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ABSTRACT 

 

 

 

Patellofemoral pain syndrome (PFPS) can affect the lower extremity as the hip, knee, 

and ankle work as a linkage to perform functional movements. There are several lower 

extremity variables and extrinsic factors that are related to PFPS. Not all variables and 

factors have been sufficiently investigated, especially in clinical populations. The main 

aim of this thesis, comprising of five studies, was to investigate some of the gaps 

identified in the literature regarding the prevalence of PFPS, selected lower extremity 

variables, and extrinsic factors associated with PFPS. 

It is important to have an understanding of PFPS demographic before starting to 

investigate variables and factors associated with the syndrome. Therefore, the initial 

study explored the prevalence of PFPS in young Thai athletes and the relationship 

between PFPS and training duration per week. The overall prevalence of PFPS in young 

Thai athletes was 6% which was lower compared to previous studies. It was also 

presented that PFPS was significantly correlated with sports training duration and sum 

of general and sports training duration for the overall population.  

Interventions that result from all studies on the lower extremity variables and extrinsic 

factors related to PFPS in this thesis may be a key to reduce the prevalence of PFPS. 

The second study evaluated the functioning of a stretch sensor, for the measurement of 

knee range of motion, a variable used to identify PFPS, during a passive non-weight- 

bearing movement and accessed the level of the measurement error. The main finding 

was that there was a strong relationship between the capacitance of the sensor and knee 

angles with high R2 and root mean square error below 5 degrees. The equations 

generated from the participants’ data were used individually to predict knee angles with 

a clinically acceptable level of error.  

During knee flexion and extension, movements of the patellar, tibia, and femur occur. 

This results in changing of the Q-angle, another lower extremity variable believed to 

influence PFPS. The third study was a systematic review conducted to investigate the 

association between the Q-angle and PFPS and to examine the difference of the Q-angle 
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between healthy individuals and individuals with PFPS. The main findings suggested 

that there were disagreements on the relationship between the Q-angle and PFPS and 

the difference of the Q-angle in individuals with and without PFPS.  

According to the prevalence study of PFPS, one factor that varied between sports was 

playing surfaces. Different training surfaces have been shown to be an extrinsic risk 

factor for PFPS and result in changes of gait. Therefore, spatiotemporal and pelvic 

kinematic parameters of gait on 3 different training surfaces (natural grass, indoor 

multi-sport, and outdoor synthetic) during walking in healthy individuals were 

investigated in the fourth study. The main findings were that there were significant 

differences in cadence, speed, stride length, and pelvic tilts between the 3 training 

surfaces. These results provide an implication that rehabilitation should be progressed 

from the indoor multi-sport surface or outdoor synthetic surface. The natural grass 

should be the last surface to consider as it allows faster movements which is suitable 

for progressive rehabilitation and training. 

In addition to the parameters in the study of training surfaces, foot loading patterns need 

to be further investigated as excessive foot pronation has been implicated with PFPS. 

The final study examined effects of McConnell taping and the stability through external 

rotation of the femur (SERF) strap on foot plantar loading patterns in healthy adults 

during walking and jogging. The application of the SERF strap has potentially resulted 

in more laterally directed pressure distribution at forefoot push off phase compared to 

no tape during walking.  

In conclusion, the studies performed as part of this thesis have contributed the body of 

knowledge on the low prevalence of PFPS in young Thai athletes and the selected lower 

extremity variables and extrinsic factors associated with PFPS. The outcomes provided 

on the prevalence study, on the stretch sensor measuring knee ROM, on the three 

different training surfaces on gait, and on foot loading patterns with McConnell and 

SERF strap application may have impact on clinical practice and implications for 

clinicians and sport rehabilitation professionals. The disagreements of the relationship 

between the Q-angle and PFPS and the difference of the Q-angle between individuals 

with and without PFPS on the systematic review study may influence researchers for 

further investigations on the Q-angle.  
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1. INTRODUCTION 

Knee pain influences population around 20-30% and is believed to be one of the most 

prevalent musculoskeletal disorders in active young populations (Callaghan & Selfe, 

2007; Esculier et al., 2013; Myer et al., 2010; Nejati et al., 2011; Phillips & Coetsee, 

2007; Roush & Bay, 2012; Erkocak et al., 2016). Patellofemoral pain syndrome (PFPS) 

is one of the most common diagnoses of knee pain in sports medicine clinics (Esculier 

et al., 2013). Typical clinical symptoms are pain behind or around the patella increased 

with running or other activities that require knee flexion including ascending and 

descending stairs and squatting (McKenzie et al., 2010; Vora et al., 2018; Ireland et al., 

2003). PFPS does not only affect the knee but has been also shown to be multifactorial 

with various functional disorders of the lower extremity (Petersen et al., 2014; Liporaci 

et al., 2013). This is because the hip, knee, and ankle work as a linkage to perform 

functional movements for sports and activities of daily living  (Rivera, 1994).  

Even though PFPS is one of the most common diagnoses of knee pain in sports 

medicine clinics (Esculier et al., 2013), the studies of prevalence in PFPS only take 

place in Europe and USA mainly and they have only restricted to some groups of 

population such as military, young active adults, elite athletes, and adolescents (Smith 

et al., 2018). There are still limited evidences in most countries especially developing 

countries (Nejati et al., 2011). The latest review literature found that prevalence of 

patellofemoral pain in the general population was reported as 22.7%, adolescents as 

28.9%, military as 13.5%, and elite athletes (cyclists) as 35.7% (Smith et al., 2018). 

Nevertheless, none of the results is from developing country populations. Training 

duration is an extrinsic factor that is proposed to influence PFPS (Halabchi et al., 2017). 

However, there is a lack of evidence demonstrating the relationship between PFPS and 

training duration. 

There are several lower extremity variables that are believed to cause PFPS and to be 

affected by PFPS. Knee range of motion (ROM) has been used to objectively measure 

recovery after various knee surgeries (Harmer et al., 2009; Mook et al., 2009; Ritter et 

al., 2003) and as a clinical indicator of functional restrictions in activities, such as gait 

(Naylor et al., 2011). A variety of techniques and instruments have been developed to 

measure joint ROM. Universal goniometers have been popularly used in clinical 

practice (Bennett et al., 2009) whilst plain radiographs represent the gold standard for 
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all ROM measurements but are high-cost (Phillips et al., 2012; Tajali et al., 2016). 

Several studies have demonstrated the accuracy, sensitivity, and reliability of knee 

ROM measurement and have presented that computer-assisted navigation goniometer, 

digital imaging, parallelogram goniometer, electrical digital inclinometer, radiographic 

goniometry, and visual estimation are reliable tools for measuring knee ROM (Naylor 

et al., 2011; Bennett et al., 2009; Austin et al., 2008b; Cleffken et al., 2007; Edwards et 

al., 2004; Brosseau et al., 1997). However, the main limitation of all these measuring 

methods is that they are static measures of knee ROM and not measures of knee ROM 

during functional dynamic activities. With a small wireless tool such as a stretch sensor, 

it may be more convenient to assess dynamic functional tasks.   

Several previous studies have found that individuals with PFPS present with reduced 

hip abduction and external rotation strength compared to healthy individuals (Ireland et 

al., 2003; Robinson & Nee, 2007; Bolgla et al., 2008; Willson & Davis, 2009). The 

quadriceps (Q) angle is one of the variables of the lower extremity that is frequently 

examined (Sheehan et al., 2010). Traditionally, the Q-angle has been measured with 

subjects in a supine position, knee extended with the quadriceps relaxed. The Q-angle 

has also been assessed during standing (Smith et al., 2008). It has been hypothesised 

that greater Q-angle would increase the lateral force vector acting on the patella and 

may cause the patella to move laterally (Powers et al., 2002). Studies have shown that 

individuals with PFPS presented with greater Q-angle compared to healthy individuals 

(Emami et al., 2007; Herrington, 2013a; Lankhorst et al., 2013) and compared with the 

unaffected legs (Kaya & Doral, 2012). However, a conflict has been found as some 

studies demonstrated that there was no significant difference of the Q-angle between 

PFPS patients and healthy individuals (Kwon et al., 2014) and greater Q-angle was not 

associated with lateral displacement of the patella (Sheehan et al., 2010; Freedman et 

al., 2014) and was not a risk factor for PFPS (Park & Stefanyshyn, 2011). It is necessary 

to investigate if the Q-angle measurement can be used as a measurement tool to assess 

PFPS. 

Gait parameters have the potential to predict lower extremity injuries including PFPS 

(Springer et al., 2016) and can be used to monitor healing process for patients (Tao et 

al., 2012; Steultjens et al., 2000; Kimmeskamp & Hennig, 2001). This is because the 

parameters: gait velocity, cadence, knee extensor moment, peak rearfoot eversion, and 
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hip adduction angle are affected and changed during injuries (Arazpour et al., 2016). 

Gait parameters are not only affected by injuries but also extrinsic factors such as 

training surfaces (Fanchiang et al., 2016). However, only a few studies have 

investigated various training surfaces on gait parameters and some training surfaces 

have not been yet examined (Fanchiang et al., 2016; Menant et al., 2009). Natural grass, 

outdoor synthetic, and indoor multi-sport game surface are basic sports facilities, widely 

used, and comply with the rules of various sports (Meinel, 2008; Sport England, 1999). 

It may be useful for clinical use to investigate how these three surfaces affect gait. 

Excessive foot pronation has been hypothesised to affect PFPS as it increases internal 

rotation of the tibia (Petersen et al., 2014; Powers, 2003; Barton et al., 2010b; Barton 

et al., 2009) and femur during gait, resulting in decreased patellofemoral contact area 

and increased patellofemoral joint stress (Willson et al., 2015). Individuals with PFPS 

were found to present with delayed peak rearfoot eversion and possessed more foot 

pronation during weight-bearing (Barton et al., 2010b; Barton et al., 2009). Foot 

pronation is difficult and costly to measure dynamically (Eichelberger et al., 2018; 

Souza, 2015). Plantar loading patterns provide an alternative option to access foot 

pronation during static and dynamic activities. Changes in the plantar pressure 

distribution may indicate functioning of the subtalar joint which is related to pronation 

of the foot (Santos et al., 2017).  

Athletic taping is a temporary method mainly used as a preventive measure by athletes 

to protect an existing injury and served as post-injury rehabilitation (Bandyopadhyay 

& Mahapatra, 2012). The goals of taping in sports are to restrict and support injured 

parts of the body, protect injured parts from re-injury, accelerate healing process, 

compress soft tissues to decrease swelling, and serve as a soft splint (Birrer & Poole, 

2004). There are several taping methods available with the corresponding needed 

materials along with common cases of injury, for instance, ankle taping for inversion 

sprains, turf toe taping for restricting toe extension, patellar taping for PFPS, hip spica 

for hip flexor muscle strains, thumb spica for jammed fingers, and wrist taping for 

carpal tunnel syndrome (Bandyopadhyay & Mahapatra, 2012). In addition to taping, 

limb support strapping is an alternative method that may be a potentially beneficial 

treatment for injuries (Wallace & Barr, 2012). When the usage is compared, strapping 

will last longer as it can be reused whilst taping is applied using a rigid tape that can be 



22 
 

used once (Verma & Krishnan, 2012). However, tapping is less bulky and caters for 

unusual anatomy (Wallace & Barr, 2012).       

From the evidence and knowledge above, there remain gaps about variables of the lower 

extremity that have not been investigated and need to be filled. The aim of this work 

was to investigate lower extremity variables and extrinsic factors associated with PFPS 

that had not been investigated to date with the overall focus on evaluation of accessible 

tools that could potentially be used in clinical settings. 

2. OVERVIEW OF THE LOWER EXTREMITY 

The lower extremity consists of three major areas of joint articulation: the hip, knee, 

and ankle and foot (Hang, 2013). It has the ability to support the body weight, adapt to 

the gravity, and is fundamental for locomotion (Cunningham et al., 2016). 

Understanding anatomy of the lower extremity makes it more understandable in 

advanced functional movements.   

2.1 The hip 

2.1.1 Anatomy and function 

The hip joint, a diarthrodial ball and socket joint, is formed by head of the femur and 

acetabulum consisting of 3 bones: the ilium, ischium, and pubis (Ranawat & Kelly, 

2005). There are several bony landmarks of the hip joint serving as attachment points 

for muscles (Figure 1.1) (Hang, 2013; Ranawat & Kelly, 2005). Anterior superior iliac 

spine (ASIS) and anterior inferior iliac spine (AIIS) provide attachment areas for hip 

flexors: sartorius on ASIS and rectus femoris on AIIS (Hang, 2013). Other primary hip 

flexors are iliacus, psoas, iliocapsularis, and pectineus (Ranawat & Kelly, 2005). Ischial 

tuberosity, greater trochanter, and lesser trochanter provide attachment areas for hip 

extensors: hamstrings, hip abductors (gluteus medius, gluteus minimus)/tensor fascia 

lata and iliotibial band, and hip adductor (adductor magnus) respectively (Hang, 2013; 

Ranawat & Kelly, 2005). Other hip extensors include gluteus maximus, biceps femoris 

(short and long heads), semimembranosus, semitendinosus, and adductor magnus 

(ischiocondyle part). Other hip adductors are adductor longus and brevis and gracilis 

(Ranawat & Kelly, 2005). Hip rotator muscles vary between hip flexion and extension 

positions (Bloom & Cornbleet, 2014; Bremner et al., 2015).  The piriformis, gluteus 
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maximus, medius, and minimus normally act as hip external rotators in hip extension. 

However, they switch to hip internal rotators in hip flexion (Bloom & Cornbleet, 2014). 

Other deep external rotators such as obturators and quadratus femoris perform external 

rotation at the range of hip flexion from 0-90° (Bloom & Cornbleet, 2014).  

 

 

Figure 1.1 Muscles of the hip complex: anterior and posterior aspects (Pfeil & Siebert, 

2010, p. 9). 

 

Since the hip joint comprises of the pelvis and the femur, it is likely that movement of 

one segment may influence the other (Bagwell et al., 2016). Several studies have found 

that altered pelvis movement in the sagittal plane may influence transverse motion of 

the femur (Duval et al., 2010; Khamis & Yizhar, 2007; Pinto et al., 2008; Tateuchi et 

al., 2011). Internal rotation of the femur results in anterior pelvic tilt and external 

rotation of the femur results in posterior pelvic tilt (Duval et al., 2010; Khamis & 

Yizhar, 2007; Pinto et al., 2008; Tateuchi et al., 2011). Internal rotation of the femur 

causes the femoral head to posteriorly rotate into the posterior acetabulum which forces 

the pelvis into anterior tilt (Duval et al., 2010). 

2.1.2 Range of motion  

The hip joint consists of 3 degrees of freedom which are perpendicular to one another. 

Active range of motion (ROM) of hip flexion in healthy populations ranges from 120-

135°, 15-30° for extension, 45-60° for abduction, 15-30° for adduction, 30-45° for 

internal rotation, and 45-60° for external rotation (Hang, 2013; Hallaceli et al., 2014; 

Yazdifar et al., 2013). 
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2.2 The knee 

2.2.1 Anatomy and function 

The knee complex provides strong stability and control under a high range of loading 

conditions of the human body (Abulhasan & Grey, 2017; Goldblatt & Richmond, 

2003). It comprises 2 joints: 1) the tibiofemoral joint (TFJ); 2) the patellofemoral joint 

(PFJ) (Abulhasan & Grey, 2017; Goldblatt & Richmond, 2003; Flandry & Hommel, 

2011). The TFJ is considered the largest joint in the human body. It consists of 2 

condyloid articulations: the medial and lateral femoral condyles articulating with the 

tibial plateaus (Goldblatt & Richmond, 2003). The joint allows transmission of the body 

weight from the femur to the tibia whilst providing flexion/extension along with a small 

degree of tibial axial rotation (Flandry & Hommel, 2011). The medial and lateral 

menisci serve as shock absorbers to reduce force and to enhance the conformity of the 

joint (Makris et al., 2011). They also assist the rotation of the knee (Goldblatt & 

Richmond, 2003).  

The patellofemoral joint is an articulation between the patella and the femoral trochlea. 

This joint plays an important role in stabilising the knee and in the extensor mechanism 

(Goldblatt & Richmond, 2003). The patella acts as a lever and increases the moment 

arm of the patellofemoral joint which assists the quadriceps tendon to exert on the femur 

by increasing the angle where it acts (Dixit et al., 2007). Stability of the patellofemoral 

joint includes static and dynamic stabilisers (ligaments and muscles) that control 

patellar movement within the trochlea groove (Goldblatt & Richmond, 2003; Dixit et 

al., 2007). The proximal tibiofibular joint is not included in the knee complex because 

the primary function of the joint is to dissipate torsional stresses applied at the ankle 

and lateral tibial bending moments rather than compressive weight-bearing (Sarma et 

al., 2015).  

The knee complex is stabilised by both ligaments and muscles. Knee ligaments are 

considered primary passive stabilisers whilst muscles are secondary active stabilisers. 

The TFJ is reinforced by two collateral ligaments: medial collateral ligament (MCL) 

and lateral collateral ligament (LCL) and is prevented from excessive anterior and 

posterior, varus, and valgus translation of the tibia in relation to the femur by two 

cruciate ligaments: anterior cruciate ligament (ACL) and posterior cruciate ligament 



25 
 

(PCL) (Figure 1.2) (Abulhasan & Grey, 2017). MCL comprises the superficial and deep 

(mid-third capsular) ligaments (LaPrade et al., 2007). It provides stability for the medial 

part of the TFJ by preventing excessive valgus stress during knee external rotation 

(Abulhasan & Grey, 2017). LCL is originated from the lateral femoral condyle to the 

lateral aspect of the fibular head, providing stability to the lateral part of the TFJ by 

preventing excessive varus stress and external rotation of the knee at all positions 

(Abulhasan & Grey, 2017; Davies et al., 2004).  

ACL is the main stabiliser of the TFJ, running from fossa of the medial surface of 

intercondylar notch of the lateral femoral condyle to the tibial plateau and serving as 

the primary resistant to anterior and rotational translation of the tibia on the femur. The 

ligament also secondarily stabilises valgus and varus translation in full extension 

(Abulhasan & Grey, 2017; Mall et al., 2013). PCL is considered the largest 

intraarticular ligament, running from lateral aspect of intercondylar notch of the medial 

femoral condyle to the posterior tibia (Stevens et al., 2015). The ligament plays an 

important role in preventing posterior translation of the tibia and secondarily stabilising 

varus, valgus, and external rotation of the knee (Costa et al., 2018). 

 

  

Figure 1.2 Ligaments of the knee (Tandeter et al., 1999, p. 2). 

 

Knee flexion is predominately accomplished by the hamstrings (biceps femoris long 

head and short head, semimembranosus, and semitendinosus). The plantaris muscle, 

medial and lateral heads of the gastrocnemius muscle, and the soleus muscle act as 

secondary knee flexors (Figure 1.3). The iliotibial band and popliteus muscles also aid 

to flex the knee. Knee extension is predominately accomplished by the quadriceps 



26 
 

muscles (rectus femoris, vastus lateralis, vastus medialis, and vastus intermedius). The 

semitendinosus also acts as a medial rotator of the knee. The biceps femoris and 

semimembranosus act as lateral rotators whilst the popliteus muscle rotates the knee 

both medially and laterally (Figure 1.3) (Abulhasan & Grey, 2017).  

 

 

Figure 1.3 Muscles of the knee complex: anterior and posterior aspects (Cael, 2010, p. 

320-321). 

 

2.2.2 Range of motion 

The knee includes 6 degrees of freedom ROM: 3 rotations (flexion/extension in sagittal 

plane, internal/external rotation in transverse plane, and varus/valgus translation in 

frontal plane) (Abulhasan & Grey, 2017; Komdeur et al., 2002) and 3 translations 

(anterior/posterior glide, medial/lateral shift, and compression/distraction) (Komdeur et 

al., 2002). However, only flexion and extension can be measured by a standard 

universal goniometer (Hallaceli et al., 2014; Lenssen et al., 2007; Dos Santos et al., 

2017) and normal active ROM ranges between 0-140° from extension to flexion (Hang, 

2013). 

2.3 The ankle and the foot 

2.3.1 Anatomy and function 

The ankle complex, consisting of the lower leg and the foot, plays an important role in 

forming kinetic linkage allowing transmission of force between the lower extremity and 

the ground (Brockett & Chapman, 2016; Dawe & Davis, 2011). The ankle and the foot 
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are comprised of 26 bones of the foot, the tibia, and the fibula to form 33 joints. The 

ankle joint complex includes the talocalcaneal (subtalar), tibiotalar (talocrural) 

(Brockett & Chapman, 2016), and transverse-tarsal (talocalcaneonavicular/midtarsal/ 

Chopart’s) joints (Brockett & Chapman, 2016; Tweed et al., 2008). There are 12 

muscles that perform most of the motion within the ankle and the foot (Brockett & 

Chapman, 2016). These muscles are divided into 4 compartments: anterior, lateral, 

superficial posterior, and deep posterior compartments (Figure 1.4) (Brockett & 

Chapman, 2016; Pechar & Lyons, 2016).  

The anterior compartment involves tibialis anterior, extensor hallucis longus, extensor 

digitorum longus, peroneus tertius. The tibialis anterior and the extensor hallucis longus 

perform ankle dorsiflexion and inversion whilst the extensor digitorum longus performs 

dorsiflexion and the peroneus tertius performs dorsiflexion and eversion. The lateral 

compartment includes peroneus longus and peroneus brevis with both muscles 

performing plantarflexion and eversion. The superficial posterior compartment 

comprises gastrocnemius, soleus, and plantaris acting as plantar flexors. The deep 

posterior compartment consists of tibialis posterior, flexor hallucis longus, flexor 

digitorum longus with all of these muscles performing plantarflexion and inversion of 

the ankle (Brockett & Chapman, 2016). 

 

 

Figure 1.4 Compartments of the leg (Pearse et al., 2002, p. 558). 
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Ligaments at the ankle can be divided into 3 groups: lateral ligaments, medial (deltoid) 

ligaments, and the tibiofibular syndesmosis ligaments (Figure 1.5) (Dawe & Davis, 

2011; Golano et al., 2016). The lateral ligaments complex is comprised of the anterior 

talofibular ligament (ATFL), calcaneofibular ligament (CFL) and posterior talofibular 

ligament (PTFL) (Dawe & Davis, 2011; Golano et al., 2016; Groth et al., 2010; 

Boonthathip et al., 2011). They provide stability for the lateral ankle by resisting 

inversion of the ankle (Dawe & Davis, 2011). The medial (deltoid) ligaments, the 

strongest ligaments stabilising the medial ankle, are divided into superficial and deep 

groups (Dawe & Davis, 2011; Golano et al., 2016; Lotscher & Hintermann, 2014).  

The superficial ligaments include tibiospring ligament (TSL), tibionavicular ligament 

(TNL), superficial posterior tibiotalar ligament (STTL), and tibiocalcaneal ligament 

(TCL) whilst the deep ligaments are composed of deep posterior tibiotalar ligament 

(PTTL) and anterior tibiotalar ligament (ATTL) (Lotscher & Hintermann, 2014). The 

tibiofibular syndesmosis ligaments,  supporting the stability between the distal part of 

tibia and the fibula and resisting axial, rotation, and translational forces that tend to take 

apart the tibia and the fibula, involve anteroinferior tibiofibular ligament (AITFL), 

posteroinferior tibiofibular ligament, and interosseous tibiofibular ligament (Dawe & 

Davis, 2011; Golano et al., 2016). 

 

 

Figure 1.5 Lateral, medial, and syndesmosis ligaments of the ankle (Blalock et al., 

2015, p. 19). 
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2.3.2 Range of motion 

The ankle ROM varies between individuals and activities they perform. There are 

mainly 2 degrees of freedom for the ankle ROM: 1) the sagittal plane 

(plantarflexion/dorsiflexion) occurring predominantly at the tibiotalar (talocrural) joint 

with a few degrees at subtalar (talocalcaneal) joint; 2) the frontal plane 

(inversion/eversion) occurring predominantly at subtalar joint (Brockett & Chapman, 

2016). The dorsiflexion ranges from 10 to 20° (Brockett & Chapman, 2016; Soucie et 

al., 2011) and 40 to 55° for the plantarflexion (Brockett & Chapman, 2016). The 

inversion and eversion is approximately 35° in total with 23° for inversion and 12° 

eversion (Brockett & Chapman, 2016; Butterworth et al., 2015).  

2.3.3 Measurement of foot posture and arch index 

Measurement of foot posture is widely considered as an important component of 

musculoskeletal examination in clinical practice and research and determinant in the 

function of the foot and lower extremity (Wearing et al., 2004; Menz et al., 2012). There 

are several methods used to classify foot posture: 1) visual observation (Redmond et 

al., 2008) 2) foot posture index (FPI) (Scott et al., 2007) 3) arch index (Scott et al., 

2007; Cavanagh & Rodgers, 1987) 4) navicular height (Scott et al., 2007) and 5) angular 

measures derived from radiographs (Thomas et al., 2006). 

Visual observation can be performed by having subjects standing in a line. They are 

instructed to stand with equal weight on both feet. Three examiners assessed the 

subjects’ feet by observing them the anterior and posterior view. Feet are classified as 

pronated, supinated, or neutral. To be classified as pronated or supinated, the foot has 

to present with mandatory criteria deviating from the neutral foot and all the examiners 

must agree (Dahle et al., 1991).  

Scott et al. (2007) described that the foot posture index (FPI) involved the rating of 6 

criteria: 1) palpation of the talar head 2) observation of supra/infra malleolar curvature 

3) inversion/eversion of the calcaneus 4) medial prominence of the talonavicular joint 

5) congruence of the medial arch and 6) abduction/adduction of the forefoot on the 

rearfoot. Each of these criterion were scored on a five-point scale (range 2 to +2) and 

the summed score provided a single index of the degree of the pronated/supinated 

posture of the foot, with higher scores representing a more pronated (flatter) foot 
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Arch index has been measured originally following Staheli et al. (1987). Footprint 

parameters are often used in gait studies as indirect measures of arch index (Wearing et 

al. 2004). The width of the foot in the area of the arch (A) and the width of the heel (B) 

are measured, and the former number was divided by the latter one (A/B) to calculate 

the arch. After the middle stages of childhood, the arch index has a board normal range 

from about 0.3 to 1.0 through adulthood. The flexible flatfoot has the arch index of 

more than 1.0 and the high arch has the arch index less than 0.3 (Huang et al., 2004). 

In this thesis, this method was used to identify normal arch of foot for the participants 

following the inclusion criteria. This method is simple. The footprint can be obtained 

and measured by the RSscan pressure plate which was the equipment used in the thesis.  

Navicular height is measured whilst the subject is fully weight-bearing. The navicular 

tuberosity is palpated and marked with an ink marking pen, and the height of the 

navicular tuberosity from the ground is measured in millimetres using a ruler (Menz et 

al., 2003).  

Thomas et al. (2006) stated that angular measures derived from radiographs can be 

performed by having bilateral anteroposterior and lateral weight-bearing radiographs 

of the foot taken. All radiographs are obtained using a workstation. Radiographic 

reference lines and measurements are then obtained using a software. The digital 

radiograph is imported into a template that is designed for each study specifically. The 

software tools are then used to place reference lines and measure angles. 

3. Lower extremity biomechanics related to the PFJ function 

The musculoskeletal system consists of linked segments. For the lower extremity, it 

requires joints and muscles of hip, knee, ankle, and foot to work together to reproduce 

normal forces, loading patterns, and movement patterns in order to perform 

fundamental movements needed for sports and activities of daily living. The 

successively arranged skeletal links characterising hip, knee, ankle, and foot joints 

together comprise the lower extremity kinetic chain (Rivera, 1994). It has been 

recognised that the lower extremity may influence the patellofemoral joint (PFJ). 

Abnormal movement of the femur and tibia in frontal and transverse plans are believed 

to affect PFJ mechanics and cause PFPS (Powers, 2003). Lower extremity joint 
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rotations are also associated with PFJ as it decreases retropatellar contact area and 

increases retropatellar stress during weight-bearing activities (Willson & Davis, 2008).  

3.1 Patellofemoral joint reaction force 

Patellofemoral joint reaction force (PFJRF) is a result from compression force acting 

in the PFJ and depends on knee joint angle and muscle tension (Loudon, 2016). With 

increased knee flexion, the angle between the patellar tendon and the quadriceps tendon 

becomes more acute resulting in increasing of the resultant force vector (Figure 1.6) 

(Schindler & Scott, 2011). High PFJRF together with a small contact area between the 

patella and the femur causes high PFJ stress and may harm the joint cartilage. This 

stress can be greater with poor positioning of the patella in the trochlea groove (Loudon, 

2016).  

 

 

Figure 1.6 Patellofemoral joint reaction force (PRF) representing the resultant vector 

of the quadriceps tendon strain force (QTF) and the patellar tendon strain force (PTF) 

(Schindler & Scott, 2011, p. 425). 

 

3.2 Quadriceps force vector 

The quadriceps force vector or the quadriceps tendon strain force comprises forces from 

VL, vastus intermedius (VI), rectus femoris (RF), and VMO (Amis, 2007). In the 

frontal plane, the quadriceps force vector angles are created by vastus lateralis obliquus 

(VLO) at 35° and vastus lateralis longus (VLL) at 14° laterally, by the VI and RF at 0°, 
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and by VMO at 47° and VML at 15° medially (Figure 1.7) (Amis, 2007; Waryasz & 

McDermott, 2008). The quadriceps force plays an important role in keeping the patella 

in the trochlear groove properly by pulling the patella in a sagittal direction (Waryasz 

& McDermott, 2008). When lateral patellar maltracking occurs, the lateral retinaculum 

is often released arthroscopically to alleviate the lateral displacement force (Calpur et 

al., 2005). 

 

 

Figure 1.7 Quadriceps force vector diagram: VMO – Vastus medialis obliquus; VML 

– Vastus medialis longus; RF – Rectus femoris; VI – Vastus intermedius; VLL – Vastus 

lateralis longus; VLO – Vastus lateralis obliquus; P – Patella; TT – Tibial tubercle; T – 

Tibia; MR – Medial retinaculum; LR – Lateral retinaculum (Waryasz & McDermott, 

2008, p. 4).  

 

3.3 Patellofemoral contact area 

The area of the patellar contact varies throughout ROM (Figure 1.8). When the knee is 

fully extended the patella is positioned proximal and slightly lateral to the trochlea 

(Andrish, 2015). As the knee begins to flex from 0°, the patellofemoral contact area 

progressively increases by degrees. The load and contact area firstly begin at the most 

distal surface of the lateral facet of the patella and the uppermost portion of the lateral 

femoral condyle (Loudon, 2016; Andrish, 2015). During 30° flexion, the contact area 

is distributed on both sides of the femoral condyles and the total contact is 
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approximately 2 cm2. At 60° flexion, the upper part of the patella contacts the femoral 

groove slightly inferior to the contact area of 30° flexion. The contact area between the 

patella and the femoral groove continues to increase as the knee reaches 90° flexion 

and is approximately 6 cm2. At this degree, the upper part of the patella contacts the 

femoral groove above the notch (Loudon, 2016). During the midrange of the knee 

flexion between 50° and 90°, the quadriceps tendon starts to turn around the femoral 

trochlea and takes a load-sharing ability with the patella (Andrish, 2015). Between 90° 

and 120° flexion, the upper part of the patella contacts the femoral groove surrounding 

the intercondylar notch. After 120° flexion, there is only contact on the far medial and 

lateral edges of the patella as the patella bridges the span of the intercondylar notch in 

deep flexion. At the full flexion around 150°, the articulating contact between the 

patella and the lateral aspect of medial femoral condyle is the odd facet (Loudon, 2016).  

 

 

Figure 1.8 Contact areas between the patella and trochlea during different degrees of 

knee flexion with the red colour representing the patellar contact and the green colour 

representing the quadriceps tendon contact (Andrish, 2015, p. 65). 

 

The contact area on the patella when getting close to full extension is small whilst the 

area is larger at 90° flexion. Therefore, PFJRF is small when it is close to the full 

extension and the articular cartilage pressure (force per unit area) may be relatively 

high. The forces increase during deep flexion and so does the contact area, resulting in 

less patellofemoral (PF) pressures than those near extension (Figure 1.9) (Andrish, 

2015; Bellemans, 2003).  
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Figure 1.9 The relationship between patellofemoral pressure and patellofemoral 

contact area (Andrish, 2015, p. 66). 

 

4. Patellofemoral pain syndrome 

Patellofemoral pain syndrome (PFPS) is a term that is used to describe pain originating 

from the area of the patella and the femur (Oakes, 2005). PFPS is one of the most 

common disorders of the knee, accounting for 25% of all knee injuries that can be seen 

in sports medicine clinics (Fredericson & Powers, 2002). PFPS is also a common cause 

for “anterior knee pain” and mainly affects young women (Petersen et al., 2014). 

However, the cause of pain is not clearly understood (Fredericson & Powers, 2002; 

Peterson & Renstrom, 2005).  

4.1 Aetiology 

Articular surface damage of the patella normally occurs in individuals aged between 10 

and 25 years and is related with pain, especially during uphill and downhill walking, 

stair climbing, and squatting (Peterson & Renstrom, 2005; Lowry et al., 2008). Several 

anatomic and congenital factors may also lead to a predisposition toward patellofemoral 

pain and/or instability. Tightness of the quadriceps, hamstrings and iliotibial band, and 

relative weakness of the quadriceps are probably the most common causes. Other 

factors that can cause this problem include femoral anteversion, tibial torsion, genu 

valgum, genu recurvatum, excessive pronation (Oakes, 2005; Labotz, 2004), 

quadriceps (Q) angle (Kaya & Doral, 2012), and patellar maltracking (Petersen et al., 

2014). The tethering effect of tendons and ligaments adjacent to the patella are major 

determinants of forces across the PFJ. Overall lower extremity alignment and the 

relationship between the trochlea groove and the patella also produce forces across the 
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PFJ. In individual with PFPS, these factors often produce increased forces at the lateral 

joint surface and decreased forces at the medial surface (Labotz, 2004).  

4.2 Pathophysiology 

The pathophysiology of PFPS is not well understood. The syndrome normally occurs 

in young active population at the age of 18-35 years as it is assumed that the population 

at this age participate in several sports and activities (Roush & Bay, 2012). One possible 

mechanism of patellofemoral pain is increased stress at the cartilage-bone interface at 

the patellofemoral joint. This hypothesis is based on the assumption that localised stress 

transmitted through the cartilage has the potential to stimulate the sensation of pain 

called “nociceptors” in the subchondral bone ( Pal et al., 2011). A potential mechanism 

of this elevated stress at the cartilage-bone area is laterally excessive maltracking of the 

patella within the trochlear groove (Grabiner et al., 1994). Normal patellar tracking 

requires balance of soft tissue structures that surround the PFJ. Unequal pull from one 

of the structures can result in increased force distribution between the patella and the 

femur leading to pain (Loudon, 2016). Delayed onset of VMO activity compared with 

that of VL may lead to medial-lateral force imbalance at the patella during the initial 

phase of knee extensor activity and subsequent maltracking of the patella (Cowan et al., 

2002; Pal et al., 2011). Several studies have reported delays in VMO activity in 

individuals with PFPS compared with healthy controls (Cowan et al., 2002; Pal et al., 

2011; Cowan et al., 2001; Cowan et al., 2002a; Cowan et al., 2002b). 

The lateral retinaculum also plays an important role in patellofemoral pain. Chronic 

lateral patellar subluxation during knee flexion and extension may lead to retinaculum 

shortening which stimulates free nerve endings and breaks the ischemia-

hyperinnervation-pain cycle (Sanchis-Alfonso et al., 2006). 

4.3 Prevalence 

Prevalence is defined as the number of cases of a condition existing in a population at 

a specific point or period of time divided by the number of individuals in the given 

population (Callaghan & Selfe, 2007; Roush & Bay, 2012). Not to be confused with the 

word “incidence” as it is defined as the number of new onsets within a population 

during a specified period of time (Callaghan & Selfe, 2007).  
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Researcher in United Kingdom, Europe, Australia, and USA have found that 

approximately 25% of general or sporting population present with PFPS (Callaghan & 

Selfe, 2007; Ireland et al., 2003; Brechter & Powers, 2002; Witvrouw et al., 2003). 

