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Abstract

In this research of network structure analysis, the knowledge of centrality measures is applied
to discover or predict a most important actor or node in a network/graph. Problems of energy
e�ciency and sustainability are considered, and also those of allocation of resources. In order
to enable an e�cient allocation of energy resources to the right path in a distributed network
such as obtained in a data center, authorś network and supply chain network, new measures of
centralities are introduced aside from the traditional ones of Closeness, Betweenness, Degree
and Eigen-Vector centralities. Mixed-mean centrality, which is based on the generalized
degree centrality, was developed as a measure to emphasise the importance of a node in the
authorship network and the distributed system of a data centre. Weighted centrality measure
when used as against the traditional measures mentioned above was able to make prediction
for a Distribution Centre (DC) of a Supply Chain Network with an accuracy of 91.6%.
Clique-Structure/Node-weighted centrality measure was able to make a prediction with 66%
accuracy, while the Weighted Marking, Clique-Structure/Node-Weighted Centrality made a
prediction accuracy of 96.2%. The Top Eigen-Vector Weighted Centrality and Newtonian
Gravitational Force were also used to predict the location of distribution centre (DC) in a
supply chain network with accuracies of 92.9% and 96.9% respectively.



Chapter 1

Introduction

When mention is being made of weighted networks, much reference and importance is always
attached to the weights on the edges in a network. In actual fact what makes up a network
is both the nodes and the edges of the network. It is therefore pertinent to investigate the
e↵ects and importance of the weights attributed unto the nodes in a network as well as
the weights on the links of such networks as they both play important roles in determining
the prominence or popularity of the nodes which are also referred to as actors within any
particular network.

This thesis used the idea of mixed-mean centrality in solving problem of cloud comput-
ing. This concept of mixed-mean centrality combines the main types of centralities (degree
centralities and closeness centralities) and takes the mean results, thereby encompassing all
the centrality measures in one concept. The idea is used to discover the most central and
therefore the most energy consuming nodes in a data centre, this is with an aim of mak-
ing provision for energy-e�ciency, thus minimising costs and saving the environment. This
concept of mixed-mean centrality can also be used in locating the performance level of a
particular node or edge and thus aiding in decision on which node or edge deserves atten-
tion. This can be most especially useful for security and fault-tolerance purposes. Resource
allocation is also an applicable area of this centrality measure as it will aid in optimisation of
resources, thereby saving costs. This new model was equally applied to the EIES (Electronic
Information Exchange System) data set. This is in order to find the most central author (
in a system of mail exchange between several nodes (in this case the authors).

The idea of node-weighted centrality measure was also used to predict the location of a
Distribution Centre. It shows the most probable node that could serve as a Distribution
center out of all other sales outlets of a supply chain network. This was made possible after
having considered the centrality values and percentage accuracy of predictions of all the
nodes (which are shops in this case).

Subsequently, the concepts of Clique structures of a network, Weighted Marking Methods
, Top-Eigen Vector Weighted Centrality measures, and Newtonian Gravitational Forces were
employed with node-weighted centrality measures to predict the location of a Distribution
Centre of a Supply Chain Management Netwrok.

1



The remaining parts of the thesis are structured as follow :
Chapter Two deals with the literature review , while chapter three explained the Mixed-
Mean Centrality concepts in details. Chapter four explained the use of Weighted Centrality
Measure to predict location of nodes or structures. A combined concept of Clique structure
and Node-Weighted Centrality was used in Chapter five to predict location of structures and
the measures of accuracy was noted. In Chapter six, Weighted Marking, Clique Structure
and Node-Weighted Centralities methods are considered, while Chapter seven predicted the
location of a Distribution Centre of a Supply Chain Network using the Top-Eigen Vector
Weighted Centrality measure. The concept of Newtonian Gravitational Force for predicting
a Distribution Centre of Supply Chain Network. Finally, Chapter nine focused on the future
studies, Summary and Conclusion.
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Chapter 2

Literature Review

2.1 Introduction

Graph theory is a branch of computing and mathematics that enables better understanding
of network structures. It concerns points that are referred to as vertices and the links
connecting them, these links are also referred to as arcs, edges and lines. According to
[Bruce , 2009], a graph is an ordered pair G=(V,E) where V is a set of vertices (nodes) and
E is a set of edges (links). He referred to each edge as a pair of vertices, that is, each element
of E is a pair of elements of V. Furthermore, [Wasserman and Faust, 1994] noted that graph
theory in addition to its utility as a mathematical system, gives a representation of a social
network as a model of a social system consisting of a set of actors and the ties between them.

Accordingly any network at all can be viewed from the perspective of graph theory for
ease of understanding. A vertex also called node is usually perceived to be a single whole
object with its own typical structure depending on what it represents and what the whole
graph is all about. For example, a node might be seen as each city of a country if the whole
graph is all about say cities, distances between cities and city populations of a particular
country. Edges can only be formed when there are vertices to be linked, hence any two
vertices forming an edge are called the endpoints of such vertices, and the edges would be
said to be incident on the two such vertices. Nodes e1 and e2 are said to be adjacent to each
other if there exist an edge e1e2 in the graph of interest.

Graphs are diagrams of vertices and lines, of networks because the vertices are the objects
in the network (people, countries, computers, etc.) and the edges are relationships [Bonacich
& Lu, 2012].

A graph G(V,E) represents the relationships between vertices vi 2 V whereby E is the
set of edges eij 2 E , connecting or linking the vertices i and j , however, the edges can be
present or absent. Vertices which can can also be referred to as nodes as said earlier can also
be referred to as points or actors while edges can be referred to as links, ties, arcs or lines.

According to [Krackhardt, 1994], a graph (G) is defined as a set of N points P=Pi and a
set of unordered pairs of those points L = Pi, Pj, wherein the subscripts i and j are positive
integers and they are not greater than N, the total number of nodes or vertices.

[Freeman, 1978] measures were designed for binary networks, hence they are dichotomous
from the onset (i.e. it is either there is a tie between nodes or not), hence the only weights
that could be assigned to the ties are unitary.

The importance of ties/edges as the conduit pipes of flow cannot be overemphasized
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as well, as such, [Granovetter, 1973] refers to the strength of a tie as a (probably linear)
combination of the amount of time, the emotional intensity, the intimacy (mutual confiding),
and the reciprocal services that characterize the tie. From the above, it means, the strength
of a tie (also called the link or edge) plays a critical role in the bonding to the nodes/vertices,
hence its main focus in the study of centrality.

By dichotomizing the network, much of the information contained in a weighted network
datasets is lost, and consequently, the complexity of the network topology cannot be de-
scribed to the same extent or as richly. As a result, there has been a growing need for
network measures that directly account for tie weights.[Opsahl et al., 2010]. Actually ties
can have some strengths, for example, in a road network, road distances (now representing
ties) between towns or cities can have values other than binary digits, and di↵erent widths as
well. In fact, [Barrat et al , 2004] concludes in their study of weighted networks that a more
complete view of complex networks is provided by the study of the interactions defining the
links of these systems and the weights characterizing the various connections which exhibit
complex statistical features with highly varying distributions and power-law behaviour. Sim-
ilarly, [Newman, 2001] also suggested a measure of the strength of collaborative ties which
takes account of the number of papers a given pair of scientists have written together, as well
as the number of other coauthors with whom they wrote those papers. Using this measure he
added weightings to a collaboration networks and used the resulting networks to find which
scientists have the shortest average distance to others. While the foci of [Barrat et al., 2004]
and [Newman, 2001] are on the tie weights/strengths, [Opsahl, 2010] had a combined focus
on both the number of ties and weights of ties.

