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Abstract: Regulatory requirements for sub-sea oil and gas operators mandates the frequent inspection1

of pipeline assets to ensure that their degradation and damage are maintained at acceptable levels.2

The inspection process is usually sub-contracted to surveyors who utilise sub-sea Remotely Operated3

Vehicles (ROVs), launched from a surface vessel and piloted over the pipeline. ROVs capture data4

from various sensors/instruments which are subsequently reviewed and interpreted by human5

operators, creating a log of event annotations; a slow, labour-intensive and costly process. The paper6

presents an automatic image annotation framework that identifies/classifies key events of interest in7

the video footage viz. exposure, burial, field joints, anodes and free spans. The reported methodology8

utilises transfer learning with a Deep Convolutional Neural Network (ResNet-50), fine-tuned on9

real-life, representative data from challenging sub-sea environments with low lighting conditions,10

sand agitation, sea-life and vegetation. The network outputs are configured to perform multi-label11

image classifications for the critical events. The annotation performance varies between 95.1% and12

99.7% in terms of accuracy and 90.4% and 99.4% in terms of F1-Score depending on event type. The13

performance results are on a per-frame basis and corroborate the potential of the algorithm to be the14

foundation for an intelligent decision support framework that automates the annotation process. The15

solution can execute annotations in real-time and is significantly more cost-effective than human-only16

approaches.17

Keywords: Visual Inspection; Subsea Pipeline Survey; Multi-Label Image Classification; Deep18

Learning; Transfer Learning19

1. Introduction20

Oil and Gas operators are governed by regulations which mandate the frequent visual inspections21

of sub-sea pipelines and platforms in order to assess the condition and risks to these assets. In a22

typical inspection, a surface vessel deploys a Remote Operating Vehicle (ROV) which is piloted over23

the pipeline, collecting survey data from multiple sensors/instruments. A typical survey data set24

comprises: 1) video footage recorded from three camera angles (left/port, centre and right/starboard),25

2) Inertial Measurement Unit (IMU) data to capture the orientation of the ROV, 3) multi-beam echo26

sounder data to map the seabed surface and 4) magnetic pipe-tracker to record the pipe location when27

it is buried below the seabed.28
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During the inspection, a Data Coordinator, on board the surface vessel, provides real-time29

commentary on survey data and produces initial annotations, identifying events such as pipeline30

exposure, burial, field joints, anodes, free spans and boulders. The annotation process is prone to31

human error [1] as Data Coordinators become fatigued and distracted, leading to missed events or32

incorrect labelling. After these initial annotations, the video and commentary are subject to Quality33

Control (QC), either while the survey is ongoing or once completed, creating a bottleneck in the speed34

of processing and reporting. Furthermore, the speed at which the ROV is piloted is limited by the rate35

the human can vocalise the presence of an event on audio commentary rather than a limitation of the36

craft. Automating the survey process enables more consistent, accurate and quicker inspections, while37

reducing the presence of staff offshore and the concomitant cost and safety risks.38

Various vision-based techniques proposed by the Autonomous Underwater Vehicle (AUV)39

navigation community have primarily focused on pipeline tracking, however, they do not detect40

and annotate events of interest. Jacobi et al. [2,3], proposed a pipeline tracking method for AUV41

guidance through the fusion of optical, magnetic and acoustic sensors applied on simulated pipeline42

data. Narimani et al. [4] proposed a pipeline and cable tracking technique to improve vehicle navigation43

by converting the images to grey-scale and applying the Hough transformation to determine the angle44

between vehicle and pipeline; subsequently used as a reference to an adaptive sliding mode controller.45

Zingaretti et al. [1] developed a real-time vision-based detection system [5] for underwater pipelines46

using edge-based image processing to detect pipeline contours and a Kalman filter that utilises the47

navigation data to reduce the effect of disturbances created by motion. Similarly, Ortiz et al. [6]48

identified cable contours, in tandem with a linear Kalman filter to predict the contours in the following49

frame. The same authors presented an alternative approach for tracking using Particle Filters [7] tested50

with footage obtained in a water tank. Asif et al. [8] utilised the Bresenham line algorithm to detect51

noise-free pipeline boundaries and B-Spline to detect active contours subsequently tracked using a52

