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Abstract

This thesis presents a detailed study of phenomena related to topological solitons (in 2-dimensions).

Topological solitons are smooth, localised, finite energy solutions in non-linear field theories.

The problems are about the moduli spaces of lumps in the projective plane and vortices on

compact Riemann surfaces.

Harmonic maps that minimize the Dirichlet energy in their homotopy classes are known as

lumps. Lump solutions in real projective space are explicitly given by rational maps subject

to a certain symmetry requirement. This has consequences for the behaviour of lumps and

their symmetries. An interesting feature is that the moduli space of charge 3 lumps is a 7-

dimensional manifold of cohomogeneity one. In this thesis, we discuss the charge 3 moduli

space, calculate its metric and find explicit formula for various geometric quantities. We discuss

the moment of inertia (or angular integral) of moduli spaces of charge 3 lumps. We also discuss

the implications for lump decay. We discuss interesting families of moduli spaces of charge

5 lumps using the symmetry property and Riemann-Hurwitz formula. We discuss the Kähler

potential for lumps and find an explicit formula on the 1-dimensional charge 3 lumps.

The metric on the moduli spaces of vortices on compact Riemann surfaces where the fields have

zeros of positive multiplicity is evaluated. We calculate the metric, Kähler potential and scalar

curvature on the moduli spaces of hyperbolic 3- and some submanifolds of 4-vortices. We con-

struct collinear hyperbolic 3- and 4-vortices and derive explicit formula of their corresponding

metrics. We find interesting subspaces in both 3- and 4-vortices on the hyperbolic plane and

find an explicit formula for their respective metrics and scalar curvatures.

We first investigate the metric on the totally geodesic submanifold Σn,m, n + m = N of the

ix



moduli space MN of hyperbolic N -vortices. In this thesis, we discuss the Kähler potential

on Σn,m and an explicit formula shall be derived in three different approaches. The first is

using the direct definition of Kähler potential. The second is based on the regularized action

in Liouville theory. The third method is applying a scaling argument. All the three methods

give the same result. We discuss the geometry of Σn,m, in particular when n = m = 2 and

m = n − 1. We evaluate the vortex scattering angle-impact parameter relation and discuss the

π
2

vortex scattering of the space Σ2,2. Moreover, we study the π
n

vortex scattering of the space

Σn,n−1. We also compute the scalar curvature of Σn,m.

Finally, we discuss vortices with impurities and calculate explicit metrics in the presence of

impurities.
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Chapter 1

Introduction

Although the name topological solitons was not mentioned, the idea of topological solitons

has its origins as far back as the work of Lord Kelvin to describe the knotted vortex model

of atoms [67]. Moreover, a theory in the 1920s by Dirac [12] is another example. Modern

topological solitons research began with Abrikosov vortices [1] in superconductors and the

Skyrme model [53,54]. Quantum field theory is a theoretical framework for constructing models

in theoretical physics (see for instance [49, 70]). This theory became popular in the 1950s

following the work of Feynman, Schwinger and Tomonaga. Physicists and mathematicians

started to exhibit the classical field equations in their fully non-linear form and they explained

some of the solutions as candidates for a particle of the theory.

Mainly, the topological behaviour of the field can be determined by the winding number N of

the field [36]. This winding number N is also called the topological charge or degree, and can

be considered as the net number of individual particles. A single particle, N = 1, is called a

topological soliton. The minimal energy field configuration for this case is smooth, classically

stable and concentrated in some finite region of space. In this sense, they behave like ordinary

particles. They are also stable solutions of systems of partial differential equations. The soliton

numbers are stable because they carry a topological charge N . Since the topological charge is
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a conserved quantity, a single soliton cannot decay, that is the soliton number is conserved due

to a topological constraint, such as a winding number [36].

A powerful result regarding the existence of topological solitons is Derrick’s theorem [11]. It

states that under spatial rescaling if there is no stationary point of the energy, as a function of

the scaling, then there are no non-vacuum solutions of the associated Euler-Lagrange equation.

In many field theories the variation of the energy functional against certain spatial re-scaling

is never zero for any static non-vacuum field configuration and therefore these theories do not

have localized solitons.

Bogomolnyi [5] showed for several field theories that the energyE and the topological chargeN

satisfy the inequalityE ≥ π|N |. This bound is known as the Bogomolnyi bound. Equality holds

if the fields, which minimize the energy, satisfy the Bogomolyni equations. Their solutions

are static and stable, and all solutions of the same charge have the same energy. These field

theories are called of Bogomolyni type, and the stable, static minimal energy solutions of the

Bogomolyni equations form a moduli space.

The classical low-energy dynamics of monopoles has been studied by Manton [30] using the

geodesic approximation. He conjectured that the N -soliton trajectories are approximated by

geodesics in the moduli space of static N -solitons with respect to the L2 metric induced by the

kinetic energy functional of the field theory. It was rigorously proven by Stuart [62] that the

approximation works. This idea was also extended by Ward [69] who exploited this approach

in order to understand the dynamics of N moving lumps by restricting the field dynamics to

MN . The geodesics on the moduli space MN of lumps, when traversed at slow speed, are the

low-energy dynamical solutions of the model, in which N lumps move slowly and interact on

Σ. Manton’s approximation has been used to study many solitons see e.g. [57, 61, 62].
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It is impossible to present all the historical innovation and development regarding topological

solitons. An excellent explanation to topological solitons can be found in [36]. Instead, we

mainly focus on topological solitons known as lumps and vortices.

The results presented in chapter 3 are related to the CP 1 sigma model. The CP 1-sigma model

is a 2 + 1-dimensional field theory of Bogomolnyi type. The O(3)-sigma model admits static

stable finite energy solutions in the plane [28] and is equivalent to the CP 1-sigma model in the

classical sense. In this case the Bogomolyni equations, also known as the self-dual equations,

are in fact the Cauchy-Riemann equations.

Rational maps of degree N are solutions of the Bogomolny equation of the O(3) sigma model

with topological charge N and energy 2π|N |. Belavin and Polyakov [45] studied the Bogo-

molyni equations by a change of variables, and they exploited the Lagrangian density of the

CP 1 sigma model from the Lagrangian density of the O(3)-sigma model. The algebraic topol-

ogy of rational maps and the construction of harmonic maps between surfaces have been studied

by Segal [52] and by Eells and Lemaire [15], respectively. Speight and Sadun [50] showed the

moduli space for a compact Riemann surface is geodesically incomplete and so is the metric.

The metric on the space of holomorphic maps is given by restricting the kinetic energy term

where the moduli are allowed to depend on time. This metric is Kähler [48]. The low energy

dynamics of a CP 1 lump on the space-time S2×R [56] and the geometry of a space of rational

maps of degree N [38] have been studied. The Fubini-Study metric γFS of rational maps of

degree one has been studied by Krusch and Speight [25], here identifying a rational map with

the projective equivalence classes of its coefficients such that M1 is an open subset of CP 3

and CP 3 is equipped with the Fubini-Study metric of constant holomorphic sectional curvature

4. In this thesis, we evaluate the Fubini-Study metric on a particular moduli space of charge
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three rational maps and also calculate the Kähler potential of totally geodesic submanifolds of

M1. Lumps can decay but it has been shown in [27, 69] that the scattering of lumps takes place

before lump decay using the geodesic approximation. A head-on collisions between lumps in

the 2 + 1 dimensional CP 1 model on a flat torus has been studied numerically by Cova and

Zakrzewski [10] and analytically by Speight [58]. Rational maps also play an important role

in related models. For example, the rational map ansatz gives a good approximations for the

symmetries of Skyrme configurations and the Finkelstein-Rubinstein constraint can be calcu-

lated directly from this ansatz using homotopy theory [22]. We study the symmetries of rational

maps to understand the geometry and dynamics of lumps.

Harmonic maps are solutions of Laplace’s equation on Riemannian manifolds. They minimize

the energy within their homotopy class and are usually known as lumps. Denote by MN the

moduli space of degree N lumps. MN is a 2N + 1-dimensional smooth complex Riemannian

manifold. There is a natural Riemannian metric on MN , which is called the L2 metric. The

L2 metric is undefined when the physical space is plane R2 because some zero modes are non-

normalizable [69] and hence some coordinates on the moduli space are frozen [27]. However,

the L2 metric is well defined on a compact Riemann surface as these non-normalizable zero

modes are absent [38]. The main aim of this chapter is to understand the L2 geometry of the

moduli spaces of lumps. The L2 metric γ can be derived from the restriction of the kinetic

energy functional. Note that harmonic maps are extrema of the Dirichlet energy functional.

For the CP 1 model, one can have an explicit expression of harmonic maps in terms of rational

maps. Rational maps give exact descriptions and show the symmetries of the lumps. A rational

map is a function given by the ratio of two polynomials with no common roots. Lumps could

be understood in terms of rational maps on the projective plane with their metric and lump
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decay. Speight [59] studied the L2 metric on the moduli spaces of degree 1 harmonic maps on

both S2 and RP 2 and obtained an explicit formula. We focus mainly on charge three rational

maps between RP 2, acquiring a detailed and careful understanding of their L2 geometry. The

L2 metric plays an important role in slow lump dynamics just as Samols’ [51] metric does for

vortices.

The results given in chapter 4, 5 and 6 are related to the moduli spaces of vortices. Vortices

are topologically stable time-independent solutions to a set of classical field equations that have

finite energy. Vortices in two dimensions are particle-like and in three dimensions form vortex

curves [32]. Vortices are the static solutions of the Ginzburg-Landau equations. These equa-

tions are the Euler-Lagrange equations for the action functional given by the Ginzburg-Landau

Lagrangian [36].

Solving the Bogomolyni equation of Abelian vortices is equivalent to solving the Kazdan-

Warner equation [7]. In [4], the relation between Abelian vortices and Riemannian metrics

has been formulated with a natural understanding of vortices as degenerate Hermitian metrics

which satisfy some curvature equation. No explicit solutions for vortices on flat space are

known; however, Witten [71] noted the Bogomolyni equations on the hyperbolic plane H are

integrable and Strachan [60] calculated explicitly the metric on 2-vortex moduli space.

The nature of interactions among vortices are determined by the coupling constant λ [26, 36].

For λ < 1, vortices attract and for λ > 1 vortices repel. When the coupling constant λ takes

the critical value 1, there are no net static forces between the vortices. This value separates

Type I (λ < 1) and Type II (λ > 1) superconductivity. For critical coupling λ = 1, there exist

static configurations satisfying the first order Bogomolyni equations. Then the Abelian Higgs

model admits static and finite energy Bogomolnyi solutions which minimize the energy in their
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homotopy classes. The N -vortex solutions in C can be uniquely characterized by where the

Higgs field φ vanishes and the multiplicities of the zeros of φ are all positive where the sum of

multiplicities is the winding numberN of the solution [21,64,65]. TheN unordered Higgs zero

locations in C are therefore the natural coordinates parameterizing the space of static N -vortex

solutions. This space is called the moduli space for N vortices, denoted by MN . MN has a

natural Kähler structure inherited from the kinetic terms of the Lagrangian.

Manton and Rink [33] postulated that hyperbolic vortices can be constructed geometrically from

holomorphic maps between hyperbolic surfaces. We shall consider Ginzburg-Landau vortices

moving on the hyperbolic plane and the Bogomolyni equations for static hyperbolicN -vortices.

These equations can be reduced to an integrable Liouville’s equation on a disc. In [60], Strachan

showed an implicit formula for the Riemannian metric γ based on the Higgs field near the vortex

center and he evaluated an explicit formula for the moduli space of M1 and M2. For N ≥ 3, the

computation of an explicit metric γ is complicated. We study the case N = 3 and submanifolds

of the case N = 4. We mainly compute and study the metric, Kähler potential and scalar

curvature of hyperbolic 3- and 4-vortices for the Abelian Higgs model with coupling constant

λ = 1, using the Poincaré disc model. We shall derive a generalized Samols’ metric on the

moduli space of vortices when the zeros of the Higgs field have any multiplicity. The geometric

properties of hyperbolic double vortices will also be studied.

The exact moduli space metrics on some totally geodesic submanifolds Σr,t of the moduli space

of static hyperbolic N -vortices [24] for r > t + 1 or r = t + 1 and the metric of N vortices on

regularN -gon [26] were studied. Using a scaling argument and the Polyakov conjecture [44] by

considering the work in [63], Manton and Chen [9] calculated the Kähler potential of Abelian

Higgs vortices on R and upper half-plane H with Samols’ metric. We evaluate the Kähler
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potential for the metric on the symmetric space Σr,t of the moduli space MN .

The geometry of Σ2,0 in [60] and Σ2,1 in [24] were discussed in detail. In [32], the dynamics of

vortices can be understood in terms of the geometry of the moduli spaceMN of staticN -solitons

since the moduli space approximation evaluation of the partition function of vortices can be

reduced to the computation of the volume of the moduli space. The interactions of critically

coupled vortices that do not exert a force on each other when at rest do however affect one

another when in motion [57]. The numerical work in [40] implied the scattering of critically

coupled vortices is non-trivial. Thatcher and Morgan [66] studied intervortex forces in the

numerical simulations that show the scattering of two vortices depends on the phase gradient of

the Higgs fields. We shall study the geometry of Σ2,2, for example, the metric, curvature and the

relation between the impact parameter-scattering angle are calculated. There is a π
2

scattering

in this space. Furthermore, we evaluate an explicit formula for the scattering-impact parameter

relation and (Matlab plot) show π
r

scattering for the symmetric space Σr,r−1.

The BPS dynamics of vortices in the presence of electric and magnetic impurities was studied

by Tong and Wong [68]. Although the presence of electric impurities altered the dynamics

accompanied by a connection term, the metric remains invariant. Magnetic impurities altered

both the metric and the dynamics of vortices. We shall investigate vortices with impurities and

evaluate an explicit metric on moduli spaces of vortices with magnetic impurities.

This thesis is organized as follows. In chapter 2 the concept of homotopy theory and funda-

mental group are introduced. The main results of the thesis are in the following four chapters.

Chapter 3 is the moduli spaces of lumps in a projective space. In chapter 4 the moduli spaces

of hyperbolic vortices are studied. Chapter 5 is geometry and dynamics of vortices. In chapter

6 vortices with impurities is presented. A conclusion to this thesis is provided in chapter 7.
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Chapter 2

Homotopy in Topological Solitons

2.1 Homotopy Theory

This section investigates the homotopy theory which is very important to study topological soli-

tons. Algebraic topology plays an important role in understanding the classification and stability

of solitons in field theory. Homotopy theory studies topological objects up to homotopy equiva-

lence. Homotopy equivalence is a weaker relation than topological equivalence, i.e., homotopy

classes of spaces are larger than homeomorphism classes. Homotopy equivalence plays a more

important role than homeomorphism, essentially homotopy groups are invariant with respect

to homotopy equivalence. The classification of solitons in field theories uses homotopy theory

and topological degree. The classification depends on both the domain and target spaces. In the

homotopy sense, we can demonstrate for two configuration spaces whether two maps can be

continuously deformed into each other or not. This deformation is called homotopy. Time evo-

lution of the system is an example of homotopy in the physics sense. If the field configurations

can be continuously deformed into each other, they are equivalent or equal; otherwise, they are

different. Topological features in field theories refer to the properties of the fields. The set of

possible field configurations are classified according to their topological properties and only the

8



topology of scalar fields is considered here.

Two configurations are said to be topologically equivalent if it is possible to deform one of them

continuously into the other. This is an equivalence relation and therefore divides the set of all

field configurations of the same topology. Hence, topologically different field configurations

are forbidden by an infinite energy barrier from being transformed into one another. The clas-

sification of fields based on their topological features is carried out by dividing the field into

homotopy classes. It is not guaranteed that static, localized solutions of the field equations are

found in all classes. The space of all possible field configurations may be given a non-trivial

topology by the condition that some functional of the various fields is finite. In classical field

theory this functional is potential energy (or total energy, if non-static).

For a map φ : X → Y which is a field at a given time, homotopy theory can be applied to a

scalar field theory governed by a Lagrangian. If the field satisfies the Euler-Lagrange equation,

then it is continuous in space and time. Thus, its homotopy class is well defined and invariant

with respect to time. The homotopy class is a topological conserved quantity. Hence, homotopy

theory can be applied to field theories defined in a manifold of finite dimension. Let φ : X → Y

be a continuous map between two manifolds. Let x0 ∈ X, y0 ∈ Y be such that φ(x0) = y0.

Then φ is a based map.

Definition 1. Let I = [0, 1] be an interval. Two continuous maps f, g : X → Y are homotopic,

denoted by f ' g, if there exists a continuous map F : I ×X → Y such that F (0, x) = f(x)

and F (1, x) = g(x) for all x ∈ X .

Note that f ' g means f and g can be continuously deformed into each other. Homotopy is

symmetric because the time interval can be reversed, it is transitive because the unit interval

can be adjoined and scaled, and it is reflexive because f is trivially homotopic to itself. Since

9



homotopy is an equivalence relation, maps f : X → Y can be classified into equivalence

classes, denoted by [f ]. For example, let c : X → R, c(x) = c be a constant map. Then the

class of maps homotopic to the constant map c consists of all real continuous functions f(x),

with homotopy given by F (x, t) = (1− t)f(x) + tc, t ∈ [0, 1].

Definition 2. A map f : X → Y is a homotopy equivalence if there is a map g : Y → X

such that fg ' 1Y and gf ' 1X . We can write X ' Y and say that X and Y have the same

homotopy type.

This defines an equivalence relation on the set of topological spaces, and this equivalence is

strictly weaker than that of being homeomorphic.

Definition 3. Let X and Y be topological spaces. Let A be a subspace of X . Let f, g : X → Y

be continuous maps from X to Y such that f |A = g|A. We say that f and g are homotopic

relative to A, denoted by f ' grelA, if and only if there exists a homotopy H : X× I → Y such

that

H(x, 0) = f(x), H(x, 1) = g(x),∀x ∈ X and H(a, t) = f(a) = g(a),∀a ∈ A.

Note that homotopy relative to a subspace of X is also an equivalence relation on the set of all

continuous maps between topological spaces X and Y .

2.1.1 Fundamental Group

The fundamental group of a space X is defined so that its elements are homotopy classes of

loops in X starting and ending at a fixed base point x0 ∈ X . That is the homotopy classes of

based loops on X .

Definition 4. In a topological space X , we define a path as a continuous map α : I −→ X

where I is the unit interval [0, 1]. A path or path class is called a loop, if the initial and terminal

points are the same.
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Let x0 ∈ X . Define an equivalence relation on the set of all loops based at x0, where two such

loops α and β are equivalent if and only if α ' βrel{0, 1}. This equivalence class is referred to

as the based homotopy class of loop α. The set of equivalence classes of loops based at x0 is

denoted by π1(X, x0). All paths each of which is homotopic to a path α is called a homotopy

class of α, denoted by [α]. Thus two loops α and β represent the same element of π1(X, x0) if

and only if α ' βrel{0, 1}. That is, there exists a homotopy F : I × I → X between α and β

such that

F (t, 0) = α(t), F (t, 1) = β(t), ∀t ∈ I

F (0, s) = α(0) = β(0), F (1, s) = α(1) = β(1).

Given two loops α and β such that α(1) = β(0), there is a composition α · β that traverses first

α and then β, defined by the formula

α · β(s) =


α(2s), 0 ≤ s ≤ 1

2
,

β(2s− 1), 1
2
≤ s ≤ 1.

Definition 5. If α : I → X is a loop in X , we can define the inverse of α as α−1 : I → X by

α−1(s) = α(1− s), it satisfies α−1 · α(s) ' α · α−1(s) ' α0(s), where α0 is a constant loop at

the base point x0.

The product α · β induces a product on homotopy classes given by [α] · [β] := [α · β], where α

and β are loops at x0 [55].

Theorem 1. Let x0 ∈ X and let π1(X, x0) be the set of all homotopy classes of loops based at

the point x0. Then π1(X, x0) is a group, the group of multiplication on π1(X, x0) being defined

according to the rule [α] · [β] = [α · β] and [α]−1 = [α−1] for all loops α and β based at x0.
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Proof. One can find the proof of the theorem in [55].

Definition 6. (Fundamental Group) The set of all homotopy classes [α] of loops α : I −→ X

at the base point x0 is a group with respect to the product [α] · [β] = [α · β], which is called the

fundamental group of X at the base point x0, denoted π1(X, x0).

If X is path connected, then for any base points x0, y0 ∈ X , the fundamental groups π1(X, x0)

and π1(X, y0) are isomorphic. Thus, we can ignore the base point and denote the fundamental

group simply as π1(X).

Note that the concept of fundamental group is powerful. For example, the simply connectedness

of a set can easily be checked if its fundamental group is known: by definition any connected

set is simply connected if and only if its fundamental group is trivial. For example, π1(S2) = 0,

because S2 is a simply connected space. If scalar fields are continuous maps to Rd, their topol-

ogy becomes trivial. So, there are no topological solitons but imposing some restrictions on

fields, a different situation emerges. Consider scalar fields whose energy density approaches

rapidly to zero when the distance from the origin ρ goes to∞. This requirement of the energy

is zero at infinity imposes boundary conditions on the fields, crucial for the topological classi-

fication which becomes interesting. Denote V by the vacuum space where the energy vanishes.

Thus, whenever ρ→∞, the field φ(ρ)→ φ̄ ∈ V , providing a boundary condition. This shows

the existence of non-trivial topology with a localized finite energy solution. Hence, topological

solitons may exist.

2.1.2 The homotopy classes of maps on Sn

The n-sphere is the set of points in Rn+1 at a unit distance from the origin. That is, Sn = {x ∈

Rn+1 : ‖x‖ = 1}. Let φ : Sn −→ Sn be a field. Identify the n-sphere Sn as Rn with all points
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Figure 2.1: Stereographic Projection from North Pole N through P projects to P̂ .

at infinity identified using stereographic projection from the north pole N as seen in fig.2.1,

then the stereographic projection is a one-to-one correspondence between Sn − {N} and Rn.

Definition 7. The set of homotopy classes of based maps φ : Sk −→ Sn is the kth homotopy

group of Sn and denoted by πk(Sn), where k is a positive integer.

Example 1. Consider a map φ : S1 −→ S1 and its image in S1 is called a loop. We have that

π1(S1) = Z.

One can check the proof of π1(S1) = Z in [36]. The map φ : S1 → S1 can be defined by a

continuous function h(θ) on [0, 2π] such that h(0) = 0 is the base point and h(2π) = 2πk, k ∈

Z. Here, h(θ) is the angle on the codomain. We will see in later section, k is the topological

degree or winding number of the map.

Here we will discuss the field configurations characterized by linear and non-linear field theory

for the classification of possible topological solitons, see table (2.1). As an example for a linear
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field theory, let X = Rd and Y = RD. Then the corresponding total energy E ginen by

E =

∫ (
1

2
∇φl · ∇φl + U(φ)

)
ddx, l = 1, 2,· · · , D,

where U(φ) is the potential function and φ is a D-point of vector. Now consider the vacuum

manifold V = {φ|U(φ) = 0}. One kind of non-trivial topology arises from the properties of the

vacuum manifold. To ensure finite energy configurations, there should be a constraint on the

field configuration at V . Thus, the boundary values remain fixed and φ(∞) ∈ V . Define a map

φ∞ : Sd−1 7→ V which is the asymptotic data of the configuration field φ, where Sd−1 is the

sphere at infinity in Rd. Homotopically, no information is lost if only φ∞ is considered, namely,

φ∞ and φ̃∞ are homotopic if and only if φ and φ̃ are homotopic. Hence, the homotopy class

of φ∞ belongs to the homotopy classes πd−1(V) which determines the topological behaviour of

the field φ. The field may be non-trivial if πd−1(V) is non-trivial. Due to triviality, this type of

topological solitons do not exist for example if V = Rd or a single point. Let V = Sd−1. We

can see that the field φ∞ is a topologically non-trivial map if d = 2 or 3.

In the non-linear case, the homotopy classifications of the topological solitons is carried out by

elements of the homotopy group πd(Y ), where Y is a closed manifold. Let φ : Rd → Y be a

non-linear field. Due to finiteness of the energy, the field tend to a constant value as r → ∞.

By the stereographic projection we can extend the field φ to a based map φ : Sd → Y when the

field φ has finite energy and the potential minimizes to zero in the vacuum field V .

Linear Non-Linear
Topological Solitons Homotopy πd−1(V) Topological Solitons homotopy πd(Y )

1 Kinks π0(S0) Non-linear kink π1(S1)
2 Vortices π1(S1) Sigma Model Lumps π2(S2)
3 Monopoles π2(S2) Skyrmions π3(S3)

Table 2.1: The taxonomy of possible topological solitons.
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2.2 Topological Degree

Topological degree is useful for calculating the homotopy classes of maps. Let φ : X −→ Y

be a map between two closed manifolds with same dimension and both X and Y are oriented,

and the map φ should be differentiable everywhere, with continuous derivatives. Let
∫
Y

Ω = 1,

where Ω is a normalized volume form on Y .

Definition 8. Let φ : X −→ Y be a differentiable map between two oriented closed manifolds

such that dimX= dimY and let Ω be a normalized volume form on Y , φ?(Ω) the pull-back of

Ω to X using the map φ. Then

deg φ =

∫
X

φ?(Ω) (2.2.1)

is called the topological degree of φ, and it is an integer. That is deg φ ∈ Z.

Note that if Ω = β(y)dy1 ∧ ... ∧ dyd, and φ is represented by functions y(x), then

φ?(Ω) = β(y(x))
∂y1

∂xj
dxj ∧ .... ∧ ∂y

d

∂xl
dxl

= β(y(x)) det

(
∂yi

∂xj

)
dx1 ∧ ... ∧ dxd

= β(y(x))J(x)dx1 ∧ ... ∧ dxd,

where J(x) = det(∂y
j

∂xi
) is the Jacobian of the map at x.