It is of course pertinent to note that vertices and ties are complementary, hence an edge
can only be incident on two nodes and two nodes can only be adjacent if they have a tie
linking them. This implies that nodes can similarly have strengths and not only binary
in nature, for example, in a road network, if the edges (roads) can have weights/strengths
(distances), the nodes (cities) can also have weights/strengths (e.g. populations).

The need to study network flow and centralities is emphasized by [Ghoshal and Bartlett,
1990] when they said that It may be more useful to explore the actual content of strategy
in a complex organizational systems like a Network theoretic analysis of internal flows of
resources, products, people, and information might be more relevant for developing middle-
range theories on resource commitment, decision making, strategic control, normative inte-
gration, and creation and di↵usion of innovations in such companies. Still on centralities,
[Carolan, 2014] explained that conceptually, centrality captures the extent to which a focal
actor occupies an important position of prestige and visibility.

Buttressing the above, [Borgatti & Li, 2009] noted that a key concept in social network
analysis has been the notion of node centrality, which they defined as the importance of a
node due to its structural position in the network as a whole.

Centrality is hereby introduced as a suggested solution to the challenge of predicting the
location of a distribution centre to other nodes of a graph/network as required. Specifically,
a node-weight modulated centrality which stems from the idea of Generalizing Degree of
Centrality and shortest paths of [Opsahl, 2010] and Topological Centrality of [Zhuge, 2010]
is hereby proposed.

In an attempt to evaluate centrality, [Brandes, 2001] a�rmed that many centrality indices
are based on shortest paths linking pairs of actors, thereby considering for example, the
measure of the average distance from other actors, or the ratio of shortest paths an actor
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lies on. Many network-analytic studies rely at least in part on an evaluation of these indices.
[Newman, 2001] introduced an algorithm for counting the number of shortest paths between
vertices on a graph that pass through each other vertex, and this is used to calculate the
betweenness measure of centrality on graphs. Accordingly, [Newman, 2002] said it has been
found that the connectivity of many networks (i.e., the existence of paths between pairs
of vertices) can be destroyed by the removal of just a few of the highest degree vertices,
a result that may have applications in, for example, vaccination strategies. The degree of
vertices as being described here is the number of ties connecting the nodes as would shortly
be explained in the next section. [Barrat et al, 2004] in their study of weighted networks
carried out statistical analysis of complex networks whose edges have assigned a given weight
(the flow or the intensity), and such according to them can generally be described in terms
of weighted graphs and more so that a more complete view of complex networks is provided
by the study of the interactions defining the links of those systems. Furthermore, they
confirmed that a more complete view of complex networks is provided by the study of the
interactions defining the links of these systems and the weights characterizing the various
connections which exhibit complex statistical features with highly varying distributions and
power-law behaviour.

[Brandes(2001) , Newman(2001), & Barrat et al(2004)] have all attempted to attach
weights to the centralities - Degree, Betweenness and Closeness, but they have only succeeded
in attaching weights to the edges and not the nodes.

With this study one can be able to locate which nodes deserve more or less attention
because of their location and/or performance.

On ties/edges of nodes, [Borgatti & Halgin, 2011] infer that both state-type ties and
event-type ties can be seen as roads or pipes that enable (and constraint) some kind of flow
between nodes. Flows are what actually pass between nodes as they interact, such as ideas or
goods. Hence two friends (state-type social relation) may talk (event-type interaction) and,
in so doing, exchange some news (flow). [Carolan, 2014] is of the opinion that, centrality
captures the extent to which a focal actor occupies an important position of prestige and
visibility.

Centrality is hereby introduced as a suggested solution to the challenge of allocation of
resources or tra�c to a node as required. Specifically, a mixed-mean centrality and a node-
weight modulated centrality which stems from the idea of Generalizing Degree of Centrality
and shortest paths of [Opsahl, Agneessens & Skvoretz, 2010] and Topological Centrality of
[Zhuge & Zhang, 2010] is hereby proposed.

There are four standard measures of centrality namely Degree Centrality; EigenVector
Centrality; Closeness Centrality and Betweenness Centrality. Three of them Degree, Be-
tweenness and Closeness are all formalised by [Freeman, 1978]. Each of these centralities
either concern itself with nodes or edges [Zhuge & Zhang, 2010], however this work con-
cerns itself with nodes and edges while considering the degree, eigenvector, betweenness and
closeness centralities.

2.2 Centrality

The formal theory of social network analysis encompasses centrality measures, and these are
to be employed in this research that dwells on the mergers of weights (link-weights and node
weights) to evaluate network topologies and make a prediction. The strength attached to the
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nodes also called the node-weights represents a certain attribute of a particular node (e.g.
population of a city), and the same goes for the strength attached to edges (e.g. distance
between cities). [Akanmu, Wang & Yamoah, 2014].

According to [Barrat et al, 2004], in their study of weighted networks, they carried out
statistical analysis of complex networks whose edges have assigned a given weight (the flow
or the intensity), and such according to them can generally be described in terms of weighted
graphs and more so that a more complete view of complex networks is provided by the study
of the interactions defining the links of those systems. Although, [Granoveter, 1973], [Bran-
des, 2001], [Barrat et al, 2004], [Newman, 2001] have only emphasized on the attachment of
weights to the edges and not to the nodes in their various studies, [Opsahl, Agneessens &
Skvoretz, 2010] and [Zhuge & Zhang, 2010] have considered both the weights on the edges
and also the number of edges attached to a particular node. This work however concerns
itself with both nodes and edges while considering the degree, eigenvector, betweenness and
closeness centralities.

The importance of location of distribution centre is echoed by [Thai & Grewal, 2005],
when they explained that the advantage of an optimal location for distribution centre is
not only to reduce transportation costs, but also to improve business performance, increase
competitiveness and profitability.

Further investigations can be made into how the objects, nodes or actors are connected
within a particular network, of particular interest is the subgroups based on complete mu-
tuality. In fact, [Wasserman and Faust ,1994] defined the clique in a graph to be a maximal
complete subgraph of three or more nodes. Another explanation was that a clique is a max-
imal subset of nodes in which the density is 100%, that means in a clique, everybody has a
tie with everybody else. [Borgatti & Li, 2009].

Here, the focus is on the number of ties, weights of ties/nodes and centralities while also
investigating the clique structures of the network being considered. With this study one
can be able to predict the siting or location of a node that deserves more or less attention
because of their location and/or performance.

The idle time of a node and the tra�c on its links (edges) has been a concern for the
cloud operators. As more energy are being consumed so also the strength and weights of the
links to the nodes (data centres) increases, as such, the knowledge of centrality will allow
e�cient allocation of energy source to the right path.

2.3 Standard Centrality Measures

2.4 Degree Centrality

Degree centrality measure is concerned with the degree of a certain node in a directed graph
(or network), that is the number of edges or links or ties that enters a node (wherein referred
to as in-degree) or the number of edges that come out of the node (wherein referred to
as out-degree), this being applicable to directed graphs.Conversely, in an undirected graph
it is the number of ties or edges attached to the node that becomes a concern. Formally,
[Newman, M.J., 2008] in the Mathematics of Networks defines the degree Ki of a node i as
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Ki = CD(i) =
nX

j=1

A(i, j) (2.1)

where n = number of nodes in the network

A(i, j) =

(
1 ifthere is a tie between nodes i and j

0 otherwise
(2.2)

by tie , we mean an edge and A(i, j) is an element of the adjacency matrix A, that is, A
is an n X n symmetric matrix (implying A(i, j)=A(j, i) ). e.g.

A(i, j) =

0

BB@

A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
...

...
. . .