Kalman filter.53

Sub-sea video footage is particularly challenging to process due to reduced contrast, the presence54

of suspended particles in the water (e.g. sand, algae), and highly variable illumination. Traditional55

image processing approaches such as contour determination and their variants, although suitable56

to localise the edges of the pipeline, require significant feature engineering to detect events such as57

field joints, free spans and anodes. Sea-life, marine growth, seabed settlements, auxiliary structural58

elements, breaks on the external pipeline sheathing and alien objects near the pipe are possible59

sources of confusion in the determination of pipeline contours. Furthermore, it is unclear how these60

algorithms perform in the absence of the pipeline (when the pipe is buried) or on changes in position61

and orientation as the ROV maneuvers, both of which result in significant variations of the event62

appearance in the image plane.63

Recently, deep learning approaches have been applied with a similar goal within the power line64

inspection industry [9–12]. Nguyen et al. [9] conducted a review on vision-based approaches for power65

line inspection and the potential role of deep learning. Zhang et al. [10] detected electricity poles in66

Google Street View Imagery using RetinaNet trained with 1,000 annotated images. Jalil et al. [11],67

utilised Faster-RCNN [13] to detect insulators in drone imagery. Miao et al. [12] implemented a bespoke68

Single Shot Detector with MobileNet as the backbone to detect insulators. Various applications can69

also be found for sub-sea imaging. Bonnin-Pascual and Ortiz [14] presented a framework for defect70

detection on vessels. The approach pre-computed and combined a range of multi-scale normalized71

feature maps with the use of Gaussian and Gabor pyramid filters. The framework was successfully72

tested on image mosaics during vessel inspection campaigns. Bonin-Font et al. [15] performed detection,73

mapping and quantification of Posidonia Oceanica. After initially extracting 168 features from images74

using a range of kernels and the gray-level co-occurrence matrix, 14 classifiers were trained and75

compared. Principal Component Analysis (PCA) was applied on the best performing model (Logistic76

Model Trees) to select the 25 more relevant features and retrain the classifier.77
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In a continuation of this work, Martin-Abadal et al. [16] created a framework for the semantic78

segmentation of Posidonia Oceanica. A Deep Fully Convolutional Network was established by79

VGG16, pre-trained on ImageNet as an encoder, FCN8 as a decoder with Gaussian initialization of its80

parameters and hyper-parameter tuning. Their model was successfully implemented on a Turbot AUV81

for online segmentation of meadows.82

In terms of pipeline inspection, Petraglia et al. [17], after initially pre-processing the RGB images,83

detected pipeline boundaries by firstly filtering edges through Non-Maximum Suppression (NMS)84

to eliminate horizontal line segments followed by Random Sample Consensus (RANSAC) and Total85

Least Square (TLS) to group segments. The authors compared two Neural Network (NN) architectures86

to classify four type of events: inner coating exposure, algae, flange and concrete blankets. The first87

NN architecture utilises two convolutional and three fully connected layers, trained on segmented88

pipelines from the pre-processed images. The second architecture adopted a Multilayer Perceptron89

(MLP) with a single hidden layer, trained on features extracted from 3-level Wavelet decomposition.
R3.1

90

The mean and the variance of the wavelet coefficients at each level are then used as features for the91

neural network, except for the mean of the level-1 low-low coefficients, since the window mean is zero.92

This feature extraction results in 23 input features from each window. Results led to the conclusion93

that the convolutional neural network outperforms the MLP, without any need for manual feature94

extraction.95

In this work, transfer learning is harnessed to train a Deep Convolutional Neural Network on96

raw images of sub-sea pipeline surveys to automatically classify five events (exposure, burial, free97

span, field joint, anode). The performance evaluation of the proposed framework is conducted on data98

sets from survey video data obtained from an operational class ROV. The network is configured to99

perform multi-label image classification which identifies multiple concurrent events in a single frame100

(for example, exposure and field joint). Data augmentation is used to enhance further the training data101

sets, facilitating the treatment of the variability embedded within sub-sea images owing to challenges102

created by dynamic ROV motion, brightness and contrast. Multiple ResNet models of varying depth
R3.3 & R3.5

