This section aims to discover the ability of the shape description of the body and body segments 

to uniquely identify the same subject when recorded carrying a bag or wearing different (heavy) 

clothes. In the following section, the results of the Normal scenario tested against the Bag scenario 

and the Clothes scenario are provided.  

 

4.5.1 Normal vs. Bag 
Previously, the LDA classifier was trained and tested on Normal scenario sequences. In this 

section, the classifier was trained on one sequence of the Normal scenario and tested on one 

sequence of the Bag scenario, both are from the same viewing angle. Figure 4.13 - Figure 4.16 

show the CMC curves of all segments from four views, including 0°, 54°, 90°, and 162° 

respectively. Also,  
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Table 4.4 provides the first rank of the accuracy rate of each segment in all views.  

 
Figure 4.13:  CMC curves of the cross-scenario classification showing the results of the Normal 

Scenario against the Bag Scenario from 0° view 
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Figure 4.14:  CMC curves of the cross-scenario classification showing the results of the Normal 

Scenario against the Bag Scenario from 54° view 

 

 
Figure 4.15:  CMC curves of the cross-scenario classification showing the results of the Normal 

Scenario against the Bag Scenario from 90° view 
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Figure 4.16:  CMC curves of the cross-scenario classification showing the results of the Normal 

Scenario against the Bag Scenario from 162° view 

 

Comparing with Normal vs. Normal scenario and considering the accuracy rates presented in Table 

4.4, the performance was negatively affected by wearing the bag, most significantly, in the middle 

parts of the body or the segments that contain the Middle segment, such as the Body, Upper H, 

Middle, Torso, and Lower H. The segments that were least affected by carrying the bag were Head 

& Neck, Shoulders, Upper Q, and Lower as shown in Table 4.4. The Upper Q segment 

outperformed other segments in the straight views, but the Head & Neck segment outperformed in 

the side views. In the Normal versus Normal scenario, the Lower segment was the least accurate 

segment. The Middle segment resulted in the lowest accuracy rates in the Normal versus Bag 

scenario.  

To summarise, carrying a bag directly impacts body shape, especially the middle parts of the body, 

thus the results significantly show lower levels of accuracy in all body parts in contrast with 

Normal scenario. Comparing the Lower and Lower Half segments results in Normal vs. Normal 

scenario with Normal vs. Bag scenario shows a slight decrease of accuracy. This means that 

carrying a bag indirectly influences the dynamical feature of the shape of these segments.    
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Table 4.4: First rank of accuracy rates (in percentage) for Normal vs. Bag classification showing 

the results of all segments at all views 
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0° 39 27 22 11 11 48 40 21 19 
18° 23 25 18 07 07 34 27 15 11 
36° 18 24 13 04 07 32 23 11 2 
54° 15 29 11 04 09 30 19 8 7 
72° 18 40 17 04 11 35 21 9 7 
90° 18 44 22 04 14 41 21 1 8 
108° 16 42 17 04 10 39 18 09 5 
126° 15 38 15 04 08 37 2 09 6 
144° 19 39 01 05 08 46 27 11 7 
162° 26 34 20 06 09 45 29 13 11 
180° 39 35 18 10 15 58 39 20 2 

4.5.2 Normal vs. Clothes 
The classifier is trained on Normal scenario sequence and tested on Clothes scenario sequence, 

both are from the same viewing angle. Figure 4.17- Figure 4.20 show the CMC curves of all 

segments from four views, including 0°, 54°, 90°, and 162° respectively. Also, Table 4.5 shows 

the first rank of the accuracy rate of each segment in all views.  

In general, the performance of the Normal versus Clothes scenario is negatively affected by the 

scenario change more than the Normal versus Bag scenario. The general results depicted in Table 

4.5 do not show any pattern in terms of the most or least accurate segments. This indicates that 

extracting the static variation of the shape description employing the GFD descriptor is not a 

comparable way to overcome changes in the scenario with the subject wearing heavier clothes.  
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Figure 4.17: CMC curves of the cross-scenario classification showing the results of the Normal 

Scenario against Clothes Scenario from 0° view 
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Figure 4.18: CMC curves of the cross-scenario classification showing the results of the Normal 

Scenario against Clothes Scenario from 54° view 

 
Figure 4.19: CMC curves of the cross-scenario classification showing the results of the Normal 

Scenario against Clothes Scenario from 90° view 
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Figure 4.20: CMC curves of the cross-scenario classification showing the results of the Normal 

Scenario against Clothes Scenario from 162° view. 

 

Table 4.5: First rank of accuracy rates (in percentage) for Normal vs. Clothes classification 

showing the results of all segments at all views 
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Angle 

0° 14 6 3 4 10 7 1 5 6 
18° 10 6 2 3 7 8 9 4 6 
36° 9 7 3 3 7 9 7 4 6 
54° 9 9 2 2 7 10 7 3 6 
72° 9 12 2 2 10 11 8 3 7 
90° 10 14 3 2  10 8 4 7 
108° 8 11 3 2 8 11 8 3 6 
126° 9 8 3 2 7 12 9 3 6 
144° 1 8 3 3 7 12 1 4 7 
162° 12 61 2 4 8 9 9 4 6 
180° 17 6 3 6 14 6 11 6 11 

 

4.6 Summary  

This chapter demonstrates that body shape description can be utilised for person re-id. The results 

reflect that shape description delivers higher levels of discrimination when the subject is recorded 

from straight views than from side views. The main factors that impact the results are body 

orientation and shape variation caused by hand and leg shape. 

Investigating the performance of different segments of the same body showed variation in segment 

performance. In addition to the entire body shape descriptor, the Head & Neck segment proved a 

comparable segment, outperforming all segments in the side views.  
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These results encouraged the integration of segments, where two or three connected segments are 

joined together. The integration performance indicated improvement, even in the segments that 

contained high shape variations, such as the Lower and Middle segments, caused by the subject’s 

motion. Apart from the Lower segment, all segments performed better in the straight views than 

the side views, mostly due to body orientation within the same sequence. 

Examining the inter-view situation showed that accuracy was negatively affected. However, the 

results also reflected that the more the tested view was close to the training view, the more the 

performance was improved, and vice versa. For example, if the training view is 90° then testing 

the viewing angles 72° and 108° showed higher performance than the other views. Because the 

body orientation in 72° and 108° is the most similar to the  body orientation in 90° 

The scenarios that impact body shape while a subject is in transition were investigated, 

specifically, carrying a bag and wearing heavy clothes. The results indicated that the bag had less 

impact on the shape description uniqueness than wearing heavy clothes. There is a need to examine 

other significant scenarios that affect the body shape, such as wearing hats and sunglasses. 

Generally speaking, extracting and utilising shape static variation through shape description 

reflects comparable performance, yet a number of weaknesses occurred. In order to overcome 

these weaknesses in recognising the same subject in a situation when they wear heavier clothes, 

we will need to find a different way to use shape description more than the static variation of the 

description. 
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Chapter 5  

Body Dynamic Variation Using Dynamic Time Wrapping  

 

 

 

5.1 Introduction 

 

The experiments conducted in Chapter 4 illustrated the effectiveness of using the body and body 

segments’ shape descriptor using a Generic Fourier Descriptor (GFD) in person re-identification 

(re-id). The classification process was implemented frame-by-frame. These experiments 

investigated the static variation of the shape-based person re-id, which refers to the changes that 

appear on the shape descriptor on a frame-by-frame basis. Thus, this approach represents image-

based person re-identification. 

In the description provided in this chapter, similar factors are examined for a similar purpose; 

however, the experiments discussed here are designed to examine the dynamic rather than the 

static features of the body shape. The dynamic features focus on body shape descriptors while the 

subject is in motion. That is, the dynamic variation represents the changes that occur on the body 

shape based on a whole sequence, where multiple frames are required. Thus, this approach 

represents video-based person re-id.  

The results of the analysis of image-based person re-id focusing on static features of the body GFD 

shape description were illustrated in Chapter 4 utilising the Linear Discriminant Analysis (LDA) 



94 
 

classifier. The results indicated the potentially superior performance of the proposed approach. 

However, some aspects of that process still require improvements, such as accommodating 

changes in the scenario or in the viewing angle.  

In this Chapter, results are presented from a number of experiments conducted to assess the 

performance of dynamic features of the body and body segments GFD shape description for person 

re-id. The classification algorithm used in the experiments described in this chapter is Dynamic 

Time Wrapping (DTW). This is followed by a detailed analysis of the data to identify the factors 

that directly and indirectly influence segment performance.  

This chapter is organised as follows: Section 5.2 describes the methodology used to implement the 

shape-based person re-id matching process based on the shape description dynamic feature using 

the DTW algorithm. Section 5.3 presents the initial results, including the accuracy rates, of 

performing the DTW on the entire body shape as well as on the proposed body segments. Also 

presented in this section is an analysis of the results designed to identify the factors that affect the 

accuracy rates of each segment, including viewing angle and body orientation. Section 5.4 presents 

the performance data of the inter-view classification approach, where different viewing angles are 

assigned to the training and test sets. Section 5.5 illustrates the accuracy rates of the matching 

process from two different scenarios, namely, Normal versus Bag and Normal versus Clothes, see 

3.3.1. Section 5.6 compares the performance of the proposed method with that of other related 

state-of-art person re-id techniques. Finally, Section 0 summarises the implementation aims, 

methodologies used, and results obtained as presented in this chapter.  

 

5.2 Methodology 

This section describes the second methodology proposed for matching subjects based on their 

shape description using the shape description dynamic feature. In the shape description dynamic 

feature, temporal variations on the body shape description are considered in the classification step, 

performed on the entire sequence at once (i.e., one sequence is composed of multiple frames). 

