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Abstract

There is a need to identify and categorise different types of nonlinearities that commonly ap-

pear in supply chain dynamics models, as well as establishing suitable methods for linearising and

analysing each type of nonlinearity. In this paper simplification methods to reduce model com-

plexity and to assist in gaining system dynamics insights are suggested. Hence, an outcome is the

development of more accurate simplified linear representations of complex nonlinear supply chain

models.

We use the highly cited Forrester production-distribution model as a benchmark supply chain

system to study nonlinear control structures and apply appropriate analytical control theory meth-

ods. We then compare performances of the linearised model with numerical solutions of the original

nonlinear model and with other previous research on the same model.

Findings suggest that more accurate linear approximations can be found. These simplified

and linearised models enhance the understanding of the system dynamics and transient responses,

especially for inventory and shipment responses.

A systematic method is provided for the rigorous analysis and design of nonlinear supply chain

dynamics models, especially when overly simplistic linear relationship assumptions are not possible

or appropriate. This is a precursor to robust control system optimisation.

∗This article is dedicated to the work, friendship and memory of Professor Denis R. Towill.
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1. Introduction

In supply chains, the variability in the ordering patterns often increases as one moves up

the chain, towards the factory and the suppliers (Dejonckheere et al., 2003). This variance

is called the bullwhip effect, “one of the most widely investigated phenomena in supply

chain management” (Chatfield and Pritchard, 2013). Even to this day the seminal works of

Forrester (1958, 1961), that formed the foundation for System Dynamics, are almost always

referred to synonymously with the bullwhip effect (e.g. Zhang and Burke 2011; Chatfield

and Pritchard 2013). In citing Forrester’s works authors refer to the original production-

distribution model, which may now be classified as a representation of a supply chain, as a

bullwhip generator archetype and the use of System Dynamics simulation as a technique for

exploring opportunities to mitigate unwanted dynamic behaviour.

While System Dynamics simulation is often used in the analysis and redesign of supply

chain models that exhibit nonlinearities, quantitative analytical approaches are more often

restricted to linear representations of supply chains. Hence, much of the research on supply

chain dynamics either takes a ‘trial and error’, experimental, simulation approach to redesign

(Forrester, 1961; Sterman, 1989; Shukla et al., 2009; Poles, 2013; Spiegler and Naim, 2014)

or develops exact solutions of models that are already linearised approximations to the real-

world situation (Towill, 1982; John et al., 1994; Disney and Towill, 2005; Gaalman and

Disney, 2009; Zhou et al., 2010).

While the original Forrester supply chain model is often quoted as the embodiment of

the bullwhip effect it has had little exposure with respect to its use as a benchmark for

applying supply chain analysis and redesign methods, with the notable exceptions of Wikner

et al. (1992) and Jeong et al. (2000). The former explore a simplification approach to

understanding the causes of the bullwhip effect (Wikner et al., 1992), while the latter apply

a linearisation approach but with an analysis totally reliant on simulation. Analytical tools to

link system dynamics model structures to different system modes of behaviour have recently

become available and explored for linear models (Saleh et al., 2010). However, there is still a

need to expand the existing body of knowledge regarding robust control of nonlinear supply

chains. “Nonlinearity can introduce unexpected behaviour in a system” (Forrester, 1961),

causing instability and uncertainty and therefore needing to be rigorously analysed.
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Our paper aims to present a technique to develop both simplified and linearised models of

complex, nonlinear supply chain systems. We seek to gain greater insights into the underlying

mechanisms that create supply chain dynamics and to provide guidelines for undertaking

system dynamics simulation in a time effective and productive way. The simplified and

linearised form may also be a precursor to robust optimisation of nonlinear decision rules in

supply chains, a gap in the existing body of knowledge due to the complexities of dealing with

seemingly intractable mathematics. We utilise the original Forrester model as a benchmark,

as per Wikner et al. (1992) and Jeong et al. (2000), given it is a complex representation of a

production-inventory control system with nonlinearities and it is highly cited for describing

the behavioural dynamics of supply chains. The currency of the model is also evidenced by

333 citations related to supply chains in 2013-2014 (according to Google Scholar searched

on 27 August 2014) and by Singhal and Singhal (2012) noting that Forrester’s papers still

represent well the real-world phenomenon of fluctuations and oscillations since it contains

a combination of simulated data and case study data to examine the flow of materials and

information in a supply chain.

In summary, we aim to determine the methodological benefits of nonlinear control theory

in supporting simulation based research on supply chain dynamics studies. This research is

particularly relevant to operations research scholars exploring nonlinear dynamic systems.

Moreover, future applications of the proposed technique may also benefit practitioners in

improving supply chain performance. As Ivanov and Sokolov (2013) pointed out “useful tools

for quantitative analysis of control and systems theory for a wide supply chain management

research community remain undiscovered”. Our work addresses this shortcoming.

2. Nonlinear system dynamics

A nonlinear system is one whose performance does not obey the principal of superposition.

This means that the output of a nonlinear system is not directly proportional to the input

and the variables to be solved cannot be expressed as a linear combination of the independent

parts (Atherton, 1975). In this section, we briefly review methods for analysing nonlinear

system dynamics and highlight where certain methods have already been used in supply

chain dynamics research.
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When confronted with a nonlinear system the primary approach utilised by system de-

signers is to identify an equivalent linear representation. A justification for this is that

there are a variety of analytical techniques available in linear control theory that are not so

readily applicable in the analysis of nonlinear systems. While linear control theory is well

established, the literature lacks a unique nonlinear theory that strives for generality and

applicability (Rugh, 2002; Hotz and Vogel, 2014).

The lack of generality, coupled with often indefinite research methods, has led to a con-

fusion of terminologies making it a challenge to determine a listing of all existing techniques

and their applicability in the analysis of nonlinear feedback systems. Table 1 lists those

methods that have been sufficiently acknowledged in the literature. The table highlights the

type of nonlinearity that each method addresses, the assumptions or limitations that need

due consideration in their application and citations of where they have been applied in a

supply chain dynamics context. The choice of each method may also depend on the degree

of complexity involved in the setting up of a mathematical model, the type of data available

for analysis and the analytical skills of the researcher or supply chain designer.

Most research on nonlinear supply chain systems has been undertaken via simulation

methods. Table 1 gives only a small number of examples from a plethora of papers that

utilise simulation to analyse nonlinearities in supply chains. This research has led to the

understanding of particular phenomena; such as:

• stability and chaos (Larsen et al., 1999; Laugesen and Mosekilde, 2006),

• the impact of capacity and batching constraints (e.g. Paik and Bagchi 2007; Cannella

et al. 2008; Juntunen and Juga 2009; Hamdouch 2011; Ivanov et al. 2014), inaccuracies

in inventory (Cannella et al., 2015), reverse logistics (Turrisi et al., 2013) and collab-

orative strategies (e.g. Cannella and Ciancimino 2010; Spiegler and Naim 2014) on

system dynamics and supply chain performance,

• bullwhip effect in service supply chains Akkermans and Voss (2013)

• shipment planning (Shukla et al., 2009; Mula et al., 2013) and

• the effects of psychological pressure, misperceptions and misjudgement in work envi-

ronments (Sterman, 1989; Syntetos et al., 2011; Bruccoleri et al., 2014).