...
Aj,1 Aj,2 · · · Aj,j

1

CCA (2.3)

where A1,1 = A2,2 = ... = Aj,j = 1
The matrix in (2.3) above implies that the entry A1,2 will be equal to A2,1 if A is an

adjacency matrix. The degree centrality has as part of its advantage that only local structure
round the node could be known, for ease of calculation this is acceptable, but it becomes a
concern if a node is central and not easily accessible to other nodes for one reason or another.
It is described by [Zhuge, 2010] as shown in (2.4) below:

CD(s) =
degree(s)

n� 1
(2.4)

where s = node and n = total number of nodes in the graph.

Closeness Centrality
Closeness centrality takes the distance from the focal node to other nodes in a graph into
consideration but it has the setback of not taking disconnected nodes (those who are not in
the same graph) into consideration. [Zhuge, 2010] formally expresses closeness centrality as

Cc(s) =
n� 1P

r2Ss/2S dG(s, t)
(2.5)

where n = number of nodes, dG(s,t) = geodesic distance between s and t.

For example, in Table 2.1, Node B has the highest of the centralities for the degree and
closeness centrality measures.

2.5 Generalised Degree Centrality Measure

Each of the three standard degrees mentioned earlier concerns itself with either nodes or
edges [Zhuge, 2010]. There have been several attempts to generalise the three node centrality
measures but most have solely focused on weights of edges and not number of edges [Opsahl
et al, 2010]. Since weights are of importance, the equations in (2.4) to (2.5) above can be
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E

F

Figure 2.1: (Graph1). A six nodes network, circle represents nodes. (Source: T. Opsahl et al (2010) pg 245)
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Table 2.1: The results of the two standard centrality measures according to figure 2.1

Node of Degrees
Number

Centrality (CD)
Degree

from s to t(
P

d(s, t))
Geodesic Paths

No of

Centrality
Closeness

A 2 0.4 9 0.555556
B 4 0.8 6 0.833333
C 2 0.4 9 0.555556
D 1 0.2 9 0.555556
E 2 0.4 8 0.625
F 1 0.2 12 0.416667

extended to include weights, therefore, the weighted degree centrality of nodes is hereby
represented by

CW
D (s) =

Pn
t W(s, t)

n� 1
(2.6)

where W(s, t) is the sum of the weights of edges connected to the particular source node s
and , t represents a particular target node. In the same vein, the weighted closeness centrality
Cw

c (s), is also represented by

Cw
c (s) =

n� 1P
dw(s, t)

(2.7)

which is the weight of geodesic paths between s and t.
In the attempt to incorporate the measures of both degree and strength of edges (i.e.

numbers and weights of edges respectively), [Opsahl et al, 2010] considered a graph with
6 nodes (figure 2.2) as shown and also introduced the ideal of generalised degree centrality
measure.

	

D	

B	

E	

F	

A	

C	

4	

4	 2	

1	

1	

7	

Figure 2.2: (Graph2). A six nodes network, circle represents nodes and square represents weights of edge.
e.g. Number of Visits. (Source: T. Opsahl et al (2010) pp 245)

A tuning parameter ↵ was introduced to take care of the weightedness of the degree
and strength of the edges, this being the product of degree of a focal node and the average
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weight to these nodes as adjusted by the introduced tuning parameter. So, for weighted
degree centrality at ↵ we have

Cw↵
d (i) = Ki ⇥ (

Si

Ki
)↵ = K1�↵

i ⇥ S↵
i (2.8)

where Ki = degree of nodes, Si = Cw
d (s) as defined in (2.6) above , and ↵ is � 0

For weighted closeness centrality at ↵ we also have

Cw↵
c (i) = Ki ⇥ (

Si

Ki
)↵ = K1�↵

i ⇥ S↵
i (2.9)

where Ki = degree of nodes, Si = Cw
c (s) as defined in (2.7) above , and ↵ is � 0

When applied to figure 2.2, Table 2.2 shows the results for the weighted degree centrality
measure and the closeness degree centrality measure.

2.6 Closeness Centrality

Closeness centrality takes the distance from the focal node to other nodes in a graph into
consideration but it has the setback of not taking disconnected nodes (those who are not
in the same graph) into consideration. [Zhuge, Zhang & Junsheng, 2010] formally expresses
closeness centrality as

Cc(s) =
n� 1P

r2Ss/2S dG(s, t)
(2.10)

where n = number of nodes, dG(s,t) = geodesic distance between s and t.

2.7 Betweenness Centrality

Assuming node A has two ties to nodes B and C; while B has ties to nodes D and E and
node C in turn has ties to nodes F and G as in figure 2.3 below:

Figure 2.3: Figure showing vertices/nodes A to G and their ties/edges.
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Node A connects two branches of ties B and C and it also lies on many geodesic paths,
hence we say that node A has a high betweenness. Nodes B and C also have betweenness
because they lie between node A and their own subordinate nodes. Nodes D, E, F and
G however have zero betweenness. Suppose two nodes without direct link needs to have a
link, the geodesic path between them can be ’́opened́’ or ’́blocked́’ by a brokerage node that
sits in between, that is a node that has betweenness relative to them. e.g. Node A is the
only brokerage node that serves as link to node B from anyone of nodes C, F and G. One
takes note of the fact that resource allocation and distribution is of vital importance in cloud
computing. According to [Borgatti & Li , 2009], it is reasonable to deduce that if short paths
are important, then the nodes that lie among many short paths between others ( a property
known as betweenness centrality ) are structurally important nodes that are well-positioned
to control, filter or colour information flows and possibly become over-burdened bottleneck
that slows down the network. [Zhuge, 2010] formally expresses betweenness centrality as

CB(v) =
X

s/2v/2t2v;s 6=t

�st(v)/�st

(n� 1)(n� 2)
(2.11)

where �st is the number of the shortest geodesic paths from s to t, and �st(v) is the
number of the shortest geodesic paths from s to t that pass through node v.

2.8 Eigen-Vector Centrality

This is a measure that implies that the connections by a source node to more important
nodes/vertices that are in turn connected to other important nodes and so on, make the
source node to be important. It is in other words the values emanating from the weights
that have the value from the highest eigenvector of the adjacency matrix of the graph in
question. � is said to be the eigenvalue of the matrix A if the following holds:

�x = Ax (2.12)

where A is a square matrix and x is an eigenvector of A.

2.9 Weighted Centrality Measures Due To Weights On The Edges

Each of the four measures of centrality mentioned earlier concerns itself with either nodes or
edges [Zhuge & Zhang, 2010]. There have been several attempts to generalise the three node
centrality measures (degree, betweenness and closeness) but most have solely focused on
weights of edges and not number of edges [Opsahl, Agneessens & Skvoretz, 2010]. Therefore
when weights are attached in line with (2.8), the weighted degree centrality of edges incident
on a source node p will be defined as:

Sp = CW
D (p) =

Pn
q Wpq

n� 1
(2.13)

where q is the target node and N is the number of nodes considered, w is the weight on
the edge that runs from p to q.
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In the attempt to incorporate the measures of both degree and strength on edges (i.e.
numbers of edges and weights on edges respectively), [Opsahl, 2010] introduced the idea of
generalised degree centrality measure.

A tuning parameter ↵ was introduced to determine the relative importance of the number
of ties compared to the weights on the ties. The equation (2.14) below thereby represents
the product of degree of a focal node and the average weight to these nodes as adjusted by
the introduced tuning parameter. So, for weighted degree centrality at ↵ we have:

Cw↵�
d (i) = Ki ⇥ (

Si

Ki

↵

)⇥ (Zi)
� = K1�↵

i ⇥ S↵
i ⇥ (Zi)

� (2.14)

where Kp = degree of nodes, Sp = Cw
d (p) as defined in (2.13) above and ↵ � 0

Di↵erent meanings have been adduced to the weighted-ness of a network, so many litera-
ture have at instances made references to link-weights as the weights of the entire network,
even though any network as described above would at least consist of node(s) and link(s) as
the case may be. This therefore implies that there has to be node-weights which are being
separated from link-weights and the combination of the two would thereby emerge as weights
of any typical network.

