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 

Abstract—A potential threat to embedded systems is the 

execution of unknown or malicious software capable of triggering 

harmful system behaviour, aimed at theft of sensitive data or 

causing damage to the system. Commercial off-the-shelf 

embedded devices, such as embedded medical equipment, are 

more vulnerable as these type of products cannot be amended 

conventionally or have limited resources to implement protection 

mechanisms. In this paper, we present a Self-Organising Map 

based approach to enhance embedded system security by 

detecting abnormal program behaviour. The proposed method 

extracts features derived from processor’s Program Counter and 

Cycles per Instruction, and then utilises the features to identify 

abnormal behaviour using the SOM. Results achieved in our 

experiment show that the proposed method can identify 

unknown program behaviours not included in the training set 

with over 98.4% accuracy. 

 
Index Terms—Embedded system security, abnormal 

behaviour detection, intrusion detection, Self-Organising Map. 

I. INTRODUCTION 

he widespread use of embedded systems today has 

significantly changed the way we create, destroy, share, 

process and manage information. For instance, an embedded 

medical device often processes sensitive information or 

performs critical functions for multiple patients. 

Consequently, security of embedded systems is emerging as 

an important concern in embedded system design [1, 2]. 

Although security has been extensively explored in the context 

of general purpose computing and communications systems, 

for example via cryptographic algorithms and security 

protocols [3], such security solutions usually are often 

incompatible with particular embedded architectures. The 
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reason for this is, that embedded architectures use custom 

firmware or operating systems, and are normally specific to a 

certain function with limited cost and resource, which makes 

e.g. conventional antivirus (AV) programs difficult to 

implement. Generally, the protection of embedded systems 

can be developed either at hardware or/and at software level. 

From hardware perspective, Physical Unclonable Function 

(PUF) [4] or hardware intrinsic security [5], has been 

proposed to secure embedded devices physically. The 

manufacturing process variation is first used to identify the 

integrated circuits, and then the identifications are 

subsequently used for cryptography. There are also works 

focusing on detecting software failure, tampering and 

malicious codes in embedded architectures [1, 6]. The main 

disadvantage of these approaches is that they require storing 

sensitive data in the system as “valid” samples or templates. 

For example, a basic-block control-flow graph (CFG) is 

usually stored and used to exam the running program. 

Embedded devices that are used in the medical and 

industrial domains usually perform a small number of 

repetitive functions or operate in a simplified state space. The 

execution space may include activities such as actuating an 

electrical relay, controlling a pump, or collecting sensor 

readings [7]. This intrinsic behaviour makes them unsuitable 

for conventional AV and exposes deviation in normal program 

execution as a means of detecting compromised activities. 

There are currently alternative solutions that may secure 

vulnerable embedded architectures [8], [9], where machine 

learning and pattern recognition algorithms are employed on 

human-machine interaction. ICMetrics (Integrated Circuit 

metrics) [10], is one of the on-going research areas  into  

embedded    security,   which    relies    on   the   unique   trace 
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Fig. 1. A typical embedded system and ICMetrics system.  

A Method for Detecting Abnormal Program 

Behaviour on Embedded Devices 

Xiaojun Zhai, Kofi Appiah, Shoaib Ehsan, Gareth Howells, Huosheng Hu, Dongbing Gu and Klaus 

McDonald-Maier 

T 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

2 

generated on the embedded architecture by its regular user or 

environment. The concept of ICMetrics is akin to biometrics 

in humans.  Fig. 1 exhibits a typical embedded system and 

ICMetrics system. 

The ICMetrics based system can offer multiple advantages 

over traditional static AV approach like scanning executable, 

instruction sequences and CFG of an application, which does 

not need to store user data or template and supports from 

operating systems. Our approach is suitable for embedded 

devices predominantly used in the medical and automation 

industry, which have limited cost and resource in the systems. 

In this paper, we use Cycle per Instruction (CPI) to extract 

corresponding Program Counter (PC) values, and use it as 

ICMetrics features for correct program identification 

allowable to execute on the embedded architecture, and an 

unsupervised Self-Organising Map (SOM) is used to classify 

the behaviour of the embedded system. Results achieved in 

our experiment show that the proposed method can identify 

unknown program behaviours not included in the training set 

with great accuracy. 

The remainder of the paper is structured as follows: Section 

II discusses the related work in this domain. The threat model 

utilized for this work is introduced in Section III. A SOM-

based abnormal behaviour detection algorithm is presented in 

Section IV. To demonstrate the usefulness of the presented 

technique, Section V details the experimental design and 

results performed on an ARM Cortex-M3 embedded 

processor. Finally, the conclusions are presented in Section 

VI. 

II. RELATED WORK 

This section provides a brief overview of the previous work 

related to embedded systems security. As mentioned in 

Section I, information digitization to facilitate quick access 

has rendered digital privacy an important issue in protecting 

personal data [11]. While we believe our work to be the first 

demonstration of how on-chip debug information [12] can be 

used to identify anomalies in embedded system program 

execution, previous research has investigated the behaviour 

and prevalence of code modified with the intent of harming a 

system or its user. Arora et al [1] addressed secure program 

execution by focusing on the specific problem of ensuring that 

the program does not deviate from its intended behaviour. In 

their work, properties of an embedded program is extracted 

and used as the basis for enforcing permissible program 

behaviour.  

