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USING LIE GROUP INTEGRATORS TO SOLVE TWO AND

HIGHER DIMENSIONAL VARIATIONAL PROBLEMS WITH

SYMMETRY

Abstract. The theory of moving frames has been used successfully to solve

one dimensional (1D) variational problems invariant under a Lie group sym-
metry. In the one dimensional case, Noether’s laws give first integrals of the

Euler–Lagrange equations. In higher dimensional problems, the conservation

laws do not enable the exact integration of the Euler–Lagrange system. In
this paper we use the theory of moving frames to help solve, numerically, some

higher dimensional variational problems, which are invariant under a Lie group
action. In order to find a solution to the variational problem, we need first to

solve the Euler Lagrange equations for the relevant differential invariants, and

then solve a system of linear, first order, compatible, coupled partial differen-
tial equations for a moving frame, evolving on the Lie group. We demonstrate

that Lie group integrators may be used in this context. We show first that

the Magnus expansions on which one dimensional Lie group integrators are
based, may be taken sequentially in a well defined way, at least to order 5; that

is, the exact result is independent of the order of integration. We then show

that efficient implementations of these integrators give a numerical solution of
the equations for the frame, which is independent of the order of integration,

to high order, in a range of examples. Our running example is a variational

problem invariant under a linear action of SUp2q. We then consider variational
problems for evolving curves which are invariant under the projective action of

SLp2q and finally the standard affine action of SEp2q.

1. Introduction. One dimensional (1D) variational problems with Lie group sym-
metries have been solved exactly, by making use of the moving frame theory (see
for example the textbook, [17] and references therein). The idea behind the method
is to define a moving frame for the Lie group action, find a generating set of dif-
ferential invariants, and then rewriting the Lagrangian in terms of the generating
differential invariants and their derivatives. Using the results of [8, 10], one obtains
directly the invariantised Euler–Lagrange equations, as well as a set of conservation
laws given in terms of the frame. Once the Euler–Lagrange equations are solved for
the invariants, the frame can be used to find the solution in terms of the original
variables. For a 1D problem, Noether’s laws yield algebraic equations for the frame
and these can be used to ease the integration problem for the minimising solution.
For higher dimensional problems, the laws do not in general lend themselves to
finding exact solutions.
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2 M.ZADRA AND E.L.MANSFIELD

In this paper we reduce the problem of finding the minimiser, to that of solving
the Euler–Lagrange equations for the invariants and then solving the compatible
system of differential equations,

$

&

%

B

Bxi
ρ “ Qiρ, i “ 1, . . . , p

ρpx0q “ ρ0

(1)

for ρ, where G is the Lie group, ρ : M Ñ G is the moving frame, g is the Lie algebra
of G, and Qi : M Ñ g are the so–called curvature matrices. The system (1) is

compatible in the sense that
B2

BxiBxj
ρ “

B2

BxjBxi
ρ, that is,

B

Bxi
Qj ´

B

Bxj
Qi ´ rQi,Qjs “ 0. (2)

The curvature matrices depend on the invariants of the Lie group action, which
are known as functions of the independent variables as soon as the Euler–Lagrange
equations have been solved. We solve (1) by showing that the Magnus expansion
solution for a single such equation, may be applied sequentially to obtain a well–
defined result, provided the compatibility conditions (2) are satisfied, at least to
order 5.

In section 2 we present the basic concepts of the theory of moving frames which we
will use in our application, specifically, the definitions of a moving frame, differential
invariants, syzygies and curvature matrices, and describe how these are used to
study a variational problem with a Lie group symmetry. Our running example is a
linear action of SUp2q on C2. A different approach to moving frame theory and its
application to the Calculus of Variations can be found in [16].

Section 3 gives a summary of the main results concerning the Magnus expansion
on which Lie group integrators are based, for a matrix ODE system evolving on a
Lie group (see [1, 4, 13] for surveys on the topic, [7] for numerical software).

We then present the main result of this paper: that the Magnus expansion solu-
tion may be used to solve the compatible differential system (1) in the case p “ 2,
at least to order 5, in the neighbourhood of a point where the components of the
curvature matrices are regular. We do this by showing that applying the expan-
sion sequentially, yields a result which is independent of the order in which the two
differential equations are solved, to order 5. This then implies directly, that for a
set of p pairwise compatible equations of the form (1) the Magnus expansion can
be applied sequentially, with respect to each independent variable, yielding a well
defined result, at least to order 5. We then demonstrate in a range of examples,
that an efficient implementation, [7], mirrors this result, to the relevant order of
approximation.

Our running example is to find the minimiser of a 2D variational problem which is
invariant under a linear action of SUp2q. We then consider some examples invariant
under the projective action of SLp2q, and finally an example invariant under the
standard affine action of SEp2q. Section 4 contains the numerical tests.

We conclude with a conjecture, that compatibility of the system (1) implies that
the Magnus expansion may be used sequentially to obtain a well-defined result, to
all orders, in the neighbourhood of a point where the components of the curvature
matrices equal their Taylor series.
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2. Moving frames and the Calculus of Variations. In this section we provide
a brief introduction to Lie group actions and moving frames which suffices for our
applications. Details for more general constructions can be found in the textbook
[17] and references therein.

Let G be a Lie group and M a manifold. We say the smooth map GˆM ÑM ,
pg, zq ÞÑ g ¨ z PM , is a left Lie group action if

g ¨ ph ¨ zq “ pghq ¨ z

for all g, h P G and z PM .
In our applications here, M will be the jet bundle, JnpX ˆ Uq with coordinates

z “ px,uq “ px1, .., xp, u
1, .., uq, . . . u1

K , ..q where K “ pk1, ¨ ¨ ¨ , kpq P N, k1 ` ¨ ¨ ¨ `

kp “ |K| ď n, and

uαK “
B|K|uα

Bk1x1 ¨ ¨ ¨ B
kpxp

.

In this case, we assume there is a Lie group action on the base space, X ˆ U and
that the action on the remaining coordinates of JnpXˆUq is induced via the chain
rule.
Standing Assumption. We assume throughout that the independent variables
are invariant under the Lie group action,

g ¨ px,uq “ px, ruq “ px1, .., xp,Ău1, ..,Ăuqq

We have then that for all K “ pk1, . . . , kpq,

g ¨ uαK “
B|K|

BxK
Ăuα “

B|K|

Bk1x1 ¨ ¨ ¨ B
kpxp

Ăuα. (3)

We discuss how to relax this assumption slightly, at the end of this section.

Running Example. We take for our running example, the linear action of the Lie
group G “ SUp2q on C2. Throughout our running example, z̄ denotes the complex
conjugate of z. In this case, the general element of G is given by

gpα, βq “

ˆ

α β
´β̄ ᾱ

˙

, |α|2 ` |β|2 “ 1

and the linear action is given by
ˆ

u
v

˙

ÞÑ

ˆ

ru
rv

˙

“

ˆ

α β
´β̄ ᾱ

˙ˆ

u
v

˙

. (4)

We take pu, vq for our dependent variables. The induced action on the jet bundle
coordinates is then

uK ÞÑ αuK ` βvK , vK ÞÑ ´β̄uK ` ᾱvK . (5)

Given a left Lie group action, GˆM ÑM , a right moving frame is a map

ρ : M Ñ G

which is right equivariant, that is,

ρpg ¨ zq “ ρpzqg´1

for all g P G and z P M . Moving frames are often defined only locally, that is,
on some domain contained in M , in terms of solutions of so-called normalisation
equations, of the form Φpg ¨zq “ 0, with as many independent equations in Φ “ 0 as
the dimension of the Lie group. Conditions for the existence of the frame are then
the same as those for the Implicit Function Theorem, needed to solve Φpg ¨ zq “ 0
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uniquely for g “ gpzq. By an abuse of notation, we denote the neighbourhood where
the frame is defined as M .

