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Abstract: Biometric signature verification has been traditionally performed in pen-based office-like scenarios using devices specif-

ically designed for acquiring handwriting. However, the high deployment of devices such as smartphones and tablets has given

rise to new and thriving scenarios for signature biometrics where handwriting can be performed using not only a pen stylus but also

the finger via touch interaction. Some preliminary studies have highlighted the challenge of this new scenario and the necessity

of further research on the topic. The main contribution of this work is to propose a new on-line signature verification architecture

adapted to the signature complexity in order to tackle this new and challenging scenario. Additionally, an exhaustive comparative

analysis of both pen- and touch-based scenarios using our proposed methodology is carried out along with a review of the most

relevant and recent studies in the field. Significant improvements of biometric verification performance and practical insights are

extracted for the application of signature verification in real scenarios.

1 Introduction

On-line signature verification has been studied in depth in recent

years proving to be one of the most reliable and convenient biomet-

ric systems in many relevant sectors such as security, e-government,

healthcare, education, banking, and insurance regardless of the age

of the user [1, 2]. In [3], an approach for irreversible signature

template generation was proposed, avoiding the use of sensitive

information related to X and Y coordinates and their derivatives

on the biometric system. As a consequence, more robust signature

verification systems were developed against cyberattacks as criti-

cal information was not stored anywhere. That approach achieved

results below 7.0% and 1.0% Equal Error Rate (EER) using the

pen as the writing input for skilled and random forgeries, respec-

tively. Other challenges of practical importance such as the template

aging (i.e., the gradual decrease in a system performance due to the

user changes across time) and the input device interoperability were

recently studied in [4–8].

Despite all the improvements achieved in on-line signature verifi-

cation in recent years, there are still practical challenges that require

further research [9]. Signatures have been traditionally acquired in

pen-based office-like scenarios using devices specifically designed

to capture dynamic signatures and handwriting (i.e., so called

graphic or writing tablets such as those manufactured by Wacom and

others), in which the pen has always been considered as the input

device achieving, in general, very good results. However, the high

deployment of devices such as smartphones and tablets has given

rise to new scenarios where finger and pen are independently con-

sidered as input (a.k.a. mixed input). Some preliminary studies have

highlighted the challenge of this new scenario [6, 10–14], but further

research is still needed.

The main goal of this study is to propose a new methodology

focused on the development of an on-line signature verification sys-

tem adapted to the signature complexity level in order to enhance this

challenging scenario. Fig. 1 describes our proposed approach based

on two main modules: i) a signature complexity detector, and ii) a

complexity-based time functions extractor. Similar approaches have

been considered in other biometric traits such as face using the gen-

der and ethnicity information to better train the systems [15], serving
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Fig. 1: Architecture of our proposed on-line signature verification system adapted to the signature complexity level. Pen, finger, and mixed
input scenarios are analysed through the BiosecurID and e-BioSign databases.

as a motivation for our study. A preliminary version of the pro-

posed signature complexity approach was introduced in [16]. In that

study only the pen stylus scenario was considered through the Biose-

curID database [17]. In general, the present study further analyses

the signature complexity effect on both pen and finger scenarios.

In addition, we analyse how well our proposed signature complex-

ity approach generalise to other databases and scenarios such as the

e-BioSign mobile database.

The main contributions of this study are the following:

• An on-line signature verification system adapted to the signature

complexity level is proposed. As far as we know, this is the first study

that exploits the signature complexity level to develop more robust

and accurate on-line signature verification systems.

• A signature complexity detector is proposed. Three different com-

plexity levels are considered regarding the handwriting appearance

of the signature, i.e., signatures with an appearance more similar to

handwriting are labelled as high complexity whereas signatures with

generally simple flourish with no legible information are labelled as

low complexity. This simple but effective approach has proven to

generalise well to unseen databases and scenarios.

• We perform an exhaustive comparative analysis between both

pen- and touch-based scenarios considering Commercial Off-The-

Shelf (COTS) devices and our proposed complexity-based signature

verification system.

The remainder of the paper is organized as follows. In Sec. 2, a

review of the most relevant and recent studies related to this work is

carried out. In Sec. 3, our proposed complexity-based signature ver-

ification system is described. Sec. 4 describes the on-line signature

databases considered in the experimental work. Sec. 5 describes the

experimental protocol and the results achieved. Finally, Sec. 7 draws

the final conclusions and points out some lines for future work.

2 Related Works

2.1 Signature Complexity

Handwritten signature is a biometric trait highly sensitive to the sig-

nature complexity [18, 19]. This aspect has been studied in previous

studies for both off- and on-line signature verification.

2.1.1 Off-Line Signature: In [20], a set of 36 subjects was

asked to assign a score based on the visual appearance complexity to

five different users whose signatures were of varying length, number

of strokes, and with differing degrees of embellishment in signing

execution. The results demonstrated that while at the extremes of the

scale there is a modest spread in the perceived degree of complexity,

the intermediate complexity level appears to be much more difficult

to assess and categorise quantitatively. In [21], the authors evaluated

the effect of complexity and legibility of signatures for off-line sig-

nature verification, pointing out the differences in performance for

several matchers.

2.1.2 On-Line Signature: In [22], Brault and Plamondon eval-

uated how signature complexity affects when forging signatures. The

authors proposed an automatic difficulty coefficient to measure the

difficulty that could be experienced by a typical imitator in reproduc-

ing signatures both visually and dynamically. Results obtained using
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the proposed difficulty coefficient were compared with the opin-

ions of the imitators themselves and an expert document examiner,

remarking similarities and differences among them.