Software piracy has enormous economic impact [13], 

making it important to protect software intellectual property 

rights. Software watermarks, a unique identifier embedded in 

a protected software to discourage intellectual property theft is 

presented by Collberg and Thomborson [14]. In [15], 

Kolbitsch et al proposed a malware detection system to 

complement conventional AV software by matching 

automatically generated behaviour models against the runtime 

behaviour of unknown programs. Similar to [1], Rahmatian et 

al [5] used a CFG to detect intrusion for secured embedded 

systems by detecting behavioural differences between the 

correct system and malware. In their system, each executing 

process is associated with a finite state machine (FSM) that 

recognizes the sequences of system calls generated by the 

correct program. Attacks are detected if the system call 

sequence deviates from the known sequence. The system 

promises the ability to detect attacks in most application-

specific embedded processors. Wang et al [12] proposed a 

system call dependence graph (SCDG) birthmark software 

theft detection system. Software birthmarks have been defined 

as unique characteristics that a program possesses and can be 

used to identify the program. Without the need for source 

code, a dynamic analysis tool is used in [16] to generate 

system call trace and SCDGs to detect software component 

theft.  

Yang et al [17] presented an interesting approach for 

detecting digital audio forgeries mainly in MP3. Using a 

passive approach, they are able to detect doctored MP3 audio 

by checking frame offsets. Their work proves that frame 

offsets detected by the identification of quantization 

characteristics are good indication for locating forgeries. 

Experiment conducted on 128 MP3 speech and music clips 

shows 94% rate of correctly detecting deletion and insertion 

using frame offset. Panagakis and Kotropoulos [18] proposed 

the random spectral features (RSFs) and the labelled spectral 

features (LSFs) as intrinsic fingerprints suitable for device 

identification. The unsupervised RSFs reduce the 

dimensionality of the mean spectrogram of recorded speech, 

whiles the supervised LSFs derives a mapping between the 

feature space where the mean spectrograms lie onto the label 

space. Experimental result shows that RSFs and LSFs are able 

to identify a telephone handset with up to 97.58% accuracy.  

Information hiding can be used in authentication, copyright 

management as well as digital forensics [19]. Swaminathan et 

al [19] proposed an enhanced computer system performance 

with information hiding in the compiled program binaries. The 

system-wide performance is improved by providing additional 

information to the processor without changing the instruction 

set architecture. The proposed system employs look-up-tables 

for data embedding and extraction, which is subsequently 

stored in the program header and loaded into run-time memory 

at the beginning of program execution. In [20], Boufounos and 

Rana demonstrate with the use of signal processing and 

machine learning techniques, how to securely determine 

whether two signals are similar to each other. They also show 

how to utilize an embedding scheme for privacy-preserving 

nearest neighbour search by presenting protocols for clustering 

and authenticating applications. 

As indicated above, software birthmarks are unique 

characteristic that a program possesses and can be used to 

identify the program [12]. Similarly, ICMetrics can be defined 

as a unique characteristic that a program possesses when 

running on a particular embedded device and can be used to 

identify the program and hardware. Let p, q be programs. Let     

f (p) be a set of characteristics extracted from p when running 

on hardware f. We say f (p) is the ICMetrics of p, only if the 

following two conditions are satisfied: 

1) f (p)is obtained from p running on f. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

3 

2) Program q is a copy of p => f (p) = f (q). 

The limitations with the use of system calls for program 

identification [1], 5] have been pointed out in [12] and are 

more prevalent in embedded systems settings, which typically 

have no operating system. The mentioned limitations are: 

1) Programs with little or no system calls such as programs 

solely based on arithmetic operation and 

2) Programs which do not have unique system call behaviours 

may fail to exhibit a birthmark. 

Using an unsupervised SOM to reduce the dimensionality 

of PC values, we introduce an offset rule similar to that 

presented in [17] to detect compromised programs. Thus using 

machine learning techniques [20] we are able to determine 

whether two PC values are similar to each other, with the use 

of the program binaries [19] and no prior knowledge of the 

source code. Our main contributions of this paper can be 

summarised as follows: 

1) We introduce a novel SOM based anomaly detection 

system, which can be used to combine with an ICMetrics 

system in the embedded devices predominantly adopted in 

the medical and automation industry. 

2) Our approach introduces a way to extract and analyse the 

useful low level hardware information, and used them as a 

feature to identify an embedded system’s abnormal 

behaviour, which allows our system to be used in a wider 

range of embedded systems, as it is independent to the 

high level software environments (e.g. Operating system, 

source programs). 

3) In terms of performance, the results achieved in our 

experiment show that our approach also outperforms other 

existing SOM based anomaly detection systems that utilise 

the high level software information. 

III. THREAT MODEL 

Embedded systems are used in a variety of applications in our 

daily life and enable sophisticated features for their users. 

However, these sophisticated features increase system 

complexity, which in turn results in a higher occurrence of 

bugs that require software updates to fix. Embedded systems 

with network access and code update support are therefore 

becoming increasingly mainstream. Unfortunately, this 

flexibility substantially increases the risk of malicious code 

injection in embedded systems. For example, there is a steady 

increase in the number and complexity of embedded 

processors in vehicular embedded networks (GPS, in-car 

entertainment, safety systems, car communication systems). 

This in turn has raised major software integrity issues, and it is 

critical to ensure that the executing instructions have not been 

changed by an attack.  

Attacks that are harming software integrity are generally 

known as code injection attacks, since they inject and execute 

malicious code instead of correct programs. A well-known 

code injection attack is stack smashing. If a function does not 

validate whether the length of the input exceeds the buffer 

size, an attacker can easily overflow the buffer. By 

overflowing the buffer, any location on the stack in the 

address space after the start of the buffer can be overwritten, 

including the return address of the susceptible function. Using 

this technique, an attacker can insert malicious code sequence, 

and overwrite the return address to point to the malicious 

code. Other attacks may overflow buffers stored on the heap, 

or exploit integer errors, dangling pointers, or format string 

vulnerabilities. Most programs with these vulnerabilities are 

also susceptible to so-called return-into-libc attacks, where an 

attacker modifies a code pointer to point to the existing code, 

usually the library code. Return-into-libc attacks are also 

called arc injection, since they inject an arc in a control flow 

graph of a program. 