4



Table 1: Summary of methods to analyse nonlinear supply chain systems

General Approach Method of Analysis Types of Non-
linearities

Considerations/ As-
sumptions

Supply Chain Applications Our contribution

L
in
ea
ri
sa
ti
on

m
et
h
o
d
s

Small Perturbation
Theory with Taylor
series expansion

Continuous
Single-valued

Assumption that the
amplitude of the excita-
tion signal is small
Local stability analysis
only

Limited application in supply chain context (Jeong
et al., 2000)
Recommends but does not apply for supply chain de-
sign (Saleh et al., 2010)

Fuller application for
supply chain design
and understanding of
the impact of time-
varying parameters

Describing Function Continuous
Discontinuous
Single-valued
Multi-valued

Less accurate when
nonlinearities contain
higher harmonics
Analysis of systems
with periodic or Gaus-
sian random input
only

None identified Full application for
understanding the
impact of discon-
tinuous, single- and
multi-valued nonlin-
earities present in
supply chain models

Small Perturba-
tion Theory with
Volterra/Wiener
series expansion

Continuous
Multi-valued

Assumption that the
amplitude of the excita-
tion signal is small
Difficulty in calculating
the kernels and opera-
tors of the system, mak-
ing it impractical for
high order systems

None identified

Averaging and best-fit
line approximations

Continuous
Discontinuous
Single-valued
Multi-valued

Gross approximation of
real responses
Only when better esti-
mates are not possible

Testing supply chain re-engineering strategies (Wikner
et al., 1992)
Identifying analogies between seemingly different de-
cision rules (Naim et al., 2012)

G
ra
p
h
ic
al

an
d

n
u
m
er
ic
al

m
et
h
o
d
s Phase Plane and

Graphical Solutions
Continuous
Discontinuous
Single-valued
Multi-valued

Limited to 1st and 2nd
order systems

None identified

Point transformation
method

Discontinuous
Single-valued
Multi-valued

Piecewise linear sys-
tems only
For high order systems,
automated numeri-
cal methods must be
employed

Exploring nonlinear behaviour of inventory systems
(Wang et al., 2014)

E
x
ac
t

so
lu
ti
on

s Direct Solution Continuous
Single-valued

Limited to a finite num-
ber of equations

None identified

C
om

p
le
x
an

d

d
et
ai
le
d
m
et
h
o
d
s Lyapunov-based

stability analysis
for piecewise-linear
systems

Discontinuous
Only single-
valued ex-
amples were
found

Piecewise linear sys-
tems only
Computation can be
complex depending on
the system

Stability analysis of inventory systems (Wang and Dis-
ney, 2012)

S
im

u
la
ti
on

Computational and
Simulation solutions

Continuous
Discontinuous
Single-valued
Multi-valued

‘Trial and error’ ap-
proach, wide spectrum
of control parameters.
Can be time consuming
Dependent on computer
and software calcula-
tions capacity

the effects of psychological pressure, misperceptions
and misjudgement in work environments (Sterman,
1989; Syntetos et al., 2011; Bruccoleri et al., 2014).
Shaping stability regions of nonlinear systems (Larsen
et al., 1999; Laugesen and Mosekilde, 2006)
Robust control of supply chain decision rules (Jeong
et al., 2000)
Bullwhip and backlash - (Shukla et al., 2009; Akker-
mans and Voss, 2013; Mula et al., 2013)
Effect of capacity and batching (Paik and Bagchi,
2007; Cannella et al., 2008; Hamdouch, 2011), inac-
curacies of inventory (Cannella et al., 2015), reverse
logistics (Turrisi et al., 2013)
Improve nonlinear systems performance (Spiegler and
Naim, 2014)

Application for cross-
checking results ob-
tained via analytical
methods

In contrast, there is limited research on the use of analytical methods. Many of the

analytical studies on nonlinear system dynamics were undertaken in the same decade For-

rester launched the World Dynamics model (Forrester, 1971), which is a simpler model when
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comparing to the production-distribution model. Cuypers (1973) used averaging techniques

for linearising discontinuous nonlinearities in the World Dynamics model. One year later,

numerical perturbation techniques and model simplification, involving the removal of vari-

ables with little variation, were also explored (Cuypers and Rademaker, 1974). Ratnatunga

and Sharp (1976) proposed the use of numerical analysis to linearise and reduce orders of

system assuming that nonlinear associations can be approximated to a first order function.

Mohapatra (1980) identified and categorised different types of nonlinearities in business sys-

tem dynamics research. Although his work recommends a number of techniques to deal with

nonlinearities, there is no implementation of such methods in the paper.

Within a supply chain management context, Wikner et al. (1992) undertook in-depth

analysis of the complex Forrester production-distribution model (1961). By using averaging

techniques and block diagram manipulation, they linearised and simplified the original model

and provided more qualitative analytical insights. For example, they highlighted the lack

of feedback information fed into the manufacturing rate and the separation of ‘real’ and

‘safety’ orders. By following the same simplification and linearisation steps, Naim et al.

(2012) achieved the same result for the discrete z-domain model. In contrast, instead of

using an averaging technique, Jeong et al. (2000) used small perturbation theory to linearise

the continuous nonlinearities in the Forrester model and Matsubara’s time delay theorem to

obtain a first-order delay approximation to represent an upstream echelon.

Another advocate of the use of analytical methods rather than just the use of exhaustive

repeated simulation are Saleh et al. (2010). They suggest the use of small perturbation theory

to perform structured policy analysis. However, their analytical framework disregards the

presence of discontinuous nonlinearities. On the other hand, Wang and Disney (2012) and

Wang et al. (2014) used graphical and eigenvalue methods to explore stability boundaries of

a piecewise linear inventory control system and to identify a set of behaviours in the unstable

region. Their work is limited to the analysis of a single-valued discontinuous nonlinearity

given by a non-negative constraint on the replenishment order.

Our paper specifically addresses the gap in the use of describing functions in supply chain

dynamics modelling to analyse both single- and multi-valued discontinuities. Moreover, our

work focuses on understanding behaviour within the system’s stable region. In analysing the

full set of nonlinearities we find in the Forrester model we couple describing functions with
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small perturbation theory using Taylor series expansion. Although Saleh et al. (2010) recom-

mend the use of small perturbation theory, application of this method has only been found

in Jeong et al. (2000) to linearise the continuous, single-valued nonlinearities in the Forrester

model. Despite their efforts to linearise part of the model, they use solely simulation meth-

ods to analyse the effect of different capacity levels, or discontinuous nonlinearities, in the

factory’s production rate. Due to their lack of explicit research objectives and methodolog-

ical structure, their contribution to supply chain dynamics research is unclear and perhaps

explains the lack of citation to their paper. As we will see, the small perturbation theory

will overcome the accuracy disadvantages seen in the use of averaging techniques previously

utilised in supply chain modelling by Wikner et al. (1992); Naim et al. (2012).

Although system design is not within the scope of this paper, the system’s transfer

functions, damping ratio and natural frequencies will be presented for future evaluation of

the impact of each control parameter on the supply chain performance. After linearisation

is performed, the reader can refer to Saleh et al. (2010) and other relevant works (Disney

et al., 2006; Ouyang and Daganzo, 2008; Zhou et al., 2010) for robust analysis and design of

linear models.

3. Previous simplification and linearisation of Forrester’s production-distribution

model

As previously mentioned, Wikner et al. (1992) endeavoured to gain more insights into the

Forrester model by a two-stage linearisation and simplification approach. More importantly,

their work translated the Forrester DYNAMO equations into Laplace domain block diagram

format to improve visibility of the model’s system structure. Figure 1 illustrates the block

diagram representation of a single echelon, namely the factory, of the Forrester model and

the steps taken by Wikner et al. (1992) in simplifying the original model. Appendix A in the

supplement file contains the listing and explanation of constants, variables and equations.