A very interesting study was also carried out in [23]. Pepe et

al. analysed the eye movements, pupil changes, and handwriting

dynamics while impostors tried to forge two signatures of different

complexities. For the experimental framework, 17 subjects partic-

ipated in the study. A Panasonic NV-GS17 Digital camera was

considered to capture the handwriting movements and written trace

of the subject while they wrote on a white paper. A PTZ-1230

Wacom Intuos 3 digitizing tablet recorded handwriting dynamics,

while a Tobii X-50 eye-tracker simultaneously captured eye move-

ments of subjects. The study concluded with interesting insights: i)

between complexities, fixations made on the high complexity signa-

ture were of greater duration, and ii) before the access to the dynamic

information of the signatures to forge, 15 of the 17 subjects believed

that the high complexity signature would be harder to simulate, how-

ever, post-simulation, 12 of the 17 subjects thought that the low

complexity signature was harder to simulate.

Signature complexity has also been associated to the concept of

entropy, defining entropy as the inherent information content of bio-

metric samples [24, 25]. In [26] a “personal entropy” measure based

on Hidden Markov Models (HMM) was proposed in order to anal-

yse the complexity and variability of on-line signatures regarding

three different levels of entropy. Results proved that lower entropy

is present in signatures with longer production time and appearance

more related to handwriting. In addition, the same authors have pro-

posed a new metric known as “relative entropy” for classifying users

into animal groups (see the biometric menagerie [27]) where skilled

forgeries are also considered [28].

More recently, Miguel-Hurtado et al. proposed in [29] a new

approach to automatic signature complexity assessment. They pro-

posed to extract a set of 14 global features such as the total number

of X-axis intersections and the signature length together with multi-

linear regression models to automatically detect the signature com-

plexity level. Their experimental framework was carried out using

a private database captured at the University of Kent, comprising

150 participants and using a Wacom Intuos 2 tablet. Their approach

achieved a final 78% success rate. Finally, Sae-Bae et al. carried out

in [30] a recent study proposing three different measures to quantify

the characteristics of on-line signature templates in terms of distinc-

tiveness, complexity, and repeatability. In particular, the complexity

score of a signature is a security measure against skilled forgery

attempts. That is, the more complex signature templates are the ones

that are harder to forge. The proposed signature complexity score

was computed using histogram features based on two factors: i) the

degree of signature complexity, and ii) the inverse of signature tem-

plate dispersion. Their proposed approach was evaluated for both

on-line signature verification and keystroke dynamics, confirming

the effectiveness of the approach.

Despite all the studies performed in the on-line signature trait,

none of them have exploited the concept of complexity in order to

develop better user-adapted on-line signature verification systems,

as far as we know. This study intends to further analyse this research

line as a novel way to enhance signature verification systems.

2.2 Pen- and Touch-Based Signature Verification

The use of the finger as input to signature verification systems has

become a thriving scenario for many real commercial applications.

However, previous studies in the field have already highlighted how

challenging this scenario is for the system performance. In [31],

both pen and finger were considered as input in the experimental

framework. For the finger case, users were asked to perform a sim-

plified version of their signatures (a.k.a. pseudo-signatures) based

on their initials or part of their signature flourish. The results using

both inputs were analysed, showing a high degradation of the per-

formance for the finger scenario with results in the range of 20.0%

EER. In [32], a statistical analysis was conducted to assess consis-

tency between signatures acquired using pen and finger. A set of

static and dynamic features that keeps stability in both scenarios

was proposed. In [6], the authors acquired a database composed of

6 sessions. Users were asked to perform their signatures using the

finger as input on their own devices. Regarding the experimental

work, they considered a feature-based system whose features were

extracted from histograms related to X and Y coordinates, speed,

angles, pressure, and their derivatives. This approach was evaluated

only for random forgeries achieving results between 3.0% and 8.0%

EERs.

In [13], a benchmark evaluation was reported for the pen, fin-

ger, and mixed input scenarios through the e-BioSign database. This

database includes dynamic signature and handwriting information

acquired using 5 different COTS devices in two separate sessions

for a total of 65 users. The results achieved remark the high sys-

tem performance degradation produced for skilled forgeries when

the finger is considered as input with EERs ca. 20.0%. Nevertheless,

for random forgeries, the results provided in that benchmark showed
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the high feasibility of these new scenarios for real applications with

results below 1.0% EER.

Other studies have also evaluated touch-based signature biomet-

rics on COTS devices. In [12], both pen and finger scenarios were

considered as input. For the pen case, the MCYT database was

used whereas for the finger case a new database named MOBISIG

was captured using a Nexus 9 tablet with a total of 83 users and 3

acquisition sessions. The results obtained using both feature-based

and time functions-based signature verification systems showed the

worsening of system performance when the finger is used as input,

especially for skilled forgeries with EERs ca. 20.0%. Similar results

have also been obtained in other recent works on the finger sce-

nario using approaches based on autoencoders or simplified versions

of Dynamic Time Warping (DTW) [10, 11]. A very interesting

analysis of the mobile finger scenario has been recently presented

in [33]. In that study, Impedovo and Pirlo discussed relevant aspects

such as accessibility, usability, interoperability, security, and perfor-

mance. Achievements as well as weakness were discussed in order

to highlight promising directions for further research and technology

development.

As a conclusion of this section, on-line signature verification

systems based on finger input only seem to be feasible in real

applications for random forgery impostors. For that scenario, results

below 1.0% EER have been achieved. However, when the exper-

tise of the impostor increases, a high degradation of the system

performance is produced with results in the range of 20.0% EER.

3 Proposed Methods

Our proposed signature complexity methodology consists of two

main modules: i) a signature complexity detector, and ii) a

complexity-based time functions extractor.