Therefore, the dynamic feature approach examined in this method represents video-based person 

re-identification. The classification procedure is executed using the DTW algorithm, which 

calculates the similarity between two temporal sequences. It returns a distance scalar of the two 
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sequences’ optimal alignment  [105]. Figure 5.1 shows the proposed system framework of this 

research, highlighting the focus of the analysis presented in this chapter. 

 

  

 
 

Figure 5.1: Proposed system framework highlighting the focus on body shape dynamic variation 

using DTW 

 

5.2.1 Dynamic Time Wrapping Implementation 

In the previous experiment presented in Chapter 4, the GFD shape descriptor was extracted from 

each frame, and the classification step was implemented using the LDA classifier, which is based 

on a frame-by-frame or image-based approach. Consequently, a rank list was generated for each 

frame. However, in order to detect the unique shape dynamic feature between subjects using the 

DTW algorithm, the whole sequence of frames is required (i.e., one sequence is composed of 

multiple frames). Therefore, the matching step of the process using the DTW algorithm will be 

implemented as a sequence-by-sequence or video-based scheme. Therefore, one rank list will be 

generated for the entire sequence. The underlying hypothesis of using DTW in this experiment is 

that the similarity of the dynamic variation between genuine identities should be greater than the 

similarity of the dynamic variation between imposter identities. 
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5.2.1.1 Single-Dimension Dynamic Time Wrapping 

The original purpose of DTW was to find the similarity of dynamic features between two single-

dimension (1D) feature vectors representing two sequences. The 1D version of the DTW can be 

calculated as follows: suppose that the input feature vectors are vector 𝐴z(𝑖), where 𝑖 = 1,… , 𝑛, 

and vector 𝐵|(𝑗), where 𝑗 = 1,… ,𝑚, and 𝑛 and 𝑚 represent the number of elements in the vectors 

𝐴 and 𝐵, respectively. The DTW algorithm, then, calculates the distance as the minimum distance 

from the beginning of the DTW table to the current position	(𝑖, 𝑗). The DTW table can be defined 

as follows:  

𝐷𝑇𝑊(𝐴,𝐵) = 𝐷(𝑖, 𝑗) = 𝑑(𝑖, 𝑗) + 𝑚𝑖𝑛 �
𝐷(𝑖 − 1	, 𝑗)
𝐷(𝑖, 𝑗 − 1)

𝐷(𝑖 − 1, 𝑗 − 1)
																					( 5.1) 

 

where 𝐷(𝑖, 𝑗) is the cost node associated with 𝐴(𝑖) and 𝐵(𝑗) as defined in  

 

𝑑(𝑖, 𝑗) = (𝐴[𝑖] − 𝐵[𝑗])A                                      ( 5.2)                                  

 

Table 5.1 shows the detailed single-dimension DTW algorithm for finding the scalar distance 

between two sequences 𝐴 and 𝐵. 

 

5.2.1.2 Multi-dimensional Dynamic Time Wrapping  

The aim of this experiment was to match identities of individuals based on the similarity of the 

dynamic variation in their shape description. The DTW algorithm was used to implement this 

process. As noted, the DTW algorithm was originally designed for 1D sequences. However, a 

multiple number of frames were present in the sequences for each subject in the examined dataset, 

and the number of frames in a sequence was different from one subject to the next. Each frame 

had an individual GFD feature vector length of 156 elements, as justified in 4.2.2. Accordingly, 

each sequence in the examined dataset was considered a multidimensional sequence, as each 

consisted of multiple feature vectors (i.e., one feature vector for each frame).  
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Table 5.1: Single-Dimension DTW Algorithm 

Single-Dimension DTW Algorithm 

Input: 𝐴 = [𝑎/,… , 𝑎2] 

Input: 𝐵 = [𝑏/, … , 𝑏w] 

Let 𝑑 be a distance between coordinates of 𝐴 and 𝐵 

Let 𝐷	be a cost matrix 

for 𝑖 = 1		to	𝑛 do 

    for 𝑗 = 1	to 𝑚	do 

         𝑑(𝑖, 𝑗) = (𝐴(𝑖) − 𝐵(𝑗))^2 

     end for 

end for 

𝐷(1,1) = 𝑑(1,1) 

for 𝑖 = 2		to	𝑛 do 

      𝐷(𝑖, 1) = 𝑑(𝑖, 1) + 𝐷(𝑖 − 1,1) 

end for 

for 𝑗 = 2		to	𝑚 do 

      𝐷(1, 𝑗) = 𝑑(1, 𝑗) + 𝐷(1, 𝑗 − 1) 

end for 

for 𝑖 = 2		to	𝑛 do 

     for 𝑗 = 2	to 𝑚	do 

								𝐷(𝑖, 𝑗) = 𝑑(𝑖, 𝑗) + min�
𝐷(𝑖 − 1, 𝑗)
𝐷(𝑖, 𝑗 − 1)

	𝐷(𝑖 − 1, 𝑗 − 1)
 

     end for 

end for 

Return �𝐷(𝑛,𝑚) 

 

Therefore, the one-dimensional DTW needed to be modified to handle multidimensional 

sequences. There are a number of ways to implement multidimensional DTW [137]. However, the 

main goal here was to examine the dynamic feature of the shape description on the video-based 
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approach. To achieve that goal, the implementation of such a concept can be defined as follows: 

Suppose there are two sequences, 𝑆/	and 𝑆A, consisting of 𝑥 and 𝑦 number of shape descriptor 

feature vectors, respectively, each of which represents one frame of the sequence. In this scenario, 

𝑆/	and 𝑆A are defined as: 

 

𝑆/ =

⎣
⎢
⎢
⎢
⎡
𝐴/
𝐴A
.
.
𝐴d⎦
⎥
⎥
⎥
⎤

  and   𝑆A = 	

⎣
⎢
⎢
⎢
⎡
𝐵/
𝐵A
.
.
𝐵f⎦
⎥
⎥
⎥
⎤

     ( 5.3) 

 

where 𝐴d = 	 [𝑎/, … , 𝑎�] and 𝐵f = [𝑏/,… , 𝑏�] and 𝑘 is the length of the extracted GFD feature 

vector. The equation necessary to wrap these two multidimensional sequences using 

multidimensional DTW can be defined as follows:  

 

∑ 𝐷𝑇𝑊	e𝑆/(𝑖), 𝑆A(𝑖)g		�
,./      ( 5.4) 

 

Multidimensional DTW can be described as the accumulative distance of the DTW of the 𝑘th 

dimension of all feature vectors from 𝑆/	and 𝑆A. The theoretical explanation of this implementation 

can be described as follows: two sequences can be wrapped by generating two vectors, one from 

each sequence. One vector is generated by horizontally concatenating the 𝑘 element of all GFD 

feature vectors of one sequence. The generated vectors are then fed to the DTW algorithm. This 

process goes through all the elements of the two sequences’ vectors. The resulting distances are 

accumulated to arrive at one scalar distance for the two sequences. This means that the DTW 

alignment of two sequences consumes 𝑘 iterations.  

There are two reasons to implement this approach of multidimensional DTW, the first of which is 

computation time. The proposed concept consumes 𝑘 iterations, where 𝑘 in this research is 156, 

as justified in 4.2.2. The other multidimensional DTW concept (not implemented in this research) 

is implemented by comparing one frame GFD feature vector with another frame GFD feature 

vector. There are two issues to consider when implementing this concept. First, this concept works 
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on the image-based aspect, wherein this part of the research discovers the shape description using 

the video-based approach. Second, the consumption time for this concept can be defended as: 𝑛 * 

𝑚, where 𝑛 and 𝑚 are the number of the frames in sequence one and two, respectively. The average 

number of the frames in a sequence in the examined dataset (i.e., CASIA Dataset B) is 68 frames. 

Consequently, the average consumption time of wrapping two sequences applying this concept is 

68*68 = 4,624 iterations per two sequences.  

The other fundamental reason behind implementing the proposed multidimensional DTW concept 

is that the length of the GFD feature vector for each frame is fixed. Consequently, the dynamic 

variations between one sequence and the other are lying in each vertical dimension of the sequence 

(i.e., one dimension of the sequence is the 𝑘th element of all the feature vectors of that sequence).  

 

5.2.1.3 DTW Performance Evaluation  

The scalar distance of two multidimensional sequences is found by implementing 

multidimensional DTW as clarified in the previous section. Subsequently, a rank list must be 

generated for each sequence. This is accomplished in two steps. Step one is to find the distance 

between all the sequences in the dataset and store them in the Sequences Distances Matrix. Note 

that each subject has two different sequences that were recorded at different times, which was 

assigned as training and test sets.  

Once the Sequences Distances Matrix is calculated, the second step is to generate the rank list of 

each sequence based on the distance provided between this sequence and all other sequences. As 

the distances are ascendingly ordered, then these distances are replaced with their corresponding 

sequences’ identities, which generates the identities rank list.  

The rank lists are then used to produce the Cumulative Match Curve (CMC) curves. The CMC 

curve is the evaluation metric commonly used in person re-id research; it was also used in the first 

experiment of this research. The CMC curves are produced by calculating the number of correct 

matches in each rank of all rank lists. Formally, CMC curves represent the accuracy rates of the 

implementation of DTW on the GFD feature vectors to find the dynamic feature similarity between 

subjects’ sequences. The CMC curves are presented in the next section.  
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5.3 Body and Body Segments Dynamic Feature 

As noted, each subject in the CASIA Dataset B was provided with two different sequences, 

recorded under the same conditions but at different times. From one subject to another, the 

sequences varied in terms of the number of frames. In the process presented in Chapter 4, the GFD 

shape descriptor was extracted from each frame, forming an individual feature vector for each. In 

this part of the study, all feature vectors of both sequences of all subjects in the dataset were sorted 

through the DTW algorithm. The main goal here was to assign an identity number to each sequence 

of the test set. This number assigned was determined by calculating the similarity, using the 

distance between each sequence in the test set and training set, where they simulated the watch list 

and the enrolled subjects, respectively, in a real CCTV intelligent person re-id system.  