Individuals with the syndrome are most typically identified by ruling out other 

differential diagnoses (Roush & Bay, 2012; Naslund et al., 2006), by their history, as 

well as reporting the functional abilities as assessed by the Anterior Knee Pain Scale 

(AKPS) (Roush & Bay, 2012; Kujala et al., 1993). The AKPS questionnaire is a 

functional outcome tool that has been developed to evaluate symptoms of PFPS and 

chart progress in patients during their rehabilitation (Roush & Bay, 2012; Kujala et al., 

1993). The tool includes 13 questions that query the patient about their ability to 

perform different activities, as well as a question about pain. It is considered a valid and 

reliable tool that is easy for patients or subjects to complete (Roush & Bay, 2012; 

Crossley et al., 2004; Watson et al., 2005). 

4.4 Diagnosis 

PFPS is usually known as a diagnosis of exclusion (Al-Hakim et al., 2012). Patients 

with PFPS often describe pain behind, underneath, or around the patella (Vora et al., 

2018). The symptoms are usually gradual and pain in the anterior knee is the primary 

symptom of PFPS. It is also possible that some patients report instability and crepitation 

of the patellofemoral joint, specifically during loading of the joint and palpation of the 

patella. The pain increases after prolonged sitting, squatting, kneeling and stair 

climbing (Vora et al., 2018; Peterson & Renstrom, 2005). PFPS is defined as anterior 

knee pain or retropatellar pain after at least two of these activities: 1) ascending and 

descending stairs; 2) hopping; 3) jogging; 4) prolonged sitting; 5) kneeling; 6) squatting 

(Noehren et al., 2012). Table 1.1 presents the summary for PFPS diagnosis (Vora et al., 

2018). PFPS excludes peripatellar tendonitis or bursitis, plica syndromes, Sinding-

Larsen-Johansson syndrome (pain restricted to the lower pole of the patella and 

increases during knee flexion) (Chas et al., 2014), Osgood Schlatter disease (pain 

related with severe knee pain during physical exertion and can be reproduced by 

extending the knee against resistance) (Chas et al., 2014), and neuromas. However, 

patellar subluxation, dislocation, or prior surgery may lead to articular cartilage injury 

which also results in anterior knee pain (Vora et al., 2018). Dixit et al. (2007) have 

summarised the differential diagnosis of PFPS in Table 1.2. 
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Table 1.1 Summary of patellofemoral pain syndrome diagnosis. 

PFPS 1) Retropatellar pain during stairs, hopping/jogging, prolonged 

sitting, kneeling, squatting 

2) Negative findings on examination of knee ligament, menisci, 

bursa, synovial plica 

3) Pain on palpation of patellar facets, femoral condyles 

 

Table 1.2 Differential diagnosis of patellofemoral pain syndrome. 

Articular cartilage 

injury  

 

 

 

Bone tumors 

 

 

Chondromalacia 

patellae 

 

Hoffa’s disease 

 

Iliotibial band 

syndrome 

 

Loose bodies 

 

 

Osgood-Schlatter 

disease 

 

Osteochondritis 

dissecans 

 

Patellar 

instability/subluxation 

 

 

 

Patellar stress 

fracture 

 

Patellar tendinopathy 

 

- May describe history of trauma; mechanical symptoms 

may occur if loose body present; may have effusion; 

may have tenderness of involved structure (e.g., 

femoral condyles, patella) 

 

- Pain may be insidious; may have tenderness of bony 

structures 

 

- Retropatellar pain; may have history of trauma; may 

have effusion on examination 

 

- Pain and tenderness localized to infrapatellar fat pad 

 

- Typically presents with lateral pain and tenderness 

over lateral femoral epicondyle 

 

- Symptoms variable; may have intermittent sharp pain, 

locking, or effusion 

 

- Tenderness and swelling at insertion of patellar tendon 

at tibial tubercle in an adolescent 

 

- Symptoms variable; may have intermittent pain, 

swelling, or locking 

 

- Intermittent pain with sensation of instability or 

movement of patella; may have swelling; 

locking can occur with loose body formation; may 

have tenderness over medial retinaculum 

 

- May have tenderness directly over patella 

 

 

- Tenderness of tendon; tendon may be thickened if 

chronic 
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Patellofemoral 

osteoarthritis 

 

Pes anserine bursitis 

 

 

Plica synovialis 

 

 

Prepatellar bursitis 

 

 

Quadriceps 

tendinopathy 

 

Referred pain from 

the lumbar spine or 

hip joint pathology 

 

Saphenous neuritis 

 

 

Sinding-Larsen-

Johansson syndrome 

 

Symptomatic 

bipartite patella 

 

- May have crepitus or effusion; characteristic 

radiographic findings 

 

- Pain usually described as medial rather than anterior; 

tenderness over pes anserine bursa 

 

- May be medial or lateral to patella; if symptomatic, 

tenderness can be demonstrated on examination 

 

- Characteristic swelling anterior to patella following 

trauma 

 

- Tenderness over tendon 

 

 

- Symptoms depend on origin of pain; knee examination 

usually normal 

 

 

- Pain usually medial but poorly localized; may have 

history of surgery 

 

- Tenderness at patellar tendon insertion at inferior pole 

of patella in an adolescent 

 

- May have tenderness directly over patella with 

characteristic radiographic findings 

 

4.5 Treatment 

Treatment for PFPS should focus on dispersing joint forces across a greater surface area 

including a combination of activity modification, taking anti-inflammatory medication, 

stretching, and strengthening program (Labotz, 2004). Surgical intervention is rarely 

necessary and is generally reserved for cases of chronic instability that cannot be 

corrected or malalignment of the lower leg. For patellofemoral symptoms that are 

caused by a change in activity level or exacerbated by specific activity, activity 

modification is the main focus for treatment (Oakes, 2005). Treatment of acute onset 

of patellofemoral pain syndrome from a specific event, such as long-distance running 

or initiating a new exercise program, is straightforward. In general, this would include 

an initial period of rest and ice (Dixit et al., 2007; Oakes, 2005). 

Chronic PFPS is more complicated to treat. The main treatment is a combination of 

quadriceps strengthening exercises in addition to quadriceps, hamstring, and iliotibial 
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band stretching exercises (Dixit et al., 2007; Oakes, 2005; Lowry et al., 2008). It is 

often helpful to receive physiotherapy treatment for one or two sessions of hands-on 

instruction in the appropriate exercise program (Oakes, 2005). However, there is no 

best program that will be effective for all individuals (Dixit et al., 2007) but it needs to 

be planned individually from information gathered from assessment of a patient 

(Labotz, 2004). Occasionally, electric stimulation and biofeedback are useful for the 

pain (Oakes, 2005). Braces, sleeves, and straps are other options for treating PFPS as 

they may provide modest symptomatic relief in selected cases (Dixit et al., 2007; Oakes, 

2005).  

4.5.1 McConnell taping  

Application of medial patellar taping (McConnell’s technique) was originally 

developed by Jenny McConnell (Cowan et al., 2006). This method is widely used by 

clinicians during the treatment of PFPS (Keet et al., 2007). Several hypotheses for the 

mechanism of action of the McConnell taping have been proposed, including 

decreasing pain (Cowan et al., 2006), improving alignment of the patella in the trochlear 

groove with a resultant decreased load on the PFJ (Dixit et al., 2007), and improving 

quadriceps function by altering muscle recruitment with regard to timing of onset of the 

VMO relative to the VL (Keet et al., 2007).  

Multiple studies have supported that patellar taping can decrease pain (Cowan et al., 

2002b; Crossley et al., 2004; Herrington & Payton, 1997) and improve patellar tracking 

by changing vastus medialis obliquus (VMO) timing (Cowan et al., 2002; Cowan et al., 

2001; Cowan et al., 2002a; Cowan et al., 2002b; Crossley et al., 2004) with functional 

tasks. Verma and Krishnan (2012) compared effects of McConnell taping along with 

VMO exercises and conventional physiotherapy treatment (Short wave diathermy and 

VMO exercises) on pain and functional improvement in the management of PFPS. It 

was presented that the McConnell group showed highly significant values for both pain 

relief and functional improvement. Therefore, McConnell taping along with VMO 

exercises improved patellar tracking thought soft tissue adaptations and muscle re-

education resulting in decreasing the PFJRF and pain (Crossley et al., 2000).  

Although several outcomes have been measured following the application of 

McConnell taping, some outcomes still remain unclear and need to be investigated. 
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PFPS is not only associated with patellar malalignment locally but also distally with 

excessive and prolonged foot pronation during stance phase of walking (Bek et al., 

2011). Since McConnell taping has the ability to improve the alignment of the patella 

(Campolo et al., 2013), changing of the patellar alignment should also alter foot 

pronation. However, there is a lack of evidence demonstrating effects of McConnell 

taping on foot pronation.  

4.5.2 The Stability Through External Rotation of the Femur (SERF) strap 

The SERF strap (Don Joy Orthopaedics Inc, Vista, CA) was developed with the purpose 

of assisting the lower extremity kinematics, decreasing knee valgus through supporting 

femoral abduction and external rotation (Herrington, 2013b). Individuals with PFPS 

have been found to present with increased hip adduction and internal rotation (Meira & 

Brumitt, 2011). Increasing of hip adduction and internal rotation influences the greater 

Q-angle by increasing the relative valgus of the lower extremity. The greater Q-angle 

increases the peak lateral contact pressure on the PFJ (Lee et al., 2003). An increase of 

10° in the Q-angle can increase patellofemoral contact pressure by 45%. Internal 

rotation of the femur also increases patellofemoral contact pressure (Meira & Brumitt, 

2011; Lee et al., 2003).  

There is a lack of evidence investigating effects of the SERF strap. Only one study 

examined an effect of the SERF strap on pain and knee valgus angle during unilateral 

squat and step landing in individuals with PFPS. It was found that the application of the 

SERF strap significantly reduced pain and knee valgus during both tasks (Herrington, 

2013b). There is still a need of investigating effects of the SERF strap on other 

outcomes related with PFPS such as foot pronation as it is accepted as influencing the 

kinematic pattern of the lower extremity. From a clinical standpoint, it is proposed that 

increased foot pronation results in excessive internal rotation of the tibia and femur 

(Reischl et al., 1999). 
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Table 1.3 presents the summary of PFPS treatment options between surgical and non-

surgical (Vora et al., 2018).  

Table 1.3 Patellofemoral pain syndrome treatment options. 

Surgical Non-surgical 

• Lateral retinacular release  

• Proximal realignment procedures  

• Distal realignment procedures  

• Elevation of tibial tubercle  

• Anteromedial tibial tubercle transfer & elevation 

• Articular cartilage procedures 

• Patellectomy  

• Relative rest 

• Physical therapy 

• Proximal strengthening 

• Gait retraining 

• Analgesics 

• Bracing 

• Patellar taping 

 

5. The lower extremity variables and extrinsic factors associated with 

PFPS 

Altered lower extremity movement patterns has been implicated in pathogenesis of 

PFPS. It has been reported that altered hip, knee, foot, and ankle kinematics result in 

excessive medial collapse of the lower extremity during various functional activities 

(Rabin et al., 2014). Understanding of lower extremity variables that may affect PFPS 

is very important as interventions to control abnormalities of lower extremity 

mechanics are not mainly focused on the pain area but on the other parts such as 

segments and joints that are located proximal and distal to the patellofemoral joint 

instead (Powers, 2003; Loudon, 2016). These variables such as femoral anteversion, 

genu valgus/recurvatum, internal tibial rotation, foot pronation, ankle deformity, 

quadriceps strength, and hip muscles strength may be useful for clinical assessment for 

individuals with PFPS (Al-Hakim et al., 2012) as well as prescribing rehabilitation 

programmes (Loudon, 2016). However, not all variables have been investigated how 

they have effects on PFPS.  

Extrinsic factors associated with PFPS are factors outside of the human body that can 

influence PFPS such as types of sports activities, environmental conditions, training 

characteristics, training surfaces, and equipment used (Halabchi et al., 2013). In this 
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thesis, the lower extremity variables investigated were spatiotemporal and pelvic 

kinematic parameters of gait, plantar loading patterns, the Q-angle, and knee ROM. 

Extrinsic factors were training duration and training surfaces.   

5.1 Spatiotemporal and pelvic kinematic parameters of gait   

In orthopaedics and rehabilitation, gait analysis is used to monitor the patient healing 

progress (Steultjens et al., 2000; Hadizadeh et al., 2016). There is a study demonstrating 

changes in gait kinematics, kinetics and symmetry in ACL reconstructed athletes during 

rehabilitation programs. It was presented that the gait analysis was able to measure 

progression of the rehabilitation programs in these athletes (Hadizadeh et al., 2016). In 

health diagnostics, gait analysis can be applied between asymptomatic subjects and 

patients. One study investigated kinematic and kinetic gait patterns of individuals with 

PFPS compared to healthy individuals. It was hypothesised that individuals with PFPS 

would modify their gait patterns in order to reduce loading on the painful patellofemoral 

joint. The results supported the hypothesis that the modifications were found in the knee 

and hip angles during the gait patterns (Nadeau et al., 1997). Gait analysis can also 

evaluate gait parameters in healthy individuals for their activities of daily living as there 

is a study investigating gait parameters (ground reaction force (GRF) and spine related 

signals) for the various asymmetric loads carried by healthy individuals during walking. 

The results showed that an increase in the carrying weight resulted in changing of the 

spine dynamics and vibrations (Berceanu et al., 2016).  

Spatiotemporal parameters of gait represent time-distance variables during stance and 

swing phases of gait (Hollman et al., 2011) whilst pelvic kinematic parameters are 

defined as pelvic tilts or pelvic motions (Hertel et al., 2004).  The gold standard 

definition of pelvic tilt is a position-dependent parameter defined as the angle created 

by a line between the sacral end plate midpoint to the centre of the bifemoral heads and 

the vertical axis (Ellenbogen et al., 2018). Hollman et al. (2011) have provided 

operational definitions of spatiotemporal parameters of gait in Table 1.4.  
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Table 1.4 Operational definitions of spatiotemporal parameters of gait. 

Parameters Definitions 

Spatial parameters 

Step length (cm or m) 

 

Stride length (cm or m) 

 

Step width (cm or m) 

 

 

Temporal parameters 

Cadence (steps/min) 

Step time (s) 

 

Stride time (s) 

 

Stance time (s) 

 

Swing time (s) 

 

Single support time (s) 

 

 

Double support time (s) 

 

Spatiotemporal parameters 

Gait speed (cm/s or m/s) 

 

Stride speed (cm/s or m/s) 

 

- Anterior-posterior distance from the heel of one footprint to 

the heel of the opposite footprint 

- Anterior-posterior distance between heels of two 

consecutive footprints of the same foot 

- Lateral distance from heel centre of one footprint to the line 

of progression formed by two consecutive footprints of the 

opposite foot 

 

- Number of steps per minute 

- Time elapsed from initial contact of one foot to initial 

contact of the opposite foot 

- Time elapsed between the initial contacts of two 

consecutive footfalls of the same foot 

- Time elapsed between the initial contact and the last contact 

of a single footfall 

- Time elapsed between the last contact of the current footfall 

to the initial contact of the next footfall of the same foot 

- Time elapsed between the last contact of the opposite 

footfall to the initial contact of the next footfall of the same 

foot 

- The sum of the time elapsed during two periods of double 

support in the gait cycle 

 

- Calculated by dividing the distance walked by the 

ambulation time 

- Calculated by dividing stride length by the stride time 

 

Spatiotemporal parameters of gait is one of the lower extremity variables related to PFJ 

load. There is a study investigating effects of step length on PFJ stress in female runners 

with and without PFPS during running. The results presented that a longer step length 

resulted in increasing of peak PFJ stress and a shorter step length resulted in decreasing 

of peak PFJ stress for both groups (Willson et al., 2014). Another study investigated the 
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effect of cadence and shoes on PFJ kinetics in runners with PFPS and found that running 

in minimalist shoes or regular running shoes at an increased cadence reduced PFJ stress 

and joint reaction force (Bonacci et al., 2018). Gait can also be used as a treatment for 

PFPS as there is a study using gait retraining in runners with PFPS and presented that 

pain was significantly reduced after the retraining sessions (running with a forefoot 

strike pattern) (Roper et al., 2016).  

Apart from spatiotemporal parameters, pelvic kinematics could also play an important 

role in PFPS. Normally, at the initial contact of gait, the pelvis is tilted anteriorly 

approximately 7°, rotated forward approximately 5°. During the loading response, the 

pelvis tilts upward on the stance limb side to a maximum of 5°, then it regains neutral 

tilt at the next initial contact of the swing limb. During stance phase, the pelvis rotates 

backward on the stance limb side and tilts anteriorly.(Nordin & Frankel, 2001) An 

anterior pelvic tilt posture may cause femoral internal rotation resulting in patellar 

maltracking, decreased patellofemoral contact area, and therefore increased 

patellofemoral stress (Mullaney & Fukunaga, 2016).  

5.2 Training surfaces 

Besides intrinsic factors, extrinsic factors also influence gait. Various training surfaces 

might have different effects on changes in spatiotemporal parameters of gait (Fanchiang 

et al., 2016) that might result in lower extremity injuries including PFPS (Halabchi et 

al., 2017). Synthetic playing surfaces are widely used for court and field sports. 

Artificial turf surfaces are commonly used as an alternative to natural grass surfaces 

whilst outdoor surfaces like clay and acrylic are also prevalent (Dragoo & Braun, 2010). 

Dragoo and Braun (2010) conducted a systematic review investigating the effect of 

playing surfaces on injury rates by presenting data from peer-reviewed studies. It was 

found that playing surfaces affected injury rates. First-generation (short-pile fibres 

without infill) and second-generation (longer fibres with sand infills) turf surfaces were 

generally related with significantly higher injuries rates. It was also presented that the 

overall rate of injury on third-generation (infills with mixtures of sand and granules of 

recycled rubber) artificial turf surfaces was similar to that of the natural grass surface. 

There also appeared to be fewer injuries on wood and clay compared with artificial 

court surfaces. Another study compared injury risks in pivoting indoor sports between 

two playing surfaces which were artificial floors and wooden floors. The results 
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presented that the risk of traumatic injury in pivoting indoor sports was higher when 

playing on the artificial floors than on the wooden floors (Pasanen et al., 2008).  

Only a few studies have assessed effects of different surfaces on spatiotemporal 

parameters of gait. One study investigated effects of different walking surfaces on 

spatiotemporal parameters of gait in children with idiopathic toe walking compared 

with typically developing children aged 4-10 years. The surfaces included vinyl tile, 

carpet, and pea gravel. Velocity, cadence, step length, and step width were recorded 

along with early heel rise during walking sessions. The results showed that all children 

presented with lowest velocity, cadence, and shortest step length on gravel and greatest 

velocity and cadence on vinyl tile. Children with idiopathic toe walking had 

significantly less toe-walking on the gravel walkway. It can be concluded that walking 

surfaces played an important role in altering spatiotemporal parameters of gait in the 

children (Fanchiang et al., 2016). Menant et al. (2009) examined effects of walking 

surfaces (control, irregular, and wet) and shoe features on spatiotemporal parameters of 

gait (velocity, cadence, step length, step width, double-support time, toe clearance, 

shoe-floor angle, and heel velocity) in young and older individuals. It was found that 

all subjects significantly exhibited decreased walking velocity, cadence, step length, 

double-support time, heel velocity as well as greater step width and toe clearance when 

walking on the irregular versus the control surface. The subjects significantly produced 

reduction in walking velocity, step length, shoe-floor angle as well as increased step 

width when walking the wet versus the control surface. The older individuals exhibited 

a more conservative walking pattern especially on the irregular and wet surfaces 

compared to the young individuals. From the previous studies, there is still limited 

evidence on effects of walking or training surfaces on spatiotemporal parameters of 

gait. Effects of more types of training surface on spatiotemporal parameters still need 

to be investigated as well as different groups of population.  

5.3 Plantar loading patterns 

Foot posture is a risk for some lower extremity injuries. Systematic reviews that focused 

on specific lower extremity pathologies have found significant relationships between 

planus foot posture (low medial longitudinal arch) and PFPS (Buldt et al., 2018). 

Excessive foot pronation and subsequent rotation of the lower extremity has been 

hypothesised as being implicated with PFPS (Powers et al., 2002; Noehren et al., 2012; 
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Rathleff et al., 2014). It is considered as one of the intrinsic factors that may increase 

lateral PFJ stress and subsequent PFPS development (Lee et al., 2017). During normal 

gait, the subtalar joint begins to pronate straight away after the initial contact and 

reaches the maximum value of 4° to 6° by 14% of the gait cycle. During pronation, the 

calcaneus everts whilst the head of the talus translates medially and inferiorly causing 

medial rotation of the talus. Subsequently, the tibia internally rotates and reaches a 

maximum value of 6° to 10° by 10% of the gait cycle. In late midstance, the subtalar 

joint reverses its function and starts to supinate causing external rotation of the tibia 

(Powers et al., 2002). A previous study reported that excessive foot pronation during 

stance phase of the gait may result in increased internal rotation of the tibia and femur 

and increased hip adduction and the dynamic Q-angle (Lee et al., 2017). It can be 

concluded that excessive or prolonged foot pronation has been shown to lead to PFPS 

(Willson et al., 2015).  

The predominant techniques that have been used to investigate the interaction between 

foot posture and the lower limb biomechanics are kinematics, electromyography, and 

plantar pressure analysis (Landorf & Keenan, 2000). Plantar pressure analysis is 

defined as the measurement of the magnitude and distribution of force that is applied 

to the plantar surface of the foot during walking (Buldt et al., 2018). This measurement 

is important as variations in pressure are related with alterations to moments acting on 

proximal joints to the foot such as the ankle (Saraswat et al., 2014). A number of 

physiotherapists have used plantar pressure as a tool to evaluate abnormalities of the 

foot and the lower extremity to provide appropriate interventions and treatments for 

patients (Koh et al., 2015). Moreover, additional advantages of conducting pressure data 

are lower price and less time-consuming setting up the equipment compared to the gold 

standard laboratory-based 3-dimentional (3D) motion capture system (Schurr et al., 

2017).  

In PFPS research , most previous studies focused on investigating pain and quadriceps 

functions (Campolo et al., 2013; Verma & Krishnan, 2012; Christou, 2004; Khuman et 

al., 2012; Brantingham et al., 2009; Clifford & Harrington, 2013; Salsich et al., 2002) 

and there is only a few evidence reporting investigations of plantar loading patterns. A 

previous study demonstrated plantar pressure distribution in individuals with and 

without PFPS during the support phase of stair descent using Pedar-X insoles. Six 
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plantar areas (medial, central and lateral rearfoot, midfoot, medial, and lateral forefoot) 

were investigated. It showed that people with PFPS developed greater contact areas at 

the medial rearfoot and midfoot compared to healthy people suggesting a more 

medially-directed support at ground contact (Aliberti et al., 2010). A study (Aliberti et 

al., 2011) investigated the influence of PFPS on plantar pressure distribution during the 

foot rollover process (initial contact, midstance, and propulsive phases) in individuals 

with and without PFPS. It was found that patients with PFPS had larger contact areas 

on the medial and central rearfoot at the initial contact and a lower peak pressure on the 

medial forefoot during propulsion compared to control subjects. A plantar contact that 

is medially oriented in the rearfoot has been associated with an everted rearfoot and 

could to excessive medial rotation of the tibia. This rotation could induce a 

compensatory medial rotation of the femur and a lateralization of the patella in relation 

to the femur, increasing the PFJ stress (Aliberti et al., 2011). Similarly, two studies 

investigated that there was increased pronation, accompanied with more pressure on 

the medial side of the rearfoot in healthy people who developed exercise-related lower 

leg pain during barefoot running (Willems et al., 2006; Willems et al., 2007). Based on 

the review and evidence that are currently presented and on the rehabilitation purposes, 

more studies of plantar loading patterns with some methods applied that could possibly 

affect the loading patterns are required to provide more evidence for healthcare 

professionals in treatments of PFPS.  

5.4 The quadriceps (Q) angle 

The normal alignment of the lower extremity affects the patella to directed forces 

laterally. This is described as “the law of valgus” and occurs because the 2 primary 

forces acting on the patella, the resultant quadriceps force vector and the patellar tendon 

force vector, are not on the same straight line. As a result, the quadriceps contraction 

creates a lateral force vector acting on the patella (Figure 1.10) (Powers, 2003). This 

offset in force vectors is clinically defined by “the Q-angle”, measured as the angle 

formed by the intersection of 2 lines crossing on the midpoint of the patella: one line 

beginning from ASIS to the midpoint of the patella and the other line beginning form 

the tibial tuberosity to the midpoint of the patella (Figure 1.10) (Powers, 2003; Ebeye 

et al., 2014; Almeida et al., 2016; Stensdotter et al., 2009).  
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Degrees of the Q-angle between 8° and 10° are considered normal for males and up to 

15° for females. The values higher these degrees may indicate abnormality (Ebeye et 

al., 2014). The explanations of the difference of the Q-angle between males and females 

are that females present more lateral shift of the patella during the quadriceps 

contraction because they have wider hip and shorter femur which could increase the 

valgus of the lower extremity (Ebeye et al., 2014; Jaiyesimi & Jegede, 2009). 

 

 

Figure 1.10 The Q-angle with the lateral force vector acting on the patella: A) normal 

lateral vector B) tibial internal rotation decreases the Q-angle and the magnitude of the 

lateral vector; C) femoral internal rotation increases the Q-angle and the lateral vector; 

D) knee valgus increases the Q-angle and the lateral force vector (Powers, 2003, p. 

640). 

 

The Q-angle is believed to be an important variable of patellofemoral function and 

dysfunction (Jaiyesimi & Jegede, 2009). It is widely used to evaluate individuals with 

PFPS (Almeida et al., 2016) as it is believed that a greater Q-angle is likely to produce 

a greater lateral vector and may have potential to result in lateral patellar tracking and 

increased patellofemoral contact pressures (Powers, 2003; Waryasz & McDermott, 

2008). There are several studies presenting that individuals with PFPS had greater Q-

angle compared to healthy individuals and the Q-angle and PFPS were associated. 

Emami et al. (2007) measured the Q-angle in individuals with PFPS and healthy 

individuals in a standing position using a universal goniometer and found that the mean 

Q-angle for the PFPS group was 18° and the control group was 14.9° with greater Q-

angle in females for both groups. This study only provided the mean and not the 

standard deviation. Similarly, Liporaci et al. (2013) evaluated the frequency of signs 

and symptoms of PFPS including the Q-angle on a functional assessment of the lower 
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extremity in individuals with and without PFPS. The results showed that individuals 

with PFPS presented increased Q-angle more often than ones without PFPS. Kaya and 

Doral (2012) also found a significant difference of the Q-angle between the affected 

side (19.61±4.35) and unaffected side (17.63±4.29) in individuals with unilateral PFPS 

measured by a universal goniometer in a standing position. Herrington (2013) generated 

an equation model from bilateral stance Q-angle and unilateral stance Q-angle in 

individuals without PFPS to predict the Q-angle in individual with PFPS. All Q-angle 

measurements were obtained from images taken by a digital photography. It was found 

that the individuals with PFPS presented higher actual Q-angle than those predicted 

with the mean difference of 2.3°.  

Conversely, Kwon et al. (2014) evaluated the correlation between intrinsic PFPS and 

lower extremity biomechanics in young adults. This experiment was carried out with 

sixty (24 men and 32 women) individuals, who were normal university students. All 

subjects underwent 3  clinical evaluations. For distinguishing the intrinsic PFPS from 

controls, the Modified Functional Index Questionnaire (MFIQ), Clarke’s test, and the 

eccentric step test were used. Based on the results of the tests, subjects who were 

classified as positive for 2 more tests were allocated to the bilateral or unilateral intrinsic 

PFPS. Static and dynamic Q-angle were measured during standing and descending from 

the step on one leg respectively and it was presented that both angles were not 

significantly different between the 2 groups. These results are in line with Erkocak et 

at. (2016) who investigated the effects of rotational deformities in PFPS and the validity 

of certain related radiological patellofemoral alignment parameters including the Q-

angle in individual with unilateral PFPS and healthy individuals. It was presented that 

there was no significant difference between the symptomatic and asymptomatic knees 

for the Q-angle. Similarly, Stensdotter et al. (2009) investigated the Q-angle in 3 

methods: manual measurement by a standard goniometer in a supine position, whole 

body kinematics by five high speed cameras in supine and standing positions, and a 

radiograph image in a standing position in women with and without PFPS. The results 

demonstrated that there were no significant differences of the Q-angle between the both 

groups for all measurements, except the goniometer measurement which presented that 

the Q-angle was greater in the PFPS group.   
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Freedman et al. (2014) and Sheehan at al. (2010) found that increased Q-angle was not 

associated with lateral displacement of the patella but medial displacement instead. 

From this conflict, there is no strong evidence supporting if the Q-angle is larger in 

individuals with PFPS and the association between the Q-angle and PFPS still remains 

unclear. Further investigations are needed to present the fact about the Q-angle and 

PFPS.  

5.5 Knee ROM 

Knee ROM is more complex than only simple flexion/extension as this modified hinge 

joint consists of the PFJ and the TFJ and unlocks during the initial degrees of flexion 

and the femur rotates laterally on the tibia. However, flexion/extension is still a key 

component when measuring knee ROM (Peters et al., 2011). Knee ROM has been used 

to objectively measure recovery after various knee surgeries (Harmer et al., 2009; Mook 

et al., 2009; Ritter et al., 2003) and as a clinical indicator of functional restrictions in 

activities, such as gait (Naylor et al., 2011). It is also used for physical examination to 

identify if a patient presents with PFPS (Manske & Davies, 2016) and to monitor 

effectiveness of treatments and progression in individuals with PFPS as these 

individuals normally present less knee flexion than healthy individuals (Harshitha et 

al., 2014).  

Goniometry is commonly used as instruments to measure joint ROM. There are several 

types of instruments and methods developed for measuring joint ROM with advantages 

and limitations of those (Bennett et al., 2009; Edwards et al., 2004). In clinical practice, 

knee ROM is usually assessed either visually or with a universal goniometer (Bennett 

et al., 2009). Plain radiographs have been used to measure pre- and postoperative knee 

flexion in research studies (Bennett et al., 2009) and computer-assisted navigation has 

been used to analyse knee ROM during orthopaedic surgery (Austin et al., 2008b).  

Radiography currently represents the gold standard for all ROM measurements 

(Phillips et al., 2012; Tajali et al., 2016; Herrmann, 1990) but this method is expensive, 

has potentially harmful effects on humans (Herrmann, 1990), and can only measure 

static ROM (Phillips et al., 2012). There have been many studies that have investigated 

the accuracy, sensitivity and reliability of knee ROM measurement (Naylor et al., 2011; 

Bennett et al., 2009; Austin et al., 2008b; Cleffken et al., 2007; Edwards et al., 2004; 

Brosseau et al., 1997; Peters et al., 2011; Wood et al., 2006).  
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The main limitation of these measuring methods is that they are static measures of knee 

ROM and not during functional dynamic activities. Research investigating dynamic 

ROM assessment is limited and the reliability and validity of dynamic ROM assessment 

methods remains unclear (Cronin et al., 2006). Measurement of dynamic movement is 

often quantified as a static measure where a universal goniometer is used to measure 

the final ROM at the end of the dynamic movement (Roberts & Wilson, 1999). In terms 

of validity, estimating a dynamic movement using a static measure is problematic and 

may not accurately reflect full functional ROM (Cronin et al., 2006). A method for 

measuring dynamic knee ROM or a method that can lead to dynamic knee ROM 

measurement needs to be focused on in the future research. 

5.6 Training duration 

Training duration is an extrinsic risk factor for overuse injuries that is believed to also 

influence PFPS (Halabchi et al., 2017). Most overuse injuries of the lower extremity 

cause by training errors or too much training (Buist et al., 2007). Several studies have 

suggested a number of factors that may increase the risk of lower limb injuries and 

training duration is one of those factors (Van Middelkoop et al., 2008). A previous study 

reported 7.4 and 6.9 running-related injury per 1000 hours of running among marathon 

runners who ran 204 and 162 minutes per week over a 1-year period (Jakobsen et al., 

2013). Similarly, Buist et al. (2008) found an average of 33 running-related injury per 

1000 hours of running in 2 groups of novice runners. One group performed running at 

an average of 52 minutes per week over a 13-week period (30 running-related 

injury/1000 hours) whilst the other group performed running at an average of 59 

minutes per week over an 8-week period (38 running-related injury/1000 hours). 

Hespanhol Junior et al. (2013) also demonstrated that training duration was identified 

as a risk factor for running-related injury in a cohort study of predicting running-related 

injury in a recreational runners. 

From the previous research, it is concluded that training duration could influence lower 

extremity overuse injuries including PFPS (Hespanhol Junior et al., 2013). Taking any 

history about recent alterations in sporting activities, training program including any 

changes in the frequency, intensity and duration of training is very important in athletes 

presenting with PFPS (Halabchi et al., 2017; Dixit et al., 2007). However, there is no 
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evidence demonstrating relationship between PFPS and this extrinsic risk factor, so 

evidence is required to investigate this suggestion.  

6. Aims and outline of the thesis 

The thesis comprises five studies. The overall aim was to investigate lower extremity 

variables (spatiotemporal and pelvic kinematic parameters of gait, plantar loading 

patterns, the Q-angle, and knee range of motion) and extrinsic factors (training duration 

and training surfaces) associated with PFPS with the overall focus on evaluation of 

accessible tools that could potentially be used in clinical settings. Each study has a 

specific aim as presented in the next paragraph.  

The initial study explored the prevalence of PFPS in young Thai athletes and examined 

the relationship between PFPS and training duration hours per week. The second study 

evaluated the functioning of a stretch sensor directly attached on the skin for knee range 

of motion (ROM) measurement and assessed the level of the measurement error. The 

stretch sensor was used to measure knee flexion in a laboratory environment during 

passive non-weight-bearing. The third study was a systematic review investigating the 

association between the Q-angle and PFPS and investigating the difference of the Q-

angle between healthy individuals and individuals with PFPS as prior evidence about 

these have remained unclear. Various walking surfaces might have different effects on 

changes in spatiotemporal parameters of gait and pelvic kinematic parameters. 

However, there is a lack of studies assessing effects of different surfaces on gait 

patterns. Therefore, the fourth study investigated spatiotemporal and pelvic kinematic 

parameters of gait on different training surfaces during walking in healthy individuals. 

Three surfaces in the study included: 1) indoor multi-sport game surface; 2) outdoor 

synthetic surface for track and field; 3) natural grass surface. The final study examined 

the effect of McConnell taping and the stability through external rotation of the femur 

(SERF) strap on foot plantar loading patterns in healthy adults during walking and 

jogging. These two applications were chosen because McConnell taping is an effective 

treatment option in reducing pain after its immediate application in individuals with 

PFPS and SERF strap has been developed to pull the femur into external rotation to 

stabilise the PFJ, to reduce pain, and to improve lower limb kinematics during dynamic 

activities. It is proposed that the application of the SERF strap should alter plantar 

loading patterns by pulling the femur externally resulting in a reduction in medial tibial 
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rotation and foot pronation. Although McConnell taping has become very popular for 

PFPS management, relatively little knowledge is known regarding its effect on foot 

pressures. Figure 1.11 provides the diagram of 5 studies in this thesis beginning from 

the first to the last study.  

 

 

 

 

 

Figure 1.11 The diagram of 5 studies in the thesis: Extrinsic factors (training duration 

and training surfaces) are included in the 1st and 4th study; Lower extremity variables 

(knee ROM, the Q-angle, spatiotemporal and pelvic kinematic parameters of gait, and 

plantar loading patterns) are included in the 2nd, 3rd, 4th, and 5th study.     
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1. ABSTRACT 

Introduction: Patellofemoral pain syndrome (PFPS) is usually related with sports and 

activities of daily living and the condition may affect up to 25% of males and females 

who participate in sporting activities. However, only researchers in Europe, Australia, 

USA, and a few Asian countries have conducted studies of prevalence of PFPS. There 

is still a lack of good epidemiological evidence studying incidence or prevalence of 

PFPS in most countries including Thailand. PFPS is also often related to overuse so 

recent changes in activities and changes in duration of training should be considered. 