103

have been trialed and a ResNet-50 architecture was selected because it balances the trade-off between104

performance and computation inference time. The ResNet-50 performance yields a high overall Exact105

Match Ratio and F1-Score of 91.9% and 96.6% respectively on per single frame basis.106

2. Materials and Methods107

Data sets from two North Sea surveys conducted in 2012 and 2016 covering 201 kilometres and108

58 kilometres, respectively were utilised in the development of the automatic annotation system. Each109

survey recorded three synchronised video feeds (left, centre and right) of the pipeline at 25 frames110

per second. For the purposes of the development, the centre camera video only was processed for111

the following events of interest; examples for various lighting conditions, seabed characteristics and
R1.3
see Fig. 1

112

parasites are shown in Figure 1:113

• Burial (B): the pipeline is buried underneath the seabed and thus protected.114

• Exposure (E): the pipeline is exposed; visible and prone to damage. When the pipeline is exposed115

other pipeline features/events become visible:116

– Anode (A): pipeline bracelet anodes are specifically designed to protect sub-sea pipelines117

from corrosion [18]. Data Coordinators visually recognise Anodes by the banding that118

appears in the orthogonal direction of the pipeline; anodes have no surface vegetation119

growth.120

– Field Joint (FJ): the point where two pipe sections meet and welded together, typically121

occurring every 12 metres. Data Coordinators recognise Field Joints due to the depression122

on the pipeline surface.123

– Free Span (FS): pipeline segments that are elevated and not supported by the seabed124

(either due to seabed erosion/scouring or due to uneven seabed during installation), pose125

significant risk to the asset; currents or moving objects (debris, nets and etc.) could damage126
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Figure 1. Examples of events in subsea pipeline surveys with varying scene conditions; from left to
right: Burial, Exposure, Anode, Field Joint, Free Span

the pipeline. FS are more apparent on the starboard and port video feeds; the centre camera,127

is used to judge the seabed depth against the pipeline.128

The data set contains event (truthing) annotations created by trained Data Coordinators. It is129

important to note that consecutive frames are highly correlated with each other and for that reason130

still frames were extracted every 10 frames. The frames were labelled using a multi-label annotation131

approach since events recorded during the pipeline survey are not mutually exclusive. The pipelines132

are either buried underneath the seabed or exposed and thus visible. However, additional events133

such as field joints, anodes and free spans are only observable when the pipeline is exposed. This134

multi-label annotation approach is common practise in the scene classification domain, where images135

may belong to multiple semantic classes [19]. The label distribution of the extracted frames is shown136

in Figure 2. The data set contains 23,570 frames in total, consisting of 5,985 frames of burial, 4,236137

frames of exposure, 6,119 frames of exposure and field joint, 2,494 frames of exposure and anode and138

4,736 frames of exposure and free span. Note, that all the annotated data (frames and labels) have been
R2.2

139

checked for annotation correctness three times; one from the Data Coordinator on the vessel during140

the execution of the survey, subsequently on-shore by the Quality Control (QC) personnel, and finally,141

after the frames are extracted, by a trained Data Coordinator who confirmed the annotations through142

manual inspection.143

The first annotation procedure is performed by trained Data Coordinators on the vessel while the144

data are captured. For the events, Exposure, Burial and Free Span, annotators do not solely rely on145

video footage, but have information from the Multi-beam Echo which maps the seabed terrain. This146

make annotation for these events consistent. The Anode and Field Joint events can be indeed missed147

during the real-time annotation (although this is unlikely considering the training), this is quality148

checked on shore (Step 2 below). The annotations are verified by a QC Data Coordinators in the office149

before generating the client report. Routinely, QC Data Coordinators, have to their disposal annotation150

data from previous surveys and “as built” information to corroborate the new survey. This eliminates151

any missed events, especially the Anode and Field Joint events. Finally, when the frames extracted152

from the survey data for training and testing dataset, we have performed further manual inspection to153

ensure any inconsistencies of the labels are corrected..154
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Figure 2. Label distribution of a total 23,570 frames of the complete dataset

2.1. Model Architecture155

A Convolutional Neural Network (CNN) consists of three main types of layers: convolutional,156

pooling and fully connected. The convolutional layer consists of a set of independent filters which are157

individually convolved with the input image to generate a series of feature maps as an output [20].158