Running Example (cont.). Consider U “ tpu, vq | |u|2 ` |v|2 “ 1u Ă C2. Then
the linear action of SUp2q maps U to itself. We may define the moving frame,
ρ : U ÞÑ SUp2q by

ρpu, vq “

ˆ

ū v̄
´v u

˙

. (6)

It is straightforward to show that

ρpg ¨ pu, vqq “ ρpru, rvq “ ρpu, vq

ˆ

ᾱ ´β
β̄ α

˙

“ ρpu, vqg´1.

This frame can be obtained by the normalisation equations ru “ 1, rv “ 0.

Consider now the so-called invariantisation map, z Ñ Ipzq given by Ipzq “
ρpzq ¨ z. The right equivariance of the frame guarantees that Ipzq is an invariant.
Indeed, we have for each g P G and each z PM that

ρpg ¨ zq ¨ pg ¨ zq “ ρpzqg´1 ¨ pg ¨ zq “
`

ρpzqg´1g
˘

¨ z “ ρpzq ¨ z “ Ipzq.

The invariantisation map is also denoted as ιpzq or ῑpzq in the literature.
If M has coordinates z “ pz1, . . . , zmq, then in coordinates we have

Ipzq “ pρpzq ¨ z1, . . . , ρpzq ¨ zmq “ pIpz1q, . . . , Ipzmqq “ pI1, . . . , Imq

where this defines the Ik, k “ 1, . . . ,m. The Ik are denoted as normalised invariants.
For our application, where the action is on a jet bundle, the normalised invariants
are denoted as

IαK “ ρ ¨ uαK “ g ¨ uαK
ˇ

ˇ

g“ρ
.

Running Example (cont.). Since we know the induced action on each uK , vK ,
Equation (5), and we know the frame ρ explicitly, given in Equation (6), it is simple
to write down the normalized invariants. Specifically, they are

IuK “ ūuK ` v̄vK , IvK “ ´vuK ` uvK . (7)

The normalised invariants play a strong role in the so-called calculus of invariants.
The most important result is that along with the invariant independent variables,
they generate the algebra of invariants.

Theorem 2.1 (Replacement Rule). Let G ˆM Ñ M be a smooth left Lie group
action and let ρ : M Ñ G be a right moving frame for this action. Let coordinates
on M be given as z “ pz1, . . . , zmq and let Ik “ ρpzq ¨ zk, k “ 1, . . . ,m be the
normalised invariants. Then for any invariant of the action, F pz1, z2, . . . , zmq, we
have

F pz1, z2, . . . , zmq “ F pI1, I2, . . . , Imq. (8)

Indeed, we have that since F pzq “ F pg ¨ zq for all g P G, then we must have

F pzq “ F pg ¨ zq “ F pg ¨ zq
ˇ

ˇ

ˇ

g“ρ
“ F pIpzqq.

For actions on jet bundles, the Replacement Rule proves there is an infinite
number of generators of the algebra of differential invariants, the xi and the IαK .
Since we assume that the independent variables xk, k “ 1, . . . p are all invariant,
then the differential operators B{Bxk are all invariant, and thus any derivative of an
invariant is invariant. Taking this into account we may obtain a finite number of
generators of the algebra of invariants as follows.
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Definition 2.2 (Curvature matrices). Let G ˆ JnpX ˆ Uq Ñ JnpX ˆ Uq be a
smooth left Lie group action, induced by an action on X ˆU and suppose that the
action leaves X invariant. Let ρ : M Ă JnpX ˆ Uq Ñ G be a right moving frame
for this action. Suppose further that G is a matrix Lie group. Then the matrices

Qi “

ˆ

B

Bxi
ρ

˙

ρ´1, (9)

where ρ´1 is the group inverse to ρ, are known as the curvature matrices, and the
non-constant components of these are known as the Maurer–Cartan invariants.

It is a standard result that at each point where the frame is defined, Qi P g, the
Lie algebra of G, so that in effect, Qi : M Ă JnpX ˆ Uq Ñ g.

Running Example (cont.). We now suppose that u and v depend on some in-
dependent variables, which we denote here, for the purposes of our application, as
px, t, τq. We have that

Qx “ ρxρ
´1 “

ˆ

ūx v̄x
´vx ux

˙ˆ

u ´v̄
v ū

˙

“

ˆ

ūxu` v̄xv ´ūxv ` v̄xū
´vxu` uxv vxv̄ ` uxū

˙

.

Applying the Replacement Rule, noting that Ipuq “ 1 and Ipvq “ 0, we have that

Qx “

ˆ

Ipuxq Ipvxq
´Ipvxq Ipuxq

˙

.

From uū ` vv̄ “ 1 we have also that Ipuxq is pure imaginary, and that in fact, for
n ě 1, Qx : JnpX ˆ Uq Ñ sup2q, the Lie algebra of SUp2q. Similar results for the
other independent variables hold.

The curvature matrices yield important recurrence relations for the derivatives
of the normalised invariants. The calculations in the running example are typical
for linear actions; for generalisations to nonlinear actions or where the independent
variables are not invariant, see the textbook, [17].

Running Example (cont.). For the multi–index K “ pk1, k2, k3q, we may write
pk1 ` 1, k2, k3q “ K ` 11, pk1, k2 ` 1, k3q “ K ` 12 and pk1, k2, k3 ` 1q “ K ` 13 so
that

B

Bxi
uK “ uK`1i .

With this notation, if we differentiate both sides of the matrix equation
ˆ

IuK
IvK

˙

“ ρ

ˆ

uK
vK

˙

that is, the definition of the IuK , IvK , with respect to xi, we obtain

B
Bxi

ˆ

IuK
IvK

˙

“

´

B
Bxi
ρ
¯

ˆ

uK
vK

˙

` ρ B
Bxi

ˆ

uK
vK

˙

“
`

ρxi
ρ´1

˘

ρ

ˆ

uK
vK

˙

` ρ B
Bxi

ˆ

uK
vK

˙

“ Qi

ˆ

IuK
IvK

˙

`

ˆ

IuK`1i

IvK`1i

˙

We note that setting K “ p0, 0, 0q and knowing Iu
p0,0,0q “ Ipuq “ 1 and Iv

p0,0,0q “

Ipvq “ 0, this calculation essentially solves for Qi in terms of the symbolic, nor-
malised invariants, using the fact that at each point of J1pXˆUq, Qi P sup2q. This

calculation shows further that ´Ipuxq “ Ipuxq, ´Iputq “ Iputq and ´Ipuτ q “ Ipuτ q
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confirming that these are pure imaginary quantities. Finally, it is clear that the al-
gebra of differential invariants is generated by the Maurer–Cartan invariants, Ipuxq,
Ipvxq, Iputq, Ipvtq, Ipuτ q, Ipvτ q and their derivatives, together with the invariant
independent variables.