As is commonly found in such research a single-echelon as the unit of analysis suffices in

determining the structural causes of the bullwhip effect (e.g. Disney et al. 2006; Ouyang and

Daganzo 2008).

The first step taken by Wikner et al. (1992) was to translate the original DYNAMO

equations into a control engineering block diagram representation and to identify any non-
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(c) Step 3: Simplification through block diagram manipulation

Figure 1: Wikner at al. (1992) approach for simplifying Forrester model

linearities as shown in Figure 1(a). Then they removed the discontinuous nonlinearities,

represented by the CLIP functions ( ), by assuming that the capacity limitations in man-

ufacturing (AL) and shipping (IA) are never attained under ‘normal’ operating conditions,

so that the wanted manufacturing rate is equal to the actual one (MW=MD) and shipments
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tried are equal to shipments sent (ST=SS) at all times. Note that while AL is a fixed capacity

constraint IA is variable.

The continuous nonlinearity, caused by the nonlinear comparator ratio ( Π ) in defining

the delay in filling orders (DF), was considered the average value of this delay and then kept

fixed as shown in Figure 1(b), Step 2. Lastly in Step 3, by block diagram manipulation

Wikner et al. (1992) collected constants and eliminated redundancies in the original model,

resulting in the final block diagram of Figure 1(c). Step 3 is further explained in Section

4.1.1.

The resulting model highlights the lack of feedback information fed into the manufactur-

ing rate (MD) and reveals a separation between ‘real’ and ‘safety’ orders. Hence, Wikner

et al. (1992) showed that the so-called ‘Forrester effect’, in which orders are amplified from

sink to source, is not due to linear feedback control but due to a first-order derivative term,

s, in the feedforward path. As their study was focused on the bullwhip effect, the main

problem with their model is that while accuracy is kept for analysing the manufacturing

rate, their linearised and simplified model is less reliable for analysing inventory (IA) and

shipments (SS) responses due to the use of averaging techniques for linearisation.

In this work we will show that it is possible to use Taylor series expansion to repre-

sent some of the nonlinearities present in the original model and linearise it with small

perturbation theory to get better accuracy. Moreover, we do not neglect the presence of

CLIP functions and we investigate their effect in the overall response of the model with the

describing function method.

4. Our approach to simplification and linearisation

Wikner et al.’s (1992) approach consisted of conducting linearisation before simplification,

as also seen in Jeong et al. (2000); Naim et al. (2012). However, causal relationships between

certain variables may be lost during the linearisation process. For instance when cross-

referencing Figures 1(a) and 1(b) of Wikner et al.’s (1992) model, the effect of IA and AI

(constant for inventory) on SS has been omitted after linearisation. Hence, we propose that

models should be simplified first, by eliminating all redundancies whenever possible. Then

later, having clearer visibility of the inherent model structure, analysis and synthesis of the

nonlinear elements are undertaken.
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To summarise, Figure 2 illustrates the steps taken in this paper to simplify and linearise

the original Forrester model in comparison to the approach used by Wikner et al. (1992).

We start by taking the Forrester model equations and representing them in block diagram

form. Then we take two steps to simplify the model: block diagram manipulation to remove

redundancies found in the original model and low order modelling to reduce the order of the

differential equation. Next, the linearisation process is initiated by identifying the types of

nonlinearities present in the simplified model. Later, we use small perturbation theory to

linearise continuous nonlinearities and describing functions to analyse discontinuous nonlin-

earities. Finally, we compare our simplified, low order and linearised model with the original

Forrester and Wikner et al.’s (1992) models.

Block diagram 
representation

Block diagram 
manipulation

Low order 
modelling

Classifying 
nonlinearities

Small 
Perturbation 

Theory
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Original nonlinear
high-order 
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N

Conclusions

Comparison

Figure 2: Research method

4.1. Simplification

In this section, we explain in detail how block diagram manipulation and low order

modelling techniques can help simplify the Forrester model.
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4.1.1. Block diagram manipulation

The original block diagram of Figure 1(a) can be manipulated so that redundancies are

removed and constants are collected as given in Figure 3(a). The sequence of steps taken

were:

Redundancy 1: calculation of actual pipeline orders in transit (LA). The figure shows that

the information about manufacturing orders (MO) is being added and reduced at the

same time when calculating LA; therefore the information about MO is redundant in

the determination of LA.

Collecting Constants: gathering constants from the output variable in the summing com-

parator SUM1. In the SUM1 expression, all the constants that multiply the variable

smoothed requisition orders (RS) were combined together and called K, which is equal

to DC +DP −DH −DU + AI.

Redundancy 2: calculation of the output variable in the summing comparator SUM2. In the

calculation of SUM2 both shipment received (SR) and shipment sent (SS) information

is found to be redundant; therefore, they can be removed at that summation point.

After removing all the redundancies and combining the constants in K, the block diagram

in Figure 3(b) is then presented. Note that the resulting simplified non-linear model in Figure

3(a) provides exactly the same responses as in the original model. No variable interactions

were lost in this simplification process. Moreover, it can now be seen that the Forrester

model contains a feedback loop in the manufacturing order rate (MD) but only to provide

information regarding the manufacturing capacity. If the system cannot manufacture the

amount wanted in a particular time period, this information is then fed back so that these

orders can be produced later. However, if the capacity limitation is never reached, this

feedback information is not needed and hence it can be ignored. As also evidenced by

Wikner et al. (1992) inventory information is not fed back into manufacturing orders.

4.1.2. Low order modelling

A high-order control system often contains poles that produce little effect on the transient

response. In the pipeline of Figure 3(b), represented by the sixth-order transfer function
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Figure 3: Simplification process of Forrester model

⇣
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1
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3
s

⌘3

, with selected parameter settings (DC = 1 and DP = 6), the delay

DC has little impact on the transient response of the pipeline. This is due to the position

of the poles in the s-plane. The reader can refer to Appendix B in the supplement file to

review the methods suggested by Towill (1981) and Kuo and Golnaraghi (2003). The former

method is extended from the time delay theorem developed by Matsubara (1965). This

method attempts to determine a low-order model based on the system unit step response
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and has already been used by Jeong et al. (2000) to approximate high-order delays in the

Forrester model. Kuo and Golnaraghi (2003) recommend a method proposed by Hsia (1972)

that approximates a high-order system to a low-order model by approaching their frequency

responses.

We compared the Matsubara and Hsia methods to find the best low order model of the

Forrester pipeline, and we found that Matsubara method provides better results for both

step and sinusoidal inputs. For this reason , we use the Matsubara method for simplifying

the Forrester model further. Hence, in the following analysis we consider the Matsubara

first-order plus dummy pole pipeline approximation in the form of TM(s), which is:

TM(s) =
1

(

1 + DP

3
s
)

.
⇥

1 + (DC + 2
3
DP )s

⇤ (1)

The derivation of Equation 1 can be found in subsection a) of Appendix B in the sup-

plement file.

4.2. Linearisation and quasi-linearisation

In this section, analysis of the nonlinearities in the Forrester production-distribution

model will be undertaken. We analyse the continuous and discontinuous nonlinearities sep-

arately since each of them requires different linearisation methods.

4.2.1. Analysis of continuous nonlinearities

We start our analysis by temporarily assuming that the CLIP functions are not active

(Figure 4). In other words, the manufacturing rate decision will be equal to the manufactur-

ing rate wanted, MD=MW, and the shipment sent will be the same as the shipment tried,

SS=ST, independent of actual inventory levels.