The DTW algorithm determined the distance between two multidimensional sequences based on 

the temporal and dynamic feature in their GFD feature vectors. This aspect of the process is 

important to this research, as the aim is to investigate the role of utilising shape description as an 

identifier in person re-id applications, since the body shape is prone to significant changes when 

the subject in motion.  

 

5.3.1 Body Performance 
The sequences in the dataset were aligned by DTW based on their dynamic variation where the 

aligned sequences are of the same viewing angle. As above-mentioned, the dataset provided two 

sequences for each subject to be recorded under the same conditions. One of them was used as in 

training set and the other one was used as in the test set. This was implemented on the normal 

scenario sequences; the results of the entire body segment are presented in Figure 5.1. The value 

of the first rank from each viewing angle can be found inthe side views.  



101 
 

 
Figure 5.2: CMC curves of the entire body shape accuracy rates based on DTW from 11 viewing 

angles 

 

The CMC curves presented in Figure 5.2 show the performance of matching the identities based 

on their dynamic variation: each curve presents one viewing angle. The most obvious finding is 

that there was a unique dynamic feature between the subjects’ shape descriptions. In addition, as 

the static variation of the shape description feature vectors showed variability from one viewing 

angle to another (as explained in Chapter 4), the dynamic feature in the shape description also 

fluctuated between viewing angles of the same body. This means that the accuracy rates of DTW 

of the body shape description from 0° are different from those at 90° and so on.  

As the dynamic variation of the body shape description showed comparable accuracy rates, further 

experiments were conducted to explore the dynamic feature performance of the proposed 

segments. The next section discusses this aspect of shape-based person re-id research. 
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5.3.2 Segments Performance 

Experiments like the one conducted to examine body dynamic variation were performed on the 

proposed body segments. In Chapter 3, the body silhouette was segmented into four non-

overlapped segments. Then, further segments were proposed in Chapter 4. These segments were 

discussed in detail in Sections 3.4.2 and 4.3.3. The proposed segments are Head & Neck, 

Shoulders, Middle, Lower, Upper Quarter (Upper Q), Upper Half (Upper H), Torso, and Lower 

Half (Lower H). Table 5.2 provides the accuracy rate of the first rank of the dynamic variation of 

all proposed segments from all viewing angles using DTW, where the aligned sequences are of the 

same viewing angle. In this Table, the highest accuracy rates are bold. Figure 5.3, Figure 5.4, 

Figure 5.5 and Figure 5.6 show the accuracy rates of these body segments from four different 

viewing angles 0°, 54°, 90° and 162° respectively. In the next subsection, the main findings for 

each segment are presented.  

Table 5.2: The accuracy rate of the first rank (in percentage) of the dynamic variation of all 

proposed segments from all viewing angles using DTW 
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0° 77 42 50 50 31 73 86 62 61 
18° 43 47 56 46 21 65 63 50 36 
36° 40 45 47 47 30 60 62 47 43 
54° 40 60 46 53 39 63 57 46 46 
72° 33 62 56 45 30 68 60 54 34 
90° 32 64 50 43 23 68 59 50 31 

108° 36 57 52 44 27 67 62 56 36 
126° 39 41 35 39 27 52 52 39 39 
144° 45 45 40 43 31 57 55 39 44 
162° 50 44 52 57 29 69 70 58 46 
180° 78 47 50 60 39 75 84 70 67 
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Figure 5.3: CMC curves of the accuracy rates of different body segments, where the aligned 

sequences of the 0° angle 

 

 
Figure 5.4: CMC curves of the accuracy rates of different body segments, where the aligned 

sequences of the 54° angle 
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Figure 5.5: CMC curves of the accuracy rates of different body segments, where the aligned 

sequences of the 90° angle 

 

 
Figure 5.6: CMC curves of the accuracy rates of different body segments, where the aligned 

sequences of the 162° angle 
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Head & Neck; the CMC curves that show the ranks of all viewing angles demonstrate that this 

segment was one of the outperforming segments in the side view (i.e., 90°) and in the views that 

primarily present the side part of the segment, such as 54°, 72°, and 108° angles. This performance 

is compared to the straight views (i.e., frontal or back views, including 0° and 180°) or the views 

that tend to capture straight views more than side views, such as 18°, 36°, 144°, and 162°. 

Comparing this segment performance with other segments, Head & Neck was close to the 

outperforming segment (i.e., Upper Q) with 3%, 5%, and 4% differences from the views 54°, 72°, 

and 90°, respectively.  

 

Shoulders; no pattern emerged from the results for this segment. The accuracy rate of the first 

rank fluctuated from one view to another. The straight and side views—0°, 90°, and 180°—were 

very similar at 50%, 50%, and 52%, respectively.  

 

Middle; similar to the Shoulders segment, the Middle segment results revealed no pattern. 

Although the Middle segment size is larger than the Shoulders and Head & Neck segments, it is 

considered one of the body parts that changes shape most often while the subject is in motion. 

Therefore, DTW was not able to find the uniqueness of the shape dynamic feature between the 

subjects’ shape description features. The only segment that the Middle segment outperformed in 

all situations was the Lower segment.  

 

Lower; compared to the rest of the segments, this segment maintained the lowest accuracy levels 

in all angles. The Lower segment is the other part of the body that changes shape most often while 

the subject is in motion. Therefore, DTW was not able to determine the uniqueness of the shape 

dynamic variation in between the subjects’ shape description features.  

 

Upper Quarter; Upper Q segments gained the highest first rank accuracy rates in most of the 

viewing angles, except for the straight viewing angles (i.e., 0° and 180°), where the higher 

accuracy was achieved by the Upper H segment. One reason for this performance may be that this 

segment is composed of the parts of the body (head, neck, and shoulders) that are most stable while 

the subject is in motion. Consequently, the influence of motion on the shape descriptions was 
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considerably less than it was on the other segments that contain parts that are less stable during 

motion. This aids the DTW in finding the unique dynamical shape variation between subjects.  

 

Upper Half; the Upper H segment showed high accuracy levels compared to the other segments 

as well. It outperformed all segments in the straight viewing angles (i.e., 0° and 180°) with 86% 

and 84% first rank accuracy rates, respectively. In addition, the first rank accuracy rates were close 

to the outperforming segment Upper Q from the viewing angles that slightly captured the side of 

the body, such as 18°, 36°, 144°, and 162°, with an average difference of 2%.  

 

Torso; this segment covers the whole arm and hand shape of the body. The accuracy rates of the 

Torso segment in the straight viewing angles (i.e., 0° and 180°) outperformed the other views.  

 

Lower Half; this segment is one of the lowest performing segments, followed by the least accurate 

segment Lower. This mostly due to the inclusion of most moving part which is the leg. Yet, the 

accuracy levels of the straight views of the Lower Half segment tend to be higher than the side 

views.  

 

5.3.3 Further Analysis of Proposed Angle-based Approach with DTW 

In the previous section, the general performance of each segment was presented, whereas in this 

section, the performances of all segments are compared in terms of the main influencer factor/s. 

all the presented results are implemented as an angle-based approach, where the aligned sequences 

are of the same viewing angle.  

First, there is a common finding on the first rank accuracy rates of the segments identified by the 

DTW algorithm. The arm, hand, and leg parts of the body were the parts with a large impact on 

the body shape while the subject was in motion. At the same time, the motion influence of these 

parts had more impact on the silhouettes captured from the side views (i.e., 18°, 36°, 54°, 72°, 90°, 

108°, 126°, 144°, and 162°) than from the straight views (i.e., 0° and 180°). Therefore, the stability 

patterns between the segments comprising arm, hand, and leg parts were similar. The visual results 

of the first rank accuracies of the segments Body, Upper H, Torso, and Lower H in Figure 5.7 and 
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Figure 5.8 show that the first and last views performed better than the other views. The first and 

the last views represent the straight views. However, the Upper H segment, in fact, outperformed 

these segments in all the viewing angles. One justification might be that the Upper H segment 

eliminates the most movable part of the body—the Lower segment. In addition, it contains the 

most stable parts of the body, which are the head, neck, and shoulders.  

An analysis of the accuracy rates of the Body, Upper H, Torso, and Lower H segments displayed 

in Figure 5.7 and Figure 5.8 from a different perspective reveals performance dramatically 

decreased when comparing the straight views with the rest of the views. This confirms that the 

segments between the straight views were highly influenced by the viewing angle factor.  

Results of the Upper Q segment accuracy rates in Figure 5.7 (i.e., Head & Neck and Shoulders) 

and Figure 5.8 confirm that this segment was influenced by a different factor. The accuracy rates 

are mostly in the similar level in all angles, except 36°, 54°, 126° and 144° angles. These viewing 

angles, in particular, are the most angles that contain high level of body orientation, where the 

body direction captured in one sequence get change over the time.   

As noted previously, the Upper H was the outperforming segment in all views followed by the 

Upper Q segments in the the side views. However, the accuracy rates of the Head & Neck segment 

were highly comparable to the Upper Q segment, especially in the side views (i.e., 18°, 36°, 54°, 

72°, 90°, 108°, 126°, 144°, and 162°). This segment, in fact, is less likely to be occluded by another 

subject compared to other segments of the body. As a result, the likelihood of correctly extracting 

this segment of the body is higher than for any other segment.  
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Figure 5.7: First rank accuracy rates from the 11 viewing angles of the original proposed body 

segments (Body, Head & Neck, Shoulders, Middle, and Lower) 

 

 

 

 



109 
 

 
 

 
 

Figure 5.8: First rank accuracy rates from the 11 viewing angles of the additional proposed body 

segments Upper Q, Upper H, Torso, and Lower H segments 

 

Comparing the performance of the Torso segment with the Lower segment involves comparing 

the accuracy of the arm and hand parts shape description with the leg shape description, which are 

non-overlapped segments representing the most movable parts of the body. Figure 5.7 and Figure 

5.8 (Torso and Lower figures) and the numerical values of the first rank accuracy rates presented 

in Table 5.2 show that the shape description of the Torso segment (i.e., the arm and hand parts) 

was more discriminative than that of the Lower segment (i.e., leg parts), reflected in the average 

performances at first rank in the Torso segment (52%) and Lower segment (30%).  
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5.4 Inter-view Dynamic Performance 

All experiments presented thus far in this chapter were designed to fall within the same viewing 

angle. Therefore, the DTW process involved wrapping two sequences from the same view. Chapter 

4 described an experiment that was implemented based on the frame-by-frame approach (i.e., 

image-based), utilising shape description feature vectors, where the frames were from different 

views.  