Our application to the invariant Calculus of Variations requires that we have to
hand, the differential relations or syzygies satisfied by the Maurer–Cartan invariants.
These arise from the identities,

B

Bxi
Qj ´

B

Bxj
Qi “ rQi,Qjs (10)

which follow directly from cross-differentiation of the equations defining the curva-
ture matrices, Equation (9).

Running Example (cont.). For ease of exposition, and to align the notation with
the general statements, we rename the Maurer–Cartan invariants in our running
example to be,

Qx “

ˆ

iκ1 κ2 ` iκ3

´κ2 ` iκ3 ´iκ1

˙

, Qt “

ˆ

iκ4 κ5 ` iκ6

´κ5 ` iκ6 ´iκ4

˙

(11)

and

Qτ “

ˆ

iσ1 σ2 ` iσ3

´σ2 ` iσ3 ´iσ1

˙

. (12)

Equating components of Equation (10) yields,

B

Bt

¨

˝

κ1

κ2

κ3

˛

‚

¨

˝

B
Bx 2κ3 ´2κ2

´2κ3
B
Bx 2κ1

2κ2 ´2κ1
B
Bx

˛

‚

¨

˝

κ4

κ5

κ6

˛

‚ (13)

together with

B

Bτ

¨

˚

˚

˚

˚

˚

˚

˝

κ1

κ2

κ3

κ4

κ5

κ6

˛

‹

‹

‹

‹

‹

‹

‚

“ H

¨

˝

σ1

σ2

σ3

˛

‚ (14)

where

H “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

B

Bx
2κ3 ´2κ2

´2κ3
B

Bx
2κ1

2κ2 ´2κ1
B

Bx
B

Bt
2κ6 ´2κ5

´2κ6
B

Bt
2κ4

2κ5 ´2κ4
B

Bt

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(15)

This is the form of the syzygies we will need in the sequel.
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Finally, we show how these computations are used in our application, which
is the invariant Calculus of Variations. We consider the problem of finding the
extremizing curve or surface where the Lagrangian is invariant under a Lie group
action. We assume the independent variables are xi, i “ 1, . . . p, the dependent
variables are uk, k “ 1, . . . , q and the generating differential invariants are given as
κi, i “ 1, . . . , r. We denote derivatives of the invariants as

B|K|

BxK
κi “ κi,K .

We consider the Lagrangian

Lru1, . . . , uqs “

ż

L px, κ1, . . . , κr,Kq dx1 ¨ ¨ ¨ dxp. (16)

where in any given example, the number of arguments of the Lagrangian function
L is finite. In order to effect the variation, we introduce a new dummy independent
variable τ , which gives rise to a new set of normalised invariants, Ipuατ q “ σα and
syzygies,

B

Bτ

`

κ1 ¨ ¨ ¨ κr
˘T
“ H

`

σ1 ¨ ¨ ¨ σq
˘T
,

using the calculations described above. The matrix operator H, is always a linear
matrix differential operator, whose coefficients involve only the κk and their deriva-
tives. Then the result is that the Euler–Lagrange equations for the Lagrangian in
Equation (16) are given by the components of [8, 9]

0 “ H˚

¨

˚

˝

Eκ1pLq
...

Eκr pLq

˛

‹

‚

(17)

where H˚ is the operator adjoint of H, and where

Eκ` “
ÿ

K

p´1q|K|
B|K|

BxK
B

Bκ`,K

is the Euler operator with respect to the variable, κ`. It is a result that any syzygies
between the κ`’s do not need to be included as constraints, as all terms in the
corresponding Lagrange multipliers disappear. However, the syzygies do need to be
included when solving the Euler–Lagrange system for the invariants, so as not to
have an under-determined system.

Having solved the Euler–Lagrange equations for the invariants, κ`, there comes
the question of what are the extremising curves and surfaces in the original depen-
dent variables. If the κ` are known as functions of the independent variables, then
the curvature matrices are also known. One can then solve the equations (9) in the
form,

B

Bxi
ρ “ Qiρ, i “ 1, . . . , p (18)

for ρ “ ρpxq, yielding its components as functions of the independent variables.
Equations (18) are guaranteed to be compatible, by (10), which is the necessary
condition for a solution to exist.

Finally, the extremising solution in terms of the original variables, may be ob-
tained as

uαK “ ρpxq´1 ¨ IpuαKq (19)
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where ρpxq´1 is the group inverse of ρpxq and the action is that appropriate for the
jet bundle coordinate, uαK .

Running Example (cont.). Suppose for simplicity that the Lagrangian is

Lru, vs “
ż

1
2 κ

2
1 dxdt.

Then the Euler–Lagrange equations are

0 “ H˚

¨

˚

˚

˚

˚

˚

˚

˝

κ1

0
0
0
0
0

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˝

´
B

Bx
κ1

2κ3κ1

´2κ2κ1

˛

‹

‹

‚

and these must be solved together with the syzygies in Equation (13). This yields,
provided κ1 ‰ 0,

κ1 “ f1ptq, κ2 “ 0, κ3 “ 0, κ4 “ f 11ptqx` f2ptq (20)

together with,

κ5 “ f3ptq sinp2f1ptqxq ` f4ptq cosp2f1ptqxq,
κ6 “ f4ptq sinp2f1ptqxq ´ f3ptq cosp2f1ptqxq.

(21)

The arbitrary functions can be fixed with some boundary conditions. Given the
invariants κi, i “ 1, .., 6, the curvature matrices Qx and Qt, (11), are known in
terms of the original independent variables. The next step, which we will discuss
in the next section, is to solve equations (18) in a way such that the solution is
guaranteed to belong to the Lie group G. Once a solution for ρ “ ρpx, tq has been
found in some domain, then the surfaces that minimise (16) are given, in that same
domain, by

ˆ

u
v

˙

“ ρpx, tq´1

ˆ

1
0

˙

(22)

where ρpx, tq´1 is the group inverse to ρpx, tq, that is, u “ ρ22, the p2, 2q component
of ρ, and v “ ´ρ21, noting that Ipuq “ 1 and Ipvq “ 1. The initial data for
ρ is taken to be compatible with the given boundary data for pu, vq, and their
derivatives, using (19) and (22) on the boundary.

Remark 1. Our results extend readily to where the action on the independent
variables is translation, so that

g ¨ px,uq “ px` ε, ruq “ px1 ` ε1, .., xp ` εp,Ău1, ..,Ăuqq

in which case (3) still holds, the operators
B

Bxi
are still invariant, and the equations

(10) still hold. The only real difference is that the Lagrangian can not depend on
the independent variables. The moving frame for the group parameter ε is taken to
be ε “ c ´ x where c is constant, so that Ipxiq “ ci. We note that the choice of
the ci can lead to more or less complicated expressions, and are often taken to be
either zero or unity.
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3. Lie group integrators. In the previous section we saw how the moving frame
ρ is the solution of the compatible system, rewritten here for the two dimensional
case,

$

’

’

’

’

&

’

’

’

’

%

B

Bx
ρ “ Qxρ (23)

B

By
ρ “ Qyρ (24)

ρpx0, y0q “ ρ0

where the compatibility condition B
BxQ

y ´ B
ByQ

x ´ rQx,Qys “ 0 is guaranteed to

hold.
Equations (23)–(24) are linear coupled PDEs which evolve on a Lie group. How-

ever, each equation contains only a derivative in a single direction. Hence, it is
possible to solve each of them numerically using numerical schemes developed to
solve ODEs on Lie groups: the so–called ‘Lie group integrators’. In the following
subsection we review the main facts concerning the theory of Lie group integrators.
In–depth surveys on this can be found in [1, 4, 13].