Hence, the system in Figure 4 can be described by the system of differential equations

(Equations 2-8), where ṙs, ṙss, ṁdd, ṡr, u̇o and i̇a are the state variables, ẋ = f(x, u), of the

system and rr is the system input, u. Note that, since the six-order pipeline was replaced

by the lower-order equation in Equation 1, four other states have been excluded. The state

variables rss and mdd, representing dummy variables RSS and MDD respectively, have been

added to help derive the state variable equations below:
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Figure 4: Forrester model: low-order simplified and with continuous nonlinearities only

ṙs = f1(x, u) =
rr − rs

DR
(2)

ṙss = f2(x, u) =
rs− rss

DI
(3)

ṁdd = f3(x, u) =
3K.rs

DI.DP
−

3K.rss
DI.DP

−
3mdd
DP

+
3rr

DP
(4)

ṡr = f4(x, u) =
3(mdd − sr)

3DC + 2DP
(5)

u̇o = f5(x, u) = rr − ss = rr −
uo.ia

AI.DU.rs+DH.ia
(6)

i̇a = f6(x, u) = sr − ss = sr −
uo.ia

AI.DU.rs+DH.ia
(7)

rs(0) = a(0) = b(0) = sr(0) = rr(0), ia(0) = AI.rr(0),

uo(0) = (DH +DU)rr(0) (8)

The outputs, y = g(x, u), of interest are the manufacturing rate, MD, the actual inven-

tory levels, IA, and shipment sent, SS. In addition to these outputs, it is interesting to

know how the time-varying parameter DF will be affected after the linearisation.
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md = g1(x, u) = rr +
K.rs

DI
−

K.rss
DI

(9)

ss = g2(x, u) =
uo.ia

AI.DU.rs+DH.ia
(10)

ia = g3(x, u) = ia (11)

df = g4(x, u) =
AI.rs

ia
.DU +DH (12)

The mathematical model above is nonlinear due to the presence of nonlinear algebraic

differential equations, which in the block diagram are represented by the symbol Π . The

overall model can be linearised about a nominal operating state space x∗ and for a given input

u∗ by using small perturbation with Taylor series expansion. The first order Taylor series

approximation of the nonlinear state derivatives leads to the following linearised function:

∆ẋ = A∆x+B∆u (13)

∆y = C∆x+D∆u (14)

where ∆x = x−x∗, ∆y = y−y∗, ∆u = u−u∗. The equilibrium or resting points (x∗, u∗) can

be determined by the final value theorem and A, B, C, D can be found through the partial

derivatives of the state space equations, which result in the matrix given by Equation 15.

Equation 15 can then be converted back to a block diagram representation as in Figure 5.

Note that, in the resulting matrix only DF is input-dependent, and hence it could not be

represented in the block diagram of Figure 5.
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When comparing Figures 4 and 5, it can be seen that after linearisation the product

functions ( Π ) are replaced by summing comparators ( Σ ) after linearisation. Moreover, the

system transfer functions can now be determined and linear control theory can be used for

analysing the impact of each control parameter and improving system design (please refer

to Appendix C in the supplement file). The separation between ‘real’ and ‘safety’ orders is

well evidenced in the MD transfer function in Equation C1. Hence, bullwhip does not occur

due to feedback control, but due a derivative term in the numerator of the transfer function.

Σ

Pipeline
RS

UO

IA

SR

AI
ID -- +

+

K.s
RR A

ST = SS

Σ

Σ

Σ

Σ

+

+

+

MW=MD

+
+

-

Figure 5: Forrester model: Simplified and linearised with small perturbation theory

Figure 6 illustrates unit step and sinusoidal responses in changes in manufacturing rate

(∆MD), inventory (∆IA) and shipment sent (∆SS) from their initial states and the delay

in filling orders (DF ), comparing the output responses of the original model with averaging

(Wikner et al., 1992) and small perturbation linearisation techniques. Figure 6 demonstrates

the power of small perturbation theory for the analysis of continuous nonlinearities. Accuracy

is increased as the amplitude of the input signals is decreased although in all cases the small

perturbation theory approach gives a better approximation than the averaging method.

4.2.2. Analysis of discontinuous nonlinearities

Now we re-insert the CLIP functions into the linearised model resulting in Figure 7. Note

that when re-inserting the CLIP functions, two feedback loops have also been re-instated.

We then analyse each of the discontinuous nonlinearities separately.

Manufacturing constraint: if a sinusoidal input, MW

MW (t) = A.cos(ωt) + B (16)

with amplitude A, mean B and angular frequency, ω = 2π/T , is the input into the nonlinear-

16



10 20 30 40 50

-1.0

-0.5

0.0

0.5

1.0

0

10 20 30 40 50

-4

-2

0

2

4

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 10 20 30 40 50
1.0

1.5

2.0

2.5

3.0

5 10 15 20 25 30

-2

-1

0

1

2

5 10 15 20 25 30

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

5 10 15 20 25 30

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 5 10 15 20 25 30
1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

Manufacturing rate (MD)

Actual inventory (IA)

Shipment sent (SS)

Delay in filling order (DF)

Forrester Model Linearised Wikner et al. Model

time

time

time

time

time

time

time

time
Δ

M
D

M
D

Δ
IA

IA

Δ
S

S

S
S

D
F

D
F

N
N

N

Figure 6: Comparing Forrester, Wikner et al.’s (1992) and linearised model using small per-
turbation theory

ity, which consists of a saturation function with a maximum limit value AL, an output MD

will result. MD does not depend on the past values of the input MW, but it varies according

to the actual state of MW. Although the function is nonlinear, it can be represented by two
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Figure 7: Forrester model: Simplified, containing only discontinuous nonlinearities

piecewise linear equations:

MD(t) =

8

>

<

>

:

MW (t) if MW < AL

AL if MW ≥ AL
(17)

By investigating the block diagram again in Figure 7, it is clear that if the output MD

differs from demand RR, this error will be accumulated due to the presence of an integrator

1/s in the feedback loop. Hence, the manufacturing rate, MD, will only align with the demand

if the manufacturing capacity AL is at least equal to the average demand. If manufacturing

capacity is less than the required demand, RR, then the manufacturing wanted, MW, will

increase exponentially and the system will never stabilise.

In order to investigate the impact of discontinuous nonlinearities in feedback systems, we

can use the describing function method, which is a quasi-linear representation for a nonlinear

element subjected to a sinusoidal input.

For asymmetric nonlinearities at least two terms of the describing function are needed:

one that describes the change in the output amplitude (NA) as the input amplitude increases

or the saturation value decreases, and another term that determines the change in the output

mean (NB). We can also investigate the change in phase angle (φ) of the output response in

relation to its input. Given MW as input, the output MD can be approximated to:

MD(t) = NA.A.cos(ωt+ φ) +NB.B (18)

In order to determine the terms of the describing function (NA, NB and φ) the series
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have to be expanded and its first harmonic coefficients must be determined. The Fourier

series expansion method is used to represent the output MD as a series such as:

MD(t) ≈ b0 + a1cos(ωt) + b1sin(ωt) + a2cos(2ωt) + b2sin(2ωt) + · · · =

≈ b0 +
∞
X

k=1

[akcos(k.ωt) + bksin(k.ωt)] (19)

where ak, bk and b0 are the Fourier coefficients and MD is the piecewise linear function given

in Equation 17.