The topological degree (2.2.1) is a homotopy invariant and independent of the choice of Ω

since it cannot be changed under a continuous deformation and the difference of two normalized

volume forms on the target space is a d−form whose integral is zero.

Example 2. Let R : S2 −→ S2 be a rational map, where S2 is the complex plane with one

point at infinity adjoined, C ∪ {∞}. Let z be a coordinate in C and z̄ the complex conjugate of

z. A rational map is a function R(z) = p(z)
q(z)

, where p and q are polynomials in z and they must
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not have common zeros. We will show later that the degree of R(z), N , is defined as

N =
1

4π

∫ (
(1 + |z|2)

(1 + |R|2)
|∂zR|

)2
2idzdz̄

(1 + |z|2)2
,

and that N is equal to the topological degree of the rational map kalg = max{deg(p), deg(q)}.

2.3 Covering Spaces and Fundamental Groups of RP n

In this section, we will explain the properties of covering spaces that will help us to study and

understand some facts on the moduli spaces of lumps.

Definition 9. A covering space of X is a pair consisting of space X̃ and a continuous map p :

X̃ −→ X such that the following holds: Each x ∈ X has an path connected open neighborhood

U such that each arc component of p−1(U) is mapped homeomorphically onto U by p. X̃ is

called the covering space and X is the base space of the covering projection.

Proposition 1. If a group G acts evenly1 on Y , then the projection p : Y → Y/G is a covering

map. That is, the covering map p exhibits its base space as a quotient space of its covering

space.

Proof. The proof can be found in [16].

Example 3. The group G = Z2 acts on the Sn with the nontrivial element taking a point to its

antipodal point. The quotient space is RP n, the real projective space, and the quotient mapping

p : Sn → RP n is a covering map. Thus, for n = 2, (S2, p) is a covering space of RP 2.

Let ϕ : X → Y be a continuous map. Then ϕ : X → Y induces a homomorphism ϕ? :

π1(X)→ π1(Y ), defined by composing loops α : I → X with ϕ, that is ϕ?[α] = [ϕα].

1
We say that G acts evenly if any point in Y has a neighborhood V such that g.V and h.V are disjoint for any

distinct elements g and h in G.
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Figure 2.2: A homotopy lifting of φ : RP 2 → RP 2.

Theorem 2. (Homotopy Lifting Lemma) Let (X̃, p) be a covering space of X and Y a con-

nected and locally arc-wise connected space, x̃0 ∈ X̃, x0 = p(x̃0), y0 ∈ Y . Given a map

φ : (Y, y0) −→ (X, x0); there exists a map φ̃ : (Y, y0) −→ (X̃, x̃0) such that p · φ̃ = φ if and

only if φ?(π1(Y, y0)) is contained in p?(π1(X̃, x̃0)): such a lifting φ̃, when it exists, is unique.

Proof. The proof can be found in [37].

Example 4. Let φ : RP 2 −→ RP 2 be a map. Since π1(RP 2) = Z2, we can apply example 3

and theorem 2 . Hence, we have that the projection map that is the covering map p : S2 −→

RP 2 and φ lifts to φ̄ : RP 2 −→ S2 if and only if the induced homomorphism φ? = 0, as shown

in fig. 2.2 .

Definition 10. (Automorphism group) For any covering p : Y → X , there is a group Aut(Y, p)

of covering transformations:

Aut(Y, p) = {ϕ : Y → Y : ϕ is a homeomorphism and p ◦ ϕ = p}.

This is a group by composition of mappings, and it acts on Y ; it is called the automorphism

group of the covering.

Proposition 2. If p : Y → X is a G−covering, and Y is connected, then the canonical home-

omorphism G→ Aut(Y, p) is an isomorphism.

Proof. The proof can be found in [16].

Definition 11. A covering p : Y → X is called regular if p?(π1(Y, y)) is a normal subgroup of

π1(X, x).
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Proposition 3. Let Y be a connected, locally arc-wise connected topological space and G be a

properly discontinuous group of homeomorphisms of Y . Let p : Y −→ Y/G denote the natural

projection of Y onto its quotient space. Then, (Y, p) is a regular covering space of Y/G and

G = Aut(Y, p).

Proof. The proof can be found in [37].

Definition 12. Let p : Y → X be a covering and let Y be simply connected. Then the covering

space (Y, p) is called the universal covering space of X .

Example 5. Let ρ : S2 −→ S2 be the antipodal map defined by z 7−→ −1
z̄
. As ρ2 is the identity

transformation, a properly discontinuous cyclic group G of order 2 of homeomorphism of S2 is

generated by ρ. Since S2 is simply connected, (S2, p) is a universal and regular covering space

of S2/G. Hence G = Z2 is of order 2 and π1(RP 2) = Z2.
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Chapter 3

Moduli Space of Lumps on a Projective Space

3.1 The O(3)-Sigma model on a Riemann surface

A sigma model is a widely studied non-linear scalar field theory. Given a d-dimensional Rie-

mann manifold Σ, then the non-linear sigma model on the spacetime R × Σ with target space

Y is defined by the Lagrangian

L =
1

4

∫
Σ

dµ∂µφδ∂
µφσH

δσ, (3.1.1)

where dµ is the volume form on Σ, gΣ is the Riemannian metric on Σ, φ is a scalar field defined

on Σ, ∂µ = gµν∂ν and gµν are the components of the inverse of the Lorentzian metric

g = dt2 − gΣ

on the spacetime R × Σ and Hδσ is the metric on Y . The O(3)-sigma model is a famous

example of a non-linear sigma model. In the O(3)-sigma model, the field can be parameterized

as a three-component unit vector, φ = (φ1, φ2, φ3) with φ·φ = 1. That is, theO(3)-sigma model

can be formulated in terms of fields (φ1, φ2, σ) such that σ = ±
√

1− (φ2
1 + φ2

2) where φ1 and

φ2 are locally unconstrained [36]. Note that for the energy to be finite φ must be constant at
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spatial infinity. Take φ∞ = (0, 0, 1). Thus, the target space can be identified with the Riemann

sphere S2. For the (2 + 1)-dimensional Minkowski spacetime R2,1, the energy of a static field

configuration is given by

E =
1

4

∫
R2

(∂iφ · ∂iφ) d2x, (3.1.2)

where i = 1, 2. Due to finiteness of the energy, the field φ should be constant at spatial infinity,

say φ∞ = (0, 0, 1). The Riemann sphere S2 is the compactification to R2 ∪{∞}. Let φ : S2 →

S2 be a based map. Since π2(S2) = Z, then the field φ is classified by the topological degree.

The topological degree N of the map φ is given by

N =
1

4π

∫
S2

φ · (∂1φ× ∂2φ)d2x, (3.1.3)

where the integrand is the pull-back of the normalized area form on S2. The energy E and the

topological degree N satisfy the the Bogomolny bound E ≥ 2π|N |. This bound can be shown

by integrating the inequality

(∂iφ± εijφ× ∂jφ) · (∂iφ± εikφ× ∂kφ) = 2 (∂iφ · ∂iφ∓ εijφ · (∂iφ× ∂jφ)) ≥ 0

⇒ ∂iφ · ∂iφ∓ 2φ · (∂1φ× ∂2φ) ≥ 0

⇒ 1

4

∫
∂iφ · ∂iφ d2x ≥ 1

2

∣∣∣∣∫ φ · (∂1φ× ∂2φ) d2x

∣∣∣∣ = 2π

∣∣∣∣ 1

4π

∫
φ · (∂1φ× ∂2φ) d2x

∣∣∣∣
⇒ E ≥ 2π|N |.

Equality holds if and only if the field is the solution of the Bogomolny equations

(∂iφ± εijφ× ∂jφ) = 0.
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Consider R the stereographic Riemann sphere coordinate image of φ on the target space pro-

jected from the north pole. The coordinate R is given by R = (φ1+iφ2)
(1+φ3)

and let the local complex

coordinate be z = x1 + ix2 with conjugate z̄ = x1 − ix2. One can then explicitly express φ in

terms of R as

φ =

(
R + R̄

1 + |R|2
,

R− R̄
i(1 + |R|2)

,
|R|2 − 1

1 + |R|2

)
.

Since R = R(z, z̄) is the function of z and z̄ , the Lagrangian (3.1.1) becomes

L =

∫
S2

dS
∂µR∂

µR̄

(1 + |R|2)2
(3.1.4)

where µ = z, z̄. This Lagrangian is referred to as that of the CP 1 sigma model. The CP 1 sigma

model in (2 + 1)- dimensions is a non-linear field theory possessing topological solitons, called

lumps.

The model can be generalised to physical space being the 2 dimensional compact Riemann sur-

face Σ with metric g, that is the spacetime R× Σ. We mainly consider Σ = S2 and Σ = RP 2,

but other examples have been discussed in the literature [58]. The kinetic energy functional

induces a natural metric γ on the moduli space of degree N lumps MN : MN is a finite dimen-

sional, smooth Riemannian manifold.

For Σ = S2, the energy E (3.1.2) and the topological degree (3.1.3) are then simplified and

written in terms of R as

E =
1

2

∫
S2

(|∂zR|2 + |∂z̄R|2)(1 + |z|2)2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2
, (3.1.5)

N =
1

4π

∫
S2

(|∂zR|2 − |∂z̄R|2)(1 + |z|2)2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2
, (3.1.6)

respectively where ∂z = ∂
∂z

= 1
2
(∂1 − i∂2), ∂z̄ = ∂

∂z̄
= 1

2
(∂1 + i∂2). Now one can similarly
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show that E ≥ 2π|N |, the Bogomolny bound. This is because for N ≥ 0, we can see that

E =
1

2

∫
S2

(|∂zR|2 + |∂z̄R|2)(1 + |z|2)2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2

=
1

2

∫
S2

(|∂zR|2 − |∂z̄R|2)(1 + |z|2)2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2
+

∫
S2

(|∂z̄R|2)(1 + |z|2)2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2

= 2πN +

∫
S2

(|∂z̄R|2)(1 + |z|2)2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2
.

Similarly, for N ≤ 0, one can also find that

E =
1

2

∫
S2

(|∂zR|2 + |∂z̄R|2)(1 + |z|2)2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2

=
1

2

∫
S2

(|∂z̄R|2 − |∂zR|2)(1 + |z|2)2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2
+

∫
S2

(|∂zR|2)(1 + |z|2)2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2

= −2πN +

∫
S2

(|∂zR|2)(1 + |z|2)2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2
.

Hence, E ≥ 2π|N |. Equality holds for N ≥ 0 if and only if the Cauchy-Riemann equation is

satisfied,

∂z̄R = 0, (3.1.7)

whose solutions are holomorphic function R(z). We can do a similar calculation for N ≤ 0 to

show that

∂zR = 0, (3.1.8)

satisfied by antiholomorphic functions R(z̄). In summary, the energy E is minimized to 2π|N |

to each topological class by a solution of the Cauchy-Riemann equation


∂z̄R = 0 if N ≥ 0,

∂zR = 0 if N ≤ 0.
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Lump solutions can be explicitly given by rational maps between Riemann spheres S2. From

now onwards, we mainly focus on the geometry and topology of rational maps. A rational map

is a function given by the ratio of two polynomials

R(z) =
p(z)

q(z)
, (3.1.9)

where p and q must have no common roots. The rational map (3.1.9) is a smooth map from S2

to S2.

The space of rational maps of degree N is the space consisting of all holomorphic maps of

degree N from the Riemann sphere S2 to itself, denoted by RatN . It is a smooth connected

complex manifold of dimension 2N +1 and its fundamental group, π1(RatN), is a cyclic group

of order 2N for N ≥ 1 [52]. For example, consider N = 2. Then Rat2 is the space of

all quadratic rational maps from the Riemann sphere S2 to itself which is a smooth complex

5-manifold.

The topological degree N of a rational map is the number of pre-images of a given point C,

counted with multiplicity which can be found by solving the equation R(z) = C. We have to

solve the polynomial equation p(z)− Cq(z) = 0. The number of zeros is given by the highest

power of z in either p(z) or q(z). The net number of pre-images ofC doesn’t vary asC changes.

Suppose p(z) − Cq(z) has one or more leading power of z missing. Then the missing finite

zeros of the polynomial equation p(z)−Cq(z) = 0 are considered as at infinity [36]. Thus, the

topological degree N of R is Kalg = max{deg p, deg q}. Since R is holomorphic, the energy

E of this rational map R is 2π|N |, where N is the topological degree (3.1.6) of R given by

degR = N =
1

4π

∫
S2

(1 + |z|2)2|∂zR|2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2
. (3.1.10)
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Definition 13. Let f(z) = adz
d + · · · + a0 and g(z) = blz

l + · · · + b0 be two polynomials of

degrees d and l, respectively. Their resultantRes(f, g) is the determinant of the (d+ l)×(d+ l)

Sylvester matrix Syl(f, g) given by



ad ad−1 ad−2 · · · 0 0 0

0 ad ad−1 · · · 0 0 0

...
...

...
...

...
...

...

0 0 0 · · · a1 a0 0

0 0 0 · · · a2 a1 a0

bl bl−1 bl−2 · · · 0 0 0

0 bl bl−1 · · · 0 0 0

...
...

...
...

...
...

...

0 0 0 · · · b1 b0 0

0 0 0 · · · b2 b1 b0



.

Suppose f has d roots χ1,· · · , χd and g has l roots η1,· · · , ηl (not necessary distinct). Then [18]

Res(f, g) = aldb
d
l

d∏
i=1

l∏
j=1

(χi − ηj). (3.1.11)

Note that Res(f, g) 6= 0 if and only if f and g have no common roots. The rational map (3.1.9)

is a meromorphic function, so it may be infinity or any finite complex value for finite z. Recall

that rational maps are given by ratio of two polynomials R(z) = p(z)
q(z)

, where p and q have no

common zeros. This condition can be rewritten as

Res(p, q) 6= 0,

where Res(p, q) is the determinant of the Sylvester matrix Syl(p, q).
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Example 6. Each map R in the space Rat1 can be expressed as a ratio

R(z) =
p(z)

q(z)
=
a1z + a2

b1z + b2

with degree max{deg(p), deg(q)} equal to 1. Hence, we can identifyRat1 with the Zariski open

subset of complex projective 3-space consisting of all points (a1 : a2 : b1 : b2) ∈ CP 3 for which

the resultant

Res(p, q) = det

a1 a2

b1 b2

 = a1b2 − a2b1 6= 0.

This suffices that Rat1 can be identified with a projective equivalence class of GL(2,C). We

can in fact choose a unimodular matrix as the representative for each equivalence class. Then the

spaceRat1 can be identified with the group PSL(2,C) consisting of all Möbius transformations

from the Riemann sphere S2 to itself.

3.2 The moduli space of harmonic maps between RP 2

Before discussing the moduli space of harmonic maps on the projective plane, let us first discuss

on the moduli space of harmonic maps on the Riemann sphere S2. Let φ : M→ N be a map

whereM and N are Riemann manifolds with metrics g and h, respectively. There is a natural

Riemannian metric, called theL2 metric, which is for each pair of tangent vectorsU, V ∈ TφMN

the inner product

γ(U, V ) =

∫
M
dµghφ(U, V ) (3.2.1)

where dµg is the Riemannian volume element onM. When dim(M) = 2, Speight [59] studied

the energy density is localized in lump-like structures distributed overM . ForM = N = S2,

harmonic maps can be parametrized by rational maps. Recall that rational maps minimize

energy within their homotopy classes. The homotopy classes of continuous maps φ : S2 −→
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S2, by the Hopf degree theorem [6], are labeled by their topological degree N ∈ Z. The map φ

can be distinguished by the general degree N rational map of the form

R(z) =
p(z)

q(z)
=
p0 + p1z + ...+ pNz

N

q0 + q1z + ...+ qNzN
(3.2.2)

where pi, qi ∈ C, i = 0...N are constants and pn and qn do not both vanish simultaneously and

Res(p, q) 6= 0. For a non-zero µ ∈ C, the points (µp0, ..., µpN , µq0, ..., µqN) ∈ C2N+2. Since

this point determines the same rational map as (p0, .., pN , q0, ...qN), MN ⊂ CP 2N+1. Since

Res(p, q) 6= 0, the inclusion is open. Consider qN 6= 0. We can define complex coordinates

bα = pα
qN
, α = 0, ..., N and bN+1+α = qα

qN
, α = 0, ..., N − 1. Then the map (3.2.2) can be

parametrized as

R(z) =
b0 + b1z...+ bNz

N

bN+1 + bN+2z + ...+ zN
. (3.2.3)

There is a theorem in [59] states that for N > 0, (MN , γ) is Kähler with respect to the complex

structure induced by the open inclusion MN ⊂ CP 2N+1. Then the metric γ is Kähler in bα

coordinate system and given by

γ = γαβdb
αdbβ, (3.2.4)

where repeated indices are summed over, and

γαβ =

∫
C

dzdz̄

(1 + |z2|)2(1 + |R|2)2

(
∂R

∂bα

) ¯(
∂R

∂bβ

)
. (3.2.5)

Since γ is hermitian, then γαβ = γ̄αβ [41]. Then for all ∀α, β, δ, we can find that

∂γαβ
∂bδ

≡ ∂γδβ
∂bα

,
∂γαβ
∂b̄δ

≡ ∂γαβ
∂b̄δ

.
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Homotopy, covering spaces and fundamental groups play important roles in studying the moduli

spaces of harmonic maps between projective spaces RP 2 and classify their homotopy classes.

Lemma 1. The homotopy classes of a continuous map φ : RP 2 → RP 2 contains a harmonic

reperesentative if and only if the induced map φ? : π1(RP 2)→ π1(RP 2) is injective.

Proof. This lemma is an immediate consequence of a theorem in [15] and one can find a similar

proof in [14].

Lemma 1 means that the homotopy classes of a continuous map φ : RP 2 → RP 2 associated

to the induced homomorphism φ? : π1(RP 2) → π1(RP 2) belong to two families. This is due

to the fact that the fundamental group of the projective space , π1(RP 2), is Z2. The first family

is the zero morphism family which contains a trivial class and a non-trivial class which is a

non-harmonic representative. The second family contains an infinite number of classes belong

to an identity family such that the elements are determined by the absolute value of the degree,

that takes any odd value. Let p : S2 → RP 2 denotes the covering projection. Any harmonic

map φ in the identity family homotopy class lifts to a rational map φ̄ : S2 → S2:

-
? ?

-

RP 2 RP 2

S2 S2

p p

φ

φ̄

Therefore, the identity family homotopy classes consists of an infinite number of classes. All

of the classes comprise harmonic representatives which are given by rational maps (3.2.2) and

satisfy

R

(
−1

z̄

)
= − 1

R̄(z)
. (3.2.6)
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That is, qi = (−1)i p̄N−i. Denote by M̄N the moduli space of the absolute value of the degree

N harmonic maps between RP 2. Note that M̄N ⊂MN .

Theorem 3. For an odd N ≥ 1, M̄N is a totally geodesic Lagrangian submanifold of MN .

Proof. The proof can be found in [59].

Note that for µ ∈ C×, all rational maps of the form (3.2.2) can be written as

R(z) = µ
(z − z1)...(z − zN)

(z − w1)...(z − wN)
. (3.2.7)

Using (3.2.6), a rational map on the projective plane can then be rewritten as

R(z) = λ
(z − z1)...(z − zN)

(1 + z̄1z)...(1 + z̄Nz)
, (3.2.8)

where N is odd and λ ∈ C× with |λ| = 1.

3.3 The metric on the moduli space of degree 1 rational maps

Let G be the degree preserving group acts isometrically on M1 and define a map h : M1 −→

M1, R(z) 7→ R̄(z̄). Then we can consider G ∼= SO(3) o SO(3) o Z2, Z2 = {Id, h}.

Proposition 4. M1
∼= PU(2) o R3 as a manifold, where PU(2) ∼= SU(2)/Z2

∼= SO(3) is the

subgroup of PSL(2,C) consisting of all rotations of S2.

Proof. From example 6, there is a well known matrix representation of Möbius transformation

of R as

R(z) =
a11z + a12

a21z + a22

=

a11 a12

a21 a22

 · z = A · z

where A ∈ GL(2,C). Since A can be taken as unimodular, so is −A. Therefore, SL(2,C) is

a double cover of the moduli space and the moduli space of degree 1 lumps is SL(2,C)/Z2.
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For all A ∈ SL(2,C), there are unique U ∈ SU(2) and H , a positive definite, unimodular,

hermitian 2 × 2 matrix satisfying A = UH [42, 43]. Then the space SL(2,C) is locally a

product of S3 and R3 (the parameter space of the positive definite, unimodular, hermitian 2× 2

matrices), i.e SL(2,C) ∼= S3 o R3. Since SU(2) ∼= S3, SL(2,C) ∼= SU(2) o R3. Let

τa, a = 1, 2, 3 be the standard Pauli matrices

τ1 =

0 1

1 0

 , τ2 =

0 −i

i 0

 , τ3 =

1 0

0 −1

 .

Let [U ] = ±U ∈ PU(2), λ̃ ∈ R3. In [42], it is shown that any [A] ∈ PSL(2,C) has a unique

decomposition

[A] = [U ](ΛI2 + λ̃ · τ) (3.3.1)

where Λ =
√

1 + λ2, λ = |λ̃| and · denotes the R3 scalar product. Define a basis {ta =

i
2
τa, a = 1, 2, 3} for su(2). Let σa, a = 1, 2, 3 be the left invariant on PU(2) associated with

the basis {ta}. Then su(2) ∼= TI2PU(2) and the moving coframe is {dλa, σa} [59]. Thus, as a

maifold M1
∼= PU(2) oR3.

Now let us parameterize the algebra of SU(2) using the generators [3]

t1 =
1

2
iτ1 =

1

2

0 i

i 0

 , t2 =
1

2
iτ2 =

1

2

 0 1

−1 0

 , t3 =
1

2
iτ3 =

1

2

i 0

0 −i

 ,

where τa, a = 1, 2, 3 are the Pauli matrices; the commutators are [ta, tb] = −εabctc. Let θ, φ, ψ

be the Euler angles such that θ ∈ [0, π), φ ∈ [0, 2π), ψ ∈ [0, 4π) for parameterizing SU(2),

then define

g(φ, θ, ψ) = eφt3eθt2eψt3 =

 e
i
2

(ψ+φ) cos 1
2
θ e

i
2

(φ−ψ) sin 1
2
θ

−e i2 (ψ−φ) sin 1
2
θ e−

i
2

(ψ+φ) cos 1
2
θ

 . (3.3.2)
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Then we can define a left-invariant 1-forms ηa on SU(2) via

g−1dg = η1t1 + η2t2 + η3t3 (3.3.3)

=
i

2

 η3 η1 − iη2

η1 + iη2 −η3

 (3.3.4)

and then the η′is are computed as

η1 = − sinψdθ + cosψ sin θdφ

η2 = cosψdθ + sinψ sin θdθ

η3 = dψ + cos θdφ

satisfying dηi = 1
2
εijkηj ∧ ηk.

Proposition 5. Let τ be a G invariant symmetric (0, 2) tensor on M1 which is Hermitian and

whose J-associated 2-form τ̂(i.e. τ̂(X, Y ) := τ(JX, Y )) is closed. Then there exists a smooth

function F : [0,∞) −→ R such that

τ = F1dλ · dλ+ F2(λ · dλ)2 + F3σ · σ + F4(λ · σ)2 + F5λ · (σ × dλ) (3.3.5)

where

F1 = F (λ), F2 =
F (λ)

1 + λ2
+
F
′
(λ)

λ
, F3 = (

1 + 2λ2

4
)F (λ), F4 = (

1 + λ2

4λ
)F
′
(λ), F5 = F (λ)

F
′

denotes the derivative of F , σa are the left one-forms on PU(2) associated with the ba-

sis { i
2
τa, a = 1, 2, 3}, × denotes the R3 vector product and juxtaposition of vectors denotes

symmetrized tensor product.

Details of the proof of the proposition can be found in [59]. Let Γ be the radial curve, Γ =
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{[I2], (0, 0, λ) : λ ≥ 0}, of rational maps Wλ : z 7→ µ(λ)z, µ(λ) = (
√

1 + λ2 + λ)2 = (Λ + λ)2

and we consider the metric as the squared length of the vector ∂
∂λ1

at this curve corresponding

to the rational map Wλ(z).

Corollary 1. The L2 metric on M1 is

γ = F1dλ · dλ+ F2(λ · dλ)2 + F3σ · σ + F4(λ · σ)2 + F5λ · (σ × dλ), (3.3.6)

where F1, ..., F5 are functions of λ only and

F = 4πµ
[µ4 − 4µ2 log µ− 1]

(µ2 − 1)3
, µ = (

√
1 + λ2 + λ)2. (3.3.7)

Moreover, the L2 metric is given by

γ

(
∂

∂λ1

,
∂

∂λ1

)
=

4πµ2 [(µ2 + 1) log µ− µ2 + 1]

(µ2 − 1)3
. (3.3.8)

For a proof of the first part one can see in [59]. However, to prove the second part we can

compute (3.3.8) as it is twice the kinetic energy by computing the L2 norm of the zero mode

∂
∂µ
∈ T(µ,0)M1 of the field wλ(z, t) = (µ+ t)z:

γ

(
∂

∂λ1

,
∂

∂λ1

)
=

∫
C

|ẇλ(z, 0)|2

(1 + |wλ(z, 0)|2)2

dzdz̄

(1 + |z|2)2

= 4πµ2

∫ ∞
0

r3dr

(1 + µ2r2)2(1 + r2)2

=
4πµ2 [(µ2 + 1) log µ− µ2 + 1]

(µ2 − 1)3
.