3.1. Matrix ODEs. As our focus is on matrix Lie group actions, we will assume
we are dealing with matrix Lie groups. Moreover, the matrices Qx and Qy depend
only on the generating differential invariants of the action and not on the moving
frame itself. This means that equations (23)–(24) form a system of linear PDEs.

Suppose we have a matrix Lie group G with Lie algebra g. We consider the initial
value problem on G,

$

’

&

’

%

Y 1ptq “ AptqY ptq

Y p0q “ Y0

t ě 0

(25)

where Y P G and A : RÑ g. To solve the initial value problem (25) it is necessary
to extend the exponential function to Lie algebras.

Definition 3.1 ([12]). If g is the Lie algebra of a Lie group G, then the exponential
map is defined as

exp : gÑ G, A ÞÑ
8
ÿ

k“0

Ak

k!
(26)

It can be shown that the series exppAq indeed maps into G. The exponential
is one–to–one only in a neighbourhood of 0 P g. However, it is not globally one–
to–one, nor surjective. When it does exist, the inverse function is known as the
logarithm and denoted as log.

Definition 3.2 ([13]). Suppose A : R Ñ g is differentiable. Then the differential
of exppAptqq, denoted by dexp, is given by

d

dt
exppAptqq “ dexpAptqpA

1ptqq exppAptqq

Given A P g , the adjoint map adA is defined as

adA : gÑ g, Y ÞÑ rA, Y s.

It can be proved [24], that dexpA is an analytic function of adA, namely

dexpApBq “
8
ÿ

i“0

adiAB

pi` 1q!
“

exppzq ´ 1

z

ˇ

ˇ

ˇ

ˇ

z“adA

pBq (27)
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and we used the notation

adiAB “ rA, rA, rA, .., rA
loooooooomoooooooon

i´1 times

, rA,Bssss for i P N

We follow [13] and read the ratio in the second equality of (27) in the sense of the
power series

exppzq ´ 1

z
“

8
ÿ

i“0

zj

pj ` 1q!

where x is replaced by adA. As dexp is an analytic function, we can invert it and
write

dexp´1
A “

z

exppzq ´ 1

ˇ

ˇ

ˇ

ˇ

z“adA

This last equation should also be read as a power series, recalling that

z

exppzq ´ 1
“

8
ÿ

i“0

Bi
i!
zi

where Bi is the ith–Bernoulli number [5, Eq. 24.2.1]. Hence

dexp´1
A pBq “

8
ÿ

i“0

Bi
i!

adiApBq (28)

We now state the fundamental result that lies behind the theory of the Lie group
integrators.

Theorem 3.3 ([13], [18]). Consider the initial value problem on G given in (25)
and define

Tmax “ sup
T

#

ż T

0

||Apξq||2 dξ ă π

+

Then, for every t0 P p0, Tmaxq, the solution of (25) in r0, t0s is given by

Y ptq “ exppΘptqqY0

and Θptq P g is the solution of
#

Θptq1 “ dexp´1
ΘptqpAptqq

Θp0q “ 0
(29)

3.2. The Magnus expansion. We are interested in using a class of numerical
methods that goes under the name of ‘Magnus expansion methods’ [14]. This is a
particular case of the Runge–Kutta–Munthe–Kaas methods developed in [19],[20],[21]
and [22]. In order to solve (29), the method of Picard iteration is used, which re-
lies on the concept of uniformly Lipschitz continuous function [11]. We recall the
following definitions.

Definition 3.4 ([11]). A function f: Rm Ñ Rn is said to be uniformly Lipschitz
continuous if there exists a constant L ě 0, such that, for every x, y P Rm

||fpxq ´ fpyq||Rn ď L||x´ y||Rm

holds.
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Definition 3.5. For the initial value problem
#

y1ptq “ fpt, yptqqyptq

ypt0q “ y0

(30)

the Picard iteration is defined as the sequence
#

ur0s “ y0

urm`1s “ y0 `
şt

t0
fps, urmsq ds m ě 0

(31)

The two definitions above play a central role in the Picard–Lindelöf theorem:

Theorem 3.6 (Picard–Lindelöf, [11]). Consider the initial value problem given by
(30). If fpt, yptqq is uniformly Lipschitz continuous in y and continuous in t, then
there exists ε ą 0 such that there exists a unique solution to (30) on the interval
rt0 ´ ε, t0 ` εs. Further, this solution is the limit of the Picard iterations.

As seen in (28), the inverse of dexp can be written as a series involving powers
of the ad operator. Applying the Picard iterations to (29) yields

$

&

%

Θr0s “ 0

Θrm`1s “
şt

0
dexp´1

Θrmspξq
Apξq dξ “

ř8

i“0

Bi
i!

ż t

0

adiΘrmspξqApξq dξ

for m “ 0, 1, 2, ...
In our case, the matrix function Aptq has no dependence on Y . Since it is assumed

to be smooth and hence continuous, in t, Picard’s theorem can be applied, to yield
a unique local solution to (29), namely Θptq “ limmÑ8Θrmsptq. It can be seen [13],
that it is possible to rearrange the terms in Θ as

Θptq “
8
ÿ

i“0

Hiptq (32)

where Hiptq comprises those terms involving precisely i commutators and i ` 1
integrals. The expression defined in (32) is called the Magnus expansion.

3.3. Magnus expansion and coupled systems of PDEs. We now restrict to
the two dimensional case, for simplicity. We are interested in applying the theory
of Lie group integrators based on the Magnus expansion to solve 2D variational
problems. Let us recall we want to solve system (23)–(24) in order to find the
moving frame ρ. Equations (23)–(24) form a system of two linear matrix differential
equations to be solved in a suitable domain of R2 and we want the solution to belong
to the Lie groupG at every point where it is defined. We also recall the compatibility
condition (2) for (23)–(24) to have a solution. We denote this condition by R, that
is,

R “
B

Bx
Qy ´

B

By
Qx ´ rQx,Qys (33)

which must be identically zero for the system to be compatible. We apply Lemma
(3.3) to equations (23)–(24), obtaining the coupled system of differential equations,

$

’

’

&

’

’

%

B

Bx
Θpx, yq “ dexp´1

Θpx,yqQ
xpx, yq (34)

B

By
Θpx, yq “ dexp´1

Θpx,yqQ
ypx, yq (35)
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The method of Picard iterations is applied to each of the differential equations
(34)–(35) to yield,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Θx
r0s “ 0

Θy
r0s “ 0

Θx
rn`1s “

ř8

i“0

Bi
i!

ż x

0

adiΘx
rns
pξ,yqQxpξ, yq dξ

Θy
rn`1s “

ř8

i“0

Bi
i!

ż y

0

adiΘy
rns
px,ξqQypx, ξq dξ

for n “ 0, 1, 2, ..., where the iterations of Θx and Θy solve the equation for (34) and
(35) respectively. We use the superscripts x and y to denote the integrations in the
x and y direction respectively. As in (32), we rearrange terms such that

Θxpyq “
8
ÿ

i“0

Mx
i pyq (36)

Θypxq “
8
ÿ

i“0

My
i pxq (37)

where Mx
i , My

i comprise those terms containing exactly i commutators and i ` 1
integrals.