The proposed system is designed to protect against the 

execution of malicious code that the system designer does not 

intend to execute. Our interest is to ensure that the software 

running continuously on an embedded device has essentially 

the same behaviour as the original program for the purposes of 

security and detect any possible changes on the trusted 

software. The basis of our proposed system of ICMetrics is 

akin to dynamic systems analysis, which analyse the execution 

of a program on an embedded architecture. Thus the system 

presented is mainly for flagging rather than directly stopping 

execution of untrusted code.  

A common theme among many security attacks is hijacking 

the trusted code at run-time, so even if the original code is not 

malicious by intent, it can be manipulated by the attacker [6]. 

As mentioned above, a very common method is the 

exploitation of a buffer overflow to overwrite a return address, 

altering program control flow to a malicious code. We assume 

that the unexpected software running on the embedded device 

will result in a significant behavioural difference compared to 

the original program. The proposed system monitors the 

executing program continuously, while constructing its 

behaviour to detect any changes. It is observed that any 

behavioural difference in the program execution trace, for 

example in medical devices can be detrimental and must be 

flagged in real-time by monitoring the system behaviour. The 

proposed intrusion detection method will not prevent buffer 

overflow, but it could detect the abnormal behaviour caused 

by buffer overflow by monitoring system behaviour. 

IV. ALGORITHM FOR ABNORMAL PROGRAM BEHAVIOUR 

DETECTION 

Generally, from a software architecture point of view, there 

are three structural levels in a program: (a) function call level, 

as represented by function call relationship; (b) internal 

control flow for each function, represented by a basic-block 

CFG; and (c) instruction stream within each CFG [1]. From a 

hardware point of view, the processor’s architecture and 

performance can affect the execution of instructions. For 

instance, multi-cycle function calls or condition branches 

could decrease the performance of a processor. On the other 

hand, as the PC register indicates where a program is in its 

code sequence, it can be used to represent the instruction 

sequence within the CFG. Consequently, we could first detect 

the function call and CFG based on the variance of the 

processor’s performance, then analyse the PC values within 

each CFG. Finally, an overall evaluation could indicate 
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whether the system is compromised or not. In the proposed 

work, we measure the average CPI as a parameter of the 

processor’s performance. A block diagram of the architecture 

of the proposed abnormal program behaviour detection system 

is shown in Fig. 2. 
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Fig. 2. Overall block diagram of the proposed abnormal program behaviour 

detection algorithm. 

 

The average CPI calculator in Fig. 2 is first used to 

calculate average CPI value, and it continually reads clock 

cycle and PC data from the time counter and PC register. 

Sequentially, the average CPI values are used to obtain phase 

and peak information in the Phase and Peak Point Detector 

module respectively, and the information indicates where 

function calls or the conditional branch occur in the executing 

program. Afterwards, the obtained locations and their 

corresponding PC sequence are used in a SOM based 

similarity analyser for abnormal program behaviour detection. 

If the phase’s information and the PC sequences deviate from 

a known program, the SOM based classifier asserts the 

intrusion detected output. In the last stage, the results of SOM 

are validated by comparing with their expected property table 

(i.e. number of peak within each phase and associated network 

node).  

A. Average CPI Calculator Module 

CPI is one of the most commonly used parameter for 

measuring processor’s performance, which indicates the 

complexity of instructions executed within a particular period 

of time. Average CPI of a processor can be calculated based 

on (1): 

 
C

CPI
I

  (1) 

where I is the total number of executed instructions, C is the 

number of cycles for executing I instructions. As number of 

cycles can be calculated by time elapsed and maximum clock 

frequency of a processor, the CPI can easily be accessed by 

modern debug facilities. In Fig. 3, an average CPI profile is 

generated while a program is running in an ARM cortex-M3 

processor, where I and the maximum frequency are set to 211 

and 120 MHz respectively. 

In Fig. 3, the program consists of five different functions, 

and each function is called in a sequence. While a new 

function is called, the CPI value is significantly increased, 

which means the performance of the processor is decreased 

accordingly. The main reason for that is that the PC jumps to 

other memory location in order to execute the newly called 

function (as illustrated in Fig. 7 (a)), where it usually involves 

many multi-clock cycles instructions. As a result, the average 

CPI value is significantly changed. Similarly, the CPI values 

vary within each function, and the number of executed 

instructions I decides the resolution of the average CPI profile, 

the value of I varies from [1 n], where n is the total length of 

programme. The larger number of I used in the CPI profile, 

the less details of the CPI profile, which means some of 

potential abnormal behaviour of the monitored programme 

may not be detected. However, although with smaller number 

of I, we could have more sensitive of the detection 

mechanism, it would significantly increase the computational 

cost of the detection system. For instance, if I uses ‘1’, which 

means that every single instruction in the programme will be 

examined and it does not contain any continuous pattern that 

can be used to identify the characteristics of the monitored 

programme Therefore, in this paper, the value of I is set to 211, 

which gives a gives the best balance of the accuracy and 

computational complexity of the proposed system. In the 

following sub-sections, we introduce a method to 

automatically obtain the position information of the phases 

(i.e. function calls) and peaks (i.e. branch conditions). 

 

 
Fig. 3. Example of average CPI profile. 

 

B. Phase and Peak Point Detector Module 

The main task of this module is to obtain the locations of 

the phase and peak within the average CPI profile. There are 

two sub-blocks: local and global critical point localisers are 

used to localise the peak and phase positions.  

1) Local Critical Point Localiser  

The local critical point localiser is used to localise the local 

significant variance points from the average CPI profile. The 

proposed method first calculates absolute differences between 

adjacent elements in the average CPI profile, and then 

localises the peak value within a 1×3 rectangular range. 

Let fmean denotes averaged CPI, absolute differences between 

adjacent elements of  fmean can then be calculated by: 

 ( ) ( 1) ( )mean meand n f n f n     (2) 

where 1 ,n N   N is the total numbers of elements in array 

fmean, d(n) is nth element in an array of absolute differences 

between adjacent elements of fmean(n). 