For the sake of clarity, in this chapter , (2.14) shall be referred to as linkweighted degree
centrality since it deals solely with the weights on the edges and number of edges. Also,
from (2.14) it can be deduced trivially that at ↵=0 the number of degrees would be returned
while at ↵=1 the sum of the weights of the incident edges to a node would be returned.
Therefore, our interest shall be on the situations whereby ↵ values are less than 1 or greater
than 1 , i.e. ↵=1

2 and ↵=11
2 .

We shall now formally define the weighted centrality of the four measures, i.e. Degree,
Closeness, Betweenness and the Eigenvector. The degree centrality of any node S taking
cognisance of the strength of the incident edges is herein defined as the weighted degree
centrality of node s and is represented in normalised form as:

CW
D (s) =

Pn
t Wst

n� 1
(2.15)

where Wst is the sum of the weights of edges connected to the particular source node s
and t represents a particular target node. In the same vein, the weighted closeness centrality,
Cw

c is also represented by

Cw
c (s) =

n� 1P
dw(s, t)

(2.16)

where dw(s, t) is the weight of geodesic paths between s and t, while the weighted be-
tweenness centrality is

Cw
B(v) =

X

s/2v/2t2v;s 6=t

�w
st(v)/�

w
st

(n� 1)(n� 2)
(2.17)

where �st is the number of the shortest geodesic paths from s to t, �st(v) is the number
of the shortest geodesic paths from s to t that pass through node v and w is the assigned
weights to the ties. Similarly, the weighted eigenvector centrality could be seen as
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�x = AwX (2.18)

where Aw is a square matrix of the weights on the edges of A and x is an eigenvector of
A . So for weighted closeness centrality at ↵ we have

Cw↵
c (i) = Ki ⇥ (

Si

Ki
)↵ = K(1�↵)

i ⇥ S↵
i (2.19)

where Ki = degree of nodes, Si = Cw
c (s) as defined in (2.16) above

where ↵ is � 0, and similarly for the degree centrality; betweenness centrality and eigenvector
centrality.

Typical data centers house several powerful ICT (Information and Communication Tech-
nology) equipment such as servers, storage devices and network equipment that are high-
energy consuming. The nature of these high-energy consuming equipment is mostly ac-
countable for the very large quantities of emissions which are harmful and unfriendly to
the environment. The costs associated with energy consumption in data centers increases
as the need for more computational resources increases, so also the appalling e↵ect of CO2
(Carbon IV Oxide) emissions on the environment from the constituent ICT facilitiesŚervers,
Cooling systems, Telecommunication systems, Printers, Local Area Network etc. Energy
related costs would traditionally account for some of the total costs of running a typical
data center. There is a need to have a good balance between optimization of energy budgets
in any data center and fulfillment of the Service Level Agreements (SLAs), as this ensures
continuity/profitability of business and customerś satisfaction.

A greener computing from what used to be would not only save/sustain the environment
but would also optimize energy and by implication saves costs. This study addresses the
challenges of sustainable (or green computing) in the cloud and pro↵er appropriate, plausible
and possible solutions. The idle and uptime of a node and the tra�c on its links (edges) has
been a concern for the cloud operators because as the strength and weights of the links to
the nodes (data centres) increases more energy are also being consumed by and large. It is
hereby proposed that the knowledge of centrality can achieve the aim of energy sustainability
and e�ciency therefore enabling e�cient allocation of energy resources to the right path.

2.10 Weights on Nodes

In the supply chain management (SCM), there could be a need to predict where to cite a
proposed Distribution Centre (DC). Ordinarily, many factors would be taken into considera-
tion for such an exercise, for example, factors like population density of the area, accessibility
by di↵erent mode of transportation, the standard of living etc. In this case , application of
centraliy measures would be su�cient to predict the citing of the location of the DC, by using
the principles of node-weighted and link-weighted centralities. The node-weights could be
any of the volume of sales, cost of storage or turnover at a depot/store, while the edges will
be the distance between each depot and a proposed distribution centre (DC). TESCO shops
of di↵erent counties are used as case studies here. For the SCM, since the shops sampled
are maximally connected, the advantage of the clique structure was exploited to map out
di↵erent clique of shops and thereby making the most central node of the chosen clique to
be representative of that clique for the purpose of prediction of a proposed DC.
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Furthermore, in green computing, the same principles of node and link-weighted central-
ities can be used to detect the redundant servers (nodes) in a data centre, and then reduce
the resources being allocated to such servers (nodes), thereby reducing pollution and saving
costs.

Discussed further below are the linkweighted centralities of the four measures, i.e. Link-
Weighted Degree, LinkWeighted Closeness, LinkWeighted Betweenness and the LinkWeighted
Eigenvector.

2.11 Node-Weight Modified Centrality Measure

As noted from (2.14), when ↵ = 0 only the degree of nodes will be measured and if ↵ = 1
only the weights on the ties are measured. In view of this only the cases whereby ↵ is less
than 1 or greater than 1 shall be considered, specifically cases of ↵ = 0.25; 0.5; 0.75; 1.25; 1.5
and 1.75 A tuning parameter � was introduced by [Akanmu, Wang & Yamoah, 2014], [Barrat
et al, 2004] & [Granovetter, 1973] to take care of the weightedness on the nodes, although
the tuning parameter ↵ was applied to the degree/strength of the edges. The newly evolved
equation by way of introduction of a tuning parameter � will now be the product of degree of
a focal node, the average weight to these nodes as adjusted by the newly introduced tuning
parameter � and the weight accorded to each node. So, for weighted degree centrality at ↵
and � we shall now have

Cw↵�
d (i) = Ki ⇥ (

Si

Ki

↵

)⇥ (Zi)
� = K1�↵

i ⇥ S↵
i ⇥ (Zi)

� (2.20)

where Ki = degree of nodes, Si = Cw
d (s) as defined in (2.14) above

Zi = weight of nodes, ↵ is � 0 ; {� 2 Z : -1  �  1}
The choice of value of � depends on what e↵ect the weight is having on the new centrality

measure, if for instance the weight is having a positive e↵ect (e.g. profit) the positive value
of � is employed otherwise the negative value(e.g. loss) shall be used in our calculation.

In his work on identifying cohesive subgroups [Frank, 1995] laid emphasis on the link of
a graph that the ”definitions based on path length are restrictive in that they specify the
nature of the relationship between each pair of actors within a subgroup instead of a general
relationship between each actor and all others in the subgroup”, thereby leaving out the
actors/nodesśtrength. According to the definition of the Topological Centrality (TC) of an
edge, the weights of edges are the sum of the weights of its two end nodes [Zhuge & Zhang,
2010]. Here, the definitions of the weights of edges and weights of nodes are somehow fuzzy,
as it is not clear cut what made up the weights of the end nodes. [Opsahl, Agneessens &
Skvoretz, 2010] defined a weighted network as that in which ties are not just either present
or absent, but have some form of weights attached to them, hence the emphasis of his
paper on the trade-o↵ between the weight on the tie and the number of ties. This was
however silent on the attributes of the node (which in most cases form the weights on the
nodes). This viewpoint was partly shared by [Abbasi, 2013] when he said ”Second category
of measures (i.e., h-Degree, a-Degree and g-Degree) takes into account the linksẃeights of
a node in a weighted network. Third category of measures (i.e., Hw-Degree, Aw-Degree
and Gw-Degree) combines both neighborsd́egree and their linksẃeight.” [Barrat et al, 2004]
[Brandes, 2001] [Newman, 2001] have also attempted to generalize the traditional network
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centrality measures (degree, betweenness and closeness) to weighted networks, but they were
only able to implement their generalisations as the link-weighted network, thus not putting
the node-weights into consideration.