These filters can be adjusted to capture different features of interest within the image. The CNN159

utilised in the study is based on the ResNet architecture [21], the winner of the ImageNet Large Scale160

Visual Recognition Challenge 2015 [22]. ResNet is a state-of-the-art architecture that provides enhanced161

feature extraction capabilities for a wide range of applications, including being a backbone network162

for implementation of U-Net [23], RetinaNet [24], Faster R-CNN [25] and Mask R-CNN [26]. In this
R3.3 & R3.5

163

work, the ResNet-50 architecture is used that contains 25.6 M parameters. Other ResNet depths were164

examined to investigate the trade-off between performance and inference time (Section 6). Typically, a165

network with high number of parameters and network depth demands a large training data set to yield166

acceptable generalisation and performance. Creating a training data set of that size is expensive and167

laborious. An alternative approach is to adopt a transfer learning methodology, where a pre-trained168

network from a different domain is re-trained on data from the domain of interest (sub-sea pipeline169

inspection imagery in the present application). The pre-trained ResNet-50 network used is provided170

by PyTorch [27] trained on the ImageNet data set [22] comprising 1,000 image classes.171

The ResNet-50 architecture, shown in Figure 3, consists of 5 stages; each stage comprising multiple172

layers of convolutions, Batch Normalisation [28] and Rectified Linear Unit (ReLU) activations [29]173

that do not affect the receptive fields of the convolutional layers [29]. More importantly, the ResNet174

architecture utilises the concept of skip (or identity) connections between stacked convolutional175

layers. These shortcut connections mitigate against the vanishing gradient problem on training deep176

architectures by allowing the gradients to propagate through identity connections. Maintaining
R1.2

177

the Feature Extraction layers is a standard methodology for application of transfer learning. In this178

case all the layers in the feature extractor are kept identical with the exception of the final pooling179

layer. After the fifth stage, the final layer consists of average and max pooling and then features are180

flattened and concatenated before being fed to two fully connected (linear) layers, with the purpose to181

reduce the dimensionality of the features and make the dimensions equal to the number of output182

labels. Furthermore, Batch Normalisation and Dropout layers are introduced between the linear183

layers to regularise the Head/Classifier. Note that the last linear layer for the pre-trained network184

consists of 1,000 output neurons to match the number of classes in the ImageNet data set; however185

in this application the output labels are 5 (Burial, Exposure, Free Span, Field Joint, Anode) and186

consequently the last layer is replaced by a linear layer containing 5 output neurons. The final layer187

is a Sigmoid activation function to squash network outputs between 0 and 1 independently for each188

neuron/label [30] using the equation:189
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Figure 3. ResNet-50 Architecture with modified head.

ŷ = σ(z) =
1

1 + e−z (1)

where z is the outputs of the last linear layer. The outputs of the network ŷ for an image would190

therefore be a vector of 5 real-valued numbers in the range 0 to 1 (one for each label) which can then191

be used to compute the sum of Binary Cross Entropy Loss for all labels:192

L(ŷ, y) = −
C

∑
i=1

[yi · log(ŷi) + (1− yi) · log(1− ŷi)] (2)

where C is number of labels, y is the one-hot encoded target (1 when the label is present in the ground193

truth data and 0 otherwise) and yi is the element of that vector at location i. Similarly, ŷ is the predicted194

vector output of the network and ŷi is the element of the vector at location i which indicates the195

confidence level for the corresponding label.196

2.2. Performance Evaluation Methodology197

The Training, Validation and Testing methodology for the evaluation of the performance of the198

proposed network is shown in Figure 4. The full data set contains 23,570 frames with annotation199

according to the label distribution shown in Figure 2. Initially, 20% of the frames in the data set, are200

selected in a stratified fashion and set aside to be used as a test (keep-out) set and in the evaluation of201

the performance of the model after training/validation and hyper-parameter tuning. The methodology202

yields a test set of 4,714 frames with label distribution approximately equal to that shown in Figure 2.203