3.4. Magnus expansions commute up to order 5. We now show that the Mag-
nus expansion, considered as an exact, albeit infinite series solution, yields a well
defined integration method for a system of the form (23)–(24), in the neighbour-
hood of a point px0, y0q for which the curvature matrices both have a Taylor series
expansion. We consider the result obtained by sequential integration in the two
different directions. We show, in fact, that the difference in the results obtained
by changing the order of integration, can be expressed in terms of a differential
operator acting on the compatibility condition, R, (33). The two different solutions
are the same, then, provided R “ 0. While we show the result only to order 5, it
is clear that the calculations may be continued to any order, albeit they become
increasingly complex.

Definition 3.7. If Q P g is a matrix Lie algebra element, then Q is of order n in h
if

n “ inf

"

j P Z : lim
hÑ`8

Q

hj`1
“ 0

*

In our calculations, we will make strong use of the Baker–Campbell–Hausdorff
(BCH) formula which shows how two matrix exponentials may be multiplied to
obtain a single matrix exponential. Although we will use a truncated BCH expan-
sion up to order 5, a recursive formula to determine every term has been proved by
Dynkin, [6].

Theorem 3.8 (BCH formula, [6, 23]). If ||X||2 ` ||Y ||2 ă log 2, then

logpexppXqexppY qq “
8
ÿ

n“1

p´1qn´1

n

ÿ

r1`s1ą0

...
rn`sną0

rXr1Y r1Xr2Y s2 ¨ ¨ ¨XrnY sns
řn
i“1pri ` siqΠ

n
i“1ri!si!
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Figure 1. The two different paths γ1,γ2.

where

rXr1Y r1Xr2Y s2 ¨ ¨ ¨XrnY sns

“ rX, rX, ¨ ¨ ¨ rX
loooooomoooooon

r1

, rY, rY, ¨ ¨ ¨ rY
looooomooooon

s1

, ¨ ¨ ¨ rX, rX, ¨ ¨ ¨ rX
loooooomoooooon

rn

, rY, rY, ¨ ¨ ¨Y
looooomooooon

sn

ss ¨ ¨ ¨ s

Theorem 3.9. Let px0, y0q be a point in the domain of the moving frame, for
which the curvature matrices have a (local) Taylor series expansion. Then in a
neighbourhood of this point, the Magnus expansion may be used sequentially, to
yield a well–defined solution for the compatible system (23)–(24), to order at least
5.

Proof. Consider a rectangular neighbourhood of px0, y0q, given by rx0, x0 ` hs ˆ
ry0, y0 ` ks, where h, k P R are sufficiently small, that is, rx0, x0 ` hs ˆ ry0, y0 ` ks
lies within the domain of validity of the Taylor series of the curvature matrices. In
order to have a well–defined solution, we need to prove that if we start from the
initial datum ρ0 “ ρpx0, y0q, then we obtain a unique expression for ρpx0`h, y0`kq,
regardless of the order of integration, that is, regardless of whether we integrate first
with respect to x or with respect to y.

Let us consider two paths, say γ1 and γ2, such that they both start at px0, y0q

and end at px0 ` h, y0 ` kq “ px1, y1q, but γ1 first goes to px0, y1q and then to
px1, y1q, while γ2 travels first to px1, y0q before going to px1, y1q (see Figure 1). We
compute the solution ρpx1, y1q along the two paths, and compare the two results.
We call ργ1px1, y1q and ργ2px1, y1q the solution ρpx1, y1q obtained along γ1 and γ2

respectively. To make the calculations tractable, we will approximate the solutions
ργ1 and ργ2 to order five.
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Using Lemma (3.3) we compute ργ1px1, y1q and ργ2px1, y1q in two steps. First
we obtain the solution of

$

’

’

&

’

’

%

B

By
ργ1 “ Qyργ1

ργ1px0, y0q “ ρ0

px, yq P tx0u ˆ ry0, y1s

$

’

’

&

’

’

%

B

Bx
ργ2 “ Qxργ2

ργ2px0, y0q “ ρ0

px, yq P rx0, x1s ˆ ty0u

as

ργ1px0, y1q “ exppΘypx0qqρ0

ργ2px1, y0q “ exppΘxpy0qqρ0

Then the following step is to solve the systems
$

’

&

’

%

B
Bxρ

γ1 “ Qxργ1

ργ1px0, y1q “ exppΘypx0qqρ0

px, yq P rx0, x1s ˆ ty1u

$

’

’

&

’

’

%

B

By
ργ2 “ Qyργ2

ργ2px1, y0q “ exppΘxpy0qqρ0

px, yq P tx1u ˆ ry0, y1s

and we obtain the two solutions that we want to compare, namely

ργ1px1, y1q “ exppΘxpy1qqexppΘypx0qqρ0

ργ2px1, y1q “ exppΘypx1qqexppΘxpy0qqρ0

Therefore, we consider

logpργ1px1, y1qρ
´1
0 q ´ logpργ2px1, y1qρ

´1
0 q “ logpexppΘxpy1qqexppΘypx0qqq

´ logpexppΘypx1qqexppΘxpy0qqq
(38)

We will show that the right hand side of (38) is zero up to order 5 in h, k. We will
present the computations only for logpργ1px1, y1qρ

´1
0 q as those for logpργ2px1, y1qρ

´1
0 q

can be obtained by interchanging x and y.
We begin applying the BCH formula to the RHS of (38). As we truncate the

expansion at order 5, the terms that are relevant for our result are

logpργ1px1, y1qρ
´1
0 q “ logpexppΘxpy1q exppΘypx0qqqq (39)

“ Θxpy1q `Θypx0q `
1

2
rΘxpy1q,Θ

ypx0qs

`
1

2
prΘxpy1q, rΘ

xpy1q,Θ
ypx0qss ` rΘ

ypx0q, rΘ
ypx0q,Θ

xpy1qssq

´
1

24
rΘypx0q, rΘ

ypx0q, rΘ
xpy1q,Θ

ypx0qsss

´
1

720
rΘypx0q, rΘ

ypx0q, rΘ
ypx0q, rΘ

ypx0q,Θ
xpy1qssss

´
1

720
rΘxpy1q, rΘ

xpy1q, rΘ
xpy1q, rΘ

xpy1q,Θ
ypx0qssss

`
1

360
rΘxpy1q, rΘ

ypx0q, rΘ
ypx0q, rΘ

ypx0q,Θ
xpy1qssss

`
1

360
rΘypx0q, rΘ

xpy1q, rΘ
xpy1q, rΘ

xpy1q,Θ
ypx0qssss

`
1

120
rΘypx0q, rΘ

ypx0q, rΘ
xpy1q, rΘ

ypx0q,Θ
xpy1qssss

`
1

120
rΘxpy1q, rΘ

xpy1q, rΘ
ypx0q, rΘ

xpy1q,Θ
ypx0qssss ` h.o.t.
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where ‘h.o.t’ stands for higher order terms. The expansion for logpργ2px1, y1qρ
´1
0 q

is analogous.
The second step is to express Θxpy1q and Θypx1q as Taylor polynomials around

y0 and x0 respectively.
The terms we need for the Magnus expansion of Θxpy0q are,