After obtained d(n), a 1×3 rectangular window is used as a 

mask to scan all the elements in d(n). Let d(n-1), d(n) and 

d(n+1) denote the three elements within the 1×3 rectangular 

window respectively, and the locations of the detected peaks 

can be calculated by:  
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 ( ')    for ( ) ( 1)  ( ) ( 1)p n n d n d n and d n d n      (3)  

where p(n’) is nth element in an array of detected peak 

locations. 

The main advantage of the proposed local critical point 

localiser is adaptively detecting the peaks without the need of 

setting any fixed threshold, hence the proposed local critical 

point localiser would not be limited on any particular scenario, 

and it can also detect the peaks that have minor variance. Fig. 

4 shows resulting diagram after applying the local critical 

point localiser on the points in Fig.3. 

 
Fig. 4 Resulting diagram after applying the local critical point localiser. 

 

2) Global Critical Point Localiser  

The global critical point localiser is used to localise the 

global significant variance points from the average CPI 

profile, which indicate the locations of each phase.  

Step 1: Localising the elements in d(n) that are greater than 

(max(d) + min(d)) / 2. These elements represent the boundary 

points at each adjacent phase. The selected elements are stored 

in array p’. 

Step 2: Calculating absolute differences between adjacent 

elements of array 'p , if the absolute differences between kth 

and (k+1)th elements are greater than t, then store p’(k) and 

p’(k+1) into array 
hp , where t is the number of CPI samples 

in a phase. The value of t depends on the minimum accepted 

phase length of the training programme. The smaller the value 

of t is, the more details of the average CPI profile can be 

obtained. On the other hand, in consequence the complexity of 

the proposed algorithm would be increased. In this paper, t is 

set to 50 in order to balance the complexity and performance 

of the proposed algorithm. 

 Step 3: Checking absolute difference between every 

adjacent phase (2 ')hp k and (2 ' 1)hp k  , if the difference is 

greater than ‘2’ or equal to ‘0’, then (2 ' 1)hp k  = (2 ')hp k +1. 

The main purpose of this step is to make sure that the adjacent 

phases do not include the overlapped boundaries. 

 

 
Fig. 5 Resulting diagram after applying the global critical point localiser. 

Fig. 5 shows resulting diagram after applying the global 

critical points localiser on Fig. 3. 

The obtained peak and phase locations are first converted 

into their corresponding locations in PC profile by (3):  
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  

  

  (3) 

where ps and pe are the start and end locations in PC profile for 

the n’th peak respectively. phs and phe are the start and end 

locations in PC profile for the k’th phase respectively. I is the 

total number of executed instructions used to calculate average 

CPI profile. 

The converted locations are used to select appropriate PC 

patterns for training and testing of the similarity analyser. 

C. SOM based Similarity Analyser Module 

The designed similarity analyser is capable of classifying 

and recognising between known and unknown programs while 

the programs are running. There are two major levels of the 

classification and recognition process: the function call level 

and the PC pattern level, where each phase and peak is 

measured to ascertain the originality of the program in 

execution. Any significant difference shows that the numbers 

of function calls differ, characteristic of function call and PC 

signature are different to the original program, and an 

abnormal behaviour notification could be signified. The main 

advantage of the proposed similarity analyser is that it governs 

the classification and recognition at two different levels: 1) 

phase and peak level, and 2) the PC pattern level. Phase and 

peak level are statistically analysed, and the corresponding PC 

patterns are classified in SOM. Consequently, even if the 

malicious codes have similar information of the phase and 

peak, it is very difficult to have the exactly same PC pattern as 

the original code. 

Kohonen’s SOM [21] is a common pattern recognition and 

clustering process, where intrinsic inter- and intra-pattern 

relationships among the stimuli and responses are learnt 

without the presence of a potentially biased or subjective 

external influence is presented, and would be adopted in this 

work as the basis for our classifier. We utilize the k−means 

nature of the SOM, to partition the extracted PC signatures 

into a user-specified number of clusters, k (number of groups). 

In the proposed work, the analyser uses SOM to measure 

similarity between known and executing programs in terms of 

PC pattern. The value of k should at minimum be equal to the 

total number of programs intended to run on the embedded 

hardware. The value of k used in this work is set to two times 

(2x) the number of known programs that can legitimately run 

on the embedded processor. This value of k is to handle the 

linear separating boundaries between known program 

behaviours as defined in K-means clustering; avoiding the 

computational overheads associated with a nonlinear kernel K-

means.  Specifically, we extract static properties of an 

embedded program to enforce permissible program behaviour 

at run time.  The PC patterns are a set of N-dimensional 
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vectors, where the size of the vectors N is equal to number of 

executed instructions I. The size N of the vector, if set too 

large will add significant performance overhead to the 

application that it represents. Similarly, if it is set too small, it 

will not be robust enough to distinguish between applications. 

Thus choosing the right size of N is very important.  

The best value of N is the minimum number of PC values 

that offers the best analyser performance. The value of N 

should define the permissible behaviour of a program by 

identifying suitable properties or invariants that are indicators 

of untampered execution, thus very unlikely to be violated 

when program is compromised. After a number of empirical 

experiments, the value of N in this work has been set to 211 

following an examination of the test data. 

To enable continuous analysis, the system presented here 

requires just 211 PC values at a time to infer its corresponding 

application. Because the system is based on a SOM, a variant 

of the k−means algorithm, the value of k should also be set. 

The value of k is set depending on the total number of 

algorithms or programs under investigation, and the number of 

distinct phases in any particular application. At minimum, the 

value of k should be equal or greater to the number of 

algorithms under investigation. The value of k in this work has 

been set to 20 as the testing database has 10 different 

programs.  However, this can naturally be adapted to 

requirement of different usage scenarios according to the 

above given guidelines. 