The remaining 80% (18,856 frames) of the data set is used to perform Monte Carlo Cross-validation [31]204

with stratified splits of 80/20% i.e. 80% of the data (15,085 frames) is used to train the model and its205

performance is validated on the remainder 20%; validation set (3,771 frames). The process is repeated206

multiple times (5 in this study) to evaluate the variability of the trained models and their performance207

on the validation sets. After hyper-parameter selection and tuning, the performance of the model is208

obtained on the test set to ensure representative performance on unseen data.209

3. Model Training210

In practice, training a deep CNN with random initialization for all its weights and biases is211

challenging, requiring a large data set given the large number of parameters that need to be adjusted.212

Consequently a common approach has been adopted, utilising Transfer Learning [32]. A neural213

network pre-trained on a large data set of images is used as a starting point. The rationale is that the214

initial layers of the pre-trained CNN are able to extract features that are generic for image classification215

tasks; e.g. edge detectors or color blob detectors. In the subsequent layers, network weights need to be216

fine-tuned to adapt to the specific features of the data set under consideration. In the present study, a217

deep CNN ResNet-50 [21] pre-trained on the ImageNet data set [33] is implemented (see Figure 3).218
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Figure 4. Model training and evaluation process.

The network can be logically divided in two sections; the feature extraction layers (enclosed in219

purple dashed lines in Figure 3) and the head or classification layers (enclosed in green dashed line220

in Figure 3). The weights of the feature extraction layers are initialised with the weights obtained221

from the pre-trained ResNet-50 network distributed with PyTorch 1.2.0 [34], while the head layers222

are randomly initialised. The Adam optimiser [35,36] is used for training with a mini batch size of 8223

and exponential decay parameters β1 and β2 equal to 0.9 and 0.99, respectively. Initially, when the224

head layers contain random weights, the loss function will yield high errors and thus there is a risk of225

disturbing the weights of the feature extraction layers when back-propagation is performed. For that226

reason, a multi-stage training approach is adopted.227

In the first stage, training is performed for 4 epochs for only the weights of the last two fully228

connected layers of the network (shaded in Black in Figure 3), while the weights for all the other layers229

are frozen; i.e. weights are not updated. Furthermore, cyclic learning rate training [37] is utilised230

with maximum learning rate of 10−3. The cyclic learning rate permits fast convergence and avoids231

local minima [38] during training. Subsequently, all the layers in the neural network are unfrozen232

and the network is trained for an additional 2 epochs. For these later epochs, cyclic learning rate is233

also adopted, however, different maximum learning rates for the Feature Extraction layers and the234

head are used; the maximum learning rates are set to 10−6 and 10−4, respectively. A lower maximum235

learning rate is used for the feature extraction layers as their parameters are already well adjusted to236

extract generic image features. In contrast, the parameters of the head layers need more aggressive237

adjustment to fit the data set-specific features. Training is performed on a server equipped with two238

Nvidia GeForce RTX 2080 Ti, twelve Intel(R) Core(TM) i9-7960X CPU @ 2.80GHz and 128GB RAM.239

Given the high capacity of the network, the risk of over-fitting of the training set needs to be240

evaluated. Two measures are taken to prevent over-fitting: regularisation through weight decay241

and online data augmentation. For weight decay, the regularisation parameter λ is set to 0.01 for all242

layers. Online data augmentation is used to increase the variability of the data set and enhance the243

generalisation of the model by limiting over-fitting [39]. A series of transformations are randomly244

applied to the training data, on every epoch, with probability of 75%, including horizontal flipping,245

rotation (with maximum angle of 10 degrees), scaling (with maximum variation of 1.05) and lighting246

alteration (with maximum variation change of 0.1). Data augmentation renders the model more robust247

and adaptable to the artifacts created, for example, by the motion of the ROV during the survey.248

After training, the neural network outputs provide the confidence score for each label. Figure 5249

illustrates the confidence scores for each label, for the five selected events; the ground truth labels250
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Figure 5. Ground Truth Label, Image, Heatmap and Predicted Confidence Scores for the five different
event types

are shown at the top of each image. In all cases, the trained classifier yields high confidence scores251