If we approximate the piecewise linear output MD to the first harmonic, we have:

MD(t) = b0 + a1cos(ωt) + b1sin(ωt) = b0 +
q

a21 + b21 .cos(ωt+ φ) (20)

where, φ = arctan
⇣

b1

a1

⌘

In this way the two terms of the describing function can be determined as:

NA =

p

a21 + b21
A

(21)

NB =
b0
B

(22)

For single-valued nonlinearities the coefficient b1, the imaginary part of the describing

function, will be equal to zero and therefore the phase angle will be also zero. Hence, for the

asymmetric saturation in the Forrester system it is found that:

NA =
−γ + π + cosγ.sinγ

π
(23)

NB =
B.π + A.γ.cosγ − A.sinγ

B.π
(24)

where γ = cos−1
(

AL−B

A

)

.

Figure 8 illustrates how the coefficients of the describing function for the manufacturing

capacity vary as the amplitude of manufacturing wanted rate, AMW , increases. For ampli-

tudes lower than the capacity, AL, the system behaves as linear and output MD will be equal

to the input MW corresponding to a describing function gain equal to 1. However, when

MW hits the capacity AL we have to consider that only a fraction of this rate will actually
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be manufactured.
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Figure 8: Terms of describing function for MD with asymmetric saturation

Figure 9 demonstrates the changes in the sinusoidal responses of the change in manufac-

turing orders (∆MD) comparing the original Forrester model with Wikner et al.’s (1992)

model and the describing function method for different frequencies, noting the different scales

in the x-axis. Again we have found a better linear approximation for the original model.

Shipment constraint: the CLIP function in the shipment system is used to avoid any

shipments being made to customers if no inventory is actually available. Hence, shipments

sent, SS, will be equal to shipment tried, ST, only if actual inventory, IA, is greater than

ST.

This second nonlinearity is different from the discontinuity in the manufacturing system

in that it is not only amplitude-dependent but also frequency-dependent. In Figure 10, we

explore a set of system responses for inventory and shipments for different amplitude and

frequencies, again noting the different scales in the x-axis. In the example in Figure 10,

it seems that higher frequencies and lower amplitudes (Figure 10a) result in a seemingly

linear response. Hence, SS will be equal to ST, corresponding to a describing function of 1.

However, for lower frequencies and increased amplitude (Figure 10d), the shipment capacity

is reduced and a complex nonlinear behaviour is observed. Figure 10 also illustrates that

this nonlinearity is multi-valued, as may be noted by the insets on the top right corner of

each figure, which shows the variations in the output amplitude, on the y-axis, for a given

input amplitude, on the x-axis. For a given input ST the output SS can assume different

values depending on the past states of ST.
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Since this discontinuous nonlinearity is frequency-dependent, there will be one describ-

ing function for each frequency. We used Matlabr combined with Simulinkr to find the

describing function corresponding to the amplitude gain and also to identify the phase shift,

resulting in Figure 11.

Figure 11 confirms that the nonlinearity in the shipment process only occurs for very

low frequencies and high amplitudes. Another important factor is regarding the target

inventory, AI, as inventory levels decrease the nonlinearity becomes more pronounced. With

the nominal values for AI in the Forrester model set between 4 to 8 weeks, then the Wikner

et al. (1992) representation is reasonable because the CLIP function will only take effect at

extremely low frequencies and high demand amplitudes. The system designer does not have

to be concerned with the shipment constraint when demand has medium to high frequencies

and low amplitudes.
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Figure 11: Describing Function amplitude gain and phase in relation to ST amplitude and
frequency

In Figure 12 we compare the change in shipment sent, ∆SS, due to sinusoidal inputs of

two distinct frequencies, of the original Forrester model, the Wikner et al.’s (1992) repre-

sentation and the describing function method when the system reaches steady state. The

amplitude is fixed to 2 for both cases. Note that for this comparison we have set the value of
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AL to a high enough value so that the manufacturing constraint is inactive and MD=MW.

For both responses in Figure 12 the describing function method provides a better approxima-

tion to the Forrester model response than that achieved by Wikner et al. (1992). Although

the differences between the three models are not significant, the describing function method

provides a better understanding of the shipment constraint in relation to its effect on the

output phase and amplitude shift for certain input frequencies and amplitudes.
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Figure 12: Comparing Forrester, Wikner et al.’s (1992) and quasi-linearised models using a
Describing Function for SS with AL such that MD=MW

Finally, Figure 13 illustrates the change in inventory (∆IA) when all discontinuous non-

linearities are in effect. The inventory response given by the Forrester model does not return

to the target value, ∆mean=0, due to the capacity constraints. Our model was able to

track this behaviour, while the Wikner et al.’s (1992) model was incapable of replicating

the original behaviour since they disregarded the CLIP functions. As the demand frequency

decreases and amplitude increases the nonlinear responses in the original Forrester become

more acute and hence the Wikner et al.’s (1992) linearised model becomes less accurate.

Further analysis can be undertaken using the describing function method to design sup-

ply chain systems. Appendix D in the supplement file explains how to use the root locus

technique in combination with the describing function method to predict the effect of dis-

continuous nonlinearities on the system’s natural frequency (ωn) and damping ratio (ζ). ωn

determines how fast the system oscillates during the transient response, while ζ describes

how much the system oscillates as the response decays towards steady state.

We found that while both manufacturing and shipment capacity constraints equally de-

crease ωn, the manufacturing capacity has the most significant impact on ζ by damping the

23



system’s response and making it slower. Hence, the nonlinearity present in the shipment

process is not much of a concern for the supply chain designer.

5. Conclusion

To date, simulation techniques have been mainly used to deal with the dynamics of

complex, nonlinear supply chain systems. However, this research suggests a more rigorous

approach that permits mathematical analysis of nonlinearities as precursor for simulation

experiments and any subsequent robust system optimisation.

For this reason this research identified and categorised the different types of nonlinearities

that may appear in supply chain dynamics models in order to suggest suitable analytical

methods for investigating each type of nonlinearity. Moreover, simplification techniques have

also been used to reduce model complexity and to assist in gaining system dynamics insights.

Hence, another outcome of this research was the development of a methodological framework

to obtain more accurate simplified linear representations of complex nonlinear supply chain

models by using nonlinear control theory. Better accuracy of our proposed approach is a

result of firstly simplifying the original model so that complexity can be removed (Figure 14).

This step facilitated the application of advanced linearisation methods that improved the

precision of the system’s responses and the understanding of the impact of each nonlinearity

on the system’s behaviour.

The well-known Forrester model has been used as a benchmark supply chain system
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to study nonlinear control structures and to experiment with the application of low order

modelling, small perturbation and describing function methods. In this model, we have

identified all types of nonlinearities, although not all combinations of nonlinearities. Contin-

uous nonlinearities were used by Forrester to represent a time-varying parameter: delay in

filling order (DF), which increases substantially as inventory approaches zero. Discontinuous

nonlinearities were used to represent manufacturing and shipment constraints. Both types

of nonlinearities can be represented by piecewise linear functions. Single-valued nonlinear-

ities were used to represent fixed capacity values in the manufacturing while multi-valued

nonlinearities emerged from variable capacities in shipments. Performances of the linearised

models have been compared with numerical solutions of the original Forrester model. More-

over, these techniques have also been compared to simple averaging and best-fit line ap-

proximation advocated and applied by previous research (Wikner et al., 1992; Naim et al.,

2012).

The use of this approach brought a number of insights to bear on the understanding of the

system dynamics behaviour and how each nonlinearity affects responses. Table 2 summarises

the analytical insights obtained with the use of nonlinear control theory, the suggestions for

further simulation experiments and the possible implications of not conducting a mathemat-

ical analysis before simulation.