PC values extracted from the PC profile, corresponding to 

the peaks in the CPI profile are used as inputs to the SOM 

during training and testing. For a given network with k neurons 

and N-dimensional input vector Ki, the distance from the jth 

neuron with weight vector wj (j<k) is given by 

  
2

2

1

N
i

j l jl

l

D K w


    (4) 

where wjl is the lth component of weight vector wj. The vector 
components of the winning neuron wk with minimum distance 
Dk are updated as follows, where (0,1) is the learning rate. 

  i

k kw K w     (5) 

The update is done only at the training phase. Additionally, 

for every neuron in the network we maintain four extra 

parameters: the minimum, maximum, mean and standard 

deviation of distances of all input vectors associated with any 

particular neuron. 

After training, the next step is to associate each of the 

network neurons with the corresponding program or sub-

program. In this work, we use Vector Quantization (VQ) [21] 

to assign labels to neurons in the network as follows: 

1) Assign labels to all training data. The label is an identifier 

for the program from which the training data has been 

extracted. 

2) Find the neuron in the network with the minimum distance 

to the labelled input data. 

3) For each input data maintain the application label, the 

corresponding neuron and the distance measured. The 

distance is maintained as a tie breaker for applications that 

share similar address space.  

In each phase of the original training program, we first 

count a group of input vectors that are associated with each 

neuron, and then calculate mean value and standard deviation 

of the group of distances, alongside the minimum and 

maximum distances (Dmin and Dmax) by: 
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where D denotes the group of distances, α denotes errors of 

the standard deviation to accommodate any quantization errors 

in the calculation process. The value of α in this work has 

been set to 2.5%. 

Sequentially, a statistical table Tk is generated for the kth 

phase, where detailed attribute information (e.g. minimum and 

maximum distances, number of input vectors that are 

associated with each neuron and their standard deviation) are 

recorded for the phase. On the same principle, each phase is 

associated with its corresponding statistical table. 

In the testing stage, each input vector is assigned to a 

neuron that has the shortest distance. Let Ki denotes the input 

vector and it is assigned to the jth neuron with distance Di, the 

proposed algorithm first compares the distance Di with the 

minimum and maximum distances of the jth neuron from all the 

statistical tables, and then decides whether the input vector 

belongs to the phase. Generally, the successful input vector 

should meet the following two conditions: 

1) The distance Di should meet the condition Dmin< Di <Dmax, 

where Dmin and Dmax are minimum and maximum distance 

of the jth neuron at the kth phase. 

2) The jth neuron is a dominant neuron in the kth phase, which 

means the occupancy of the neuron in the original statistical 

table is greater than 3% of total numbers of input vectors. 

The successful candidate neurons are labelled to reflect their  

corresponding phase numbers. Otherwise, the candidate is 

marked as ‘-1’, which indicates the input vector is unknown. 

Consequently, the known program’s phase should consist of a 

set of known phase number; the dominant phase number to 

indicate the result of the phase. After obtaining the results of 

each phase, another statistical table Tk’ is generated, which 

contains the same type of information as Tk. A validation 

process is performed in the next stage to examine the 

similarity of these tables. 

D. Validation Module 

The validation module is designed to validate the results from 

the SOM analyser. Usually, most of the input vectors can be 

classified using the SOM analyser. However, due to the 

variance of circumstances, the trace of program cannot always 

be exactly the same as the original training program, thus a 

global validation stage becomes necessary to improve the 

overall classification results. 

In general, the results from the SOM analyser could consist  
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Fig. 6 Overall flow chart of the validation module. 

 

of two categories: known and unknown samples. For the 

known samples, the SOM reports their potential phase 

number. For the unknown samples, the SOM analyser marks 

the phase number with ‘-1’. Thus, the validation module 

processes the two cases separately. Fig. 6 shows flow chart of 

the validation module. 

As shown in Fig. 6, the main task is to validate the similarity 

between the testing statistical table T’ and the original 

statistical table T. In order to examine the similarity of two 

tables, histograms of the associated neurons from the two 

tables are used. Pseudo-codes for calculating the similarity of 

the statistical tables are summarised as follows: 

 

Calculating the similarity of the statistical tables: 

1. Input: Tk and Tk’’ are statistical tables for the original phase k and the 

testing phase k’ respectively. 

2. Output: Similarity between phase k and k’.  

3. sort the Tk  by descending order of neuron’s occupancy; 

4. /* look-up the statistical table Tk */ 

5. for all neuron nodes in Tk do 

6.    if occupancy of the jth neuron  >  3% then 

7.    d(i) = j; /* record the number of the neuron in array d */ 

8.    i ++; 

9.    end  

10. end 

11.  /* look-up the statistical table Tk’’ */ 

12. for all neuron nodes in Tk’’ do 

13.    if occupancy of the jth neuron  >  3% then 

14.    d’(i)=j; /*record the number of the neuron in array d’ */ 

15.    i ++; 

16.    end  

17. end 

18.    x   d d’; /* x is the intersection of d and d’ */ 

19.  /*generate output*/ 

20. if length(x)/length(d)  >  80% then 

21.    the phase k’ is similar to the phase k; 

22. else 

23.    the phase k’ is not similar to the phase k; 

24. end  

 

After comparing the statistical tables, the difference of the 

number of peaks in the original phase k and testing phase k’ is 

then calculated. If the difference is less than 10% of total 

number of peaks in the original phase, it confirms the phase 

number is k.  

In general, the SOM analyser could locally calculate the 

similarity for a pair of input vectors (i.e. peaks). However, it 

has limitation on globally indicating a group of peaks (i.e. 

phases). The validation stage can be used to remedy this 

problem. In the experimental result section, we show the 

improvement of the SOM results when the validation stage is 

applied subsequently. 