A similar experimental methodology was followed in this part of the research. The DTW algorithm 

was applied on the shape description feature vectors of two sequences from two different viewing 

angles. As above-mentioned, the dataset provided two sequences for each subject to be recorded 

under the same conditions. One of them was used as in training set and the other one was used as 

in the test set. The aim here was to investigate the performance of matching identities based on 

their shape description dynamic feature. This examined whether there was a unique dynamic 

variation between the subjects’ shape descriptions from different viewing angles.  

Figure 5.9 and Figure 5.10 visually show the first rank accuracy rates from implementing DTW 

on two sequences from different viewing angles. Each coloured map represents the result of a 

different segment. A diagonal in each figure indicates the best results compared with the rest of 

the figure, as it represents the results of two sequences from the same view.  

Regardless of the same view matching performance shown in the diagonals, the Inter-view 

accuracy rates from using the DTW on the sequences’ shape descriptors (i.e., video-based) are 

considered unacceptable when compared to results of the same viewing angles.  

Comparing the results from the implementation of the DTW algorithm in the video-based approach 

with the results from the implementation of the LDA classifier in the image-based approach from 

Chapter 4 illustrates that the static variation built based on the frame-by-frame method performed 

slightly better than that of the video-based method implemented using the DTW. Accuracy within 

the same viewing angle was higher using the DTW on the video-based method than using the LDA 

with the image-based method.  
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Figure 5.9: Inter-views first rank accuracy rates from implementing DTW on two sequences 

from different viewing angles on the original proposed segments 

 

 



112 
 

 

 

  

 

Figure 5.10: Inter-views first rank accuracy rates from implementing DTW on two sequences 

from different viewing angles on the additional proposed segments 

 

5.5 Cross-Scenario Dynamic Performance 

As discussed, real life scenarios in which people move about in public areas involve a significant 

amount of variation in multiple forms. One of these variations is appearance change, which can 

result from the presence or absence of heavy clothes, such as winter coats, and from the presence 

or absence of a bag, such as a handbag, backpack, or rucksack, carried by the subject. These 

changes, in fact, have direct and indirect impacts on the subject body shape. This leads to vital 

variations in the shape description. Therefore, the performance of DTW on two sequences of 

different scenarios required investigation.  
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The scenarios provided by the CASIA Dataset B are Normal, Clothes, and Bag scenarios. In the 

next section, an examination of the Normal versus Bag and Normal versus Clothes scenarios is 

presented.  

 

5.5.1 Normal versus Bag Video Sequences 

The DTW algorithm was implemented on all subjects sequences in the dataset; however, training 

sequence presents the subject in the Normal scenario, and the test sequence presents the same 

subject carrying a single shoulder bag, backpack or a handbag. The methodology followed in this 

experiment replicated implementation of the angle-based experiment as described previously in 

this chapter. Figure 5.11,  

Figure 5.12, Figure 5.13 and Figure 5.14 show the cross-scenario CMC curves of all proposed 

segments from four angles: 0°, 54°, 90°, and 162° respectively. Table 5.3 illustrates the tabular 

values of the first rank accuracy rates of all proposed segments from all viewing angles. The 

highest accuracy rates in each angle is bold. 

The results represented by the CMC curves and in Table 5.3 are considered, to some extent, low 

when compared to the results from the angle-based method with the Normal versus Normal 

approach. However, the accuracy of some segments, such as Body, Upper H, Middle, Shoulders, 

and Torso, dramatically decreased because the bag added to the shape of these segments, causing 

a vital change to the shape description.  

The other segments, including Head & Neck, Lower, Upper Q, and Lower H, maintained a similar 

range of accuracy levels with only slight decreases. Although these segments were not directly 

affected by carrying a bag, the body pose in general was influenced by carrying the bag. This 

caused a noticeable variation on these segments’ shape and, consequently, a moderately different 

shape description than the shape description of the segment in the Normal scenario. 
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Figure 5.11: Normal versus Bag cross-scenario approach CMC curves based on implementation 

of DTW from Angle 0° 

 

 
Figure 5.12: Normal versus Bag cross-scenario approach CMC curves based on implementation 

of DTW from Angle 54° 
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Figure 5.13: Normal versus Bag cross-scenario approach CMC curves based on implementation 

of DTW from Angle 90° 

 

 
Figure 5.14: Normal versus Bag cross-scenario approach CMC curves based on implementation 

of DTW from Angle 162° 
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Table 5.3: Cross-scenario first rank rates (in percentage) of Normal versus Bag scenario 

Segment 

Bo
dy

 

H
ea

d 
&

 

N
ec

k 

Sh
ou

ld
er

s 

M
id

dl
e 

Lo
w

er
 

U
pp

er
 Q

 

U
pp

er
 H

 

T
or

so
 

Lo
w

er
 H

 

Angle 

0° 36 24 25 15 25 49 28 19 23 
18° 17 16 19 14 12 26 12 16 16 
36° 16 22 15 10   9 24 15 13 12 
54° 15 19 11   7 15 18 12 10   9 
72° 11 37 14   2   5 31 12   6   4 
90° 15 50 26   4 20 41 12   8   8 
108° 12 36 13   6 16 34 12   8 13 
126° 11 34 11   6 10 27 11   8   8 
144° 14 32 15   6 16 25 12   9 12 
162° 18 23 27   8 14 42 20 17 14 
180° 42 23 30 16 25 50 27 20 24 

 

 

5.5.2 Normal versus Clothes Video Sequences 
 

Experiments like those used for the Normal versus Bag scenario were performed for the Normal 

versus Clothes scenario to explore DTW performance in the case where the subject wears/takes 

off heavy clothes. The purpose of this experiment was to explore whether this feature (i.e., DTW) 

would be adequate for identifying the dynamic discrimination of the shape description.  

This experiment was implemented using a methodology similar to that used for the previous 

scenario described. However, in this trial the DTW algorithm was applied to two shape description 

sequences, where the training sequence was in the Normal scenario and the test sequence was in 

the Clothes scenario. 



117 
 

 
Figure 5.15: Normal versus Clothes cross-scenario approach CMC curves based on 

implementation of DTW from Angle 0° 

 
Figure 5.16: Normal versus Clothes cross-scenario approach CMC curves based on 

implementation of DTW from Angle 54° 
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Figure 5.17: Normal versus Clothes cross-scenario approach CMC curves based on 

implementation of DTW from Angle 90° 

 

 
Figure 5.18: Normal versus Clothes cross-scenario approach CMC curves based on 

implementation of DTW from Angle 162° 
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Figure 5.15, Figure 5.16, Figure 5.17 and Figure 5.18 show the cross-scenario CMC curves of all 

proposed segments from four angles: 0°, 54°, 90°, and 162°, where the scenario was Normal versus 

Clothes.  

Table 5.4 illustrates the tabular values of the first rank accuracy rates of all proposed segments 

from all viewing angles for the Normal versus Clothes scenario. 

Results reveal that wearing heavy clothes affected a larger part of the body than carrying a bag, as 

it covered the shoulders, arms, and part of the leg. This can be observed in the CMC curves shown 

in Figure 5.9 and in the first rank accuracy rates provided in Table 5.4. All segments showed 

extremely low accuracy rates compared to the Normal versus Normal and Normal versus Bag 

results, except for the Lower segment, which remained in a similar range of accuracy rates.  

Similar to the findings in the previous section, although the heavy clothes did not directly affect 

the shape of the Lower segment, the Lower segment accuracy rates in Normal versus clothes were 

lower than the results of the same segment in the Normal versus Normal approach. This proves 

that the heavy clothes influence the pose and the motion of the Lower segment, causing a variation 

in the Lower segment shape description.  

 

5.6 Comparison with Related State-of-Art Methods 

The focus of this research is the static and dynamic discrimination levels of the shape description 

of the body and body segments. The literature review show no evidence of experimental study has 

been published in which a shape descriptor is used on a segmented human silhouette. As the work 

presented here is based on one feature (GFD) and followed with one classification method, either 

LDA for image-based system or DTW for video-based system. It was difficult to draw a fair and 

direct comparison with approaches that utilised multiple features and different fusion levels. 

Therefore, the comparisons here are between the results of the Body segment and some related 

state-of-art person re-id methods that were tested on the CASIA Dataset B. The values of our 

method presented in the tables in this section show the average first rank accuracy rates of all 11 

viewing angles. Hence, this section provides a comparison of the general performance using the 

shape descriptor on the entire body silhouette as an identifier for person re-id applications.  
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Table 5.4: Cross-scenario first rank accuracy rates (in percentage) of Normal versus Clothes 

scenario 

Segment 

Bo
dy

 

H
ea

d 
&

 

N
ec

k 

Sh
ou

ld
er

s  

M
id

dl
e  

Lo
w

er
 

U
pp

er
 Q

 

U
pp

er
 H

 

T
or

so
 

Lo
w

er
 H

 

Angle 

    0° 12 11 5 4 25   8 8 6   6 
  18° 13   8 4 6 10   6 5 4   5 
  36° 10   8 8 8 11 11 6 7   7 
  54°   7   5 4 6   9   6 4 3   5 
  72°   7 10 5 6 11   6 4 6   7 
  90°   7 23 8 5 11   6 7 4   8 
108°   9 14 7 2 10   7 4 5 10 
126° 10 16 6 5 13   6 4 4 10 
144°   8   8 6 6 12   6 7 5   8 
162°   4   3 3 3   3   7 8 4   7 
180° 16   8 4 8 29   6 7 4   6 

 

Method 1 [74] enhanced the appearance based person re-id using HSV colour feature and Gabor 

texture feature by integrating the gait feature. The features were fused in two different ways, 

namely, feature-level fusion and score-level fusion.  