Therefore, the primary aim of the study was to estimate the prevalence of PFPS in 

young Thai athletes and the secondary aim was to investigate the relationship between 

PFPS and training duration. Methods: 362 Thai athletes (12-18 years) were recruited 

in the study. The participants completed a self-reported questionnaire known as 

“Anterior Knee Pain Scale (AKPS)” for the initial screening process. Participants who 

provided a score of less than 100 underwent further physical examination for PFPS. 

Details of their training schedule according to training duration per session, training 

frequency per week, and types of training were given by sports coaches at school. 

Results: 310 participants completed the AKPS questionnaire. There were 51 

participants who reported a questionnaire score of less than 100 and 19 of those 

presented with PFPS with a greater prevalence in females but no significant difference 

of PFPS was found between males and females. The overall prevalence of PFPS was 

6% (19 out of 310). PFPS was significantly related to sports training duration (p = 

0.004) and sum of general and sports training duration (p = 0.015) for the overall 

population. When genders were considered, PFPS was significantly related to general 

training duration (p = 0.032) in males, sports training duration (p < 0.001) and sum of 

both training duration (p = 0.001) in females. Conclusion: The overall prevalence of 

PFPS in young Thai athletes was 6% which was a lower rate compared to previous 

studies. Sports training duration and sum of both training duration were associated with 

PFPS. The results of the current study may have implications for coaches or sports 

teachers for planning the schedule of sports training duration for the young Thai 

athletes. 

Keywords: prevalence, patellofemoral pain syndrome, training duration, knee 
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2. INTRODUCTION 

Patellofemoral pain syndrome (PFPS) is one of the most common knee pain diagnoses 

in sports medicine clinics (Esculier et al., 2013). Anterior knee pain (AKP) is a 

symptom that most commonly results from PFPS so the terms AKP and PFPS are often 

used synonymously to describe the same syndrome (Roush & Bay, 2012; Dixit et al., 

2007). The disorder is usually related to sports and activities of daily living and the 

condition may affect up to 25% of males and females who participate in sporting 

activities (Phillips & Coetsee, 2007). The major complaint is pain around or behind the 

patella (retropatellar pain) usually during running, inclined walking, stair climbing, 

prolonged sitting with the knee in a flexed position, and squatting (Fredericson & 

Powers, 2002; Verma & Krishnan, 2012; Christou, 2004; Anloague, 2011). As a result, 

a large number of children and adolescents may be restricted in activities or perform 

submaximally on the sports field (Phillips & Coetsee, 2007). Limitation of physical 

activities can lead to a negative effect on physical development, motor skill and 

psychosocial development (Phillips & Coetsee, 2007; Barber Foss et al., 2012), and can 

also increase risk of becoming over-weight and obese adults (Hills et al., 2011). 

Researchers in Europe, Australia, and USA have found that 25% of the general or 

sporting population present with PFPS (Phillips & Coetsee, 2007; Ireland et al., 2003; 

Brechter & Powers, 2002; Witvrouw et al., 2003; Anderson & Herrington, 2003). 

Callaghan and Selfe (2007) conducted a literature review to investigate incidence or 

prevalence of PFPS in the United Kingdom. Only 40 out of 136 articles cited rate or 

ratio for incidence or prevalence of PFPS and of these 15 out of 40 papers found a PFPS 

prevalence of 25% or 1:4 ratio in general population. However, there is still a lack of 

good epidemiological evidence studying incidence or prevalence of PFPS in general 

population in the United Kingdom. Other studies found different prevalence of PFPS. 

Barber Foss et al. (2012) reported that prevalence of AKP was 26.6% in the middle and 

high school-aged female athletes who were followed up over 3 years in USA which 

was believed to be associated with patellofemoral pain syndrome. Roush and Bay 

(2012) also found that the prevalence of APK in 18-35-year-old non-sporting females 

in USA was 12-13%. However, there is still a lack of studies assessing prevalence of 

PFPS in most countries and Thailand is one country where prevalence of PFPS has not 

previously been evaluated in any populations. Thai National Statistical Office stated 
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that in 2011, 26.1% of the Thai population at the age of 11 years and above participated 

in exercise and sporting activities. When investigating rate of exercise in each age 

group, it was found that the 11-14-year age group had the highest exercise participation 

rate which was 60.1% (3:5). The second highest rate was found in the 15-24-year age 

group at 40% (2:5). The 60+ year age group was 23.6% and the 25-59-year age group 

was the lowest rate at 19% (National Statistical Office Ministry of Information and 

Communication Technology, 2012). Whilst the young Thai population have a high 

exercise participation rate and there is a lack of knowledge of the prevalence of PFPS 

in Thailand.   

The anterior knee pain scale (AKPS), also known as Kujala scale, was designed to 

evaluate patellofemoral pain (Kujala et al., 1993). Esculier et al. (2013) conducted a 

systematic review of 5 self-reported questionnaires used to assess the level of symptoms 

and disability in people with PFPS. The questionnaires included Activities of Daily 

Living Scale (ADLS), International Knee Documentation Committee (IKDC), Lysholm 

Scale (LS), Functional Index Questionnaire (FIQ), and AKPS. It was found that AKPS 

presented excellent test-retest reliability (intraclass correlation coefficients (ICC) > 

0.80) and minimal detectable change was only 9%. Myer et al. (2010) also used AKPS 

as an initial tool to screen middle and high school female athletes in USA if they had a 

score of less than 100 to investigate the prevalence and incidence of PFPS during their 

competitive basketball season. The results showed that the prevalence of PFPS was 16.3 

per 100 athletes (16.3%) at the beginning of the season. The cumulative incidence risk 

and rate were 9.66 per 100 athletes and 1.09 per 1000 athletes. AKPS has also been 

translated into other languages which are Turkish, Chinese, Persian (Esculier et al., 

2013), Dutch (Kievit et al., 2013), and Thai versions (Sakunkaruna et al., 2015). All 

translated versions appeared to be reliable and valid similar to the original English 

version.  

The causes of PFPS are still under investigation (Fredericson & Powers, 2002; 

Anloague, 2011) but one of the most common factors in orthopaedic sports medicine is 

overuse (Fulkerson, 2002). As PFPS is often related to overuse, recent changes in 

activities and changes of training characteristics should also be considered (Dixit et al., 

2007). Overuse injuries occur when training characteristics exceed the body’s ability to 

repair itself and are common in athletes or individuals starting an overzealous exercise 
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program (Manske & Davies, 2016). Overuse injuries are also found in low-contact 

sports where the same movements are repeated multiple times, often within long 

training sessions (Yang et al., 2012). However, there is a lack of studies investigating 

the relationship between PFPS and training duration so the need for an investigation of 

this relationship is required. Therefore, the primary aim of the study was to estimate the 

prevalence of PFPS in young Thai athletes. The secondary aim was to investigate the 

relationship between PFPS and training duration hours per week. The prevalence of 

PFPS taken from the previous studies was 25% (Callaghan & Selfe, 2007). However, 

Thailand is a developing country where sports science and technology and training 

strategies may not be as established as in  developed countries (The Ministry of Tourism 

and Sports Thailand, 2017). It was therefore hypothesised that the prevalence of PFPS 

in young Thai athletes would be more than 25%. The second hypothesis was that there 

would be a significant positive relationship between PFPS and longer training duration 

hours per week based on the proposal that overuse injuries including PFPS are 

associated with long training sessions (Yang et al., 2012).  

3. METHODOLOGY  

Participants 

This survey study was an observational descriptive research (cross-sectional) that 

recruited students in Phitsanulok Provincial Administrative Organization Sports 

School, Thailand. The total number of students enrolled in the school was 362 and ages 

ranged from 12 and 18 years. This age range was selected as the survey on population 

behaviour in playing sport or physical exercise and mental health from the Thai 

National Statistical Office showed that this age range has a high rate of exercise 

participation (National Statistical Office Ministry of Information and Communication 

Technology, 2012). Every student in the school trained and engaged in one type of sport 

differently. Baseline characteristics of the participants are shown in Table 2.3. 

The study was approved by the School of Sport & Exercise Sciences Research Ethics 

and Advisory Group (REAG), University of Kent at Medway (Ethics reference: Prop 

53_2015_2016). The assent form for participants under 16 years, consent form for their 

guardians, consent form for participants at age 16 to 18, and participant information 

sheet were all translated into Thai. All participants and their guardians whose children 
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were under 16 gave written informed consent prior to the participation. The guardians 

were provided with a one-week period to decide if they allowed their children to 

participate the study. A total of 362 written informed consents and 228 assents were 

given to teachers who were responsible for each classroom. The informed consent 

forms were divided into 3 types: 1) one for participants under 16 (228 forms provided); 

2) one for guardians of participants under 16 (228 forms provided); 3) one for 

participants aged between 16 and 18 (134 forms provided). 

 Inclusion criteria 

1. Students (boys and girls) who studied in Phitsanulok Provincial 

Administrative Organization Sports School, Thailand. 

2. Ages ranged from 12 to 18 years. 

Exclusion criteria 

1. Students who did not receive permission from their guardians to participate 

in the study. 

2. Younger than 12 or older than 18 years. 

3. Anyone who was not at school during the study period. 

Anterior knee pain scale (AKPS) 

The AKPS is a self-report questionnaire consisting of 13 items (Figure 2.1) that 

evaluates subjective responses to specific activities and to assess the symptoms and the 

level of disability of patients with PFPS (Esculier et al., 2013; Myer et al., 2010; Kujala 

et al., 1993; Barber Foss et al., 2012; Myer et al., 2016). The scale responds to 6 

activities believed to be related with anterior knee pain (walking, running, jumping, 

stair climbing, squatting, and prolonged sitting with both knees bent) along with 

symptoms such as limp, weight-bearing inability on the affected limb, maltracking of 

the patella, muscle atrophy, swelling, and knee flexion limitation. It also asks about 

limb affected and duration of symptoms (Singer & Singer, 2009). The score of the 

questionnaire runs from a minimum of 0 to a maximum of 100 points. Lower scores 

represent greater pain and lack of ability. Participants who have no sign of AKP will 

have a score of 100 (Esculier et al., 2013; Myer et al., 2010; Kujala et al., 1993; Barber 
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Foss et al., 2012; Myer et al., 2016). It is considered a valid and reliable tool and easy 

to understand and complete ((Roush & Bay, 2012; Myer et al., 2016). 

 

 

Figure 2.1 Anterior knee pain scale consisting of 13 questions (Kujala et al., 1993, p. 

162). 

 

Anterior knee pain scale translation  

The AKPS questionnaire was translated from English into Thai to fit the local 

participants and tested for reliability in 40 participants which were similar population 

of the sample group on 2 occasions with a 30-minute time interval (Sakunkaruna et al., 

2015). The Thai version of the questionnaire was then analysed by the intraclass 

correlation coefficient (ICC) 95% CI for test-retest reliability. To identity the reliability 



61 
 

of the questionnaire, the correlation value between 0.9 and 1.00 was considered very 

strong, strong if the value was between 0.7 and 0.9, moderate if the value was between 

0.5 and 0.7, and weak if the value was below 0.5 (Kievit et al., 2013). The result showed 

that the translated version of the AKPS questionnaire presented very strong test-retest 

reliability of 0.97. 

Procedure 

The initial screening process was that participants completed the Thai version of AKPS 

questionnaire which was given to the participants at school. They were provided with 

1 hour to complete the questionnaire. Participants who provided a score of 100 

presenting that they had no pain and disability related to PFPS (Barber Foss et al., 2012) 

did not need to go through further assessment. Participants who provided a score of less 

than 100 underwent further investigation which was a physical examination for PFPS 

performing by the researcher who was an experienced physiotherapist in a separate 

room providing by the school. (Table 2.1) (Dixit et al., 2007; Fredericson & Yoon, 

2006; Hattam & Smeatham, 2010). Details of their training schedule per week 

according to training duration, frequency, and types  (Ellapen et al., 2013) were given 

by sports coaches at school. The training consisted of general training and sports 

training. All participants performed the same general training which was speed, agility, 

power, and strength training 3 or 4 days a week depending on sports they participated. 

Sports training was different in each sport with the training including specific skills and 

game-based training 6 or 7 days a week.  

Table 2.1 Key components and findings of physical examination for PFPS. 

Components and finding Comment 

Inspection 

     Lateral patellar tracking (“J” sign) 

 

 

 

     Poor VMO tone 

 

Patellar misalignment as a result of tight 

lateral structures or weak vastus 

medialis obliquus (VMO) 

 

Could be seen in PFPS 

Palpation 

     Effusion 

 

     Tenderness of: 

          Patellar retinaculum (medial and  

          lateral) 

 

Very rare in PFPS 

 

 

Common in PFPS; having pain in some 

portion of the lateral retinaculum 
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          Facets (medial and lateral) 

 

          Patella 

           

          Quadriceps and patellar tendon 

 

 

          Joint line 

 

Could be seen in PFPS 

 

Usually not tender in PFPS 

 

Suggestive of tendinopathy or tear if 

injury is acute 

 

Suggestive of meniscus injury 

 

Measurement 

     Q-angle 

 

May show a relationship between a 

higher Q-angle and PFPS 

 

Range of motion (ROM) 

 

 

     Crepitus 

 

     Popping/clicking 

ROM of knee and hip usually normal in 

PFPS 

 

May occur with PFPS or osteoarthritis 

 

May happen when palpating during 

passive or active ROM; could be a sign 

of patellar maltracking 

 

Special test 

     Patellar apprehension test 

 

 

 

 

 

 

 

     Patellofemoral grind test 

 

 

To detect instability/pain emanating 

from the patellofemoral articulation; 

positive if a patient experiences pain 

and/or apprehension in anticipant of 

patella subluxation and attempts to 

contract the quadriceps to prevent 

further excursion 

 

To elicit pain and/or apprehension 

emanating from the patellofemoral joint; 

positive if a patient feels pain 

 

Muscle flexibility An association between tight quadriceps 

and development of PFPS 

 

Muscle strength Quadriceps muscle weakness commonly 

seen in patients with PFPS 

 

 

Diagnosis of PFPS 

Determining the best tests for PFPS diagnosis is still limited (Roush & Bay, 2012; Cook 

et al., 2010; Crossley et al., 2016). In the present study, PFPS was diagnosed following 

the criteria in the Table 2.2. 
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Table 2.2 PFPS diagnosis criteria. 

Criteria Comment Study 

- Pain behind or around 

the patella following 

prolonged sitting with 

knee flexed, rising from 

sitting, or pain during 

activities such as 

ascending or descending 

stairs, squatting, kneeling, 

or running 

 

- Most common symptom 

seen in PFPS 

 

 

 

 

 

 

 

Dixit et al., 2007; 

Crossley et al., 2016; 

Cook et al., 2010 

 

 

 

 

 

 

- Tenderness on palpation 

of medial or lateral 

retinaculum 

- Common in PFPS: 

imbalance between VL 

and VMO cause the 

retinaculum to be stretched   

 

Dixit et al., 2007 

 

- Full range of motion of 

the knee joint 

- Common in PFPS: knee 

and hip ROM usually 

normal in PFPS 

 

Dixit et al., 2007; 

Crossley et al., 2016 

- No knee effusion 

 

 

 

- Sign of articular cartilage 

injury, chondromalacia 

patellae, loose bodies, 

patellofemoral 

osteoarthritis 

 

Dixit et al., 2007; 

Crossley et al., 2016 

 

 

- No locking of the knee 

joint 

 

 

- As locking suggests a 

meniscal tear or loose 

bodies in the joint. 

Dixit et al., 2007 

 

 

- No localised pain at the 

inferior patellar pole 

- This suggests patellar 

tendinopathy. 

Crossley et al., 2016 

 

- No localised tenderness 

and swelling around the 

tibial tuberosity 

- This suggests Osgood 

Schlatter disease. 

 

Crossley et al., 2016 

 

 

- No morning stiffness, 

involvement of multiple 

joints or tendons, and 

joint swelling 

- This refers to systemic 

joint disease. 

 

Crossley et al., 2016 
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Statistical analysis  

Age, weight, and height were expressed as mean±SD using Microsoft Excel. The 

differences of age, weight, and height between males and females were analysed by 

independent T-test as all the data was normally distributed. The difference of the 

questionnaire score between males and females was analysed by independent T-test 

following normal distribution of the data. The data were checked for normal 

distributions using Kolmogorov-Smirnov (K-S) test. The prevalence was calculated as 

the number of PFPS cases divided by the total number of participants that completed 

AKPS questionnaire in the study. The relationship between PFPS and general training 

duration and sports training duration per week were analysed by Pearson Chi-square. 

The relationships between PFPS and age, weight, and height were analysed by Pearson 

correlation (Point biserial). The statistics (Kolmogorov-Smirnov (K-S) test, 

independent T-test, and Pearson correlation (Point biserial)) were analysed using SPSS 

24.0 (Norusis/SPSS Inc., Chicago, IL, USA). An Alpha level of p ≤ 0.05 was used to 

test statistical significance. 

4. RESULTS  

The total number of students enrolled in the school was 362. Three hundred and forty-

one consent forms were returned 1 week after they were handed out. Three hundred and 

ten AKPS questionnaires were distributed to the participants as 15 out of 341 

participants did not give permission to participate and 16 of them did not present on the 

day that the questionnaires were completed. A total number of participants that did not 

participate in the study were 52 (Figure 2.2). All the questionnaires were returned 

within the day that they were provided to the participants, so this gave a return rate of 

100%. Baseline characteristics of the participants are shown in Table 2.3. There were 

51 participants who reported the questionnaire score of less than 100. No participants 

who met any of the criteria for AKP (Table 2.2) scored the maximum of 100. When 

gender sub-groups were considered, 35 out of 213 males (16%) and 16 out of 97 females 

(16%) scored less than 100 on the questionnaire (Table 2.4). 
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Figure 2.2 Flow chart representing the number of participants participating in the study. 

 

Table 2.3 Baseline characteristics of the participants. 

 

Male (N = 213) Female (N = 97) 

p-value 

Total (N = 310) 

Mean±SD Max:Min Mean±SD Max:Min Mean±SD Max:Min 

Age (year) 15±2 18:12 15±2 18:12 0.645 15±2 18:12 

Weight (kg) 52.3±9.4 85:28 51.4±8.6 82:32 0.471 52.0±9.1 85:28 

Height (cm) 165.9±9.0 185:136 160.7±6.9 178:145 < 0.001* 164.3±8.7 185:136 

*p-value < 0.001 

Table 2.4 Number and percentage of participants who had the questionnaire score of 

100 and less than 100. 

Score 

Number of 

participants 

(N = 310) 

Percentage  
Male Female 

N = 213 % N = 97 % 

< 100 51 16 35 16 16 16 

100 259 84 178 84 81 84 

 

 

362 students received 
consent forms 

 

341 students returned 
consent forms 

 

1 week 

15 students did not 
give permission 

 

16 students did not 
present on the day 

that the questionnaire 

was completed 

310 students participated 
and completed the AKPS 

questionnaire 
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Table 2.5 Number and percentage of participants whose scores were less than 100 and 

were diagnosed with or without PFPS.  

PFPS 

Number of 

participants  

(N = 51) 

Average  

AKP score 
Percentage  

Male Female 

N = 35 % N = 16 % 

Positive 19 81±10 37 12 34 7 44 

Negative 32 82±9 63 23 66 9 56 

 

Table 2.5 indicates that 19 out of 51 participants (37%) who had the questionnaire score 

of less than 100 had signs and symptoms commensurate with a diagnosis of PFPS. 

There was no significant difference of average AKP scores between the positive and 

negative group (p-value = 0.740). When gender sub-groups were considered, 12 out of 

35 males (34%) and 7 out of 16 females (44%) had signs and symptoms commensurate 

with a diagnosis of PFPS indicating a higher prevalence of PFPS in females but a 

significant difference between these 2 proportions was not found (p-value = 0.521). 

Overall, the prevalence of PFPS in young athletes registered at Phitsanulok Provincial 

Administrative Organization Sports School, Thailand who participated in this study was 

6% (19 out of 310). 

Table 2.6 Number, percentage, general training duration, sports training duration, and 

sum of both training duration of participants who were diagnosed with PFPS divided 

by sport played. 

Sport played 

Number of 

participants 
with PFPS 

(n = 19) 

PFPS in 

percentage 

for each 

sport (%) 

General 

training 

duration 

(hours/week) 

Sports 

training 

duration 

(hours/week) 

Sum of both 

training 

duration 

(hours/week) 

Football (n = 87) 4 5 6 10.5 16.5 

Volleyball (n = 65) 6 9 8 10.5 18.5 

Athletics (Track) 
(n = 34) 

6 18 6 9 15 

Futsal (n = 40) 3 8 6 10.5 16.5 

 

Table 2.6 presents a number of participants who were diagnosed with PFPS, percentage, 

general training duration, sports training duration, and sum of both training duration 

divided by sports that they played. Participants who performed the same sport had the 
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same training duration and frequency. Football, athletics, and futsal had the same 

general training duration which was 6 hours per week while volleyball was 8 hours per 

week. Football volleyball, and futsal had longer sports training duration which was 10.5 

hours per week compared to athletics that was 9 hours per week.  

Table 2.7 Relationships between PFPS and general training duration, sports training 

duration, age, weight, and height. 

 General training 

duration 

(hours/week) 

Sports training 

duration 

(hours/week) 

Age 

(year) 

Weight 

(kg) 

Height 

(cm) 

 

p-value 

 

0.108 

 

0.004* 

 

0.217 

 

0.549 

 

0.257 

* Relationship is significant at 0.05 

Table 2.7 shows the relationships between PFPS and general training duration, sports 

training duration, age, weight, and height. PFPS was significantly related to sports 

training duration (p = 0.004) showing that individuals with PFPS (100%) engaged in 9-

hour and 10.5-hour sports training duration more often than individuals without PFPS 

(70.8%). This result suggests that longer sports training duration could be a factor in 

the development of PFPS. Significant relationships were not found between PFPS and 

general training duration, age, weight, and height. 

Table 2.8 Relationships between PFPS and general training duration, sports training 

duration, age, weight, and height divided by genders. 

 

General 

training 

duration  

(hours/week) 

Sports training 

duration 

(hours/week) 

Age 

(year) 

Weight 

(kg) 

Height 

(cm) 

M F M F M F M F M F 

p-value 0.032* 0.124 0.197 < 0.001* 0.118 0.983 0.822 0.489 0.232 0.998 

* Relationship is significant at 0.05 

   M = males, F = females 

Table 2.8 presents relationships between PFPS and general training duration, sport 

straining duration, age, weight, and height when the gender sub-groups were analysed. 

PFPS was significantly related to general training duration (p = 0.032) in male 

participants presenting that individuals with PFPS (100%) engaged in 6-hour and 8-
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hour general training duration more often than individuals without PFPS (85.5). There 

was a significant relationship between PFPS and sports training duration (p < 0.001) in 

females. Individuals with PFPS (100%) engaged in 9-hour and 10.5-hour sports training 

more often than individuals without PFPS (65.6%). Age, weight, and height were not 

associated with PFPS in both males and females. 

Table 2.9 Relationships between PFPS and sum of general and sports training duration. 

 

 

Sum of general and sports training duration 

(hours/week) 

Both genders Males Females 

p-value 0.015* 0.163 0.001* 

* Relationship is significant at 0.05  

Table 2.9 presents the relationships between PFPS and the sum of general and sports 

training duration. There were significant relationships between PFPS and sum of both 

training duration in all participants and in females when the gender sub-groups were 

divided. Male participants did not show a significant relationship between PFPS and 

sum of both training duration. Individuals with PFPS (100%) engaged in 15-hour, 16.5-

hour, and 18.5-hour sum of both training duration more often than individuals without 

PFPS (62.5%). When the gender sub-groups were divided, females with PFPS (100%) 

engaged in 15-hour, 16.5-hour, and 18.5-hour sum of both training duration more often 

than females without PFPS (66.7%).    

5. DISCUSSION 

The prevalence of PFPS in young Thai athletes registered at Phitsanulok Provincial 

Administrative Organization Sports School, Thailand was found to be 6% (19/310). 

The initial hypothesis that prevalence of PFPS would be higher than 25% was therefore 

rejected. The prevalence in the present study was found to be lower than reported in 

previous studies. Evidence from the Europe, USA, and Australia have reported levels 

of prevalence of PFPS of 25% for general or sporting populations (Callaghan & Selfe, 

2007). Barber Foss et al., (2012) found that AKP was presented in 26.6% of adolescent 

female athletes screened over 3 years whilst Roush and Bay (2012) stated that the 

estimated prevalence of AKP in 18-35-year-old females was 12%. Nejati et al. (2010) 

also investigated prevalence of PFPS in Iranian female athletes and it was found that 
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the prevalence was 16.74%. Moreover, the latest systematic review that included 23 

studies of prevalence in PFPS reported that annual prevalence for PFPS in general 

population was reported as 22.7% and adolescents as 28.9% (Smith et al., 2018). 

Similarly, a study found that the prevalence of PFPS in Chinese population was 20.7% 

for overall, 20.3% for males, and 21.2% for females (Xu et al., 2018) which is still 

higher compared to the current study. Callaghan and Selfe (2007) stated that most PFPS 

prevalence studies recruited university athletes, competitive athletes, and male military. 

A possible reason for the low prevalence of PFPS found in this present study may be 

that these young Thai athletes were still at the beginning level of sports training and 

competition compared to those in the previous studies, so their training schedule and 

intensity may not be as high as competitive athletes or from the military.  

Table 2.5 shows that 32 of 51 participants presented with the questionnaire score of less 

than 100 but were not diagnosed with PFPS. AKPS questionnaire was not only 

developed to respond to six activities associated with AKP but also symptoms such as 

inability to weight bear through the affected limb, swelling, abnormal patellar 

movement, muscle atrophy, and knee flexion limitation (Singer & Singer, 2009). It is 

possible that these 32 participants may have presented with these symptoms. 

The prevalence of PFPS in the present study was found to be higher in the female 

participants (44%) compared with the male participants (34%) but no significant 

difference of PFPS prevalence was found between males and females. However, several 

previous studies found significantly greater prevalence of PFPS in females compared 

to males (Myer et al., 2010; Nejati et al., 2011; Phillips & Coetsee, 2007; Roush & Bay, 

2012; Barber Foss et al., 2012; Boling et al., 2010). Boling et al. (2010) found the 

prevalence of PFPS in females and males was 15.3% and 12.3% respectively. The 

incidence rate in females was 33/1000 person-years whilst 15/1000 person-years was 

found in males. Similarly, Phillips and Coetsee (2007) investigated the incidence of 

AKP in 11-17-years-olds school males and females. Their results showed that AKP was 

common among children between 11-17 years with a peak during 12-15 years in 

females.  

There are anatomical and biomechanical factors that may lead to higher prevalence of 

PFPS in the females compared to the males (Boling et al., 2010). One of those factors 

includes the difference in quadriceps angle (Q-angle) (Boling et al., 2010) as females 
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have greater Q-angle than males (Horton & Hall, 1989) and a greater Q-angle is a risk 

for PFPS (Kaya & Doral, 2012). Theoretically, a greater Q-angle increases the lateral 

pull of the quadriceps muscle and potentiates patellofemoral joint disorders (Emami et 

al., 2007; Horton & Hall, 1989). Lower extremity muscle strength is believed to be 

another risk factor for PFPS. Females have been reported to be significantly weaker 

than males on measurements of hip abduction, hip extension, hip lateral rotation, and 

quadriceps strength (Leetun et al., 2004; Barber-Westin et al., 2006). This muscle 

weakness places the females at a higher risk of joint pain and injuries, including PFPS 

(Phillips & Coetsee, 2007). However, the current study did not find a significant 

difference of PFPS prevalence between male and female participants. The possible 

reason can be explained by the small amount of PFPS cases diagnosed in the study 

especially in female participants. This may result in type II error (false-negative) where 

a null hypothesis that is false is accepted. A larger sample size can reduce this type II 

error (Banerjee et al., 2009).  

The current study only investigated point prevalence of PFPS, and period prevalence 

and incidence rate were not investigated. For a chronic condition such as PFPS, the 

manifestation is often intermittent. As a result, point prevalence, based on a single 

assessment at one point of time, is likely to underestimate the prevalence of PFPS in 

the Thai athletes (Callaghan & Selfe, 2007; Roush & Bay, 2012). As period prevalence 

and incidence rates include a specific period of time (Callaghan & Selfe, 2007; Roush 

& Bay, 2012), reporting period prevalence or incidence rates helps to normalise for the 

time factor. Nevertheless, point prevalence is useful to find if a number of cases increase 

or decrease the next time that another point prevalence is investigated (Callaghan & 

Selfe, 2007; Roush & Bay, 2012). 

Participants who engaged in athletics (track/running) demonstrated highest prevalence 

of PFPS which was 18% whilst volleyball, futsal, and football presented with 9%, 8%, 

and 5% respectively (Table 2.6). These results support the literature that most running 

injuries are located in the knee with PFPS being the most prevalent injury (Thijs et al., 

2008). A retrospective case-control analysis of running injuries found that PFPS was 

the most common injury among patients with running related injuries. Injury 

breakdown with respect to anatomical location yields the knee as the most commonly 

injured site (42.1%) with 46% of these injuries being PFPS (Taunton et al., 2002). 
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Similarly, other two studies reported that 50-60% of all knee injuries was due to PFPS 

(Pinshaw et al., 1984; Clement et al., 1981). A possible reason may be that the runners 

performed more running distance especially during sports training compared to the 

other sports. Therefore, this caused a development of PFPS (Nielsen et al., 2013). 

The secondary aim of this study was to investigate the relationship between PFPS and 

training duration per week. The second hypothesis of PFPS being significantly related 

to training duration per week was only partially supported. There were no significant 

relationships between PFPS and general training duration, age, weight, and height for 

the overall group of participants. However, PFPS was found to be significantly related 

to sports training duration (p = 0.004) and sum of both training duration (p = 0.015) 

which supported the second hypothesis. This finding supports the literature that PFPS 

is more common among physically active population (Callaghan & Selfe, 2007; 

Esculier et al., 2013; Myer et al., 2010; Nejati et al., 2011; Phillips & Coetsee, 2007; 

Roush & Bay, 2012; Erkocak et al., 2016; Pappas & Wong-Tom, 2012). In individuals 

with PFPS, training error such as changes in frequency, intensity, and duration of 

training can contribute to PFPS (Dixit et al., 2007).  

Importantly, when gender sub-groups were considered, the male participants presented 

with a significant relationship between PFPS and general training duration (p = 0.032) 

whilst the female participants presented with a significant relationship between PFPS 

and sports training duration (p < 0.001) and sum of both training duration (p = 0.001). 

Small numbers of participants diagnosed with PFPS may result in type II error which 

caused differences of the significant relationships between PFPS and training duration 

in male and female participants. Training duration per week in the present study was 

acquired from a number of training hours per day multiplied by a number of training 

days per week (frequency). Jones et al. (1994) conducted a review of exercise, training, 

and injuries and found that runners and other physically active groups had consistently 

demonstrated that greater duration and frequency of training are associated with higher 

risks of injuries. On the other hand, the sports medicine literature presented little 

association between exercise intensity and injuries. This is the reason why training 

intensity was not evaluated in the present study. However, it is possible that training 

intensity could be another reason that the relationships between PFPS and training 

duration varied between males and females as it is one of the training characteristics 
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that influences PFPS (Dixit et al., 2007). In the present study, it may be possible that 

the participants were controlled by training duration, but the training intensity was not 

monitored. 

However, PFPS and the sum of general and sports training duration showed a 

significant relationship in all participants with individuals with PFPS (100%) engaged 

in 15-hour, 16.5-hour, and 18.5-hour training duration (Table 2.6) more often than 

individuals without PFPS (62.5%). On the basis of these results, it can be concluded 

that long training duration may be a factor in the development of PFPS.  There were no 

significant differences of age (p = 0.645) and weight (p = 0.471) between male and 

female participants in the present study but a significant difference of height was found 

(p < 0.001) (Table 2.3). However, this significant difference of height should have no 

effect on the result as Lankhorst et al. (2012) and Pappas and Wong-Tom (2012) 

conducted a systematic review on risk factors and prospective predictors for PFPS and 

concluded that anthropometric variables including age, weight, and height were not 

associated with PFPS.  

6. LIMITATIONS 

There were several limitations of the current study, firstly the data collection only took 

place at one school and this limits the generalisation of the findings to a general Thai 

population of this age group. Future studies of prevalence of PFPS in other groups of 

Thai population or in other schools with the same age range are required to clarify if 

the results will be similar to the present study. Secondly, there were only a few PFPS 

cases diagnosed in the present study. This may be one of the reasons that relationships 

between PFPS and training duration varied between male and female participants. 

Statistical power calculation for the sample size is required to reduce type II error. 

Thirdly, the current study was a point prevalence study and a specific period of time 

was not included. This could underestimate a number of individuals diagnosed with 

PFPS (Callaghan & Selfe, 2007; Roush & Bay, 2012). Period prevalence and incidence 

rates should be considered in the future to normalise the time factor. 
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7. IMPLICATIONS 

This current study of PFPS prevalence provides useful information for health 

professionals that can be used to aid the planning of treatment and rehabilitation 

interventions for PFPS patients. The results of this study also has implications for 

coaches or sports teachers at the school in the for planning of training programmes for 

the athletes. For example, it has been known from the results of the present study that 

long training duration could influence PFPS so training duration shortening, or 

frequency of training cut offs may help to reduce the prevalence of PFPS. The study 

provides research implications on the need to investigate prevalence of PFPS in other 

Thai schools and compare if the prevalence is similar to the school in the current study. 

If the prevalence is high, it then should be evaluated what the reason of low prevalence 

in the present school is. The training schedule may be related and should be investigated 

further in detail.  

8. CONCLUSION  

The overall prevalence of PFPS in young Thai athletes was found to be 6%, which is 

lower than previously reported levels of prevalence. PFPS was significantly related to 

sports training duration and the sum of general and sports training duration in the overall 

population. With the low prevalence of PFPS in the young Thai athletes in the present 

study, future data collection of the other lower extremity variables was not performed 

in this group of Thai population. However, prevalence of PFPS on other groups of 

population from the previous studies across the world were still high. Therefore, other 

variables of the lower extremity associated with PFPS still need to be investigated in 

the other studies.    
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Chapter 3: Study 2 

 

Measuring knee range of motion using  

stretch sensors in healthy adults 
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1. ABSTRACT 

Introduction: Knee flexion and extension ROM is a key component for normal knee 

function. A variety of techniques and instruments have been developed to measure knee 

ROM. However, the main limitation of all these measuring methods is that they were 

static measures and not during functional dynamic activities. Moreover, in terms of 

validity, estimating a dynamic movement using a static measure such as a goniometer 

is problematic and may not accurately reflect full functional ROM. The development 

of a valid and reliable method to assess dynamic knee ROM during free-living activities 

would be a valuable measure for monitoring and progressing knee rehabilitation. 

Therefore, the aim of this study was to evaluate the functioning of a stretch sensor, 

attached directly to the skin, measuring through capacitance, for the measurement of 

knee ROM and to assess the level of the measurement error. Method: Nine healthy 

participants aged 18-40 years were included in the study. Three stretch sensors were 

attached on the participants’ right knees (middle, medial, and lateral sides) by the 

Kinesiotape. The participants were fastened to the dynamometer in a sitting position. 

The dynamometer was set to continuous passive mode (CPM). Data collection started 

when the knee was in an extended position and finished when the knee was fully flexed. 

Data was recorded through the StretchSense application. Knee angles were obtained 

from the video clips recorded during the testing and were analysed by MaxTraq® 2D 

motion analysis software. The knee angles were then synchronised with the sensor 

capacitance through R programme. Results: The middle sensor was chosen for the 

analysis and the results showed that seven of nine participants presented high 

coefficient of determination (R2) (> 0.98) and low root mean square error (RMSE) (< 

5°) which means there was strong relationship between sensor capacitance and knee 

angle. The equations generated from the 7 participants’ data can be used individually 

to predict knee angles. Conclusion: It is possible to use the stretch sensors to measure 

knee ROM in healthy adults with a clinically acceptable level of error. Further research 

is now needed to establish the validity and reliability of the methodology under different 

conditions before it can be considered to have potential within a clinical setting.  