Θxpy0q “

ż x1

x0

Qxpξ, y0q dξ ´
1

2

ż x1

x0

«

ż ξ1

x0

Qxpξ2, y0q dξ2,Qxpξ1, y0q

ff

dξ1

`
1

12

ż x1

x0

«

ż ξ1

x0

Qxpξ2, y0q dξ2,

«

ż ξ1

x0

Qxpξ2, y0q,Qxpξ1, y0q

ffff

dξ1

`
1

4

ż x1

x0

«

ż ξ1

x0

rQxpξ3, y0q ξ3,Qxpξ2, y0qs dξ2,Qxpξ1, y0q

ff

dξ1

´
1

24

ż x1

x0

«

ż ξ1

x0

«

ż ξ2

x0

Qxpξ3, y0q dξ3,

«

ż ξ2

x0

Qxpξ3, y0q dξ3,Qxpξ2, y0q

ffff

dξ2,

Qxpξ1, y0q

ff

dξ1

´
1

24

ż x1

x0

«

ż ξ1

x0

«

ż ξ2

x0

Qxpξ3, y0q dξ3,Qxpξ2, y0q

ff

dξ2,

«

ż ξ1

x0

Qxpξ2, y0q dξ2,

Qxpξ1, y0q

ffff

dξ1

´
1

24

ż x1

x0

«

ż ξ1

x0

Qxpξ2, y0q,

«

ż ξ1

x0

«

ż ξ2

x0

Qxpξ3, y0q dξ3,Qxpξ2, y0q

ff

dξ2,

Qxpξ1, y0q

ffff

dξ1

´
1

8

ż x1

x0

«

ż ξ1

x0

Qxpξ2, y0q,

«

ż ξ1

x0

Qxpξ2, y0q dξ2,

«

ż ξ1

x0

Qxpξ2, y0q,Qxpξ1, y0q

ffffff

dξ1

The expression for Θypx0q is analogous.
The third step is to expand the integrand functions inside Θxpy0q and Θypx0q,

that is, Qxpξ, y0q and Qypx0, ξq, around x0 and y0 respectively as Taylor polynomials
up to order 5. The coefficients of this Taylor expansion are functions of the curvature
matrices Qx and Qy and their partial derivatives evaluated at px0, y0q. After this
step, it becomes trivial to compute the integrals as they are polynomial in the
dummy variables of integration, ξ, ξ1 and ξ2, and to collect terms of each order.

In this way, the right hand side of (38) may be written down in terms of Qx and
Qy and their partial derivatives, all evaluated at px0, y0q.

The final step is to write this resulting expression in terms of the compatibility
expression R defined in (33) and its partial derivatives, all evaluated at the arbitrary
initial point px0, y0q. We summarise the result in the table below, noting that the
coefficient of hnkm can be obtained from that of hmkn by interchanging x and y. It
can be seen that every coefficient is a differential expression in R which is identically
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Table 1. Table of Coefficients

Order Monomial Coefficient

2 hk R

3 h2k 1
2BxR

4 h3k 1
6B

2
xR´

1
12 adQxpBxRq `

1
12 adBxQxpRq

h2k2 1
4BxByR´

1
6 adadQx pQyqpRq ´

1
12 adQy padQxpRqq

5 h4k 1
24B

3
xR´

1
24 adQxpB2

xRq `
1
24 adB2xQxpRq

h3k2 1
12B

2
xByR´

1
24 adQxpBxByRq ´

1
24 adBxQxpByRq

´ 1
24 adQxpadQy pBxRqq ´

1
12 adRpBxRq `

1
2 adBxQy pBxRq

` 1
6 adB2xQy pRq ´ 1

24 adQy padByQxpRqq ´ 1
24 adBxQy padQxpRqq

` 1
8 adrBxQy,QxspRq `

1
8 adrQy,BxQxspRq

zero when R is zero, and hence the right hand side of (38) is zero. This ends the
proof.

It can be seen that the calculations become increasingly complex as the order
increases. While obtaining a recursive expression for these expressions seems out
of reach, nevertheless, it seems reasonable to conjecture that the result holds to
every order. Of interest is the emergence of an operator acting on R at every order,
which combines differential and ad operators, both of which are derivations acting
on the free Lie algebra generated not only by the curvature matrices but also their
derivatives. Understanding the structure of the sequence of operators acting on R,
as exhibited in Table 1, is an open problem.

4. Numerical examples. We showed in the previous section that the Magnus
expansions commute at least up to order 5. These hint that the Lie group integrators
based on the Magnus expansion may also commute to some related order, and we
investigate some simple examples.

We consider four variational problems and, in order to solve the system of cou-
pled matrix PDEs for the frame, we use a sixth–order Magnus series method which
is included in the Matlab package DiffMan ([7], Algorithm A.2.5). This numerical
scheme is cost efficient [2, 3, 15], which means that not all the terms in the Magnus
expansion are used in the calculations. Moreover, the algorithm numerically ap-
proximates integrals using a Gauss–Legendre scheme. Further research needs to be
done in order to understand fully how the compatibility condition can be used to
prove, to some order, a result like Theorem (3.9) for the solvers implemented in Diff-
man. However, as we will see in the numerical examples in this section, neither the
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omission of some terms in the name of efficiency, nor the replacement of quadrature
for exact integration, appear to affect unduly the numerical compatibility.

In the following we first find a simple exact solution to the Euler–Lagrange equa-
tions which may readily be used as components of the curvature matrices Qi in the
software1. We then solve for the frame using two different methods:

1 integrating first with respect to y along the line x “ x0, and then, for
j “ 0, .., n, use the points ρpxj , y0q as initial condition for the solution found
integrating with respect to x along the line y “ yj .

2 integrating first with respect to x along the line y “ y0, and then, for
j “ 0, .., n, use the points ρpx0, yjq as initial condition for the solution found
integrating with respect to y along the line x “ xj .

and we will compare the solutions obtained. Finally, we use (19) to plot the min-
imiser, given the frame, for completeness.

We first conclude our running example.

Running Example (cont.). Recall in Section 2, we considered the linear action
of SUp2q on pair of complex surfaces upx, tq and vpx, tq. We consider the extremal
surfaces to describe an evolving curve, x ÞÑ pupxq, vpxqq P U . The Lagrangian
considered was

1

2

ż

D

κ2
1 dx dt (40)

where D is the square r0, 1s ˆ r0, 1s, and note that a simple exact solution to the
system (20),(21), with fptq “ t3 and with boundary condition,

$

’

’

’

&

’

’

’

%

κ1p0, tq “ t3

κ4p0, tq “ ´t
2

κ5p0, tq “ ´
t4

3

κ6p0, tq “ t` 5

(41)

is given by
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

κ1 “ t3

κ2 “ κ3 “ 0

κ4 “ 3xt2 ´ t2

κ5 “ ´pt` 5q sinp2t3xq ´ 1
3 t

4 cosp2t3xq

κ6 “ ´
1
3 t

4 sinp2t3xq ` pt` 5q cosp2t3xq

(42)

Since we do not impose initial data for pu, vq , we may take the (randomly chosen)
initial condition for the moving frame to be

ρ0 “

˜

´ 1
3 `

1
4 i 1

2 ´
?