We calculated the metric on the totally geodesic submanifold of M1 and agrees with the metric

done in [59].
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3.4 Symmetric lumps in real projective space

In the following, we derive families of symmetric rational maps in real projective space. We

start by considering rational maps between Riemann spheres. A rational mapR(z) has a discrete

symmetry if

R(κ(z)) = Mκ(R(z)) (3.4.1)

where κ and Mκ are Möbius transformations. Let K ⊂ SO(3) be a group which acts on S2 as

an SU(2) Möbius transformation. The map R is K-symmetric if for each κ ∈ K, there exists

an Mκ such that (3.4.1) satisfied. For consistency, the pairs (κ,Mκ) have the same composition

rule as in K. Then R(κ1κ2(z)) = Mκ1Mκ2(R(z)), for all κ1, κ2 ∈ K. The map κ −→ Mκ is a

homomorphism.

Lemma 2. Suppose R(z) has symmetry (3.4.1). Then the rational map R̃(z) = M̂1(R(M̂2(z)))

has the symmetry

R̃(z) = M̃1(R̃(M̃2(z)))

where M̃1(z) = M̂1(Mκ(M̂
−1
1 (z))) and M̃2 = M̂−1

2 (κ(M̂2(z))), and M̂i, i = 1, 2 are Möbius

transformations.

The proof of the lemma can be found in [22]. One can choose the symmetry to be around

convenient axes using a change of coordinates in domain and target. Define a Ck
n symmetry of

a rational map as a rotation in space by α = 2π/n followed by a rotation in target space by

β = kα,−n < k ≤ n. The following lemma classifies which Ck
n symmetries are allowed for a

rational map of degree N.

Lemma 3. A rational map of degree N can have a Ck
n symmetry if and only if N ≡ 0 mod n

or N ≡ k mod n.

One can find a proof in [23]. Recall that rational map R in real projective space should satisfy
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the constraint (3.2.6) and it can then be written in the general form

R(z) = eiφ

N∑
k=0

akz
k

N∑
k=0

(−1)kāN−kzk
, (3.4.2)

where ak ∈ C and φ ∈ R. This severely restricts the number of allowed symmetries. Denote by

R̃atN the degree N rational maps in real projective space. Note that R̃atN is a submanifold of

RatN . In fact, we obtain the following lemma.

Lemma 4. A rational map of degree N satisfying the constraint (3.2.6) has a Ck
n symmetry if

and only if N ≡ k mod n. If n ≥ N then the rational map has D∞ symmetry.

Proof:

Without loss of generality we choose coordinates such that one Ck
n rotation is around the z axis

in space and target space and satisfies the boundary condition R(∞) =∞.

First consider N ≡ 0 mod n. Then N = nl and a Ck
n rational map can be written as

R(z) =
r(zn)

zn−ks(zn)
,

where r(z) has degree l and s(z) has degree less than l. On the other hand, given r(z) the

constraint (3.2.6) fixes the coefficients of the denominator. In particular, only coefficients of zn

will be non-zero. Hence, the only compatible solution is k = 0.

Consider the case N ≡ k mod n which includes the k = 0 case for N ≡ 0 mod n. Set

k = N mod n and s = (N − k)/n, then the rational map is given by

R(z) =

s∑
j=0

ajz
jn+k

s∑
j=0

bs−jzjn
. (3.4.3)
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The inversion symmetry (3.2.6) leads to the following two constraints on the coefficients

(−1)nj b̄s−j = λaj (3.4.4)

and

(−1)k+1as−j(−1)nj = λb̄j, (3.4.5)

where λ takes account of the fact that numerator and denominator can be multiplied with a

common factor. Taking the modulus, we obtain that |λ| = 1, so that λ̄ = 1/λ. By relabelling

j 7→ s− j, equation (3.4.5) becomes

aj = λ̄(−1)k+n(s−j)b̄s−j. (3.4.6)

This is compatible with equation (3.4.4) provided ns + k ≡ N is odd. For N = n, we obtain

the map

R(z) = λ
a1z

N + a0

(−1)N ā0zN + ā1

. (3.4.7)

Performing a Möbius transformation in target space to remove the phase λ this is equivalent to

a Möbius transformation of the axial map.

Similarly, for n > N, the rational map (3.4.3) reduces to

R(z) =
a0z

N

λa0

since in this case N = k and s = 0. This is again a the axial map. �

In the following, we will discuss the case N = 3 in more detail. According to Lemma 3 and 4,
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imposing Cn symmetry with n ≥ 3, we obtain D∞ symmetry, given by maps of the form

R(z) = eiφ
az3 + b

−b̄z3 + ā
, (3.4.8)

where a, b ∈ C, a and b are not both zero, and φ ∈ R. Here the rotation axis in space has

been chosen to be the x3 axis. This choice corresponds to fixing two real parameters. Here, the

symmetry is a C0
3 . Consider a 6= 0. Then the rational map (3.4.8) can be rewritten as

R(z) = eiφ
a

ā

(z3 + b
a
)

(− b̄
ā
z3 + 1)

= eiψ
z3 + c

−c̄z3 + 1
,

where eψ = eiφa/ā and c = b/a. Hence, the moduli space of the symmetric lumps of (3.4.8)

is parametrized by one complex number and a phase which together with the choice of axes

gives real dimension 5. The moduli space can also be viewed as the orbit under rotations and

iso-rotations of the map

R(z) = z3. (3.4.9)

Since rotation and isorotations act independently apart from the axial symmetry around the third

axis, the dimension of the moduli space of symmetric lumps of (3.4.9) is again 5.

The only rational maps that are compatible with a C2 symmetry around some axis are given by

R(z) = eiφ
az3 + bz

b̄z2 + ā
. (3.4.10)

By Möbius transformations preserving this symmetry, name rotations around the third axis in

space and target space, the rational map can be brought into the form

R(z) =
z3 + cz

cz2 + 1
, (3.4.11)
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such that c is real and non-negative. The surprising fact is that this map has D2 symmetry, since

it is also symmetric under

R(z) =
1

R
(

1
z

) .
Hence, imposing C2 symmetry automatically gives a family of D2 symmetric maps. Since

rotations and isorotations act independently and cannot change the magnitude of the parameter

c, the moduli space of the symmetric lumps of (3.4.11) has real dimension 7. Another way of

calculating the dimension of the symmetry orbit of (3.4.11) is as follows. A general rational

map can be written as equation (3.2.7) for N = 3:

R(z) = eiφ
(z − z1)(z − z2)(z − z3)

(1 + z̄1z)(1 + z̄2z)(1 + z̄3z)
. (3.4.12)

When we impose symmetry under a π rotation around the z-axes in space followed by an iso-

rotation around the z-axis in target space, one zero has to be equal to zero and the other two

map into each other under z 7→ −z. The symmetric rational map is then given by

R(z) = eiφ
z(z − z1)(z + z1)

(1 + z̄1z)(1− z̄1z)
. (3.4.13)

Hence, the rational map is parametrized by φ ∈ R and z1 ∈ C, that is 3 real parameters we have

chosen. Furthermore, we have the rotation axis in space and target space, so again we have that

the space is 7-dimensional.

To list all families of degree 3 rational maps on the projective plane, we can use also the

Riemann-Hurwitz formula [17]. Suppose that p ∈ S2 is a ramification point of R so in local

coordinates the mapR can be represented as z 7→ zdpf(z), dp > 1, where f is analytic function

with f(0) 6= 0. The number dp is called the ramification index at p. By the Riemann-Hurwitz
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formula, for a degree N rational map R(z) ramified at point pi in S2, we have that

χ(S2) = Nχ(S2)−
∑
pi

(dpi − 1) , (3.4.14)

where χ(S2) is the Euler charactersic of S2 and dpi is the ramification index of R(z) at point pi.

Thus, for N = 3,
∑

pi
(dpi − 1) = 4 implies there are two possibilities. The first possibility is

dp1 = 3 which fixes dp2 = 3. Hence, we will have the first family which is the symmetry orbit

of rational maps z3 which coincides with the family of maps (3.4.8). The second possibility is

when dpi = 2, i = 1, 2, 3, 4. For a rational map R of degree N > 1 with critical points w, and

near w, R behaves like of z 7→ zn near the critical point, for some n > 1 [39]. Choose a critical

point at z = 0 with R(0) = 0. Then using Möbius transformations, we can find the family of

rational map as

R(z) =
z2(z − a)

1 + az
, a > 0. (3.4.15)

Note, the sign of a can be changed by R(z) 7→ −R(−z). Here rotations and isorotations

act independently and cannot change the magnitude of a, hence the dimension of the space

is 7 dimensional. This is compatible with writing the rational map as equation (3.4.12). For

N = 3, under a Möbius transformation in space, z 7→M(z), the zeros zj map to M−1(zj), and

similarly for poles, hence zeros remain opposite poles. The phase is invariant under a Möbius

transformation. For a Möbius transformations in target space, the zeros become poles and vice-

versa. Suppose that rational function R is of the form (3.4.12). One can show that R has critical

points, say c. Therefore for (3.4.12) near c, the behavior of R is like that of z 7−→ z3 near the

origin; thus R is highly contracting near c.
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Given the two submanifolds Rata3, one parameter family of rational maps of the form (3.4.15),

and Ratc3, one parameter family of rational functions of the form (3.4.11), we now define the

spaces R̃ata3 and R̃atc3 as the symmetry orbit of Rata3 and Ratc3, respectively, which satisfy the

constraint (3.2.6). Furthermore, consider the submanifold R̃at03 of R̃at3, where R̃at03 is the

symmetry orbit of rational maps of z3. We will show that Rata3 has hidden D2 symmetry, and

that R̃ata3 and R̃atc3 are identical submanifolds using the angular integral.

3.5 The moduli space R̃at3 on RP 2

In this section we discuss the moduli space of charge N = 3 lumps on projective space. We

calculate the metric and various geometric quantities. We first discuss maps of the form (3.4.15)

and (3.4.11) which possess dihedral symmetries D2. Then we describe the 7-dimensional sym-

metry orbit of Rata3 in section 3.6.

3.5.1 The moduli space Rata3

For 0 < a < 1, the rational map R ∈ Rata3 has zeros inside the unit disc at z = a, z = 0 and

poles at z = −1/a, z =∞, respectively. While for a > 1, it has zeros outside the unit disc and

poles inside the unit disc. For a = 0, the rational map R becomes z3. Thus, the energy density

is symmetric and its metric is equivalent to the metric on the moduli space {ξzn : ξ ∈ C×} with

ξ = 1 and n = 3 which was shown in [38]. Furthermore, for a→∞, it is easy to see that

R(z) =
z2(z − a)

(1 + az)
−→ −z.

Similarly, the energy density is symmetric and the metric γ on Rata3 as a→∞ is equivalent to

the metric on w(z) = −z which was shown in [59].
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Our next task is to calculate the metric on the moduli space Rata3. We have the ingredient to

calculate the metric on Rata3 as

γ = γaada
2

where γaa is a smooth positive function as

γaa =

∫
D

|∂aR|2dzdz̄
(1 + |z|2)2(1 + |R|2)2

=

∫
D

|z|4|z2 + 1|2dzdz̄
(1 + |z|2)2(|1 + az|2 + |z|4|z − a|2)2

,

where D = {z ∈ C : |z| ≤ 1}.

Consider the coordinate system, z = reiθ. Then we can rewrite the integrand of γaa in terms of

the coordinates r and θ:

|∂aR|2

(1 + |z|2)2(1 + |R|2)2
=

r4(1 + r2)2 − 4r6 sin2 θ

(1 + r2)4(1− r2 + r2(r2 + a2) + 2ar(1− r2) cos θ)2

=: F̃ (r, θ, a).

Thus γaa is rewritten as follows:

γaa =

∫ 1

0

∫ 2π

0

F̃ (r, θ, a)rdθdr.

In fact, γaa is a non-negative smooth function since F̃ (r, θ, a) is non-negative because the inte-

grand of γaa:

|∂aR|2

(1 + |z|2)2(1 + |R|2)2
≥ 0,

which implies F̃ (r, θ, a) ≥ 0 and γaa ≥ 0. Let α = 1− r2 + r2(r2 + a2) and β = 2ar(1− r2).

Since r ≥ 0 and a ≥ 0, it is easily seen that α > β. Then substituting α and β in F̃ (r, θ, a), we
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find that

rF̃ (r, θ, a) =
r5

(1 + r2)2(α + β cos θ)2
− 4r7 sin2 θ

(1 + r2)4(α + β cos θ)2
.

Applying then the residue theorem, we can find a simplified form of γaa as follows:

γaa = 2π

∫ 1

0

r5

(1 + r2)2

(
α

(
√
α2 − β2)3

+
4r2

(1 + r2)2β2

(
1− α√

α2 − β2

))
dr. (3.5.1)

The function γaa is an even function and smooth. Note that the integrand of γaa is rational, so it

can be computed explicitly, though the expressions become complicated. Fig.3.1 is the energy

density of the moduli space of maps (3.4.15) for different values of a. At a = 0, the energy

density is symetric and as a → ∞, the energy density decrease and form spike; however, at

a =∞, it is becomes the energy density of the map R(z) = z.

Proposition 6. Rata3 has a submanifold with length l(Rata3) = (36−
√

3π)
81

π2.

Proof. Suppose z = reiθ such that the CP 1 field supports solutions with the K invariance

R(r, θ, t) =
r2ei2θ(reiθ − a(t))

1 + a(t)reiθ
,

where a(t) is a positive real function. The real function a(t) is differentiable and nonvanishing..

Since the metric on Rata3 is K0 invariant and hermitian, so

γ = F (ξ)(dξ2 + ξ2dψ2)

for some smooth positive function F . Here to compute F (ξ) from the squared L2 norm of the

zero mode ∂
∂ξ

in the family of R(z, t) = z2(z−(ξ+t))
1+(ξ+t)z

:

F (ξ) =

∫
dzdz̄

(1 + |z|2)2

|Ṙ(z, 0)|2

(1 + |R|2)2

= 2π

∫ 1

0

r5dr

(1 + r2)2

(
A

(
√
A2 −B2)3

+
4r2

(1 + r2)2B2

(
1− A√

A2 −B2

))
,
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(a)a = 0 (b)a = 0.1 (c)a = 0.5

(d)a = 1 (e)a = 2 (f)a =∞
Figure 3.1: These figures are the energy densities of charge three lumps, Rata3.

where A = 1− r2 + r4 + ξ2r2 and B = 2ξr(1− r2). Hence, applying Fubini-Tonelli theorem,

we can find that

l(Rata3) =

∫ 2π

0

dψ

∫ ∞
0

ξF (ξ)dξ

= 2π2

∫ 1

0

(1− r4)2 + 2r4(ln(r2)− ln(1− r2 + r4))

(1− r2)2(1 + r2)4
rdr

=
(36−

√
3π)π2

81
.

Therefore the result holds.

Proposition 7. The moduli space (Rata3, γaa) has finite length.

Proof. Since the integral
∫∞

0

√
γaada < ∞, it shows automatically the length is finite. There-

fore, the boundary of (Rata3, γaa) at infinity lies at finite distance.
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3.6 The metric on the symmetry orbit of Rata3

Consider the rotation group SO(3) action on the coordinate systems z and R, R ∈ Rata3. Let’s

suppose first the action z 7→ Uz, U ∈ SO(3) ∼= PU(2) ∼= SU(2)/Z2. We can expand the left

invariant 1−form U−1dU in terms of a convenient basis of the Lie algebra ta = i
2
τa, a = 1, 2, 3,

where τa are Pauli matrices as

U−1dU = σ · i
2
τa = σ1t1 + σ2t2 + σ3t3 (3.6.1)

where dσi = 1
2
εijkσj ∧ σk. Similarly, for the action R 7→ MR,M ∈ SO(3). With similar

argument, we have an expression in the Lie algebra basis:

M−1dM = η · i
2
τa = η1t1 + η2t2 + η3t3 (3.6.2)

where dηi = 1
2
εijkηj ∧ ηk. For example, consider also M̃ ∈ SU(2) defined by [3]

M̃ =

 e
i
2

(ψ+φ) cos( θ
2
) e

i
2

(ψ−φ) sin( θ
2
)

−e i2φ−ψ) sin( θ
2
) e−

i
2

(ψ+φ) cos( θ
2
)

 .

Therefore, we can see that M̃−1dM̃ = η1t1 + η2t2 + η3t3 where the η′is are computed as

η1 = − sinψdθ + cosψ sin θdφ (3.6.3)

η2 = cosψdθ + sinψ sin θdφ (3.6.4)

η3 = dψ + cos θdφ. (3.6.5)

Furthermore, let R̃ ∈ SU(2) and M 7→MR̃,M ∈ SO(3). Then we can find that σ 7→ Rσ and

η 7→ Rη, whereR ∈ SO(3) with matrix component Rab = 1
2
tr(τaR̃

†τbR̃). Hence both σ and η
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transform as 3−vectors under rotations. One can change from the coordinate basis on SO(3),

{dα, dβ, dγ}, to the left invariant 1-forms on SO(3) which can be found the same expressions

as before, but with the range of angles automatically appropriate to SO(3), α ∈ [0, π), β ∈

[0, 2π), γ ∈ [0, 2π) [3].

The metric should be invariant under spatial rotations. Then by considering da, σ and η, we can

construct the most general possible metric as

g = Aij(a)σiσj +Bi(a)σida+ C(a)da2 +Dij(a)ηiηj + Ei(a)ηida+ Fij(a)σiηj, (3.6.6)

where i, j = 1, 2, 3 and each the component functions depends only on a and is independent of

the Euler’s angles.

The transformations ρ : z 7→ z̄ and w : R 7→ R̄ are mapping lumps to anti-lumps because each

reverses the sign of the topological degree and so both are not an isometry of the moduli space.

In fact, the composite transformation w◦ρ is an isometry. Consider the isometry transformation

U 7→ Ū , where U ∈ SO(3) as a SU(2) Möbius transformation and suppose again a 7→ a. Then

σ = (σ1, σ2, σ3) 7→ (−σ1, σ2,−σ3) (3.6.7)

η = (η1, η2, η3) 7→ (−η1, η2,−η3). (3.6.8)

These two isometries remove Bi(a) and Ei(a) for i = 1, 3 from the general possible metric

equation (3.6.6) because for a 7→ a, we have that

σ · da 7→ (−σ1da, σ2da,−σ3da),

η · da 7→ (−η1da, η2da,−η3da).
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The isometries ( 3.6.7) and ( 3.6.8) also result in A12(a) ≡ A21(a) ≡ A23(a) ≡ A32(a) ≡ 0 and

D12(a) ≡ D21(a) ≡ D23(a) ≡ D32(a) ≡ F12(a) ≡ F21(a) ≡ F13(a) ≡ F31(a) ≡ F23(a) ≡

F32(a) ≡ 0.

Our next task should be finding the remaining metric functions of a by taking the appropriate

Euler’s angle. Firstly, let’s consider the parametrization of SO(3) by

M(α, θ, ϕ) =

 cos α
2

+ i sin α
2

cos θ i sin α
2
(cosϕ+ i sinϕ) sin θ

i sin α
2
(cosϕ− i sinϕ) sin θ cos α

2
− i sin α

2
cos θ

 . (3.6.9)

Take first the action R 7→ R? = eiαR. That is, we consider θ = 0 in M(α, θ, ϕ). Then we have

a metric of the form γ = γαα(a)dα2, where

D33(a) = γαα(a) =

∫
D

|∂αR?|2

(1 + |R?|2)2

dzdz̄

(1 + |z|2)2
=

∫
D

|R|2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2
.

Now we can also evaluate D1(a) and D2(a). Suppose we are taking θ = π
2

and ϕ = 0. Then

with the action R 7→ R? = MR, where M is given by the matrix (3.6.9) with θ = π
2

and ϕ = 0,

from η1 = dα we have a metric of the form γ = γαα(a)dα2 where

D11(a) = γαα(a) =

∫
D

|∂αR?|2

(1 + |R?|2)2

dzdz̄

(1 + |z|2)2
=

1

4

∫
D

|1−R2|2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2
.

Similarly, to find out what D22(a) is, let’s take α = π
2

and ϕ = 0 in our parametrization of

SO(3) in (3.6.9). When we consider the action R 7→ R? = MR, then with a similar argument

as we saw in evaluatingD11(a) andD33(a), we have that the metric is of the form, from η2 = dθ,

γ = γθθ(a)dθ2 where

D22(a) = γθθ(a) =

∫
D

|∂θR?|2

(1 + |R?|2)2

dzdz̄

(1 + |z|2)2
=

1

4

∫
D

|1 +R2|2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2
.
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Similarly, one can also calculate the other metric functions, D13(a) and D31(a):

D13(a) = D31(a) = −1

2

∫
D

<(R̄ (1−R2))

(1 + |R|2)2

dzdz̄

(1 + |z|2)2
.

Note that each corresponding metric functions, Dii, i, j = 1, 2, 3, D13 and D31 are positive

functions.

Secondly, to find the functions Aij(a), i, j = 1, 2, 3, we can follow the same argument as in

evaluating the Dij(a), i, j = 1, 2, 3. Suppose we are considering the same parametrization of

SO(3) as (3.6.9) and the SO(3) action on z. For instance, let z 7→ eiαz. Then R 7→ R? =

R(eiαz). Therefore, we are now able to find A33(a) from the metric of the form γ = γαα(a)dα2

where

A33(a) = γαα(a) =

∫
D

|∂αR?|2

(1 + |R?|2)2

dzdz̄

(1 + |z|2)2
=

∫
D

|z|2|dR
dz
|2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2
.

We can also find the other two functions A11(a) and A22(a) by taking the Euler angles θ = π
2

and ϕ = 0, and α = π
2

and ϕ = 0, respectively. Considering the above Euler angles and from

the metrics of the form γ = γαα(a)dα2 and γ = γθθ(a)dθ2, we can find that

A11(a) = γαα(a) =
1

4

∫
D

|1− z2|2|dR
dz
|2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2

and

A22(a) = γθθ(a) =
1

4

∫
D

|1 + z2|2|dR
dz
|2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2
.

Furthermore, we can calculate the metric functions A13(a) and A31(a) as:

A13(a) = A31(a) = −1

2

∫
D

<(z̄ (1− z2))
∣∣dR
dz

∣∣2
(1 + |R|2)2

dzdz̄

(1 + |z|2)2
.
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The corresponding metric functions, Aii, i, j = 1, 2, 3,A13 and A31 are positive functions. Sim-

ilarly, we can find the following metric functions B2(a), E2(a) and Fii(a), i = 1, 2, 3 as

B2(a) = −1

2

∫
D

<
(
(1 + z2)dR

dz
∂aR

)
(1 + |R|2)2

dzdz̄

(1 + |z|2)2
,

E2(a) = −1

2

∫
D

<
(
(1 +R2)∂aR

)
(1 + |R|2)2

dzdz̄

(1 + |z|2)2
,

F11(a) =
1

4

∫
D

<
(
(1− z2)(1− R̄2)dR

dz

)
(1 + |R|2)2

dzdz̄

(1 + |z|2)2
,

F22(a) =
1

4

∫
D

<
(
(1 + z2)(1 + R̄2)dR

dz

)
(1 + |R|2)2

dzdz̄

(1 + |z|2)2
,

F33(a) =

∫
D

<
(
zR̄dR

dz

)
(1 + |R|2)2

dzdz̄

(1 + |z|2)2

F13(a) = F31(a) = −1

2

∫
D

<
(
(1− z2)R̄dR

dz

)
(1 + |R|2)2

dzdz̄

(1 + |z|2)2
.

One can see the plots of these metric functions in fig. 3.2.

Finally, the function C(a) is the same function calculated before which is

C(a) =

∫
D

|∂aR|2

(1 + |R|2)2

dzdz̄

(1 + |z|2)2
.

Note that C(a) = γaa, where γaa is a metric function discussed in an ealrier section (3.5) of

(3.5.1). Hence, the metric on the 7-dimensional charge three lumps is given by

g =Aii(a)σ2
i + A13(a)(σ1σ3 + σ3σ1) + C(a)da2 +Dii(a)η2

i +D13(a)(η1η3 + η3η1)

+B2(a)σ2da+ E2(a)η2da+ Fii(a)σiηi, i = 1, 2, 3.

Proposition 8. R̃ata3 is a non-compact totally geodesic Lagrangian submanifold of Rat3.

Proof. One can find a similar proof in [56]. We can find that R̃ata3 is the fixed point set of an
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isometry of Rat3. R̃ata3 is a submanifold of Rat3 and the Kähler form restrict to 0 on R̃ata3, and

the dimension of Rat3 is two times the dimension of R̃ata3. Hence, R̃ata3 is a totally geodesic

Lagrangian submanifold of Rat3. Let R ∈ Rata3. Its degree drops by 2 as a → ∞, that is an

antipodal pair of lump forms, collapses to an infinitely sharp spike and disappears. Thus from

this we conclude that Rata3 is not compact and the result holds.

Proposition 9. The moduli space R̃ata3 with respect to the general metric g has finite volume,

that is, the volume of (R̃ata3, g) is finite.

Proof. The volume on the moduli space Rat3 is given by

V ol(R̃ata3) =

∫
SO(3)×SO(3)×R

√
(| det(gij)|)V olg(Rata3), (3.6.10)

where V olg(R̃ata3) is the volume element on g is given by

V olg(R̃ata3) = σ1 ∧ σ2 ∧ σ3 ∧ η1 ∧ η2 ∧ η3 ∧ da. (3.6.11)

Using (3.6.3), (3.6.4) and (3.6.5), we can find that η1 ∧ η2 ∧ η3 = sin(θ)dφdθdψ, 0 ≤ θ ≤

π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 2π. Then we have that

V ol(SO(3)) =

∫
SO(3)

η1 ∧ η2 ∧ η3 = 8π2

and similarly

V ol(SO(3)) =

∫
SO(3)

σ1 ∧ σ2 ∧ σ3 = 8π2.