Keywords: stretch sensor, flexible sensor, silicone sensor, knee range of motion, range 

of motion measurement 
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2. INTRODUCTION 

The chapter 2 found that the prevalence of PFPS in the young Thai athletes from the 

previous chapter was low, investigating other lower extremity variables related with 

PFPS is necessary as the prevalence of PFPS in other groups of population elsewhere 

including the UK is still high (Callaghan & Selfe, 2007). Interventions that are resulted 

from improved understanding of the lower extremity variables related to PFPS may be 

able to reduce the prevalence of PFPS. Therefore, the improve understanding of the 

related lower extremity variables is essential. In order to achieve this understanding, 

reliable objective measures are needed. There is a limitation from assessing knee ROM 

using a universal goniometer during the physical examination in the previous 

prevalence study as the landmarking may result in substantial measurement error. The 

need for a more accurate measurement of knee ROM is required.  

Measurement of joint ROM is established practice within sports and orthopaedic 

rehabilitation (Naylor et al., 2011; Bennett et al., 2009). Knee flexion and extension 

ROM is a key component for normal knee function with a mean functional arc of 96° 

and full passive ROM of 135° to 140° (Peters et al., 2011). Knee ROM is a lower 

extremity variable that is frequently used to objectively measure recovery after various 

knee surgeries (Harmer et al., 2009; Mook et al., 2009; Ritter et al., 2003) and as a 

clinical indicator of functional restrictions in activities, such as gait (Naylor et al., 

2011). The measurement of knee ROM is standard practice within the physical 

examination and can be used to identify if a patient presents with PFPS (Manske & 

Davies, 2016).  Importantly, knee ROM is also used  to monitor effectiveness of 

treatments and progressions in individuals with PFPS as these individuals often present 

with reduced knee flexion compared with healthy individuals (Harshitha et al., 2014). 

A variety of techniques and instruments have been developed to measure joint ROM. 

In clinical practice, knee ROM is usually assessed either visually or with a universal 

goniometer (Bennett et al., 2009). Plain radiographs have been used to measure pre- 

and postoperative knee flexion in research studies (Bennett et al., 2009) and computer-

assisted navigation has been used to analyse knee ROM during orthopaedic surgery 

(Austin et al., 2008b).  Radiography currently represents the gold standard for all ROM 

measurements (Phillips et al., 2012; Tajali et al., 2016; Herrmann, 1990) but this 

method is expensive, has potentially harmful effects on humans (Herrmann, 1990), and 
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can only measure static ROM (Phillips et al., 2012). There have been many studies that 

have investigated the accuracy, sensitivity and reliability of knee ROM measurement 

(Naylor et al., 2011; Bennett et al., 2009; Austin et al., 2008b; Cleffken et al., 2007; 

Edwards et al., 2004; Brosseau et al., 1997; Peters et al., 2011; Wood et al., 2006). 

Peters et al. (2011) compared 3 methods of measuring knee ROM in 21 healthy male 

participants: visual estimation by physicians, hand goniometry by physiotherapists, and 

radiographic goniometry. Intra-rater and inter-rater reliability were found to be 

satisfactory for all 3 methods. However, inter-rater reliability across the methods was 

not found to be satisfactory, possibly due to variations in technique among physicians 

and physiotherapists. Bennett et al. (2009) demonstrated a method of recording and 

measuring knee ROM using digital imaging in patients who had undergone knee 

replacement surgery. The results presented high inter-observer reliability (r > 0.948) 

and intra-observer repeatability (r > 0.906) for the digital imaging. However, the main 

limitation of all these measuring methods is that they were static measures of knee ROM 

and not during functional dynamic activities. Research investigating dynamic ROM 

assessment is limited and the reliability and validity of dynamic ROM assessment 

methods remains unclear (Cronin et al., 2006). Measurement of dynamic movement is 

often quantified as a static measure where a universal goniometer is used to measure 

the final ROM at the end of the dynamic movement (Roberts & Wilson, 1999). In terms 

of validity, estimating a dynamic movement using a static measure is problematic and 

may not accurately reflect full functional ROM (Cronin et al., 2006).  

Laboratory based equipment such as a dynamometry can be used to collect data 

regarding angular motion. Even though this type of research yields valuable 

information, the results only remain valid in conditions where there is no anticipation 

or reaction to the real environment (Bergmann et al., 2013). Data collection is often in 

non-weight-bearing positions such as sitting and supine that do not reflect functional 

activities. Laboratory equipment is expensive and not practical in a clinical and 

rehabilitation scenario (Bergmann et al., 2013).  

The normal active ROM of the knee is from 0° of extension to 140° of flexion. Full 

extension is required for normal function (Nordin & Frankel, 2001), but many daily 

activities require less than 140° of flexion, dependent on the activities performed. Tying 

shoes (sitting and bringing the foot up from the floor) requires 106° of knee flexion; 
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sitting (without touching the chair with the hands) 93°; ascending and descending stairs 

83°-105° and 86°-107° respectively; walking 60°; and fast running (faster than 7.5-

minute mile) 103° (Clarkson, 2005). The development of a valid and reliable method 

to assess dynamic knee ROM during free-living activities would be a valuable measure 

for monitoring and progressing knee rehabilitation. 

Stretch or flexible sensors are one of the methods that have been used to measure joint 

ROM (Austin et al., 2008b; Bergmann et al., 2013; Chiang et al., 2017; Hirata et al. 

2015; Kumar et al., 2015; Tognetti et al., 2015). A wide range of materials have been 

used as stretch sensors to measure human movement range, including thin films of 

aligned single-walled carbon nanotubes; ZnO nanowire/polystyrene hybridized flexible 

films; electrogoniometers; a mixture of rubber and carbon (Bergmann et al., 2013); 

conductive rubber; conductive fabrics; polyvinylidene fluoride; and nanocomposites 

(Huang et al., 2017). A stretch sensor network that consists of wireless sensors attached 

to the patient could, potentially, provide an easy method to collect clinically relevant 

information about knee function in everyday situations (Bergmann et al., 2012).  

Bergmann et al. (2013) applied stretch sensors integrated into clothing around the knee 

joint during non-weight-bearing movement on a Cybex dynamometer in healthy 

individuals with the aim of finding a way to measure knee joint kinematics that could 

be potentially used to detect and manage osteoarthritis (OA). They found an average 

root mean square error of ∼1°, a mean absolute error of ∼3° with a coefficient of 

determination (R2) above 0.99 between the obtained angles and reference angles.  These 

initial results demonstrated the potential of the sensors to measure dynamic knee ROM 

in patients with OA that could be used improve patients’ quality of life. Feldhege et al. 

(2015) also evaluated a stretch sensor system against an electro-mechanical goniometer 

for knee ROM in healthy subjects and patients with multiple sclerosis during physical 

activities. The sensor system in this study demonstrated high validity for knee joint 

angle measurement with a root mean square error of less than 5° for the calculated 

flexion-extension angle of the knee joint compared with the result obtained using the 

reference goniometer. More recently, Papi et al. (2018) demonstrated that a flexible 

sensor attached to leggings was able to measure peak sagittal knee angles with small 

margins of error. However, these previous studies have all used sensor systems that 
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were either attached to clothing or orthoses (Bergmann et al., 2013; Feldhege et al., 

2015) and not directly onto the skin surface of the joint.  

StretchSense (Auckland, New Zealand) have developed a stretch sensor that 

combines the ultra softness of silicone with the robustness of a fabric stretch sensor. 

Each sensor contains an integrated printed circuit board is soft and flexible, allowing 

the device to conform to the natural curves of the human body. The manufacturers state 

that the sensor can stretch to up to 3 times (200% strain extension) it’s original length, 

meaning the sensor should not restrict movements (Stretchsense, n.d.b). The 

capacitance of the sensor changes as the sensor is stretched or compressed 

(Stretchsense, n.d.d). In clinical settings, it would be useful to be able to adopt stretch 

sensors for knee ROM evaluation as the sensors are small, portable, easy to manage, 

and cheaper than lab-based equipment such as a Cybex dynamometer. They also allow 

a continuous measure of knee flexion within the maximum ROM (Saggio et al., 2014). 

This would allow evaluation of knee ROM during activities of daily living (Papi et al., 

2018) as there is a lack of information regarding knee ROM during free-living 

activities. This would even provide benefits in terms of time and money saving for both 

healthcare professionals and patients as the patients can easily use the tool to measure 

themselves at home (Saggio et al., 2014) and knee ROM measures are currently taken 

at discrete points during clinical visits (Biggs & Shelbourne, 2006).  

Currently, there are no published studies that have investigated the functioning of a 

stretch sensor, attached directly on the skin, measuring through capacitance, for the 

measurement of knee ROM. The aims of this study were to evaluate the functioning of 

a stretch sensor for the measurement of knee ROM during passive non-weight-bearing 

movement and to assess the level of the measurement error. From the previous studies 

of validating stretch sensors on knee ROM measurement, it has been found that the 

sensors demonstrated high validity and low level of error (Bergmann et al., 2013; 

Feldhege et al., 2015; Papi et al., 2018). Therefore, the hypotheses of the study were 

that the stretch sensors could be used to measure knee ROM during passive non-weight- 

bearing movement with a level of the measurement error less than the 5° that is 

considered as a clinically acceptable level of error in knee angle measurement (Unver 

et al., 2009; Wilken et al., 2012; Allseits et al., 2018). Moreover, the maximum error of 
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human joints for the majority of requirements of motion capture is acceptable at not 

more than 5° (Huang et al., 2017).   

3. METHODOLOGY 

Participants 

Simulation studies of prediction models have suggested minimum events per variable 

(EPV) values of between 5 and 20 for reliable results (Ogundimu et al., 2016). 

According to the previous studies in sensor systems for measuring knee ROM, eight to 

ten participants were recruited in the studies (Bergmann et al., 2013; Chiang et al., 2017; 

Saggio et al., 2014; Lee et al. 2016; McGinnis et al. 2016).  

  Inclusion criteria 

1. Healthy individuals aged 18-40 years (both males and females). 

2. No knee pain with any activities (Aliberti et al., 2010). 

3. No history of a surgery involving the lower leg, ankle or foot in the last 12 

months (Willems et al., 2006).  

4. No history of an injury to the lower leg, ankle or foot within 6 months 

(Willems et al., 2006). 

5. Adequately understand verbal explanations or written information given in 

English. 

6. Not allergic to silicone and Kinesiotape. 

Stretch sensor system 

The stretch sensor (StretchSense, Auckland, New Zealand) (Figure 3.1 A) consists of 

thin layers of silicone rubber, a non-conducting dielectric material, carbon filled, and 

silicone electrodes. The dimensions of the sensor are also shown in Figure 3.1 B. The 

sensor has maximum extension of 200% strain, average capacitance of 365 pF, average 

sensitivity of 2.8 pF/mm, and noise level of 0.67 pF (Stretchsense, n.d.e). When it is 

stretched, the ability to hold an electric charge at a given voltage changes. This charge-

holding capability, capacitance is the ratio of the charge stored on the sensor divided 

by the voltage across its dielectric (Xu et al., 2015). 

The stretch sensor is connected to a 10-channel SPI sensing board (#0CTX) (Figure 3.1 

C) which gathers stretch sensing data simultaneously. It has output data rate of up to 1 
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kHz per channel, sensing channels of 10, Bluetooth 4.0 for digital communication, 

range of 0-65536 pF, 3-sigma (noise) of 0.46 pF (Stretchsense, n.d.a).  

 

 

 

Figure 3.1 The stretch sensor system: 3.1 A) sensor; 3.1 B) sensor dimension; 3.1 C) 

10-channel SPI sensing board and Bluetooth communicator. 

 

Pilot testing session for sensors 

The stretch sensor placement was tested on 3 areas of the knee: middle of the patella 

over the patellofemoral join and tibiofemoral joint; the medial side of the patella over 

the tibiofemoral joint; and the lateral side of the patella over the tibiofemoral joint. The 

sensors were covered by Kinesiotape to ensure that the sensors were attached to the 

skin without any space between the sensors and the skin. Each participant then sat on 

an isokinetic dynamometer (Cybex HUMAC NORM model 770) with the 

dynamometer moving the right knee automatically. The sensor capacitance was 

recorded by the StretchSense application on a tablet connected to the sensor system 

by Bluetooth signal. Measurements were repeated 1 hour after the first test (Unver et 

al., 2009). The results of this pilot testing showed that the all three sensors demonstrated 

excellent test-retest reliability (intraclass correlation coefficient (ICC) = 0.853 for the 

capacitance of the middle placement, 0.832 for the capacitance of the medial placement, 

and 0.884 for the capacitance of the lateral placement). 

 

3.1 C 

3.1 A 

3.1 B 
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Reliability test for MaxTraq® 2D motion analysis software 

MaxTraq® 2D is a motion analysis software that allows users to track and analyse 

human movements from video clips that are opened by the software. The MaxTraq® 

2D software was used to obtain knee angles in the present study. An intraclass 

correlation coefficient (ICC) was used to estimate intra-rater reliability of the researcher 

for using MaxTraq® 2D software to identify knee angles for participants. The 

researcher calculated knee angles from a video clip played by MaxTraq® 2D. The same 

process was performed again with a separation of 2 days (Tucker et al., 2007). The 

testing results demonstrated a correlation of 0.99. This was considered a high level of 

correlation as a correlation above 0.7 indicates acceptable reliability (Remigio et al., 

2017). 

Testing procedure 

The study was approved by the School of Sport & Exercise Sciences Research Ethics 

and Advisory Group (REAG), University of Kent at Medway (Ethics reference: Prop 

60_2017_18). All participants gave written informed consent prior to the participation. 

The participants attended the laboratory on one occasion. The Kinesiotape was used to 

attach the sensors to the skin in this study. The tape is a non-restrictive elastic adhesive 

tape selected for use in this study as it can stretch an additional 20-40% of its original 

length. Importantly, it has been designed to have the same amount of stretch as human 

skin and to provide support and stability to muscles and joints without restricting ROM 

(Drouin et al., 2013).  Participants had a small patch of Kinesiotape applied over their 

skin on the knee area for 30 minutes prior to the data collection as a patch test (Parreira 

Pdo et al., 2014). All sensors were attached to the participant’s right knee with the knee 

in an extended position. The first sensor without the connector was placed on the tibial 

tuberosity indicated by palpation and the rest of the sensor was attached over the 

midpoint of the patella with no tension (Figure 3.2 A). The second sensor was placed 

on the medial side of the knee next to the patella (Figure 3.2 B) and the third sensor was 

placed on the lateral side (Figure 3.2 C) with the middle of both sensors on the 

tibiofemoral joint line as the ends without the connectors were on the tibia and the other 

ends were on the femur. Each sensor was directly attached to the skin using a 5-cm-

wide Kinesiotape that was placed over the sensor without tension. Two anchor strips 

(2.5-cm-wide) were placed without tension around the thigh and shank to prevent the 
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sensors from displacing during knee movement (Figure 3.2 D). The Bluetooth 

communicator was placed on the right thigh and fixed by an elastic bandage (Figure 3.2 

D).  

 

 

         

Figure 3.2 Sensor placement for 3 areas: 3.2 A) middle sensor; 3.2 B) medial sensor; 

3.2 C) lateral sensor; 3.2 D) the sensors attached on the right knee by Kinesiotape with 

the Bluetooth communicator fixed by an elastic bandage. 

 

A Cybex dynamometer was used to standardise movement speed of the knee joint 

(Bergmann et al., 2013). Participants were fastened to the dynamometer in a sitting 

position with 3 sensors on the right knee. A mobile phone was set up on a tripod and 

placed on the medial side of the right leg as a camcorder to record the knee movement. 

A tablet was used to record sensor capacitance through the StretchSense application. 

For standardisation, the right medial malleolus and the right medial femoral epicondyle 

were identified and marked by the researcher for knee angle measurement (Brosseau et 

al., 1997) and rechecked by an experienced physiotherapist. The midpoint of the medial 

side of the femur was marked as a reference for the hip joint as the greater trochanter 

could not be identified on the medial side (Figure 3.3). The dynamometer was set to 

continuous passive mode (CPM) for a self-selected ROM determined by the 

participants (Bergmann et al., 2013). To determine ROM, the participants were advised 

to straighten and bend their knees as much as they could, and those angles were 

recorded by the Cybex. The participants were given 5 minutes to perform 3 sets of 10 

repetitions to familiarise themselves with the dynamometer and to learn to relax their 

quadriceps when the dynamometer moved. Data collection started when the knee was 

3.2 A 3.2 C 3.2 B 3.2 D 
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in an extended position and finished when the knee was fully flexed.  The participants 

repeated the same process 3 times. Data was recorded through the StretchSense 

application when the record button on the tablet screen was pressed and ended when 

the record button was pressed once again.  

Knee angles were obtained from the video clips recorded during the testing and were 

analysed by MaxTraq® 2D motion analysis software (Innovision Systems Inc). The 

software provided raw data at the rate of 30 frames per second (FPS). Capacitance from 

the sensors was recorded through the StretchSense BLE application installed on the 

tablet at the rate of 25 FPS. The raw data from both the MaxTraq® and StretchSense 

application were used. Due to the difference in sampling rates between the MaxTraq® 

and StretchSense application, drop frame method was used to reduce the sampling 

rate to 25 FPS for the MaxTraq® data. The knee angles were then synchronised with 

the sensor capacitance through R programme.  

 

 

Figure 3.3 Three markers used for knee angle measurement: the medial malleolus, the 

medial epicondyle, and the midpoint of the medial side of the femur. 

 

Statistical analysis 

Baseline characteristics of the participants (age, weight, and height) were expressed as 

mean±standard deviation (SD) by Microsoft Excel. The average of 3 synchronised data 

sets of knee angles and sensor capacitance from each participant and the average of 

synchronised data sets from all participants were analysed using JMP® Statistical 
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Software trial version (© SAS Institute Inc.). A plot was created from the average 

synchronised data set in Microsoft Excel and RMSE and R2 were generated by JMP®. 

A trend line was created using a second order polynomial for the curve fit (Saggio et 

al., 2014; Sbernini et al., 2016).  

4. RESULTS 

Baseline characteristics of the participants are presented in Table 3.1. Sample size 

calculations indicated ten participants for the study, however, 9 participants were able 

to be tested due to changes to the StretchSense application. 

Table 3.1 Baseline characteristics of the participants. 

 
Male (N = 6) Female (N = 3) Total (N = 9) 

Mean±SD Range Mean±SD Range Mean±SD Range 

Age (year) 36±5 26-40 34±5 29-38 35±5 26-40 

Weight (kg) 84.3±13.5 70-102 64.0±5.6 59-70 77.6±15.0 59-102 

Height (cm) 182.0±5.8 176-190 162.3±3.1 159-165 175.4±10.9 159-190 

 

The capacitance of the sensors was normalised for all participants as they had different 

starting values. The coefficient of determination (R2) and Root Mean Square Error 

(RMSE) were calculated to determine the robustness of the relationship between the 

capacitance and the knee angles. The middle sensor demonstrated the highest R2 and 

lowest RMSE for seven of the participants (Table 3.2) and the results from the middle 

sensor were therefore selected for further analysis.  
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Table 3.2 The coefficient of determination (R2) and Root Mean Square Error (RMSE) 

for each sensor from 9 participants. 

Participant 

R square Root Mean Square Error 

Middle 

sensor 

Medial 

sensor 

Lateral 

sensor 

Middle 

sensor 

Medial 

sensor 

Lateral 

sensor 

1 0.9239 0.9705 0.9717 8.900 5.5435 5.4373 

2 0.9970 0.9743 0.9837 2.1481 6.2643 4.9680 

3 0.9983 0.9762 0.9473 1.8486 6.9732 10.3893 

4 0.9935 0.9781 0.9375 3.5152 6.4382 10.8646 

5 0.9978 0.9942 0.9944 1.4744 2.4229 2.3608 

6 0.9969 0.9866 0.9771 1.9893 4.1426 5.4154 

7 0.9897 0.9830 0.9639 3.3396 4.3009 6.2501 

8 0.9844 0.9545 0.9527 5.4047 9.1917 9.3726 

9 0.9823 0.9934 0.9645 4.3248 2.6512 6.1339 

 

The middle sensor plots for each participant with trend lines are shown in Figure 3.4. 

A nonlinear model was chosen as it had the best fit for the data (Figure 3.4).  
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Figure 3.4 Plots of sensor capacitance and knee angles of each participant with the blue 

dots representing actual relationship between capacitance and knee angles and the red 

line representing theoretical ideal fit.  

 

Participant 1 (Figure 3.4 A) and participant 8 (Figure 3.4 H) presented high RMSE so 

it did not confirm good accuracy of the sensor on these two participants. Their data 

were removed from the analysis as the equations generated from their data would not 

be good models to predict knee angles. The equations from participants 2 to 7 and 

participant 9 were used to calculate predicted knee angles to compare with actual knee 

3.4 E 3.4 F 

3.4 G 3.4 H 

3.4 I 
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angles as shown in Figure 3.5. When the mean data set for the 9 participants was 

analysed, it was not found to be a good fit for nonlinear regression (R2 = 0.7864 and 

RMSE = 17.9555°).  
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Figure 3.5 Plots of actual knee angles and predicted knee angles with the blue line 

representing relationship between actual knee angles and predicted knee angles and the 

red line representing theoretical ideal fit. 

 

5. DISCUSSION 

The aim of this study was to evaluate the potential use of a stretch sensor attached to 

the skin for the measurement of knee range of motion. The main finding of this study 

was that there was a strong relationship between the capacitance and knee angles 

(Figure 3.4) for seven out of the nine participants with high R2 and a RMSE below 5 

degrees. This is clinically important as 5 degrees is considered as a clinically acceptable 

level of error in knee angle measurement (Unver et al., 2009; Wilken et al., 2012; 

Allseits et al., 2018). A study investigated a minimal detectible change during gait 

kinematics and kinetics in healthy individuals and found that changes in gait kinematics 

during knee flexion could be identified only if the angle was greater than 5 degrees 

(Wilken et al., 2012). However, participant 1 (Figure 3.4 A) and participant 8 (Figure 

3.4 H) presented high RMSE greater than 5°. It is proposed that the reason for the 

increased RMSE in these two participants was due to the stretch of the sensor 

(Bergmann et al., 2013; Saggio et al., 2014). Figures 3.4 A and 3.4 H show how, at the 

beginning of knee flexion, the capacitance decreased whilst the knee angle increased 

which was not expected. This pattern is likely to have been the result of the synergic 

actions of bending and stretching forces of the sensor (Saggio et al., 2014) as it was 

built from stretchable material (Bergmann et al., 2013) together with the noise level 

that occurred when the sensor was placed on the skin and covered by the Kinesiotape. 

Another possible reason may due to the sensor being stretched at the width of it during 

3.5 G 
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the passive movement which complicates the relationship between the knee angle and 

sensor capacitance (Stretchsense, n.d.e). 

Figure 3.5 shows a strong linear relationship between actual knee angles and predicted 

knee angles with R2 > 0.99 and RMSE < 3° for the 7 participants. On the basis of the 

relationship for these seven participants, there is support for the measurement of knee 

ROM using a stretch sensor attached to the skin on an individual basis. However, it was 

not possible to produce an overall model for the 7 participants due to the considerable 

inter-participant variation in the nonlinear regression model for each individual (Figure 

3.4). Anatomical and functional differences could explain the variation in results 

between participants. Amis et al. (2006) found that when the knee was flexed, the 

patellar translated medially 4 mm to engage the trochlear groove at 20° knee flexion 

then translated to 7 mm laterally by 90° knee flexion. The patella also tilted 

progressively to 7° laterally by 90° knee flexion and patellar medial-lateral rotation was 

usually less than 3°. If there was variation in the distances and degrees of translation 

and tilting of the patella between individuals, this would have altered the capacitance 

of the sensor at different points in knee range of motion. This would result in the finding 

of consistent, but varied, nonlinear models for individuals (Saggio et al., 2014). The 

implications of this finding is that it may be necessary to calibrate the sensor for every 

participant before knee angles can be calculated.  

Three stretch sensors were placed on different areas of the right knee which were 

middle, medial, and lateral sides. The medial (R2 = 0.7393; RMSE = 19.8030°) and 

lateral sensors (R2 = 0.6193; RMSE = 23.9226°) did not show a strong relationship 

between sensor capacitance and knee angles.  It is likely that the positioning of the 

sensors on the sides of the patella and over the tibiofemoral joint line resulted in 

asymmetry between the borders of the sensors as the knee was flexed. That resulted in 

minimal change in sensor capacitance (Bergmann et al., 2013). 

This study demonstrated a consistent, strong relationship between knee angle and 

capacitance during a passive, non-weight-bearing movement in the majority of 

individuals tested. However, this was for a single application in healthy adults. Future 

studies need to consider the repeatability of the individual nonlinear regression models 

and dynamic weight-bearing movements. 
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6. LIMITATIONS 

The limitations of the current study were that it was a lab-based study which limited the 

application of the results to non-lab based dynamic functional activities at present and 

this was for a single application during a passive, non-weight-bearing movement. 

Moreover, this was the first study using silicone stretch sensors directly attached on the 

skin measuring through capacitance so the results outside the laboratory have not yet 

been investigated. Another limitation was the knee angles being measured by 

MaxTraq® 2D without validating this method against the gold-standard of a motion 

analysis system. Some photogrammetric devices, such as the Vicon, are able to 

guarantee the most accurate and reliable motion analysis (Saggio et al., 2014). 

Nevertheless, their high performances are high-cost and require trained staff and 

dedicated rooms (Saggio et al., 2014) which were not available for the current study.  

Further studies are required to consider repeatability of the test for the nonlinear 

regression model by applying the stretch sensor on each individual with multiple testing 

during passive non-weight-bearing in order to know whether recalibration is necessary 

for every individual who applies the stretch sensor or not. After the repeatability for 

passive non-weight-bearing is performed, several further steps are needed, and each 

step needs to be evaluated for reliability, validity, and sensitivity: 1) active non-weight- 

bearing in a laboratory 2) active weight-bearing in a laboratory 3) active functional free-

living activities such as walking or running and 4) in clinical populations. Once the 

reliability, validity, and sensitivity are performed, the stretch sensor may be used during 

dynamic weight-bearing movements such as walking in individuals with PFPS to 

monitor progression of knee ROM during rehabilitation programmes. 

7 IMPLICATIONS 

This study has highlighted the necessity for calibrating the sensor for each participant 

before knee angles can be calculated. The need for calibration resulted from the findings 

of considerable inter-participant variation in the nonlinear regression model for each 

individual. With the strong relationship between the sensor capacitance and knee angles 

and the small size of the sensor, it may be possible that the stretch sensors can be used 

to measure dynamic knee ROM during free-living activities. The ability to monitor 

these kinematic changes would provide clinically important and relevant information 
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to further understanding of the syndrome progression as well as inform rehabilitation 

practice (Papi et al., 2018). 

8. CONCLUSION 

This study was an initial validation study that considered the functioning of stretch 

sensors attached to the skin to measure knee ROM through capacitance. The sensors 

demonstrated consistent, strong relationships between knee angle and capacitance with 

less than 5 degrees of error for the majority of participants. On an individual basis in a 

laboratory situation, it has been shown that it is possible to use the stretch sensors to 

measure knee range of motion in healthy adults with a clinically acceptable level of 

error. Further research is now needed to establish the validity and reliability of the 

methodology under different conditions before it can be considered to have potential 

within a clinical setting.  

The measurement of knee ROM has been proposed as a standard measurement within 

the physical examination and can be used to identify if a patient presents with PFPS. 

During knee flexion and extension, movements of the patellar, tibia, and femur occur. 

This results in changing of the Q-angle, another lower extremity variable are believed 

to influence PFPS. However, there is still a conflict whether greater Q-angle is 

associated with the development of PFPS or not.      
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1. ABSTRACT 

Introduction: The Quadriceps (Q) angle is frequently used as an indicator of 

patellofemoral pain syndrome (PFPS). An angle that is larger than 20 degrees is 

assumed to influence PFPS by translating the patella laterally and increasing 

retropatellar pressure. Traditionally, the Q-angle is typically a static measurement 

evaluated with individuals in the supine position, knee extended with the quadriceps 

muscle relaxed. It is also assessed in the standing position. However, there is still some 

conflict about the relationship between the Q-angle and PFPS. Therefore, the primary 

purpose of this systematic review was to investigate the association between the Q-

angle and PFPS and the secondary purpose was to investigate the difference of the Q-

angle between individuals with and without PFPS. Methods: Case-control or cross-

sectional or cohort or randomised controlled studies writing in English and publishing 

between 2013 and 2016 were eligible for the review. Search strategy was conducted in 

PubMed, Web of Science, Scopus, and CINAHL. Quality of the papers was assessed 

with a scale (14 items) previously used for a PFPS systematic review. The full score 

was 40 with the total possible score given as a percentage. Score ≥70% was considered 

as “high quality” and score <70% was considered as “low quality”. Results: The initial 

search yielded 233 articles and remained 162 articles after duplicated removed. A total 

of 8 studies were deemed applicable following application of the inclusion and 

exclusion criteria. There were 5 cross-sectional studies, 2 cohort studies, and 1 

randomised controlled trial study. This included 197 individuals with PFPS and 217 

healthy controls. Scores ranged from 13 to 25 (32.5 to 62.5%) which meant that all 8 

papers were low quality. The findings of this review suggest that there are 

disagreements on the relationship between the Q-angle and PFPS and the difference of 

the Q-angle in individuals with and without PFPS. A possible explanation for this 

conflict may be attributed to the different methodologies and measurement differences 

of the Q-angle. Conclusion: Without high quality studies, this updated review is unable 

to conclude if there is the association between the Q-angle and PFPS or the difference 

of the Q-angle between individuals with and without PFPS. Four of 8 studies tended to 

show that the Q-angle was greater in individuals with PFPS, but the quality of the papers 

was still low. 

Keywords: quadriceps angle, Q-angle, patellofemoral pain syndrome 
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2. INTRODUCTION 

According to the previous chapter, knee ROM measurement has been used as one of 

the criteria to identify if a patient presents with PFPS (Manske & Davies, 2016). The 

Q-angle is another measurement that has been used to support the diagnosis of PFPS 

(Emami et al., 2007). The Quadriceps angle or Q-angle is defined as the angle between 

a line from ASIS to the centre of the patella and a line from the tibial tuberosity to the 

centre of the patella (the same point of the first line) (Park & Stefanyshyn, 2011; Smith 

et al., 2008). It is an index of the vector for the combined pull of the extensor mechanism 

and the patellar tendon (Smith et al., 2008; Silva et al., 2015a). The Q-angle is 

frequently used as an indicator of patellofemoral dysfunction including PFPS (Emami 

et al., 2007; Kaya & Doral, 2012; Smith et al., 2008; Piva et al., 2006). An angle that is 

larger than 15 degrees in males and 20 degrees in females is assumed to influence PFPS 

by translating the patella laterally and increasing retropatellar pressure (Sheehan et al., 

2010; Smith et al., 2008), and, therefore, causing pain (Silva et al., 2015a). 

Traditionally, the Q-angle is typically a static measurement evaluated with individuals 

in the supine position, knee extended with the quadriceps muscle relaxed (Sheehan et 

al., 2010; Smith et al., 2008). It is also assessed in the standing position (Smith et al., 

2008). The static measure of the Q-angle is also used to infer the dynamic condition of 

patellar maltracking (Sheehan et al., 2010).  

Previous studies have reported relationships between the Q-angle and PFPS (Naslund 

et al., 2006; Haim et al., 2006). However, there are still some conflicts about these 

relationships (Sheehan et al., 2010). Although the Q-angle is assumed to indicate lateral 

subluxation of the patella, a study found a relationship between the Q-angle and medial 

patellar displacement in individuals with PFPS (Sheehan et al., 2010). Kaya and Doral 

(2012) investigated relationships between the Q-angle and lower extremity alignment 

that is an important etiological factor for PFPS in women with PFPS. The lateral distal 

femoral angle (LDFA) and medial proximal tibial angle (MPTA) were used to assess 

the lower extremity alignment. It was found that there were no relationships between 

the Q-angle and LDFA and MPTA in both affected and unaffected sides of the patients. 

(Biedert & Warnke, 2001) evaluated the significance of the Q-angle with respect to the 

patella positions (lateral patellar displacement (LPD), lateral patellar tilt (LPT), and 
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patella-lateral condyle index (PLCI)) in individuals with PFPS. No significant 

differences were found between the Q-angle and these patellar positions.  

There has been another conflict regarding differences in the Q-angle between 

individuals with and without PFPS. A previous prospective study compared the Q-angle 

between healthy individuals and individuals with PFPS both males and females. The 

results demonstrated that individuals with PFPS presented significant greater Q-angle 

with females having larger angles than males (Emami et al., 2007). Haim et al. (2006) 

and Naslund et al. (2016) also found that the Q-angle was greater in patients with PFPS 

compared to healthy individuals. Similarly, Kaya & Doral (2012) found a significant 

difference of the Q-angle between affected and unaffected sides of PFPS female 

participants with the affected sides presenting larger angles than the unaffected sides. 

In contrast, Stensdotter et al. (2009) found no significant differences of the Q-angle 

between PFPS individuals and the control group in comparing the Q-angle 

measurements between standard goniometry, conventional radiography and three-

dimensional kinematics in 2 different planes during supine and standing (supine frontal 

plane, standing frontal plane, supine arbitrary plane, and standing arbitrary plane). Only 

the goniometer measurement presented that PFPS individuals had significant greater 

Q-angle compared to the control group.   

The latest systematic review investigated outcome predictors for conservative PFPS 

management. The outcomes in the study consisted of pain, demographics, knee, hip and 

pelvis, and foot and ankle. Fifteen low quality cohort studies were included in the 

review. No randomised controlled trials were found. The study intended to identify 

outcome predictors for specific conservative treatments for PFPS to guide clinicians if 

the treatments they selected for their patients were effective. The results of the review 

only presented limited evidence in every outcome with most of the papers focusing on 

pain. Only 2 studies included the Q-angle as one of the outcomes. Although, it was 

indicated that increased Q-angle was a significant predictor of a successful outcome, 

the evidence was still limited as both studies were low quality studies (Lack et al., 

2014). A previous review also examined risk factors for PFPS with 7 studies being 

included. Only 2 studies investigated the Q-angle as a possible risk factor. One study 

found a significantly greater Q-angle in individuals with PFPS than in healthy people 

whilst the other study did not find any significant difference between these 2 groups. 
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This review suggested that the Q-angle may not play a significant role in the cause and 

development of PFPS (Lankhorst et al., 2012). Since the latest review and the other 

review did not directly focus on the Q-angle, the association between the Q-angle and 

PFPS, and the difference of the Q-angle between individuals with and without PFPS 

remain unclear.  

The most recent published systematic review covering Q-angle and PFPS was 

published in 2013 (Lankhorst et al., 2013). The diversity in evidence and opinion on 

the role of the Q-angle in PFPS up to 2013 and the publication of key studies since 2013 

resulted in the need for an updated systematic review. A systematic review of published 

articles from 2013 to 2016 was therefore undertaken. The primary purpose of this 

systematic review was to investigate the association between the Q-angle and PFPS. 

The secondary purpose was to investigate the difference of the Q-angle between healthy 

individuals and individuals with PFPS. Several studies have reported that a greater Q-

angle is a risk factor for PFPS (Sheehan et al., 2010; Kaya & Doral, 2012; Smith et al., 

2008). The first hypothesis was that there would be an association between the Q-angle 

and PFPS. The second hypothesis was that the Q-angle would be greater in individuals 

with PFPS compared to individuals without PFPS. 

3. METHODOLOGY 

Inclusion and exclusion criteria 

Case-control or cross-sectional or cohort or randomised controlled studies writing in 

English and publishing between 2013 and 2016 were eligible for the review. Studies 

that included patients with patellofemoral pain syndrome as participants. The 

participants aged from 13 years and above both males and females. Studies that 

measured the Q-angle as one of the outcomes. Studies were excluded if they were not 

written in English, did not include individuals with PFPF, included participants under 

13 years, and did not measure the Q-angle as one of the outcomes.   

Search strategy 

The search was conducted in PubMed, Web of Science, Scopus, and CINAHL to recruit 

studies that have been published between January 2013 and November 2016. The 

Boolean format for searching was “((patellofemoral pain syndrome OR PFPS OR 
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patellofemoral pain OR PFP OR patello* OR anterior knee pain OR AKP OR knee pain 

OR femoropatellar pain syndrome OR femoropatellar*) AND (Q-angle OR Q angle OR 

quadriceps angle OR quadriceps femoris muscle angle))”. The searching criteria was 

modified form a previous systematic review that evaluated outcome predictors for 

conservative patellofemoral pain treatments (Lack et al., 2014).  