83
12 i

´ 1
2 ´

?
83

12 i ´ 1
3 ´

1
4 i

¸

(43)

We use Diffman to solve the system for the moving frame in two different ways;
first by solving the equation ρx “ Qxρ for ρpx, 0q, and then by solving the equation
ρt “ Qtρ equation with ρpx, 0q as the initial data, and second, by reversing the
order of integrations. In order to keep the number of plots low (there are 4 surfaces
corresponding to real and imaginary parts of u and v, and 4 plots related to the

1Using a numerical solution seems to require the data representations to be aligned in some
sense, for example, that the meshes match. This is a development for the future.
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Figure 2. 2-Norm of the difference between the two moving frames

difference between each surface computed along the two paths), we show in Figure
(2) the 2-norm of the difference of the two moving frames computed. The step sizes
in the x and y directions were chosen to be h “ k “ 0.01. It can be seen that the
two possible solutions to the equations for the frame, coincide at least up to order
5.

Once the frame has been computed on some domain, we may use (22) to obtain
the extremal solution on the same domain. In Figure 3 we plot the imaginary
component of u; the three other possible plots are similar.

4.1. Examples using the projective action of SLp2q. The next two examples
are related to the Lie group SLp2q, given by

SLp2q “

"

g “

ˆ

a b
c d

˙

| ad´ bc “ 1

*

and we let it act projectively on surfaces as

g ¨ x “ x, g ¨ y “ y, g ¨ u “
au` b

cu` d
(44)

This action and its use in the Calculus of Variations is studied in complete detail
in [10, 17]. For convenience, we record here the information needed to complete the
calculations.

Given the frame ρ defined by the normalisation equations g ¨ u “ 0, g ¨ ux “ 1
and g ¨ uxx “ 0, the generating differential invariants are,

κpx, yq “ ρ ¨ uy “
uy
ux

σpx, yq “ ρ ¨ uxxx “
uxxx
ux

´
3u2

xx

2u2
x

.
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Figure 3. The imaginary component of u

The two curvature matrices are

Qx “

ˆ

0 ´1
1
2σ 0

˙

Qy “

ˆ

´ 1
2κx ´κ

1
2 pκxx ` σκq

1
2κx

˙

and the syzygy is
B

By
σ “

ˆ

B3

Bx3
` 2σ

B

Bx
` σx

˙

κ. (45)

Introducing a dummy variable τ to effect the variation yields the new invariant
ω “ uτ {ux and the syzygies,

B

Bτ

ˆ

κ
σ

˙

“ Hω “

¨

˚

˚

˝

B

By
´ κ

B

Bx
` κx

B3

Bx3
` 2σ

B

Bx
` σx

˛

‹

‹

‚

ω. (46)

The invariantised Euler–Lagrange equation is [9],

´

ˆ

B3

Bx3
` 2σ

B

Bx
` σx

˙

EσpLq `

ˆ

´
B

By
` κ

B

Bx
` 2κx

˙

EκpLq “ 0 (47)

Finally, the equations for the moving frame ρ, are
$

’

’

’

&

’

’

’

%

B
Bxρ “ Qxρ
B
Byρ “ Qyρ

ρpx0, y0q “ ρ0

px, yq P rx0, x1s ˆ ry0, y1s

(48)

We now consider two different Lagrangians. Our aim here is to investigate the
numerical compatibility of the Lie group integrator in some simple examples. There-
fore, the region D for this example and the ones that follow have been chosen such
that it is possible to compute the solution in a reasonable time and the solution
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itself is well defined all over the domain. Further, the boundary and initial condi-
tions in the following examples have been chosen in order to have the existence of
a solution guaranteed and to make computations tractable.

4.1.1. Example 1. Consider the Lagrangian given by

L “
ż

D

κ2px, yq dx dy (49)

where D is the square r3, 4sˆr3, 4s and we choose a step size equal in both directions
h “ k “ 0.01. The Euler–Lagrange equation is

κy “ 3κκx (50)

and if we add a boundary condition as κpx, 1q “ x, then a simple exact solution is

κpx, yq “ ´
x

3y ´ 4
(51)

Setting κ into the syzyzy equation (45), we obtain an equation for σ,

σy “ ´2
σ

p3y ´ 4q
´

xσx
p3y ´ 4q

and if we impose that σp1, yq “ y, we obtain the solution

σpx, yq “
4x3 ` 3y ´ 4

3x5
(52)

Inserting (51) and (52) into (48), adding an initial condition

ρ0 “

˜

1
2

?
3

2

´
?

3
2

1
2

¸

and integrating as we described using the two methods above, we obtain two sur-
faces, identical to the naked eye, shown in Figure 4. A plot of the absolute difference
between the two surfaces is shown in Figure 5. We can see in this case, that the
point–wise difference of the two surfaces plotted in Figure 4 is of order at least 7 in
h, k.

Remark 2. The Euler–Lagrange equation (50) is the inviscid Burgers equation,
well–known for its shock wave solutions. Such solutions lead to the curvature ma-
trices not being continuous, and hence not satisfying the hypotheses for the Picard
iteration solution method to be valid. The use of moving frames to study such
extremal solutions is an open problem.

4.1.2. Example 2. Consider next the Lagrangian given by

L “
ż

D

σ2
xpx, yq dx dy (53)

where D is the square r1, 2sˆr1, 2s and we choose a step size equal in both directions
h “ k “ 0.01. The Euler–Lagrange equation becomes

σxxxxx ` 2σσxxx ` σxσxx “ 0

and we notice that all summands in the differential equation above contain one
factor with at least a second order derivative in x. So a simple exact solution is

σpx, yq “ x´ y (54)
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Figure 4. Plots of solutions to the variational problem defined by
(49), computed integrating the two different ways; the plots look
identical to the naked eye.

Figure 5. Absolute value of the difference between the two sur-
faces in Figure 4.

Now we can substitute the expression for σ into the sygyzy equation (45), obtaining
an equation for κ

κxxx ` p2x´ 2yqκx ` κ` 1 “ 0 (55)
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Figure 6. Plots of solutions to the variational problem defined by
(53), computed integrating the two different ways; the plots look
identical to the naked eye.

and if we impose that
$

’

&

’

%

κp0, yq “ y

κxp0, yq “ 0

κxxp0, yq “
1
y

(56)

we obtain a solution in terms of the Airy functions of first and second kind (and
their first derivative). Inserting (54) and the solution to (55)–(56) into (48), adding
an initial condition

ρ0 “

˜

1
2

?
3

2

´
?

3
2

1
2

¸

and integrating as we described in 1–2 above, we obtain the two surfaces shown
in Figure 6. A plot of the absolute difference between the two surfaces is given in
Figure 7. In this example we obtain that the difference between the two surfaces is
of order greater than 5.

4.2. An example using the standard action of SEp2q. We end this sec-
tion with a numerical example involving an action of SEp2q “ SOp2q ˙ R2 on
parametrised surfaces ps, tq Ñ pxps, tq, ups, tqq. In many applications, we consider
pxps, tq, ups, tqq as an evolving curve, pxpsq, upsqq, in the px, uq plane. In this case,
it is common to take s to be arc length. Here, we achieve this, while maintaining

both
B

Bs
and

B

Bt
to be standard, commuting operators, by taking x2

s ` u
2
s “ 1 as a

constraint in the Lagrangian.