The metric functions satisfy the following conditions

A11 ≥
1

2
(A13 + F11 + F13) , A22 ≥

1

2
(F22 +B2) , A33 ≥

1

2
(A13 + F33 + F13) , (3.6.12)

D11 ≥
1

2
(D13 + F11 + F13) , D22 ≥

1

2
(F22 + E2) , D33 ≥

1

2
(D13 + F33 + F13) , (3.6.13)

and C ≥ 1

2
(B2 + E2) . (3.6.14)

Using Hadamard’s inequality [19] and the inequalities (3.6.12) to (3.6.14), the determinant of
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the matrix (gij) satisfies

| det(gij)| ≤
7∏
i=1

(
7∑
j=1

g2
ij

) 1
2

(3.6.15)

≤
7∏
i=1

(
2g2

ii

) 1
2 = 8

√
2

7∏
i=1

gii (3.6.16)

= 8
√

2A11A22A33D11D22D33C. (3.6.17)

We can also find the following inequalities in the metric functions which are D11 ≤ π
6

+

2π2
√

3
243

, D22 ≤ π
6

+ 2π2
√

3
243

and D33 ≤ π
6
. We can also see that A11 ≤ 2π

3
, A22 ≤ 2π

3
and

A33 ≤ 2π
3

+ 8π2
√

3
243

. Thus, 8
√

2A11A22A33D11D22D33 < 1. The metric function C satisfy the

inequality C ≤ 4
(1+a2)2 . Using (3.6.17), det(gij) ≤ 4

(1+a2)2 . Note that
∫∞

0
2

1+a2da = π which

implies the following integral

V ol(R̃ata3) = 64π4

∫ ∞
0

√
| det(gij| da

≤ 64π4

∫ ∞
0

2

1 + a2
da = 64π5.

This proves the volume of the moduli space of charge three lumps is finite.

3.6.1 The Moduli Space Ratc3

It is easy to check that a rational map Rc ∈ Ratc3 has zeros at z = 0,±i
√
c and poles at

z = ±i
√

1
c
. The Wronskian ofRc is a polynomial of degree 4 that isw(z) = cz4+(3−c2)z2+c.

For 0 < c < 1, the zeros of Rc lie inside the unit disc and its poles are found outside the unit

disc. For c = 1, the poles and zeros ofRc come together and cancel each other, thenRc becomes

a rational map of degree one which is z. For c > 1, the poles of Rc are found outside the unit

disc. Finally, for c = ∞, the poles and zeros come together and cancel each other. Then Rc

becomes the rational map 1
z
. One can see the energy density of this space in fig.3.3 that shows
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the energy density is symmetric at c = 0. As c→ 1 and c =∞, the energy densities dissociate

and form spikes. However, for c = 1 and c =∞, the energy density becomes the energy density

of the rational map R(z) = z.

Recall from section 3.6 that the way we have computed the metric functions of the moduli space

of Rata3 with the isometry transformation of SO(3) as a SU(2) Möbius transformation. Hence

the metric should be invariant under rotations and its most general possible metric on R̃atc3 is

given by

gc = Ãij(c)σiσj + B̃i(c)σidc+ C̃(c)dc2 + D̃ij(c)ηiηj + Ẽi(c)ηidc+ F̃ij(c)σiηj, (3.6.18)

where i, j = 1, 2, 3 and each of the component functions depends only on c and is independent

of the Euler’s angles. Following the same method as earlier in section 3.6, we can remove some

metric functions from the metric (3.6.18) and find that

gc =Ãii(c)σ
2
i + Ã13(c)(σ1σ3 + σ3σ1) + C̃(c)dc2 + D̃ii(c)η

2
i + D̃13(c)(η1η3 + η3η1)

+ B̃2(c)σ2dc+ E2(c)η2dc+ F̃ii(c)σiηi, i = 1, 2, 3.

Here take π rotation around the third axis:

(σ1, σ2, σ3) 7→ (−σ1,−σ2, σ3) and (η1, η2, η3) 7→ (−η1,−η2, η3).

These two isometries remove Ã13, Ã31, D̃13, D̃31, F̃13, F̃31, B̃2(c) and Ẽ2(c) from the general

possible metric equation (3.6.18) because we have that

σ1σ3 7→ −σ1σ3, η1η3 7→ −η1η3, σ2dc 7→ −σ2da and η2dc 7→ −η2dc.
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Therefore, the general possible metric on the moduli space R̃atc3 is of the form

gc = Ãii(c)σ
2
i + C̃(c)dc2 + D̃ii(c)η

2
i + F̃ii(c)σiηi, i = 1, 2, 3, (3.6.19)

where Ãii, D̃ii and F̃ii are the metric functions of R̃atc3 which have similar structure as the

metric functions of R̃ata3 and in [29].

Proposition 10. Ratc3 has two non-overlapping submanifolds of which one is for 0 < c1 < 1

with length l1(Ratc13 ) = 5π2

12
(1 + 2 ln(2)) and and the second one is for 1 < c2 <∞ with length

l2(Ratc23 ) = 5π2

12

(
1
3
− 2 ln(2) + 4π

√
3

27

)
.

Proof. One can refer to proposition 6 for the method of proof.

Proposition 11. The moduli space (Ratc, γcc) has finite length, where γcc(c) = C̃(c), c ∈ [0.1).

Proof. Since the integral
∫ 1

0

√
γccdc <∞, it shows the length is finite. Therefore, the boundary

of (Ratc3, γcc) at infinity lies at finite distance.

Secondly, we consider rational functions of the form R(z) = z3 and its symmetry orbit denoted

by R̃at03. The energy density is symmetric and its metric is equivalent to the metric on the

moduli space {ξzn : ξ ∈ C×} with ξ = 1 and n = 3 which was shown in [38]. Note that R̃at03

is a totally geodesic submanifold of R̃at3 . The general metric on R̃at03 is given by

g0 = fiσ
2
i + hiη

2
i + F33σ3η3, (3.6.20)

= f1σ
2
1 + f2σ

2
2 + f3(σ3 + 3η3)2 + h1η

2
1 + h2η

2
2 i = 1, 2, 3, (3.6.21)

where

f1 = f2 =
2π2
√

3

27
, h1 = h2 =

π

6
+

2π2
√

3

243
,

f3 =
3π

2
− 4π2

√
3

27
, h3 =

π

6
− 4π2

√
3

243
, F33 =

π

2
− 4
√

3π2

81
.
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Proposition 12. R̃at03 has a finite volume with

V ol(R̃at03) = π13/2

19683

(
4π
√

3 + 81
)√

324− 32
√

3.

Proof. Here to avoid over-counting, we divide the volume element by two since the space has

an additional C2 symmetry. As earlier in proposition 3, we have that V ol(SO(3)) =
∫
SO(3)

σ1∧

σ2 ∧ σ3 = 8π2. From (3.6.3) and (3.6.3), η1 ∧ η2 = sin(θ)dφdθ, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, then

the integral is
∫
SO(3)/SO(2)

η1 ∧ η2 = 4π. The volume is given by

V ol(R̃at03) =

∫ √
|f1f2f3h1h2| η1 ∧ η2 ∧ σ1 ∧ σ2 ∧ σ3,

which can be evaluated as

V ol(R̃at03) = 32π3
√
|f1f2f3h1h2| =

4π13/2

19683

(
4 π
√

3 + 81
)√

324− 32
√

3.

Proposition 13. The moduli space (R̃at03, γ̃cc) has finite length.

Proof. The length can be computed as follows:

l =

∫ ∞
0

√
γ̃ccdc = 2

√
π

(
1

6
+

2

2443
π
√

3

)∫ ∞
0

1

1 + c2
dc = π

3
2

(
1

6
+

2
√

(3)π

243

) 1
2

.
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(a) (b)

(c) (d)

Figure 3.2: (a) The metric functions D11(a), D22(a), D33(a) and D13(a) = D31(a) ( blue, red,
green and black, respectively), (b) The metric functions A11(a) (blue), A22(a) (red), A33(a)
(green) and A13(a) (black), (c) The metric function C(a) (blue) which is also the plot of the
metric function γaa that discussed earlier, E2(a) (green) and B2(a) (red) show the metric func-
tions are finite and positive definite. Also one can observe that as a increases, all the metric
functions approach to zero and (d) The metric functions F11(a), F22(a), F33(a) and F13(a) (
blue, red, green and black, respectively).
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(a) c = 0 (b) c = 0.1 (c) c = 0.5

(d) c = 0.9 (e) c = 1 (f) c = 1.1

(g) c = 2 (h) c = 10 (i) c =∞
Figure 3.3: These figures are the energy densities of charge three lumps, Ratc3.
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3.7 Lump decay

Since a zero and a corresponding pole are opposite each other, a single lump cannot decay. This

leads to interesting lump decay channels. Consider first the moduli space Rata3: Following the

zeros and poles as for a ∈ [0,∞], we start with the axial map with three zeros at the origin 0

and three poles at ∞. Then one zero moves from 0 to ∞ along the positive x axis while one

pole moves from ∞ to 0 along the negative x axis. The zero cancels with a pole at ∞ while

the pole cancels with a zero at 0. Secondly, take the space Ratc3 : For c = 0 we have the axial

maps with three zeros at the origin and three poles at∞. For 0 < c < 1 one zero remains fixed

while one zero moves up and one down along the imaginary axis. Also, one pole remains fixed

at∞ while two poles travel towards 0 along the positive and negative imaginary axis (y-axis)

respectively. For c = 1 two poles and two zeros cancel. For 1 < c <∞ the poles move towards

0 while the poles move towards∞ where they cancel. Due to the extra symmetry, lump decay

is more complicated on RP 2. Finally, let us consider the moduli space R∞. The symmetry of

the axial map prevents lump decay. For N = 1 the space of allowed rational maps is SO(3)

and therefore lumps cannot decay. For N = 3 it’s the 5 dimensional symmetry orbit of z3.

For c = 0, we have the axial maps with three zeros at the origin and three poles at ∞. For

0 < c < ∞, three zeros move from 0 to∞ along the positive x-axis and the poles come from

∞ to 0 along the negative x -axis. No zeros cancel poles and vice-versa. That is the zeros move

from 0 to ∞ and become poles while poles come from ∞ to 0 along the negative x-axis and

their final destiny is to become zeros.
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3.8 Angular integral

The angular integral of a degree N rational map R is given by

I =
1

4π

∫ (
1 + |z|2

1 + |R|2

∣∣∣∣dRdz
∣∣∣∣)4

dzdz̄

(1 + |z|2)2
. (3.8.1)

Minimizing I is to minimize the energy configuration for a fixed N . It can be shown that

I ≥ N2 [36]. This quantity I is invariant under rotation in space and target space. Therefore,

it distinguishes between maps not related by the symmetry group. Our next task is to calculate

I for rational maps belonging to ˜Rat3. For Rc ∈ Ratc3, Rc(z) → z3 as c → 0 and Rc(z) → 1
z

as c → ∞. We can therefore see that Ra and Rc are related by a Möbius transformation for

c ∈ [0, 1) and a ∈ [0,∞). In fact, as iRc(z) = Rc(iz), c → −c, hence we can take c ≥ 0.

We can calculate the angular integral for a = c = 0 and denote it by I0. Then I0 = 81+16
√

3π
9

.

Fig.3.4 shows the angular integral diverges at c = 1 for Rc case. We can compute the Icrit

analytically by first calculating the point where the derivative of the angular integral with respect

to c vanishes but it is unlikely that there is a simple explicit expression due to the complicated

structure of the integrand of I. We calculated Icrit numerically and surprisingly, we found that

Icrit = I0. Here the critical value is at c = 3. Hence, there are two families of rational maps.

The angular integral I as a function of a for Ra in (3.4.15) is also displayed in Fig. 3.4. This

indicates that the maps Ra ∈ R̃ata3 and Rc ∈ R̃atc3 with the same value of I are related to

each other via Möbius transformations. In fact, this can be checked using Maple by explicitly

computing the relevant Möbius transformations. Hence the moduli space of lumps of (3.4.11)

and (3.4.15) parametrize the same space, and therefore (3.4.15) has a hidden D2 symmetry. So,

R̃ata3 and R̃atc3 are different parametrizations of R̃at3.
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Figure 3.4: Angular integral plot of Ra and Rc

3.9 N = 5

The Ck
n symmetry discussed in section 3.4 suggests there are four families of moduli spaces of

degree 5 rational maps. In addition, the Riemann-Hurwitz formula indicates that there are five

families of moduli spaces of degree 5 rational maps. Let’s first consider the former one. Lemma

3 and 4 show a D∞ symmetry when a Cn symmetry is imposed with n ≥ 5 which is given by

rational maps of the form

R(z) = eiψ
az5 + b

−b̄z5 + ā
, (3.9.1)

where a and b do not both vanish simultaneously and complex, and ψ ∈ R. Refer to section 3.4

to see that with a similar argument, the symmetry is C0
5 and its moduli space having dimension

5 can be viewed as the symmetry of z5.
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The rational map which is grouped to the C1
2 symmetry family is given by

R(z) = eiψ
z(a0 + a1z

2 + a2z
4)

ā2 − ā1z2 + ā0z4
. (3.9.2)

An interesting example of this kind of rational map which satisfies the D2 symmetry is given

by

R(z) =
z(1 + iaz2 + bz4)

b+ iaz2 + z4
, a, b ∈ R. (3.9.3)

Surprisingly, when b = 1, lump decay can be observed as four zeros cancel with four poles at 0

and four poles cancel with four zeros at∞. Furthermore, when a = 0, R(z) has the symmetry

of a square. If b = −5, then there is octahedral symmetry. The other family of maps that can

be observed from the Ck
n symmetry is the C2

3 case. In this symmetry family, the rational map is

given by

R(z) = eiψ
z2(a0 + a1z

3)

ā1 − ā0z3
. (3.9.4)

By Möbius transformations preserving this symmetry, namely rotations around the third axis in

space and target space, the rational map can be brought into the form

R(z) =
z2(z3 + a)

1− az3
, a ∈ [0,∞). (3.9.5)

The remaining family of maps satisfying the Ck
n symmetry is the C1

4 which the rational map is

given by

R(z) =
z(z4 + a)

1 + az4
, a ∈ [0, 1) ∪ (1,∞). (3.9.6)

Proposition 14. For N where n+ k = N , n is even and n > k, the moduli spaces of rational

maps of degree N of the Ck
n symmetry is 7-dimensional and satisfies the Dn symmetry.
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Proof. The rational map that satisfies the symmetry Ck
n is given by

R(z) = eiψ
zk(a1z

n + a0)

ā0zn + ā1

. (3.9.7)

By Möbius transformation, the rational map can be brought into the form

R(z) =
zk(zn + a)

1 + azn
, a ∈ [0,∞). (3.9.8)

The map (3.9.8) satisfies the condition

R

(
1

z

)
=

1

R(z)
. (3.9.9)

Hence, the moduli space of the rational map has Dn symmetry.

Note that the C1
4 family of maps is a subset of the C1

2 family of map.

To see another family of degree 5 rational maps on the projective plane, we use the Riemann-

Hurwitz formula [17]. Thus, for N = 5,
∑

pi
(dpi − 1) = 8 implies there are five possibilities.

Here, the index dp1 = 5 is the first possibility which fixes dp2 = 5. Then the first family is the

symmetry of rational map z5 which coincides with the family of the map (3.9.1). The second

possibility of the index dpi is when dp1 = dp2 = 4 which fix dp3 = dp4 = 2. In this case, the

family of rational maps is given by

R(z) =
z4(z + a)

1− az
. (3.9.10)

The third possibility of the index dpi is when dp1 = dp2 = 3 and dpi = 2, i = 3, 4, 5, 6 which

results in the third family of rational maps given by (b 6= 0)

R(z) =
z3(z2 + az + b)

(1− āz + bz2)
, (3.9.11)
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where |a|2(b2 + 1) + (b2− 1)2 + b(a2 + ā2) 6= 0. The fourth possibility of the index dpi is when

dpi = 3, i = 1, 2, 3, 4. Thus, the fourth family of rational maps is given by (b 6= 0)

R(z) =
z3(z2 + az + b)

(1− az + bz2)
, (3.9.12)

where a2(b+ 1)2 + (b2 − 1)2 6= 0.

Conjecture 1. The family of the map (3.9.12) is a 9-dimensional space with C2 symmetry.

Finally, the remaining possibility of index dpi is when dpi = 2, i = 1, ..., 8. Hence, the family

of map is given by (c 6= 0)

R(z) =
z2(z3 + az2 + bz + c)

1− āz + b̄z2 − cz3
, (3.9.13)

where the parameter a, b and c are coefficients such that the determinant of the Sylvester matrix

Syl(p̃, q̃) is never zero, where p̃ = z3 +az2 +bz+c and q̃ = 1− āz+ b̄z2−cz3, and furthermore

the Wronskian of (3.9.13) has to have 7 simple roots.

3.10 The Kähler potential and Fubini-Study metric of RP 2

lumps

In this section, we will compute the Kähler potential of the moduli space ofRata3 and its Fubini-

Study metric. In the example, we shall evaluate the Kähler potential for the totally geodesic

submanifold of lumps.

Definition 14. A Kähler manifold is a Hermitian manifold (M, g) whose Kähler form ω is

closed: dω = 0. The metric g is called the Kähler metric of M .

The metric on the moduli space of holomorphic maps defined by the sigma model kinetic energy

is Kähler whenever both the domain and target manifolds are Kähler [48].
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Theorem 4. Let M be a complex manifold with Riemannian metric g. Then the following are

equivalent

• g is a Kähler metric.

• dω = 0.

• For each point P ∈ M , there is a smooth real function K in a neighborhood of P such

that ω = i∂∂̄K.

K is called the Kähler potential.

Proof. The first and second conditions are directly from the definition. One can see the equiva-

lence of the second and the third conditions in [41].

K is unique up to Kähler transformations,K(z, z̄) 7→ K(z, z̄)+f(z)+f(z̄) for any holomorphic

function f and cannot be a globally defined smooth function on the boundary of compact spaces.

Because suppose now that K is a globally defined. Then ω would be an exact form and so is

vol = ωm

m!
. If volwere exact, its integral overM would vanish [13], which is a contradiction with

the assumption that the metric is non-degenerate. Therefore, K cannot be defined globally. For

a rational map R(z) = p(z)
q(z)

, the geodesics in Rata3 endowed with the Kähler metric γaa = ∂2
aK

where

K =

∫
D

log(|p(z)|2 + |q(z)|2)
dzdz̄

(1 + |z|2)2
,

computes the Kähler potential from the static solution configurations R = R(z, a). The com-

plex projective space CPN is a Kähler manifold which means that Kähler metrics naturally

occur on complex projective varieties. For example there is a standard Fubini-Study metric γFS

on CPN which is also positive definite and if X ⊂ CPN is a complex submanifold, the restric-

tion of γFS to X is Kähler. Therefore, the Fubini-Study metric on CP 3 gives a Kähler metric
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on M1 given by the open inclusion M1 ⊂ CP 3. Let (z0, ..., zN) ∈ CN+1 be a homogeneous

coordinate on CPN . The Fubini-Study metric γFS on CPN is given by

γFS = i∂∂̄ log(|z0|2 + ...+ |zN |2).

Define coordinate charts by (U0, φ) such that U0 = {[z0, z1, ..., zN ] ∈ CPN , z0 6= 0}. Let

w = (w1, ..., wN) ∈ CN , wi = zi
z0

a section of φ over U0 and hence for w ∈ CN , the Fubini-

Study metric γFS

γFS = i

( ∑N
i=1 dwidw̄i

(1 +
∑N

i=1 |wi|2)
−
∑N

i=1 w̄idwi ∧
∑N

k=1wkdw̄k

(1 +
∑N

i=1 |wi|2)2

)
.

Let w(z) = a1z+a2

a3z+a4
with a4 6= 0 be a rational map of degree 1. Define the inhomogeneous

coordinates as bi = ai
a4
, i = 1, 2, 3. Then using the coordinates bi, i = 1, 2, 3, we can express the

Fubini-Study metric as:

γFS =
(1 +

∑
|ba|2)(

∑
dbad̄bb)− (

∑
b̄adba)(

∑
bbd̄bb)

(1 +
∑
|ba|2)2

. (3.10.1)

Using (3.10.1), one can find that the Fubini-Study metric on Rata3 as

γFS =
da2

(1 + a2)2
.

Example (The Kähler potential for charge one lump)

In this example, we will compute the Kähler potential on the moduli space M1 where the field

is given by wλ(z) = µz, where µ =
√

1+λ2+λ√
1+λ2−λ . Since we can take p(z) = (

√
1 + λ2 + λ)z and
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q(z) =
√

1 + λ2 − λ, then the Kähler potential is

K =
1

2

∫
C

(
4 log(1 + µ2|z|2)− log(µ)

) 4dxdy

(1 + |z|2)2

= 16π

∫ ∞
0

(
log(1 + µ2r2)− log(µ)

) rdr

(1 + r2)2
= 4π

(
2µ2 log(µ)

µ2 − 1
− log(µ)

)
.

Note that using this Kähler potential, we can evaluate the L2 metric on M1 as

γ

(
∂

∂λ1

,
∂

∂λ1

)
=

4πµ2 [(µ2 + 1) log µ− µ2 + 1]

(µ2 − 1)3
.

Note that this metric is the same metric that we calculated in the previous section.

3.11 Summary of chapter

In this chapter, the geometry and topology of moduli spaces of charge three lumps was studied.

The L2 metric on these moduli spaces was explicitly derived by an isometry transformation of

SO(3) as a SU(2) Möbius transformations of space and target space. The moduli spaces have

finite length and volume. The zeros and poles of rational maps was considered to study lump

decay. The energy densities of lumps for the parameters a = 0, a =∞ and c = 0, c = 1, c =∞

are symmetric. The minimal value of the moment of inertia, or angular integrals, of moduli

spaces of charge three lumps were explicitly evaluated. The angular integrals, particularly their

plots, played an important role in identifying the family of rational maps. We applied the

Riemann-Huwrtiz formula to find possible families of moduli spaces of charge 5 lumps. The

Fubini-Study metric on a 1-dimensional moduli space of charge 3 lumps and the corresponding

Kähler potential were explicitly computed.
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Chapter 4

Vortices on the Hyperbolic Plane

The geometry of the moduli spaces MN of static N -solitons plays an important role in the

study of the dynamics of topological solitons of a field theory of Bogomlyni type: the low

energy soliton scattering, the thermodynamics of soliton gases and the quantum mechanics of

solitons [36]. The L2 metric γ on MN can be taken as the restriction of the kinetic energy of

the field. In this chapter we will study the moduli space of hyperbolic vortices and compute the

explicit formula for the metric γ on hyperbolic 3- and 4-vortices. The Abelian Higgs model [20]

is a field theory which consists of a complex scalar field φ coupled to a U(1) connection. The

Abelian Higgs vortices are topological solitons in two dimensional space minimizing the energy

functional. We will consider Ginzburg-Landau vortices moving on the hyperbolic plane and the

Bogomolyni equations for static hyperbolicN -vortices can be reduced to an integrable Liouville

equation on a disc.

Let R1,2 be the space-time with coordinates (x0 = t, x1, x2). The 2 + 1-dimensional Abelian

Higgs model is governed by the action

S(A, φ) =

∫ t0

0

(T (A, φ)− V (A, φ))dx0, (4.0.1)

where T (A, φ) is the kinetic energy, V (A, φ) is the potential energy,A is a U(1)-connection on
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R1,2 given by the 1-form

A = A0dx0 + A1dx1 + A2dx2,

and φ is a Higgs field given by a smooth complex function φ : R1,2 −→ C. The Lagrangian

density at critical coupling constant, λ = 1, is

L = −1

4
F µνFµν +

1

2
DµφD

µφ− 1

8
(1− |φ|2)2, µ = 0, 1, 2, (4.0.2)

where φ is a complex scalar field on R1,2 coupled to a U(1) gauge potential A, Dµφ = ∂µφ −

iAµφ is the covariant derivative and Fµν = ∂µAν − ∂νAµ is the gauge field strength. Note that

R1,2 is equipped with the Minkowski metric of signature (+,−,−). The terms in the right side

of (4.0.2) are then

DµφD
µφ = D0φD0φ−D1φD1φ−D2φD2φ (4.0.3)

FµνF
µν = −2(E2

1 + E2
2 − F 2

12), (4.0.4)

where Ei = F0i, i = 1, 2 is the electric components of the field while F12 is the magnetic

component of the field. The Lagrangian (4.0.2) is also invariant under the following gauge

transformations

φ 7→ eiα(t,x)φ, Aµ 7→ Aµ + ∂µα(t, x),

where α(t, x) is arbitrary function on R1,2. The field equations are

DµDµφ−
1

2
(1− |φ|2)φ = 0 (4.0.5)

∂νF
νµ +

i

2
(φ̄Dµφ− φDµφ) = 0, (4.0.6)
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where Dµ = ηµνDν , with ηµν being the inverse component of the Minkowski metric η on

R1,2. To ensure finiteness of the total energy, we need to put some constraint on the field

configuration. The constraint can be explicitly expressed as |φ| → 1, Dµφ → 0 as |x| → ∞.

Thus, φ takes its value in the vacuum field. Vortices are known to exist in the (2+1)-dimensional

Abelian Higgs model. They are the static field configurations minimizing the Ginzburg-Landau

energy functional.