Review process 

All titles and abstracts of the studies were downloaded into RefWorks and duplicates 

removed. The second reviewer rechecked the papers that the first reviewer searched to 

confirm the same number by using the same search term and filters. The reviewers 

assessed potential papers following the inclusion and exclusion criteria of the review 

independently. The full text was obtained for further evaluation if information from the 

titles and abstracts were not sufficient.   

Data extraction 

The first reviewer extracted relevant data from the studies. Information on study design 

(author, and year of publication, location, and type of study), study population 

(inclusion and exclusion criteria, number of individuals with PFPS and controls, 

gender, age, weight, and height), Q-angle measurements, duration of intervention, and 

results were extracted in a standardised form and the second reviewer rechecked the 

data.  

Quality assessment  

Quality of the papers was assessed with a scale previously used for a PFPS systematic 

review (Table 4.1) (Barton et al., 2010c).  The scale was modified from (Bizzini et al., 

2003) who developed a quality assessment scale for randomised clinical trials (RCTs) 

for PFPS. The original scale provides a score of 100. The modified version simplified 

the scale by 60% from 100 to 40 and applied more strict definitions to scoring 

allocations. The modifications were made to make the scoring clearer and to improve 

reliability (0.5-0.7 in the original scale). Both reviewers assessed the quality 

independently. The quality assessment scale consisted of 14 items. It was divided into 

4 components which were participants, interventions, outcomes, and data presentations. 

The full score was 40 with the total possible score given as a percentage. Score ≥70% 
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was considered as “high quality” and score <70% was considered as “low quality” 

(Lack et al., 2014). 

Table 4.1 Quality assessment scale. 

Criteria Score 

1. Population (10 points)  

1.1 Inclusion criteria (2 points) 

      (i)  Diagnosis via clearly defined symptom location (anterior knee, retropatellar,   

            peripatellar, etc.) = 1 

     (ii)  Diagnosis via clearly defined aggravating factors (pain during stairs, squatting,    

            walking, sitting, etc) or accepted clinical tests (eg. Lateral compression) = 1  

 

1.2 Exclusion criteria (2 points) 

      (i)  Exclusion criteria is clearly defined 

             - Includes previous surgery, other knee pain pathologies, and referred pain = 2     

             - In Part = 1 

 

1.3 Adequate number (4 points) 

      (i)  Null hypothesis is rejected or power of the study is discussed for clinical trials    

            and studies evaluating immediate effects of foot orthoses. Studies related to    

            clinical prediction rules should contain at least 10 participants per predictor    

            variable investigated = 2 

     (ii)  Number of participants 

             - Completion of sample size calculation with adequate data to reproduce       

                reported = 2 

             - Completion of sample size calculation reported but inadequate reporting to    

                reproduce = 1 

             - Completion of a sample size calculation not reported = 0 

 

1.4 Homogeneity (2 points) 

      (i)  Similar baseline characteristics (age, sex, pain level, strength, and activity    

            level, etc.) (i.e. There is no significant difference) = 1 

     (ii)  Study must report no significant difference between base line measures of    

            outcome measures or control for any discrepancy = 1 

 

2. Interventions (10 points)  

2.1 Standardised and described (4 points) 

             - Interventions used in the study explicitly described, enabling them to be     

               replicated = 4 

             - Interventions are described to understand the type of intervention but reader     

               would be unable to confidently replicate them from description = 2 

             - Interventions are not adequately described = 1 

 

2.2 Control and placebo adequate (4 points) 

      (i)  Study contains a control group (can be an excepted normal treatment) = 2 

     (ii)  An adequate attempt at a placebo intervention has been made (eg. flat insert,    

            sham ultrasound or sham tape) = 2 

 

2.3 Cointerventions avoided (2 points)                                                                        

             - If parallel interventions are avoided or equal application to all groups = 2 

             - If allowed but controlled (i.e. participants not allowed to alter parallel   

               interventions) = 1 

             - If no control or not addressed in methodology = 0 

 

3. Outcome measures (10 points)  

3.1 Relevant Outcome (4 points) 

      (i)  Outcome measures should be explicitly described so they are able to be   

            replicated = 2 

     (ii)  Outcome measures should be relevant to research question (validity) = 1 
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    (iii)  Outcome measures should be reliable (look for reliability evaluation) = 1 

3.2 Blinded Outcome Assessment (4 points) 

      (i)  Outcome measures must be reassessed by a person masked to group  

            assignment = 2 

     (ii)  Masking strategy is explicitly described = 2 

 

3.3 Follow-up adequate (2 points) 

             - 12 months or greater = 2 

             - 3-11 months = 1 

             - Less than 3 months = 0 

 

4. Data presentation and Analysis (10 points)  

4.1 Randomisation described (2 points) 

             - If true randomisation = 2 

             - If quasi-randomisation or waiting list control = 1 

             - If no or inadequate description = 0 

 

4.2 Dropouts (2 points) 

      (i)  None or reasons for dropouts acknowledged and clearly stated = 1 

     (ii)  Dropout rate of less than 15% = 1 

 

4.3 Intention to treat (2 points) 

             - No dropouts or intention to treat analysis used = 2 

 

4.4 Proper Statistical Procedures Described (4 points) 

      (i)  Statistical analysis methods used are appropriate for data obtained in the  

            study = 2 

     (ii)  Statistical procedures are explicitly described to allow replication = 1 

    (iii)  Statistics are adequately presented including data variability, significance    

            levels and confidence intervals = 1 

 

TOTAL  

 

- Randomised controlled (clinical) trials (RCTs) and Controlled clinical trials 

(CCTs): All criteria should be applied ( /40) 

- Clinical trials without a control group: Criteria 1.4 and 4.1 are not applicable  

(  /36) 

- Clinical prediction rule studies: Criteria 1.4, 2.2, 3.2, 4.1 and 4.3 are not 

applicable ( /30) 

- Studies on the immediate effects of foot orthoses: Criteria 1.4, 2.2, 2.3, 3.3, 4.2 

and 4.3 are not applicable ( /26) 
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4. RESULTS 

Search results 

The initial search yielded 233 articles and remained 162 articles after duplicated 

removed. A total of 8 studies were deemed applicable following application of the 

inclusion and exclusion criteria (Figure 4.1).  

 

 

Figure 4.1 PRISMA flow diagram summarising study selection following the inclusion 

criteria (Lack et al., 2014, p. 1709). 

 

There were 5 cross-sectional studies, 2 cohort studies, and 1 randomised controlled trial 

study. This included 197 individuals with PFPS and 217 healthy controls. Freedman et 

al. (2004) did not provide a number of males and females for the PFPS group so an 

exact number of males and females could not be presented in the present review. Mean 

ages ranged between 20.50 and 30.80 years from 8 studies reviewed. However, Erkocak 

et al. (2016) did not provide mean age for the control group. Only mean age for the 
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PFPS group was presented. Data on individuals’ weight were provided by 5 studies 

which ranged from 54.88 to 65.72 kg. One study did not report weight (Herrington, 

2013a) and the other 2 studies reported body mass index (BMI) (Erkocak et al., 2016; 

Lee et al., 2014). Six studies showed data on height which ranged from 160.70 to 170.10 

cm. The other 2 studies did not present information (Erkocak et al., 2016; Herrington, 

2013a). These 8 studies were summarised in Table 4.2.    
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Table 4.2 Summary of the studies that were included in the review. 

Study Design Population Q-angle test Follow-up Result 

Liporaci et al. 

(2013) 

 

 

 

 

Kwon et al.  

(2014) 

 

 

 

 

 

Herrington 

(2013) 

 

 

 

 

 

 

 

 

 

 

Lee et al.  

(2014) 

 

 

Cross-sectional 

study 

 

 

 

 

Cross-sectional 

study 

 

 

 

 

 

Cross-sectional 

study 

 

 

 

 

 

 

 

 

 

 

Randomised 

controlled trial 

study 

 

- 19 for PFPS group 

(all females) 

- 20 for healthy control    

group 

(all females) 

 

- 14 for PFPS group with 

unilateral/bilateral knee pain 

(5 males, 6 females) 

- 42 for healthy control 

group 

(19 males, 23 females) 

 

- 12 for PFPS group with 

unilateral knee pain 

(all females) 

- 60 for healthy control 

group 

(all females) 

 

 

 

 

 

 

- 11 for PFPS sling exercise 

group (SEG)  

(8 males, 3 females) 

Frequency of increased Q-

angle of PFPS group and 

control group compared with 

the gold standard of 18°. 

 

 

Dynamic Q-angle was 

measured using a camcorder 

during stairs descending and 

analysed by motion analysis.  

Static Q-angle was measured 

while standing.  

 

Q-angle was measured in 

bilateral and unilateral stance 

positions from images taken. 

The angle was obtained by a 

software. 

 

 

 

 

 

 

 

Static Q-angle was measured 

in the standing position and 

dynamic Q-angle was 

measured while coming down 

0 day 

 

 

 

 

 

0 day 

 

 

 

 

 

 

0 day 

 

 

 

 

 

 

 

 

 

 

 

8 weeks 

 

 

 

Frequency of increased Q-angle in 

PFPS group was 84.21% and in 

control group was 45%. The 

frequency was significantly higher 

in PFPS group. 

 

Dynamic Q-angle and static Q-

angle were not significantly 

different between PFPS group and 

control group. 

 

 

 

The equations generated from 

control group were used to predict 

unilateral Q-angle from bilateral 

Q-angle measurements in PFPS 

group. They could predict Q-angle 

in control group and asymptomatic 

legs in PFPS group but couldn’t 

predict symptomatic legs in PFPS 

group as they had significantly 

greater actual Q-angle than the 

predicted one. 

 

Decrease of dynamic Q-angle in 

EBG was significantly greater than 

that in CG. 
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significant effects were found for 

static clinical Q-angle and static Q-
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when ascending the stairs. 

Both were measured by a 

motion analysis system.  

 

Three measures of the 

clinical Q-angle (1) the hip 

and knee fully extended and 

the quadriceps fully relaxed 

(Q-AI); 2) the hip and knee 

fully extended and with 

maximum isometric 

quadriceps contraction (Q 

AII); and 3) the knee bent to 

15° with the quadriceps 

relaxed (Q-AIII)) were 

obtained with a goniometer 

and compared to a fourth MR-

based measure of Q-angle 

(RF-Q). 
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Correlations between RF-Q with 

medial shift and medial tilt and Q-

AIII with medial shift and medial 

tilt were found. This study also 

found that increased Q-angle 

correlated to medial patellar 

displacement not lateral one in 

PFPS.  None of the Q-angle 

measurements were significantly 

different between PFPS group and 

healthy control group. RF-Q-angle 

presented with significantly lower 

Q-angle compared to the 3 clinical 

Q-angle measurements. 
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Quality of articles 

Results from the quality assessment scale are presented in Table 4.3. The table format 

was modified from (Barton et al., 2010c). The scoring system was taken from Table 

4.1. Scores ranged from 13 to 25 (32.5 to 62.5%) which meant that all 8 papers were 

low quality.    

Finding summary  

Association between the Q-angle and PFPS:  

One cross-sectional (Almeida et al., 2016) and one cohort study (Freedman et al., 2014) 

examined relationships between the Q-angle and PFPS. Almeida et al. (2016) 

investigated the relationship between the Q-angle and pain, functional capacity, 

dynamic knee valgus, and hip abductor torque in women with PFPS. It was reported 

that the Q-angle did not present any significant correlation with pain intensity (r = -

0.29, p = 0.19), functional capacity (r = -0.08, p = 0.72), dynamic knee valgus (r = -

0.28, p = 0.19), or hip abductor torque (r = -0.21, p = 0.35). Freedman et al. (2014) 

demonstrated correlations between the Q-angle and patellofemoral kinematics in 

individuals with PFPS. The Q-angle was measured in three ways with a goniometer: 1) 

the hip and knee fully extended and the quadriceps fully relaxed (Q-AI) 2) the hip and 

knee fully extended and with maximum isometric contraction of the quadriceps (Q-AII) 

and 3) the knee bent to 15 degrees with the quadriceps relaxed (Q-AIII). Another 

method of measuring the Q-angle was MR-based rectus femoris Q-angle (RF-Q-angle). 

The RF-Q-angle was defined similarly to Q-AI except the measurement was made 

using MR-images and the centre of rectus femoris myotendinous junction was used to 

represent the true direction of pull of the quadriceps. The results presented that 

correlations between the Q-angle and PF kinematics were found for the RF-Q-angle 

and Q-AIII in individuals with PFPS. Increased Q-angle correlated to patellar medial 

shift (RF-Q: r = 0.54, p < 0.001; Q-AIII: r = 0.39, p < 0.012) and patellar medial tilt 

(RF-Q: r = 0.48, p < 0.001; Q-AIII: r = 0.38, p < 0.015). 

Differences of the Q-angle between healthy individuals and individuals with PFPS: 

Seven studies described the Q-angle in individuals with and without PFPS. There were 

disagreements in differences of the Q-angle between healthy and PFPS individuals in 

the studies reviewed. Two studies indicated that the Q-angle in individuals with PFPS 
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was greater than that in healthy individuals. Liporaci et al. (2013) determined the 

frequency of signs and symptoms of PFPS on a functional assessment of the lower 

extremity including the Q-angle in individuals with and without PFPS. The results 

showed that frequency of increased Q-angle in the PFPS group (84.21%) was higher 

than in the control group (45%) compared with the gold standard which was 18 degrees 

for females. Erkocak et al. (2016) evaluated morphological differences in individuals 

with PFPS and healthy individuals and found that the individuals with PFPS presented 

significant greater Q-angle in both symptomatic (p = 0.024) and asymptomatic (p = 

0.018) knees compared to the healthy group.  

Two studies inferred that individuals with PFPS might have greater Q-angle compared 

to healthy individuals. Herrington (2013a) generated an equation by measuring the Q-

angle in bilateral and unilateral stance positions using images taken with digital 

photography in healthy individuals then used this equation to predict unilateral Q-angle 

from bilateral Q-angle measurements in individuals with PFPS. It was presented that 

the actual unilateral Q-angle of the individuals with PFPS was significantly greater than 

the predicted Q-angle for each individual (p = 0.01) with the mean difference being 2.3° 

greater. The RCT study (Lee et al., 2014) did not compare the Q-angle between 

individuals with and without PFPS but compared different weight-bearing exercises on 

static and dynamic Q-angle measured in a standing position in individuals with PFPS 

only. The groups included 1) an elastic band exercise group (EBG) 2) a sling exercise 

group (SEG) and 3) a control group (CG). After 8 weeks of exercise, EBG showed a 

significant decrease in dynamic Q-angle and the difference between pre-test and post-

test was significantly greater than that of CG. However, there were no significant 

differences of static Q-angle.  

Conversely, three studies did not find significant differences on the Q-angle between 

individuals with and without PFPS. Kwon et al. (2014) compared static Q-angle and 

dynamic Q-angle measured in a standing position in individuals with PFPS and healthy 

individuals. It showed that static Q-angle and dynamic Q-angle were not significantly 

different between the 2 groups. Silva et al. (2015) also found no significant differences 

of clinical Q-angle measured with knee bending 15° in a supine position and static Q-

angle using 3D system between the PFPS group and the healthy control group. Only 

dynamic Q-angle was significantly found to be greater in individuals with PFPS. 
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Similarly, Freedman et al. (2014) showed that there were no significant differences of 

the Q-angle (Q-AI, Q-AII, Q-AIII, and RF-Q-angle) between the healthy control group 

and PFPS group.  
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Table 4.3 Results from quality assessment scale to identify quality of the articles. 

Study 1.1 

IC 

( /2) 

1.2 

EC 

( /2) 

1.3 

AN 

( /4) 

1.4 

HM 

( /2) 

1 

Pop 

( /10) 

2.1 

SD 

( /4) 

2.2 

CP 

( /4) 

2.3 

CA 

( /2) 

2 

Int 

( /10) 

3.1 

RO 

( /4) 

3.2 

BO 

( /4) 

3.3 

FA 

( /2) 

3 

OM 

( /10) 

4.1 

RD 

( /2) 

4.2 

DO 

( /2) 

4.3 

IT 

( /2) 

4.4 

SP 

( /4) 

4 

DA 

( /10) 

Total 

score 

% 

score 

Liporaci et al. 
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(2014) 
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Almeida et al. 

(2016) 

 

Silva et al. 
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Freedman et al. 
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2 
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5. DISCUSSION 

The intent of this systematic review was to identify the association between the Q-angle 

and PFPS and the difference of the Q-angle between individuals with and without 

PFPS.  A previous systematic review evaluated factors associated with PFPS and found 

9 studies describing differences in the Q-angle between individuals with PFPS and 

control groups. The review found that results from the pooled data showed significantly 

greater Q-angle in individuals with PFPS compared to controls (Lankhorst et al., 2013). 

However, this study did not investigate correlations between the Q-angle and other 

PFPS parameters such as pain intensity, functional capacity, dynamic knee valgus, or 

patellar shift. In addition, several studies not included in this systematic review 

presented a conflicting view on the Q-angle between individuals with PFPS and 

controls (Emami et al., 2007; Kaya & Doral, 2012; Stensdotter et al., 2009).  One study 

investigated variations in Q-angle in standing and supine positions with different 

measurement methods in women with and without PFPS. The results showed no 

difference in Q-angle between the individuals with PFPS and the control group 

(Stensdotter et al., 2009).   

According to the current study, only one cross-sectional (Almeida et al., 2016) and one 

cohort (Freedman et al., 2014) study investigated correlations between the Q-angle and 

PFPS and both articles were low quality. Almeida et al. (2016) did not find any 

correlations between the Q-angle and related factors for PFPS which were pain, 

functional capacity, dynamic knee valgus, and hip abductor torque. Therefore, the 

results of the study rejected the hypothesis that the Q-angle would have positive 

correlations with those variables of the lower extremity in PFPS population. The 

methodological quality was very limited. This cross-sectional study did not include a 

control group. Only conventional Q-angle measurement in a supine position (the angle 

between two lines drawn from ASIS to the midpoint of the patella and from the 

midpoint of the patella to the tibial tuberosity) with a goniometer was used. There might 

be a correlation between the Q-angle and the variables in this study if the Q-angle was 

measured in different methods such as static or dynamic Q-angle during standing or 

using another tool such as 3D motion analysis or radiography instead of the universal 

goniometer. The results of the study supported the results of Park & Stefanyshyn (2011) 

who measured the static Q-angle in a standing position with a goniometer and 
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demonstrated that there was no relationship between the Q-angle and knee abduction 

moment and impulse. Conversely, there is disagreement from Freedman et al. (2014) 

who found that increased Q-angle was related to medial patellar displacement and tilt. 

The Q-angle was measured in 4 different ways by a goniometer and magnetic resonance 

imaging (MRI). However, the variables and the Q-angle measurements in these 2 

studies were different so it prevented the present review from comparing the 

relationship results between the Q-angle and PFPS between the studies.  

Two (Erkocak et al., 2016; Liporaci et al., 2013) of seven studies indicated that the Q-

angle in individuals with PFPS and healthy individuals was significantly different. 

Erkocak et al. (2016) presented that the PFPS group displayed greater conventional Q-

angle than that in the healthy group. Similarly, Liporaci et al. (2013) also demonstrated 

a difference of the Q-angle between individuals with and without PFPS. Frequency of 

increased Q-angle was higher in individuals with PFPS compared to healthy 

individuals. However, the methodological quality of this study was very limited as it 

did not provide how the Q-angle was measured and did not present the Q-angle in 

degrees. The results of these two studies were in the same line with Kaya & Doral 

(2012) who found a significant difference (p < 0.001) in the Q-angle between the 

affected (19.61±4.35 degrees) and unaffected (17.63±4.29 degrees) sides in individuals 

with PFPS. However, the two reviewed studies had different characteristics of 

presenting the Q-angle as one was in degrees and the other one was in frequency so, 

they could not be compared. Two studies (Herrington, 2013a; Lee et al., 2014) did not 

directly compare a difference of the Q-angle between individuals with and without 

PFPS. Herrington (2013) generated an equation from healthy individuals then used it 

to predict unilateral and bilateral Q-angle in individuals with PFPS. The actual 

unilateral Q-angle of the symptomatic knee was significantly greater than that predicted 

for individuals with PFPS whilst the asymptomatic knee did not show any significant 

difference between the predicted and actual measured unilateral Q-angle. From the 

results, it did not provide directly that the Q-angle was different between the 2 groups 

of population, but it could be inferred that the Q-angle in individuals with PFPS was 

greater compared to healthy individuals. Lee et al. (2014) conducted an RCT study 

providing weight-bearing exercise programs in 3 groups of PFPS individuals. The 

elastic band exercise group demonstrated a significant decrease in dynamic Q-angle. 

Although this study did not include healthy participants, it could be inferred that 
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individuals with PFPS could have greater Q-angle than healthy individuals because the 

exercise program had an effect in reducing the dynamic Q-angle in PFPS individuals. 

However, one of the studies was a cross-sectional study and the other one was an RCT 

study, so it was not possible to compare as they had different methodologies. 

Conflicting evidence was found for differences of the Q-angle between individuals with 

and without PFPS. Kwon et al. (2014) did not find any significant difference of static 

and dynamic Q-angle between individual with PFPS and healthy individuals. Similarly, 

Silva et al. (2015) measured the clinical Q-angle with knee bending 15° in a supine 

position in individuals with and without PFPS and found no significant differences 

between the two groups of population supporting growing evidence that static 

measurement of the Q-angle might not be a risk factor for PFPS development. 

Freedman et al. (2014) found that none of the Q-angle measurements were significantly 

different between PFPS and control groups. However, a limitation for these three 

studies was that Kwon et al. (2014) measured the static and dynamic Q-angle with a 

camcorder in a standing position whilst Silva et al. (2015) measured the clinical Q-

angle in a supine position with knee bending 15° and did not state if it was measured 

with a goniometer. Freedman et al. (2014) measured the Q-angle in 4 different methods 

using a universal goniometer and MRI which was different from the other two studies. 

Therefore, these results were unable to be compared.  

The findings of this review suggested that there were disagreements on the relationship 

between the Q-angle and PFPS and the difference of the Q-angle in individuals with 

and without PFPS. A possible explanation for this conflict may be attributed to the 

different methodologies and measurement differences of the Q-angle. Four studies 

measured the Q-angle using image technologies: a motion analysis system, camcorder, 

and digital camera (Herrington, 2013a; Kwon et al., 2014; Lee et al., 2014; Silva et al., 

2015b) whilst three studies performed the measurement using a universal goniometer 

(Erkocak et al., 2016; Freedman et al., 2014; Almeida et al., 2016). Liporaci et al. 

(2013) did not state how the Q-angle was measured. The positions of measurement were 

also different between the studies as it consisted of both supine and standing positions. 

Abdel-aziem et al. (2014) examined the effect of body positions on the Q-angle 

measurement in individuals with PFPS and found that the Q-angle measured in the 

standing position was significantly larger than the Q-angle measured in the supine 
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position. Several factors that could influence the Q-angle in the standing position 

include foot pronation, alignment of the adjacent joints, and effects of quadriceps and 

other muscles surrounding the thigh. However, these factors should not influence the 

Q-angle measured in the supine position (Erkocak et al., 2016; Abdel-aziem et al., 

2014).  

6. LIMITATIONS 

The studies reviewed in this current systematic review were low quality. The 

methodological quality of the reviewed studies was limited due to the articles not only 

focusing on the Q-angle measurement, but also other variables related to PFPS. This 

might result in having inadequate information describing about the Q-angle 

measurement and result in less score of criteria 3 (outcome measures) in the quality 

assessment scale (Table 5.1). This systematic review only obtained data on the Q-angle 

only and did not focus on other variables in the reviewed articles.  

7. IMPLICATIONS 

Studies conducted need to be sufficiently powered in order to provide definitive 

information on the association between the Q-angle and PFPS and the difference of the 

Q-angle between individuals with and without PFPS. Further high-quality studies with 

a focus on the association between the Q-angle and PFPS and the difference of the Q-

angle between individuals with PFPS and healthy individuals are required with 

standardised methods and guidelines for measurement of the Q-angle including the 

body position. Future studies should also focus on providing a clear definition on 

population, interventions, outcome measurements, and data presentation and analysis 

in order to obtain high-quality studies.  

8. CONCLUSION 

This systematic review provides summaries of association between the Q-angle and 

PFPS and the difference of the Q-angle in individuals with PFPS and healthy 

individuals. Without high studies, this updated review, including articles from year 

2013 to 2016, is unable to conclude if there is association between the Q-angle and 

PFPS or there is difference of the Q-angle between PFPS individuals and controls. 



114 
 

Although 4 of 8 studies tended to show that the Q-angle was greater in PFPS 

individuals, the quality of the papers was still low.  Further high-quality studies are 

needed to establish strong evidence and the Q-angle measurement needs to be 

standardised to have only one standard method.  
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spatiotemporal and pelvic kinematic  

parameters of gait during walking  
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1. ABSTRACT 

Introduction: Spatiotemporal and pelvic kinematic parameters of gait have been used 

in sports, rehabilitation, and health diagnostics. Various training surfaces might have 

different effects on changes in these parameters of gait. Changing of training surfaces 

is believed to alter spatiotemporal and pelvic kinematic parameters that could lead to 

PFPS. However, these parameters on 3 popular basic surfaces (indoor multi-sport game 

surface, outdoor synthetic surface for track and field, and natural grass surface) have 

not been investigated to date. Therefore, the aim of the study was to investigate 

spatiotemporal and pelvic kinematic parameters of gait on the 3 training surfaces during 

walking in healthy individuals in order to identify training surfaces that may be suitable 

during rehabilitation. Methods: 22 healthy active individuals aged 18-35 years were 

included. They walked on the 3 training surfaces in a random sequence with self-

selected walking speed along a 20-m straight distance. Spatiotemporal parameters 

(cadence, gait speed, stride length, step length) and pelvic kinematic parameters 

(antero-posterior pelvic tilt and lateral pelvic tilt) were assessed using an accelerometer. 

Results: There was a significant difference in cadence between the 3 training surfaces 

(p = 0.010) which the outdoor surface presented with greater cadence compared to the 

other 2 surfaces. Both natural grass (p < 0.001) and outdoor surfaces (p < 0.001) 

significantly presented with higher speed compared to the indoor surface. The natural 

grass surface presented with the significantly longest stride length compared to the 

other 2 surfaces (p < 0.001). The outdoor surface also presented with significantly 

longer stride length compared to the indoor surface (p < 0.001). The participants 

significantly produced greater antero-posterior pelvic tilt (p = 0.004) and lateral pelvic 

tilt (p = 0.028) when walking on the natural grass surface and the outdoor synthetic 

surface compared to the indoor surface. Conclusion: The 3 training surfaces 

demonstrated different results for spatiotemporal and pelvic kinematic parameters 

during walking with the natural grass surface presenting with the highest stride length 

that may lead to overloads to the joints. Future studies should be focused on individuals 

with PFPS during running as it is a functional activity that is involved in most sports. 

Keywords: gait, spatiotemporal, pelvic kinematic, training surface 
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2. INTRODUCTION 

According to the prevalence study of PFPS in chapter 2, one factor that varied between 

sports was playing surfaces. For example, the football players, volleyball players, and 

the athletics trained on the football pitch, the indoor surface, and the athletic tracks 

respectively. However, only relationship between training duration and PFPS was 

focused in this previous study. It has been proposed that various surfaces have different 

effects on changes in gait during activities (Fanchiang et al., 2016). Moreover, training 

surfaces have shown to be an extrinsic risk factor for PFPS (Murphy et al., 2003; Yeung 

& Yeung, 2001). Nevertheless, effects of playing surfaces on gait were not investigated 

in the prevalence study. This need to investigate the impact of varying training surfaces 

on gait is addressed within this chapter.  

Gait is a complex process which is different between individuals (Isakov et al., 1996). 

Gait analysis is the systematic study which involves measurement, description, and 

assessment of quantities that describes human locomotion (Tao et al., 2012; Ghoussayni 

et al., 2004). Through this analysis, gait phases, kinematic and kinetic parameters, and 

musculoskeletal functions can be evaluated. As a result, gait analysis has been used in 

sports, rehabilitation, and health diagnostics. For example, the method is applied to 

analyse gait patterns in athletes, so their performances can be evaluated and improved 

(Tao et al., 2012; Wang et al., 2003). For orthopaedics and rehabilitation, gait analysis 

is employed to monitor healing process for patients (Tao et al., 2012; Steultjens et al., 

2000; Kimmeskamp & Hennig, 2001; Pope et al., 1985). For health diagnostics, gait 

analysis is used to compare differences between healthy individuals and patients with 

conditions (Tao et al., 2012).  

Spatiotemporal parameters of gait are frequently evaluated to identify possible gait 

impairments, mainly in orthopaedics (Item-Glatthorn & Maffiuletti, 2014). For clinical 

practice, the evaluation of complex movements is limited by high-cost equipment. 

Spatiotemporal parameters of gait can be measured and used as objective clinical 

indicators of functionality at low cost (Leporace et al., 2016). Previous studies have 

investigated spatiotemporal parameters of gait as a screening tool for lower extremity 

injuries including PFPS. Springer et al. (2016) conducted a study to determine whether 

spatiotemporal parameters of gait could predict lower limb overuse injuries in combat 

soldiers in the military service in Israel. Stride time variability, stride length variability, 
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step length asymmetry, and duration of the loading response phase of the gait cycle 

were measured during a walking trial on a treadmill. The results demonstrated that 

spatiotemporal parameters of gait could be applied as a simple screening tool before 

military training which may help to identify risks of lower limb overuse injuries. 

Arazpour et al. (2016) conducted a systematic review to evaluate different walking 

patterns between individuals with PFPS and healthy individuals. The results presented 

that PFPS-associated changes in gait parameters produced a reduction in stride length 

and step length, lower gait velocity, slower swing velocity, decreased cadence, reduced 

knee extensor moment in the loading response and terminal stance, delayed peak 

rearfoot eversion during gait, and greater hip adduction. 

Pelvic movements are directly related with PFPS. Increased lateral pelvic tilt during 

walking may be associated with increased hip internal rotation on the opposite side of 

the pelvis due to gluteus medius tightness (Hertel et al., 2004). The mechanical 

consequence of greater pelvic tilts could contribute to abnormal mechanics of PFJ 

(Cibulka & Threlkeld-Watkins, 2005). Excessive femoral internal rotation could result 

in a medial shift of the patellar that results in increased Q-angle (Powers, 2003).  

Various walking or training surfaces may have different effects on changes in 

spatiotemporal and pelvic kinematic parameters of gait (Fanchiang et al., 2016). 

However, there is a lack of studies assessing effects of widely used basic surfaces: 1) 

indoor multi-sport game surface; 2) outdoor synthetic surface for track and field; 3) 

natural grass surface on these parameters. Moreover, there are only a few studies 

investigating effects of different walking or training surfaces on spatiotemporal 

parameters of gait and there is no evidence of investigating effects of different training 

surfaces on pelvic kinematic parameters of gait. A study (Fanchiang et al., 2016) 

investigated effects of different walking surfaces on spatiotemporal parameters of gait 

in children with idiopathic toe walking. The surfaces included vinyl tile, carpet, and pea 

gravel. The results demonstrated that all children presented with the slowest speed, 

lowest cadence, and shortest step length walking on the gravel whilst the fastest speed 

and highest cadence were found walking on the vinyl tile. The children with idiopathic 

toe walking had significantly less toe-walking on the gravel walkway. It was concluded 

that walking surfaces played an important role in altering gait patterns in the children 

(Fanchiang et al., 2016). Menant et al. (2009) examined effects of walking surfaces 
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(control, irregular, and wet) on spatiotemporal parameters of gait in young and older 

individuals. It was found that when walking on the irregular versus the control surface, 

the individuals exhibited decreased walking speed, cadence, step length, double-

support time, heel horizontal speed at heel strike, as well as greater step width and toe 

clearance. When walking on the wet surface versus the control surface, the individuals 

showed reductions in walking speed, step length, and shoe-floor angle at heel strike, as 

well as an increase in step width. The older individuals exhibited a more conservative 

walking pattern (slower speed and shorter steps) especially on the irregular and wet 

surfaces. Schneiders et al. (2010) demonstrated the effect of sports-surface specific 

footwear and sporting surfaces on dynamic neurological screening (Tandem Gait: TG) 

for sport-related concussion in 108 amateur athletes. The 3 common surfaces included 

natural grass (rugby/football boots), hardwood court (court shoes/cross trainers), and 

artificial turf (turf shoes/cross trainer). It was found that times for TG task depended on 

sports surfaces and footwear. TG time was the fastest on the grass when walking with 

footwear and it was the slowest on the artificial turf. However, this study did not focus 

on effects of different training surfaces on spatiotemporal parameters of gait. 

Since the training surfaces has been one of the extrinsic factors for lower limb injuries 

including PFPS (Murphy et al., 2003; Yeung & Yeung, 2001), effects of different 

training surfaces on spatiotemporal and pelvic kinematic parameters of gait should be 

investigated. The results from healthy individuals could lead to a role for selecting a 

suitable training surface during rehabilitation period and could provide reinjury 

prevention. Therefore, the aim of the study was to investigate spatiotemporal and pelvic 

kinematic parameters of gait on widely used basic training surfaces during walking in 

healthy individuals. From the previous literature, there have been no studies comparing 

effects of these 3 training surfaces. However, it is stated that natural grass surface 

presents with higher coefficient of friction compared to the other 2 surfaces (Dura et 

al., 1999; Jenkins2005). High coefficient of friction assists to avoid slipping and allows 

individuals to grip a surface better and move faster (Dura et al., 1999). However, 

individuals who walk or run on a surface that has excessive coefficient of friction are 

highly at risk of overloads to the joints and injuries may occur (Dura et al., 1999). 

Therefore, the hypothesis of the present study was that there would be significant 

differences in spatiotemporal and pelvic kinematic parameters of gait on these 3 

different training surfaces during walking with the natural grass surface presenting with 
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higher speed, higher stride length, and greater pelvic movements compared to the other 

2 surfaces in healthy individuals. 

3. METHODOLOGY 

Participants 

This cross-sectional study included 22 healthy active individuals aged 18-35 years. This 

present study recruited participants in this age range as they are highly at risk of PFPS 

in western countries such as UK, USA, and European countries (Smith et al., 2018; 

Glaviano et al., 2015). The sample size was calculated using G*Power 3.1.9.2 which is 

a stand-alone power analysis program for several tests commonly used in the social, 

behavioral, and biomedical sciences (Faul et al., 2009; Faul et al., 2007). For the 

calculation on the software, the test family was F-tests with the statistical test of 

ANOVA: Repeated measures, within factors. In order to calculate power, 4 of 5 

variables must be known: 1) number of groups (1) 2) number of observations (3) 3) 

effect size f (medium: 0.25) --> in this case the previous studies did not provide enough 

information to calculated the effect size and they were not similar to the present study 

so medium effect size f defined by Cohen and is acceptable to use was selected  (Cohen, 

1988) 4) significant level (α) (0.05) and 5) power (1-β) (0.8) is generally accepted. The 

actual power of the study was 80% (Suresh & Chandrashekara, 2012). Therefore, the 

estimated sample of the present study was at the power of 0.8, medium effect size 

(0.25), and a 0.05 alpha level. The total sample size required for the study was 17.  

Inclusion criteria 

1. Healthy active individuals aged 18-35 years (both males and females). 

2. Engaged in physical activities for 2 hours or more per week during the 

previous 12 months (Arroyo-Morales et al., 2008). 

3. Adequately understand verbal explanations or written information given in 

 English. 

4. No history of a surgery involving the lower leg, ankle or foot in the last 12 

 months (Willems et al., 2006). 

5. No history of an injury to the lower leg, ankle or foot within 6 months 

(Willems et al., 2006). 

6. No knee pain with any of activities (Aliberti et al., 2010). 
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7. Normal arch of foot (Aliberti et al., 2010) measured by using the plantar 

arch index (A/B) (Huang et al., 2004). 

8. No discrepancy of 1 cm or greater in lower leg length and major deformities 

(Aliberti et al., 2010) measured from anterior superior iliac spine (ASIS) to 

medial malleolus of the same leg.  