(bottom bar chart) for these classes. The straight laser line observed when the pipeline is buried is252

the most relevant feature of the burial class, judging by the corresponding heat map (image on the253

middle row). When the pipeline is exposed, the model tends to focus on both its cylindrical shape254

and the curved nature of the laser line. In cases where other pipeline elements are visible, the model255

uses additional features to correctly classify the image. For example, for field joints, the unstructured256

depression/hole in the middle of the pipeline becomes a relevant feature; for anodes, the dominant257

feature is the characteristic white bracelet; for free spans, the most important feature is the well-defined258

edges of the pipeline resulting from its elevation with respect to the seabed.259

The examples presented in Figure 5 have been intentionally extracted from the two different260

surveys and at different positions within each survey to highlight the large variation of image scenes.261

On consideration of the entire data set, these variations include differences in color (green, brown,262

grey), type of seabed (sand or gravels), vegetation (low or high) and distance and orientation of the263

ROV with respect to the seabed. The more variety the training set contains, the better the generalisation264

of the trained classifier will be.265

4. Hyperparameter Tuning and Model Validation266

After training, when an image is presented to the network input, the network output, after the267

final Sigmoid activation layer, is a vector with the degrees of confidence on whether or not each label268

is associated with the input image. In order to perform the final prediction and decide whether or not269

each label is associated with the input image, a threshold must be defined to make the output discrete; 1270

if confidence score exceeds threshold, 0 otherwise. The threshold can be either defined using a common271

value for all labels or defining five thresholds, one for each class/label [40,41]. Here, five separate272

thresholds are defined, one for each label to permit optimal performance per class. The selection of273

the thresholds is a means to adjust the sensitivity of the model for each label. Low thresholds will274

lead to high detection sensitivity at the expense of False Positives (FP), while high thresholds will275

reduce FPs at the expense of missed Positives [42]. The five threshold values constitute the model276

hyper-parameters and Precision/Recall Curves are used to determine optimal values, as illustrated277

in Figure 4. Precision-Recall curves are used in binary, and thus multi-label, classification to define278

a cut-off point (threshold) on the output confidence that the classifier assigns to each label and is279

commonly used in unbalanced data sets [43]. Note, that, the definition of the optimal thresholds is280

executed using solely the validation set, only containing images unseen during the training phase.281
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Exposure,
Field Joint

Accuracy,
Recall,

Precision,
F1-Score

Input (Validation Set)

1 2 3 4 5 6

Features Ouput Confidence Scores Precision-Recall Curves Final Predictions Final Metrics

Figure 6. Steps for evaluating model’s performance: (1) Validation Set (2) Feature Extraction (3)
Classifier (4) Precision-Recall Curves for optimal thresholds selection (5) Applying optimal thresholds
(6) Comparison with Ground Truth.

The evaluation of performance in multi-label learning is more challenging than in traditional282

single class settings, because each event can be associated with multiple labels simultaneously. In283

particular the following metrics are of interest:284

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1-Score =
2 · Precision · Recall
Precision + Recall

(6)

In this application, when metrics for a specific label are reported, the problem is reduced to a285

binary classification One-vs-Rest [44]. For instances where aggregate performance is reported, then the286

“micro” average [45] is computed. The exception is for aggregate accuracy, in which case, successful287

classifications counts are used only after all the labels have been identified correctly, commonly also288

known as “Exact Match Ratio (EMR)”, a stricter metric, compared to average accuracy. Formally, the289

EMR is defined as:290

ExactMatchRatio =
1
n

n

∑
i=1

1(yi = ŷi) (7)

where 1(yi = ŷi) is the indicator function equal to 1 only when every element in the vector yi is equal291

to every element in ŷi and n is the number of input samples. Note that for a binary classification (i.e.292

individual labels), this reduces to Accuracy.293

Steps 1-4 in Figure 6 illustrate the process followed to obtain optimal threshold selection on294

the validation set. Note that due to 5-fold Monte Carlo cross-validation, five different models are295

trained, one for each validation fold. The predictions obtained from the five independent models296

on the five different validation folds are concatenated and used to determine the optimum set297

of thresholds/hyper-parameters. Precision-Recall curves can then be generated to evaluate the298

performance of the classifier at increasing values of confidence score thresholds. For each threshold299

value, the final set of predictions is evaluated against the corresponding ground truths at the individual300

label basis to identify each prediction as True Positive (TP), False Positive (FP), True Negative (TN) or301