Another emphasis on link-weighted-ness in terms of duration is that by [Uddin, Hossain
& Wigand, 2013] whereby they introduced a time-variant approach to the degree centrality
measure, that is, the time scale degree centrality (TSDC), whereby the presence and duration
of links between actors are considered while leaving out the node attributes. In their paper
on hybrid centrality measures, [Abbasi & Hossain, 2013] in an attempt to define the new
hybrid centrality measure reported having considered a network as having the centrality
measures of each node as the attribute of the node. They however go further to state
thus ”To have generalized measures, considering weighted networks which their links have
di↵erent strengths, we can extend definitions by considering the weight of the links”. [Abbasi,
Wigand & Hossain, 2014] in their analysis of results for scholars performance and social
capital measures also buttressed this view point by submitting that repeated co-authorships
are merged by increasing more weight (tie strength) to their link (tie) for each relation,
so also [Walker, Fooshee & Davidson, 2015] whereby they referred to weight of undirected
graph as the link-weight. However, all these arguments are again centred on link-weights
as against the weights of the network that could have considered a combination of node-
weights and link-weights. Recently, [Liu, et al, 2015] in their new method to construct
co-authorship concluded by saying ”We used the times of co-authorship to calculate the
distance between each pair of authors, and evaluate the importance of their cooperation to
each other with the law of gravity”. The mixed-mean centrality measure of [Akanmu, Wang
& Chen, 2012] took into consideration, the number of links, link-weights and node-weights
in their study of co-authorship network, while [Akanmu, Wang & Yamoah, 2014] used the
clique structure and node-weighted centrality to predict the distribution centre location in
a supply chain management, thus clarifying what the link-weights and node-weights are in
a weighted network. It is still largely unknown how top eigen-vector weighted centrality
can be applied to predict location of structures in a network. Thus, it is important to still
find out whether the attributes of the nodes in any network is of importance or not; one
might also want to know how accurate the mergers of node-weights and link-weights can be
in terms of prediction of where to cite structures (for example, where to cite a distribution
centre); and finally how accurate would the prediction of the location for a DC become, given
a new centrality measure, which takes into consideration, the clique structure of a network
combined with the node-weights and link-weights of the network. The nodes of the clique for
each of the cities considered are ranked in line with their eigenvectors, and the representative
node (the highest ranking node) for that clique becomes the representative node of that city.
The centre of mass for the emergent nodes is thereafter taken into consideration. This method
is important in that it only takes the node-weights and link-weights into consideration while
trying to achieve the results, thereby saving other resources.

Di↵erent meanings have been adduced to the weighted-ness of a network, so many litera-
ture have at instances made references to link-weights as the weights of the entire network,
even though any network as described above would at least consist of node(s) and link(s) as
the case may be. This therefore implies that there has to be node-weights as separated from
link-weights and the combination of the two would thereby emerge as weights of any typical
network. In his work on identifying cohesive subgroups [Frank, 1995] laid emphasis on the
link of a graph that the definitions based on path length are restrictive in that they specify
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the nature of the relationship between each pair of actors within a subgroup instead of a
general relationship between each actor and all others in the subgroup, thereby leaving out
the actors/nodesśtrength. According to the definition of the Topological Centrality (TC)
of an edge, the weights of edges are the sum of the weights of its two end nodes [Zhuge &
Zhang, 2010]. Here, the definitions of the weights of edges and weights of nodes are somehow
fuzzy, as it is not clear cut what made up the weights of the end nodes. [Opsahl, Agneessens
& Skvoretz, 2010] defined a weighted network as that in which ties are not just either present
or absent, but have some form of weight attached to them, hence the emphasis of his paper
on the trade-o↵ between the weight on the tie and the number of ties. This was however
silent on the attributes of the node (which in most cases form the weights on the nodes).
This viewpoint was partly shared by [Abbasi, 2013] when he said that a second category
of measures (i.e., h-Degree, a-Degree and g-Degree) takes into account the linksẃeights of
a node in a weighted network. Third category of measures (i.e., Hw-Degree, Aw-Degree
and Gw-Degree) combines both neighborsd́egree and their linksẃeight. [Barrat et al, 2004]
[Brandes, 2001] [Newman, 2001] have also attempted to generalize the traditional network
centrality measures (degree, betweenness and closeness) to weighted networks, but they were
only able to implement their generalisations as the link-weighted network, thus not putting
the node-weights into consideration.

Another emphasis on link-weighted-ness in terms of duration is that by [Uddin, Hossain
& Wigand, 2013] whereby they introduced a time-variant approach to the degree centrality
measure, that is, the time scale degree centrality (TSDC), whereby the presence and duration
of links between actors are considered while leaving out the node attributes. On hybrid
centrality measures, [Abbasi & Hossain, 2013] reported having considered a network as
having the centrality measures of each node as the attribute of the node, while [Abbasi,
Wigand & Hossain, 2014] in their analysis of results for scholars performance and social
capital measures also buttressed this view point by submitting that repeated co-authorships
are merged by increasing more weight(tie strength) to their link(tie) for each relation, so also
[Walker, Fooshee & Davidson, 2015] whereby they referred to weight of undirected graph as
the link-weight. However, all these arguments are again centred on link-weights as against the
weights of the network that could have considered a combination or mergers of node-weights
and link-weights. In their new method of constructing co-authorship, [Liu et al, 2015] used
the times of co-authorship to calculate the distance between each pair of authors, and to also
evaluate the importance of their cooperation to each other with the law of gravity. This relies
again on the use of link weights. The mixed-mean centrality measure of [Akanmu, Wang
& Chen, 2012] took into consideration, the number of links, link-weights and node-weights
in their study of co-authorship network, while [Akanmu, Yang & Yamoah, 2014] used the
clique structure and node-weighted centrality to predict the distribution centre location in a
supply chain management, thus clarifying what the link-weights and node-weights actually
represent in a weighted network. It is still largely unknown how newtonian gravitational force
of attraction and the top eigenvector weighted centrality can be applied to predict location
of structures in a network. Thus, it is important to still find out whether the attributes
of the nodes in any network is of importance or not; one might also want to know how
accurate the mergers of node-weights and link-weights can be in terms of prediction of where
to cite structures (for example, where to cite a distribution centre); and finally how accurate
would the prediction of the location for a DC become, given a new centrality measure, which
takes into consideration, the clique structure of a network combined with the node-weights
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and link-weights of the network. The nodes of the clique for each of the cities considered
are ranked in line with their eigenvectors, and the representative node (the highest ranking
node) for that clique becomes the representative node of that city. The centre of mass for
the emergent nodes is thereafter taken into consideration. This method is important in that
it only takes the node-weights and link-weights into consideration while trying to achieve
the results, thereby saving other resources. Section II discusses the link-weighted centrality
and node-weighted centrality and the third section discusses methods employed and their
implementation, while the fourth lays out the output results from the methodology.

2.12 Weighted Centralities

2.12.1 LinkWeighted Centrality

The equation (2.21) below represents the weighted degree centrality with respect to the edges
or links.