9. No reported known cardiovascular abnormalities (Willson et al., 2015). 

Measurement  

Plantar arch index: A line was drawn tangent to the medial forefoot edge and at heel 

region. The mean point of this line was calculated. From this mean point, a 

perpendicular line was drawn crossing the footprint. The heel tangency was drawn by 

the same procedure. Measurements were obtained from the width of the central region 

of the foot (A) and the heel region (B) in centimetres. The plantar arch index was 

calculated by dividing A by B (A/B) (Figure 5.1). Normal arch index ranged from 0.3 

to 1.0 (Huang et al., 2004). In order to get this measurement, pressure plate (RSscan 

International, 2m Footscan® 7.0 Gait 2nd Generation) was used to collect plantar arch. 

The arch index needed to be measured because abnormal arches could affect walking 

during the stance phase (O'Brien & Tyndyk, 2014).   

 

 

Figure 5.1 Measurement of plantar arch index obtained from the width of the central 

region of the foot (A) and the heel region (B)  (Son et al., 2017, p. 1015). 

 

Clinical measurement of leg length: A subject was supine in a position that closely 

approximated the anatomical position. One end of the tape measure was placed on 
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ASIS. The other end of the tape was guided down the anteromedial aspect of the 

subject’s thigh to the medial malleolus of the same leg (Beattie et al., 1990) (Figure 

5.2). The measurement was done 3 times and the average is taken. Leg length 

discrepancy was measured because it results in asymmetrical gait patterns. It could 

affect duration of the stance phase during walking. (Perttunen et al., 2004).   

 

 

Figure 5.2 Clinical measurement of leg length: ASIS (A) and the medial malleolus (B) 

(Affatato & Toni, 2000). 

 

Procedure 

The study was approved by the School of Sport & Exercise Sciences Research Ethics 

and Advisory Group (REAG), University of Kent at Medway (Ethics reference: Prop 

104_2016_17). All participants gave written informed consent prior to the participation. 

The participants attended the laboratory two and a half hours for one occasion. Three 

surfaces (Figure 5.3) in the study included: 1) indoor multi-sport game (wooden) 

surface; 2) outdoor synthetic surface for track and field; 3) natural grass surface. These 

3 surfaces were chosen because of their popularity with users. They were basic sports 

facilities, widely used, and comply with the rules of various sports (Meinel, 2008; Sport 

England, 1999).  
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                      5.3 A                                    5.3 B                                 5.3 C 

Figure 5.3 Three training surfaces used in the study: 5.3 A) indoor multi-sport game 

(wooden) surface; 5.3 B) outdoor synthetic surface for track and field; 5.3 C) natural 

grass surface. 

 

The indoor multi-sport game surface (Figure 5.3 A) consists of the top floor and the 

sub-floor. The top layer is called “Timber”. It is made of wood in form of strip. The 

second layer consists of concrete slab, levelling compound over the slab, and 

sand/cement screed over concrete slab (Sport England,1999). The outdoor synthetic 

surface (Figure 5.3 B) following the International Association of Athletics Federations 

(IAAF) requirements consists of several sub-divisions of synthetic surface type. There 

are 7 layers for the standard synthetic surface which are synthetic surface on the top, 

open grade asphaltic concrete finishing layer, dense grade asphaltic concrete correction 

layer, base (crushed stone or gravel), subbase (crushed stone or gravel), and select fill 

or subgrade as the deepest layer (Watson2008). The natural grass pitch (football/rugby 

field) (Figure 5.3 C) consists of a living grass, anchored via its root structure to the 

rootzone or topsoil, and sand-based subsoil. The sand-based subsoil has predominant 

recently due to its drainage abilities. Good drainage contributes to maintain surface 

strength and aids to maintain oxygen within the soil for the grass roots (Sport England, 

2011; Thomson & Rennie., 2016) 

Before the testing started, all participants were made acquainted with the data collection 

procedures walking on each surface until they felt comfortable (Franklyn-Miller et al., 

2014). After the familiarisation, participants were instructed to walk on the 3 surfaces 

in a random sequence to control potential learning effects with self-selected walking 

speed (Schneiders et al., 2010) along a 20 m straight distance (Senden et al., 2009). The 

participants walked with barefoot during the test to eliminate effects of variability of 

sports shoes. The procedure was repeated 3 times (Senden et al., 2009). A trial began 
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when the participants first stepped into the start line of the walkway and ended when 

one of the feet stepped out of the finish line. The participants then walked back to the 

starting point and repeated the trial for another 2 times to complete one surface 

condition. The participants had 3 minutes to recover during the change of surface 

conditions (Herrington, 2013b).  

Spatiotemporal parameters (cadence, gait speed, stride length, and step length) and 

pelvic kinematic parameters (antero-posterior pelvic tilt and lateral pelvic tilt) were 

assessed using an accelerometer (G-Sensor®, BTS Bioengineering S.p.A., Italy) 

(Figure 5.4). The equipment was attached to the participants’ waists using a semi-elastic 

belt covering the L4-L5 intervertebral space during the testing (Figure 5.5). The 

collected data was transmitted via Bluetooth to a laptop computer and processed using 

software (BTS G-Walk®) (Pau et al., 2014). All tests were only performed on sunny 

days to assure that the ground hardness on the natural grass surface wouldn’t change 

and the grass was not slippery.  

 

                   5.4 A                                       5.4 B                                    5.4 C 

Figure 5.4 G-Walk system (G-Sensor®, BTS Bioengineering S.p.A., Italy): 5.4 A) 

Waist belt with a pocket for the wireless inertial sensor; 5.4 B) Wireless inertial sensor; 

5.4 C) Bluetooth dongle and Bluetooth extension cable. 

 



125 
 

 

Figure 5.5 The G-Walk attached to the participant’s waist using a semi-elastic belt 

covering the L4-L5 intervertebral space. 

 

Gait parameters 

Gait parameters in this study included 1) spatiotemporal parameters: cadence, gait 

speed, stride length, and step length: 2) pelvic kinematic parameters: antero-posterior 

pelvic tilt and lateral pelvic tilt. The definitions of the spatiotemporal and pelvic 

kinematic parameters, obtained from BTS G-Walk user manual (English version 6.1.0) 

and (Hollman et al., 2011) are explained in Table 5.1. 

Table 5.1 Operational definitions of spatiotemporal and pelvic kinematic parameters. 

Parameter Definition 

Cadence (steps/min) 

 

Gait speed (m/s) 

 

 

 

Stride length (m) 

 

 

 

Step length (%stride length) 

 

 

 

Antero-posterior pelvic tilt 

 

 

- Number of steps per minute. 

 

- Average walking speed calculated by 

dividing the distance walked by the 

ambulation time. 

 

- Anterior-posterior distance between 

heels of two consecutive footprints of 

the same foot (left to left, right to right). 

 

- Anterior-posterior distance from the 

heel of one footprint to the heel of the 

opposite footprint. 

 

- Angle of pelvic tilt in the sagittal 

plane; positive angular values indicate 

anterior tilt whilst negative angular 
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Lateral pelvic tilt 

 

 

 

 
 

values indicate posterior tilt. In this 

study, the range between anterior and 

posterior tilt was analysed. 

 

- Angle of pelvic tilt in the frontal plane: 

positive angular values indicate up 

position whilst negative angular values 

indicate down position. In this study, the 

range between up and down position 

was analysed. 

 

Statistical analysis 

The parameters (cadence, gait speed, stride length, step length, antero-posterior pelvic 

tilt, and lateral pelvic tilt) were expressed as mean±standard deviation (SD) using 

Microsoft Excel. The data were checked for normal distributions using Shapiro-Wilk 

test. Differences of the variables between the 3 surface conditions were analysed by 

Repeated Measures ANOVA and Tukey’s Post-Hoc test as the data were normally 

distributed. An Alpha level of p ≤ 0.05 was used to test statistical significance. The data 

were analysed using SPSS 24.0 (Norusis/SPSS Inc., Chicago, IL, USA). 

4. RESULTS 

The total number of participants in the study was 22 (14 males and 8 females). Baseline 

characteristics of the participants are presented in Table 5.2.  

Table 5.2 Baseline characteristics of the participants.  

 
Male (N = 14) Female (N = 8) Total (N = 22) 

Mean±SD Max:Min Mean±SD Max:Min Mean±SD Max:Min 

Age (year) 30±6 35:19 31±6 35:20 30±6 35:19 

Weight (kg) 79.3±11.5 102:60 62.1±11.8 80:48 73.1±14.1 102:48 

Height (cm) 179.3±7.5 191:168 160.8±5.3 168:150 172.6±11.3 191:150 

 

Significant differences between indoor multi-sport surface, outdoor synthetic surface, 

and natural grass surface were found in cadence, gait speed, stride length (Table 5.3). 

The outdoor synthetic surface significantly produced greater cadence compared to the 

indoor surface and the natural grass surface. The natural grass and outdoor synthetic 

surface significantly showed higher speed compared to the indoor surface. The natural 
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grass surface significantly presented with the longest stride length compared to the 

other 2 surfaces. The outdoor synthetic surface also presented with significantly longer 

stride length compared to the indoor surface. 

Table 5.3 Mean differences of cadence, gait speed, and stride length between indoor 

multi-sport, outdoor synthetic, and natural grass surface. 

 Cadence (steps/min) Speed (m/s) Stride length (m) 

Indoor multi-sport 112.3±6.9 

p = 0.010* 

1.18±0.16 
 

p < 0.001* 

 

1.27±0.14 

p < 0.001* Outdoor synthetic 114.7±6.8 1.28±0.17 1.34±0.16 

Natural grass 112.8±8.3 1.29±0.19 1.38±0.18 

Indoor multi-sport 112.3±6.9 
p = 0.007** 

1.18±0.16  

p < 0.001** 

 

1.27±0.14 
p < 0.001** 

Outdoor synthetic 114.7±6.8 1.28±0.17 1.34±0.16 

Indoor multi-sport 112.3±6.9 
p = 0.581 

1.18±0.16  

p < 0.001** 

 

1.27±0.14 
p < 0.001** 

Natural grass 112.8±8.3 1.29±0.19 1.38±0.18 

Outdoor synthetic 114.7±6.8 
p = 0.010** 

1.28±0.17 
p = 0.422 

1.34±0.16 
p = 0.013** 

Natural grass 112.8±8.3 1.29±0.19 1.38±0.18 

* Repeated Measures ANOVA p ≤ 0.05, **Tukey’s Post-Hoc test p ≤ 0.05 

For the parameters divided into left and right side (step length, antero-posterior pelvic 

tilt, and lateral pelvic tilt), there were no significant differences between the left and the 

right side (p > 0.05) so the right side was chosen to present the results of the study as it 

was the majority of the sample size (1 left and 21 right). Table 5.4 presents mean 

differences of step length, antero-posterior pelvic tilt, and lateral pelvic tilt between the 

training surfaces. The outdoor synthetic and natural grass surface significantly 

demonstrated greater antero-posterior pelvic tilt and lateral pelvic tilt compared to the 

indoor surface.  
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Table 5.4 Mean differences of step length, antero-posterior pelvic tilt, and lateral pelvic 

tilt between indoor multi-sport, outdoor synthetic, and natural grass surface. 

 
Step length 

(% stride length) 

Antero-posterior  

pelvic tilt 

(degrees) 

Lateral pelvic tilt 

(degrees) 

Indoor multi-sport 49.7±2.9 

p = 0.897 

2.0±0.8 

p = 0.004* 

3.8±1.3 

p = 0.028* Outdoor synthetic 49.5±2.5 2.4±0.7 4.1±1.3 

Natural grass 49.5±2.2 2.4±0.7 4.1±1.4 

Indoor multi-sport 49.7±2.9 
p = 0.686 

2.0±0.8 
p = 0.006** 

3.8±1.3 
p = 0.040** 

Outdoor synthetic 49.5±2.5 2.4±0.7 4.1±1.3 

Indoor multi-sport 49.7±2.9 
p = 0.708 

2.0±0.8 
p = 0.003** 

3.8±1.3 
p = 0.015** 

Natural grass 49.5±2.2 2.4±0.7 4.1±1.4 

Outdoor synthetic 49.5±2.5 
p = 0.979 

2.4±0.7 
p = 0.638 

4.1±1.3 
p = 0.951 

Natural grass 49.5±2.2 2.4±0.7 4.1±1.4 

* Repeated Measures ANOVA p ≤ 0.05, **Tukey’s Post-Hoc test p ≤ 0.05 

5. DISCUSSION 

The main findings of this study were that significant differences were found in cadence, 

speed, stride length, antero-posterior pelvic tilt, and lateral pelvic tilt between the indoor 

multi-sport, outdoor synthetic, and natural grass surface. These findings result in the 

partial acceptance of the hypothesis that there would be significant differences in 

spatiotemporal and pelvic kinematic parameters of gait on these 3 different training 

surfaces with the natural grass surface producing the highest stride length that could 

result in overloads to the joints in healthy individuals during walking. The natural grass 

did not present with higher speed and greater pelvic movements compared to the 

outdoor synthetic surface.   

There was a significant difference in cadence between the 3 training surfaces (p = 

0.010) which outdoor synthetic surface presented greater cadence compared to the other 

2 surfaces. However, a significant difference of cadence was not found between indoor 

multi-sport and natural grass surface. Previous studies have examined that increasing 

of cadence at a constant speed could minimise the lower extremity loading 

(Heiderscheit et al., 2011; Hobara et al., 2012; Hafer et al., 2015) which may be 

beneficial in reducing lower limb injuries such as stress fracture, iliotibial band 

syndrome, and patellofemoral pain syndrome (Hafer et al., 2015). One possible 
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explanation for reduced the lower limb loading may be a change in the foot strike 

pattern. Decreased heel strike distance and ankle dorsiflexion at initial contact can place 

the knee in a more flexed position (more spring-like landing posture) leading to better 

distribution of impact through the lower limb (Hobara et al., 2012; Hafer et al., 2015). 

In contrast, other studies have stated that loading at PFJ is decreased when the cadence 

is increase because it places the knee in a more extended posture during the stance 

phase. It is believed that greater knee flexion during stance phase creates a larger 

moment arm of the quadriceps that increases PFJ stress (Bonacci et al., 2018; 

Nourbakhsh et al., 2018; Lenhart et al., 2014). In the current study, the outdoor synthetic 

surface showed significantly higher cadence compared to the other 2 surfaces. A 

possible explanation for this result may be the property of the surface as it has been 

designed to meet force reduction by absorbing or reflecting the energy of impact of the 

foot (Watson2008). This may cause higher cadence during gait. The outdoor synthetic 

may be suitable for athletes who are in rehabilitation sessions and preparing to return 

to sports after lower limb injuries including PFPS as this surface resulted in reducing 

lower limb loading that should not cause reinjury in athletes or patients. 

Both natural grass surface (p < 0.001) and outdoor synthetic surface (p < 0.001) 

significantly presented with faster speed compared to the indoor multi-sport surface. A 

significant difference was not found between the outdoor synthetic and the natural grass 

surface. The possible reason may be due to the surface slipperiness. In sports, high 

friction avoids slipping and allows individuals to grip a surface better and move faster 

(Dura et al., 1999). However, excessive friction produces overload in joints and injuries 

may occur especially in sports with fast turning movements (Dura et al., 1999). It has 

been reported that gait adaption to avoid a slip on different surfaces includes decrease 

in walking speed (Menant et al., 2009; Chang et al., 2017). Indoor multi-sport surface 

which had the timber as the top layer was likely to have lower coefficient of friction 

compared to the other 2 surfaces, so the surface was more slippery. In the current study, 

coefficient of friction was not measured for the 3 surfaces. However, Dura et al. (1999) 

found that friction coefficient of the indoor multi-sport surface (wooden surface) was 

0.43 and 0.77 for the outdoor synthetic surface. Friction coefficient of 1.5 was found 

for the natural grass surface under a dry condition (Jenkins2005). As a result of low 

coefficient of friction, this may be the reason why the participants reduced walking 

speed over the indoor multi-sport surface in order to prevent slip and fall injuries 
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(Chang et al., 2017). Wang et al. (2017) also found that increased walking speed was 

associated with a greater proximal-distal and anterior-posterior GRF during early 

impact phase of gait, implying that the joint stability was more demanding at higher 

walking speed conditions. As walking speed increased, larger dorsiflexion and smaller 

knee flexion were found at all contact phases. To reduce the impact force, the body 

would elicit larger knee flexion and ankle plantar flexion at high walking speed. In 

addition, higher proximal-distal and anterior-posterior knee contact forces were found 

when participants were walking at higher speed. Therefore, the risk of knee cartilage 

including PFPS associated with the increased knee contact forces should require further 

attention. It may be concluded that the indoor surface may be another suitable surface 

for training during rehabilitation as it would not result in overload at the lower extremity 

joints including PFJ.  

The reason of coefficient of friction also applied to stride length results in the current 

study as the stride length was also decreased when walking on slippery surfaces (Chang 

et al., 2017) with the natural grass surface significantly demonstrating longer stride 

length compared to the indoor multi-sport and the outdoor synthetic surface (p < 0.001). 

There was also a significant difference between the indoor multi-sport and the outdoor 

synthetic surface with the outdoor synthetic surface showing longer stride length (p < 

0.001). Short stride length may be considered as a mechanism that influences injury 

risk and recovery. A systematic review conducting articles of stride frequency and 

length on running mechanics stated that reduced stride length resulted in decreased 

GRF, impact shock, energy absorbed at the hip, knee, and ankle (Schubert et al., 2014). 

The indoor surface may be a suitable surface for training during rehabilitation period 

whilst the natural grass surface should be avoided as its excessive coefficient of friction 

produced overload in the lower extremity joints including PFPS.  

Step length did not present any significant differences between the surfaces as the 

sensor measured the variable in % stride length, so the percentage was likely to be 50:50 

between left and right foot for every surface. However, Menant et al. (2009) examined 

the effect of walking surfaces and shoe features on gait parameters associated with 

balance control and the risk of slips and trips in young and older adults and found that 

the subjects displayed significant reductions in walking speed and step length when 
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walking on the slippery surface. This supports that speed, stride length, and step length 

would be reduced on a surface that coefficient of friction is low. 

Significant differences of antero-posterior (p = 0.004) and lateral pelvic tilt (p = 0.028) 

were found between the 3 surfaces. The participants significantly produced greater 

antero-posterior pelvic tilt and lateral pelvic tilt when walking on the natural grass 

surface and the outdoor synthetic surface compared to the indoor surface. A significant 

difference between the natural grass and the outdoor synthetic surface was not found. 

There is a literature stating that increased lateral pelvic tilt may be associated with 

increased hip internal rotation on the opposite side of the pelvis due to gluteus medius 

tightness (Hertel et al., 2004). This mechanical consequence could influence abnormal 

mechanics of the PFJ (Cibulka & Threlkeld-Watkins, 2005) and ACL injury (Hertel et 

al., 2004). Hertel et al. (2009) also suggested that increased anterior pelvic tilt could be 

a predictor for ACL injury. Watelain et al., (2001) investigated antero-posterior pelvic 

tilt and lateral pelvic tilt in patients with hip osteoarthritis and healthy subjects during 

walking with natural speed. It was found that both pelvic tilts were significantly higher 

in the clinical group during stance phase. Anterior pelvic tilt is resulted from internal 

rotation of the femur as the head of the femur rotates posteriorly into the posterior 

acetabulum which forces the pelvis into anterior tilt (Duval et al., 2010). This could be 

concluded that increased pelvic tilts have negative effects on the lower extremity and 

PFJ. Pelvic tilts should also be related with the walking speed as the same results 

occurred. This means that quicker speed allows the pelvis to move more. Therefore, 

coefficient of friction should have an effect on pelvic tilts as well.          

6. LIMITATIONS           

The main limitation of this study is that only walking sessions were evaluated whilst 

most sports involve running. However, due to the increase in the injuries associated 

with running, walking has become the preferred mode of exercise for millions of 

people. Because the dynamic loading on the human musculoskeletal system from 

walking is presumably less than that from running, it is of interest to analyse the effect 

of walking (Voloshin, 2000). Another limitation is that this was conducted with healthy 

individuals so further investigations in individuals with PFPS are required. 

Additionally, variations in the hardness of the natural grass may vary due to 

precipitation and it is therefore recommended that future studies use a penetrometer to 
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evaluate hardness of the natural grass for every testing conducted. Surface hardness is 

assumed to have an impact on ground reaction force. (Yamin et al., 2017) investigated 

effects of 3 different running surface hardness (concrete, artificial grass, and rubber) on 

GRF response. It was found that GRF was decreased with increasing of surface 

hardness during barefoot running.  

7. IMPLICATIONS 

The results of this study provide implications for healthcare providers in suggesting and 

considering suitable training surfaces for patients or athletes during rehabilitation 

programmes. On the basis of the findings of this study, it is proposed that rehabilitation 

should be progressed from the indoor multi-sport surface as it produced the lowest 

speed, stride length, and pelvic tilts. The outdoor synthetic surface could be the second 

option as it produced the highest cadence resulting in minimised the lower limb loading 

which may benefit in reducing lower limb injuries including PFPS. The natural grass 

surface should be the last alternative to consider as it produced the highest stride length 

of walking compared to the other 2 surfaces which means quicker movements can be 

performed for rehabilitation and training. However, if the friction is excessive, it is 

possible that overload is produced in joints and injuries may reoccur (Dura et al., 1999). 

It is important for health care professionals to verify that patients or athletes have good 

progress in recovery from injuries before performing on the natural grass surface. 

8. CONCLUSION 

Indoor multi-sport, outdoor synthetic, and natural grass surface demonstrated different 

results for spatiotemporal and pelvic kinematic parameters of gait with the natural grass 

surface presenting with the longest stride length that may lead to overloads to the joints 

during walking in healthy individuals. The consultation with rehabilitation 

professionals needs to be considered for selecting a suitable surface for individuals. 

Future studies need to include running activities and use a penetrometer to evaluate 

hardness of the natural grass for every testing conducted.  

In addition to the parameters evaluated in this study, foot loading patterns, such as 

plantar pressures that may be related to the gait during walking need to be further 
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investigated as excessive foot pronation and subsequent rotation of the lower extremity 

have been hypothesised as being implicated with PFPS. 
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Chapter 6: Study 5 

 

Effects of McConnell taping and SERF strap  

on plantar loading patterns in  

healthy adults during  

walking and jogging 
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1. ABSTRACT 

Introduction: PFPS is believed to be associated with a reduction in the contact area of 

the PFJ. This reduction occurs due to alterations in the dynamic alignment of the 

tibiofemoral joint. It is stated that excessive and/or prolonged foot pronation can lead 

to excessive medial rotation of the tibia. This medial rotation of the tibia would 

influence a compensatory medial rotation of the femur. When the femur medially 

rotates, the compression between the lateral surface of the patella and the lateral femoral 

condyle increases. As a result, PFJ stress increases. Plantar pressure distribution is an 

indirect method of estimating pronation of the foot when there is a lack of equipment 

for measuring it directly. McConnell taping is associated with alterations in 

patellofemoral joint reaction forces that is also related with excessive foot pronation. 

The stability through external rotation of the femur (SERF) strap has been developed 

to pull the femur externally to stabilise the patellofemoral joint, in order to reduce 

patellofemoral pain and improve lower limb kinematics. A lack of literature has 

examined effects of these two methods on plantar pressures. Therefore, the aim of this 

study was to investigate the effects of McConnell taping and the SERF strap on plantar 

loading patterns during walking and jogging in healthy adults. Methods: Twenty-three 

participants (12 males and 11 females, age: 27±6 years) were randomly tested under 3 

conditions: 1) no tape; 2) McConnell taping; 3) SERF strap for both walking and 

jogging trials. Each participant was instructed to walk/jog on a 2 m pressure plate at 

their own natural pace. Three valid stance phases of the right foot were recorded for 

each condition. Foot balance, contact area of HM and HL, foot axis angle, and COPs 

were collected. Results: There was a significant difference of the medio-lateral ratio of 

the foot balance with the SERF strap presenting more laterally directed pressure 

distribution at FFPOP compared to the no-tape condition during walking. However, 

significant differences of other variables were not found. Conclusion: The result 

suggests that there could be a clinical role for SERF strap use in reducing foot pronation 

in people with lower extremity problems especially patellofemoral pain syndrome. 

Keywords: McConnell taping, SERF strap, plantar pressures, patellofemoral pain 

syndrome  
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2. INTRODUCTION 

Changes in patellofemoral joint biomechanics have the potential to influence function 

of the lower extremity as the joint improves the ability of knee flexion and extension. 

It is also assumed to have developed through human’s ability of having adopted a 

bipedal gait. Forces in the patellofemoral joint are a result of quadriceps contraction 

force and the angle of knee flexion. These forces depend on the distance between the 

patellofemoral joint and the centre of gravity. It can be explained that the different 

activities may exert variations in patellofemoral joint reaction forces and contact 

pressures (Schindler & Scott, 2011).  

PFPS is believed to be associated with a reduction in the contact area of the PFJ. This 

reduction occurs due to alterations in the dynamic alignment of the tibiofemoral joint 

(Salsich & Perman, 2007). It is stated that excessive and/or prolonged foot pronation 

especially at the rearfoot/heel region (rearfoot eversion) (Aliberti et al., 2011; Thijs et 

al., 2007) can lead to excessive medial rotation of the tibia during a closed kinetic chain 
(Tiberio, 1987). This medial rotation of the tibia would influence a compensatory 

medial rotation of the femur to maintain the relative lateral rotation of the tibial plateau 

in relation to the femoral condyles, which are related to knee extension during the 

midstance phase of gait (Aliberti et al., 2011). When the femur medially rotates, the 

compression between the lateral surface of the patella and the lateral femoral condyle 

increases. As a result, PFJ stress increases (Willson et al., 2015; Bek et al., 2011; 

Rathleff et al., 2014; Aliberti et al., 2011; Powers, 2010; Boling et al., 2009).  

The forces on the knee during weight-bearing activities are transmitted from the foot to 

the knee. Hence, loading of the knee and patellofemoral joint can be influenced by force 

and loading patterns at the foot (Rathleff et al., 2014). By correcting excessive foot 

pronation, external tibial rotation is increased, eliciting a relative medial patellar glide 

(Nyland et al., 2002). Higher loading on the medial areas of the plantar surface as well 

as excessive pronation of the foot during running and other weight-bearing activities 

have been suggested to be important factors for the development of lower limb injuries 

including PFPS. (Rathleff et al., 2014; Aliberti et al., 2011). Plantar pressure 

distribution is an indirect method of evaluating pronation of the foot when there is a 

lack of equipment for measuring it directly such as a 3D motion analysis system 

(Willems et al., 2006). Willems et al. (2006) and Willems et al. (2007) found increased 
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pronation, accompanied with more pressure on the medial side of the foot in healthy 

people who developed exercise-related lower leg pain during barefoot running. These 

findings are interesting because a greater medial foot-loading pattern may increase 

lateral force on the patellofemoral joint. Thijs et al., (2007) also conducted plantar 

pressure in military during barefoot gait and observed a relationship between PFPS and 

lateralised support of the feet. It was found that individuals who developed PFPS 

exhibited a heel strike in a less pronated position and a foot rollover that was more 

directed toward the lateral side of the foot. However, the authors stated that the plantar 

pressure distribution findings and their relationship to PFPS are not a consensus with 

the literature and further investigation is needed.  

Medial patellar taping is an inexpensive treatment option that has been proposed to 

immediately reduce pain following application in individuals with PFPS (Mostamand 

et al., 2012; Callaghan et al., 2008; Hinman et al., 2003). Patellar taping has become 

widely used since the introduction of the original approach by Jenny McConnell in 1984 

(Campolo et al., 2013) . It is believed that the reduction of pain following the medial 

tape application is associated with alterations in patellofemoral joint reaction forces that 

is also related with excessive foot pronation (Mostamand et al., 2012). In addition to 

pain reduction, medial patellar taping has also been proposed to improve the activity of 

VMO and facilitating strengthening exercises of quadriceps femoris muscle 

(Herrington & Payton, 1997; Verma & Krishnan, 2012; Christou, 2004; Kowall et al., 

1996). Patellofemoral alignment (Larsen et al., 1995; Somes et al., 1997; Worrell et al., 

1998) and stride length (Powers et al., 1997) during ramp ascent were have also been 

shown to be improved after medial taping application. However, there is a lack of 

literature examining the effects of medial patellar taping on plantar pressures during 

walking. Only one study examined effects of infrapatellar strap on plantar pressure 

during barefoot walking and jogging in patients with PFPS and it was presented that 

there were no significant differences in plantar pressures comparing infrapatellar strap 

to no strap (Bek et al., 2011). 

The Stability through External Rotation of the Femur (SERF) strap (Don Joy 

Orthopedics Inc, Vista, CA) has been developed to pull the femur into external rotation 

to stabilise the patellofemoral joint, in order to reduce patellofemoral pain and improve 

lower limb kinematics during dynamic activities (Herrington, 2013b; Wallace & Barr, 
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2012; Austin et al., 2008a). Since it has been suggested that abnormal patellar tracking 

may be the result of excessive internal rotation of the femur and tibia from excessive 

foot pronation, it is proposed that the application of the SERF strap should alter plantar 

loading patterns by pulling the femur laterally resulting in a reduction in medial tibial 

rotation and foot pronation. Although McConnell taping has become very popular for 

patellofemoral pain management, relatively little is known regarding its effect on foot 

pressures (Nyland et al., 2002). Therefore, the aims of this study were to investigate the 

effects of both McConnell taping and the SERF strap on plantar loading patterns during 

walking and jogging in healthy adults. On the basis of the review and the evidence that 

is presented, the McConnell taping has been associated with changing of patellofemoral 

joint reaction force and the SERF strap has been developed to pull the femur laterally, 

which is associated with pronation of the foot, so the hypotheses of this study were that 

both McConnell taping and the SERF strap would decrease medial plantar loading 

patterns of the foot during walking and jogging.   

3. METHODOLOGY 

Participants 

This cross-sectional study included 23 healthy active individuals. The sample size was 

calculated using G*Power 3.1.9.2 which is a stand-alone power analysis program for 

several tests commonly used in the social, behavioral, and biomedical sciences (Faul et 

al., 2009; Faul et al., 2007). For the calculation on the software, the test family was F-

tests with the statistical test of ANOVA: Repeated measures, within factors. In this 

study, the researcher calculated the effect size using the results from a previous study 

(Aliberti et al., 2010). The effect size was 0.23 but the previous study compared healthy 

individuals and individuals with PFPS during stair descent. In the present study, only 

healthy individuals were recruited, and it was during walking and jogging so the 

medium effect size was chosen as it is acceptable (Suresh & Chandrashekara, 2012). 

Therefore, the estimated sample was at the power of 0.8, medium effect size (0.06), and 

a 0.05 alpha level. The total sample size required for the study was 17.  

Inclusion criteria 

1. Healthy active individuals aged 18-35 years (both males and females). 
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2. Engaged in physical activities for 2 hours or more per week during the 

previous 12 months (Arroyo-Morales et al., 2008). 

3. Adequately understand verbal explanations or written information given in 

 English. 

4. Weight between 66-88 kg for height 147 cm 

 64-86 kg for 150 cm or 

 61-86 kg for 152 cm or 

 59-84 kg for 155 cm or 

 57-84 kg for 157 cm or 

 54-82 kg for 160 cm or 

 52-82 kg for 163 cm or 

 50-79 kg for 165-168 cm or 

 41-77 kg for 170-173 cm or 

 41-75 kg for 175-178 cm as these ranges fit the SERF size M 

5. No history of a surgery involving the lower leg, ankle or foot in the last 12 

 months (Willems et al., 2006). 

6. No history of an injury to the lower leg, ankle or foot within 6 months 

(Willems et al., 2006). 

7. No knee pain with any of activities (Aliberti et al., 2010). 

8. Normal arch of foot (Aliberti et al., 2010) measured by using the plantar 

arch index (A/B) (Huang et al., 2004) as described in the chapter 5. 

9. No discrepancy of 1 cm or greater in lower leg length and major deformities 

(Aliberti et al., 2010) measured from ASIS to medial malleolus of the same 

leg as described in the chapter 5. 

10. No reported known cardiovascular abnormalities  

 (Willson et al., 2015). 

11. Not allergic to zinc oxide or the inside of SERF strap. 

Outcome measurement 

There were four outcomes measured in this study and the definitions of the outcomes 

acquired from Footscan® pressure plate entry level system user guide: Version 7, Gait 

software and Footwear Adviser software (RSscan International, Belguim) are described 

in Table 6.1.  
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Table 6.1 Operational definitions of plantar loading outcomes. 

Parameter Definition 

Foot balance 
 

 

 

 

 

 

 

 

 

 

 

 

Contact area of medial heel 

(HM) and lateral heel (HL) 

(cm2) 

 

 

 

 

 

Foot axis angle (degree) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Centre of pressure (COPx) 

(mm) 

- Defined as total foot balance during 

stance phase. It is calculated by comparing 

the medial part of the foot (M1+M2+HM) 

with the lateral part of the foot 

(M3+M4+M5+HL), and the pressure under 

these zones. The foot is pronating when the 

pressure is higher under the medial part, 

the foot is supinating when the pressure is 

higher under the lateral part. A positive 

ratio indicates a medially directed pressure 

distribution, a negative ratio a laterally 

directed pressure distribution. 
 

- Defined as an area on the medial and 

lateral side of the heel region that touches 

the ground/pressure plate during gait. A 

previous study found that individuals with 

PFPS presented with a larger contact area 

at the medial rearfoot during initial contact 

of gait (Aliberti et al., 2011). 
 

- Defined as the position of internal or 

external rotation of the foot related to the 

gait direction. A positive angle indicates 

abduction of the foot, a negative angle 

indicates adduction of the foot. Abduction 

is one of the 3 movements (dorsiflexion, 

eversion, and abduction) that creates 3D 

motion called “pronation”. Adduction is 

one of the 3 movements (plantarflexion, 

inversion, and adduction) that creates 3D 

motion called “supination” (Brockett & 

Chapman, 2016). Excessive pronation of 

the foot is associated with PFPS. 

 

- Defined as the displacement of the centre 

of pressure in medial-lateral direction with 

respect to the x-axis perpendicular on the 

longitudinal foot axes during the initial 

contact phase of gait. Medial 

displacements (pronation) of the COPx are 

expressed as positive values, lateral 

displacements (supination) as negative 

values. Initial contact phase of gait is 

considered important as it has been 

associated with greater knee joint loading 
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including PFJ (Goss et al., 2015). Medial 

displacement could result in PFPS as the 

foot presents greater pronation (Aliberti et 

al., 2011). 

 

Taping and SERF strap applications 

Starting with the participant lying on their back, a rolled-up towel was placed under the 

right knee. Before the tape application, the participant’s knee was shaved using a razor. 

During the McConnell tape application, an approximately 15 cm length of 

hypoallergenic tape (5-cm wide) was first applied on the knee with no tension to avoid 

allergic reactions (Figure 6.1 A) (Whittingham et al., 2004). A 10-cm-length of zinc 

oxide tape (3.8-cm wide) as commonly used for McConnell taping was placed over the 

hypoallergenic tape on the lateral patellar border and the other end of the tape was 

medially pulled over the patella and secured near the medial femoral condyle (Figure 

6.1 B) (Nyland et al., 2002). Wrinkles of the skin at the inner aspect of the knee (Figure 

6.1 C) were used as an indication that the patella had been moved medially.  

In the SERF strap condition, the SERF strap was applied on the right leg while the 

participants sat on a chair. The strap was wrapped around the lower limb from the knee 

to the waist (Figure 6.2). The tensioning of the strap and the direction of pull was to 

facilitate lateral rotation of the femur. 

 

 

                   6.1 A                                       6.1 B                                    6.1 C 

Figure 6.1 McConnell taping application method: 6.1 A) hypoallergenic tape 

application; 6.1 B) zinc oxide tape application; 6.1 C) wrinkles created after the zinc 

oxide application. 
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Figure 6.2 SERF strap (Don Joy Orthopedics Inc, Vista, CA) application on the right 

leg. 