False Negative (FN). The precision and recall of the classifier are then calculated using Equations 4302

and 5 (Step 4 in Figure 6). The optimum threshold is defined as the point that achieves the best balance303

between precision and recall, and therefore corresponds to the closest point to the top right corner on304

the graph (coordinate (1,1)). The strategy to define the optimal threshold was selected because in this305

application, it is equally important to maximise precision and recall to provide the maximum F1-score.306

Applying the methodology for the five event types (Anode, Burial, Exposure, Field Joint and307

Free Span), results in the Precision-Recall curves shown in Figure 7. The optimal thresholds are at308
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Figure 7. Precision-Recall curves for all labels. The inset shows a zoomed version of the top right
corner.

Event Anode Burial Exposure Field Joint Free Span

Threshold 0.357 0.367 0.632 0.542 0.430

Table 1. Optimum label-based thresholds for the validation set.

Fold # Exact Match Ratio Precision Recall F1-Score

1 0.907 0.958 0.961 0.960
2 0.890 0.949 0.956 0.953
3 0.920 0.972 0.961 0.967
4 0.914 0.962 0.967 0.964
5 0.899 0.954 0.958 0.956

Table 2. Aggregate performance of the five models, one for each fold.

the locations depicted by the star (“*”) carets in the graph and yield thresholds for each event type,309

summarised in Table 1.310

Using the optimal thresholds identified from hyper-parameter tuning, the performance metrics311

(Equations 3-7) for each model in their corresponding validation fold is shown in Table 2.312

Similarly, the average performance of the five models for each event type is shown in Table 3313

along with the standard deviation for each metric. Field Joints are the most challenging class with the314

lowest F1-score of 88.9%, expected given that such events are often difficult to distinguish due to the315

subtle features. On the other extreme, free spans and exposures show high performance, with F1-score316

of 98.8% and 98.5%, respectively. The aggregate F1-score (micro-average) is 96%.317

Threshold Accuracy Recall Precision F1-Score
Event Average Std Average Std Average Std Average Std
Anode 0.357 0.981 0.006 0.910 0.028 0.912 0.046 0.911 0.028
Burial 0.367 0.978 0.001 0.959 0.011 0.953 0.013 0.956 0.004
Exposure 0.632 0.978 0.001 0.984 0.004 0.986 0.003 0.985 0.001
Field Joint 0.542 0.942 0.008 0.893 0.020 0.885 0.024 0.889 0.015
Free Span 0.430 0.995 0.002 0.988 0.002 0.988 0.013 0.988 0.007

Aggregate 0.906 0.011 0.961 0.004 0.959 0.008 0.960 0.005

Table 3. Metrics with optimal thresholds on the validation set.
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Figure 8. Confusion matrices on the test set for each class; Anode, Burial, Exposure, Field Joint and
Free Span.

5. Model Performance on Test Set318

In order to ensure that thresholds are not biased to the validation set, the final model performance319

evaluation is carried out on a previously unseen (keep-out) test set (Figure 4); i.e. the images that have320

not been used for either training nor validation or hyper-parameter tuning. The cross-validation has321

yielded five different models and the model selected for final testing is the one that provides the highest322

F1-Score viz. the model of the third fold, shown in bold in Table 2. Figure 8 shows the confusion323

matrices for each label, obtained using the final model on the test set. Each label is considered positive324

if it is present in the image frame and negative otherwise. The confusion matrices show the absolute325

number of frames and the percentage of TN, FP, FN, TP. For instance, the total number of frames326

in the test set is 4,712 frames with 480 frames associated with the label “Anode” and 4,232 are not.327

From the 480 frames that are labelled as “Anode” (positive frames), 438 (91.25%) have been correctly328

identified by the model (TP) and 42 (8.75%) have been missed (FN). In terms of FP, 22 frames have329

been incorrectly identified as anodes out of 4,232 i.e. a False Positive Rate of 0.52%.330

From the confusion matrices, the Field Joints are the most challenging label with miss rate of331