3.1 Signature Complexity Detector

The proposed detector classifies each signature into one specific

complexity level. Three different complexity levels are proposed

regarding the handwriting appearance of the signature: signatures

with an appearance more similar to handwriting are labelled as high

complexity whereas signatures with generally simple flourish with

no legible information are labelled as low complexity. We propose

to use the number of strokes as a simple measure of the signa-

ture complexity. In this study we extract this information through

the well-known writing generation Sigma LogNormal model, which

was first introduced to on-line signature in [34]. This model has

been widely used in many different tasks such as signature verifica-

tion [35, 36], recovering on-line signatures from image-based spec-

imens [37], and to monitor a range of neuromuscular diseases [38],

among many others. In particular, we consider in this study the popu-

lar ScriptStudio public software provided by the authors. We would

like to highlight that Ferrer et al. has recently proposed in [39] a

novel framework named iDeLog. This novel approach is able to

reconstruct the trajectory significantly better than ScriptStudio when

movement is continuous, long, and complex. However, iDeLog pro-

vides worse results than ScriptStudio in reconstructing velocity, due

to the trade-off between trajectory and velocity in iDeLog.

The Sigma LogNormal model emulates the physiological human

movement production for the generation of signatures. The idea is

based on the fact that one signature can be decomposed into strokes

in which each stroke i follows a lognormal velocity distribution

~vi(t):

|~vi(t)| =
Di

σi(t− t0i)
√
2π

exp

(
(ln(t− t0i)− µi)2

−2σ2i

)
(1)

where t0i is the starting time of the stroke, Di its length, µi the log

time delay and σi the log response time. In addition, the angular

position of each stroke along a pivot direction is expressed through

the start angle θs and the end angle θe. Thus, each stroke is repre-

sented by (Di, t0i, µi, σi, θsi, θei). The complete velocity profile

of one signature can be modelled as a sum of the different individual

stroke velocity profiles as:

~v(t) =

N∑
i=1

~vi(t) (2)

whereN represents the number of strokes involved in the generation

of a given signature. Fig. 2 shows the lognormal velocity profiles

extracted for each stroke of one example signature using Script-

Studio. Overall, an average Signal-to-Noise Ratio (SNR) value of

around 25 dB is achieved in the databases considered in this study.

We propose to use the number of lognormals (N ) that models

each signature as a measure of the complexity level of the signature.

It is worth noting that lognormals with amplitude values lower than a

threshold were discarded in order to consider only important lognor-

mals directly related to the main strokes performed while signing.

Once this parameter is extracted for all available enrolment signa-

tures of a particular user, that user is classified into a complexity
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Fig. 2: Trace and velocity profile of one reconstructed on-line sig-
nature using the Sigma LogNormal model. A single stroke of the
signature and its corresponding lognormal profile are highlighted in
red colour. Individual strokes are segmented within the LogNormal
algorithm [34].

level using the majority voting algorithm (the signature complex-

ity level of the majority of the enrolment signatures of that user).

At the test stage, we consider the complexity level of the claimed

user (see Fig. 1). In the case that there is no claimed identity, e.g.,

in signature identification, the complexity level of the identity being

compared with the test signature would be used. The advantage of

this approach is that the signature complexity detector can be trained

and developed as a previous off-line process, e.g., after the enrolment

of the user. Therefore, at the verification stage, the complexity of the

claimed user is already known, avoiding time consuming delays and

making it feasible to be applied in real-time scenarios.

3.2 Complexity-Based Time Functions Extractor

Once the user is classified into a complexity level, we propose to

extract the optimal time functions associated to each specific com-

plexity level (see Fig. 1). For each signature acquired using the pen

or the finger, signals related to X and Y spatial coordinates are used

to extract an initial set of 21 time functions (see Table 1). For more

details about the time functions implementation, we refer the reader

to [40]. In addition, the same approach proposed in [8] is considered

in this study in order to mitigate the degradation performance for

mixed input scenarios. This approach comprises two main stages:

• A data preprocessing stage is applied with the aim of obtaining

signatures with the same type of information and time and spatial

position, regardless of the writing input. Normalisation based on

the mean and standard deviation is applied to all signatures for that

purpose. In addition, information related to the pressure on the writ-

ing surface and pen-up trajectories is removed from those signatures

Table 1 Set of time functions considered in this work. For more details, we
refer the reader to [40].

# Time Function
1 X-coordinate: xn
2 Y-coordinate: yn
3 Path-tangent angle: θn
4 Path velocity magnitude: vn
5 Log curvature radius: ρn
6 Total acceleration magnitude: an
7-12 First-order derivate of features 1-7:

ẋn, ẏn, θ̇n, v̇n, ρ̇n, ȧn
13-14 Second-order derivate of features 1-2: ẍn, ÿn
15 Ratio of the minimum over the maximum speed over a

5-samples window: vrn
16-17 Angle of consecutive samples and first order difference:

αn, α̇n

18 Sine of the angle of consecutive samples: sn
19 Cosine of the angle of consecutive samples: cn
20 Stroke length to width ratio over a 5-samples window:

r5n
21 Stroke length to width ratio over a 7-samples window:

r7n

acquired with the pen as this information is not available when the

finger is considered as input. Finally, an additional interpolation step

based on splines is applied to standardise the sampling frequency to

200 Hz among different input scenarios.

• A selection of robust and stable time functions coming from the

same or different writing input. The Sequential Forward Feature

Selection (SFFS) algorithm is considered to select the optimal subset

of time functions for each complexity level in terms of EER.

4 On-Line Signature Databases

Two different public databases are considered in the experimental

framework of this study ∗.