V. EXPERIMENTAL SETUP AND RESULTS 

An embedded system based on a Keil MCBSTM32F200 

evaluation board equipped with an ARM 32-bit Cortex-M3 

processor-based microcontroller is used in the proposed work 

[22], which consists of various peripheral interfaces (e.g. 

touchscreen, Ethernet port, serial port, analogue voltage 

control for Analogue-to-digital converter (ADC) input and 

debug interface). A combination of KEIL µVision IDE, and 

ULINKpro Debug and Trace Unit [23] is used to download 

the program and trace the instructions executed in the 

microcontroller. High-speed data and instruction trace are 

streamed directly to the host computer allowing off-line 

analysis of the program behaviour [23]. MATLAB is used to 

implement the proposed method prior to hardware 

implementation. It is worth noting that the experimental 

platform is a typical low cost ARM-based embedded 

development board, and it comes with only 128KB of on-chip 

RAM and 2MB of external SRAM, for which only 1MB is 

usable when the tracing port is enabled. Thus we can only 

analyse a limited number of programs at a time, and the 

complexity of the tested programs are also limited. These 

limitations fall within the scope of our initial embedded 

architecture, expected to have minimal memory, power and 

Start

if phase number k 
!= ‘-1’

yes

if T’ is similar to Tk

Confirm the phase 

number is k

yes

k’ = 1
no

if k’<=max(k)

no

if T’ is similar to 
Tk’

Confirm the phase 

number is k’

yes

yes

no

no

k’++

if there is no 
confirmed phase k’

Confirm the phase 

number is “unknown”
End

yes



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

8 

computational resources. The concept presented here is 

naturally scalable; as the available resources increase, the 

complexity of applications can also be increased. 

A. Benchmark Test Suite 

In the proposed work, seven algorithms from the 

automotive package of the widely recognised EEMBC 

benchmark suite [24] are selected, in which five algorithms 

(i.e. the first five benchmarks in Table I) are used to train and 

test the SOM analyser and the other benchmarks are only used 

in the testing. Details of the used benchmarks are presented in 

Table I. 

As can be seen from Table I, the seven benchmarks are set 

with different parameters and performing various functions. 

For instance, the benchmark “a2time” is used to perform angle 

to time calculation, where “NUM_TEST” indicates the 

number of sets of input test data stimuli, and 

“TENTH_DEGREES” indicates the number of 1/10 degrees 

in a circle. Overall, they do not only have different 

complexities and characteristics, but also contain similar sub-

functions, which make them suitable test candidates for the 

proposed experiments.  

In order to train with all five benchmarks, they are mixed 

together to form a new program, where each benchmark is 

treated as a separate function call. The new program is 

executed twice in order to generate enough training samples. 

For testing, a random function call generator is used to switch 

between benchmarks form the test samples. The next section 

explains how the random function call switching works. 

 
TABLE I 

DETAILS OF THE USED BENCHMARKS 

Benchmarks Description Parameters 

a2time 
Angle to Time 

Conversion 

NUM_TESTS: 500 

TENTH_DEGREES: 3600 

rspeed Road Speed Calculation 
NUM_TESTS: 500 

SPEED_SCALE_FAC: 36000 

bitmnp Bit Manipulation 

NUM_TESTS: 128 

INPUT_CHARS: 20 

CHAR_COLUMNS: 5 

idctrn 
Inverse Discrete Cosine 

Transform 

NUM_TESTS: 8192 

COS_SCALE_FAC: 4096 

COS_SCALE_EXP: 12 

puwmod Pulse Width Modulation 
NUM_TESTS: 2420 

MAX_PHASE: 20 

tblook 
Table lookup and 

interpolation 

NUM_TESTS: 232 

NUM_X_ENTRIES: 50 

NUM_Y_ENTRIES: 50 

ttsprk Tooth to Spark 
NUM_TESTS: 200 

CYLINDERS: 4 

B. Random Function Call Generator  

In order to check the performance of the proposed system 

for complex test samples in a variety of scenarios, a random 

function call generator is used to randomly select the 

benchmarks and form a new program. Thus, the function call 

sequence of the new program is varied at every run. 

Consequently, a set of unique test programs can be generated. 

In addition, since the testing program is combined with 

different function calls and randomly mixed during the run-

time of the embedded system, the testing methodology could 

be used to verify the performance of the proposed system in 

the scenarios that have dynamic variance (e.g. different 

program flow, interrupt, inputs, etc.). 

The random function call generator mainly consists of two 

components: a true random number generator and a switch 

statement. In order to generate true random numbers, an ADC 

and a potentiometer are used to generate a random seed, which 

is subsequently used as an input seed for a pseudo-random 

number generator. In general, the ADC reads the voltage from 

the potentiometer and converts it into a 12-bit digital number. 

As the voltage of the potentiometer is adjustable and sensitive, 

the voltage value is not constant, even without turning the 

potentiometer. Thus, after the conversion, the digital number 

is always different, which allows the pseudorandom number 

generator to create a true random number. For instance, if a 

program consists of n different function calls, a random 

number x is first generated, where 1 < x < n. Subsequently, the 

random number x is used to select which benchmark will be 

called. The generated random number is used in a switch 

statement, which actives the corresponding function call (e.g. 

if x = 1, “a2time” will be called). In this experiment, the 

potentiometer is manually adjusted for every run, which 

further ensures the voltage is completely different from the 

previous one. 

In addition, the random function call generator can also 

record the function call sequence for every execution, which 

means a complete reference table can be generated at the end 

of testing. With comparing the test output of the SOM with the 

expected output from reference table, an accurate and 

complete evaluation result can be generated. 

C. Program Database  

A total of 104 programs are generated using the random 

function call generator presented in the previous section. The 

104 programs used for testing can further be divided into the 

following three subcategories: 

1) Programs with original function call sequence: Programs 

in this category consist of fixed function call sequence, 

which are the same as the one used in training.  There are 

21 programs, out of the 104, which are taken from this 

category. 

2) Programs with random generated function call sequence 

(known): Programs in this category consist of randomly 

generated function calls in the sequence, with all the 

functions drawn from the training samples. The number of 

samples in this category is 42.  