11.79% and false positive rate of 2.38%. FJ mis-classifications can be attributed to visual artefacts in the332

imagery, for example small rocks or vegetation. It is worth noting that this is the classifier performance333

on a single frame basis; when the classifier is applied on a video stream with 25 fps, the probability that334

these artefacts appearing in all frames is reduced and as a consequence the probabilities of a missing335

event or incorrect identification reduces, respectively. The performance of the network on per label336

basis is summarised in Table 4. Overall, the Accuracy (Exact Match Ratio) of the network is 91.9% with337

F1-Score of 96.6%.338

6. Effect of Model Size339

R3.3 & R3.5Identical evaluation performance was carried out for ResNet models with 18, 34, 101 and 152340

layers (in addition to 50). The resultant performance metrics, on the test set, for each model size are341

summarised in Table 5. As the model complexity and capacity increase, the F1-Scores initially improves342

until the ResNet-50 architecture. Further increases in the number of layers (i.e. 101 and 152), result in343
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Event Threshold Accuracy Precision Recall F1-Score

Anode 0.357 0.986 0.952 0.912 0.931
Burial 0.367 0.980 0.955 0.966 0.961
Exposure 0.632 0.980 0.988 0.984 0.986
Field Joint 0.542 0.951 0.928 0.882 0.904
Free Span 0.430 0.997 0.997 0.990 0.994

Aggregate 0.919 0.972 0.960 0.966

Table 4. Test set performance of individual labels and aggregate.

Network # Parameters Inference
Time (ms)

Exact Match
Ratio

Precision Recall F1-Score

ResNet-18 11,706,949 17.7 0.872 0.945 0.947 0.946
ResNet-34 21,815,109 20.8 0.903 0.953 0.966 0.960
ResNet-50 25,617,477 23.6 0.919 0.972 0.960 0.966
ResNet-101 44,609,605 31.2 0.916 0.956 0.973 0.965
ResNet-152 60,253,253 39.1 0.833 0.931 0.927 0.929

Table 5. Test set performance of different ResNet model sizes.

performance degradation. Larger models have the tendency to overfit faster. This is likely to occur344

given the training parameters are kept identical; i.e. number of epochs, regularisation coefficients,345

learning rates and etc. and altering these parameters may be necessary to achieve optimal prediction346

accuracy. Even though larger networks have the potential to achieve better F1-Score, as the number347

of layers increase, the number of parameters increase significantly along with the inference times.348

Note that inference time reports in Table 5 is average computation time over 100 frame predictions;349

i.e. 100 forward passes. For the deeper networks the inference time are marginally within the bounds350

of real-time operation. From these results, the ResNet-50 model is selected as it provides the best351

performance with inference time within the bounds of real-time operation.352

7. Conclusions353

A ResNet-50 deep convolutional neural network is employed to automatically detect and annotate354

five sub-sea survey events; Anode, Exposure, Burial, Field Joint and Free Span relying exclusively355

on the centre video feed of an ROV. To minimise the challenging demands on the scope of the356

training data, a transfer learning approach is adopted where the feature extraction layers of the357

network are initialised using the weights of a network pre-trained on ImageNet. The head of the358

network is adjusted to permit multi-label classification yielding the identification of events appearing359

concurrently in the video frames. Subsequently, the developed network is re-trained on 23,570 images360

extracted from real survey data. Several network depths were tested and the ResNet-50 network
R3.3 & R3.5

361

was selected to balance the trade-off between performance and inference time. The network has362

been evaluated on a test keep-out set to measure its ability to generalise. The framework achieves363

an Exact Match Ratio (i.e. all labels identified correctly) of 91.9% and a F1-Score ‘micro’-average of364

96.6%. The most challenging class to detect are Field Joints which have been detected with accuracy of365

95.1% and F1-Score of 90.4%, respectively. The metrics are obtained on a single-frame basis and the366

proposed network is able to classify frames within 23.6 ms on an NVIDIA GeForce RTX 2080 Ti GPU,367

effectively executing real-time classification of video streams at 25 fps. Results along with the real-time368

operation of the network demonstrate that automatic video annotation has the potential to increase369

the speed of survey execution, increase the consistency of annotation and reduce the demand on370

off-shore personnel, benefiting health and increasing safety. Future work will investigate the benefits371

in combining predictions from consecutive frames and the fusion of the video data with multi-beam372

echo, pipe-tracker instrumentation to improve annotation performance.373
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