 

Procedure 

The study was approved by the School of Sport & Exercise Sciences Research Ethics 

and Advisory Group (REAG), University of Kent at Medway (Ethics reference: Prop 

143_2014_2015). All participants gave written informed consent prior to the 

participation. The participants attended the laboratory two hours for one occasion. The 

participants were randomly tested in walking and jogging activities under 3 conditions: 

1) no tape; 2) McConnell taping; 3) SERF strap. Plantar loadings (foot balance, contact 

area of HM and HL, foot axis angle, and COPx) were collected using a 2 m pressure 

plate (Figure 6.3). Before the testing started, all participants were acquainted with the 

data collection procedures including walking and jogging on the pressure plate (5-6 

trials with no tape) until they felt comfortable (Franklyn-Miller et al., 2014). The 

jogging speed is considered to be slower than regular running at the speed of 1.5-2.5 

m/s (5.4-9.0 km/h) (Ho et al., 2010). During the study, each participant was instructed 

to walk and jog on the pressure plate at their own natural pace while looking straight 

ahead and not towards the floor (Bek et al., 2011). The participants were asked to start 

walking with their left foot first so that a completed right foot step was recorded. The 

participants performed all tests barefoot. The condition order (no tape, McConnell 

taping, and SERF strap) and movement order (walking and jogging) were assigned 

randomly between participants to control potential order effects. Three valid stance 

phases of the right foot were recorded for each condition. A trial was considered valid 
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when the entire right foot was captured (Figure 6.4). Participants were given 3 minutes 

to recover between each of the conditions (Herrington, 2013b) .  

 

 

Figure 6.3 Footscan® pressure plate (RSscan International, Belgium). 

 

 

Figure 6.4 A successful trial captured from the pressure plate software (Footscan® 7.0 

Gait 2nd Generation software). 

 

Foot balance analysis 

Foot balance was analysed following the previous study of relationship between gait 

biomechanics and inversion sprains (Willems et al. 2005). Seven anatomical pressure 

areas were identified. These areas were defined as medial heel (HM), lateral heel (HL), 

and metatarsal heads 1-5 (M1, M2, M3, M4, M5). Five distinct instants of foot rollover 

were determined for each trial: 1) initial foot contact (IFC) 2) initial metatarsal contact 

(IMC) 3) initial forefoot flat contact (IFFC) 4) heel off (HO) 5) last foot contact (LFC). 

IFC was defined as the instant the foot made first contact with the pressure plate. IMC 

was defined as the instant when one of the metatarsal heads contacted the pressure plate. 

IFFC was defined as the first instant all metatarsal heads made contact with the pressure 

plate. HO was defined as the instant the heel region lost contact with the pressure plate. 

LFC was defined as the last contact of the foot on the plate. Based on these 5 instants, 

total foot contact could be divided into four phases: 1) initial contact phase (ICP; IFC→ 

IMC), forefoot contact phase (FFCP; IMC → IFFC), foot flat phase (FFP; IFFC→ HO) 

and forefoot push off phase (FFPOP; HO→ LFC) (Figure 6.5). A medio-lateral pressure 
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ratio was calculated at these five instants of foot contact (ratio = [(M1+M2+HM)  ̶ 

(M3+M4+M5+HL)]/sum of pressure underneath these areas). This ratio describes the 

pressure distribution in the whole foot. Excursion ranges of these ratios were calculated 

over the four phases (ICP, FFCP, FFP, FFPOP). 

 

 

Figure 6.5 Five distinct instants and phases relative to total foot contact (Footscan® 

7.0 Gait 2nd Generation software). 

 

Statistical analysis 

All foot plantar loadings were expressed as mean±standard deviation (SD) using 

Microsoft Excel. The data were checked for normal distributions using Shapiro-Wilk 

test. Foot balance (ICP and FFPOP of walking and FFPOP of jogging), contact area of 

HM and HL for jogging trials were not normally distributed, so they were analysed by 

Friedman test: the non-parametric alternative to the one-way ANOVA with repeated 

measures for testing differences between no tape, McConnell taping, and SERF strap 

and Wilcoxon Signed Rank test: the non-parametric test used to compare differences 

between 2 interventions (no tape and McConnell taping, no tape and SERF strap, 

McConnell taping and SERF strap). The rest of the loading patterns were analysed by 

repeated measures ANOVA and Tukey’s Post-Hoc test as the data were normally 

distributed. The data were analysed using SPSS 16.0 (Norusis/SPSS Inc., Chicago, IL, 

USA). An Alpha level of p ≤ 0.05 was used to test statistical significance.  
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4. RESULTS 

Twenty-three participants (12 males and 11 females) were recruited in the study. The 

average age of the participants was 27±6 years, weight of 69.7±14.8 kg, and height of 

171.7±8.9 cm (Table 6.2). Twenty-three participants’ data were calculated for the 

walking sessions but only 9 participants were counted for the jogging sessions as the 

rest did not perform the jogging with heel contact.    

Table 6.2 Baseline characteristics of the participants. 

 
Male (N = 12) Female (N =11) Total (N = 23) 

Mean±SD Max:Min Mean±SD Max:Min Mean±SD Max:Min 

Age (year) 29±6 35:18 24±6 33:18 27±6 35:18 

Weight (kg) 78.2±14.2 106:54 60.4±8.3 72:43 69.7±14.8 106:43 

Height (cm) 177.0±6.3 191:170 165.9±7.7 175:150 171.7±8.9 191:150 

 

The medio-lateral ratios (Table 6.3) show that pressure distribution was significantly 

more medially directed at FFPOP in no-tape condition compared to SERF strap (p = 

0.011) condition during the walking sessions. No significant differences were found in 

the jogging sessions.  

Table 6.3 Mean differences of the medio-lateral ratio of foot balance at the four phases 

of the stance phase of gait (ICP, FFCP, FFP, FFPOP). 

Walking (n = 23) No tape McConnell SERF p-value 

Ratio ICP 0.312±0.673 0.210±0.695 0.318±0.765 0.751 

Ratio FFCP -0.160±0.153 -0.172±0.143 -0.162±0.131 0.752 

Ratio FFP -0.006±0.175 -0.002±0.190 -0.017±0.209 0.716 

Ratio FFPOP 0.745±0.425 0.685±0.403 0.636±0.397* 0.031** 

Jogging (n = 9) No tape McConnell SERF p-value 

Ratio ICP 0.147±0.478 0.222±0.400 0.174±0.424 0.761 

Ratio FFCP -0.041±0.196 -0.125±0.147 -0.116±0.160 0.056 

Ratio FFP 0.157±0.189 0.130±0.131 0.102±0.121 0.227 

Ratio FFPOP 0.576±0.484 0.656±0.412 0.531±0.549 0.618 

** Friedman test p ≤ 0.05, * Wilcoxon signed rank test p ≤ 0.05 (compared to No tape) 
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A positive ratio indicates a medially directed pressure distribution, a negative ratio a 

laterally directed pressure distribution.   

Table 6.4 and 6.5 show that no significant differences of contact area of HM and HL, 

foot axis angle, and COPx were found between no tape, McConnell taping, and SERF 

strap for the jogging trails.   

Table 6.4 Mean differences of contact area of HM and HL, foot axis angle, and COPx 

during walking. 

Walking (n = 23) No tape McConnell SERF p-value 

Contact area of HM (cm2) 16.7±2.7 16.6±2.8 16.7±2.8 0.422 

Contact area of HL (cm2) 14.9±2.3 14.6±2.5 14.8±2.5 0.273 

Foot axis angle (degree) 12.69±8.57 11.77±8.55 12.06±8.50 0.216 

COPx (mm) -1.00±2.21 -0.95±2.60 -1.36±1.97 0.146 

 

Table 6.5 Mean differences of contact area of MH and LH, foot axis angle, and COPx 

during jogging. 

Jogging (n = 9) No tape McConnell SERF p-value 

Contact area of HM (cm2) 19.1±2.2 19.0±2.6 19.0±2.6 0.794 

Contact area of HL (cm2) 16.7±1.9 16.6±2.1 16.6±2.2 0.937 

Foot axis angle (degree) 13.90±5.49 14.14±6.49 14.95±5.67 0.620 

COPx (mm) 1.30±3.30 1.18±2.78 1.84±3.67 0.478 

 

5. DISCUSSION  

Abnormal patellar tracking may result from excessive internal rotation of the femur and 

tibia from excessive foot pronation (Barton et al., 2010b; Barton et al., 2009; Petersen 

et al., 2014; Powers, 2003). It is proposed that the application of the SERF strap and 

McConnell taping should reduce medial plantar loading patterns with the SERF strap 

pulling the femur laterally resulting in a reduction in medial tibial rotation and foot 

pronation and McConnell taping altering patellofemoral joint reaction force 

(Mostamand et al., 2012). This study was the first to evaluate the effects of McConnell 
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taping and SERF strap on foot plantar loading patterns during walking and jogging. The 

main finding of this study was that there was a significant difference of the medio-

lateral ratio of the foot balance with the SERF strap presenting more laterally directed 

pressure distribution at FFPOP compared to the no-tape condition during walking. This 

finding partially resulted in the acceptance of the hypothesis that both McConnell taping 

and the SERF strap would decrease medial plantar loading patterns of the foot during 

walking and jogging. 

The SERF strap has been used to assist lower limb kinematics and support femoral 

abduction and external rotation (Herrington, 2013b; Wallace & Barr, 2012; Austin et 

al., 2008a). In the present study, the SERF strap resulted in more laterally directed 

pressure distribution at FFPOP, meaning that the medial pressure distribution at FFPOP 

was reduced during walking. A possible reason is that the SERF strap could be pulling 

the femur and the tibia laterally and (Herrington, 2013b; Wallace & Barr, 2012; Austin 

et al., 2008a), in so doing, reducing pronation of the foot and increasing the lateral 

loading of the foot. Reduced foot pronation causes the head of talus to dorsiflex and 

slide laterally and dorsiflexion of the talus will force the tibia to rotate externally 

resulting in decreasing PFJ stress on the lateral side of the patella (Cheung et al., 2006).  

However, the other variables in the present study during walking and jogging did not 

present any significant differences between the taping conditions. This may due to: 1) 

the participants recruited in the study were healthy so plantar loading, foot posture, and 

gait patterns were different from individuals with PFPS (Aliberti et al., 2011; Thijs et 

al., 2007). Barton et al. (2010a) evaluated the foot posture in 15 young healthy 

volunteers and 15 volunteers with PFPS and found that significantly greater pronated 

foot posture between subtalar joint neutral and relaxed stance were indicated in PFPS 

group compared to healthy group. Levinger & Gilleard, (2007) measured rearfoot, tibia 

motion, and ground reaction force during the stance phase of walking in patients with 

PFPS and healthy individuals. The results indicated prolonged rearfoot eversion during 

the stance phase of walking in PFPS participants 2) a Type II error may have occurred 

due to the small sample size in this study especially during the jogging sessions. Only 

nine from 23 participants were selected for statistical analysis for jogging as the rest 

did not perform jogging with the initial contact so their data were removed from the 

analysis. A larger sample size may have resulted in a significant difference. The 
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demonstration that the SERF strap changes plantar loading patterns in healthy 

participants supports the need for future studies to evaluate the effect of the SERF strap 

on plantar pressure in people with PFPS.  

McConnell taping is believed to unload abnormally stressed soft tissue around the 

patellofemoral joint, to improve patellar alignment, and to improve lower limb 

mechanics including the foot (Whittingham et al., 2004). In the present study, the 

application of McConnell taping did not present any significant differences compared 

to the no tape and SERF strap. The result is not in line with Nyland et al. (2002) who 

found significant differences on anterior-posterior peak plantar force location of the 

forefoot and peak plantar force onset with the participants displaying a more forefoot 

directed peak plantar force location and delaying peak plantar force onset following 

initial ground contact when applying McConnell taping on basketball players while 

running and dribbling a basketball before the lay-up. The possible reason may due to 

the heathy participants in the present study and the type II error following the small 

sample size especially during jogging sessions.   

6. LIMITATIONS 

The study only included healthy participants. The researcher spent 3 months looking to 

recruit individuals with PFPS in a sports injury clinic at University of Kent and a 

physiotherapy clinic but there was a lack of PFPS patients. Therefore, healthy 

participants were recruited in the study. However, the main finding from the present 

study should benefit further research by conducting individuals with PFPS with the 

same methodology. Another limitation was that the participants were instructed to take 

their first step on the pressure plate with their left foot so some of them might not feel 

comfortable and did not perform 100% of natural walk and jog. The solution may be 

using a longer pressure plate, or the participants perform walking and jogging until the 

completed right foot is captured without being instructed to take the first step on the 

pressure plate with the left foot.  

7. IMPLICATIONS 

The result advances the field of research that the SERF strap not only reduced pain in 

PFPS but also reduced medial pressure distribution at FFPOP in healthy people during 
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walking. The result also improves the knowledge of effects of SERF strap application 

as there was only one published study of the SERF strap use.  

8. CONCLUSION 

The application of the SERF strap resulted in more laterally directed pressure 

distribution at FFPOP compared to no tape during walking. This result suggests that 

there could be a clinical role for the SERF strap use in reducing foot pronation in people 

with lower limb injuries especially PFPS. 
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1. DISCUSSION 

Several assessments of lower extremity variables and extrinsic factors that are believed 

to be associated with PFPS still remain unclear or have not been addressed in previous 

research. Understanding the demographics of PFPS before considering other variables 

is important as it helps to determine the best practices in the diagnosis and treatment of 

the pathology and to provide early interventions (Glaviano et al., 2015). Moreover, 

interventions resulted from the improved understanding of the lower extremity 

variables and extrinsic factors related to PFPS may be able to reduce prevalence of 

PFPS. The studies in this thesis have contributed to an improved understanding of the 

lower extremity variables and extrinsic factors related to PFPS that were not 

investigated in the past.  

Prevalence of PFPS in young Thai athletes 

Prevalence of PFPS assessed by AKPS was not investigated in any groups of Thai 

athletes before. The possible reason is that Thailand is a developing country that aims 

to improve sport performance at the international level rather than focusing on injury 

prevention and management (The Ministry of Tourism and Sports Thailand, 2017; 

Chaisena, 2013). Moreover, there may be a lack of sport health professionals in the 

country especially physiotherapists (The Ministry of Tourism and Sports Thailand, 

2017) as there are approximately 8,000 practising physiotherapists in Thailand, but the 

majority does not engage in sports injury prevention and treatment (World 

Confederation for Physical Therapy., 2015). The results of the study have brought out 

new knowledge about unexpectedly low prevalence of PFPS in the young Thai athletes 

as Thailand is a developing country where training strategies and sports science and 

technology are not as good as ones in developed countries (The Ministry of Tourism 

and Sports Thailand, 2017). This normally results in training error which could cause 

overuse injuries (Drew & Purdam, 2016) including PFPS. The new knowledge from 

this prevalence study presents wider understanding of PFPS that the syndrome can 

occur in any groups of active population. This group of Thai population in the 

prevalence study may not have the training level as high as collegiate or professional 

athletes as they were only novices, but PFPS was still seen. This implies that there is a 
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need for further investigations of prevalence of PFPS in other groups of Thai population 

as the prevalence might be higher than 6% in some groups.  

The present study also shows that longer training duration may be a factor for PFPS. 

The result supports a previous systematic review reporting that longer training duration 

is related to overuse injuries including PFPS (Jones et al., 1994). In addition to training 

duration, there should be other factors that are important in aetiology of PFPS. For 

instance, badly worn or poorly designed shoes may produce excessive foot pronation 

and cause flatfoot which may result in PFPS (Nejati et al., 2010). Running distance and 

playing surfaces may also be related to PFPS. Running distance is probably one of 

major factors in PFPS aetiology (Nejati et al., 2010). However, the relationship between 

PFPS and all these factors still remain unclear. These factors have brought about a new 

question that could develop into further research investigations. Nevertheless, without 

the investigation in the present study, prevalence of PFPS in young Thai athletes would 

remain unknown. Proper knowledge of prevalence of PFPS is important not only for 

researchers planning for further investigations but also for sports coaches when 

designing training programmes and schedule for athletes. Healthcare professionals 

including physiotherapists should be responsible for management and clinical 

application of the syndrome.      

Measuring knee ROM using stretch sensors 

The previous prevalence study of PFPS in young Thai athletes presented with low 

prevalence. However, the result is only limited in this group of population as the 

prevalence of PFPS in other countries across the world is still high (Callaghan & Selfe, 

2007). Interventions resulted from studies of the lower extremity variables and extrinsic 

factors related to PFPS along with conventional treatment interventions may help in 

reducing prevalence of PFPS in other countries where the prevalence is high. Therefore, 

it is essential to improve an understanding of the lower extremity variables. Knee ROM 

is considered one of the lower extremity variables related to the lower extremity injuries 

including PFPS  (Harmer et al., 2009; Mook et al., 2009; Ritter et al., 2003).  

In clinic, surgeons will often estimate ROM visually. It is only a quick and relatively 

easy method, but not typically accurate. Goniometers in both short and long-arm form 

are conveniently used in the orthopaedic surgeons and physiotherapists for measuring 
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joint angles (Hancock et al., 2018) but measurement offsets caused by the human eye’s 

subjective judgement are inevitable (Chiang et al., 2017). Furthermore, knee ROM 

measurement using a universal goniometer was problematic during the physical 

examination in the present prevalence study in this thesis as substantial measurement 

error may occur. The use of radiographs is considered “the gold standard” for measuring 

knee ROM (Edwards et al., 2004) but they are high-cost, immobile and cause radiation 

exposure (Chiang et al., 2017). Moreover, these measurement methods cannot assess 

knee ROM during functional movements. Three-dimensional (3D) motion capture 

systems are considered “the gold standard” in the evaluation of ROM including the 

knee joint during functional activities. Nevertheless, they are laboratory-based 

equipment and have limited application in the clinical setting due to high price and 

time-consuming setup (Schurr et al., 2017). A useful method for knee ROM 

measurement should have good reliability, low potential error in measurement, cost 

savings, and be able to measure knee ROM during functional activities. It should also 

be key to be user-friendly and quick for use (Hancock et al., 2018). Validating knee 

ROM measurement using a small portable tool such as a stretch sensor may benefit 

healthcare providers in order to monitor recovery of injuries, not only limited to PFPS 

but also other lower extremity injuries  (Harmer et al., 2009; Mook et al., 2009; Ritter 

et al., 2003).  

The present study investigated knee ROM using a stretch sensor during passive non-

weight-bearing. However, the application of the stretch sensor is not only limited to 

passive non-weight-bearing as Papi et al. (2018) investigated the use of the stretch 

sensor on measurement of knee flexion during gait compared to the gold standard (10 

camera motion capture system). It was found that the sensor demonstrated high test-

retest reliability. From the findings of the present study and the support from the 

previous study (Papi et al., 2018), it can be concluded that the stretch sensor has 

potential to be used in the future directions for clinical settings as a discreet, unobtrusive 

wearable device for a wider area such as gait analysis that may be affected by PFPS. 

Compared to the visual tracking systems, the gold standard for measuring knee ROM 

during dynamic activities, the stretch sensors are cost effective and more convenient to 

use. Knee rehabilitation programs enable athletes to restore their functional capability 

to normal. To achieve this target, continuous monitoring of knee ROM during 

rehabilitation programs are required. The propose on continuous monitoring is to 
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monitor recovery progress of knee ROM on individuals with PFPS and the stretch 

sensors may play an important role on this rehabilitation monitoring.  

Association between the Q-angle and PFPS 

Knee ROM can be influenced by movements of the patellar, tibia, and femur (Lee et 

al., 2003). These movements can result in changing of the Q-angle, another lower 

extremity variable believed to influence PFPS (Freedman et al., 2014; Loudon, 2016). 

With a conflict that whether greater Q-angle is related to PFPF or not, the systematic 

review of association between the Q-angle and PFPS was conducted. This current 

systematic review has filled the gap for a lack of new systematic review of an 

association between the Q-angle and PFPS during year 2013-2016. However, the 

clinical relevance of using the Q-angle measurement as a clinical assessment to identify 

PFPS for clinicians and physiotherapists is still debatable. Further studies are required 

for the future directions to confirm the relationship between the Q-angle and PFPS, and 

the difference of the Q-angle between PFPS and healthy individuals. Future 

investigations should directly focus on findings of the relationship between individuals 

with PFPS and greater Q-angle in young active adults as the key elements. The 

difference of the Q-angle between individuals with PFPS and healthy individuals also 

needs to be investigated. Following this, clinicians and physiotherapists will then be 

able to determine whether the Q-angle is suitable to be used as a clinical indicator for 

PFPS and patellar instability. This will then allow a more appropriate debate over the 

usefulness of this measurement for evaluation of these complex musculoskeletal 

disorders (Smith et al., 2008). Furthermore, the Q-angle measurement especially the 

goniometric method can be simply performed without expensive equipment 

(Chevidikunnan et al., 2015). 

Training surfaces on spatiotemporal and pelvic kinematic parameters 

of gait   

Following the prevalence study in chapter 2, it was found that training surfaces were a 

factor that varied between sports. However, this factor was not focused on the 

prevalence study. Training surfaces have been shown to be an extrinsic factor for PFPS 

(Murphy et al., 2003; Yeung & Yeung, 2001). The need to investigate the impact of 
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varying training surfaces on gait was addressed in this present study. A new insight 

from this study is that the natural grass surface was found to be the surface that could 

result in a greater load to the lower extremity joints when compared to the indoor multi-

sport and outdoor synthetic surface. Training on the natural grass allows individuals to 

grip the surface better and move faster due to its high coefficient of friction (Dura et 

al., 1999) but the greater load could lead to overuse injuries including PFPS. The natural 

grass surface has been used for various types of sport for a long period. It is a traditional 

surface especially for football matches and training (Ekstrand et al., 2006). Compared 

to the artificial turf surface, playing or training on the natural grass surface has been 

proposed to affect lower injury rate (Dragoo et al., 2013). Dragoo et al. (2013) 

demonstrated an increased incidence of non-contact ACL injury on the artificial turf 

surface versus the natural grass surface. The artificial turf surface presented with higher 

frictional forces, peak torques, and rotational stiffness compared with the natural grass 

surface. These results may imply that training on the natural grass surface may not result 

in highest load to the lower extremity. However, this previous study only investigated 

the incidence of ACL injury and the present study in this thesis did not include the 

artificial turf surface. These limitations highlight the need for further investigation of 

the artificial turf surface on spatiotemporal and pelvic kinematic parameters of gait as 

the artificial turf surface provides cost-effective, all-weather alternatives to natural 

grass surfaces and have been widely used for sports and activities (Wright & Webner, 

2010). Further investigations of different training surfaces on gait in individuals with 

PFPS are also required. 

In addition to the training surfaces, other extrinsic factors implicated as possible causes 

of PFPS include changes in training frequency or intensity and inappropriate footwear 

(Hryvniak et al., 2014). A feature of footwear technology aims to reduce excessive 

movements of the rearfoot during sports activities. It is possible that a motion control 

system of the footwear may control foot over-pronation. However, no studies have 

reported a direct association between footwear and PFPS (Cheung et al., 2006). 

Training frequency or intensity has been proposed to influence overuse injuries, but no 

previous studies have examined its relationship with PFPS directly (Halabchi et al., 

2017). The need to investigate an association between this training regimen and PFPS 

is required in detail for future directions. There is no evidence that one extrinsic factor 

is more valuable than another. From the researcher’s point of view, all of the extrinsic 
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factors related to PFPS are equally important. The training surfaces were selected in the 

present study as the beginning of an investigation of extrinsic factors affecting 

rehabilitation. Other related extrinsic factors need to be investigated for more detail. 

Nevertheless, the results from the present study give directions to healthcare 

professionals in recommendation for a suitable training surface for each individual. The 

present study also highlights the need for further investigations of different training 

surfaces on gait during jogging and running as only walking sessions were investigated 

in the present study due to limitations of the equipment used.     

McConnell taping and SERF strap on plantar loading patterns 

In addition to the parameters examined in the previous study of different training 

surfaces on gait, foot loading patterns that may be related to the gait need a further 

investigation. Excessive foot pronation and subsequent rotation of the lower extremity 

has been proposed to be implicated with PFPS (Noehren et al., 2012; Powers et al., 

2002; Rathleff et al., 2014). The new knowledge gained from this study is that the SERF 

strap has the ability to direct pressure distribution laterally at FFPOP during walking. 

The SERF strap was developed with the aim of assisting lower extremity kinematics, 

decreasing knee valgus through supporting femoral abduction and external rotation 

(Herrington, 2013b). With all these abilities, it was proposed that the SERF strap would 

affect plantar loading patterns as foot pronation is associated with internal rotation of 

the tibia and femur (Loudon, 2016). The result of this present study would benefit 

individuals who aim to reduce foot pronation immediately as the SERF strap is 

convenient and easy to wear and does not require experienced healthcare professionals. 

Long-term effects of the SERF strap on plantar loading patterns should also be 

investigated in the future. McConnell taping did not alter plantar loading patterns as it 

was hypothesised to. Moreover, when compared to the SERF strap application, the 

McConnell taping application requires skills and experience for the tension applied on 

the knee (Nyland et al., 2002).  

In addition to the SERF strap in the present study, several previous studies investigated 

effects of braces and insoles/foot orthoses on plantar pressure during gait. Bonanno et 

al. (2019) examined effects of foot orthosis and a flat insole on plantar pressure during 

walking. It was found that the foot orthosis and the flat insole significantly increased 
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peak plantar pressure, maximum force, and contact area at the medial midfoot. At the 

medial forefoot, the foot orthosis and flat insole increased maximum force. At the 

lateral forefoot, the foot orthosis and flat insole increased contact area with the flat 

insole also increasing maximum force. Similarly, McCormick et al. (2013) investigated 

the effectiveness of 4 types of foot orthoses on plantar pressure at the heel, midfoot, and 

forefoot for both medial and lateral sides. The foot orthoses consist of 1) customised 

foot orthosis, 2) contoured polyethylene sham foot orthosis, 3) contoured EVA sham 

foot orthosis, and 4) flat EVA sham foot orthosis. The results presented that the 

contoured EVA sham orthosis, the flat EVA sham orthosis, and the customised orthosis 

significantly reduced peak pressure at the heel region compared to the shoe alone which 

was the control group. For the midfoot and forefoot region, all of the sham orthoses 

evaluated did not significantly alter plantar pressures. Almeida et al. (2009) compared 

effects of custom and prefabricated insoles on plantar pressure at the rearfoot. There 

was no statistically significant difference of plantar pressure in the comparison between 

groups. These previous studies have presented with some limitations regarding the 

plantar pressure on the foot regions and comfort of the insole application. Even though 

the insoles altered plantar pressure distribution in these previous studies, their 

applications did not prove to reduce plantar pressure on the medial side of the foot 

whilst the present study aimed to reduce foot pronation. Moreover, it must be noted that 

the insoles may cause discomfort over an extended period of time, such as during 

prolonged standing or walking (Bonanno et al., 2019). In the researcher’s point of view, 

the SERF strap is more suitable for individuals to use by themselves as it does not 

require any skills for the application and should not result in discomfort during usage. 

2. CONCLUSION  

In conclusion, the original work of this thesis extends the body of knowledge of the 

lower extremity variables and extrinsic factors in the context of PFPS. The first 

prevalence study of PFPS in the young Thai athletes was examined. An investigation 

of the silicone stretch sensor directly attached on the skin for knee ROM measuring 

through capacitance was conducted. The needs for an updated systematic review of the 

Q-angle and PFPS during year 2013-2016, an investigation of effects of different 

training surfaces on spatiotemporal and pelvic kinematic parameters of gait during 

walking, and an investigation of effects of McConnell taping and SERF strap on plantar 
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pressure during walking and jogging were investigated. These results were found to 

have potential implications within PFPS research and should benefit clinicians, 

physiotherapists, sport rehabilitation professionals and related-area researchers in 

applying for clinical practice including treatment and rehabilitation plans and 

assessments in terms of objectively measuring recovery after various knee injuries 

including PFPS.  

From the present results of this thesis, it is suggested that long training duration should 

be taken into consideration when designing training programs for athletes as it may 

influence PFPS. The stretch sensor directly attached on the skin is recommended for 

passive knee ROM measurement on an individual basis in a laboratory situation 

following its convenience of use. It is suggested that before considering the Q-angle as 

a predictor for PFPS, the association of the Q-angle and PFPS and the difference of the 

Q-angle between PFPS individuals and healthy individuals still need to be investigated. 

Different training surfaces significantly affected gait and it is advised that rehabilitation 

should begin with the indoor multi-sport surface, outdoor synthetic surface, and natural 

grass surface respectively. Finally, with the ability to produce more laterally directed 

pressure distribution at FFPOP, the SERF strap is recommended to use in individuals 

who aim to reduce foot pronation.  
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1. CHAPTER 2 

Assent form for participants under 16 

Title of project: Prevalence of patellofemoral pain syndrome in young Thai athletes 

Name of investigator: Somruthai Poomsalood 

Tel: 44 (0)1634 888903        email: sp620@kent.ac.uk 

Participant Identification Number for this project: 

 

Please circle “Yes or No” on the following questions 

 
1. Have you read information about this project?                      
 

 
Yes or No 

 

2. Do you understand what this project is about?  

 
Yes or No 
 

 

3. Do you understand it’s OK to stop taking part at any time? 
 

 
Yes or No 

 

 

4. Are you happy to take part? 
 

 
Yes or No 

 

If any answers are “No” or you don’t want to take part, don’t sign your name. 

If you do want to take part, you can write your name below 

 
 
 
Your name 
 
 
 
 
 
Name of parent 
 
 
 

 
 
 

Date 
 
 
 
 

 
Date 

 
 
 
 Signature 
 
 
 
 
 
 Signature 

 
Lead researcher 
 

 
Date 

 
 Signature 

   

 

 

 

mailto:sp620@kent.ac.uk


188 
 

Consent form for guardians of participants under 16 

Title of project: Prevalence of patellofemoral pain syndrome in young Thai athletes 

Name of investigator: Somruthai Poomsalood 

Tel: 44 (0)1634 888903        email: sp620@kent.ac.uk 

Participant Identification Number for this project: 

 

Please initial box 

 
1. I confirm I have read and understand the information sheet (version 

1) for the above study.  I have had the opportunity to consider the 
information, ask questions and have had these answered 
satisfactorily. 

 

 

 

2. I understand that participation of my child is voluntary and that he/she 
is free to withdraw at any time without giving any reason.   

 

 

 

3. I understand that responses will be anonymised before analysis.  I 
give permission for members of the research team to have access 
to my child’s anonymised responses. 

 

 

 

4. I agree that my child can take part in the above research project. 
 

 

 

 
 
 
 
 
Name of guardian 
 
 
 

 
 
 
 
 
Date 

 
 
 
 
 
Signature 

 
Lead researcher 
 

 
Date 

 
Signature 

 
 
 
 

 
 

 
 

   

 

 

 

mailto:sp620@kent.ac.uk
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Consent form for participants at 16 to 18 

Title of project: Prevalence of patellofemoral pain syndrome in young Thai athletes 

Name of investigator: Somruthai Poomsalood 

Tel: 44 (0)1634 888903        email: sp620@kent.ac.uk 

Participant Identification Number for this project: 

 

Please initial box 

 
1. I confirm I have read and understand the information sheet (version 

1) for the above study.  I have had the opportunity to consider the 
information, ask questions and have had these answered 
satisfactorily. 

 

 

 

2. I understand that my participation is voluntary and that I am free to 
withdraw at any time without giving any reason.   

 

 

 

3. I understand that my responses will be anonymised before analysis.  
I give permission for members of the research team to have access 
to my anonymised responses. 

 

 

 

4. I agree to take part in the above research project. 
 

 

 

 

 
 
Name of participant 
 
 
 

 
 
Date 
 
 
 

 
 
Signature 
 
 
 

 
Lead researcher 
 

 
Date 

 
Signature 

   
 

 

 

 

mailto:sp620@kent.ac.uk
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Participant information sheet 

School of Sport and Exercise Sciences, University of Kent, Medway Building,  

Chatham Maritime, Kent, ME4 4AG 

Somruthai Poomsalood 

Tel: 44 (0)1634 888903        email: sp620@kent.ac.uk 

If you have any queries, please contact: Somruthai Poomsalood (see above) 

 

Title:  Prevalence of patellofemoral pain syndrome in young Thai athletes 

 

Invitation 

You are being invited to take part in a research project. Before you decide if you wish 

to participate, it is important that you understand why this study is being conducted and what it 

will involve. Please take time to read the following information carefully and discuss it with 

others if you wish. Ask us if there is anything that is not clear or if you would like more 

information. Take time to decide whether or not you wish to take part. Thank you for your time 

and consideration. 

 

Why is this study being done?  

 Patellofemoral pain syndrome (PFPS) or pain around the kneecap is one of the most 

common knee pain found in sports medicine clinics. The disorder is usually related with sports 

and activities of daily living and can be frequently seen in active young people. Thailand is one 

of the developing countries that sports are starting to get popular day by day. Unfortunately, 

there have been no studies looking at prevalence of PFPS in any population in this country. It 

is also believed that lower limb injuries especially the knee joint are the result from long training. 

If the training time and the prevalence of PFPS are really related, this information would be very 

useful for training recommendations in young athletes.  

 

What are the purposes of the study? 

1. To determine the prevalence of patellofemoral pain syndrome in young athletes. 

2. To determine the relationship between patellofemoral pain syndrome and training time 

per week. 

 

Who are participants?  

Students who have enrolled in Phitsanulok Provincial Administrative Organization 

Sports School, Thailand 

 

 

 

 

mailto:sp620@kent.ac.uk
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How long it will take? 

 It will take around 30 minutes for the questionnaire and 45 minutes for the physical 

examination. 

 

What will happen to me in the study? 

 If you decide to take part in the study, you will be asked to complete anterior knee pain 

scale (AKPS) questionnaire. The questionnaire was designed to ascertain patellofemoral pain. 

It is a self-report questionnaire consisting of 13 questions to assess the symptoms and the level 

of disability of patients with PFPS. If your score is less than 100, you will undergo physical 

examination on another day. The physical examination consists of a subjective examination 

and an objective examination. You will be asked about past history and activities relating to 

your knee pain and you will be examined by inspection, palpation, and measurementat your 

legs. The physical examination will be chaperoned by a member of school staff during all 

contact with children 

 

What will I wear for the physical examination? 

 You will be required to wear shorts during the examination. 

 

Do I have to take part? 

No, it is up to you and whether or not you decide to participate will not influence opinion 

of you in any way. If you are 16 years old or younger, you will need permission from your 

parents to participate in the study.  

 

Who has reviewed the study? 

The School of Sport and Exercise Sciences Research Ethics Committee, University of 

Kent 

 

What are the risks related with the experiment? 

This is just a survey study but you will receive the physical examination. Some special 

tests might aggravate your pain at the knee but it is only temporary during the tests or it won’t 

happen at all. Resting and ice will be the best ways to take away the pain. There will be a place 

to rest and ice provided during the study.  

 

What are the benefits of the study? 

 Once the study has been completed, you will (if you wish) be provided with a summary 

of the results and information about how to manage when you experience PFPS. 

 

Will my confidentiality be protected? 

The researcher might use information gained from this study in scientific journal articles 

or in presentations. You will be identified by number only and none of the information will identify 
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you personally. The data will be stored for in the researcher’s laptop computer and will not be 

released without written permission. 

 

If I decide to start the study can I change my mind? 

Your decision to participate in this research is entirely voluntary and you can withdraw 

at any time without having to tell us why.  If some of your data are already collected, we will 

delete them.  

 

How can I get information about the study? 

You will be able to get information about your results and the study findings by 

contacting SomruthaiPoomsalood (sp620@kent.ac.uk). 

 

What if I have questions? 

If you have any questions about this research project, please contact the research 

investigator, SomruthaiPoomsalood (sp620@kent.ac.uk) or Dr. Mark Burnley 

(M.Burnley@kent.ac.uk). 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:sp620@kent.ac.uk
mailto:sp620@kent.ac.uk
mailto:M.Burnley@kent.ac.uk


193 
 

APPENDIX 

ANTERIOR KNEE PAIN (Participant identification number:__________________) 

ชื่อ:_________________________________________ วนัที่:__________________ 

อาย:ุ____________ 

ขอ้เข่าขา้งที่มีอาการ: 1. ไม่มีอาการ     2. ซา้ย     3. ขวา     

4. ทัง้สองขา้ง (ระบุขา้งที่มีอาการมากกว่า: ………….) 