The simplification techniques, such as block diagram manipulation and low order mod-

elling, have contributed to providing a better visualisation and understanding of the variable

interactions in the model. Moreover, by reducing the number of equations and orders, these
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Analytical insights Proposed simulation experiments Potential consequences if not un-

dertaken
B
lo
c
k
d
ia
g
r
a
m

m
a
n
ip
u
la
ti
o
n

• Better visualisation and under-
standing of the model’s relevant
variables, constants and their re-
lationship.

• Since system policies can be more eas-
ily identified, simulations can be car-
ried out only for specific control param-
eters.

• Simulation would be a slow process
since the relationships between vari-
ables were not well understood.

Example 1: It has been identified that no inventory information is fed back to the ordering policy and that
bullwhip is not caused by feedback loops.
Example 2: The only feedback information in the ordering process is due to the manufacturing capacity
Example 3: It has been identified that in the Forrester model there is a target value for unfilled orders.
• Reduction of equations, which
enabled the application of small
perturbation theory and describ-
ing functions techniques.

• Simulations were undertaken with
original equations to compare results
with analytical, simplified and lin-
earised models.

• The linearisation process of the sys-
tem would be more difficult given the
number of equations.

Example 1: Eight variables were eliminated from the original Forrester model without any loss of accuracy.
• Better understanding of the de-
lays involved in the shipment re-
ceipt

• Sensitivity analysis via repeated sim-
ulations can be carried out to check the
impact of increased delays on system’s
performance

• Unnecessary simulations may be con-
ducted.

Example 1: It was found that both DC and DP have the same effect on the shipment receipt delay. Hence
there is no need to simulate different values for each parameter separately.

L
o
w

o
r
d
e
r

m
o
d
e
ll
in
g

• Reduction of order in the
pipeline which also contributes to
the application of small perturba-
tion theory and describing func-
tions techniques.

• Simulations were undertaken with
original equations to compare results
with analytical, simplified and lin-
earised models.

• Greater effort would be needed to ap-
ply more rigorous analytical methods.
High order models may demotivate the
researcher who may opt for a trial and
error approach.

Example 1: Three orders have been eliminated in this process without much loss of accuracy

S
m
a
ll
p
e
r
tu

r
b
a
ti
o
n
th

e
o
r
y

• Possibility to find system trans-
fer functions.

• Simulations can focus only on impor-
tant parameters for achieving desired
supply chain responses

• The understanding of the impact of
each control parameter using only sim-
ulation may be time-consuming.

Example 1: Analysis of the system transfer functions reveals that the parameter AI provokes conflicting impact
on inventory and unfilled order responses. Hence it should be investigated in greater depth in a simulation
process.
Example 2: Small values of DI and DR will generally increase speed of responses. Simulations can be used for
trade-off and sensitivity analysis.
• It is possible to find local sta-
bility boundaries

• Simulations can be undertaken only
within the pre-determined stability
boundaries

• Unnecessary simulations would be
carried out

Example 1: Analysis of the system transfer functions reveals that DR and DI should be positive control
parameters in order to reach stability

D
e
sc
r
ib
in
g
fu
n
c
ti
o
n
s

• Understanding the impact of
the different capacity constraints
(manufacturing and shipment)
and input amplitudes on system’s
damping ratio and natural fre-
quency.

• Simulations can be undertaken to
check whether the analysis gives correct
insights and more effort can be given to
check unexpected results.

• The understanding of capacity con-
straints, especially of shipments, can be
very difficult with sole use of simula-
tion.

Example 1: Analysis shows that manufacturing constraints always provoke negative impact on system’s damp-
ing ratio. Simulation can be used to further investigate this effect.
Example 2: Analysis showed that shipment constraint decreases the system’s natural frequency but slightly
improves the damping ratio. Simulation can be used to further investigate this effect.
• Understanding the impact of
different input frequencies on sys-
tem’s behaviour

• Simulations can be undertaken for
specific frequencies to confirm analyt-
ical insights.

• Several simulation experiments would
be necessary to gain the same insights

Table 2: Table of insights and further analysis
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techniques supported the application of small perturbation theory and describing functions

methods. Finally, these linearisation techniques provided further insights since they make

possible the calculation of the system transfer functions and local stability boundaries and

the understanding of how different capacity constraints impact on the system’s behaviour.

While simulation generates confidence, analysis breeds insights.

The methodological framework proposed by this work can guide researchers and practi-

tioners practitioners in undertaking comprehensive analysis and design of nonlinear dynamics

systems in a less time consuming and less resource intensive manner. Hence, research with

the aim of acquiring only exploratory knowledge of system dynamics may opt to conduct

a simulation-only approach. In the search for deep understanding, many of the simula-

tion studies reviewed in Table 1 could benefit from simplification methods to reduce the

complexity of their models when the number of variables and parameters is too large. For

supply chain dynamics studies considering more than one echelon, analysis can be firstly

undertaken for a single echelon to gain preliminary insights on the existing underlying mech-

anisms. These simplification techniques will then facilitate the application of linearisation

methods that will provide more insights into understanding the systems behaviour and how

nonlinearities affect system responses. Further investigation and results confirmation can

then be more easily undertaken via simulation and consequently leading to a more complete

system design.

This research is limited to the dynamics of single-echelon supply chain systems and

focused on the analysis of each nonlinearity individually. Further research, motivated by

the analytical research and due consideration of the literature review, could include in-depth

analysis of system stability and limit cycles via describing function and identification and

investigation of other combination of nonlinearities, such as continuous and multi-valued

requiring the Volterra-Wiener series expansion method.
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Appendix A. Forrester Industrial Dynamics Model: Equations and Parameters

Equations used in the DYNAMO program (factory echelon)

RR.KL =

8

>

<

>

:

RRI, if t ≤ 0

RRI + STEP, if t > 0
(A.1)

UO.K = UO.J + (DT )(RR.JK − SS.JK) (A.2)

IA.K = IA.J + (DT )(SR.JK − SS.JK) (A.3)

ST.K = UO.K/DF.K (A.4)

NI.K = IA.K/DT (A.5)

SS.KL = CLIP (ST.K,NI.K,NI.K, ST.K) (A.6)

DF.K = (ID.K/IA.K)(DU) +DH (A.7)

ID.K = (AI)(RS.K) (A.8)

RS.K = RS.J + (DT )(1/DR)(RR.JK −RS.J) (A.9)

MW.K = RR.KL+ (1/DI)(ID.K − IA.K + LD.K − LA.K + UO.K − UN.K) (A.10)

MD.KL = CLIP (MW.K,AL,AL,MW.K) (A.11)

LD.K = (RS.K)(DC +DP ) (A.12)

LA.K = CP.K +OP.K (A.13)

UN.K = (RS.K)(DH +DU) (A.14)

CP.K = CP.J + (DT )(MD.JK −MO.JK) (A.15)

MO.KL = DELAY 3(MD.KL,DC) (A.16)

OP.K = OP.J + (DT )(MO.JK − SR.JK) (A.17)

SR.KL = DELAY 3(MO.KL,DP ) (A.18)

Variables used in the DYNAMO program (factory echelon)

CP clerical in-process orders NI negative inventory limit rate
DF delay (variable) in filling orders OP orders in production
IA inventory actual RR requisition (orders) received
ID inventory desired RS requisition (orders) smoothed
LA pipeline orders actual in transit SR shipment received inventory
LD pipeline orders desired in transit SS shipment sent
MD manufacturing rate decision ST shipping rate tried
MO manufacturing orders UN unfilled orders normal
MW manufacturing rate wanted UO unfilled orders

Constants used in the DYNAMO programme (factory echelon)
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AI=4 constant for inventory
AL=1000(RRI) constant specifying capacity limit *
DC=1 delay clerical
DH=1 delay due to minimum handling time
DI=4 delay in inventory/pipeline adjustment
DP=6 delay in production lead time
DR=8 delay in smoothing requisitions
DU=1 delay, average, in unfilled orders
DT=1 solution time interval
RRI=1000 initial value of demand *
STEP=100 requisition step change *

* Different values of AL were considered when evaluating the impact of manufacturing constraints.
**Author used standard unit step input in order to compare simulation and mathematical results.