In sections 4.1 and 4.2, we will give a review of the metric on the moduli space of compact

Riemann surfaces and hyperbolic vortices, respectively and in section 4.3, the exact formula

for the metric and other geometric correspondences for 3-hyperbolic vortices will be derived.

Subsections 4.3.1 and 4.3.3 present the metric on some subspaces of hyperbolic 3-vortices. In

subsection 4.3.4, we will study double vortices on the hyperbolic plane and exploit its metric,

scalar curvature and Kähler potential. Subsection 4.3.6 discusses the metric and scalar curvature

of m + 1-vortices where m ≥ 2. Then subsection 4.3.8 will present three collinear hyperbolic

vortices. In section 4.4, we study the metric on 4-hyperbolic vortices. Mostly, the metric,

Kähler potential and scalar curvature on the moduli space of hyperbolic 3 and submanifolds of

4-vortices will be computed.

4.1 The metric on MN (with multiplicities)

In this section, we give a brief computation of a metric on a compact Riemann surface when

the Abelian Higgs field φ has zeros of positive multiplicity m. The metric on MN is the L2

metric derived from the restriction of the kinetic energy to MN . Following Strachan [60], a

general formula for the L2 metric on the moduli space was exploited by Samols where the

vortex positions are distinct. To compute the metric on MN where the vortex positions have
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multiplicity m, remember that we follow the computation steps and methods of the procedure

in the literature [36]. Let Σ be a Riemann surface with the local complex coordinate z = x1+ix2

and its complex conjugate z̄ = x1 − ix2. The metric on R× Σ with conformal factor Ω is

ds2 = dx2
0 − Ω(z, z̄)dzdz̄ = dx2

0 − Ω(x1, x2)(dx2
1 + dx2

2). (4.1.1)

The static Ginzberg-Landau (GL) potential energy functional at the critical coupling is

V =
1

2

∫
Σ

(
Ω−1F 2

12 +DiφDiφ+
Ω

4
(1− φφ̄)2

)
dx1dx2, (4.1.2)

where φ is a complex valued scalar field on Σ and F12 = ∂1A2 − ∂2A1 is the curvature. One

can rewrite the Ginzberg-Landau (GL) energy by completing the square and we have that

V =
1

2

∫
Σ

(
Ω−1

(
F12 −

Ω

2
(1− φφ̄)

)2

+ (D1 + iD2)φ(D1 + iD2)φ+ F12

)
dx1dx2.

(4.1.3)

Vortices, which minimize the energy functional, satisfy the first order Bogomolnyi equations

(D1 + iD2)φ = 0 (4.1.4)

F12 −
Ω

2
(1− |φ|2) = 0, (4.1.5)

where |φ|2 = φφ̄. The first Chern number classifies the solutions into topologically stable

sectors

N =
1

2π

∫
Σ

F12, (4.1.6)
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where N is an integer. The energy satisfies the Bogomolnyi bound

V ≥ π|N |. (4.1.7)

Here our aim is to calculate the metric on MN where the scalar field has zeros of multiplicity

m. Suppose {φ(t), Ai(t)} be a family of N -vortex solutions of the Bogomolnyi equations

with vortex locations {zr(t)} of multiplicity mr. The vortices are moving slowly and the time

derivative of the Bogomolnyi equations is held by the time derivatives of the field configurations,

{∂0φ, ∂0A}. TakeA0 = 0, known as the temporal gauge. The Gauss law constraint for the gauge

field Ei = Fi0 = ∂iA0 − ∂0Ai reads

∂iEi +
i

2

(
φ̄∂0φ− φ∂0φ̄

)
= 0. (4.1.8)

The kinetic energy functional is

T =
1

2

∫
Σ

(
∂0Ai∂0Ai + Ω|∂0φ|2

)
dx1dx2. (4.1.9)

Let φ = e
1
2
h+iχ. Note that h is a gauge invariant quantity and finite except at the zeros of φ.

That is, h has logarithmic singularities, and becomes infinitely negative. Using the Bogomolnyi

equations we can eliminate χ because from the first Bogomolnyi equation we have that A1 =

1
2
∂2h + i∂1χ and A2 = −1

2
∂1h + i∂2χ. Then the second Bogomolnyi equation will give (by

including a delta-function source for h)

∇2h+ Ω− Ωeh = 4π
N∑
r=1

mrδ(z − zr), (4.1.10)
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where∇2 = 4∂z̄∂z is the standard Laplacian and the equation is valid only away from the zeros

of φ. As φ has zeros with multiplicity mr, |φ| ∼ |z − zr|mr . Thus, h ∼ 2mr log |z − zr|.

Define η = ∂0 log φ. The kinetic energy (4.1.9) reduces to

T = −i
N∑
r=1

∫
Cr

η̄∂z̄ηdz̄, (4.1.11)

where Cr is the boundary of the disc Dr centered at zr, of radius ε [36]. The expansion of

h = log |φ|2 around the point zr has the form

h =2mr log |z − zr|+ ar +
1

2
b̄r(z − zr) +

1

2
br(z̄ − z̄r) + c̄r(z − zr)2

− Ω(zr)

4
(z − zr)(z̄ − z̄r) + cr(z̄ − z̄r)2 +O(|z − zr|3),

which is a convergent Taylor series with ar is real and br measures the extent to which contours

of h close to zr differ from circles centered at zr. To avoid logarithmic singularities of h, let

hreg = h− 2mr log |z − zr| be the regularized function. Then

br = 2
∂hreg
∂z̄

∣∣∣∣
z=zr

.

We next construct η̄ and ∂z̄η on the boundary Cr and differentiate h with respect to the vortex

position zs. We will have that

∂h

∂zs
=
−mrδrs
z − zr

+
∂ar
∂zs

+
1

2

∂b̄r
∂zs

(z − zr)−
1

2
b̄rδrs +

1

2

∂br
∂zs

(z̄ − z̄r)− 2c̄r(z − zr)δrs

− Ω(zr)

4
(z̄ − z̄r)δrs +O(|z − zr|3).
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One can see that ∂h
∂zr

has a pole at zr with residue −mr that results in

(∇2 − eh) ∂h
∂zr

= −4πmr∂zδ
2(z − zr). (4.1.12)

Note that, in [36], the term η is given by η =
∑N

r=1 żr
∂h
∂zs
. The derivative of ∂h

∂zs
with respect to

z̄ is

∂z̄

(
∂h

∂zs

)
=

1

2

∂br
∂zs

+
Ω(zr)δrs

4
+O(|z − zr|),

which implies the derivative of η with respect to z̄ is

∂z̄η =
N∑
r=1

żs

(
1

2

∂br
∂zs

+
Ω(zr)δrs

4

)
+O(|z − zr|).

Then using the residue theorem, we can compute the integral as

∫
Cr

η̄∂z̄ηdz̄ = mrπi ˙̄zr

N∑
s=1

żs

(
∂br
∂zs

+
Ω(zs)

2
δrs

)
.

Summing over all Cs, one can find that the kinetic energy as

T =
1

2
π
∑
r,s

mr

(
Ω(zr)δrs + 2

∂bs
∂zr

)
żr ˙̄zs. (4.1.13)

Therefore, the metric on MN where the vortex positions have multiplicities mr is

ds2 = π
∑
r,s

mr

(
Ω(zr)δrs + 2

∂bs
∂zr

)
dzrdz̄s. (4.1.14)

From the hermitian property of the metric, one can see the following relation

∂bs
∂zr

=
∂b̄r
∂z̄s

. (4.1.15)
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The translational invariance of the the entire system results in
∑N

r=1 br =
∑N

r=1 b̄r = 0 and

the rotational invariance produces
∑N

r=1 brz̄r =
∑N

r=1 b̄rzr [46, 47]. Moreover, the symmetric

property which can be found in [47] is

∂br
∂z̄s

=
∂bs
∂z̄r

. (4.1.16)

The symmetry property implies that the metric on MN is Kähler [48]. The associated Kähler

2-form, which is closed, is given by

ω =
iπ

2

∑
r,s

mr

(
Ω(zs)δrs + 2

∂br
∂zs

)
dzs ∧ dz̄r. (4.1.17)

Because of the symmetry of the second partial derivatives and (4.1.16), one can verify that

dω = iπ
∑
r,s,t

ms

(
∂2bs
∂z̄t∂zr

dz̄t ∧ dzr ∧ dz̄s +
∂2bs
∂zt∂zr

dzt ∧ dzr ∧ dz̄s
)

= iπ
∑
r,s,t

ms

(
∂2b̄r
∂z̄t∂z̄s

dz̄t ∧ dzr ∧ dz̄s +
∂2bs
∂zt∂zr

dzt ∧ dzr ∧ dz̄s
)

= 0.

Note that ms 6= 0, because by definition ms is positive integer.

4.2 The metric on hyperbolic vortices

The upper half-plane is given by H = {z = x + iy ∈ C : Im(z) > 0}. A metric of constant

negative curvature on the upper half-planeH is

ds2 =
dx2 + dy2

y2
. (4.2.1)
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This space is also called the hyperbolic plane. The hyperbolic plane can be represented by the

disc model. The hyperbolic plane H is isometric to the Poincaré disc model, D = {z ∈ C :

|z| < 1}, since we can find an isometry between D andH using the Cayley-transform

c : D −→ H, z 7→ i+ z

1 + iz
.

Note that there is no radial symmetry in the upper half-plane, so for our purpose we will consider

later on the Poincaré disc model. Let Σ be a Riemann surface of local complex coordinate z, z̄

its complex conjugate, with metric

ds2 = Ω(z, z̄)dzdz̄,

where Ω is the conformal factor. The Gauss curvature of the half-plane model is negative. So,

the hyperbolic plane has negative Gauss curvature. Note that the Gauss curvature is given by

κ = − 2
Ω
∂z∂z̄ log(Ω). The metric on the hyperbolic plane with curvature −1

2
is

ds2 = Ω(z, z̄)dzdz̄, Ω(z, z̄) =
8

(1− |z|2)2
. (4.2.2)

Our next goal is to study the dynamics of the moduli spaces of hyperbolic vortices. The critically

coupled Ginzburg-Landau vortices on H are minimals of the potential energy (4.1.2) but the

integral is overH and the scalar field φ is φ : H −→ C. The boundary of the domain is a circle

at infinity and there should be a constraint at infinity to ensure finiteness of the energy because

for static field, the total energy is finite. This static energy is the Ginzburg-Landau potential

energy. Thus the field φ satisfies the boundary condition |φ| → 1 for |z| → 1. The Ginzburg-

Landau energy V on H is minimized by homotopy classes of solutions of the Bogomolyni
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equations (4.1.4) and (4.1.5). We call these solutions Bogomolnyi vortices or hyperbolic N -

vortices. The zeros of φ are the vortex centers where φ vanishes. These zeros are interpreted as

individual vortex positions and the number of vortices N counted with multiplicity is the first

Chern number (4.1.6).

Recall from section 4.1 that setting φ = e
1
2
h+iχ, where h is gauge invariant quantity and finite

except at the zeros of φ, one can find the following equation

4
∂2h

∂z∂z̄
+ Ω− Ωeh = 0, (4.2.3)

where this equation is valid only away from the vortex positions. Setting h = 2g + 2 log 1
2
(1−

|z|2) the equation for h becomes Liouville’s equation [71],

4
∂2g

∂z∂z̄
− e2g = 0. (4.2.4)

One can solve this equation exactly such that the solution is given by

g = log

(
2| df
dz
|

1− |f |2

)
, (4.2.5)

where f(z) is an arbitrary, complex analytic function. Using g, we can reconstruct φ as

|φ|2 =
∣∣∣eg+log 1

2
(1−|z|2)+iχ

∣∣∣2 =
(1− |z|2)2

(1− |f |2)2

∣∣∣∣dfdz
∣∣∣∣2 .

Then with a simple choice of phase, the scalar field φ can be seen as

φ =
1− |z|2

1− |f |2
df

dz
. (4.2.6)

Note that the scalar field φ in (4.2.6) vanishes at the critical points of f satisfying the boundary
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condition |φ| → 1 as |z| → 1. The zeros of φ are the vortex positions of the moduli space.

These are also the critical points of the function f . The boundary condition |φ| → 1 for |z| → 1

and this φ nonsingular inside the disc, |z| < 1 results in |f | → 1 on the boundary and |f | < 1

inside the unit disc. Hence these conditions are satisfied by choosing a Blaschke function of the

form

f(z) = z

N∏
i=1

(
z − ai
1− āiz

)
, (4.2.7)

where a1, ..., aN ∈ C, |ai| < 1. Taubes [21] showed that the zeros of φ if they exist, can be

specified by N unordered points {z1, z2, ..., zN}. Then the hyperbolic N -vortices are in one-to-

one correspondence with degree N polynomials. Let {z1, z2, ..., zN} be the zeros of the field φ

and define a polynomial of degree N with all of whose roots lie in the open disc |z| < 1,

P (z) =
N∏
r=1

(z − zr), |zr| < 1

= zN + w1z
N−1 + ...+ wN .

One can see that there is a one-to-one correspondence between an ordered set of arbitrary com-

plex numbers coefficients {w1, ..., wN}. The set of unordered points {z1, z2, ..., zN} determine

the coefficients of P as each wi can be explicitly written in terms of the zj:

w1 = −(z1 + ...+ zN), ..., wN = (−1)Nz1z2...zN .

Conversely, the coefficients determine P (z) and hence N -vortices. The function f is a rational

map having exactly 2N critical points, counted with multiplicity. This can be seen as follows.

The function f satisfies f ◦ i = i ◦ f where i : z 7→ z̄−1. If z is the critical point of f , so is i(z).

Therefore, f has N critical points inside the unit disc and N critical points outside the unit disc
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because f has no critical points on the boundary |z| = 1.

The kinetic energy (4.1.9) induces a natural Riemannian (Kähler) metric γ on MN . Samols

[51, 60] derived the metric and the associated Kähler form on the N−vortex moduli space by

taking distinct N zeros of the Higgs field φ. Let the positions of N -vortices be allowed to

move along trajectories zi(t), i = 1, ..., k. There are k-vortices zi with multiplicity mi and∑k
i=1 mi = N . We can then write h = log |φ|2 as

h = log |φ|2 = 2 log(1− zz̄) + 2 log |∂zf | − 2 log(1− ff̄).

Now suppose that the zeros of φ are say zr of multiplicity mr, then near the moving zero zr

∂zf = (z − zr)mr f̃ , (4.2.8)

where f̃ is an analytic function. Then one can see that

h = 2 log(1− zz̄) + 2mr log |z − zr|+ log f̃ + log ¯̃f − 2 log(1− ff̄).

The gauge invariant quantity h = log |φ|2 has the series expansion around the zero zr of φ (as

earlier in section 4.1)

h = 2mr log |z − zr|+ ar +
1

2
b̄r(z − zr) +

1

2
br(z̄ − z̄r) + cr(z − zr)2 + ...., (4.2.9)

where ar, br, b̄r are all functions of the separations between vortex position zr and all other

vortex positions zs, s 6= r. Samols [51] showed that br and b̄r play a central role in the formula

for the metric on the moduli space. In order to avoid the logarithmic singularities of h in (4.2.9)
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near z = zr, we define the regularized version of h as

hreg = log |φ|2 −mr log(z − zr)−mr log(z̄ − z̄r)

= 2 log(1− zz̄) + log f̃ + log ¯̃f − 2 log(1− ff̄).

Then the coefficient br can be computed as

br = 2
∂hreg
∂z̄

∣∣∣∣
z=zr

=
−4zr

1− |zr|2
+ 2Br, (4.2.10)

where Br =
(
∂z̄

¯̃
f

¯̃
f

) ∣∣∣∣
z=zr

. Samols’ argument [51] can be generalized and the kinetic energy

(4.1.9) of trajectories in MN becomes

T = 2π
k∑

r,s=1

mr
∂Br

∂zs
żr ˙̄zs, (4.2.11)

where Br =
(
∂z̄

¯̃
f

¯̃
f

) ∣∣∣∣
z=zr

. The reality property of the kinetic energy shows that

∂B̄s

∂z̄r
=
∂Br

∂zs
. (4.2.12)

Then the Hermitian metric with respect to the canonical complex structure on MN induced by

T is

γ = 4π
k∑

r,s=1

mr
∂Br

∂zs
dzrdz̄s (4.2.13)

with Kähler form

ω = 2iπ
k∑

r,s=1

mr
∂Br

∂zr
dzr ∧ dz̄s. (4.2.14)

Example 7. In this example, we shall see how the metric on the moduli space Mm, where m is
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a multiplicity of a single critical point, is calculated. Consider

f(z) =

(
z − a
1− āz

)m+1

, |a| < 1.

Then f has a single critical point of multiplicity m at a, since df
dz

= (z−a)m(m+1)(1+|a|2)
(1−āz)m+2 . The

critical point at z = a with multiplicity m is the vortex position. The expansion of h near z = a

is given by

h = (m+ 1) log |z − a|+ ar +
1

2
b̄r(z − a) +

1

2
br(z̄ − ā) + ... (4.2.15)

with

ba =
−4a

1− |a|2
+

2(m+ 2)a

1− |a|2
.

So, from this we calculate that
∂ba
∂a

=
2m

(1− |a|2)2
.

From our earlier result, the metric on Mm is given by

ds2 = mπ

(
Ω(a) + 2

∂ba
∂a

)
dadā = πm(m+ 2)

4dadā

(1− |a|2)2
.

We will see in the next two sections the Kähler potential and the scalar curvature are calculated

as

K = −4(m2 + 2m)π log(1− |a|2) and κ =
−1

πm(m+ 2)

respectively. Here, the metric, the Kähler potential and the scalar curvature of the moduli space

depend on the multiplicity of vortex positions.

4.3 The metric on hyperbolic 3-vortices

In this section, we will study the moduli space of hyperbolic 3-vortices and calculate the non-

explicit metric on the moduli space. We shall evaluate an explicit metric for some specific cases
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and their respective scalar curvature properties and Kähler potentials. The moduli space will

then consist of three families based on the zeros of the field φ. Recall that with a simple choice

of phase, the scalar field φ is given by

φ =
1− zz̄
1− ff̄

df

dz
,

where f is a holomorphic map from the hyperbolic plane H into itself such that |f | < 1 with

boundary behavior |f(z)| → 1 as |z| → 1 and f is the Blaschke function

f(z) = z
N∏
i=1

z − ai
1− āiz

, |ai| < 1.

The moduli spaces of hyperbolic 3-vortices shall be studied as follows. Consider the submani-

fold of the moduli space that is given by

M̃3 =

{
f(z) =

z(z3 + az2 + bz + c)

(cz3 + bz2 + az + 1)
: a, b, c ∈ R

}
, (4.3.1)

such that the roots of f say zi are in the unit disc (i.e |zi| < 1). Equivalently,

M̃3 = M̃31 ∪ M̃32,

where

M̃31 =

{
f(z) =

z(z − z1)(z − z2)(z − z̄2)

(1− z1z)(1− z2z)(1− z̄2z)
: z1 ∈ R, z2 ∈ C

}
(4.3.2)

and

M̃32 =

{
f(z) =

z(z − z1)(z − z2)(z − z3)

(1− z1z)(1− z2z)(1− z3z)
: z1, z2, z3 ∈ R

}
, (4.3.3)
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where |z1| < 1, |z2| < 1 and |z3| < 1. The function f in (4.3.1), (4.3.2) or (4.3.3) is a Blaschke

function and its zeros satisfy the C2 symmetry, z 7→ z̄. The space M̃3 is a subspace of M3 with

dimension dimR(M̃3) = 3. The parameters {a, b, c} in (4.3.1), and {z1, z2, z̄2} in (4.3.2) or

{z1, z2, z3} in (4.3.3) satisfy the relations

a = −(z1 + z2 + z̄2), b = |z2|2 + z1(z2 + z̄2) and c = −z1|z2|2 (4.3.4)

or

a = −(z1 + z2 + z3), b = z1z2 + z1z3 + z2z3 and c = −z1z2z3. (4.3.5)

We know that the vortex positions are the critical points of the function f . Hence, it is a simple

matter that df
dz

vanishes when the following polynomials of degree 6 which is the numerator of

df
dz

vanishes:

P (z) = cz6 +2bz5 +(3a+ab−bc)z4 +(4+2a2−2c2)z3 +(3a+ab−2bc)z2 +2bz+c. (4.3.6)

The zeros of φ (positions of the vortices) are the zeros of the polynomial (4.3.6) and these

vortices lie inside the unit disc |z| < 1. As f has no critical points on |z| = 1, f has exactly

3 critical points inside the unit disk and 3 outside. The denominator of this rational map is

uniquely determined by its numerator, so on M̃3 ⊂ C3 with real dimension three and with this

kind of f , there are three vortices inside the unit disk |z| < 1. The polynomial P (z) has then

the form

P (z) = c(z − α)

(
z − 1

ᾱ

)
(z − β)

(
z − 1

β̄

)
(z − γ)

(
z − 1

γ̄

)
, (4.3.7)

such that |α| < 1, |β| < 1 and |γ| < 1. Since the coefficients of the polynomial P (z) (4.3.6)

are real, if Z is a zero of P (z), so is Z̄ [2]. Using (4.3.6) and (4.3.7), we find α = ᾱ implies α
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is real, but β and γ can be real or complex. Generally, the vortex positions depend on the zeros

of the function f . If z2 is complex or real, the vortex position β can be either complex or real.

Let us first see when β is complex. Then γ should be the conjugate of β. Thus, we can rewrite

the polynomial (4.3.7) as

P (z) = c(z − α)

(
z − 1

α

)
(z − β)

(
z − 1

β̄

)
(z − β̄)

(
z − 1

β

)
. (4.3.8)

Hence, α, β and β̄ are the zeros of φ and implied that the zeros of the rational function f and

the vortex positions have similar structure. That is, one of the vortex positions is at the real axis

and the other two positions are conjugate to each other. The second case is when both β and γ

are real. We can find two sub-cases of which one is when β and γ are equal and otherwise. The

former sub-case shows the existence of double vortices while the later one implies the existence

of collinear vortices along the real axis. From the series expansion of h = log |φ|2 around the

zeros of φ, z = α, z = β and z = β̄, and since |φ|2 is explicitly known on the hyperbolic space,

hence the dependence of br, r = α, β, β̄ on the vortex positions α, β and β̄ can be determined

explicitly too. We assumed α to be complex but then it is chosen to be real. In fact, the properties

of br can be calculated and have the following general forms: for ∂zf = (z − α)f̃ ,

bα =
−4α

1− |α|2
+ 2

(
∂z̄

¯̃f
¯̃f

)∣∣∣∣
z=α

(4.3.9)

=
−6α

1− |α|2
+ 4Re

(
1

α− β
+

β

αβ − 1

)
− 4(a+ 2bα + 3cα2)

1 + aα + bα2 + cα3
(4.3.10)
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and also for ∂zf = (z − β)f̃

bβ = b̄β̄ =
−4β

1− |β|2
+ 2

(
∂z̄

¯̃f
¯̃f

)∣∣∣∣
z=β

(4.3.11)

=
−6β

1− |β|2
+

2

β̄ − α
+

2

β̄ − β
+

2α

αβ̄ − 1
+

2β̄

β̄2 − 1
− 4(a+ 2bβ̄ + 3cβ̄2)

1 + aβ̄ + bβ̄2 + cβ̄3
. (4.3.12)

Using Samols metric and the Kähler property, we can find that the metric on M̃3 must have the

form

ds2 = π
∑
r,s

(
Ω(zr)δrs + 2

∂bzr
∂zs

)
dzrdz̄s

= F1(α, β, β̄)dαdᾱ + F2(α, β, β̄)dαdβ̄ + F3(α, β, β̄)dαdβ + F4(α, β, β̄)dβdβ̄,

for some metric functions Fi(α, β, β̄), i = 1, ..., 4. From the bα and bβ = b̄β̄ , we can compute

the metric functions Fi(α, β, β̄), i = 1, ..., 4. Since we know that the metric is given by

ds2 = π

(
Ω(α) + 2

∂bα
∂α

)
dαdᾱ + 2π

(
Ω(β) + 2

∂bβ
∂β

)
dβdβ̄ (4.3.13)

+ 2π

(
∂bα
∂β

+
∂bβ̄
∂α

)
dαdβ̄ + 2π

(
∂bα
∂β̄

+
∂bβ
∂α

)
dαdβ (4.3.14)

= F1(α, β, β̄)dαdᾱ + F2(α, β, β̄)dαdβ̄ + F3(α, β, β̄)dαdβ + F4(α, β, β̄)dβdβ̄, (4.3.15)

where

F1(α, β, β̄) = π

(
Ω(α) + 2

∂bα
∂α

)
, (4.3.16)

F2(α, β, β̄) = F3(α, β, β̄) = 2π

(
∂bα
∂β

+
∂bβ̄
∂α

)
, (4.3.17)

F4(α, β, β̄) = 2π

(
Ω(β) + 2

∂bβ
∂β

)
. (4.3.18)
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The metric (4.3.15) can be evaluated when α, β, γ ∈ R and has the same kind of structure.

Next we shall study the dynamics on moduli spaces of these hyperbolic 3-vortices in two ma-

jor cases, and the relationship between the vortex positions and the zeros of the holomorphic

function f . Furthermore, we are interested in seeing the metric on this space. Suppose that

the vortex positions are vertices of an isosceles triangle. We simply call this kind of vortices

isosceles vortices. For example see fig.4.1 that shows the positions of three vortices.

Figure 4.1: The plot of hyperbolic 3- vortices where the positions are at i
2
, − i

2
and −1

2
.