4.1 e-BioSign

For the e-BioSign database [13], we consider a subset of the full

database composed of signatures acquired using a Samsung ATIV

7 general purpose device (a.k.a. W4 device). The W4 device has a

11.6-inch LED display with a resolution of 1920×1080 pixels and

1024 pressure levels. Data was collected using a pen stylus and also

the finger in order to study the performance of signature verifica-

tion in a mobile scenario. The available information when using the

pen stylus is X and Y pen coordinates and pressure. In addition,

pen-up trajectories are also available. However, pressure information

and pen-ups trajectories are not recorded when the finger is used as

∗https://github.com/BiDAlab/DeepSignDB
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input. Regarding the acquisition protocol, the device was placed on

a desktop and subjects were able to rotate the device in order to feel

comfortable with the writing position.

Data was collected in two sessions for 65 subjects with a time gap

between sessions of at least 3 weeks. For each user and writing input,

there are a total of 8 genuine signatures and 6 skilled forgeries. It is

important to note the high quality of skilled forgeries for both pen

and finger inputs as forgers had access to the dynamic realization of

the signatures to be forged.

4.2 BiosecurID

For the BiosecurID database [17], signatures were acquired from 400

users through a Wacom Intuos 3 pen tablet with a resolution of 5080

dpi and 1024 pressure levels. The database comprises a total of 16

genuine signatures and 12 skilled forgeries per user, captured in 4

separate acquisition sessions leaving a two-month interval between

them, and in a controlled and supervised office-like scenario. Signa-

tures were acquired using only a pen stylus. Information related to X

and Y pen coordinates, pressure, and pen-up trajectories is available

for each signature.

5 Experimental Framework

5.1 Signature Verification Matcher

The popular DTW algorithm is used to compute the similarity

between the time functions from the input and training signatures of

the claimed user. In particular, we consider the implementation pro-

posed in [41]. For the computation of the distance measure between

sequence samples, we use Euclidean distance. For the definition of

the weighting factors, only three transitions with the same value

equal to 1 are allowed for the computation of the accumulated

distance, which is finally normalised by the length of the warp-

ing path. Once we have the accumulated distance D, the similarity

computation score s is obtained as s = exp(−D).

It is important to remark that the same DTW scheme is always

considered for obtaining the similarity score regardless of the signa-

ture complexity level.

5.2 Experimental Protocol

The experimental protocol is designed to provide a fair evaluation

of both the signature complexity detector and the complexity-based

time functions extractor on pen and finger scenarios. Both Biose-

curID and e-BioSign databases are divided into development (40%

of the users) and evaluation (60% of the remaining users).

For the evaluation of each module, the 4 genuine signatures of the

first session are used as reference signatures, whereas the remaining

genuine signatures (i.e., 4 and 12 for the e-BioSign and Biose-

curID databases, respectively) are used for testing. Skilled forgery

scores are obtained by comparing the reference signatures against

the available skilled forgeries of each user (i.e., 6 and 12 for the

e-BioSign and BiosecurID databases, respectively) whereas random

(zero-effort) forgery scores are obtained by comparing the reference

signatures with one genuine signature of each of the remaining users

of the same database. The final score is obtained after performing

the average score of the four one-to-one comparisons.

Finally, the following nomenclature is used for the different input

scenarios considered: “training-testing”, where “training” and “test-

ing” mean the writing tool considered for the training and testing

signatures, respectively. For example, the case “pen-finger” means

that signatures considered for training are acquired using the pen

whereas signatures considered for testing are acquired with the

finger.

6 Experimental Results

6.1 Signature Complexity Detector

The signature complexity detector was developed in two different

steps. First, each user of the BiosecurID database was manually

labelled in a signature complexity level (i.e., low, medium, and high)

based on previous studies [28]. This process was carried out by two

different annotators twice each in order to keep consistency on the

results. The image of just one genuine signature per user was visu-

alised to classify each user into a complexity label. Users whose

signatures are with an appearance more similar to handwriting were

labelled as high-complexity users whereas those users whose sig-

natures are generally simple flourish with no legible information

were labelled as low-complexity users. This first stage served as

a ground truth. Then, we extracted the number of lognormals N

for each available genuine signature of the BiosecurID database

(i.e., a total of 400× 16 = 6400 genuine signatures). Following this

stage, we represented for each complexity level its corresponding

distribution of lognormals according to the ground truth generated

during the first stage. Fig. 3 shows the distributions of the number
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Table 2 Signature complexity detector: Signature verification performance in terms of EER (%) for each complexity level using the pen evaluation datasets of
BiosecurID and e-BioSign. Skilled and random forgery results are shown on top and bottom of each cell respectively.

Low Complexity Medium Complexity High Complexity

BiosecurID 13.8
1.5

7.5
0.7

6.2
0.9

e-BioSign 11.1
0.1

8.3
0.1

5.6
0.1
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Fig. 3: Probability density function of the number of lognormals for
each manually annotated complexity level using all genuine signa-
tures of the BiosecurID database. The three proposed complexity-
dependent decision thresholds are highlighted by black dashed
lines.

of lognormals obtained for each complexity level using all gen-

uine signatures of the BiosecurID database. The three proposed

complexity-dependent decision thresholds are highlighted by black

dashed lines. They were selected in order to minimize the number

of misclassifications between different signature complexity levels.

Signatures with lognormal values equal or less than 17 are classified

as low-complexity signatures whereas those signatures with more

than 27 lognormals are classified into the high-complexity group.

Otherwise, signatures are categorised into the medium-complexity

level. Additionally, an analysis of the stability regarding the number

of lognormals for different signatures of the same user is carried out

in order to assess the feasibility of our proposed signature complex-

ity detector. In general, low standard deviation values are obtained.