Initial conditions in the DYNAMO programme (factory echelon)

SS=RR IA=AI.RR
MD=RR CP=DC.RRI
RS=RRI OP=DP.RRI
UO=RRI (DH+DU)
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Appendix B. Low order modelling

Let a high-order system be represented by a transfer function in the following form:

T (s) =
1 + b1s+ b2s

2 + · · ·+ bqs
q

1 + a1s+ a2s2 + · · ·+ ansn
(B.1)

The low order model will then be:

TM (s) =
1 +B1s+B2s

2 + · · ·+ bQs
Q

1 +A1s+A2s2 + · · ·+ANsN
(B.2)

so that Q ≤ q and N must be less than n.

a) Matsubara time delay theorem for low order modelling

This method initially involves choosing the poles nearest to the imaginary axis to determine TM (s).

However, the Matsubara time delay theorem is also incorporated to compensate for inaccuracies in the low

order model. This gives us the following model:

TM (s) = e−τs

✓

1 +B1s+B2s
2 + · · ·+ bQs

Q

1 +A1s+A2s2 + · · ·+ANsN

◆

(B.3)

where τ is a time delay in the response which is determined by matching the system and model step responses

according to the integral of error from time zero to infinity. In other words, the area D, between the input

and output lines in the system, T (s), should match the respective area in the low order model, TM (s). This

area can be found by calculating the integral of error from time zero to infinity as:

D =

Z ∞

0

[input(t)− output(t)]dt (B.4)

For a unit step input, the Laplace transform of the above equation we have

D =
1

s



1

s
−

T (s)

s

]

(B.5)

where T(s) is the transfer function of the high order system in Equation B.1. Replacing this general form of

transfer function results:

D =
1

s2



(a1 − b1)s+ (a2 − b2)s
2 + · · ·+ bqs

q

1 + a1s+ a2s2 + · · ·+ ansn

]

(B.6)

Using the final value theorem, it is obtained that the area between the input and output lines, D, in

the system is simply equal to (a1 − b1). Analogously, the corresponding area in the low order model will be

(A1 −B1), which is normally smaller than the area, (a1 − b1), in the system. Hence, adding the time delay

proposed by Matsubara, the relation (a1 − b1) = (A1 −B1) + τ is obtained.

In the Forrester pipeline we have:
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T (s) =
SR

MD
=

 

1

1 + DC
3 s

!3

.

 

1

1 + DP
3 s

!3

=

= 1

,

h

1 + (DC +DP )s+
⇣

DC2

3 +DC.DP + DP 2

3

⌘

s2 +
⇣

DC3

27 + DC2DP
3 + DC.DP 2

3 + DP 3

27

⌘

s3+

+
⇣

DC3DP
27 + DC2DP 2

9 + DC.DP 3

27

⌘

s4 +
⇣

DC3DP 2

81 + DC2DP 3

81

⌘

s5 +
⇣

DC3DP 3

729

⌘

s6
i

(B.7)

Hence, b1=0 and a1=DC+DP. In order to approach the system above to a first order model, we have to

choose one pole. This is normally the pole with the least magnitude. Assuming that DP is always greater

than DC we would choose then −3
DP

, as our initial pole. Hence the low order model will be:

TM 0(s) =
1

1 + DP
3 s

(B.8)

B1=0 and A1 = DP
3 . Since τ = (a1 − b1) − (A1 − B1), we can then find that the time delay will be:

τ = DC + 2DP
3 . Hence, the system can be better approached by

TMτ (s) = e−(DC+ 2
3DP)s

"

1

1 + DP
3 s

#

(B.9)

If for any reason it is necessary to avoid the time delay model TMτ (s) and a low-order model in the

form TM (s) is preferable, it is possible to adjust the model coefficients by placing a ‘dummy’ pole so that

(A1 −B1) = (a1 − b1) (Towill, 1981). However, by placing this ‘dummy’ pole, a minimum of a second order

model will be necessary. Hence, the first order low-order time delay model will become the following second

low-order model:

TM (s) =
1

(

1 + DP
3 s
)

.
⇥

1 + (DC + 2
3DP )s

⇤ (B.10)

b) Hsia Method for low order modelling

The approximation method proposed by Hsia (1972) is based on selecting Ai and Bi (see Equation ??),

in such a way that TM (s) has a frequency response very close to that of T (s). In other words, the magnitude

of the frequency function T (jω)
TM (jω) is required to deviate the least amount from unity for various frequencies.

Hence, the following relation should be satisfied:

|T (iω)|2

|TM (iω)|2
= 1, for 0 ≤ ω ≤ ∞ (B.11)

The ration T (s)/TM (s) can also be written as:
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T (s)

TM (s)
=

(1 + b1s+ b2s
2 + · · ·+ bqs

q)

(1 + a1s+ a2s2 + · · ·+ ansn)
.
(1 +A1s+A2s

2 + · · ·+ANsN )

(1 +B1s+B2s2 + · · ·+ bQsQ)

=
(1 +m1s+m2s

2 + · · ·+mus
u)

(1 + l1s+ l2s2 + · · ·+ lvsv)
(B.12)

where u = q +N and v = n+Q. Equation B.11 can be re-written as
|T (iω)|2

|TM (iω)|2
=

T (s)T (−s)

TM (s)TM (−s)

∣

∣

∣

∣

s=iw

=
(1 +m1s+m2s

2 + · · ·+mus
u)

(1 + l1s+ l2s2 + · · ·+ lvsv)
.
(1−m1s+m2s

2 + · · ·+ (−1)umus
u)

(1− l1s+ l2s2 + · · ·+ (−1)vlvsv)
(B.13)

This can be re-written in the form of

|T (iω)|2

|TM (iω)|2
= 1 +

(e2 − f2)s
2 + (e4 − f4)s

4 + · · ·+ (e2u − f2u)s
2u

1 + f2s2 + f4s4 + · · ·+ f2vs2v

∣

∣

∣

∣

s=iw

, if u=v (B.14)

Then, to satisfy the condition of Equation B.11, e2 = f2, e4 = f4, · · · , e2u = f2u should hold true.

However, if u < v, which it is in most practical cases, then we have that this formula will imply an error.

Given the conditions that e2 = f2, e4 = f4, · · · , e2u = f2u and Equation B.13, the unknown coefficients for

determining TM (s) once T(s) is given can be calculated by solving the system of non-linear equations.

When applying this method to find a first order approximation of Forrester’s pipeline, the value of

coefficient A1 of the following low-order model is to be found.