Remark 3. If we define u “ upx, tq and take the standard arc length derivative,
B

Bs
“ p1` u2

xq
´1{2 B

Bx
, then

B

Bs
and

B

Bt
do not commute, since ut ‰ 0. In this case,

the compatibility condition will not take the form (33).
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Figure 7. Absolute value of the difference between the two sur-
faces in Figure 6.

The action is given by

g ¨

¨

˝

x
u
1

˛

‚“

¨

˝

cospθq ´ sinpθq a
sinpθq cospθq b

0 0 1

˛

‚

¨

˝

x
u
1

˛

‚ (57)

where pθ, a, bq P R3.
Moving frames for this and related actions and their use in the Calculus of Vari-

ations is well studied, see [8, 17]. For convenience, we record here the information
we need. Given the normalisation equations

g ¨ x “ 0, g ¨ u “ 0, g ¨ us “ 0, (58)

the frame is

ρ “
1

px2
s ` u

2
sq

1{2

¨

˝

xs us ´pxxs ` uusq
´us xs usx´ xsu

0 0 1

˛

‚.

The normalisation equations give ρ ¨ x “ Ipxq “ 0 and similarly Ipuq “ 0 and
Ipusq “ 0, while ρ ¨ xs “ Ipxsq “ px

2
s ` u

2
sq

1{2.
Calculating the curvature matrices and applying the Replacement Rule yields

Qs “

¨

˚

˚

˝

0
κ1

κ2
´κ2

´
κ1

κ2
0 0

0 0 0

˛

‹

‹

‚

(59)

Qt “

¨

˚

˚

˚

˝

0
Ipustq

κ2
´κ4

´
Ipustq

κ2
0 ´κ3

0 0 0

˛

‹

‹

‹

‚

(60)
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where

ρ ¨ uss “ κ1, ρ ¨ xs “ κ2, ρ ¨ ut “ κ3, ρ ¨ xt “ κ4.

Calculating the syzygies from the compatibility condition yields

Ipustq “ κ3,s ` κ1κ4{κ2

and therefore, the generating invariants are κi, i “ 1, . . . , 4, together with the
invariant independent variables.

The famous invariant of this action, the Euclidean curvature, can be expressed
as κ1κ

´3
2 . It is usual to set κ2 “ px

2
s ` u2

sq
1{2 “ 1 to fix the parametrisation and

ease the calculations.
Setting κ2 “ 1, the syzygies for our invariants are κ4,s “ κ1κ3 together with

B

Bt
κ1 “

B

Bs

ˆ

B

Bs
κ3 ` κ1κ4

˙

. (61)

In order to effect the variation, we introduce a dummy invariant independent
variable, τ . We obtain two new invariants, σ1 “ ρ ¨ uτ and σ2 “ ρ ¨ xτ , and then
the syzygy operator H needed to calculate the Euler–Lagrange equations is,

B

Bτ

¨

˚

˚

˝

κ1

κ2

κ3

κ4

˛

‹

‹

‚

“ H
ˆ

σ1

σ2

˙

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

B2

Bs2
κ1,s ` κ1

B
Bs

´κ1
B

Bs
B

Bt
´ κ4

B

Bs
κ3,s

κ3
B

Bs
´ κ3,s ´ κ1κ4

B

Bt
` κ1κ3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

ˆ

σ1

σ2

˙

(62)

where we have set κ2 “ 1 in H.
Consider the Lagrangian

ż

D

1

2

ˆ

B

Bt
κ1

˙2

´ λ pκ2 ´ 1q dsdt (63)

where D “ r1, 2s ˆ r1, 2s and λ is a Lagrange multiplier for the constraint, κ2 “ 1.
Given (63), the system to be solved is made of the two Euler–Lagrange equations
for the invariants and their syzygies, which in this case is

$

’

’

’

&

’

’

’

%

κ1λ´ κ1,sstt “ 0

λs ´ κ1κ1,stt “ 0

κ4,s ´ κ1κ3 “ 0

κ3,ss ` κ1,sκ4 ` κ
2
1κ3 ´ κ1,t “ 0

(64)

A simple exact solution to (64) is

κ1 “ ´4ps` tq´1 λ “ 24ps` tq´4 κ3 “ s` t` sin p4 lnps` tqq ` cos p4 lnps` tqq
(65)

and

κ4 “ cos p4 lnps` tqq ´ sin p4 lnps` tqq ` 1´ 4ps` tq (66)

Substituting (65)–(66) into (59)–(60), we solve system (48) using the procedure
described above, with a constant step size in both direction equal to h “ k “ 0.01.
A plot of the 2–norm of the difference of the two moving frames obtained in this
way can be found in Figure 8. From the plot it can be seen that in this case our
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Figure 8. 2–norm of the difference between the two moving frames

theoretical result is mirrored in the numerical result. Once the frame has been
computed, recall the minimisers are given by

¨

˝

xps, tq
ups, tq

1

˛

‚“ ρps, tq´1

¨

˝

Ipxq
Ipuq

1

˛

‚“ ρps, tq´1

¨

˝

0
0
1

˛

‚ (67)

where the right–hand side is determined by the first two of the normalisation equa-
tions, Ipxq “ ρ ¨ x “ 0 and Ipuq “ ρ ¨ u “ 0, which define the frame. A plot of the
minimisers is provided in Figure 9.

5. Conclusion. In this paper, we have shown that Magnus expansions may be
used to solve the system of equations for a moving frame, (1), which evolves on a
Lie group, in the case where the base space has two dimensions. Our result extends
immediately to the system of equations for a moving frame on an p-dimensional
base space, p ě 2, as these equations are pairwise compatible.

Our method can, in principle, be applied to any variational problem with a Lie
group symmetry, where

1. the Lie group action leaves the independent variables invariant or acts by
translation on them, so that the invariant differential operators are the stan-
dard, commuting operators,

2. which can be described and analysed using a Lie group based moving frame,
3. and for which the solutions of the Euler–Lagrange equations lead to smooth

curvature matrices.

We have applied our result to find, numerically, simple extremal solutions for
variational problems which are invariant either under a linear action of SUp2q, the
projective action of SLp2q or the affine action of SEp2q. Cost efficient Lie group
integrators [2, 3, 15] reduce the number of commutators involved in the numerical
computation, and the implementation we have used, [7], takes advantage of these
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Figure 9. A plot of the minimiser as an evolving curve, pt, xps, tq, ups, tqq

ideas. The precise interplay between compatibility and efficiency is a topic for
further study. Further, the use of Lie group integrators for the computation of
the frame for numerical solutions of the Euler–Lagrange solutions will depend on
whether or not they may take as input, numerical coefficients in the curvature
matrices Qi.

While we have shown that the Magnus expansions are compatible to order 5,
it is clear that our proof of the compatibility (38) could have continued to higher
orders. However, the calculations become less and less tractable, and there is no
clear, discernible, recursive pattern. The infinite set of operators acting on the
compatibility condition R, involving not only the curvature matrices Qi but also
their derivatives, appearing in Table 1, seems to be new. We conclude by stating
the general result as a conjecture.

Conjecture 1. The Magnus expansions for compatible systems will commute to all
orders, that is, the right–hand side of (38) is identically zero to all orders of h, k.

We may state the conjecture more precisely, that the right–hand side of (38) is
a differential operator acting on the compatibility condition R (given in (33)), and
which therefore must be identically zero for the Magnus expansions to commute.
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