Sp = CW
D (p) =

PN
q Wpq

n� 1
(2.21)

Where CW
D represents the weighted degree centrality; p is the focal node ; q= adjacent

node ; w= weight attached to the edge ; and n= total number of nodes in the graph. This
reasoning can be extended to the weighted centrality of the Closeness, Betweenness and the
Eigenvector. As an example, the weighted eigenvector centrality could be seen as

�x = Awx (2.22)

where Aw is a square matrix of the weights on the edges of A and x is an eigenvector of A .
It is to be recalled that a tuning parameter ↵ was introduced to determine the relative

importance of the number of ties compared to the weights on the ties by [Opsahl, Agneessens
& Skvoretz, 2010]. Equation (2.23) below represents the product of degree of a focal node
and the average weight to these nodes as adjusted by the introduced tuning parameter. So,
for weighted degree centrality at ↵ we have:

Cw↵
d (i) = Ki ⇥ (

Si

Ki
)↵ = K(1�↵)

i ⇥ S↵
i (2.23)

where Ki = degree of nodes, Si = Cw
d (s) as defined in (2.23) above , and ↵ is � 0

This argument could also equally be applied to the closeness centrality; betweenness
centrality and eigenvector centrality.

2.12.2 NodeWeighted Centrality

As an extension to equation (2.23), a tuning parameter � was introduced by [Akanmu, Wang
& Chen, 2012] to include the weightedness on the nodes, therefore, for weighted degree
centrality at ↵ and � we shall now have

Cw↵�
d (i) = Ki ⇥ (

Si

Ki
)↵ ⇥ (Zi)

� = K(1�↵)
i ⇥ S↵

i ⇥ (Zi)
� (2.24)
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where Ki = degree of nodes, Si = Cw
d (s) as defined in (2.24) above

Zi = weight of nodes, ↵ is � 0 ; {� 2 Z : -1  �  1}
The value � depends on whether the weight is having positive or negative e↵ect on the

centrality measure, if for instance the weight is having a positive e↵ect (e.g. profit) � is +1
else it is -1 (i.e. loss). Values of ↵ ranging from1

4 to 13
4 is used in order to vary the e↵ect of

↵, i.e. values less than 1 and those greater than 1.
Mixed-Mean centrality as a new measure of the importance of a node in a graph is intro-

duced, based on the generalized degree centrality. The mixed-mean centrality reflects not
only the strengths (weights) and numbers of edges for degree centrality but it combines these
features by also applying the closeness centrality measures while it goes further to include the
weights of the nodes in the consideration for centrality measures. We illustrate the benefits
of this new measure by applying it to cloud computing, which is typically a complex system.
Network structure analysis is important in characterizing such complex systems.
Application of graph-theoretic approach to a system or problem can provide a di↵erent point
of view and make the problems at hand become clearer and much simple, as it provides the
appropriate tools (pictorial and quantitative) for solving complications. The basis of cen-
trality measures lies in the formal theory of social network mechanism, and this is largely
applied in this research that dwells on the mergers of centrality measures in the study of
weightsćombination to evaluate network topologies. In this study, this idea is applied to solve
problems of resource allocation via siting of a resource center to augment the existing ones
when the need arises. The strengths attached to vertices (weights) di↵erentiate each vertex
from another, similar to the strength attached to edges. The evaluation of these weights and
the number of edges together contribute e↵ectively to the measure of centrality for an entire
graph or network. This novel approach has huge potential for resource optimization in the
location of structures in a distributed system of supply chain management. With the use of
this method in the prediction of new site for the location of distribution center an accuracy
of 91.6 percent was obtained and the more e↵ective measures of centralities were determined.

Much importance is attached to the weights on the edges in a network, but in actual fact
what makes up a network is both the nodes and the edges linking up the network. It is
therefore pertinent to investigate the e↵ects and importance of the weights attributed unto
the nodes in a network as well as the weights on the links of such networks as they both play
important roles in determining the prominence or popularity of actors within any particular
network. Principles of centrality measures were employed in the supply chain management
to show that the weighted-ness of the edges/nodes together with the clique structure that
emanates from it can be a pointer to centrality or otherwise of members of a group in the
network of a distribution system. As expected, it was a�rmed that the nodes belonging
to the high clique members have a high percentage of being chosen/predicted as the most
likely distribution centre. We examined the cliques of the weighted centrality matrix for the
distributed system of a supply chain management network, and from the outcome we are
able to predict a location of a new distribution centre in and around a particular area/region
with an accuracy of more than 66%. In addition, the distinction between the notion of
link-weightedness and node-weightedness were clarified.

Despite the importance attached to the weights or strengths on the edges of a graph, a
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graph is only complete if it has both the combinations of nodes and edges. As such, this
research brings to bare the fact that the node-weight of a graph is also a critical factor to
consider in any graph/networkś evaluation, rather than the link-weight alone as commonly
considered. In fact, the combination of the weights on both the nodes and edges as well
as the number of ties together contribute e↵ectively to the measure of centrality for an en-
tire graph or network, thereby clearly showing more information. Two methods which take
into consideration both the link-weights and node-weights of graphs (the Weighted Marking
method of prediction of location and the Clique/Node-Weighted centrality measures) are
considered, and the result from the case studies shows that the clique/node-weighted cen-
trality measures gives a more accuracy of 18% than the weighted marking method in the
prediction of Distribution Centre location of the Supply Chain Management.
Occasions do arise when researchers and industrialists alike are faced with the decision of
where to cite new structures (shops, stores, distribution centers etc) in order to benefit the
consumers and the business entity as well. Such decisions might take the importance of
vertices and/or edges of a network (e.g. Supply Chain Network) into consideration. In par-
ticular, the strength of the vertices and those of the edges play an important role in arriving
at such decisions. In this thesis, as against the most common and traditional measures of
centralities, that is - Degree, Closeness, Betweenness and Eigen-Vector centralities, a new
centrality measure, Top Eigen-Vector Weighted Centrality (TEVWC) which takes into con-
sideration the clique structure of a network and the strengths attached to the vertices/edges
of the network, was used to predict the location of a distribution center in a supply chain
management. The accuracy of prediction on a sample dataset of supply chain network, using
the TEVWC was found to be 92.9%, which is 11.4% higher than the result outcome from
the method of min-cut algorithm.
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Chapter 3

Mixed-Mean Centrality

3.1 Introduction

Introduced hereby is a second similar graph to the one in figure 2.2 di↵ering only in the
weights attached, it is believed that weights of each tie can actually be dependent on two
scenarios (in this case, visit by the focal node and number of messages sent by the nodes
through the network). The weights in figure 2.2 are the number of visitation by the focal
nodes to their neighbors while the weights in figure 3.1 below represents the number of
messages sent by the focal node, this was applied to a subset of EIES (Electronic Information
Exchange System) dataset (Freeman and Freeman, 1979). This is a dataset which, describes
the communication between authors by way of exchange of mails, each author is depicted as
a node, and the link represents the number of messages exchanged between two nodes.

	
	
	
	

D	

B	

E	

F	

A	

C	

488	

28	
	 17	

17	

15	

4	

Figure 3.1: Represents a six nodes network, whereby circle represents nodes and square represents weights
of edge (Number of Messages)

Figure 3.1 represents a six nodes network, whereby circle represents nodes and square
represents weights of edge (Number of Messages), and it is particularly expressed in Table
3.1.

Figure 3.1 shows di↵erent ranking values for di↵erent graphs/or networks, for instance, in
Table 3.1, the first graph (after the application of the tuning parameter to weighted degree
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centrality measure) made node F to have the highest centrality when ↵=11
2 , while the same

application to the second graph made node A to have the highest centrality. When ↵ <1 ,
node B has the highest centrality in both cases.

Our intention is to combine the results for the two graphs so as to have a fairly well-
representative result and not only by using weighted degree centrality but also including
weighted closeness centrality.

When the weighted closeness centrality is considered for ↵ >1 , node D has the highest
centrality in graph1 while node F has the highest in graph2 , but with ↵ <1 , node B retains
the highest centrality position in graph 1 and in graph 2. (see table 3.2).