Expanding (4.3.8) and equating its coefficients with the coefficients of (4.3.6), one can find that

1

α
+

1

β
+

1

β̄
+ α + β + β̄ =

−2b

c
(4.3.19)

|β|2 + α(β + β̄) +
1

|β|2
+

1

α

(
1

β
+

1

β̄

)
+

(
1

α
+

1

β
+

1

β̄

)
(α + β + β̄) =

3a+ ab− bc
c

(4.3.20)

1

α|β|2
+ α|β|2 +

(α + β + β̄)2

α|β|2
+

(|β|2 + α(β + β̄))2

α|β|2
=
−(4 + 2a2 − 2c2)

c
. (4.3.21)
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We use these equations for deriving the metric on the moduli space of our hyperbolic 3-vortices

though they are complicated to solve explicitly. We calculate the metric on the following sub-

manifolds of M3.

1. When all zeros of a Blaschke function f in (4.3.2) z1, z2 and z̄2 are not at the origin

(that is, when z1|z2|2 6= 0). In this case, we first consider the zeros of f at z2 and z̄2

are fixed and z2 + z̄2 = 0. We construct vortices whose vortex positions found at the

vertices of isosceles triangle and discuss this submanifold in subsection 4.3.1. Similarly,

we consider the zeros of f at z1, z2 and z̄2 are vertices of an equilateral triangle. We

construct vortices whose vortex positions found at the vertices of equilateral triangle and

discuss this submanifold in subsection 4.3.2.

2. When a Blaschke function f in (4.3.2) has fixed zero(s) at the origin (that is, when

z1|z2|2 = 0).

Firstly, we consider z1 = 0, z2 6= 0 with z2 + z̄2 6= 0. We construct two families of

vortices. The first family is when the critical points of f are simple. We discuss this

submanifold in subsection 4.3.3. The vortex positions are found at the vertices of an

isosceles triangle. The second family is when f has a double vortex and we discuss this

in subsection 4.3.4. The motivation is to see the fixed vortex at the origin as a defect

and study its geometric properties when the two vortices move. Similarly, if we consider

z1 = 0, z2 6= 0 with z2 + z̄2 = 0, the vortex positions found at ib, 0 and−ib, b ∈ R. The

metric on this submanifold was done in [24].

Secondly, we consider z1 6= 0, z2 = z̄2 = 0. We discuss this submanifold in subsection

4.3.6 and generalised for m ≥ 2 fixed vortices at the origin. In this subsection 4.3.6, our
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motivation to study and understand the metric and scalar curvature relative to the number

of defects at the origin.

3. When a Blaschke function f in (4.3.3) has zeros at z1 = 0 (fixed) and z2 = z3. We discuss

this submanifold in subsection 4.3.8. The motivation of studying this submanifold is to

calculate the metric when the position of one vortex depends on the other.

4.3.1 Metric on hyperbolic 3-vortices, c 6= 0

In this section we discuss the metric on hyperbolic 3-vortices when c 6= 0 by taking a specific

case. Consider the zeros of the function f where z1, z2 and z̄2 are placed on the vertices of a

triangle such that z1 6= 0 and z2 + z̄2 = 0 implies that z2 is purely imaginary say, z2 = iy, y > 0.

Suppose that z2 is fixed. Using the coefficients of P (z) in (4.3.6) and (4.3.8), we can find a

simplified form of equations, naively

z1 =
2α|β|2

(1 + α2)|β|2 + α(β + β̄)(1 + |β|2)

y2 =
1

2
(−Γ +

√
Γ2 + 12),

where

Γ = |β|2 +
1

|β|2
+

(
α +

1

α

)
(β + β̄)

(1 + |β|2)

|β|2
+

(β + β̄)2

|β|2
.

Hence we can find the metric on the moduli space of the hyperbolic 3-vortices. From equation

(4.3.4), we have a simplified form of the parameters a = −z1, b = y2 and c = −z1y
2. Hence we

are now in the position of computing the coefficients bα, bβ and bβ̄ explicitly. For the coefficients

br, r = α, β, β̄, the computation is similar to (4.3.10) and (4.3.12). Suppose the vortex position

at the real axis is moving and the other two vortices are fixed. Here we want to see what the
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metric looks like if two vortices are fixed at either different positions or at the origin. Consider

the vortex positions at z = α, z = β and z = β̄. Let |β| = r. Suppose that β is fixed.

Furthermore, one can see that either analytically or using Maple |α| < 1 for |z1| < 1 and r < 1

for y < 1. Now since α can be written explicitly in terms of z1 and since also β is fixed, we

have that

α = α(z1)

and the metric on this moduli space has the form

ds2 = F (α)dα2.

Recall that the two vortices at the positions β and β̄ are fixed and the other one vortex at α is

moving at a constant speed. Now following the same argument and procedure done earlier, one

can find the coefficient bα as

bα =


1
α

(
−6α2

1−α2 + 4α2

α2+r2 + 4r2α2

1+α2r2 + 8α2(1−y2+2y2α2)
(1−α2)(1+α2y2)

)
, β 6= 0

1
α

(
−6α2

1−α2 + 4 + 4να2

1−α2

)
, β = 0,

where

ν =
3(1 + α2)−

√
9(1− α2)2 + 4α2

4α2
.
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Hence the metric is

ds2 = π

(
Ω(α) +

1

α

d(αbα)

dα

)
dα2

=


(

12π
(1−α2)2 + g(α)

)
dα2, β 6= 0

4π
(1−α2)2

(
1 + 2(1+α2)√

9(1−α2)2+4α2

)
dα2, β = 0,

where

g(α) =
8πr2

(α2 + r2)2
+

8πr2

(1 + α2r2)2
− 16πy2

(1 + α2y2)2
.

Note that when the fixed vortices are at the origin (that is, β=0), the result agrees with [24] as

expected. When β 6= 0, the metric is more general than the result in [24]. Before discussing the

case c = 0 , let us see the following that will give as the same metric as studied by Krusch and

Speight [24].

4.3.2 Vortices of zero centre of mass coordinate

In this section we will consider hyperbolic 3-vortices with their center of mass coordinate to be

zero, i.e. α + β + β̄ = 0 and then study the geometric quantities of the corresponding moduli

space. In fact, using α + β + β̄ = 0, equations (4.3.19) to (4.3.21) results in the following two

simplified equations

|β|2 − α2

α|β|2
=
−2b

c
, |β|2 − α2 =

3a+ ab− bc
c

and

1

α|β|2
+ α|β|2 +

(|β|2 − α2)2

α|β|2
=
−4− 2a2 + 2c2

c
.
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These equations also give the following cubic polynomial equation

α3 + pα + q = 0,

where

p =
3a+ ab− bc

c
and q =

pc

2b
=

3a+ ab− bc
2b

.

From the facts about roots of cubic polynomials of real coefficient, the above cubic equation

has at least one real root. In particular, suppose the above polynomial has one real root and the

other two are complex. Since |β|2 = p + α2 and β + β̄ = −α, then β = −α
2

+ i
√
p+ 3

4
α2. In

fact, either using Cardano formula or with direct computation using the above three equations,

we can find that a = 0 and b = 0. Hence, we are now able to write c explicitly in terms of α, β

and β̄ . That is,

2c2 −
(

1

α3
+ α3

)
c− 4 = 0,

which is equivalently

c =
(1 + α6)−

√
(1 + α6)2 + 32α6

4α3
=

(1 + α6)−
√

(1− α6)2 + 36α6

4α3
.

Note that the vortex positions α, β, β̄ are placed on an equilateral triangle. Hence, since these

vortices are placed on the regular polygons (equilateral triangle), they will rotate at constant

speed about their center off mass coordinate (centroid). For the zeros of φ (i.e. for the vortex

positions α, β and β̄), one can find that the coefficients br as:

bα =
1

α

(
−4α2

1− α2
+ 2− 6α6

1− α6
− 12cα3

(1 + cα3)

)
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and

bβ = b̄β̄ =

(
−1

2
+ i

√
3

2

)
bα.

Therefore, the metric on this moduli space is of the form

ds2 = G(α)dα2,

where

G(α) = 3πΩ(α) + 3π
bα
α

+ 3π

(
∂bα
∂α

)
=

108πα4

(1− α6)2

(
1 +

6(1 + α6)√
(1− α6)2 + 36α6

)
.

Note that this metric agrees with the metric in [24]. For α → 1, the term 1 + 6(1+α6)√
(1−α6)2+36α6

approaches 3 and one can observe that the moving vortices α, β and β̄ are very far apart that

results in the induced metric approaches to the product metric on (M1)3. We can also show that

the metric is asymptotic to

ds2
∞ =

36π

(1− α2)2
dα2.

Because the metric on the moduli space M1 = {f(z) = (z−a)2

(1−āz)2} is ds2 = 12π
(1−|a|2)2dadā, then

the product metric on (M1)3 is given by as follows:

ds2
prod =

3∑
r=1

12π

(1− |zr|2)2
dzrdz̄r

and the metric

ds2 = G(α)d2α =

(
36π

(1− α2)2
+O(1− α2)

)
dα2.

Note that this moduli space has a uniformly constant negative curvature, − 1
9π

.
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4.3.3 Metric on hyperbolic 3-vortices, c = 0

Here we are interested in studying the moduli space of hyperbolic 3-vortices when c = 0. We

will then study first the dynamics of hyperbolic 3-vortices where z1 = 0 and z2 6= 0 and then

find interesting double hyperbolic 3-vortices. Here, we find that from (4.3.4), the following

simplified equations as

a(b+ 3)

2b
= A

(
1 +

1

B

)
(4.3.22)

a2 + 2

b
= B +

1 + A2

B
, (4.3.23)

where a and b are the coefficients (4.3.4) of the polynomial (4.3.6) andA = −(β+β̄), B = |β|2,

where β and β̄ are the vortex positions. Then we can solve these two equations simultaneously

in terms of β as a function of a and b or vise-versa. Suppose the vortex position at the origin is

fixed. From equation (4.3.12), we find the coefficient bβ as

bβ = b̄β̄ =
−6β

1− |β|2
+

2

β̄
+

2

β̄ − β
+

2β̄

β̄2 − 1
− 8bβ̄

1 + bβ̄2
. (4.3.24)

From (4.3.22) and (4.3.23), b(β, β̄) satisfies the equation

(p1b+ p2)(b+ 3)2 + p3b
2 = 0, (4.3.25)

where p1 = B2(BA2 + A2 + 1), p2 = −2A2B2 and p3 = −4A4(B + 1)2. The metric on this

space is calculated as

ds2 = −8π

(
1

(1− |β|2)2
+

2

|β|
d

d|β|

(
bβ̄2

1 + bβ̄2

))
dβdβ̄, (4.3.26)
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where b is the solution of (4.3.25).

4.3.4 Hyperbolic double vortices

In this subsection, we will first show how to parametrize double vortex positions and derive

the metric on the moduli space. We discuss and evaluate its corresponding Kähler potential and

scalar curvature. In order to derive the metric, we again follow the same procedure of finding the

coefficients of the Taylor series expansion of the gauge invariant quantity h. Recall from section

4.3 that the zeros β and γ of the polynomial (4.3.6) can be real. When β = γ, hyperbolic

double vortices may exist. Here we shall take c = 0. Since c = z1|z2|2, z1 = 0 or z2 = 0. Let

us first take z1 = 0 and z2 6= 0 such that z2 + z̄2 6= 0. One can see that there exists a double

critical point say a of f . That is ∂zf can be rewritten as

∂zf =
(z − a)2(z − 1

a
)2

(1− z2z)2(1− z̄2z)2
.

That is, the function f has a Taylor series expansion about z = a of the form

f(z) = Ba
0 +Ba

3(z − a)3 +Ba
4(z − a)4 + · · · , (4.3.27)

where Ba
0 and Ba

i , i = 3, 4, · · · are the coefficients of (z − a)0 and (z − a)i, respectively. Let

z2 = x+ iy. Then by equating both the equations of ∂zf , we can find

x =
3(1 + a2)−

√
9(1− a2)2 + 4a2

4a

and

y =

√
2

4

√
−9− 2a2 − 2a4 − 2a6 − 9a8 + 3(1 + a2 + a4 + a6)

√
9(1− a2)2 + 4a2

a2(1 + 4a2 + a4)
.
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In fact, we have already derived a general metric on the moduli space of vortices on the hy-

perbolic plane where the zeros of the scalar Higgs field are of multiplicity m. Hence, as a is a

double zero for ∂zf , the metric on M̃3 is calculated as:

ds2 =
16π

3
∂a

(
Ba

4

Ba
3

)
da2, (4.3.28)

where Ba
3 and Ba

4 are the coefficients of (z − a)3 and (z − a)4 of the Taylor series of f about

z = a, respectively. Hence the metric is

ds2 =
4π

(1− a2)2

(
3 +

1 + a2√
9(1− a2)2 + 4a2

)
da2. (4.3.29)

The metric on the moduli spaces of the double 3-vortices on the hyperbolic plane is invariant

under a 7→ α = eiγa.Then the metric on the moduli space of double vortices is given by

ds2 =
4π

(1− |α|2)2

(
3 +

1 + |α|2√
9(1− |α|2)2 + 4|α|2

)
dαdᾱ. (4.3.30)

In this case, the double hyperbolic 3-vortices with metric (4.3.30) is a 2-dimensional a subman-

ifold of M̃3. When |α| → 1, the metric is approximated by the metric on the moduli space of

two coincident vortices. Thus, when the hyperbolic double vortices move away from the origin

together, then their moduli space is similar to two coincident vortices.

Using (4.3.30), the Kähler potential for the moduli space of the double hyperbolic vortices is

K = −12π log(1− |α|2)− 6π tanh−1

(√
2

8
(−7 + 9|α|2)

)
+K0,
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where

K0 = 2π

[
3 tanh−1

(
−9 + 7|α|2

3
√

9(1− |α|2)2 + 4|α|2

)
+ 2 tanh−1

(
1 + |α|2√

9(1− |α|2)2 + 4|α|2

)]
.

The curvature of this space can be evaluated since we have already calculated the metric. The

moduli space of this double hyperbolic vortices has a uniformly negative curvature. The curva-

ture κ for this metric is calculated as

κ =
A+B

√
9 |a|4 − 14 |a|2 + 9(

9 |a|4 − 14 |a|2 + 9
)3/2

π

(
1 + |a|2 + 3

√
9 |a|4 − 14 |a|2 + 9

)3 , (4.3.31)

where A and B are

A = −6714 |a|12 + 30996 |a|10 − 67686 |a|8 + 86168 |a|6 − 67686 |a|4 + 30996 |a|2 − 6714,

B = −6
(
|a|2 + 1

) (
117 |a|8 − 404 |a|6 + 590 |a|4 − 404 |a|2 + 117

)
.

In fact, one can see the result of the plots of the curvature with respect to the parameter |a| in fig.

4.2b (green) and it approaches to − 1
8π

as |α| → 1. Furthermore, one can compare the double

hyperbolic 3-vortices with a double hyperbolic 2-vortices at one point. As shown in fig. 4.2,

both have uniformly negative curvature and their metric functions are strictly increasing. We

also notice that in both metric functions and curvatures, the corresponding geometric quantity

of the double hyperbolic 3-vortices is always less than a double 2-vortices case.

4.3.5 Hyperbolic 3-vortices along the y-axis

Let us consider vortices along the y-axis. Here the three vortices are placed along the y-axis

where one is fixed at the origin and the other two vortices are placed at the imaginary axis of
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(a) Metric functions (b) Curvatures

Figure 4.2: Plot of curvature and metric functions for double hyperbolic 2- and 3-vortices.

which one is the conjugate of the other. Firstly, consider z1 = 0 and z2 6= 0 where z2 + z̄2 = 0.

Hence, f has a critical point if and only if the polynomial

P (z) = 2z(bz4 + 2z2 + b) (4.3.32)

has roots in the unit disk. The fourth degree polynomial q(z) = bz4 + 2z2 + b is a factor of the

polynomial (4.3.32) and it has purely imaginary roots that guarantees the polynomial (4.3.32)

too, say β and β̄, 1
β
, 1
β̄

. Since ∂zf vanishes at z = 0, we can take simply α = 0 and since β is

purely imaginary, β + β̄ = 0. The coefficient bi, i = α, β, β̄ of the Taylor series expansion of

the gauge invariant quantity h are

bα = −4b and bβ =
2

β̄
− 6β

1− |β|2
− 4bβ̄

1 + bβ̄2
.
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The metric agrees with [24] as expected, the scalar curvature and Kähler potential on this par-

ticular moduli space are

ds2 =
96π|β|2

(1− |β|4)2
dβdβ̄, κ = − 1

6π
and K = −24π log(1− |β|4), (4.3.33)

respectively. We notice here that the moduli space has uniformly constant negative curvature.

4.3.6 The metric on hyperbolic (m+ 1)-vortices, m ≥ 2

In this subsection, we will first evaluate the metric on the moduli space of hyperbolic 3-vortices

where one vortex is at the real axis and the other two vortices are fixed at the origin. Then we

will generalize for m + 1-vortices on the hyperbolic plane. Consider z2 = 0 and z1 6= 0. In

other words, all the three vortices are placed on the x-axis. The vortex postions are the zeros of

the polynomial

P (z) = z2(3az2 + (4 + a2)z + 3a)

in the unit disc. The vortex positions are at β = 0 of multiplicity 2 and α of single multiplicity:

α =
−(2 + a2) +

√
a4 − 5a2 + 4

3a
.

The derivative of f is

∂zf = (z − α)f̃ , where f̃ =
z2(αz − 1)

α(1 + az)2
.
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The coefficients of the Taylor series expansion of log |φ|2, that is, bα is given by

bα =
−4α

1− α2
+ 2

∂z̄
¯̃f

¯̃f
|z=α

=
−6α

1− α2
+

4

α
− 4a

1 + aα
.

Suppose that the two vortices (i.e vortex positions) at z = β and z = β̄ are fixed at the origin

and the other vortex at z = α moves. Then the metric on the moduli space of these vortices is

ds2 =
4π

(1− α2)2

(
1 +

2(1 + α2)√
9(1− α2)2 + 4α2

)
dα2.

In general, suppose that m vortices are fixed at the origin (i.e. the vortex position at z = β = 0

of multiplicity m) and the other vortex position at z = α is rotating. Then one can find that the

metric on this moduli space is given by

ds2 =
4π

(1− |α|2)2

(
1 +

2(1 + |α|2)√
(m+ 1)2(1− |α|2)2 + 4|α|2

)
dαdᾱ. (4.3.34)

Fig.4.3 shows the geometric properties of the metric (4.3.34). Fig 4.3 shows that for all m, the

metric functions of the respective moduli space having same structure and as m increases the

metric functions decreases. For all values of m, the metric functions are bounded below by

4π
(1−|α|2)2 and above by 12π

(1−|α|2)2 and the curvature κ of the moduli space is uniformly negative

and as m goes to∞, the scalar curvature κ→ − 1
3π

.

4.3.7 Comparison of hyperbolic 2- and 3-vortices

In this subsection we will discuss the comparison between hyperbolic 2- and 3-vortices based

on their curvature and metric functions. We can see some geometric properties of hyperbolic 2-
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(a) Curvatures when m=0,1,2,3,4. (b) Metric functions when m=0,1,2,3,4.

Figure 4.3: Plot of scalar curvatures and metric functions for hyperbolic (m+ 1)-vorices, m =
0, 1, 2, 3, 4, when m-vortices fixed at the origin.

and 3-vortices. Fig. 4.4 shows the plot of curvature and metric functions of hyperbolic 2- and

3- vortices where the vortex positions placed at the origin and real axis. Fig.4.4a and 4.4b refer

the plot of scalar curvature and metric functions of moduli spaces hyperbolic 2- and 3- vortices,

respectively. The black curve refers when 2-vortices placed at opposite positions and there

are no other vortices in between (that is, the vortex positions say are -α and α). The moduli

space (black) has positive scalar curvature near |α| = 0 and negative near |α| = 1. The red

curve represents when 2-vortices placed at opposite positions and one vortex found in between

(that is, the vortex positions say are -α, 0, and α). The moduli space (red) has constant scalar

curvature which is − 1
6π

. As shown in the figure, scalar curvature of the moduli spaces (black

and red) approach to − 1
6π

and their metric functions have similar behaviour. The blue curve

refers when one vortex placed at a position α and one vortex position at the origin. The moduli

space (blue) has uniformly negative scalar curvature. The green curve refers when one vortex
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placed at a position α and two vortices at the origin. The moduli space (green) has uniformly

negative scalar curvature. As shown in the figure, scalar curvature of the moduli spaces (blue

and green) approach to − 1
3π

and their metric functions have similar behaviour. In general, one

can see from the figure that the geometric quantities (scalar curvature and metric functions) of

the 3-vortices is less than the 2-vortices. Another comparison is also see in 4.2.

(a) Curvatures. (b) Metric functions.

Figure 4.4: Plot of curvature and metric functions for hyperbolic 2 and 3-vortices. kij represents
scalar curvature and fij represent the metric functions.

4.3.8 Three collinear vortices

In this subsection, we will discuss collinear hyperbolic 3-vortices. Their vortex positions of

these three collinear hyperbolic 3-vortices can be exploited from the Blaschke’s function f

where f is given by (4.3.35). We will then derive the metric (4.3.36). Consider the space of

functions of the form

Mcr = {f : f(z) =
z2(z − a)2

(1− āz)2
, a ∈ C, |a| < 1}. (4.3.35)
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One can see that f has critical points in the unit disc: z = 0, z = a, z =
1−
√

1−|a|2
ā

:= c of

which all are in a straight line. Suppose the vortex position at z = 0 is fixed and the other two

vortices at z = a and z = c move. One of the surprising properties of these vortices is that

the two vortices positioned at a and c move in the same direction since when a increases (or

decreases) so does c and vice-versa. We can compute the metric as usual using the coefficients

of h = log |φ|2. The coefficients ba are given by

ba =
6

ā
+

2a

1− |a|2
and bc =

2c

1− |c|2
=

a√
1− |a|2

.

Let a = reiψ and c = Reiψ. Then the metric on this moduli space is

ds2 = f1(r)d2r + f2(r)d2ψ, (4.3.36)

where f2(r) =

(
r2 +R2 + rR

(
4 + 6

1−r2 + 6−r2

(1−r2)
3
2

))
f1(r), R = 1−

√
1−r2

r
and

f1(r) =
12π

(1− r2)2
+

12π(R′(r))2

(1−R2)2
+ 2πR′(r)

(
4 +

6

1− r2
+

6− r2

(1− r2)
3
2

)
.

Now for a << 1 and for a→ 1, we can see f1(r) and f2(r) as

f1(r) ∼ 32π

(1− r2)2
and f2(r) ∼ 8r2f1(r).

This is in other words, the two moving vortices approach each other. Here, all the three vortices

lie in a straight line in such a way that one is fixed at the origin and the other two of them of

which one is dependent on the other, move together towards to the origin and recede away from

the origin in the same direction simultaneously.
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4.4 The metric on 4-vortices for hyperbolic plane

In this section, we will study the moduli space of hyperbolic 4-vortices where the zeros of the

Blaschke function satisfying the C2 symmetries: z 7→ −z and z 7→ z̄. Consider the space of

functions where their zero sets satisfy these two C2 symmetries given by

M̃4 =

{
f : f(z) = z

4∏
i=1

(
z − Zi
1− Z̄iz

)}
(4.4.1)

where Zi ∈ C or Zi ∈ R such that |Zi| < 1. Thus M̃4 can be rewritten as the form:

M̃4 =

{
f : f(z) =

z(z4 + Az2 +B)

(1 + Az2 +Bz4)
, A,B ∈ R

}
, (4.4.2)

where A = −(Z2
1 + Z̄1

2
) and B = |Z1|4 or A = −2Z2

1 and B = Z4
1 . The space M̃4 is

a submanifold of M4 and dimR(M̃4) = 2. If Z1 is real, the vortex positions are on the real

axis forming four collinear vortices. The metric will be calculated in the next section when

a = b ∈ R. However, if Z1 is complex, the critical points of f can be either complex or real.

So, we can find two families of vortex positions. In fact, the numerator of the derivative df
dz

which is of the form

P (z) = Bz8 + (3−B)Az6 + (A2 − 3B2 + 5)z4 + (3−B)Az2 +B (4.4.3)

implies the zeros of the scalar field (that is the vortex positions) are of the form ±α and ±ᾱ,

where α is a complex number. Thus, the vortex positions fall into two families and show that

the first family is when α is real which leads to the construction of double hyperbolic 4-vortices.

The second family of vortex postions is when α is complex. Interestingly, the vortex positions

satisfy the C2 symmetry : z → z̄ and z → −z. Hence, the polynomial (4.4.3) can be rewritten
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as

P (z) = B(z2 − α2)(z2 − ᾱ2)

(
z2 − 1

α2

)(
z2 − 1

ᾱ2

)
. (4.4.4)

The function f is invariant under the action Z1 7→ Z̄1 from which it follows that Z1 can be seen

as the product of a function of α and a positive function ν, ν is a function of |α| only, such that

Z1 = αν(|α|). For example, if =(Z1) = <(Z1), the vortex positions are at the vertices of a

square with centre at the origin. Therefore, using the two equations (4.4.3) and (4.4.4), we can

find ν as

ν4 =
−(1 + |α|8) +

√
(1− |α|8)2 + 64|α|8

6|α|8
. (4.4.5)

The metric on the moduli space then is given by

ds2 =
256πα6

(1− α8)2

(
1 +

8(1 + α8)√
(1− α8)2 + 64α8

)
dα2.

One can see that the metric agrees with the metric in [24]. Hyperbolic double 4-vortices can be

noticed either on the real or imaginary axis. Let us take the vortex positions α be real. Then the

double hyperbolic 4-vortices exist and will discuss in a later subsection 4.4.17.