Users with a low-complexity level provide an average number of

12.5 lognormals and a standard deviation of 1.3 whereas medium-

and high-complexity levels achieve averages of 21.1 and 31.3 log-

normals with standard deviations of 2.6 and 3.9, respectively. These

results make sense as the intra-user variability increases with the

signature complexity level. The same thresholds are extrapolated to

the e-BioSign database in order to study the generalisation capacity

of the proposed approach to unseen databases and scenarios. Fig. 4

depicts some of the signatures classified into each complexity level

for both BiosecurID and e-BioSign databases using our proposed

approach.

We now evaluate our proposed signature complexity detector

following the same procedure carried out in [28]: analysing the

(a) BiosecurID

(b) e-BioSign

Fig. 4: Signatures categorised into each complexity level using our
proposed signature complexity detector. From top to bottom: low,
medium, and high complexity.

system performance of each different complexity group consider-

ing state-of-the-art signature verification systems as Baseline Sys-

tems [13, 35]. These Baseline Systems are based on DTW and a

selection of the most discriminative time functions for each database

through the SFFS algorithm, regardless of the complexity level.

Table 2 shows the system performance results in terms of EER(%)

for each complexity level considering the pen evaluation datasets.

Each user is classified into a complexity level applying the majority

voting algorithm to the 4 enrolment signatures of the user.

Results highlight the different signature verification perfor-

mance regarding the signature complexity level. Users with a

high-complexity level achieve an absolute improvement of 7.6%

and 5.5% EER compared with the users categorised into a low-

complexity level for the BiosecurID and e-BioSign databases,
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respectively. Similar results were obtained in previous studies using

other approaches [28]. In that work, users categorised into a high-

complexity level achieved an absolute improvement of 8.5% EER

compared with users categorised into a low-complexity level for

the MCYT database. These results prove the effectiveness and gen-

eralisation of the proposed signature complexity detector to other

databases and scenarios.

In the following sections we analyse the idea of considering

an on-line signature verification system adapted to the signature

complexity level so as to further reduce the system performance.

6.2 Complexity-Based Time Functions Extractor

6.2.1 Time Functions Selection: This section analyses which

are the most discriminative and robust time functions for each

signature complexity level using the SFFS algorithm over the devel-

opment datasets. For the BiosecurID database, 4 and 12 genuine

signatures from the first and remaining available sessions are con-

sidered as training and testing signatures, respectively. For the

e-BioSign database, a total of 4 genuine signatures from the first ses-

sion (2 signatures per writing input) and 8 genuine signatures from

the second session (4 signatures per writing input) are considered

as training and testing signatures, respectively. A separate optimal

time-function vector is extracted for each complexity level regardless

of the writing input used while signing.

The following three cases are studied:

• Time functions selected for all three signature complexity levels,

i.e., complexity-independent: CX-All.

• Time functions selected for only medium and high signature

complexity: CX-High.

• Time functions selected for only low and medium signature

complexity: CX-Low.

Table 3 shows the time functions automatically selected for each

considered case. Different sets of time functions result for the Biose-

curID and e-BioSign databases as the former considers an office-like

scenario whereas the latter considers a mobile scenario. For Biose-

curID, the time functions ȧn and vrn are selected in CX-all, whereas

for e-BioSign the time functions are yn and ẋn. In BiosecurID the

time functions are more related to the acceleration and speed of the

users performing their signatures, whereas in e-BioSign the func-

tions related to the position of the writing tool (i.e., X and Y pen

coordinates) are more adequate in CX-all. The reason behind this

difference seems to be the mixed input scenario of e-BioSign.

Table 3 Time functions selected for different complexities (CX) and databases.

CX-All CX-High CX-Low
BiosecurID ȧn, vrn v̇n, ÿn, α̇n cn
e-BioSign yn, ẋn θ̇n, ẏn, vrn xn, sn

In CX-high, very similar time functions are selected for Biose-

curID and e-BioSign. These time functions provide information

related to the variation of the velocity, vertical acceleration and

variation of angle, time functions more related to the geometry of

characters and therefore to handwriting.

Finally, time functions such as cn and sn are selected in CX-low,

providing information related to the signature trajectory angles, as

expected for simple signatures with no legible information.

6.2.2 Pen Scenario: This section evaluates our proposed com-

plexity approach for the case of using the pen stylus both for training

and testing (i.e., Pen-Pen). Table 4 shows the results achieved for

both BiosecurID and e-BioSign evaluation datasets. The same Base-

line System described and used in Sec. 6.1 are considered here

in order to measure the improvements achieved by our proposed

approach. It is important to remark that the only two differences

between the Proposed and Baseline Systems are: i) the proposed sig-

nature complexity detector, and ii) the proposed complexity-based

time functions extractor. Thus, the same DTW scheme is always

considered for obtaining the similarity scores.

Analysing the skilled forgery results obtained for the Biose-

curID database, our Proposed System achieves an average absolute

improvement of 2.5% EER compared with the Baseline System. It

is important to remark that for the most challenging users (i.e., users

with a low-complexity level as they are easier to forge), our proposed

approach achieves an absolute improvement of 3.7% EER compared

with the Baseline System. Analysing the results obtained for ran-

dom forgeries, our Proposed System also achieves improvements.

This improvement is lower compared with the skilled forgery sce-

nario as the SFFS algorithm is focused on the skilled forgeries, not

random.

Regarding the e-BioSign database, our Proposed System also

achieves similar trends. The improvement is slightly lower compared

with the BiosecurID.