Method 2 [75] involved dividing the human silhouette into three parts: head, torso, and leg 

segments. Each segment was then described using the HSV colour feature and the maximally 

stable colour region (MSCR).  

Method 3 [91] used AdaBoost learning on the same features used in Method 2.  

Method 4 [138] and Method 5 [139] used ITML and LMNN metric learning methods, respectively, 

on the same features. [138] and [139] divided the person silhouette into six horizontal segments. 

They then extracted the RGB, YCbrCr, and HSV colour features and the Gabor and Schmid texture 

features as well.  
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5.6.1 Angle-based Approach Comparison 

In this section, the results of implementing LDA and DTW on the Body segment shape description 

is compared with the related state-of-arts methods (1–5) referenced. The approach of these studies 

(including our methods) is angle-based comparison, where the training and test sequences were 

captured from the same viewing angle. In addition, the two sequences are within the same scenario, 

which is Normal versus Normal.  

Table 5.5 reports overall performance data for the different state-of-arts approaches along with 

performance data for the proposed methods. The results indicate the potentially superior 

performance of the proposed approaches, especially at the first 10 ranks.  

Table 5.5: State-of-arts top ranked accuracy rates (in percent) of person re-id for Normal versus 

Normal scenario 

Method 𝑟 = 1 𝑟 = 5 𝑟 = 10 𝑟 = 15 𝑟 = 20 

Method 1 (feature-level fusion) 16.29 43.44 60.75 72.17 79.40 

Method 1 (score-level fusion) 13.55 48.74 63.73 72.76 79.55 

Method 2 4.90 27.04 41.55 52.28 60.49 

Method 3 12.25 35.55 50.25 60.17 66.87 

Method 4 7.48 22.21 34.15 43.49 50.07 

Method 5 3.89 22.65 36.06 46.41 54.32 

Our method (GFD+LDA) 49.85 74.67 82.98 87.18 89.83 

Our method (GFD+DTW) 46.77 63.27 70.60 75.73 79.84 

 

5.6.2 Cross-scenario Approach Comparison  

Further comparison was conducted to examine the performance of the cross-scenario methodology 

implemented by the same studies. Table 5.6 depicts our experimental results along with the results 

of other methods based on the cross-scenario, i.e., the Normal versus Bag scenario and Normal 

versus Clothes scenario. Although Method 1 (feature-level fusion) outperformed the proposed 

methods, the proposed methods still presented results akin to those of the other studies.   
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Table 5.6: State-of-art top ranked accuracy rates (percent) of person re-id on Normal versus Bag 

scenario 

Method 𝑟 = 1 𝑟 = 5 𝑟 = 10 𝑟 = 15 𝑟 = 20 

Method 1 (feature-level fusion) 31.81 53.59 64.14 70.48 77.03 

Method 1 (score-level fusion) 14.67 32.59 50.16 60.55 67.29 

Method 2 22.91 30.09 36.07 41.09 48.03 

Method 3 17.14 30.01 37.85 44.33 52.90 

Method 4 21.83 30.41 36.28 41.27 48.04 

Method 5 23.11 37.11 44.44 49.38 56.85 

Our method (GFD+LDA) 22.46 44.81 56.71 64.26 69.72 

Our method (GFD+DTW) 19.28 35.97 43.62 50.73 56.89 

 

Table 5.7 provides the proposed accuracy rates of the Normal versus Clothes scenario along with 

the rates of other methods. Method 1 (feature-level fusion) outperformed in this approach as well; 

however, the rates of the proposed method fell within the range of the rates of the other compared 

methods.  

Table 5.7: State-of-art top ranked accuracy rates (percent) of person re-id on Normal versus 

Clothes scenario 

Method 𝑟 = 1 𝑟 = 5 𝑟 = 10 𝑟 = 15 𝑟 = 20 

Method 1 (feature-level fusion) 20.28 42.64 56.87 67.81 75.02 

Method 1 (score-level fusion)   9.68 27.77 45.12 54.23 60.67 

Method 2 11.64 19.38 27.57 35.71 42.10 

Method 3   5.63 15.99 26.34 36.63 45.21 

Method 4 10.27 24.48 36.11 47.03 55.40 

Method 5 11.61 12.62 17.75 24.22 29.35 

Our method (GFD+LDA) 10.47 25.22 35.18 42.41 48.37 

Our method (GFD+DTW)   9.82 20.67 27.49 34.02 38.93 
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Carrying a bag and wearing heavy clothes directly affect the body shape of the subjects which 

prevents the body shape descriptor in cross-scenario from outperforming the combination of 

colour, texture and gait feature presented in [74] 

 

5.7 Summary 

This chapter describes the implementation of DTW on the GFD shape description for person re-id 

application. The proposed system employs the dynamic feature of the shape description to find 

correct identity matches. The main contributions presented within this chapter are as follows: 

 

• Adapting the one-dimension DTW to be performed on the multidimensional data of the 

examined dataset. 

• Performing the multidimensional DTW algorithm on the proposed body and body 

segments shape descriptor. 

• Analysing the performance of the proposed body segments to identify direct and indirect 

factors that negatively affect performance.  

• Implementing the multidimensional DTW algorithm on inter-view sequences. 

• Discovering the performance of the multidimensional DTW algorithm on two different 

scenarios, i.e., Normal versus Bag and Normal versus Clothes.  

• Comparing the performance of the proposed systems on several related state-of-art person 

re-id studies.  

 

The main conclusions can be summarised as follows:  

• The implementation of DTW revealed unique dynamic features between the subjects’ GFD 

shape descriptions.  

• The dynamic features of the body and body segments’ performance varied from one angle 

to another. 

• Some segments performed better in the straight views, while others performed better in the 

side views. 

• Implementing DTW on the GFD feature vector (video-based approach) outperformed 

implementation of the LDA on the GFD feature vector (image-based). 
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• The dynamic feature on the inter-view and cross-scenario approaches presented a low level 

of accuracy compared to the original scenario (angle-based and normal versus normal 

approach).  

 

In the next Chapter, the performance of the two proposed systems is compared, and a number of 

rank list fusions are conducted in pursuit of additional performance improvements for all discussed 

approaches.  
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Chapter 6  

Systems Analysis and Rank Lists Fusion 

 

 

 

6.1 Introduction 

In Chapters 3, 4, and 5, comprehensive examinations of the use of body and body segment shape 

descriptors as identifiers for person re-identification (re-id) were presented. This Chapter 

complements those examinations through further analysis of the data gleaned thus far, using three 

approaches. 

First, the overall outputs of the person re-id systems are compared and analysed. More specifically, 

the analysis focuses on the performances of the proposed image-based and video-based person re-

id systems by assessing and comparing their accuracy rates. This comparison is intended to identify 

the general performance of and highlight the outperforming segment for each system, thus 

pinpointing the most trusted part of the body (i.e., segment) for use of the image-based and video-

based person re-id systems.  

Second, the output rank lists of the different systems are compared. The rank lists differ for the 

image-based and video-based systems. The image-based system generates one rank list for each 

frame, whereas the video-based system generates one rank list for the entire sequence (each 

sequence consisting of multiple frames). In order to apply fair systems comparison, the number of 

the generated rank lists of the image-based system is necessary to be equal to the number of the 

generated video-based rank lists. This is accomplished by fusing the generated rank lists of the 
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image-based system, into one rank list for multiple frames (i.e. sequence). This is to parallel the 

structure of the video-based system rank lists, which enables the comparison of the accuracy rates 

of the two systems.  

The third analysis approach described in this chapter involves exploiting the image-based rank 

lists fusion approach to potentially identify performance improvements. This method is used 

because in the inter-view experiment conducted in Section 4.3, performance was low compared to 

the angle-based experiment in Section 4.4.  

Similarly, the accuracy rates were considerably low for the cross-scenario experiment presented 

in Section 4.5, compared with the rates of the angle-based experiment discussed in Section 4.3. 

Thus, the image-based rank lists fusion approach for cross-scenario performance improvements 

will also be examined.  

Figure 6.1 shows the general framework of the shape-based person re-id system, highlighting the 

content of the current Chapter, which primarily includes data on the analysis and comparison of 

system outputs and on the implementation of rank lists fusion on several aspects of the research.  

This Chapter is organised as follows: Section 6.2 compares the general performances of image-

based and video-based systems and discusses the outputs of these comparisons. Section 6.3 

proposes a rank lists fusion approach, which is implemented on the image-based rank lists in 

Section 4.3, on the inter-views in Section 4.4, and on cross-scenario approaches in Sections 4.5.1 

and 4.5.2. Finally, Section 6.4 summarises the main findings of the system analyses and rank lists 

fusions.  
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Figure 6.1: Proposed shape-based person re-id system framework, highlighting the focus of the 

current Chapter. 

6.2 Segment-based Systems Analysis 

To consider the baseline aspects of shape-based person re-id, the performances of the proposed 

image-based and video-based systems were compared. The comparisons were based on the 

performances of both systems on the same body segment. In this research, the Generic Fourier 

Descriptor (GFD) shape descriptor was extracted from each frame, forming an individual feature 

vector. In the image-based system, the Linear Discriminant Analysis (LDA) classifier was 

implemented on the feature vectors, resulting in an individual rank list for each frame, while in the 

video-based system, a group of feature vectors of all frames comprising one sequence was used, 

as one sequence represented one subject. The Dynamic Time Wrapping (DTW) algorithm was 

applied to the entire sequence of feature vectors to be aligned with all sequences of the test set. 