T
(1)
M (s) =

1

1 +A1s
(B.15)

Then, the next step is to find the ratio T (s)
TM (s) :

T (s)

TM (s)
=

1 +m1s

1 + l1s+ l2s2 + l3s3 + l4s4 + l5s5 + l6s6
(B.16)

where the coefficients li correspond to the coefficients ai of the system T (s) of Equation B.7 and m1 is equal

to the coefficient A1 of the low-order model in Equation B.15. Hence,

m1 = A1 (B.17)

l1 = DC +DP (B.18)

l2 =
DC2

3
+DC.DP +

DP 2

3
(B.19)
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l3 =
DC3

27
+

DC2DP

3
+

DC.DP 2

3
+

DP 3

27
(B.20)

l4 =
DC3DP

27
+

DC2DP 2

9
+

DC.DP 3

27
(B.21)

l5 =
DC3DP 2

81
+

DC2DP 3

81
(B.22)

l6 =
DC3DP 3

729
(B.23)

The magnitude ratio between the system and the model will then be:
|T (jω)|2

|TM (jω)|2
=

T (s)T (−s)

TM (s)TM (−s)
=

=
1 +m1s

1 + l1s+ l2s2 + l3s3 + l4s4 + l5s5 + l6s6
.

1−m1s

1− l1s+ l2s2 − l3s3 + l4s4 − l5s5 + l6s6

=
1 + e2s

2

1 + f2s2 + f4s4 + f6s6 + f8s8 + f10s10 + f12s12

(B.24)

where,
8

>

<

>

:

e2 = f2 = −m2
1 = −A2

1

f2 = 2l2 − l1 = 1
3 (−DC2 −DP 2)

(B.25)

By replacing the second equation in the first one, the first order model can be determined as:

TM (s) =
1

1 +
√
DC2+DP 2

√
3

s
(B.26)

Figure B.15 compares Matsubara and Hsia method for both step and sinusoidal inputs of Forrester

pipeline.
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Figure B.15: Comparing step and frequency responses of Hsia and Matsubara methods of
low order modelling

Appendix C. Transfer functions obtained via Small Perturbation Theory

From the linearised model represented in the block diagram of Figure 5, it is possible to determine the

system transfer functions in relation to the input demand or requisitions (RR). In order to simplify the

equations, the author has decided to separate the control parameters from the parameters that the supply

chain designer cannot select or control, such as physical parameters like delivery and manufacturing lead-

times. Other system dynamics researchers have done the same when equations become large and therefore

difficult to interpret (Towill, 1992; Wikner et al., 1992; Jeong et al., 2000). In the Forrester model, the

delay in smoothing requisitions (DR), the delay in inventory/pipeline adjustment (DI) and the constant for
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inventory (AI) are the control parameters and all the other parameters occur due to physical conditions.

By replacing the physical parameters with actual values given in Appendix A, the following transfer

functions can be determined:

MD
RR

= 1 + (5+AI)s
(1+DIs)(1+DRs) (C.1)

SR
RR

= 1+(5+AI+DI+DR)s+DIDRs2

(1+2s)(1+5s)(1+DIs)(1+DRs) (C.2)

(C.3)

SS

RR
=

✓

1 +AI + (5 + 7AI +DI +AIDI +DR+AIDR)s+ (3AI + 6AIDI + 7AIDI +DIDR+AIDIDR)s2+

(−10AI + 3AIDI + 10AIDR+ 7AIDIDR)s3 + (−10AIDI + 10AIDIDR)s4
◆

,

✓

(1 + 2s)(1 + 5s)(1 +AI

+2AIs)(1 +DIs)(1 +DRs)

◆

(C.4)

UO

RR
=

✓

2 + 2AI + (10 + 7DI + 7DR+AI(21 + 3DI + 2DR))s+ (10DI + 10DR+ 7DIDR+AI(30 + 21DI+

14DR+ 2DIDR))s2 + (10DIDR+ 2AI(15DI + 10DR+ 7DIDR))s3 + 20AIDIDRs
4

◆

,

✓

(1 + 2s)(1 + 5s)

(1 +AI + 2AIs)(1 +DIs)(1 +DRs)

◆

(C.5)

IA

RR
= AI(1+AI)+AI(5−4DI−5DR)s−5AIDI(DR−1)s2

(1+5s)(1+AI+2AIs)(1+DIs)(1+DRs)
(C.6)
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Appendix D. Analyses via Describing Function

In Figure 7, the system transfer functions can be found by replacing the CLIP functions with their respective

describing function gains. Let NA(MW ) and NA(ST ) be the gains caused by the discontinuities in the manufacturing

and shipment processes respectively. Therefore the new system characteristic equation can be determined as:

(1 + 2s)(1 + 5s)(1 +DRs)
(

(1 +AI)NA(ST ) + 2AIs
)

(NA(MW ) +DIs) (D.1)

Note that only two poles of the characteristic equation are affected by the discontinuous nonlinearities. Since

many high-order systems can be represented by a series of second and first order transfer functions (Srivastava et al.,

2009), the characteristic equation in Equation D.1 can be re-arranged as:

(1 + 2s)(1 + 5s)(1 +DRs)
⇣

NA(MW )NA(ST ) +AI.NA(MW )NA(ST ) + (2AI.NA(MW ) +DINA(ST ) +AI.DI.NA(ST ))s+ 2AI.DIs2
⌘

(D.2)

In this way, it is possible to determine the damping ratio, ζ, and the natural frequency, ωn of the second order

term in Equation D.2 as:

ωn =

r

(1 +AI)NA(WM)NA(ST )

2AI.DI
, ζ =

2AI.NA(WM) + (1 +AI)DI.NA(ST )

4AI.DI

q

(1+AI)NA(WM)NA(ST )

2AI.DI

(D.3)

By keeping the values of DI and AI fixed (DI = 4 and AI = 4, as given by Forrester), Table D.3 illustrates the

values of omegan and ζ as AMW and AST , increase. Figures 8 and 11 can be referred in order to check on the values

of the describing functions for a given input amplitude. Table D.3 shows us that the value of ωn decreases as both

AMW and AST increase. Regarding ζ, the system is slightly overdamped, ζ = 1.107, when linear (NA(MW ) = 1 and

NA(ST ) = 1). As the CLIP function becomes active and the gain in the manufacturing constraint, NA(MW ), decreases

the system becomes even more overdamped. On the other hand, as the input amplitude in the shipment constraint

(AST ) increases, the system in practice becomes critically damped with ζ = 1.006.

Table D.3: Effect of the CLIP functions on system’s natural frequency and damping ratio

AST
∗ ≤1.15 1.55 2.08 2.99 5.36 ∞

AMW NA(MW ) NA(ST )
∗∗ 1 0.9-0.083i 0.8-0.115i 0.7-0.114i 0.6-0.083i 0.5

≤AL 1
ωn 0.395 0.375 0.354 0.331 0.306 0.280
ζ 1.107 1.083 1.061 1.039 1.021 1.006

1.45AL 0.9
ωn 0.375 0.356 0.335 0.314 0.290 0.265
ζ 1.133 1.107 1.081 1.056 1.033 1.014

2.03AL 0.8
ωn 0.354 0.335 0.316 0.296 0.274 0.250
ζ 1.167 1.137 1.107 1.078 1.050 1.025

3.12AL 0.7
ωn 0.331 0.314 0.296 0.277 0.256 0.234
ζ 1.209 1.175 1.141 1.107 1.073 1.042

6.29AL 0.6
ωn 0.306 0.290 0.274 0.256 0.237 0.217
ζ 1.266 1.226 1.187 1.147 1.107 1.068

∞ 0.5
ωn 0.280 0.265 0.250 0.234 0.217 0.198
ζ 1.342 1.296 1.250 1.203 1.155 1.107

* Based on input frequency of 0.1Hz
** Imaginary parts cause little impact on the poles position and will be disregarded for further calculations
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