Finally, we provide in Fig. 5 the system performance results in

terms of the False Rejection Rate (FRR) at different values of False

Acceptance Rate (FAR) for both Baseline and Proposed Systems

considering all complexity levels together. We consider this visu-

alisation approach, and not the traditional Detection Error Tradeoff
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Table 4 Pen scenario: System performance results in terms of EER (%) of each complexity level using the evaluation datasets of BiosecurID and e-BioSign. Skilled
and random forgery results are shown on top and bottom of each cell respectively.

Dataset (Training-Testing) Low Complexity Medium Complexity High Complexity
Baseline Proposed Baseline Proposed Baseline Proposed

BiosecurID (Pen-Pen) 13.8
1.5

10.1
1.3

7.5
0.7

5.2
0.5

6.2
0.9

4.6
0.9

e-BioSign (Pen-Pen) 11.1
0.1

8.3
0.1

8.3
0.1

10.2
0.1

5.6
0.1

5.6
0.1

Table 5 Pen scenario: Comparison of our proposed approach with previous studies in terms of FAR and FRR for the BiosecurID database. The number of users
included on each complexity level has been computed by the signature complexity detector proposed in this work.

Work Algorithm Inter-Session
Variability

# Training
Signatures

% Users
CX-Low

% Users
CX-Medium

% Users
CX-High FAR (%) FRR (%)

Ferrer et al. [42] DTW No 5 7.6 39.4 53.0 3.1 3.1
Diaz et al. [37] Manhattan Distance No 5 8.0 36.0 56.0 3.2 3.2

Galbally et al. [43] DTW Yes 4 7.6 39.4 53.0 6.9 6.9

Gomez-Barrero et al. [35] Impostor Detector
+ DTW Yes 4 7.2 38.0 54.8 4.8 4.8

Baseline System DTW Yes 4 9.6 37.9 52.5 5.0 10.4

Proposed Approach Complexity-based
DTW Yes 4 9.6 37.9 52.5 5.0 5.8

(a) BiosecurID

(b) e-BioSign

Fig. 5: Pen scenario: system performance results in terms of FRR
at different values of FAR using the evaluation datasets.

(DET) curves, as different system thresholds are considered regard-

ing the complexity level. Our Proposed System achieves an average

absolute improvement of 3.7% FRR. In particular, for a FAR = 10%,

final values of 3.9% and 4.6% FRR are achieved for BiosecurID

and e-BioSign, respectively. These results show the improvement

of on-line signature verification systems adapted to the signature

complexity level.

We now compare our proposed complexity-based signature ver-

ification system with other existing state-of-the-art approaches that

have been evaluated using the BiosecurID database. The comparison

is not straightforward as different experimental protocols are consid-

ered in each of the studies. This is something worth highlighting, not

only for this comparison, but also for the future of the field as results

can vary significantly depending on the particular protocol used. For

this reason, in order to perform a fair comparison with other studies,

Table 5 depicts not only the FAR and FRR values achieved for each

approach but also other very important aspects that affect the final

system performance such as the complexity level of the evaluated

users and the inter-session signature comparisons when testing. Our

Proposed System outperforms the results achieved in our previous

study [43], where the same DTW scheme was considered but not

the complexity concept for the time functions extraction. Besides,

very similar results are achieved compared with [35], in which a

skilled forgery detector was incorporated to an already competi-

tive DTW system. Finally, our proposed approach is also compared

with other approaches based on Manhattan distance [37], producing

worse results due to a different number of training signatures, per-

centages of users in the complexity levels, and mainly due to not

considering inter-session signature comparisons when testing. This

critical effect can be observed in [42] as well, where better results

are achieved when applying a simple DTW approach based only on

X and Y coordinates and their derivatives.

6.2.3 Finger vs. Pen Scenarios: This section evaluates our

proposed complexity approach for the case of using the finger

both for training and testing (i.e., Finger-Finger). Therefore, only

the e-BioSign evaluation dataset is used in this section as signa-

tures acquired using the finger are not available in the BiosecurID
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Table 6 Pen, finger, and mixed input scenarios: System performance results in terms of EER (%) of each complexity level using the evaluation dataset of e-BioSign.
Skilled and random forgery results are shown on top and bottom of each cell respectively.

Training-Testing Low Complexity Medium Complexity High Complexity
Baseline Proposed Baseline Proposed Baseline Proposed

Pen-Pen 11.1
0.1

8.3
0.1

8.3
0.1

10.2
0.1

5.6
0.1

5.6
0.1

Finger-Finger 16.7
0.1

11.1
0.1

19.4
0.1

15.7
0.1

11.1
0.1

10.2
0.1

Pen-Finger 30.6
0.1

27.8
0.1

22.2
0.1

16.7
0.1

11.1
0.1

11.1
0.1

Finger-Pen 27.8
0.1

25.0
0.1

19.4
0.1

16.7
0.1

25.0
0.1

11.1
0.1

(a) Pen

(b) Finger

Fig. 6: Pen and finger signatures from the e-BioSign database.

database. The same Baseline and Proposed Systems considered in

the previous section are analysed here.

First, we analyse the results obtained for the finger input sce-

nario (i.e., Finger-Finger). Table 6 depicts the system performance

results in terms of EER (%) of each complexity level using the eval-

uation dataset of e-BioSign. Analysing the skilled forgery results,

our Proposed System achieves an average absolute improvement of

3.4% EER compared with the Baseline System. Similar to the pen

scenario, the highest improvement is achieved for the most challeng-

ing users (i.e., users with a low-complexity level) with an absolute

improvement of 5.6% EER compared with the Baseline System.

Regarding random forgeries, the same very good results (close to

0.0% EER) are achieved using our proposed approach.