In Table 3.3 , considering the average (i.e. mean) of the weighted degree centralities for
the two graphs; when ↵=11

2 returns node A as the most central while with tuning parameter
↵=1

2 , node B is returned as the most central. Whereas the weighted closeness centrality
measure when ↵=11

2 and ↵=1
2 returns nodes D and node B respectively in both cases as

having the highest centrality. From the results above when ↵=1
2 , node B has higher marginal

value of cardinality than any other nodes in both graphs.
Table 3.4 below presents the results of the Mixed-Mean centralities of the two graphs, that

is the summation of the mean of the Weighted Degree and Weighted Closeness centralities.
That is,

Mixed�MeanCentralities = (CDW1 + CDW2 + CCW1 + CCW2)/2 (3.1)

From the result of Table 3.4 above, when ↵=1
2 the most central node is B while node A

becomes the most central when ↵=11
2

As shown earlier, in the trivial case when no weights are attached to the nodes (as in
figure 1.1 - Graph 1, Table 1.1) , node B is the most central of all nodes as regards degree
centrality and closeness centrality. The table 3.5 below shows the summary result of the
activity carried out so far:

In the trivial case of Graph 1, and all other cases whereby the tuning parameter ↵=1
2 ,

node B is always the most central. However, the centrality varies when the tuning parameter
↵=11

2 , in fact node B was never the most central in this case, the centrality varies between
node D and node F, while for our mixed-mean centrality node A becomes the most central
in this case of ↵=11

2

Application to Data Set:
On applying the same to a subset of the Freeman EIES (Electronic Information Exchange
System) dataset as presented by [Opsahl et al, 2010], the results in Table 3.6 were generated.

The ranking positions of the mixed-mean weighted centrality in Table 3.6 shows the
ranking according to the mean of the weightedness of closeness and degree centrality measures
at di↵erent level of ↵ , thus, it can be inferred that Gary Coombs ranked highest in terms
of Mixed-Mean centralities for both ↵=11

2 and ↵=1
2 .

However, in terms of the mean of the closeness centralities for both tuning parameters
↵=11

2 and ↵=1
2 , it ranked lowest, thereby indicating that the mixture of the centralities for

the two graphs could and actually make a less important or influential node to become the
most important and influential when considered on the basis of mixed-mean centrality.
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3.2 Mixed-Mean Centrality with Nodes’ Weights

Consideration has been given to weightedness of edges before now, but the nodes can and
do have weights, so the principle discussed above is hereby extended to include the node
weights for the two graphs of discourse. This means, consideration will now be given not
only to the number of ties and tie weights but also to the weights of the nodes.

Introducing weights to the nodes of figure 3.1 above , we have the new figure 3.2 shown
below:

Figure 3.2: A six nodes network, circle represents nodes and their respective weights using the EIES sample
data set.

Where A(Joel Levine)= 5; B(Jon Sonquist)=6; C(Brian Foster)= 7; D(Ev Rogers)= 8;
E(Gary Coombs) = 9; F(Ed Lauman) = 10 are arbitrary weights assigned to the nodes of
the sample EIES data set, these could be the number of resources used up by each of the
nodes.

The tuning parameter � was now introduced to take care of the weightedness of the
nodes, and degree/strength of the edges, this being the product of degree of a focal node,
the average weight to these nodes as adjusted by the introduced tuning parameter and the
weight accorded to each node. So, for weighted degree centrality at ↵ and � we shall now
have

Cw↵�
d (i) = Ki ⇥ (

Si

Ki

↵

)⇥ (Zi)
� = K1�↵

i ⇥ S↵
i ⇥ (Zi)

� (3.2)

where Ki = degree of nodes, Si = Cw
d (s) as defined in (1.6) above

Zi = weight of nodes, ↵ is � 0 ; {� 2 Z : -1  �  1}
Applying the new model above to the EIES data set of our discuss will generate the

following tables for the new weighted degree centrality (with node weights):
Table 3.7 shows that when weights are attached to the nodes of the EIES data set, Gary

Coombs ranked first while Ed Lauman ranked second when ↵=1
2 and ↵=11

2 , whereas in
Table 3.8 whereby the nodes were not accorded weights, Gary Coombs though ranked first
but Ed Lauman ranked last, even when the ↵=11

2 .
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However the above ranking is only for the case whereby the value of � = 1, it is quite of
interest to us to see what would happen if � = -1 . Table 3.8 illustrates the result when �
= -1.

Table 3.8 also shows that when weights are attached to the nodes of the EIES data set at
� = -1, Gary Coombs and Joel Levine together ranked first and second respectively when
↵=11

2 but when ↵=1
2 Joel Levine ranked first and Jon Sonquist ranked second.

Finally, the rankings for the di↵erent situations of beta after weights z have been attached
to the nodes of Table 3.8 gives the following result:

From Table 3.9, it can be seen clearly that as � changes value from 0 to 1 and -1 Gary
Coombs (though not the one with highest degree or highest weight) maintains the highest
ranking when ↵=11

2 . When ↵=1
2 , Gary Coombs maintained the lead at � = 1 only to drop

to the third position when �=-1.
Having applied the new model above to the EIES data set, one sets out to try this model on

an existing electricity consumption data extract of six states in the United States of America
as shown below in Table 3.10. Here, the number of consumers in a particular state are stated,
with the average monthly bill consumption, any of these parameters can be designated as
the node-weights for each of the states , while Table 3.11 showed the distances within the
states, these distances can be designated as the link-weights, then the weighted centralities
(node-weighted, link-weighted and Mixed-Mean centralities can then be determined, and as
such we can deduce the most central of the states and then determine where to locate a
central resource such as data centre that can serve the six states optimally.

The geodesic distance in kilometres between the six states is also extracted and tabulated
below.

In the above scenario, we want to assume the power plant serving the six states is located
in Connecticut, and we then apply the equation of Mixed-Mean Centralities in (3.1) , that
is

Mixed-Mean Centralities = (CDW1 + CDW2 + CCW1 + CCW2 ) / 2
where
CDW1 = Average monthly consumption for graph1
CDW2 = Average retail price for graph 2
CCW1 = Geodesic distance from one state to any other
CCW2 = Geodesic distance from electricity company to each state.

The following results were obtained at di↵erent values of beta, i.e. �=-1, 0 and 1.
From Table 3.12, it can be seen that Vermont even though with least number of consumers

ranked highest when ↵=11
2 and it ranked lowest when ↵=1

2 .
In the table 3.13, at ↵=11

2 Vermont still ranked highest as in Table 3.12 while Massachus-
sets ranked highest when ↵=1

2 and it actually has the highest number of consumers.
Table 3.14 indicates that Vermont retains its highest ranking position when ↵=11

2 but
remained lowest when ↵=1

2 while Massachussets retains the highest centrality with ↵=1
2 . To

make it all clearer, Table 3.15 summarises the e↵ect of beta on the measure of centralities:

3.3 Power Usage E↵ectiveness (PUE)

It is generally known that even when machines are idle they still consume reasonable energy
in that process, but the lower the PUE of a data centre the better and most energy-e�cient

9
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conscious data centres will always aim to reduce the PUE to the barest minimum, that is
conceivably as close as possible to the unit value. As such, one can say that the PUE has a
reasonable impact on the energy-e�ciency of a data centre.

[Google, 2012] says that its best site could boast a PUE as low as 1.06 if it uses an
interpretation commonly used in the industry. However, it stucks to a higher standard
because it’s better to measure and optimize everything on its site, not just part of it. Thereby
reporting a comprehensive PUE of 1.13 across all its data centers, in all seasons, including
all sources of overhead.