Finally, one rank list was generated for each sequence. The rank list contained the subjects’ 

identities and was ordered based on the DTW distance with the current examined sequence.  

Therefore, the first rank of the image-based system represented the number of the correct subject 

identity matches between all the frames in the training set and test set, whereas the first rank of the 

video-based system represented the number of the correct subject identity matches between the 

sequences of the training set and test set. Presented in the figures below are the first rank for each 

segment for all viewing angles from both systems. In the next subsections, segments are discussed 

individually.  

Body;  
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Figure 6.2 shows the first rank data for the Body segment in all the angles. The accuracy rates of 

both systems were extremely close from each angle for this segment. The image-based 

performance noticeably increased in the side view and the angles that primarily capture side views, 

such as 72°, 90°, and 108° angles. The average differences in performance between both systems 

were 10%, 17%, and 8%, respectively. Also, there was a noticeable increase in the video-based 

system performance for the straight views (0° and 180°).  

 

 
Figure 6.2: First rank accuracy rates of the Body segment from all 11 viewing angles in both 

proposed systems using image-based LDA classifier and video-based DTW algorithm. 

 

 

Head & Neck; the video-based system outperformed the image-based system for the first seven 

angles for the Head & Neck segment, but their performances were almost equal for the last four 

angles. This is shown in Figure 6.3. 

 



129 
 

 

 

 
Figure 6.3: First rank accuracy rates of the Head & Neck segment from all 11 viewing angles in 

both proposed systems using image-based LDA classifier and video-based DTW algorithm. 

 

Shoulders; although the systems did not reflect a pattern in performance between the viewing 

angles of the Shoulders segment, Figure 6.4 shows the significant performance increase in the 

video-based system compared to the image-based performance.  

 

Middle; the performance of the Middle segment was, on average, 20% higher when using the 

DTW algorithm (video-based system) than when using the LDA classifier (image-based system). 

Figure 6.5 shows the significant performance enhancement. 
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Figure 6.4: First rank accuracy rates of the Shoulders segment from all 11 viewing angles in both 

proposed systems using image-based LDA classifier and video-based DTW algorithm. 

 

 
Figure 6.5: First rank accuracy rates of the Middle segment from all 11 viewing angles in both 

proposed systems using image-based LDA classifier and video-based DTW algorithm. 
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Lower; DTW algorithm implementations on the Lower segments outperformed the 

implementation of the LDA. The DTW algorithm achieved 15% higher first rank accuracy rates 

than the LDA. Figure 6.6 shows the results gained from both systems. 

 

 

 
 

Figure 6.6: First rank accuracy rates of the Lower segment from all 11 viewing angles in both 

proposed systems using image-based LDA classifier and video-based DTW algorithm. 

 

Upper Q; this is one of the outperforming segments in both the image-based and video-based 

systems. Implementation of DTW showed noticeable performance development compared with 

use of the LDA. Figure 6.7 shows the accuracy rate differences between the image-based and 

video-based systems for the Upper Q segment. 
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Figure 6.7: First rank accuracy rates of the Upper Q segment from all 11 viewing angles in both 

proposed systems using image-based LDA classifier and video-based DTW algorithm. 

 

Upper H; this is another segment with high performance in both systems. The general 

performance of the image-based and video-based systems are similar for this segment. Figure 6.8 

compares the performance data of the Upper H segment resulting from the application of the LDA 

classifier and DTW algorithm.  

 

Torso; following the Middle and Lower segments, DTW implementation on the Torso segment 

produced outperforming accuracy rates compared with the accuracy rates for the application of the 

LDA classifier. Figure 6.9 shows performance for both systems.  
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Figure 6.8: First rank accuracy rates of the Upper H segment from all 11 viewing angles in both 

proposed systems using image-based LDA classifier and video-based DTW algorithm. 

 

 
Figure 6.9: First rank accuracy rates of the Torso segment from all 11 viewing angles in both 

proposed systems using image-based LDA classifier and video-based DTW algorithm. 
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Lower H; this segment contains two of the most movable parts of the body—lower arms with 

hands and leg parts. Therefore, the accuracy rates generated by the DTW algorithm outperformed 

the rates generated by the LDA classifier, which classify the shape description feature vectors 

frame-by-frame, while the DTW algorithm matches sequences based on their dynamic features. 

Figure 6.10 shows the data from both systems.  

 

 
Figure 6.10: First rank accuracy rates of the Lower H segment from all 11 viewing angles in both 

proposed systems using image-based LDA classifier and video-based DTW algorithm. 

 

To summarise, the findings of the segment-based system comparisons presented in this section 

demonstrate that greater accuracy rates were achieved through implementation of the DTW 

algorithm on video-based images than from applying the LDA classifier to the image-based 

system. This proves that the dynamic variation of shape descriptors is more discriminative for 

person re-id than the static variation. In Figure 6.11, the accuracy rates for each segment at all 

angles are averaged, revealing the overall performance for each segment from both the image-

based and video-based systems.  

Another important finding from this analysis is that comparing the performance of both systems 

on the segments that included hands, arms and/or legs, such as the Middle, Torso, Lower, and 
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Lower H segments, shows that significant performance improvements are achieved when using 

the DTW algorithm to find unique dynamic features between the subjects’ shape descriptions.  

 

 
 

Figure 6.11: The averaged accuracy rates for each segment at all angles from image-based and 

video-based systems. 

 

6.3 Rank Lists Fusion  

In person identification, rank level fusion is the process of combining more than one identification 

results in order to improve the performance. Rank level fusion is a method applied on multimodal 

biometric systems, which combines the scores of different biometric systems (i.e. face, fingerprint 

and iris). In addition, rank level fusion can combine the results of multiple classifier, training set 

or parameter values of one biometric model.   
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There are number of rank level fusion methods found in the literature. For example, Borda count 

approach [140], which based on the generalization of majority vote and the most commonly used 

approach for unsupervised rank-level fusion [141].  

Our image-based system was designed to implement the frame-by-frame classification process. 

This means that each frame was generated with an individual rank list that ordered the current 

training list (i.e., subjects), ranking them from most similar to least similar. These multiple rank 

lists for each subject’s sequence (or multiple frames) provided an opportunity for performance 

enhancement by exploiting the lists.  

As part of this research, the multiple rank lists obtained from the image-based system of each 

sequence were fused to generate one rank list for each sequence with the goal of system 

performance enhancement using Borda count approach. This rank lists fusion was implemented 

on the original image-based rank lists, inter-views, and cross-scenario approaches. These are 

explained and discussed in the next subsections.  

 

6.3.1 Image-based Fusion 

As previously discussed, the image-based system generates multiple rank lists for each sequence 

(on a frame-by-frame basis). Borda count rank lists fusion combined these lists so that the set of 

lists generated by all frames in each sequence was replaced by one rank list for each sequence. The 

main purpose using this rank list approach was to count the indices of each identity in the initial 

rank lists. The indices of each identity from each initial rank list were added together, and then the 

identity with the least total indices was placed in the frontal location of the new fused rank list. 

This can be formulated as follows: Considering the sequence of multiple rank lists is: 

 

𝑆 = �

𝑅𝐿/
𝑅𝐿A
⋮

𝑅𝐿d

�      (6.1) 
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where 𝑅𝐿 represents the rank list for each frame in the sequence 𝑆, and 𝑥 is the number of rank 

lists (or frames) in 𝑆. 𝑅𝐿 can be formulated as follows: 

 

𝑅𝐿 = [𝑟/, 𝑟A, … , 𝑟2]     (6.2) 

 

where the 𝑟 represents the identities that were initially ordered based on their similarity to the 

description of the current frame, and 𝑛 is the length of the watch list or the number of subjects in 

the dataset.   

Table 6.1 illustrates the technical steps for implementing the rank lists fusion.  

 

Table 6.1: The pseudocode of the rank lists fusion approach using Borda count approach. 

Rank Lists Fusion Algorithm 

Input: 𝑆 

Output: 𝑓𝑢𝑠𝑒𝑑𝑅𝐿 

 

Let 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠	be the matrix that contains all subjects’ identities in the dataset along 

with their total indices in all the rank lists of 𝑆 

for 𝑖	 = 	1 to 𝑥 do 

      for 𝑗	 = 	1 to 𝑛 do  

1. Add 𝑅𝐿,(𝑟�) to 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 if it does not already exist 

2. Add 𝑗	to the total indices of this identity 

       end for 

end for 

𝑓𝑢𝑠𝑒𝑑𝑅𝐿 = sort 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (in ascending order based on their total indices) 

 

This method was implemented on the rank lists generated by the image-based system discussed in 

Section 4.3. The performance for the fused rank lists is presented in two stages. First, the initial 

rank lists accuracies for each segment from all angles were compared with the accuracy rates of 

the fused rank list. These comparisons are shown in Table 6.2.  
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The other procedure for evaluating the rank lists fusion was to compare it with the performance 

obtained from the video-based systems. This comparison is presented in Figure 2.12, where the 

performances at all angles are averaged for each segment. The performance from original image-

based, video-based, and image-based fused rank list were then compared. 

 

Table 6.2: The first rank accuracy rates of the initial image-based and the fused rank list (in 

percentage), with the outperforming rank list for each segment and angle highlighted. 