Despite the considerable improvements achieved in the finger sce-

nario with our proposed approach, there is still a high difference in

the system performance between pen and finger scenarios (Pen-Pen

vs. Finger-Finger). Concretely, an absolute worsening of 4.3% EER

is observed compared with the pen scenario.

In order to find out the reason for such difference in the system

performance, an exhaustive analysis of the finger scenario is carried

out. In general, users who perform their signatures using closed let-

ters (i.e., a, e, o, l, p, q, etc.) tend to perform much larger writing

executions in comparison with other letters due to the lower preci-

sion they are able to achieve using the finger. Besides, users whose

signatures are composed of a long name and surname (or two sur-

names) tend to simplify some parts of their signatures while signing

with the finger. Regarding the sampling frequency of the acquisition

process, it is important to highlight the differences between the pen

and finger scenarios. For the pen scenario, all samples of the sig-

nature are uniformly distributed across the whole signing process.

However, for the finger input scenario, most samples are distributed

in small parts of the signature instead of the whole signature as

it happens in the pen scenario. This non-desirable effect is pro-

duced due to the lack of precision achieved by the finger and also

by the friction produced between the screen and the finger. There-

fore, it might not be related to the specific device considered in the

experimental work, but to the finger input scenario instead.

Fig. 6 depicts some of the effects commented before between pen

and finger scenarios. Despite this effect, and although the number

of samples are very similar in both scenarios, an additional inter-

polation step based on splines is required to reduce the differences

between the pen and finger scenarios.

Finally, it is important to remark the challenging impostor sce-

nario considered in this study as forgers had access to the dynamic

realization of the signatures to forge. A recommendation for the

usage of signature recognition on mobile devices would be for the

users to protect themselves from other people that could be watch-

ing while signing, as this is more feasible to do in a mobile scenario

compared with an office scenario. This way impostors might have

access to the global shape of a signature but not to the dynamic infor-

mation. To summarise, the higher intra-user variability together with

the challenging skilled forgery scenario considered for finger input

result in a degradation of the system performance compared with the

pen scenario, especially for users with medium and high complexity

levels, as depicted in Table 6.
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(a) Finger-Finger (b) Pen-Finger (c) Finger-Pen

Fig. 7: Finger and mixed input scenarios: system performance results in terms of FRR at different values of FAR using the evaluation dataset
of e-BioSign.

6.2.4 Mixed Input Scenarios: We now study mixed input sce-

narios (i.e., Pen-Finger and Finger-Pen), where signatures acquired

using pen and finger inputs are independently considered for training

and testing the system.

Analysing the skilled forgery results obtained in Table 6, our Pro-

posed System achieves an average absolute improvement of 2.8%

and 6.5% EER compared with the Baseline System for the Pen-

Finger and Finger-Pen scenarios, respectively. It is important to

remark the significant worsening of the system performance for

those users with a low-complexity level with results around 25.0%

EER. Besides, these error rates are also much higher compared with

the case of using the same writing input for training and testing.

However, for users with medium and high complexity levels, the

system performance on mixed input scenarios are very close to the

Finger-Finger scenario with 16.7% and 11.1% EERs for medium-

and high-complexity levels, respectively.

As a result, two key conclusions can be extracted from our analy-

sis. The first one is that mixed input scenarios are feasible in practical

applications for users with medium and high complexity levels.

Users categorised into a low-complexity level should perform a more

robust signature in order to be able to use mixed input scenarios.

The second one is that the degradation of the system performance

on mixed input scenarios seems to disappear for those users with

medium- and high-complexity levels after considering our proposed

approach, obtaining similar results to the Finger-Finger scenario.

Finally, Fig. 7 shows the final system performance results in

terms of FRR at different values of FAR for the finger and mixed

input scenarios considering all complexity levels together. For the

Finger-Finger scenario, our Proposed System achieves an average

absolute improvement of 13.6% FRR compared with the Baseline

System, with a final value of 13.9% FRR for a FAR = 10.0%. For

the mixed input scenarios, our Proposed System achieves an average

absolute improvement of 8.8% and 10.7% FRR for the Pen-Finger

and Finger-Pen scenarios, respectively. It is important to note the

considerable improvements achieved by our proposed approach on

both finger and mixed input scenarios, remarking how important the

signature complexity is on these challenging scenarios. Final val-

ues of 19.4% and 24.0% FRR are achieved for the Pen-Finger and

Finger-Pen scenarios for a value of FAR = 15.0%. Therefore, the

deployment of these scenarios on real applications seems to be more

feasible with rates below 20.0% of FRR and FAR. For a further

improvement of security, a possible recommendation could be to ask

clients to perform their signatures using both pen and finger writing

tools during the enrolment stage in order to obtain better results, or

at least for those users with low complexity.

7 Conclusions

This paper proposes the first methodology focused on the devel-

opment of an on-line signature verification system adapted to the

signature complexity level. Two main modules are proposed: i)

a signature complexity detector, and ii) a complexity-based time

functions extractor.

Our proposed approach has been tested in pen, finger and

mixed input scenarios considering two different on-line signature

databases, BiosecurID (only for the pen scenario) and e-BioSign

(for both pen and finger scenarios) with a total of 400 and 65 users,

respectively. Additionally, a review of the most relevant and recent

studies of signature complexity, and pen- and touch-based scenarios

has been carried out in order to make our proposed approach easily

comparable with previous studies.
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Analysing the results obtained for the pen scenario, our Proposed

System has achieved for the BiosecurID database an average abso-

lute improvement of 2.5% EER for skilled forgeries compared with

the Baseline System. This improvement has been even higher for the

finger scenario, achieving an average absolute improvement of 3.4%

EER for the e-BioSign database. Additionally, our Proposed Sys-

tem has achieved for the finger scenario an absolute improvement

of 5.6% EER for the most challenging users (i.e., users with a low

complexity-level as they are easier to forge). All these improvements

prove the success of our proposed approach based on the signature

complexity.