ระยะเวลาที่มีอาการ:_______ปี _______เดือน 

จงวงกลมค าตอบ (เฉพาะตวัอกัษรขา้งหนา้) ที่มีความสอดคลอ้งกบัอาการลา่สดุของขอ้เข่าของ

ท่าน 

1. อาการอ่อนแรง 
(a) ไม่อ่อนแรง (5) 
(b) อ่อนแรงเล็กนอ้ยหรือเป็นระยะ (3) 
(c) อ่อนแรงตลอดเวลา (0) 

2. ยืน 
(a) ยืนไดโ้ดยไม่มีอาการเจ็บ (5) 
(b) ยืนไดแ้ต่มีอาการเจ็บ (3) 
(c) ไม่สามารถยืนได ้(0) 

3. เดิน 
(a) เดินไดไ้ม่จ ากดั (5) 
(b) เดินไดม้ากกว่า 2 กิโลเมตร (3) 
(c) เดินได ้1-2 กิโลเมตร (2) 
(d) ไม่สามารถเดินได ้(0) 

4. ขึน้-ลงบันได 
(a) ไม่มีความยากล าบาก (10) 
(b) มีอาการเจ็บเล็กนอ้ยตอนลง (8) 
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(c) มีอาการเจ็บทัง้ตอนลงและตอนขึน้ (5) 
(d) ไม่สามารถขึน้-ลงบนัไดได ้(0) 

5. น่ังยอง 
(a) ไม่มีความยากล าบาก (5) 
(b) มีอาการเจ็บเมื่อนั่งยองซ า้ๆ (4) 
(c) มีอาการเจ็บทกุครัง้ที่นั่งยอง (3) 
(d) ลงน า้หนกัไดไ้ม่เต็มที่เวลานั่งยอง (2) 
(e) ไม่สามารถนั่งยองได ้(0) 

6. วิ่ง 
(a) ไม่มีความยากล าบาก (10) 
(b) มีอาการเจ็บหลงัวิ่งไปแลว้มากกว่า 2 กิโลเมตร (8) 
(c) มีอาการเจ็บเล็กนอ้ยตอนเริ่มวิ่ง (6) 
(d) มีอาการเจ็บมาก (3) 
(e) ไม่สามารถว่ิงได ้(0) 

7. กระโดด 
(a) ไม่มีความยากล าบาก (10) 
(b) มีความยากล าบากเล็กนอ้ย (7) 
(c) มีอาการเจ็บตลอดเวลา (2) 
(d) ไม่สามารถกระโดดได ้(0) 

8. น่ังงอเข่าเป็นเวลานาน 
(a) ไม่มีความยากล าบาก (10) 
(b) มีอาการเจ็บหลงัออกก าลงักาย (8) 
(c) มีอาการเจ็บตลอดเวลา (6) 
(d) อาการเจ็บท าใหต้อ้งเหยียดเข่าชั่วคราว (4) 
(e) ไม่สามารถนั่งงอเข่าได ้(0) 

9. อาการเจ็บ 
(a) ไม่มีอาการ (10) 
(b) มีอาการเล็กนอ้ยและเป็นครัง้คราว (8) 
(c) อาการเจ็บรบกวนการนอนหลบั (6) 
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(d) อาการเจ็บรุนแรงเป็นครัง้คราว (3) 
(e) อาการเจ็บรุนแรงและเป็นตลอดเวลา (0) 

10. อาการบวม 
(a) ไม่มีอาการ (10) 
(b) บวมหลงัจากการออกแรงอย่างหนกั (8) 
(c) บวมหลงัจากท ากิจวตัรประจ าวนั (6) 
(d) บวมทกุเย็น (4) 
(e) บวมตลอดเวลา (0) 

11. การเคล่ือนไหวทีผ่ิดปกติของกระดูกสะบ้าข้างที่มีอาการ 
(a) ไม่มีความผิดปกติ (10) 
(b) เคลื่อนออกจากแนวกลางของขอ้เข่าเล็กนอ้ยเป็นครัง้คราวเมื่อท ากิจกรรมที่เก่ียวกบักีฬา (6) 
(c) เคลื่อนออกจากแนวกลางของขอ้เข่าเล็กนอ้ยเป็นครัง้คราวเมื่อท ากิจวตัรประจ าวนั (4) 
(d) มกีารเคลื่อนหลดุออกไปจากแนวกลางของขอ้เข่าอย่างนอ้ย 1 ครัง้ (2) 
(e) มีการเคลื่อนหลดุออกไปจากแนวกลางของขอ้เข่ามากกว่า 2 ครัง้ (0) 

12. การฝ่อลีบของกล้ามเนือ้ต้นขา 
(a) ไม่มีการฝ่อลีบ (5) 
(b) ฝ่อลีบเล็กนอ้ย (3) 
(c) ฝ่อลีบมาก (0) 

13. การจ ากัดการงอเข่า 
(a) ไม่จ ากดั (5) 
(b) จ ากดัเล็กนอ้ย (3) 
(c) จ ากดัมาก (0) 
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Physical examination form 

Physical examination form for patellofemoral pain syndrome 

 

Participant identification number…………….. 

Subjective examination 

Present history.................................................................................................... 

…………………………………………………………………………………………

………...………………………………………………………………………………

…………………...…………………………………………………………………… 

Past history……………………………………………………………………. 

…………………………………………………………………………………………

………………………………………………………………………………………… 

………………………………………………………………………………………… 

Objective examination 

Components and finding 
Result 

Right knee Left knee 

Inspection 

     Lateral patellar tracking (“J” sign) 

 

     Poor VMO tone 

 

…………………… 

 

…………………… 

 

………………… 

 

………………… 

Palpation 

     Effusion 

 

     Tenderness of: 

          Patellar retinaculum (medial     

               and lateral) 

 

          Facets (medial and lateral) 

 

          Patella 

 

          Quadriceps and patellar tendon 

 

          Joint line 

 

…………………… 

 

 

 

…………………… 

 

…………………… 

 

…………………… 

 

…………………… 

 

…………………… 

 

………………… 

 

 

 

………………… 

 

………………… 

 

………………… 

 

………………… 

 

………………… 
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Measurement 

     Q-angle 

 

…………………… 

 

………………… 

Range of motion  

     Knee flexion/extension 

 

 

      

     Crepitus 

 

     Popping/clicking 

 

AROM…………… 

 

PROM…………… 

 

………………… 

 

…………………… 

 

AROM………… 

 

PROM………… 

 

………………… 

 

………………… 

Special test 

     Patellar apprehension test 

 

     Patellofemoral grind test 

 

…………………… 

 

…………………… 

 

………………… 

 

………………… 

Muscle flexibility 

     Quadriceps 

 

…………………… 

 

………………… 

Muscle strength 

     Knee flexor 

 

     Knee extensor 

 

…………………… 

 

…………………… 

 

………………… 

 

………………… 

 

Diagnosis.......................................................................................................................... 
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Appendix 2 

OVERSEAS TRAVEL RISK ASSESSMENT FORM                                             
(BASED ON HSE “FIVE STEPS TO RISK ASSESSMENT”) 

                  Sheet No: 1 
 

 Department/Section Sport and Exercise Sciences Work Area Sports rehabilitation   Date of Assessment March 14, 2016 
 
 Assessor Somruthai Poomsalood   Signature      Date of Review March 22, 2016 
 

HAZARD                                       
(List)  

PERSONS AT RISK AND HOW 
(Consider all persons, including those 
who may not be involved with the job) 

EXISTING CONTROL MEASURES 
AND ADEQUACY                            
(List the control measures appropriate 
to each hazard and consider the level 
of residual risk; is it high, medium or 
low?)  If using a risk matrix then show 
risk factor (R) = (hazard  x  risk) 

ADDITIONAL REQUIREMENTS       
(If the residual risk is high, you must 
take additional practicable measures 
to reduce it, or abort the proposed 
task) 

Medical emergency  

 

 

                                                  
Weather condition (rainy season) 

Problem encountered when 
traveling using local transport 

Somruthai Poomsalood 

 

 

                                              
Somruthai Poomsalood 

Somruthai Poomsalood 

Fitness to travel certificate and 
insurance certificate obtained from 
University of Kent. However, the 
researcher is a local resident and will 
be able to receive immediate first aid 
and aftercare  

Traveling by a private car 

Traveling by a private car 

 

 
 NOTE: All assessors should read the Performance Standard for undertaking risk assessments and have been trained in risk assessment. On     

completion, appropriate employees should be briefed by the assessor who should ensure that they fully understand the risk assessment.   
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2. CHAPTER 3 

Consent form 

Title of project: Will there be significant differences in gait parameters on different 

training surfaces during walking in healthy individuals? 

Name of investigator: Somruthai Poomsalood 

Participant Identification Number for this project: 

 

Please initial box 

 

1. I confirm I have read and understand the information sheet for the 
above study. I have had the opportunity to consider the information, 
ask questions and have had these answered satisfactorily. 

 

 

 

2. I understand that my participation is voluntary and that I am free to 
withdraw at any time without giving any reason.   

 

 

 

3. I understand that my responses will be anonymised before analysis.  
I give permission for members of the research team to have access 
to my anonymised responses.  

 

 

 

4. I agree to take part in the above research project. 
 

 

 

 

 
 
Name of participant 
 
 
 

 
 
Date 
 
 
 

 
 
Signature 
 
 
 

 
Lead researcher 
 

 
Date 

 
Signature 
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Inclusion criteria questionnaire 

Participant number…………………………………………………………. 

Date of birth…………………............   Age…..........years   Gender……………. 

Weight…………………..kg   Height………......………..cm 

 

To be measured by researcher 

Right leg length………………cm   Left leg length……………….cm  

Right arch of foot………………...   Left arch of foot………………...  

 

Please answer these questions truthfully and completely.  The purpose of this 

questionnaire is to ensure that you have all the inclusion criteria for the study 

Please read the 7 questions below carefully and answer each one 
honestly: check YES or NO. 

YES NO 

1. Are you a healthy active person aged 18-35 years?   

2. Are you engaged in physical activities for 2 hours or more per week 
during the past 12 months? 

  

3. Do you adequately understand verbal explanation or written information 
given in English? 

  

4. Have you had any surgery on your lower leg, ankle or foot in the last 12 
months? 
(If YES, please specify:……………………………………………………….) 

  

5. Have you had any injury to the lower leg, ankle or foot within the last 6 
months? 
(If YES, please specify:……………………………………………………….) 

  

6. Do you have any pain in your knees with activities?  
(If YES, please specify: ……...……………………………………………….) 

  

7. Do you have any heart problem?   
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Participant information sheet 

School of Sport and Exercise Sciences, University of Kent, Medway Building,  

Chatham Maritime, Kent. ME4 4AG. 

Somruthai Poomsalood 

Tel: 44 (0)1634 888903        email: sp620@kent.ac.uk 

If you have any queries, please contact: Somruthai Poomsalood (see above) 

 

 

Title:  Will there be significant differences in gait parameters on different training 

surfaces during walking in healthy individuals? 

 

Invitation 

We are inviting you to be part of a research project. Before you decide if you wish to 

join, it is important that you know why we want to do this study and what it will involve. Please 

take time to read the following information carefully and talk with others if you wish. Ask us if 

there is anything that is not clear or if you need more information. Take time to decide whether 

you want to join or not. Thank you so much for your time. 

 

Why are we doing this study?  

We are doing this study because we think that gait analysis is very useful to evaluate 

our walking pattern. The analysis is widely used among patients and healthy people. Our 

walking pattern might change when walking on different surfaces. However, there is no 

evidence of walking patterns on synthetic surface, indoor court, or grass. 

 

What is the aim of the study? 

 We want to find out how different training surfaces affect your walking pattern. 

 

Who are participants?  

 Healthy active people both men and women (age 18-35 years) who do physical 

activities for 5 to 10 hours a week during the past 12 months. Have no history of lower leg, 

ankle, or foot surgery in the last 12 months. Have no history of an injury to the lower leg, ankle, 

or foot within 6 months. Have no knee pain with any activities. No reported known 

cardiovascular diseases. Understand English in both listening and reading adequately.  

 

How long it will take? 

 You will come to the laboratory only 1 time and less than 3 hours. 

 

 

 

mailto:sp620@kent.ac.uk
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What will happen if you join the study? 

 If you decide to join our study, you will sign the informed consent form and complete 

the inclusion criteria questionnaire. Your leg length will be measured whilst you are laying down 

by the researcher using a measuring tape.  Your arch of foot will be measured using a force 

plate. For the testing session, you will be walking for 20 m with barefoot (thin socks are allowed) 

on each of the surfaces shown in Figure 1, which are 1) synthetic surface 2) indoor court and 

3) grass. You will have a small device on your waist (Figure 2) to record your walking during 

the test. See pictures below: 

 

 

Figure 2 Device for recording walking 

 

 

 

 

 

 

 

 

 

Figure 1 Training surfaces 1) outdoor synthetic 2) indoor court 3) grass 
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Do you have to take part? 

No, it is up to you and whether you decide to join or not and your decision will not affect 

our opinion of you in any way.  

 

Who has reviewed the study? 

The School of Sport and Exercise Sciences Research Ethics Committee, University of 

Kent 

 

What are the risks related with the testing? 

 There are no risks because you are only required to walk at your natural speed. 

 

What are the benefits of the study? 

 Once we complete the study, we will (if you wish) provide you with a summary of the 

results and information about your walking. 

 

Will your private information be protected? 

We might use your information from this study in journal articles or in presentations. 

We will identify you by number only and none of the information will identify you personally.  

 

If you decide to join the study can you change my mind? 

Your decision to join this research is voluntary and you can leave the study at any time 

without having to tell us why. If you leave the study and some of your data are already collected, 

we will delete them.   

 

How can you get information about the study? 

You can get information about your results and the study findings by contacting 

Somruthai Poomsalood (sp620@kent.ac.uk). 

 

What if you have questions? 

If you have any questions about this research project, please contact us, Somruthai 

Poomsalood (sp620@kent.ac.uk) or Dr. Karen Hambly (K.Hambly@kent.ac.uk). 

 

 

 

 

 

 

mailto:sp620@kent.ac.uk
mailto:sp620@kent.ac.uk
mailto:K.Hambly@kent.ac.uk
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3. CHAPTER 4 

Consent form 

Title of project:  Effects of McConnell taping and SERF Strap on Plantar Loading 
Pattern during Walking and Jogging 

Name of investigator:  Somruthai Poomsalood 

Participant Identification Number for this project:  

 

Please initial box 

 
1. I confirm I have read and understand the information sheet dated… 

(version…) for the above study.  I have had the opportunity to 
consider the information, ask questions and have had these 
answered satisfactorily. 

 

 

 
2. I understand that my participation is voluntary and that I am free to 

withdraw at any time without giving any reason.  (Insert contact 
number here of lead researcher/member of research team, as 
appropriate). 

 

 

 
3. I understand that my responses will be anonymised before analysis.  

I give permission for members of the research team to have access 
to my anonymised responses.  (Also add here a statement about 
publication of anonymised direct quotes, if this will be done). 

 

 

 
4. I agree to take part in the above research project. 
 
 

 

 

 
 
Name of participant 
 

 
 
Date 

 
 
Signature 

 
Name of person taking consent 
(if different from lead researcher) 

 
Date 

 
Signature 

To be signed and dated in presence of the participant 
 
 
Lead researcher 
 

 
Date 

 
Signature 

   
 

 

 

 



205 
 

Inclusion criteria questionnaire 

Name…………………………………………………………. 

Date of birth…………………............   Age…..........years   Gender……………. 

Weight…………………..kg   Height………......………..cm 

Right leg length………………cm   Left leg length……………….cm   

Right arch of foot………………...   Left arch of foot………………... 

 

Please answer these questions truthfully and completely.  The purpose of this 

questionnaire is to ensure that you have all the inclusion criteria for the study 

Please read the 12 questions below carefully and answer each one 

honestly: check YES or NO. 
YES NO 

1. Are you a healthy active individual aged 18-35 years?  
 

2. Are you engaged in physical activities for 2 hours or more per week 
during the past 12 months? 

 
 

3. Do you adequately understand verbal explanation or written information 
given in English? 

 
 

4. Have you had any surgery on your lower leg, ankle or foot in the last 12 
months? 

(If YES, please specify: 

……………………………………………………………….) 

 
 

5. Have you had any injury to the lower leg, ankle or foot within the last 6 
months? 
(If YES, please specify: 

……………………………………………………………….) 

 
 

6. Do you have any pain in your knees with activity?  
(If YES, please specify: 

……………………………………………………………….) 

 
 

7. Do you have normal arch of foot?  
 

8. Do you have any known allergies to adhesive tape or latex?   
 

 

 

Please read and sign the declaration below: 

 

I, the undersigned, have read, understood and completed this questionnaire to the best 

of my knowledge. 

 

Signature: ………………………………………………………… 

Date: ………………………................ 
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Health questionnaire  

Name…………………………………………………………………… 
 
Date of Birth………………………………..  Age……………… 
 
Please answer these questions truthfully and completely.  The sole purpose of this 
questionnaire is to ensure that you are in a fit and healthy state to complete the 
exercise test. 
 
ANY INFORMATION CONTAINED HEREIN WILL BE TREATED AS CONFIDENTIAL. 
 
SECTION 1: GENERAL HEALTH QUESTIONS 

 

Please read the 8 questions below carefully and answer each one honestly: check 

YES or NO. 

 

 YES NO 

1. Has your doctor ever said that you have a heart condition or high 
blood pressure? 

□ □ 

2. Do you feel pain in your chest at rest, during your daily activities of 
living, or when you do physical activity? 

□ □ 

3. Do you lose balance because of dizziness or have you lost 
consciousness in the last 12 months? (Please answer NO if your 
dizziness was associated with over-breathing including vigorous 
exercise). 

□ □ 

4. Have you ever been diagnosed with another chronic medical 
condition (other than heart disease or high blood pressure)? 

□ □ 

If yes, please list condition(s) here: 
 
 

5. Are you currently taking prescribed medications for a chronic medical 
condition? 

□ □ 

If yes, please list condition(s) and medications here: 
 
 

6. Do you currently have (or have you had within the past 12 months) a 
bone, joint or soft tissue (muscle, ligament, or tendon) problem that 
could be made worse by becoming more physically active? Please 
answer NO if you had a problem in the past but it does not limit your 
ability to be physically active. 

□ □ 

If yes, please list condition(s) here: 
 
 

7. Has your doctor ever said that you should only do medically 
supervised physical activity? 

□ □ 

8. Are you, or is there any chance you could be, pregnant? □ 
 

□ 
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If you answered NO to all of the questions above, you are cleared to take part in the 
exercise test 

 
           Go to SECTION 3 to sign the form. You do not need to 
 complete section 2. 
 
 
 
         
 If you answered YES to one or more of the questions in 
 Section 1 - PLEASE GO TO SECTION 2. 
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SECTION 2: CHRONIC MEDICAL CONDITIONS 
 
Please read the questions below carefully and answer each one honestly: check YES 
or NO. 
 

 

  YES NO 

1. Do you have arthritis, osteoporosis, or back problems? 
If YES answer questions 1a-1c.  If NO go to Question 2. 

□ □ 

1a. Do you have difficulty controlling your condition with medications 
or other physician-prescribed therapies? (Answer NO if you are 
not currently taking any medications or other treatments). 

□ □ 

1b. Do you have joint problems causing pain, a recent fracture or 
fracture caused by osteoporosis or cancer, displaced vertebrae 
(e.g. spondylolisthesis), and/or spondylolysis/pars defect (a crack 
in the bony ring on the back of the spinal column)? 

□ □ 

1c. Have you had steroid injections or taken steroid tablets regularly 
for more than 3 months? 

□ □ 

2. Do you have cancer of any kind? 
If YES answer questions 2a-2b.  If NO, go to Question 3. 

□ □ 

2a. Does your cancer diagnosis include any of the following types: 
lung/bronchogenic, multiple myeloma (cancer of plasma cells), 
head and neck? 

□ □ 

2b. Are you currently receiving cancer therapy (such as chemotherapy 
or radiotherapy)? 

□ □ 

3. Do you have heart disease or cardiovascular disease? This 
includes coronary artery disease, high blood pressure, heart 
failure, diagnosed abnormality or heart rhythm. 
If YES answer questions 3a-3e.  If NO go to Question 4. 

□ □ 

3a. Do you have difficulty controlling your condition with medications 
or other physician-prescribed therapies? (Answer NO if you are 
not currently taking any medications or other treatments). 

□ □ 

3b. Do you have an irregular heartbeat that requires medical 
management? 
(e.g. atrial fibrillation, premature ventricular contraction) 

□ □ 

3c. Do you have chronic heart failure? □ □ 

3d. Do you have a resting blood pressure equal to or greater than 
160/90mmHg with or without medication? Answer YES if you do 
not know your resting blood pressure. 

□ □ 

3e. Do you have diagnosed coronary artery (cardiovascular) disease 
and have not participated in regular physical activity in the last 2 
months? 

□ □ 
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  YES NO 

4. Do you have any metabolic conditions? This includes Type 1 
Diabetes, Type 2 Diabetes and Pre-Diabetes. If YES answer 
questions 4a-4c.  If NO, go to Question 5. 

□ □ 

4a. Is your blood sugar often above 13mmol/L? (Answer YES if you are 
not sure). 

□ □ 

4b. Do you have any signs or symptoms of diabetes complications 
such as heart or vascular disease and/or complications affecting 
your eyes, kidneys, OR the sensation in your toes and feet? 

□ □ 

4c. Do you have other metabolic conditions (such as thyroid disorders, 
current pregnancy related diabetes, chronic kidney disease, or 
liver problems)? 

□ □ 

5. Do you have any mental health problems or learning difficulties? 
This includes Alzheimer’s, dementia, depression, anxiety disorder, 
eating disorder, psychotic disorder, intellectual disability and 
down syndrome. 
If YES answer questions 5a-5b.  If NO go to Question 6. 

 
 

□ 

 
 

□ 

5a. Do you have difficulty controlling your condition with medications 
or other physician-prescribed therapies? (Answer NO if you are 
not currently taking any medications or other treatments). 

□ □ 

5b. Do you also have back problems affecting nerves or muscles? □ □ 

6. Do you have a respiratory disease? This includes chronic 
obstructive pulmonary disease, asthma, pulmonary high blood 
pressure. 
If YES answer questions 6a-6d.  If NO, go to Question 7. 

 
□ 

 
□ 

6a. Do you have difficulty controlling your condition with medications 
or other physician-prescribed therapies? (Answer NO if you are 
not currently taking any medications or other treatments). 

□ □ 

6b. Has your doctor ever said you blood oxygen level is low at rest or 
during exercise and/or that you require supplemental oxygen 
therapy? 

□ □ 

6c. If asthmatic, do you currently have symptoms of chest tightness, 
wheezing, laboured breathing, consistent cough (more than 2 
days/week), or have you used your rescue medication more than 
twice in the last week? 

□ □ 

6d. Has your doctor ever said you have high blood pressure in the 
blood vessels of your lungs? 

□ □ 

7. Do you have a spinal cord injury? This includes tetraplegia and 
paraplegia. 
If YES answer questions 7a-7c.  If NO, go to Question 8. 

 
□ 

 
□ 

7a. Do you have difficulty controlling your condition with medications 
or other physician-prescribed therapies? (Answer NO if you are 
not currently taking any medications or other treatments). 

□ □ 

7b. Do you commonly exhibit low resting blood pressure significant 
enough to cause dizziness, light-headedness, and/or fainting? 

□ □ 

7c. Has your physician indicated that you exhibit sudden bouts of high 
blood pressure (known as autonomic dysreflexia)? 

□ □ 
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  YES NO 

8. Have you had a stroke? This includes transient ischemic attack 
(TIA) or cerebrovascular event. 
If YES answer questions 8a-8c.  If NO go to Question 9. 

 
□ 

 
□ 

8a. Do you have difficulty controlling your condition with medications 
or other physician-prescribed therapies? (Answer NO if you are 
not currently taking any medications or other treatments). 

□ □ 

8b. Do you have any impairment in walking or mobility? □ □ 

8c. Have you experienced a stroke or impairment in nerves or muscles 
in the past 6 months? 

□ □ 

9. Do you have any other medical condition which is not listed 
above or do you have two or more medical conditions? 
If you have other medical conditions, answer questions 9a-9c. If 
NO go to Question 10. 

 
□ 

 
□ 

9a. Have you experienced a blackout, fainted, or lost consciousness as 
a result of a head injury within the last 12 months OR have you 
had a diagnosed concussion within the last 12 months? 

□ □ 

9b. Do you have a medical condition that is not listed (such as 
epilepsy, neurological conditions, and kidney problems)? 

□ □ 

9c. Do you currently live with two or more medical conditions? □ □ 

 Please list your medical condition(s) and any related medications here: 
 
 
 

10. Have you had a viral infection in the last 2 weeks (cough, cold, 
sore throat, etc.)? If YES please provide details below: 
 
 
 

□ □ 

11. Is there any other reason why you cannot take part in this 
exercise test? If YES please provide details below: 

□ □ 

12. Please provide brief details of your current weekly levels of physical activity 
(sport, physical fitness or conditioning activities), using the following 
classification for exertion level: 
 
L    = light (slightly breathless 
M  = moderate (breathless) 
V   = vigorous (very breathless) 
 
                                      Activity                                Duration (mins.)     Level (L/M/V)    
Monday 

Tuesday 

Wednesday 

Thursday 

Friday  

Saturday 

Sunday 
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Please see below for recommendations for your current medical condition and sign 
this document: 
 
 
 

 
 
If you answered NO to all of the follow-up questions about your 
medical condition, you are cleared to take part in the exercise test. 
 
 
If you answered YES to one or more of the follow-up questions 
about your medical condition it is strongly advised that you 
should seek further advice from a medical professional before 
taking part in the exercise test. 
 

 

 

 

SECTION 3: DECLERATION 

 

 
Please read and sign the declaration below: 
 
I, the undersigned, have read, understood and completed this questionnaire to the 
best of my knowledge. 
 
 
 
NAME: ……………………………………………………………………………………………………………………   
 
 
 
SIGNATURE: …………………………………………………………DATE: ………………………................ 
 
 
 
SIGNATURE OF PARENT/GUARDIAN: ……………………………………………………………………… 
 
 
 
 
 
 
This health questionnaire is based around the PAR-Q+, which was developed by the 
Canadian Society for Exercise Physiology www.csep.ca  
 

http://www.csep.ca/
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 Participant information sheet 

School of Sport and Exercise Sciences, University of Kent, Medway Building,  

Chatham Maritime, Kent. ME4 4AG. 

Somruthai Poomsalood 

Tel: 44 (0)1634 888903        email: sp620@kent.ac.uk 

If you have any queries, please contact: Somruthai Poomsalood (see above) 

 

Title:  Effects of McConnell Taping and SERF Strap on Plantar Loading Pattern 

during Walking and Jogging 

 

Invitation 

You are being invited to take part in a research project. Before you decide if you wish 

to participate, it is important that you understand why this study is being conducted and what it 

will involve. Please take time to read the following information carefully and discuss it with 

others if you wish. Ask us if there is anything that is not clear or if you would like more 

information. Take time to decide whether or not you wish to take part. Thank you for your time 

and consideration. 

 

Why is this study being done?  

Many people suffer from patellofemoral pain syndrome (PFPS) or pain around the knee 

cap. Patellar taping is an effective treatment option in reducing pain in people with PFPS. 

However, there is a lack of research studies accessing effects of the patellar taping on foot 

pressures. The stability through external rotation of the femur (SERF) strap (Don Joy 

Orthopedics Inc, Vista, CA) has been developed to pull the thigh into outward rotation to support 

the knee joint, to reduce pain, and to improve lower limb motions during activities. However, 

there have been no studies considering an effect of SERF strap on plantar pressure. 

 

What are the purposes of the study? 

1. To investigate an effect of McConnell taping on foot pressures 

2. To investigate an effect of SERF strap on foot pressures 

3. To compare an effect between McConnell taping and SERF strap on foot pressures 

 

Who are participants?  

 Healthy active individuals who are engaged in physical activities for 5 to 10 hours a 

week during the previous 12 months, aged between 18-35 years both males and females. 

 

How long it will take? 

 You will come to the laboratory only 1 time and less than 2 hours. 

 

mailto:sp620@kent.ac.uk
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What will happen to me in the study? 

 If you decide to take part in the study, you will be asked to walk and jog on a 2 m 

pressure plate with barefoot under 3 conditions: 1) no tape, 2) McConnell taping, and 3) SERF 

strap. McConnell taping and SERF strap will be applied on your right leg separately. We will 

record your foot pressures during the walk and the jog. See pictures below: 

 

 

 

 

 

 

 

 

 

                    Figure 1 McConnell taping                            Figure 2 SERF strap 

     

 

 

Figure 3 Pressure plate (2 meters) 

    

Do I have to take part? 

No, it is up to you and whether or not you decide to participate will not influence opinion 

of you in any way.  

 

Who has reviewed the study? 

The School of Sport and Exercise Sciences Research Ethics Committee, University of 

Kent 

 

What are the risks related with the experiment? 

 There are no risks because you are only required to walk and jog at your natural speed. 

 

What are the benefits of the study? 

 Once the study has been completed, you will (if you wish) be provided with a summary 

of the results and information about the plantar pressure. 
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Will my confidentiality be protected? 

The researcher might use information gained from this study in scientific journal articles 

or in presentations. You will be identified by number only and none of the information will identify 

you personally. The data will be stored for a 5-year period at the School of Sport and Exercise 

Sciences (University of Kent) and will not be released without written permission or unless 

required by law.   

 

If I decide to start the study can I change my mind? 

Your decision to participate in this research is entirely voluntary and you can withdraw 

at any time without having to tell us why.  If some of your data are already collected, we will 

delete them.   

 

How can I get information about the study? 

You will be able to get information about your results and the study findings by 

contacting Somruthai Poomsalood (sp620@kent.ac.uk). 

 

What if I have questions? 

If you have any questions about this research project, please contact the research 

investigator, Somruthai Poomsalood (sp620@kent.ac.uk) or Dr. Karen Hambly 

(K.Hambly@kent.ac.uk). 

 

 

 

 

 

 

 

 

 

 

mailto:sp620@kent.ac.uk
mailto:sp620@kent.ac.uk
mailto:K.Hambly@kent.ac.uk


215 
 

4. CHAPTER 6 

Consent form 

Title of project: 
 

Can stretch sensors measure knee range of motion in healthy 
adults? 

Name of investigator: 
 

Somruthai Poomsalood, Karen Hambly, Karthik Muthumayandi 

Participant Identification Number for this project: 
 

 

 

Please initial box 

 

1. I confirm I have read and understand the information sheet (version 
1.0) dated 27/11/2017 for the above study.  I have had the 
opportunity to consider the information, ask questions and have had 
these answered satisfactorily. 
 

2. I understand that my right knee will be recorded by a mobile phone 
camera during the study. I give permission for members of the 
research to record my knee.  

 

 

 

3. I understand that my participation is voluntary and that I am free to 
withdraw at any time without giving any reason.  

 

 

 

4. I understand that my data will be anonymised before analysis.  I 
give permission for members of the research team to have access 
to my anonymised data.   

 

 

 

5. I have already answered the health questionnaire truthfully and to 
the best of my knowledge and I agree to take part in the above 
research project. 

 

 

 

 

 
Name of participant 
 
 

 
Date 

 
Signature 

 
Lead researcher 
 

 
Date 

 
Signature 
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Inclusion criteria questionnaire 

Participant number…………………………………………………………. 

Age…..........years   Gender……………. 

Weight…………………..kg   Height………......………..cm 

 

 

Please answer these questions truthfully and completely. The purpose of this 

questionnaire is to ensure that you have all the inclusion criteria for the study 

 

Please read the 6 questions below carefully and answer each one honestly: 

check YES or NO. 
YES NO 

1. Are you a healthy person aged 18-40 years?  
 

2. Do you have any pain in your knees with activities?  

(If YES, please specify: ………………………………………………………………. 

………………………………………………………………………………………......) 

 
 

3. Have you had any surgery on your lower leg, ankle or foot in the last 12 months? 
    (If YES, please specify: ………………………………………………………………. 
    ...…………………………………………………………………………………………) 

 
 

4. Have you had any injury to the lower leg, ankle or foot within the last 6 months? 
(If YES, please specify: …………………………………………………………….... 

…………………………………………………………………………………………..) 

 
 

5. Do you adequately understand verbal explanation or written information given in 
English? 

 
 

6. Do you have any allergies to silicone or elastic tape?  
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Participant information sheet 

School of Sport & Exercise Sciences, University of Kent, Medway Building, 

Chatham Maritime, Chatham, ME4 4AG. 

Somruthai Poomsalood 

Tel: 44 (0)1634 888903        email: sp620@kent.ac.uk 

If you have any queries, please contact: Somruthai Poomsalood (see above) 

 

 

Title:  Can stretch sensors measure knee range of motion in healthy adults? 

 

Invitation 

We are inviting you to be part of a research project. Before you decide if you wish to 

join, it is important that you know why we want to do this study and what it will involve. Please 

take time to read the following information carefully and talk with others if you wish. Ask us if 

there is anything that is not clear or if you need more information. Take time to decide whether 

you want to join or not. Thank you so much for your time. 

 

Why are we doing this study?  

We are doing this study because we think that a stretch sensor (silicone) (Figure 1) will 

be very useful to measure knee movement. It is stretchable and can be placed on human body 

parts. We are hoping that if the sensor can be directly attached on the skin and can measure 

knee movement in the laboratory, we can use the sensor in a real environment in the future.  

 

 

Figure 1 Stretch sensor 

 

What is the aim of the study? 

 We want to find out how the sensor can be placed on human skin and to find out if the 

sensor can be used to measure knee movement during everyday activities. 

 

Who are participants?  

 Healthy active people both men and women (age 18-40 years). Have no knee pain with 

any activities. Have no history of lower leg, ankle, or foot surgery in the last 12 months. Have 

no history of an injury to the lower leg, ankle, or foot within 6 months. Understand English in 

both listening and reading adequately.  

 

mailto:sp620@kent.ac.uk
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How long it will take? 

 You will come to the laboratory only 1 time and less than 2 hours. 

 

What will happen if you join the study? 

 If you decide to join our study, you will be asked to complete the health questionnaire, 

the inclusion criteria questionnaire, and sign the informed consent form. You will be tested for 

an allergy of an elastic adhesive tape (kinesiotape) by having a small piece of the tape on your 

knee for 30 mintues. You will have 3 stretch sensors applied to your right knee attached by 

kinesiotape and a battery box on your thigh held by an elastic bandage. (Figure 2). Three 

markers will be attached on the inside of your right ankle, knee, and thigh. You will be asked to 

sit on a seat of a Cybex dynamometer. You will have a seat belt across your waist and your 

right leg will be strapped to the dynamometer. You will relax your right knee and the 

dynamometer will move your knee slowly through a full knee bend and straighten. A mobile 

phone will be set up on your left side to video record your knee angles and the sensor system 

will record change of sensor length whilst your knee is moving. The video will only show your 

legs and your lower body and your face will not be recorded.   

 

 

Figure 2 Stretch sensors covered by kinesiotape 

 

Do you have to take part? 

No, it is up to you and whether you decide to join or not and your decision will not affect 

our opinion of you in any way.  

 

Who has reviewed the study? 

The School of Sport and Exercise Sciences Research Ethics Committee, University of 

Kent 

 

What are the risks related with the testing? 

 There are no risks because you are only required to sit on a seat and the dynamometer 

will move your knee automatically. 
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What are the benefits of the study? 

 Once we complete the study, we will (if you wish) provide you with a summary of the 

results. 

 

Will your private information be protected? 

We might use your information from this study in journal articles or in presentations. 

We will identify you by number only and none of the information will identify you personally.  

 

If you decide to join the study can you change my mind? 

Your decision to join this research is voluntary and you can leave the study at any time 

without having to tell us why. If you leave the study and some of your data are already collected, 

we will delete them.   

 

How can you get information about the study? 

You can get information about your results and the study findings by contacting 

Somruthai Poomsalood (sp620@kent.ac.uk). 

 

What if you have questions? 

If you have any questions about this research project, please contact us, Somruthai 

Poomsalood (sp620@kent.ac.uk) or Dr. Karen Hambly (K.Hambly@kent.ac.uk). 
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