Angle 

Segment 

 

0° 

 

18° 

 

36° 

 

54° 

 

72° 

 

90° 

 

108° 

 

126° 

 

144° 

 

162° 

 

180° 

Body  66 43 39 37 42 49 44 40 46 60 76 

Body fused 95 91 95 93 96 94 93 96 95 95 99 

Head & Neck 35 34 35 41 49 55 51 44 46 45 45 

Head & Neck fused 86 88 85 91 89 94 91 91 87 96 92 

Shoulders 31 25 22 23 32 42 32 25 28 31 24 

Shoulders fused 83 73 73 84 86 84 82 83 85 84 66 

Middle 29 17 16 17 17 18 18 17 19 23 34 

Middle fused 83 69 77 79 67 69 76 79 83 87 96 

Lower 15 10 9 11 14 16 13 10 9 12 20 

Lower fused 67 51 54 61 71 74 68 65 52 71 78 

Upper Q 60 47 46 48 56 62 57 55 58 61 73 

Upper Q fused 97 95 95 96 96 94 91 95 96 95 97 

Upper H 71 53 53 53 56 60 56 57 62 68 79 

Upper H fused 97 95 95 95 95 98 93 95 95 97 99 

Torso 50 35 32 29 34 41 35 34 38 45 54 

Torso fused 95 89 91 94 93 95 91 95 94 92 96 

Lower H 37 23 20 18 22 23 20 18 22 32 48 

Lower H fused 87 87 87 76 84 82 80 81 91 95 96 
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Figure 6.12: All angles average accuracy rates for each segment in three systems: image-based, 

video-based, and fused rank list image-based systems. 

 

The results presented in Table 6.2 and Figure 6.12 show that rank lists fusion introduced significant 

performance enhancements to the shape-based person re-id. The image-based fused rank lists 

system outperformed both the original image-based system and video-based system. The main 

reason behind this vast improvement is that in the original systems, the rank list represents one 

source of data, which is one rank list for either a frame or a sequence. However, in the image-

based fused rank lists system, the rank list represents multiple data sources, which are the multiple 

rank lists fused together for better identity estimation.   
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6.3.2 Inter-view Video Sequences Rank Lists Fusion 
One of the expected scenarios in a real person re-id system is the identification of a subject 

captured from one viewing angle and the re-identification of the same subject captured from a 

different viewing angle. This concept, called inter-views video sequences in this research, was 

explored in this study within the two systems (i.e., image-based and video-based). The general 

performances when implementing the proposed systems in such scenarios were considerably low 

compared with the performances of same angle re-id.  

In this phase of the study, the rank lists fusion approach that was discussed in Section 6.3.1 was 

exploited to enhance the performance of the inter-view video sequences shape-based person re-id. 

Technically, the rank lists obtained from the inter-view scenario of each sequence were fused 

following the process outlined in  

Table 6.1. This generated one fused rank list for each sequence instead of multiple rank lists. The 

results of this implementation are presented along with the results from the original inter-views 

image-based system in Section 4.4 in order to determine if using rank lists fusion resulted in 

performance enhancement. 

This is implemented on the rank lists obtained from the image-based system only because the 

image-based system produces multiple rank lists for each frame, allowing for rank lists fusion. It 

is not implemented on the video-based system, as the video-based system generates one rank list 

for each sequence, leaving no opportunity for further fusion.  

The results of this examination are presented in a coloured map form for each segment in Figure 

6.13–Figure 6.21. Analysing these results revealed significant improvements in the performance 

of the inter-view approach. This confirms the positive influence of fusing the rank lists on the 

shape-based person re-id.  
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Figure 6.13: Right—the original inter-view Body segment performance; Left—the rank lists 

fusion inter-view Body segment performance. 

 

 

 

Figure 6.14: Right—the original inter-view Head & Neck segment performance; Left—the rank 

lists fusion inter-view Head & Neck segment performance. 
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Figure 6.15: Right—the original inter-view Shoulders segment performance; Left—the rank lists 

fusion inter-view Shoulders segment performance. 

 

 

 
 

Figure 6.16: Right—the original inter-view Middle segment performance; Left—the rank lists 

fusion inter-view Middle segment performance. 
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Figure 6.17: Right—the original inter-view Lower segment performance; Left—the rank lists 

fusion inter-view Lower segment performance. 

 

 

 
 

Figure 6.18: Right—the original inter-view Upper Q segment performance; Left—the rank lists 

fusion inter-view Upper Q segment performance. 
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Figure 6.19: Right—the original inter-view Upper H segment performance; Left—the rank lists 

fusion inter-view Upper H segment performance. 

 

 

 
 

Figure 6.20: Right—the original inter-view Torso segment performance; Left—the rank lists 

fusion inter-view Torso segment performance. 
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Figure 6.21: Right—the original inter-view Lower H segment performance. Left; the rank lists 

fusion inter-view Lower H segment performance. 

 

6.3.3 Rank Lists Fusion for Cross-Scenario Performance Improvements (Normal 

vs. Bag) 
The re-id performance using two different appearances, such as Normal and Carrying a Bag, was 

considerably low compared to the re-id performance using the same appearance (i.e., Normal vs. 

Normal). As with previous aspects of the study presented in this chapter, further rank lists fusion 

experiments were conducted on the cross-scenario seeking performance improvements. 

Technically, the rank lists obtained from the cross-scenario image-based system in Section 4.5 

were fused utilising the rank lists fusion explained in  

Table 6.1 The accuracy rates of the first rank of the original results along with rank lists fusion 

results are presented in Table 6.3.  

The results presented in Table 6.3 reflect significant improvements in the performance when 

identifying a subject in normal appearance and re-identifying them wearing a bag. In this table, the 

outperformed scheme was highlighted. For all segments, rank lists fusion outperformed the 

original system.  

Although the Middle and Torso segments showed performance improvements, their improvement 

levels were minimal compared with those of other segments. The primary reason for this is that 
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the bags mostly affected the shape of these segments (i.e., Middle and Torso), as they were mostly 

located in those parts of the body.  

Table 6.3: The first rank accuracy rates (in percentage) of the original and fused rank lists on the 

Cross-Scenario (Normal versus Bag). 

Angle 

Segment 

 

0° 

 

18° 

 

36° 

 

54° 

 

72° 

 

90° 

 

108° 

 

126° 

 

144° 

 

162° 

 

180° 

Body  39 23 18 15 18 18 16 15 19 26 39 

Body (fused) 70 61 55 38 46 38 44 37 52 61 65 

Head & Neck 27 25 24 28 40 44 42 38 39 34 35 

Head & Neck (fused) 66 71 73 75 85 89 84 76 78 72 71 

Shoulders 22 18 13 11 17 22 17 15 1 20 18 

Shoulders (fused) 50 50 41 40 51 41 47 51 44 51 40 

Middle 11 7 4 4 4 4 4 4 5 6 10 

Middle (fused) 31 22 13 8 10 5 12 7 10 14 25 

Lower 11 7 7 9 11 14 10 8 8 9 15 

Lower (fused) 47 40 41 54 56 59 49 43 42 55 54 

Upper Q 48 34 32 30 35 41 39 37 46 45 57 

Upper Q (fused) 90 80 83 79 68 72 75 79 83 85 88 

Upper H 40 27 23 19 21 21 18 20 27 28 39 

Upper H (fused) 66 58 53 42 37 37 35 43 55 56 63 

Torso 21 15 11 8 9 10 9 9 11 13 20 

Torso (fused) 41 37 29 20 20 22 19 22 27 26 40 

Lower H 19 11 2 7 7 8 5 6 7 11 20 

Lower H (fused) 46 35 25 19 15 19 21 18 25 33 45 
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6.3.4 Rank Lists Fusion for Cross-Scenario Performance Improvements (Normal 

vs. Clothes) 

Further rank lists fusion experiments were applied on the rank lists obtained from the cross-

scenario Normal versus Clothes approach in the same manner as the experiments 4.5 . Table 6.4 

shows the results. 

Table 6.4: I The first rank accuracy rates (in percentage) of the original and fused rank lists on 

the Cross-Scenario (Normal versus Clothes). 

Angle 

Segment 

 

0° 

 

18° 

 

36° 

 

54° 

 

72° 

 

90° 

 

108° 

 

126° 

 

144° 

 

162° 

 

180° 

Body  14 10 9 9 9 10 8 9 10 12 17 

Body (fused) 20 22 19 18 17 14 19 16 22 13 27 

Head & Neck 6 6 7 9 12 14 11 8 8 6 6 

Head & Neck (fused) 8 10 14 16 21 25 20 12 13 4 6 

Shoulders 3 2 3 2 2 3 3 3 3 2 3 

Shoulders (fused) 5 4 4 4 3 4 7 5 7 2 6 

Middle 4 3 3 2 2 2 2 2 3 4 6 

Middle (fused) 7 7 8 4 3 3 4 2 8 4 8 

Lower 10 7 7 7 10 10 8 7 7 8 14 

Lower (fused) 55 40 41 45 56 54 47 41 41 16 62 

Upper Q 7 8 9 10 11 10 11 12 12 9 6 

Upper Q (fused) 8 10 19 22 22 17 16 20 20 13 8 

Upper H 10 9 7 7 8 8 8 9 10 9 11 

Upper H (fused) 13 16 15 13 13 13 16 14 15 16 15 

Torso 5 4 4 3 3 4 3 3 4 4 6 

Torso (fused) 7 8 8 7 4 7 4 5 4 9 11 

Lower H 6 6 6 6 7 7 6 6 7 6 11 

Lower H (fused) 12 12 15 16 25 20 16 20 18 15 16 
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The results in Table 6.4 showed that implementing the rank lists fusion on the Normal versus 

Clothes scenario added notable improvements to the performance of all shapes because wearing 

clothes, especially the winter clothes, affects large parts of the body. However, analysing the 

Lower segment results after using the rank lists fusion approach showed significant improvements 

compared with the improvements level of other segments, as changing the appearance by wearing 

different tops or coats mostly affects the upper parts of the body, whereas changing the clothes of 

the lower part of the body (i.e., trousers) remains within acceptable levels of shape affects.  

 

6.4 Summary 

In this Chapter, a comprehensive system output for image-based and video-based systems analyses 

was presented. The analysis compared the performance from both systems for each segment 

individually. This analysis revealed a number of findings, most importantly, that video-based 

system accuracy rates outperformed image-based system accuracy rates in most segments.  