3) Programs with randomly generated function call 

sequence (unknown): Programs in this category consist of 

randomly generated function calls in the sequence with 

two unknown functions included. The number of samples 

in this category is 41. 
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Fig. 7. Examples of PC profiles from the used program database. (a) Program used for training; (b) Program from category 1; (c) and (d) Programs from category 

2; (e) and (f) Programs from category 3. 
 

In the experiment, the first category is used to simulate 

instances where the embedded system is not modified, such as 

programs running with factory setting. The second category is 

used to simulate the circumstances of an embedded system 

with normal behaviour; for instance, the programs with 

legitimate credentials to run on the embedded system. Finally, 

the last category is used to simulate tampered systems with 

unknown programs; for example, the system may launch some 

unknown programs, triggered by buffer overflow attack. Thus, 

our threat model is well covered by the three set of categories. 

Fig. 7 shows some examples of PC profiles extracted from test 

programs. 

In Fig. 7, numbers inside the red cycles are labels for the 

different benchmarks, where ‘1’, ‘2’, ‘3’, ‘4’, and ‘5’ represent 

the five known benchmarks respectively with ‘x’ and ‘y’ 

representing the two unknown benchmarks. As can be seen 

from Fig. 7 (a) and (b), although they contain exactly the same 

benchmark codes and sequences, the PC addresses and 

outlines of each benchmark are slightly different. Especially, 

when the sequence of the benchmark is randomly mixed (for 

example, Fig. 7 (c) and (d)), the resulting PC profiles are 

completely different. This could help with examination of the 

trained SOM analyser on false negative rate. In Fig. 7 (e) and 

(f), the profile of the unknown programs ‘x’ and ‘y’ are quite 

similar to the known programs ‘1’ and ‘2’ respectively, which 

is used to simulate the possible attacks that try to model their 

peaks and phase information like the genuine programme 

Using the true/false positive and negative rates from the 

trained SOM analyser, different programs with similar profiles 

can further be examined. 

D. System Implementation   

The abnormal program behaviour detection system has been 

successfully implemented in MATLAB for off-line data 

analysis. The system implementation is divided into three 

parts: 

 

1) CPI-related module 

This module is first used to extract useful information from 

the program’s tracing file, and then it calculates the average 

CPI for every run. The program’s tracing file contains two 

types of information: PC address and time tag for every 

executed instruction. The PC addresses are only recorded in a 

file that will be used in the SOM-based similarity analyser 

module. However, the corresponding time tags are used to 

calculate CPI profile for the executed programs. In this work, 

the number of instructions is set to 2048. The frequency of the 

ARM cortex-M3 microcontroller used runs at 120 MHz, thus, 

the average CPI for every 2048 instructions can then be 
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calculated by (1). Subsequently, the phase and peak point 

detector localises the peaks and phases from the average CPI 

profile. The obtained peak and phase locations are finally 

converted into their corresponding locations in PC profile by 

(3).  

 

2) SOM-based similarity analyser module 

The start and end locations of each peak can be used to 

select a serial of PC addresses, and this forms an input vector 

with 1×2048 elements which is subsequently fed into the  

SOM-based similarity analyser. The maximum number of 

nodes and iterations for the SOM are set to 20 and 1000 

respectively. A statistical table for each phase and estimated 

outputs for each peak are generated after the training process. 

The same process is repeated during the testing. The generated 

results are then used in the validation module. 

 

3) Validation and evaluation module 

The algorithm stated in Section IV-D is implemented in this 

module. Based on the validation results, the peaks and phases 

of each input program are finally classified. The final 

evaluation result consists of two levels: peak and phase levels. 

At the peak level, the final report does not only include results 

for every single program, but also the entire database. The 

measurements of the evaluation mainly includes correct 

recognition rate (true positive (Tp) and true negative (Tn)), rate 

of misclassified samples (false positive (Fp)), and rate of 

samples incorrectly classified as unknown (false negative 

(Fn)). Based on the measurements, accuracy, precision and 

recall rates for the proposed system can be calculated.  

Accuracy 

It is the rate of correctly labelled samples, which can be 

calculated by (Tp+ Tn) / total number of samples. 

Precision 

It is the rate of positively labelled samples whose labels are 

correct, which measures the classifier’s resistance to false 

positives and can be calculated by Tp / (Tp +Fp). 

Recall 

It is the rate of samples that should have been positively 

labelled that are correctly positively labelled, which 

measures the classifier’s resistance to false negatives and 

can be calculated by Tp  / (Tp +Fn). 

 

A classifier’s precision and recall results provide insight 

into what types of errors the classifier tends to make, rather 

than only reporting the number of misclassified samples. 

E. Experimental Results  

In this experiment, the proposed system classifies the 

programs’ peaks and phases into different categories, where 

the known peaks and phases will be assigned their 

corresponding names and unknown ones will be labelled as ‘-

1’. Overall, the proposed system has 99.9% and 97.7% 

successful identification rates for 1040 program phases and 

145763 peaks respectively. Additionally, the proposed system 

identifies unknown programs’ peaks that were not in the 

training set with over 98.4% accuracy. In the following sub-

sections, the analyses of the experimental results are 

categorised by program type. 

 

1) Programs with original function call sequence 

In this category, there are total 21 programs, which include 

31884 peak samples. Overall, the proposed system has 97.9% 

successful identification rates for the peaks. Results of 

accuracy, precision and recall rates for each program are 

illustrated in Fig. 8. 

 

 
 

Fig. 8. Results of accuracy, precision and recall rates for category 1. 

 

2) Programs with random generated function call sequence 

(include only known benchmarks): 

In this category, there are 42 programs, which include 

57242 peak samples. Overall, the proposed system has 97.1% 

successful identification rates for the peaks. Results of 

accuracy, precision and recall rates for each program are 

illustrated in Fig. 9. 