4.4.1 Hyperbolic four collinear vortices

Consider the space of functions of the form

M̃4c =

{
f(z) =

z(z2 − z2
1)2

(1− z̄2
1z

2)2
, z1 ∈ C

}
. (4.4.6)
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Note that the zeros of the function satisfies the symmetry z 7→ −z. Take z1 = ia purely

imaginary. Then the space (4.4.6) can be rewritten as

M̃4c =

{
f(z) =

z(z2 + a2)2

(1 + a2z2)2
, a ∈ R

}
. (4.4.7)

The partial derivative of f with respect to z is then

∂zf =
(z2 + a2)(z2 + c2)(c2z2 + 1)

c2(1 + a2z2)3
,

where

c2 =
5− 3a4 −

√
9a8 − 34a4 + 25

2a2

satisfying |c| < 1. Hence, ±ia and ±ic are the four simple zeros of φ (that is, the vortex

positions) inside the unit disc. These vortices have zero centroid, which remains fixed as these

vortices rotates. The coefficients ba and bc are

ba = −b−a =
1

ā

(
−4|a|2

1− |a|2
+

6(1 + |a|4)

1− |a|4

)
(4.4.8)

and

bc = −b−c =
1

c̄

(
−4|c|2

1− |c|2
+ 1 +

4c̄2

c̄2 − ā2
− 4|c|4

1− |c|4
+

12a2c̄2

1− a2c̄2

)
, (4.4.9)

respectively. One can in fact easily find the following partial derivatives which help us to cal-

culate the metric on our particular moduli spaces of four vortices

∂ba
∂a

=
2

(1− |a|2)2
− 6

(1 + |a|2)2
(4.4.10)

and
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∂bc
∂c

=
−4(1 + 4|c|2 + |c|4)

(1− |c|4)2
+

16|c|2

(1− |c|4)2

(
1 +

4(1 + |c|4)√
1 + 62|c|4 + |c|8

)
. (4.4.11)

At this stage we have all the ingredients to set up the metric and it is

ds2 = 2π

(
Ω(a) + 4

∂ba
∂a

)
da2 + 2π

(
Ω(c) + 4

∂bc
∂c

)
c′(a)2da2 + 8π

(
∂ba
∂c

+
∂bc
∂a

)
c′(a)da2

= 16π

(
2

(1− a2)2
− 3

(1 + a2)2

)
da2 +

16π(1 + c4)

(1− c4)2

(
−1 +

6c2√
(1− c4)2 + 64c4

)
dc2

+
32πc2

(1− c4)2

(
1 +

4(1 + c4)√
(1− c4)2 + 64c4

)
dc2.

Note that the function c2 is a monotonic function. Now when the vortex position at z = a

moves towards the origin, so does the vortex position at z = c. Hence, the four vortices move

to the origin simultaneously. Also, when the vortex position at z = a moves far from the origin,

the other three vortices also move far apart. That is, the four vortices moves far apart from the

origin simultaneously. Furthermore, as a tends to 1, so does c. Hence, the vortices are far apart.

Note that an interesting thing happened in this moduli space such that as the vortices move far

from the origin, there exists a double vortex. Then the metric is approximately

ds2 =
64π

(1− a2)2
da2.

Hence, the moduli space has approximate curvature − 1
3π

.

4.4.2 Double hyperbolic 4-vortices

Consider the space of functions

M?
4 =

{
f(z) =

z(z2 − a2)(z2 − b2)

(1− ā2z2)(1− b̄2z2)
, a, b ∈ C

}
. (4.4.12)
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Let f have double critical points at ±α, where α is the vortex position and |α| < 1. f has 4

critical points zr at the end point of line segment with multiplicity 2: zr = (−1)r−1α. Then

we can relate the vortex position z1 = α to the complex parameters a and b. Note that f is

unchanged under both a 7→ −a and b 7→ −b which means a and b can be rewritten as

a = αν1(|α|) and b = αν2(|α|),

where ν1 and ν2 are positive real functions of |α| only. It follows that ab = ν1ν2α
2. We can

compute ν1 and ν1 as follows: from the space (4.4.12), one can find the derivative of f with

respect to z as

∂zf =
(c̄z8 + d̄z6 + ez4 + dz2 + c)

(1− ā2z2)2(1− b̄2z2)2
, (4.4.13)

where

c = a2b2

d = b2(|a|4 − 3) + a2(|b|4 − 3)

e = 5− 3|a|4|b|4 + |a|4 + |b|4 + ā2b2 + a2b̄2.

For n > 0, the equation p(z) = a0 + a1z + ... + anz
n = 0 has at least one root. We can factor

p(z) as

p(z) = (z − α1).....(z − αn)

where α1, ..., αn are not necessary distinct. Let α be a double critical point of f . Using (4.4.13),

one expects that the degree 8 polynomial equation, q(z) = c̄z8 + d̄z6 + ez4 + dz2 + c = 0,

should be factored and therefore, this results in a double zero at z = α and z = −α. Since 1
ᾱ
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and −1
ᾱ

are also critical points of f , one can factor q(z) as

q(z) = c̄(z2 − α2)2(z2 − 1

ᾱ2
)2 = c̄(z4 − (α2 +

1

ᾱ2
)z2 +

α2

ᾱ2
)2. (4.4.14)

It follows from the coefficients (4.4.14) of q(z), we can find the following equations:

(ab)2

(āb̄)2
=
α4

ᾱ4
(4.4.15)

b2(|a|4 − 3) + a2(|b|4 − 3) = −2α2(|α|4 + 1)ν2
1ν

2
2 (4.4.16)

5− 3|a|4|b|4|a|4 + |b|4 + a2b̄2 + b2ā2 = (2|α|4 + (|α|4 + 1)2)ν2
1ν

2
2 (4.4.17)

b̄2(|a|4 − 3) + ā2(|b|4 − 3) = −2ᾱ2(|α|4 + 1)ν2
1ν

2
2 . (4.4.18)

Also, from (4.4.17), we have that

5− 3(|α|4ν2
1ν

2
2)2 + |α|4(ν2

1 + ν2
2)2 = (|α|8 + 4|α|4 + 1)ν2

1ν
2
2 (4.4.19)

and similarly from (4.4.16), one can find that

(|α|4ν2
1ν

2
2 − 3)(ν2

1 + ν2
2) = −2(|α|4 + 1)ν2

1ν
2
2 . (4.4.20)

We can rewrite equation (4.4.20), as follows

ν2
1ν

2
2 =

3ν

|α|4(ν + 2) + 2
, (4.4.21)
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where ν = ν2
1 + ν2

2 . Now using (4.4.19) and (4.4.21), a quartic equation can be constructed as

Aν4 +Bν3 + Cν3 +Dν + E = 0, (4.4.22)

where A,B,C,D are all functions of |α| where

A = 20(1 + |α|4)2, B = −6

(
|α|12 − 10

6
|α|8 − 10

6
|α|4 − 1

)
,

C = |α|4
(
|α|8 − 26|α|4 + 1

)
, D = 4|α|4(1 + |α|4), E = |α|12.

The quartic equation (4.4.22) can be solved (using for example Maple) in terms of ν which

gives four real roots of which two of them are negative and ν = 1+|α|4
|α|4 is one of the real root,

though we do not use it to calculate the metric. The other real root ν is

ν = − 1

3|α|4

(
5(1 + |α|4)− Y − 7(|α|8 + 14|α|4 + 1)

Y

)
,

where Y = (10(1 + |α|4)(|α|8 − 34|α|4 + 1) + Z)
1
3 , where

Z = 3i
√

27 |α|24 + 2334 |α|20 + 1157 |α|16 + 83556 |α|12 + 11157 |α|8 + 2334 |α|4 + 27.

We can compute the coefficient bα such that

ᾱbα = −ᾱb−α =
−4|α|2

1− |α|2
+

8|α|4

1− |α|4
+ 8|α|4ν

(
|α|4ν − 4|α|4 + 2

|α|8ν(1− ν)− |α|4(ν − 2) + 2

)
:= G(|α|).

Hence, the metric on this space is

ds2 = 2π

(
8

(1− |α|2)2
+

1

|α|
dG(|α|)
d|α|

)
dαdᾱ. (4.4.23)

Here, the second term of the metric in the parentheses is a bit long but using Maple we can plot
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the metric function of (4.4.23). One can see the plots of the metric function of this moduli space

(see fig.4.5) and scalar curvature plot (see fig. 4.6). Note that the term a in the figure is |α|.

Figure 4.5: The plot of metric functions of double 4-vortices. Note that a = |α|.

Figure 4.6: The plot of scalar curvature of double 4-vortices. Note that a = |α|.

4.5 Summary of chapter

In this chapter, the metric on the moduli spaces of vortices with positive multiplicity, the general

and implicit metric on the moduli space of hyperbolic 3- and 4-vortices where at least one of

the vortex positions is not at the origin (that is, when c 6= 0 or c = 0) were evaluated. It has
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been shown the coefficient br of the Taylor series expansion of the gauge invariant quantity h is

independent of the multiplicity. The metric, Kähler potential and curvature of moduli space of

hyperbolic 3-vortices where the vortex positions have zero centre of mass coordinate have been

calculated and agree with the metric in [24]. The double hyperbolic 3 and 4-vortices were shown

and their corresponding metrics and curvatures were computed. Interestingly, numerical results

showed that their respective curvatures are uniformly negative and increase as the modulus of

the vortex position increases to 1 and approaches to − 1
3π

and − 1
4π

, respectively. In addition,

the Kähler potential for the moduli space of double hyperbolic 3-vortices is computed. We

have studied also collinear hyperbolic 3- and 4-vortices and have calculated their metrics and

curvatures. Similarly, their corresponding curvature is uniformly negative as a numerical plot

suggests.
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Chapter 5

Geometry and Dynamics of Vortices

In two dimensions, vortices are particle-like objects. The kinetic energy functional determines

the Riemannian metric and its geodesics on the moduli space of vortices [31, 34, 35]. Manton

studied the adiabatic trajectories, called the geodesics of the Riemannian metric, such that any

dynamic solution of this kind can be obtained as perturbation of some geodesic trajectories. The

moduli space approximation [30] is a good approach to study the dynamics of solitons at low

energy when most of the degree of freedom are frozen and the solitonic dynamics can be studied

by the dynamics in a reduced finite dimensional moduli space. The potential of N -vortices is

at the absolute minimum on the moduli space MN . Moreover, the kinetic energy term of the

reduced dynamics dominates because for a small velocity, vortices are unable to move away

from MN . The geodesic motion on MN is the dynamics projected on MN .

In this chapter, section 5.1 presents the Kähler potential of a totally geodesic submanifold Σr,t of

MN using the direct definition of the Kähler potential and metric. Section 5.2 gives the Kähler

potential of Σr,t using the regularized action of the Liouville theory and a scaling argument. In

section 5.3, we discuss the geometry of Σr,t.
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5.1 The Kählerp potential for some totally geodesic subman-

ifolds of the moduli space MN

Let r and t be positive integers such that r+ t = N . Denote by Σr,t be the space of Cr-invariant

vortex configurations with r single vortices at the vertices of a regular polygon and t coincident

vortices at the polygon’s centre. The exact moduli space metrics on some totally geodesic

submanifolds of the moduli space of static hyperbolic N -vortices for r > t + 1 or r = t + 1

and the metric of N vortices on regular N -gon were studied in [24] and [26], respectively. To

calculate the Kähler potential for totally geodesic submanifolds, we first recalculate the metric

on this space and generalize the metric on Σr,t for r 6= t + 1 or r = t + 1. Recall that points

in MN are in one-to-one correspondence with monic degree N polynomials with roots only

in the unit disk. Consider the moduli space such that we identify a N -vortex with the monic

polynomial defined by the numerator of the rational map f(z):

Σr,t = {f : f(z) =
zt+1(zr + αr)

(1− ᾱrzr)
, αr ∈ C, r + t = N, r, t ≥ 0}. (5.1.1)

Assume that αr = −ar, a ∈ C. Note that z is a critical point of f if and only if λz is a critical

point since f(λz) ≡ λt+1f(z), λ = e
2πi
r ∈ U(1). The numerator of df

dz
vanishes if and only if

the polynomial

p(z) = zt
(
(t+ 1)ārz2r − (t+ 1 + r + (t+ 1− r)|a|2r))zr + (t+ 1)ar

)

vanishes. So, we can find that f has 2r critical points zi such that r of them say zi = λi−1β

inside the unit disc at the vertices of some regular r-gon which are the the vortices where the

Higgs field vanishes, r critical points outside the unit disc which can be disregarded and the
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other t critical points should be coincident at 0. It follows Σr,t consists of vortex configuration

with r vortices located at the vertices of a regular r-gon centered at 0 and t vortices coincident

at z = 0. Therefore, using the critical points zi = λi−1β of f , we can find the metric on Σr,t. Let

us consider β = z1 ∈ C which can be related to the complex parameter a. Then a = βν(|β|)

where ν is a positive function of |β| only. Now choose |a| < 1 and |β| < 1. Then we find that

νr =


(t+1)(1+|β|2t)−

√
(t+1)2(1−|β|2r)2+4r2|β|2r

2|β|2r(t+1−r) , r 6= t+ 1,

2
1+|β|2r , r = t+ 1.

To avoid logarithmic singularities of h near β, define the regularized form of h = log |φ|2 as

hreg = log |φ|2 − log(z − β)− log(z̄ − β̄). (5.1.2)

Since β is a simple zero, then we have that

b1 = 2
∂hreg
∂z̄
|z=β, (5.1.3)

then we can find that

b1 =
1

β̄

(
2t+ r − 1− 2rβrβ̄r

1− βrβ̄r
+

4rνrβrβ̄r

1− βrβ̄r
− 4ββ̄

1− ββ̄

)
. (5.1.4)

Using rotational symmetry, we can determine the other coefficients, bi, i ≥ 2, in terms of b1. So,

using rotational invariance and the Kähler form on MN , the metric on the moduli space
∑

r,t is

γ = F (|β|)dβdβ̄, (5.1.5)
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where F (|β|) is the conformal factor [24]:

F (|β|) = πr

(
Ω(|β|) +

1

|β|
d

d|β|
(β̄b1)

)
. (5.1.6)

By substituting the above b1 into F (|β|), the metric on the space
∑

r,t is

γ =


4πr3|β|2r−2

(1−|β|2r)2

(
1 + 2r(1+|β|2r)√

(t+1)2(1−|β|2r)2+4r2|β|2r

)
dβdβ̄, r 6= t+ 1,

12πr3|β|2r−2

(1−|β|2r)2 dβdβ̄, r = t+ 1.

(5.1.7)

The Kähler potential K and the Kähler metric γαβ on a complex manifold is given by

γαβ = ∂α∂βK. (5.1.8)

Now we are calculated an explicitly expression of the Kähler potential for Σr,t when r = t + 1

and for Σr,t when r 6= t+ 1. Thus, the Kähler potential for Σr,t is given by

K =


−4πr log(1− |β|2r) +K0, r 6= t+ 1,

−12πr log(1− |β|2r), r = t+ 1,

(5.1.9)

with

K0 = 4rπ

∫ √
(t+ 1)2(1− |β|2r)2 + 4r2|β|2r

(1− |β|2r)
dβ

β

= 8rπ tanh−1

(
r(1 + |β|2r)

k0

)
− 4π(t+ 1) ln

(
1

k0

− (t+ 1)(1− |β|2r)
)

− 4π tanh−1

(
(t+ 1)(1− |β|2r)

k0

)
+ C,
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where k0 =
√

(t+ 1)2(1− |β|2r)2 + 4r2|β|2r and C is a constant. For example, for t = 0, K0

is

K0 =4π
(
− ln(2r2 − 1 + |β|2r +

√
(1− |β|2r)2 + 4r2|β|2r)

)
− 4π tanh−1

(
1 + (2r2 − 1)|β|2r√

(1− |β|2r)2 + 4r2|β|2r

)

+ 8rπ tanh−1

(
r(1 + |β|2r)√

(1− |β|2r)2 + 4r2|β|2r

)
.

Figure 5.1: The Kähler potential for Σ2,0,Σ3,0 and Σ4,0 such that the red, the green and the blue
correspond, respectively. Note that u = |β|.

Notice that one can see that the metric γ is given by

γ =

(
12rπ

(1− |β|2)2
− rt(t+ 2)π +O(1− |β|2)

)
dβdβ̄,

and it means that the Kähler potential K for
∑

r,t can be calculated as

K = −12rπ log(1− |β|2)− r(t2 + 2t)π + r(t2 + 2t)π(1− |β|2) +K0(1− |β|2),

where ∂β∂β̄K0(1− |β|2) = O(1− |β|2). Fig. 5.1 implies the Kähler potential on Σ2,0,Σ3,0 and
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Σ4,0 shows these Kähler potential is unbounded above and as r increases and so do the Kähler

potentials.

5.2 The Liouville field in the hyperbolic vortices

In this section, we will first study the natural existence of the Liouville field in the hyperbolic

vortices and then the Kähler potential of vortices in the Abelian Higgs vortices following the

work of Chen and Manton [9]. Witten [71] and Strachan [60] exploited the fact that a Liouville

field naturally exists in hyperbolic vortices. This interesting fact distinguishes the hyperbolic

vortices from the flat vortices. The Liouville field then can be used to understand theN -vortices

instead of the Taylor series expansion of h. It was known that the explicit metric on the moduli

space of the hyperbolic vortices can be computed up to two vortices. However, for some N ≥

3, we can evaluate an explicit metric on the submanifolds of moduli space of hyperbolic N -

vortices. For example, the metric on totally geodesic submanifold as we discussed in section

5.1, and also see chapter 4 on hyperbolic 3- and 4-vortices.

Let Σ be a Riemann surface with Riemannian metric g. The metric g can be expressed in terms

of a conformal factor Ω as

g = Ωdzdz̄. (5.2.1)

Set φ = e
1
2
h+iχ as earlier. Bradlow and Garcia-Prada [8] showed the vortices exist with arbitrary

locations for the N -vortex field equation on M defined by

∇2h− Ω(eh − 1) = 0. (5.2.2)

Recall that for hyperbolic plane H with scalar curvature −1
2
, the metric g is given by (4.2.2).

112



Let g = eσdzdz̄ where σ satisfies Liouville’s equation 4∂z∂z̄σ = eσ. Suppose a conformal

transformation on a hyperbolic plane H as g 7→ ĝ = ehg = eh+σdzdz̄. Let ψ = h + σ.

Suppose that ĝ has scalar curvature−1
2
. The conformal factor eψ satisfies the Liouville equation

4∂z∂z̄ψ = eψ. The Taylor series expansion of ψ is the Taylor series expansion of h + σ. Refer

(4.2.9) for the Taylor series expansion of h about zi. Hence, the Taylor series expansion of ψ is

given by

ψ = log |z − zi|2 + Ai +
1

2
B̄i(z − zi) +

1

2
Bi(z̄ − z̄i) + · · · (5.2.3)

where Ai = ai + log
(

8
(1−ziz̄i)2

)
, Bi = bi + 4zi

1−ziz̄i , and ai and bi are the coefficients in (4.2.9).

The unregularised action for ψ is given by

sψ =
i

2π

∫
D̂

dz ∧ dz̄
(
2∂zψ∂z̄ψ + eψ

)
, (5.2.4)

where D̂ = {D−∪Ni=1|z−zi| < ε}, D is the unit disc. The integrals of eψ and ψ are finite when

ε → 0. However, there is a singularity on the integral of the component ∂z∂z̄ψ. The boundary

conditions results in the variation of sψ and h as

δsψ =
i

2π

∫
D̂

dz ∧ dz̄ (2∂z(δψ∂z̄ψ) + 2∂z̄(δψ∂zψ)) , (5.2.5)

and

δψ = δAi +
1

2
δB̄i(z − zi) +

1

2
δBi(z̄ − z̄i) + ... (5.2.6)

respectively. Substituting δψ into δsψ, one can see that δsψ = −4
∑N

i=1 δAi [31] . Thus, the

regularized action for h is given by [9]

S = lim
ε→0

{
i

2π

∫
D̂

dz ∧ dz̄
(
2∂zψ∂z̄ψ + eψ

)
+ 4

N∑
i=1

Ai + 4N log ε

}
. (5.2.7)
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Note that the term 4
∑N

i=1Ai and 4N log ε cancel unnecessary variational quantity and give a

well defined variational derivative and we can find that

∂S

∂zi
= lim

ε→0

{
i

2π

∫
D̂

dz ∧ dz̄ ∂

∂zi

[
2∂zψ∂z̄ψ + eψ

]}
− lim

ε→0

{
i

2π

∮
∂D̂

dz̄
∂

∂zi

[
2∂zψ∂z̄ψ + eψ

]}
+ 4

N∑
i=1

∂Ai
∂zi

= lim
ε→0

{
i

2π

∮
D̂

dz ∧ dz̄
[
2∂z(

∂ψ

∂zi
∂z̄ψ) + 2∂z̄(

∂ψ

∂zi
∂zψ)

]}
− lim

ε→0

{
i

2π

∮
∂D̂

dz̄
∂

∂zi

(
2∂zψ∂z̄ψ + eψ

)}
+ 4

N∑
i=1

∂ai
∂zi

= 2B̄i,

where Bi is the coefficient of the Taylor series expansion of ψ. Due to the reality of the action

∂S
∂z̄i

= 2Bi. The action S is then calculated as

S = 2

∫
Bidz̄i = 2

∫
B̄idzi. (5.2.8)

Hence, 2∂Bi
∂zs

= ∂2S
∂zs∂z̄i

gives the Samols metric having the form

ds2 = π
∑
i,s

(
Ω(zi)δis +

∂2S

∂zs∂z̄i

)
dzidz̄s. (5.2.9)

Therefore, the Kähler potential is given by

K = KΣ + S + C, (5.2.10)

where KΣ and C are the Kähler potential on Σ and constant, respectively. Here our aim is

to calculate the Kähler potential on the totally geodesic submanifold Σr,t. From (5.1.4), the
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coefficient Bβ of Taylor series expansion of ψ can be given as

Bβ =
4β

1− ββ̄
+

1

β̄

(
2t+ r − 1− 2rβrβ̄r

1− βrβ̄r
+

4rνrβrβ̄r

1− βrβ̄r
− 4ββ̄

1− ββ̄

)
. (5.2.11)

Then using (5.2.8) to (5.2.11), the Kähler potential can be calculated as

K = −4πr log(1− |β|2r) + 4πr

∫ √
(t+ 1)2(1− |β|2r)2 + 4r2|β|2rdβ

(1− |β|2r)β
+ C, (5.2.12)

where C is a constant and the integral
∫ √(t+1)2(1−|β|2r)2+4r2|β|2rdβ

(1−|β|2r)β is the same as (5.1.9).

5.2.1 The Kähler potential using a scaling argument

We can also evaluate the Kähler potential of the totally geodesic submanifold Σr,t of MN using

scaling argument. Following similar argument of derivation of (4.1.15) and (4.1.16), we can

find the following two equations

∂Bs

∂zi
=
∂B̄i

∂z̄s
and

∂Bi

∂z̄s
=
∂Bs

∂z̄i
, (5.2.13)

where Bi is the coefficient of the Taylor series expansion of ψ = h + σ. For a collective

coordinates {zi = βαi−1, i = 1, ..., r, λ = e2iπ/r; z̄i}, equations (5.2.13) are satisfied if there

exists a real function f [9] such that

∂f

∂z̄i
= 2Bi and

∂f

∂zi
= 2B̄i. (5.2.14)
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Let B =
∑r

i=1 z̄iBi = rBβ , where Bβ is the value given by (5.2.11). Then one can find the

following linear combination of (5.2.14) as

r∑
i=1

(
zi
∂f

∂zi
+ z̄i

∂f

∂z̄i

)
= 2(Bi + B̄i) = 4B = 4rβ̄Bβ. (5.2.15)

Let zi = ηie
iαi , where ηi and αi are the distance and angle of the ith-vortex away from the

origin. Then one can find that

r∑
i=1

ηi
∂f

∂ηi
= 4B = 4rβ̄Bβ. (5.2.16)

Let all the value ηi are parametrized by dimensionless parameter τ as ηi ≡ ηi(τ) and zi ≡

zi(τ) ≡ ηie
iαi . Let zi be proportional to the scaling parameter τ . Then τ dzi

dτ
= zi. Therefore,

we can find that

τ
df

dτ
=

r∑
i=1

(
zi
∂f

∂zi
+ z̄i

∂f

∂z̄i

)
= 4B = 4rβ̄Bβ. (5.2.17)

Hence, we can find the real function f as

f = 4r

∫
Bβdβ̄ = 4r

∫
B̄βdβ.

Therefore, the entire Kähler potential is given by

K = 8r log(1− ββ̄) + f

= −4πr log(1− |β|2r) + 4πr

∫ √
(t+ 1)2(1− |β|2r)2 + 4r2|β|2rdβ

(t+ 1− r)(1− |β|2r)β
+ C,

where C is a constant. Note that, we have found the same formula for all the three approaches

of evaluating the Kähler potential for the totally geodesic submanifold Σr,t of MN .
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5.3 The geometry of
∑

r,t

The geometry of
∑

r,r−1 and, in particular the geodesic flow on
∑

2,1, was discussed in detail

in [24], using that Σr,r−1 has continuously negative curvature, − 1
3πr

. Here we will see the

case for
∑

2,2, we compare the relation between the impact parameter and the scattering angle.