A developed rank lists fusion method that can be applied on the image-based generated rank lists 

changes that fact. This fusion improved performance for a number of different research aspects, 

which can be categorised into three parts: angle-based (i.e., identifying and re-identifying from the 

same viewing angle); inter-view scenario; and Normal versus Bag cross-scenario video sequences. 

A general slight performance enhancement was achieved on implementing the rank lists fusion on 

the Normal versus Clothes cross-scenario video sequences, and considerable improvements only 

on the Lower segment were found for this scenario.  

This Chapter presented several deep analyses and fusion experiments on the results obtained from 

the image-based and video-based systems. These analyses and further fusion experiments open a 

new direction for shape-based person re-id.  
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Chapter 7  

Conclusions and Recommendations for Future Work 

 

 

This chapter includes a summary of the work completed for this thesis, followed by a discussion 

of the principal research findings and recommendations for future work. 

7.1 Summary of the Research 

The work presented in this thesis relates to intelligent surveillance and, in particular, person re-

identification (re-id) applications. The shape descriptors of the proposed body segmentations were 

used as identifiers for person re-identification (i.e., as a unique signature for each subject). The 

discrimination levels of shape-based features were assessed by classifying them, using image-

based and video-based approaches. The image-based system classified the signatures on a frame-

by-frame basis using Linear Discriminant Analysis (LDA), which evaluated the feasibility of re-

identifying subjects based on their shape static feature. The video-based approach exploited the 

signatures of the entire sequence (i.e., multiple frames) to re-identify subjects based on their 

dynamic feature occurring in the frames collection, using Dynamic Time Wrapping (DTW). The 

results of both systems confirmed that the shape-based features presented a high level of 

discrimination in person re-id application. Details of the completed work are as follows: 
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• Chapter 2 presented a comprehensive overview of person re-id systems and an introduction 

to relevant instruments. It briefly reviewed biometric systems and how person re-id fits in 

the overarching concept of biometric modalities and use cases. In addition, it presented a 

general person re-identification framework to address specific scenario-based challenges. 

It also included a report on several ways to represent and classify subjects and outlined 

deep learning methods and common evaluation metrics for the field. Finally, it provided a 

review of the concept of body segmentation in recognition systems, elaborating on different 

techniques for segmenting individuals. 

 

• In chapter 3 the proposed framework of shape-based person re-id, including the design and 

implementation, was discussed. Also presented were the publicly available person re-id 

datasets and justification for the reason behind choosing CASIA Dataset B as the examined 

dataset for this research. It presented the proposed body segmentations, including the 

anatomical average length of each body segment based on multiple anthropological studies. 

In addition, it showed the arithmatec operations that algorithmically divides the human 

body silhouette into four suggested segments as illustrated.  

 

 

• Chapter 4 presented the investigation on the discrimination level of the shape descriptors 

of the body and proposed body segments in the application of person re-id. The shape-

based features (i.e., shape descriptors or signature) were assessed through an image-based 

system. This system classified these features on a frame-by-frame basis using LDA. This 

approach aimed to assess the feasibility of re-identifying a subject based on the subject’s 

shape static feature. This assessment was also implemented on different data scenarios, 

namely, inter-view and cross-scenario. Implementation of the image-based approach in the 

situation in which the subject was identified and re-identified from the same angle and 

maintaining the same appearance outperformed a number of state-of-art systems. The 

results indicated that the situation in which the subject was identified and re-identified from 

different viewing angles (inter-view) with a change in appearance (cross-scenario) 

presented a comparable performance.  



151 
 

• Chapter 5 explored the dynamic features within the shape descriptors of the body and body 

segments for person re-id application. A sequence consisting of multiple frames and the 

shape descriptor was extracted from each frame, generating a multiple feature vectors for 

each sequence. This was exploited to match subjects based on their dynamic feature within 

the shape descriptors of the provided sequence. Therefore, this assessment approach was 

called a video-based approach, as the matching process was applied on a sequence-by-

sequence basis using Dynamic Time Wrapping (DTW). This assessment was implemented 

also on different data scenarios, namely, inter-view and cross-scenario. The experimental 

evidence showed that implementation of the video-based approach outperformed a number 

of state-of-art systems. In the other scenarios, the results presented a comparable 

performance. 

 

 

• In Chapter 6 the outcomes of the image-based system were compared with those of the 

video-based system, revealing significant outcomes. In addition, in this chapter a rank list 

fusion technique was implemented with the objective of performance enhancement. This 

fusion method combined the image-based system generated rank lists so that the lists 

generated by all frames in each sequence were replaced by one rank list. The concept of 

the implemented fusion method was to count the indices of each identity in the initial rank 

lists. The indices of each identity from each initial rank list were added together, and then 

the identity with the least total indices was placed in the frontal location of the new fused 

rank list. This method was implemented on four approaches in this research, namely, angle-

based, inter-view, normal vs. bag, and normal vs. clothes scenarios. The experimental 

results showed a superior performance enhancement in all scenarios.  

 

7.2 Key Findings 

Based on the experimental observations completed for this thesis, the main conclusions can be 

summarised as follows: 
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• Image-based and video-based systems’ performance. The general performance of using the 

body and body segments shape descriptors for person re-id was considered effective in 

both systems, compared to state-of-art person re-id practices. The discrimination levels 

(i.e., accuracy rates) generated from the video-based system outperformed the accuracy 

rates of the image-based system. However, as the image-based system generated multiple 

rank lists for each sequence (unlike the video-based system, which generated one rank list 

for each sequence), the fusion of one sequence rank list provided a superior performance 

enhancement for predicting the identity of the subject in the sequence. 

  

• Body segments performance. The experiments conducted confirmed that different 

segments of the same body have different discrimination levels. Furthermore, some 

segments, such as the Upper Half, Upper Quarter, and Head & Neck segments, 

consistently outperform other segments. Other segments, such as Lower, Lower Half, and 

Middle, consistently reported low accuracy rates. Other segments presented fluctuating 

levels of accuracy, showing a sensitivity to a number of influencers.  

 

• The shape-based features influencer factors. The experiments conducted proved that the 

shape descriptor is highly affected by a number of factors, most obviously body motion. 

However, even with the motion effects on the body, the shape descriptor still delivered 

discriminative information for the application of person re-id. Other important factors were 

the angle, which is the shooting or viewing angle from which the body was captured, and 

the body orientation within one sequence, where the subject changed the side of the body 

facing the camera. Changing the appearance by wearing different clothes, head cover, or 

shoes negatively affected the accuracy of the shape descriptor.  

 

• Rank list fusion method performance enhancement. In addition to the superior performance 

enhancement that the developed fusion method introduced to the angle-based accuracy, it 

considerably improved the inter-view and normal vs. bag appearance scenarios as well.  

 



153 
 

7.3 Main Contributions  

The main contributions of this thesis can be summarised as follows: 

1. A comprehensive review on the state-of-art practices of person re-id. 

 

2. Proposing body segmentations, with the identification of segments based on multiple 

anthropometry studies and using arithmetic operations. 

 

3. Extracting the Generic Fourier Descriptor (GFD) shape descriptor from each segment. 

 

4. Developing the image-based system to assess the static feature of the shape descriptor using 

LDA. 

 

5. Developing the video-based system to assess the dynamic feature within the shape 

descriptor using DTW. 

 

6. A comprehensive analysis of the systems outcomes comparing the accuracy rates for each 

segment from the image-based and video-based systems.  

 

7. Proposing a rank lists fusion method seeking performance enhancements on the image-

based generated rank lists. 

 

7.4 Recommendation for Future Work 

 

Future research can build on the work presented in this thesis to further discover the underlying 
aspects and improve the performance of shape-based person re-id. 

 

First, there are wide variety of shape descriptors found in the literature, and only one shape 

descriptor was examined in this research. A comparable study that compares the performance of 

different shape descriptors will further enrich person re-id knowledge base.  
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Second, the review conducted in chapter 3 on the person re-id publicly available datasets showed 

that there is only one dataset that provides the silhouette sequence (i.e., black and white frame 

sequences) corresponding to the original sequence (i.e., coloured frames), which is the dataset used 

in this research. Also, this dataset only provides three appearance scenarios, which are normal, 

wearing winter clothes, and carrying a bag, whereas in real scenarios, there are additional 

appearance changes to consider, such as wearing a hat or head cover, different shoes, and different 

cultural attire. Therefore, constructing a dataset that records the subjects in additional appearance 

scenarios will enrich shape-based person re-id research. 

Third, this research was only conducted on CASIA Dataset B for the justifications reported in 

Chapter 3. However, examining the same proposed systems using different datasets may make the 

findings of the proposed shape-based person re-id system more generalisable. 

Fourth, the experimental results showed that the re-identification performance between different 

viewing angles (i.e., inter-view scenario) needs further enhancement. This may involve improving 

a metric learning that is able to match a subject’s shape descriptor, even if the viewing angle is 

changed. In addition, what would the performance be when using the classification of the close 

views to classify the farther views, as the results showed that the close angles perform better than 

the rest viewing angles. 

Fifth, the experiments conducted in this research were designed based on one of the person re-id 

approaches involving feature extraction and metric learning. However, the new direction of the 

person re-id application is to exploit the Convolutional Neural Network (CNN), as reviewed in the 

literature review chapter. As using the body and body segments shape descriptors is a new feature 

in the person re-id application, the CNN should be employed on the proposed person re-id shape-

based system.  

Sixth, in the literature, the extracted soft biometrics, such as clothing type and other body-related 

features, were fused with hard biometrics, such as face recognition. This illustrated face 

recognition performance enhancement introduced by each examined soft biometrics. Therefore, 

there is a need to investigate face recognition performance enhancement introduced by the body 

and body segments shape descriptors.  
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