3) Programs with random generated function call sequence 

(include known and unknown benchmarks): 

In this category, there are 41 programs, which include 

56637 peak samples. Overall, the proposed system has 97.5% 

successful identification rates for the peaks. Results of 

accuracy, precision and recall rates for each program are 

illustrated in Fig. 10. 

In general, as the complexity of the test categories are 

varied, the first category has the smoothest and best accuracy, 

precision and recall rates. In contrast, the accuracy, precision 

and recall rates of the second and third categories are 

relatively lower, than the first one. Also, the types and the 

lengths of each tested program in the last two categories are 

different, which causes the resulting rates of each program 

have relatively higher variance than the first one.  

As indicated in Table I, the database employed mainly 

consists of seven different benchmarks, where five of them are 

in the training set and the remainder are not in the training set. 

Table II summarises the results of each benchmark in terms of 

accuracy, precision and recall rates. 

As can be seen from Table II, the overall performance of 

the proposed system with validation process is much higher 

than without the validation process. The reason is that the 

extra similarity comparisons between original and test 

statistical tables help the proposed system to re-estimate the 

results of the SOM analyser.  Especially, when there is a 

unknown benchmark with similar sample peaks to the known 

benchmark  that  appears  in  the  test  program. The  result  of  
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TABLE II 

PERFORMANCE RESULTS FOR THE USED BENCHMARKS 

 

Benchmarks 

Without Validation With Validation 

Accuracy (%) Precision (%) Recall (%) Accuracy (%) Precision (%) Recall (%) 

a2time 8.1 94.2 8.1 98.0 99.5 98.5 

rspeed 37.7 95.3 38.5 94.9 98.1 96.7 

bitmnp 76.2 99.7 76.5 97.6 99.7 97.9 

idctrn 87.7 99.8 87.8 98.2 99.8 98.4 

puwmod 47.6 98.2 48.1 97.0 99.1 97.8 

tblook 98.4 0 0 98.4 0 0 

ttsprk 99.1 0 0 99.1 0 0 

Overall 

Performance 
68.0 99.3 66.2 97.7 99.5 98.0 

 

 
 

Fig. 9. Results of accuracy, precision and recall rates for category 2. 
 

 
 

Fig. 10. Results of accuracy, precision and recall rates for category 3. 
 

using validation process is significant higher than without 

validation process in the system, for example, the accuracy 

and recall rates of the first benchmark ‘a2time’ is significantly 

lower than by using validation process. The reason is that 

‘a2time’ and ‘tblook’ have very similar distances to the sample 

SOM node, which cause them to be classified into same 

cluster. For the known benchmarks, as the test samples are not 

exactly the same as the samples in the training set, the 

accuracy and recall rates are also lower, than the result using 

the validation process. For the unknown benchmarks, the 

results with and without validation are constant, as there are 

no positive samples in the sets, the precision and recall rates 

are zero. 

It is worth noting that our work is independent of the 

processor’s architecture or operating system’s kernel, thus 

making it compatible with most modern embedded systems. 

Hence, the proposed work is particularly suitable for providing 

possible security solutions to commercial off-the-shelf 

(COTS) products, where the products have many restrictions 

on modifying their internal programs or hardware 

architectures. The proposed system can be run on a non-

intrusive debug facility, a non-intrusive infrastructure that is 

generally used during device software development at present 

in all production devices, that connects to the targeted 

embedded device through a debug interface [25], [26], which 

means that the proposed system would not affect the 

performance of the monitored embedded system in terms of 

additional memory and processor usage. When an end user 

downloads a new program in the embedded device, a training 

process will start; the new trained parameters of the SOM and 

the statistic information of monitored program can then be 

generated and stored in the debug facility, which can only be 

accessed by the debug facility. The proposed system naturally 

combines the embedded system’s hardware and software 

together, introducing a new potential direction to secure an 

embedded device. In one of the authors’ previous works [27], 

an implementation of the conventional SOM on a Xilinx 

Virtex-4 with 40 neurons required only 22.1% of the available 

5,184 Kb Block RAM. The debug facility targeted for our 

initial on-chip prototyping is utilising a mid-range Xilinx 

Virtex-6 FPGA having 25,344 Kb (max.) Block RAM; thus a 

similar implementation should utilise approximately 5% of the 

available Block RAM. Again, the Virtex-4 design 

implementation clocked at 25MHz could train with 

approximately 10,000 patterns per second. As a result of this, 

the hardware implementation of the SOM produces a 

significant speed improvement, which is 30 times faster than 

the original SOM implemented on a state-of-art PC [27]. 

Hence, the preferred implementation is to follow a hardware 

acceleration approach that facilitated rapid SOM processing 

suitable for real-time execution. 
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VI. CONCLUSIONS 

In this paper, a Self-Organising Map based approach is 

proposed to enhance embedded system security by detecting 

abnormal behaviour, in which features derived from internal 

embedded processor are extracted and used in the SOM to 

identify abnormal behaviour in embedded devices. The 

proposed method can also be combined with ICMetrics 

system, as different behaviours can be represented with 

different basic numbers, hence, different encryption keys can 

be generated by the key cryptography mechanism, using the 

recall phase. Results achieved in our experiment show that the 

proposed method can identify unknown behaviours not in the 

training set with over 98.4% accuracy. The proposed work 

provides protection at different levels for embedded 

architectures such as function call sequence, internal control 

flow and instruction stream within each function. Since the 

main aim of this research work is to implement a real-time 

security solution for complex embedded computer 

architectures, more evaluation on realistic attacks for the 

proposed algorithms will further be investigated. For 

evaluation of real-time detection system, the proposed method 

can also be implemented with a soft-core processor on FPGA 

as part of an on-line protection system, and subsequently 

halting the program to prevent abnormal behaviours in the 

system, or even alongside existing debug IP in a direct 

Systems-on-Chip implementation. 
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