For future work, new approaches based on Recurrent Neural Net-

works [44] will be studied in order to i) develop more accurate sig-

nature complexity detectors, and ii) reduce the system performance

degradation on these thriving but challenging scenarios. Also, unsu-

pervised techniques will be studied in order to exploit large-scale

signature datasets not manageable for human labelling.
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SimulatorsâĂŹ Gaze Behaviour,” Journal of Forensic Document Examination,

vol. 22, pp. 5–13, 2012.

24 J. Daugman, “The Importance of Being Random: Statistical Principles of Iris

Recognition,” Pattern Recognition, vol. 36, no. 2, pp. 279–291, 2003.

25 M. Lim and P. Yuen, “Entropy Measurement for Biometric Verification Systems,”

IEEE Transactions on Cybernetics, vol. 46, no. 5, pp. 1065–1077, 2015.

26 N. Houmani, S. Garcia-Salicetti, and B. Dorizzi, “A Novel Personal Entropy Mea-

sure Confronted to Online Signature Verification Systems Performance,” in Proc.

International Conference on Biometrics: Theory, Applications and System, 2008.

IJDAR, pp. 1–13

12 2019



27 N. Yager and T. Dunstone, “The Biometric Menagerie,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 32, no. 2, pp. 220–230, 2010.

28 N. Houmani and S. Garcia-Salicetti, “On Hunting Animals of the Biometric

Menagerie for Online Signature,” PLOS ONE, vol. 11, no. 4, 2016.

29 O. Miguel-Hurtado, R. Guest, and T. Chatzisterkotis, “A New Approach to

Automatic Signature Complexity Assessment,” in Proc. International Carnahan

Conference on Security Technology, 2016.

30 N. Sae-Bae, N. Memon, and P. Sooraksa, “Distinctiveness, Complexity, and

Repeatability of Online Signature Templates,” Pattern Recognition, vol. 84, pp.

332–344, 2018.

31 M. Martinez-Diaz, J. Fierrez, and J. Galbally, “The DooDB Graphical Password

Database: Data Analysis and Benchmark Results,” IEEE Access, vol. 1, pp. 596–

605, 2013.

32 J. Robertson and R. Guest, “A Feature based Comparison of Pen and Swipe based

Signature Characteristics,” Human Movement Science, vol. 43, pp. 169–182, 2015.

33 D. Impedovo and G. Pirlo, “Automatic Signature Verification in the Mobile Cloud

Scenario: Survey and Way Ahead,” IEEE Transactions on Emerging Topics in

Computing, 2018.

34 C. Reilly and R. Plamondon, “Development of a Sigma-Lognormal Representa-

tion for On-Line Signatures,” Pattern Recognition, vol. 42, no. 12, pp. 3324–3337,

2009.

35 M. Gomez-Barrero, J. Galbally, J. Fierrez, J. Ortega-Garcia, and R. Plamondon,

“Enhanced On-Line Signature Verification Based on Skilled Forgery Detec-

tion Using Sigma-LogNormal Features,” in Proc. International Conference on

Biometrics, 2015.

36 A. Fischer and R. Plamondon, “Signature Verification Based on the Kinematic

Theory of Rapid Human Movements,” IEEE Transactions on Human-Machine

Systems, vol. 47, pp. 169–180, 2017.

37 M. Diaz, M. Ferrer, A. Parziale, and A. Marcelli, “Recovering Western On-Line

Signatures from Image-Based Specimens,” in Proc. International Conference on

Document Analysis and Recognition, 2017.

38 D. Impedovo and G. Pirlo, “Dynamic Handwriting Analysis for the Assessment of

Neurodegenerative Diseases: A Pattern Recognition Perspective,” IEEE Reviews

in Biomedical Engineering, vol. 12, pp. 209–220, 2018.

39 M. Ferrer, M. Diaz, C. Carmona, and R. Plamondon, “iDeLog: Iterative Dual

Spatial and Kinematic Extraction of Sigma-Lognormal Parameters,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 42, pp. 114–125,

2020.

40 M. Martinez-Diaz, J. Fierrez and S. Hangai, “Signature Features,” S.Z. Li and A.

Jain (Eds.), Encyclopedia of Biometrics, Springer, pp. 1375–1382, 2015.

41 ——, “Signature Matching,” S.Z. Li and A. Jain (Eds.), Encyclopedia of Biomet-

rics, Springer, pp. 1382–1387, 2015.

42 M. Ferrer, M. Diaz, C. Carmona-Duarte, and A. Morales, “A Behavioral Hand-

writing Model for Static and Dynamic Signature Synthesis,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1041–1053, 2016.

43 J. Galbally, M. Diaz-Cabrera, M. Ferrer, M. Gomez-Barrero, A. Morales, and

J. Fierrez, “On-Line Signature Recognition through the Combination of Real

Dynamic Data and Synthetically Generated Static Data,” Pattern Recognition,

vol. 48, no. 9, pp. 2921–2934, 2015.

44 R. Tolosana, R. Vera-Rodriguez, J. Fierrez, and J. Ortega-Garcia, “Exploring

Recurrent Neural Networks for On-Line Handwritten Signature Biometrics,” IEEE

Access, vol. 6, pp. 5128–5138, 2018.

IJDAR, pp. 1–13

13 2019