Recall that the geodesic trajectories of the hyperbolic plane intersects the boundary of the disc

at right angle. Now also recall that the isometry from D to H by the Cayley-transform which

takes geodesics to geodesics and it is the restriction of H a Möbius transformation S2 in to S2

which takes circles and lines to circles and lines, preserves angles and maps the real axis to the

unit circle in C. Recall that the metric on
∑

2,2 is given by

ds2 = g(|β|2)dβdβ̄ =
32π|β|2

(1− |β|4)2

(
1 +

4(1 + |β|4)√
9(1− |β|4)2 + 16|β|4

)
dβdβ̄,

where β is a vortex positions as we discussed earlier. Now let β = r̃eiθ. Thus, the metric can

be rewritten as ds2 = g(r̃2)(dr̃2 + r̃2dθ2) where

g(r̃2) =
32πr̃2

(1− r̃4)2

(
1 +

4(1 + r̃4)√
9(1− r̃4)2 + 16r̃4

)
.

Then the equations of motion are


¨̃r − g′

2g
˙̃r2 − h2

g2r̃3 (1 + g′

2g
r̃) = 0

θ̇ = h
gr̃2 , h is constant.

Note that for r̃ → 1, the metric is approximated by

ds2 =
96π|β|2

(1− |β|4)2
dβdβ̄, (5.3.1)
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and this metric is isometric to the metric on
∑

2,1. So, a geodesic intersects the boundary at right

angles say at eiψ, 0 ≤ ψ ≤ π
2
. For λ ∈ U(1), the radial curves χ(t̃) = t̃λ, |t̃| < 1 are geodesic

which corresponds to the 4-vortex motion in which two vortices remains fixed at the origin and

the other two moves towards to each other and scatter along the trajectories z(t̃) = ±χ(t̃)
1
2 .

Note that let
∑

2,2 be the symmetric configurations such that the vortices are equidistant from

the origin and separated from one another by relative angles of π. Configurations in
∑

2,2 are

symmetric under rotations, so any movement starting in
∑

2,2 with initial velocity along
∑

2,2

will remain in
∑

2,2. So, we can consider the motion with in
∑

2,2.

The geometry of vortex scattering on H discussed in [24] such that the vortex trajectories are

seen as the geodesic arcs. Krusch and Speight [24] give the definition of the scattering angle

and impact parameter on the hyperbolic plane as in fig.5.2 such that the dashed curves are the

vortex trajectories on the hyperbolic plane when the hyperbolic vortices do not affect each other.

The solid curves are vortex trajectories if the vortices affect each other. The geodesic in H is a

circular arc with radius 1
2

tan(ψ). Here, refer to fig.5.2, b is the impact parameter and θs is the

scattering angle such that ξ + θs = −ψ
2

. Using trigonometric properties, one can calculate ξ as

ξ = − tan−1

(
1

2
tan(ψ)

)
. (5.3.2)

Suppose we have geodesic motion in
∑

2,2 which passes through the origin. As b decreases

to zero, one passes to the other side of the origin in
∑

2,2 along a straight line in
∑

2,2, and

emerges with b increasing and ψ changed by half its range. From trigonometric property, the

impact parameter b can be calculated (it was derived by Steffen Krusch and Martin Speight [24])

b = 4
√

2 tanh−1

√1 +

(
1

2
tan(ψ)

)2

− 1

2
tan(ψ)

 (5.3.3)
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e i ψ/2

e − i ψ/2

e i ξ

b

Figure 5.2: Plots of the scattering angle and the impact parameter on the hyperbolic plane taken
from [24].

Using the approximate metric (5.3.1) and the definition of θs and b in (5.3.2) and (5.3.3), one

can find the scattering angle-impact parameter relation of Σ2,2 as

θs(b) =

(
2 tan−1

(
1− k̃2

2k̃

)
− tan−1

(
1− k̃2

k̃

))
(5.3.4)

where k̃ = tanh( b
4
√

2
) and it holds for large impact parameters. For the scattering angle θs and

the impact parameter b associated with the ψ geodesic, one has initially θs = 0 and b decreases

which represents a head-on collision. Thus, θs decreases to to zero as b increases. Fig.5.3 is the

plot of the relation between the impact parameter-scattering angle relation of the moduli space

Σ2,2 that shows π
2

scattering and fig. 5.6c (blue) also shows the scalar curvature plot of Σ2,2 for

r = t = 2. The motion of these vortices in the geodesic approximation shows that for head-on

collisions, the scattering is by angle π
2

[51, 60]. In general, for a metric given by

ds2 = g(r̃)(dr̃2 + r̃2dθ2), (5.3.5)
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Figure 5.3: The relation between the impact parameter and the scattering angle of Σ2,2.

the geodesic motions conserve energy E and angular momentum h

E =
1

2
g(r̃)

(
˙̃r2 + r̃2θ̇2

)
(5.3.6)

h = g(r̃)r̃2θ̇2, (5.3.7)

where g(r̃) is the metric function (5.3.5), respectively. Then from (5.3.6) and (5.3.7), one can

find that

˙̃r
2

=
2E

g(r̃)
− r̃2θ̇2 (5.3.8)

θ̇2 =
h

r̃2g(r̃)
. (5.3.9)

Using (5.3.8) and (5.3.9), we can find that

dθ

dr̃
=

h√
g(r̃)r̃2

1√
2E − h2

g(r̃)r̃2

=
b

r̃
√
g(r̃)r̃2 − b2

, (5.3.10)

where b = h
2E

. We therefore integrate (5.3.10), and find that the relation between the scattering
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angle and the impact parameter as

θs =

∫ 1

ρ0

2bdr̃

r̃
√
g(r̃)r̃2 − b2

, (5.3.11)

where ρ0 is a turning point satisfying r̃0

√
g(r̃0) = b. This formula agrees with the scattering

angle-impact parameter relation of vortices in flat spaces in [40]. Fig.5.4 and 5.5 are the plot

of the relation between the impact parameter-scattering angle relation of the moduli space Σ2,2

and Σr,r−1 for r = 2, 3, 4, 5 that shows π
2

and π
r

scattering, respectively. That is, r = 2, 3, 4 and

5 implies 2-vortices placed opposite position and one vortex fixed at the origin, 3-vortices at

the verices of an equilateral triangle and 2-vortices fixed at the origin, 4-vortices placed at the

verices of a square and 3-vortices fixed at the origin, 5-vortices placed at regular pentagon and

4-vortices fixed at the origin, respectively.

Figure 5.4: Plot of the scattering angle against the impact parameter of Σ2,2 using the formula
(5.3.11).
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Figure 5.5: Plots of the scattering angle against the impact parameter that show π
r

scattering
where r = 2, 3, 4, 5.

Moreover, the curvature of
∑

r,t is given by

κ = − 1

2|α|G(|α|)
d

d|α|

(
|α|

G(|α|)
dG(|α|)
d|α|

)
,

where G(|α|) is the profile function of the metric (5.3.8). The curvature κ is negative uniformly

for t ≥ r, however, for t ≤ r, the curvature can have a positive value. As r → t + 1, this

curvature is negative uniformly which is − 1
3rπ

. For example,
∑

2,2 has uniformly negative

curvature. Fig. 5.6 shows plots of curvature for different values of t and r and here all the

horizontal lines are the graphs of the curvature when r = t + 1. In fig. 5.6a, for t = 0 and

r = 2, 3, 4, 5, one can see that the scalar curvature can have a positive value. Similarly, one can

find a positive scalar curvature submanifold in fig. 5.6b for t = 1 and t = 3, 4, 5. Generally,

from fig.5.6, we see that there are submanifolds that have positive and negative scalar curvature
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and some have uniformly negative curvature.

(a) t=0, r=1,2,3,4,5 (b) t=1, r=1,2,3,4,5

(c) t=2, r=1,2,3,4,5 (d) t=3, r=1,2,3,4,5

Figure 5.6: The plots of the scalar curvature of some totally geodesic submanifold of MN . Note
that r̃ = |α|.
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5.4 Summary of chapter

In this chapter, the Kähler potential for Σr,t of MN was computed using three methods. These

methods are the scaling argument, the regularized action and using direct definition of Kähler

potential of a Kähler metric. We found identical results in all cases. The scattering angle of

hyperbolic vortices on Σr,r−1 is π
r
. In a head-on collision, the scattering angle of vortices on the

space Σ2,2 is π
2

as for Σ2,0 and Σ2,1. We noticed also that the curvature of Σr,t of MN depends

on r and t.
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Chapter 6

Vortices with Impurities

The BPS dynamics of vortices with the presence of electric and magnetic impurities was studied

by Tong and Wong [68]. The dynamics on the moduli space in the presence of impurities can

be deformed. The presence of magnetic impurities changes the metric on the moduli space;

however, in the presence of electric impurities the metric is kept invariant where as there is an

additional connection term.

We discuss the critically coupled vortices in the presence of impurities. In section 6.1, we inves-

tigate vortices with electric impurities and evaluate the explicit metric on the totally geodesic

submanifold Σ1,t of hyperbolic t + 1-vortices. In section 6.2, we study vortices with magnetic

impurities. We evaluate the explicit metric on the totally geodesic submanifold Σr,t of manifold

MN of hyperbolic N -vortices with impurities.

6.1 Vortices with electric impurities

In this section, we discuss the dynamics of vortices in the presence of electric impurities in the

theory by adding impurities in the theory.
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The action of the impurity free vortices is given by

S =

∫
d3x

[
−1

4
FµνF

µν +DµφDµφ− 1

2
(1− |φ|2)2

]
, (6.1.1)

where φ is the scalar field, Dµφ = ∂µφ − iAµφ is the covariant derivative and Aµ is the gauge

potential. From (6.1.1), we can find the Bogomolyni equations (4.1.4) and (4.1.5). The general

solution to these Bogomolyni equations with charge N has 2N parameters [64] that can be

written as (Ai;φ), where Ai = Ai(z; za), φ = φ(z; za), z is a coordinate of the domain and

za, a = 1,· · · , 2N are the collective coordinates. The slow moving BPS soliton dynamics is

determined by the metric on the moduli space of static solitons [30]. Then (∂0φ, ∂0Ai) satisfies

the linearized equations given by [68]

δaAi =
∂Ai
∂za

+ ∂iαa, δaφ =
∂φ

∂za
+ iαaφ, (6.1.2)

where αa(z; za) are functions which are taken to ensure Gauss’ law (4.1.8) holds. Then we

consider αa(z; za) to be a U(1) connection over the moduli space.

Let ρ(z) be a static electric charge density that will be added to the action of dynamics of

vortices by adding a source term ρ(z)A0 for the gauge field. When we associate the action with

an electric impurity parameter ρ, the action with electric impurity is going to be

Sim =

∫
d3x

[
−1

4
FµνF

µν +DµφDµφ− 1

2
(1 + |φ|2)2 − ρA0

]
. (6.1.3)

The action for vortex dynamics has the form (detailed explanation can be found in [68])

S =

∫
dt

[
1

2
γabż

a ˙̄zb + Aa(z)ża
]
, (6.1.4)
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where γab is the metric on the moduli space and Aa is a connection given by

Aa(z) =

∫
d2xρ(z)αa(z, z

a). (6.1.5)

We can see the following example. Consider the moduli space Mt+1 of t + 1-vortices on the

hyperbolic plane in such a way that one vortex position at α is moving in the presence of a

delta function electric impurity ρ(z) = εδ(z) where ε � 1 and dimensionless, and there are

t coincident fixed vortices at the origin. The dynamics of the vortices of this moduli space

(A0 = 0, A = A1dx
1 + A2dx

2) is

St+1 =

∫
dt̃

[
1

2
γααα̇ ˙̄α + εA(α)α̇

]
, where A = −i∂z̄ log

(
1− |z|2

1− |f |2

)
, (6.1.6)

and f is a complex analytic function given by f(z) = zt+1(z−α)
1−ᾱz and γαα is the metric function

on the moduli space Mt+1 given by

γαα =
4π

(1− |α|2)2

(
1 +

4(1 + |α|2)√
(t+ 1)2(1− |α|2)2 + 4|α|2

)
. (6.1.7)

Thus, the action can be simplified as

St+1 =

∫
dt

[
1

2
γααα̇ ˙̄α + ε

2α̇

1− |α|2

]
. (6.1.8)

The geodesic equations depend on the impurity parameter ε. In general, the presence of the

electric impurity changes the trajectories of the geodesic motions. Now let α = r̃eiθ. Then the
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geodesic equations become


¨̃r − γ′

2γ
˙̃r2 − h2

γ2r̃3 (1 + γ′

2γ
r̃) = 0

θ̇ = h
γ r̃2 , h constant,

(6.1.9)

where γ = 1
2

(
γαα(r̃) + 4ε

1−r̃2

)
. Then, one can see that in the presence of electric impurities, θ

depends also on ε. This may alter the impact parameter-scattering angle relation, for example,

one can see the approximated scattering angle-impact parameter relation on the space Σ2,1 as

shown in fig.6.1.

Figure 6.1: Plots of scattering angle-impact parameter relation in the presence of electric impu-
rity ε→ 0 and ε = 0.175, 0.25, 0.5, (red, blue, green and black), respectively.
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6.2 Vortices with magnetic impurities

In this section, we discuss vortices on compact Riemann surfaces Σ by doping with magnetic

impurities. The dynamics of vortices in the presence of magnetic impurities are not suplimented

by any connection term like the electric case. They change the static solutions and the corre-

sponding moduli space metric. Suppose the action of the vortices associated with a magnetic

impurity of parameter η. Then the action [68] becomes

Sim =

∫
d3x

[
−1

4
FµνF

µν +DµφDµφ− 1

2
(1 + η − |φ|2)2 − ηF12

]
. (6.2.1)

Using same procedure as we did before in the case of doping with an electric impurity, imposing

a gauge fixing condition A0 = 0, the Ginzburg-Landau potential energy functional is given by

Vim =
1

2

∫
Σ

(
Ω−1F̃ 2

12 +DiφDiφ+
Ω

4
(1 + η − φφ̄)2 + ηF̃12

)
dx1dx2. (6.2.2)

By completing the square, the Bogomolyni equations become

(D1 + iD2)φ = 0 and F̃12 =
Ω

2
(1− |φ|2) +

Ω

2
η. (6.2.3)

Note that the Bogomolnyi equations depends on the impurity parameter η. As usual, we are

interested in the solutions of these equations. The first Chern number is given by

Ñ =
1

2π

∫
Σ

F12 =
1

4π

∫
Σ

Ω(1− |φ|2) +
1

4π

∫
Σ

Ωη = N +
1

4π

∫
Σ

Ωη. (6.2.4)

As Ñ ∈ Z, we can choose η = 4πΩ−1εδ(z), where the parameter ε ∈ R is the strength of the

defect and z = x1 + ix2. From to (4.1.5), F12 = Ω
2
(1 − |φ|2) is the impurity free Bogomolyni
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equation on Σ. As the square of the delta function is not defined, the Bogomolyni equations

(6.2.5) imply that the gauge potential Aµ must be divergent in some way near the origin. To

ensure the energy is finite, Dµφ should be finite at the origin. Thus, the field |φ| should have a

vortex position at the origin. The Bogomolnyi equations (6.2.5) become

(D1 + iD2)φ = 0 and F̃12 =
Ω

2
(1− |φ|2) + 2πεδ(z). (6.2.5)

For a singular gauge transformation φ 7→ |z|
z
φ, one can find that

Az̄ → Az̄ −
i

2z̄
(6.2.6)

F̃12 → F̃12 − 2πδ(z). (6.2.7)

For finite ε ∈ N, the Bogomolyni equations become impurity free and they become

Dz̄φ = 0 and F̃12 =
Ω

2
(1− |φ|2). (6.2.8)

Hence, the solutions of the equations with impurity are same the solutions of the impurity free

equations for a finite integer ε. The metric on the moduli space of vortices in the presence of

impurities with ε ∈ N is the restriction of the usual impurity-free vortex metric to the submani-

fold of solutions where a certain number of vortices are fixed. Then the moduli space metric is

the metric on a moduli space of solutions to the impurity free equations1.

For example, let us consider a totally geodesic submanifold
∑

r,t of a moduli spaceMN , r+t =

N . We generalize the metric on
∑

r,t to magnetic impurities. The derivation goes through as in

section 5.1 of the impurity-free case. For 0 < ε < 1, the ansatz g(z) = zεf(z), where f is a

1
This step was first pointed out by Alex Cockburn for the case Σ1,0
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Blaschke function in (5.1.1), solves the equation (6.2.5). Hence the function g(z) given by

g(z) =
zt+ε+1(zr − ar)

1 + ārzr
, r + t = N, a ∈ C. (6.2.9)

Refer to chapter 5 section 5.1, the critical points of g given by zr = λr−1β, λ ∈ U(1), and a

can be given by

a = βν(|β|), (6.2.10)

where ν is a positive function of |β| such that

νr =
(t+ ε+ 1)(1 + |β|2r)−

√
(t+ ε+ 1)2(1− |β|2r)2 + 4r2|β|2r

2|β|2r(t+ ε+ 1− r)
.

The coefficient b1 also computed as

b1 =
1

β̄

(
2(t+ ε) + r − 1− 2rβrβ̄r

1− βrβ̄r
+

4rνrβrβ̄r

1− βrβ̄r
− 4ββ̄

1− ββ̄

)
. (6.2.11)

Using the Kähler property and the rotational invariance on MN , the metric on Σn,m with impu-

rity given by (5.1.5). Then, we can find the metric on this space as

γ = πr

(
Ω(|β|) +

1

|β|
d

d|β|
(β̄b1)

)
dβdβ̄ (6.2.12)

=
4πr3|β|2r−2

(1− |β|2r)2

(
1 +

2r(1 + |β|2r)√
(t+ ε+ 1)2(1− |β|2r)2 + 4r2|β|2r

)
dβdβ̄. (6.2.13)

The presence of the magnetic impurity alters the trajectories of the geodesics. Adding magnetic

impurities vary the dynamics of the moduli space of the vortices. The presence of impurities

changes the scalar curvature of the spaces Σr,t. For example, for ε = 0.25, 0.5, 0.75 and without

impurity, fig. 6.2 shows the scalar curvature and metric function of Σ2,2 changes in the presence

131



of magnetic impurities. As the impurity increases, both the scalar curvature and metric functions

decrease as we see from the plot.

(a) Scalar curvature with impurtity (b) Metric function with impurity

Figure 6.2: Plots of scalar curvature and the metric function of Σ2,2 with ε = 0.25, 0.5, 0.75,
(green, black and blue), respectively and with out impurity (red). Note that x = |β|.
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Chapter 7

Conclusion

This thesis mainly focused on the moduli spaces of lumps in real projective space and vortices

on Riemann surfaces. It begins with homotopy theory. Homotopy classes play an important

role to ensure stability of vortices. We also investigated covering spaces and homotopy lifting

and studied the relation between harmonic maps between Riemann spheres. Rational maps on

a projective space associated with antipodal map were studied. We generalized the CP 1 sigma

model to physical space being the 2-dimensional compact Riemann surface Σ with metric g and

mainly considered Σ = S2 and Σ = RP 2. The moduli spaces of lumps in a projective plane

using rational maps of degree n subject to symmetry requirement was studied. We studied

symmetric lumps in a projective plane and then mainly focused on rational maps of degree 3.

We then derived families of symmetric rational maps and showed that the moduli space R̃ata3

consists of two orbits of the symmetry group, namely a 5-dimensional orbit of the axial map

and a 7-dimensional orbit of dihedral symmetry generated by the map (3.5.1) or (3.6.1). We

followed Martin Speight [59] who derived the metric on the moduli spaces of charge 1 lumps.

We were able to evaluate the metric on moduli spaces of charge 3 lumps using SU(2) Möbius

transformation for both orbits of maps and explicitly evaluated some volumes of a submanifold

of the orbits of maps. We showed that the volume for both these orbits of maps is finite. Both
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the dihedral and axial orbits of maps have finite length along the parameter c. We showed lump

decay by considering zeros and poles of a rational map. In particular, in the orbit of maps (3.5.1)

the zero cancel with the pole at∞ and the pole cancels with the zero at 0 while in the dihedral

orbits of maps (3.6.1) one zero fixed at the origin and two poles cancel with two zeros. Due to

the symmetry (3.2.6), lump decay is more complicated on RP 2. In the axial orbit of maps, three

zeros cancel with three poles. The moduli space of maps (3.5.1) in the real projective space

is a non-compact space since its degree decays by 2, collapses to an infinitely sharp spike and

disappears.We showed the moduli spaces (3.5.1) and (3.6.1) have equal minimum value of the

angular integral I at a = c = 0. Moreover, (3.6.1) has also the same minimum value at c = 3.

When N = 5, we have moduli space of charge 5 lumps. In this spaces, we only understand

some of the spaces, for example, the axial map z5. It is an interesting problem which we suggest

for further studies. For the moduli spaces of lumps in the projective plane possible future work

would be to study the moduli spaces of charge 5 lumps in the projective plane and evaluate their

corresponding geometric quantities.

In chapter 4, we have calculated the general (and for some cases an explicit) metric on the mod-

uli spaces of hyperbolic 3-vortices where at least one of the vortex positions is not at the origin.

Depending on the parameters a, b and c, we saw two families of these hyperbolic 3-vortices of

which one is for c 6= 0 and the other for c = 0. For each family, we noticed also that three

families can be constructed from the roots of (4.3.7). The metric, Kähler potential and scalar

curvature for the moduli spaces of hyperbolic 3-vortices where vortex positions with zero center

of mass coordinate was calculated. Results were compared and as expected agree with the met-

ric in [24]. We constructed an interesting subspace which is the double hyperbolic 3-vortices

and their corresponding metric and scalar curvature were computed. Interestingly, numerical
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results show that its scalar curvature is uniformly negative and increases as the modulus of the

vortex position increase to 1 and approaches to − 1
3π

. In addition, the Kähler potential for the

moduli space of double hyperbolic 3-vortices was computed. We also studied collinear hyper-

bolic 3-vortices and calculated their metric and scalar curvature which is uniformly negative

as numerical plot suggests. Furthermore, we calculated the implicit metric for hyperbolic 4-

vortices where the zeros of the rational function satisfy the symmetry z 7→ −z and z 7→ z̄.

We found an interesting subspace of collinear hyperbolic 4-vortices and evaluated explicitly its

metric. We constructed double 4-vortices on the hyperbolic plane. The corresponding metric

was calculated explicitly and it was shown that this subspace has uniformly negative scalar cur-

vature. The Kähler potential and metric on the moduli space of hyperbolic vortices are directly

proportional. For the more difficult case of general hyperbolic 4-vortices, the calculation is

rather challenging and still an open problem.

One of the motivations behind this work is that lumps on the projective plane are in many ways

similar to vortices on compact Riemann surfaces. Both lumps and vortices attain a Bogomol-

nyi type topological lower bound on energy within their homotopy classes. Then they satisfy

the first order self-dual equations (that is, the Cauchy-Riemann equations in case of lumps and

Bogomolnyi equations in vortices). The solution of these equations is highly non-trivial and

difficult to find an explicit formula for the metric in both lumps and vortices. A way of under-

standing the underlying connection between lumps and vortices is in terms of rational maps.

We have studied lumps on the projective plane and vortices on some compact Riemann surfaces

using the concepts of rational maps. In the case of lumps, the rational map R commutes with

the antipodal map ρ : z 7→ −1
z̄

while our rational map f in the moduli space of vortices

commutes with the involution z 7→ 1
z̄
. The computation of the metric of the moduli space of
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vortices is far more difficult than the computation for lumps because in the case of vortices,

the derivative of the rational function is involved. This is because the vortex positions are the

critical points of the rational function. An other difference is the moduli space MN of lumps

is geodesically incomplete [50] and the geodesic approximation predicts that lumps may decay

and form singularities in finite time.

The next piece of work focused on the moduli space of vortices on compact Riemann surfaces.

We showed that the Samols metric can be generalized from vortices of single multiplicity to

arbitrary vortices of positive multiplicity and explicitly calculated the metric on the moduli

spaces of vortices on compact Riemann surface with positive multiplicity. Following Speight

and Krusch [24], we were able to compute the metric on the totally geodesic submanifold Σr,t

of MN , r + t = N for all t and r. The Kähler potential of the symmetric space Σr,t was then

evaluated in three ways. The first one is just following the definition of Kähler potential of a

Kähler metric while the second one is following Chen and Manton’s method of the regularized

action of the Taylor series expansion of the gauge invariant quantity h = log |φ|2. The geometry

of Σ2,2 and particularly the impact parameter-scattering angle relation where two fixed are vor-

tices placed at the origin and two vortices are placed at opposite positions was studied. These

vortices form a right angle vortex scattering. We also studied the impact parameter-scattering

angle relation of the space Σr,t where there is π
r

scattering. For some vortices, the curvature κ

of the space Σr,t is uniformly negative for r ≥ t, however, for t ≤ r, the curvature can have

a positive value. When the scalar curvature is negative, the metric, Kähler potential and scalar

curvature are directly proportional. In this chapter a further extension of this work would be to

study the vortex scattering on Σ2,t, t ≥ 3 and compare the result to Σ2,t, 0 ≤ t ≤ 2.

In chapter 6, vortice and impurities have been studied and investigated. We investigated vortices
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in the presence of electric and magnetic impurities that was proposed by Tong and Wong [68].

The Bogomolyni equations in the presence of impurities were investigated and analyzed. There-

fore, the dynamics is altered by the presence of electric impurities. Electric impurities keep the

metric invariant but introduce a connection term. However, the presence of magnetic impurities

does change the metric on the moduli space. The dynamics of moduli space of the symmetric

space Σr,t of vortices in the presence of electric and magnetic impurities in the theory by doping

an impurity on the action of the dynamics of vortices has investigated. We evaluated the action

and corresponding metric on the moduli space Σ1,t in the presence of electric impurities. In ad-

dition, we computed the explicit metric on the symmetric space Σr,t with magnetic impurities.

In the presence impurities, one way of taking the work further would be to determine and study

the dynamics of hyperbolic N -vortices and evaluate their geometric properties.
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