An extract of the quarterly PUE from Googleś fourteen (14) data centres spanning the
period between 2008 to 2012 is shown in the Table 3.16 below:

Avela,V(2011) defined that PUE is the ratio of two numbers, data center input power
over IT load power, even though it appears first to be a problem of simply obtaining two
measurements and taking their ratio, it is not that simple in production data centers, but
Google (2012) postulates the equation below as being a measure of PUE:

PUE =
ESIS + EITS + ETX + ELV + EF

EITS � ECRAC � EUPS � ELV + ENet1
(3.3)

ESIS: Energy consumption for supporting infrastructure power substations feeding the
cooling plant, lighting, o�ce space, and some network equipment
EITS: Energy consumption for IT power substations feeding servers, network, storage, and
computer room air conditioners (CRACs)
ETX: Medium and high voltage transformer losses
EHV: High voltage cable losses
ELV: Low voltage cable losses
EF: Energy consumption from onsite fuels including natural gas & fuel oils
ECRAC: CRAC energy consumption
EUPS: Energy loss at uninterruptible power supplies (UPSes) which feed servers, network,
and storage equipment
ENet1: Network room energy fed from type 1 unit substitution

Non-availability of data from data centres was an hindrance to experiments being per-
formed as regards PUE unlike in the SCM and EIES.

3.4 Tra�c Density Ratio

We introduce a Tra�c Density Ratio (TDR) for each of the nodes and it can be described
as:

TDR =
Traffic Density of a node i

Sum Total of Traffic Density of all the nodes in the graph

TDRi =
TDiPn
i TDi

(3.4)

where TDi is the tra�c density at node i , and n= total number of nodes in the graph.
The tra�c density at each node i is measured in MB/s (megabytes per second), and the

lower the TDR of a node, the lower the tra�c on that particular node, but the TDR is
directly proportional to the PUE, that is,
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PUE / TDR ) PUE = kTDRi (3.5)

whereby 0  TDRi  1
Thus, as TDR of any node approaches zero, it is reasonable to believe that the PUE will

also tend to zero, and as such all the tra�c on such a node could be diverted towards a more
performing and capable node, while the node whose PUE is almost at zero could be shut
down, thereby saving much energy.

3.5 Summary

Two graphs were considered and e↵ects of the combined weights on both edges and nodes
were evaluated taking the closeness centrality and degree centrality into cognisance. The
resulting Mixed-Mean centrality was then applied to the EIES data set while introducing
two tuning parameters ↵ and �. This was later applied to real data of electricity consumption.

3.6 Conclusion

The scenario presented here can be applied to cloud computing by using the idea of mixed-
mean centrality to discover the most central and therefore the most energy consuming nodes,
so as to help in making provision for energy-e�ciency, thus minimising costs and saving the
environment.

It can be used in locating the performance level of a particular node or edge and thus
aiding in decision on which node or edge deserves attention. This can be most especially
useful for security and fault-tolerance purposes.

Resource allocation is also an applicable area of this centrality measure as it will aid in
optimisation of resources, thereby saving costs.
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Chapter 4

Using Weighted Centrality Measures

to Predict Location of Structures

4.1 The Need for Introducing Weights on Nodes

So far, consideration has been given only to the weightedness on edges (i.e. the strength on
edges) before now, but the weights on the nodes have not been considered whereas nodes
can and do also have weights on them, so the principles discussed above shall henceforth be
extended to include the weights on the nodes, also referred to as the strengths on the nodes.
This means, consideration will now be given not only to the number of edges and strengths
on edges but also to the weights on the nodes, however the weights/strength on the nodes can
represent di↵erent thing for di↵erent scenario, for example, in a transport system, weights
on nodes might be the daily number of passengers accommodated in a particular transport
companyś bus station while the weight on edges might be distances of the companyś bus
stations apart. The following reasons are adduced for the study of weights on nodes:-

4.1.1 Clarity of Definitions

Often times, most literature mention node strength while actually making reference to the
weights attached to the ties/edges. So, it is pertinent to distinguish between the node
strength (herein referred to as the weights of or on the nodes/vertices/actors) and the tie
strength (herein referred to as the weights attached to the tie/edge/link/line).

4.1.2 Regaining Loss of Valuess

Sometimes in sociometrics, the exact values (strengths or weights) attached to the nodes are
usually left out of various considerations as if they are immaterial, whereas when given the
deserved considerations they do a↵ect how centralities are perceived. By not considering the
weights/strength of nodes, valuable information are actually lost for any meaningful analysis.

4.1.3 Robust and More Representative Analysis

Networks or graphs are not and cannot be formed by edges alone, they are usually formed
by combinations of edges and vertices, as such, an all-encompassing sociometric analysis will
lead to a largely representative and more robust analytic outcome.
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4.1.4 Specificity

Specificity Apart from studying the interactions or linkages of the nodes, the behaviour or
nature of the nodes itself is worth studying ( e.g. how a computer works, how sales in a
depot/store is a↵ected by the type of links it has, how an actor reacts to changes etc).

The concern here shall be that of a supply chain system whereby, the nodes could be
anyone of the number of sales, cost of storage or turnover at a depot/store, while the edges
will be the distance between each depot and a proposed distribution centre and the degree
will be the number of other depot/store(s) interacted with in terms of supply by the source
depot or store.

4.2 Node-Weight Modulated Centrality Measure

It will be recalled that it was earlier mentioned that the tuning parameter ↵ was introduced
to determine the relative importance of the number of the ties compared to the weights
on the ties. [Akanmu, Wang & Huankai, 2012] introduced a tuning parameter � to take
care of the weightedness on the nodes, although the tuning parameter ↵ was applied to
the degree/strength of the edges as denoted earlier in equations (2.9) and (2.14) above.
The newly evolved equation by way of introduction of a tuning parameter � will now be
the product of degree of a focal node, the average weight to these nodes as adjusted by
the newly introduced tuning parameter � and the weight accorded to each node. So, for
weighted degree centrality at ↵ and � we shall now have (2.14) which shall be recalled here
as (4.1)

Cw↵�
d (i) = Ki ⇥ (

Si

Ki
)↵ ⇥ (Zi)

� = K(1�↵)
i ⇥ S↵

i ⇥ (Zi)
� (4.1)

where Ki = degree of nodes, Si = Cw
d (s) as defined in (4.1) above

Zi = weight of nodes, ↵ is � 0 ; {� 2 Z : -1  �  1}
The choice of value of � depends on what e↵ect the weight is having on the new centrality

measure, if for instance the weight is having a positive e↵ect (e.g. profit) the positive value
of � is employed otherwise the negative value(e.g. loss) shall be used in our calculation.

4.3 Evaluation: Node-Weight Modulated Centrality Measures Ap-

plied to Supply Chain Management

In this network, an existing distribution centre of an existing chain stores in a particular
region were investigated and the store outlets are considered as nodes with the value of
sales being the weights on the nodes while distances between nodes are regarded as the
weights on the edges. The Table 4.1 and Table 4.2 below show the respective results that
were obtained when the Link-Weight Modulated Centrality and Node-Weight Modulated
Centrality Measures are applied to a subset of 6 nodes from the supply chain management
dataset.
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4.3.1 Implementation

The results were obtained using the software UCINET [Borgatti, Everett & Freeman, 2002]
and tnet [Opsahl, 2012] to generate the four weighted centrality results of Degree, Eigen-
vector, Betweenness and Closeness, while Excel spreadsheet was used to carry out the final
calculations of the Node-Weight Modulated Centrality measures of each node/vertex. The
schematic diagram of how the process was implemented is as shown in figure 4.1 below.

Figure 4.1: Figure showing the implementation of the Node-Weighted Centrality Measure

The initial dataset of the distances between the 47 sales outlets of the considered supply
chain system presented as a 47x47 square matrix which was obtained from the UCINET soft-
ware, saved in Excel format and later imported into UCINET for the purpose of centralities
calculations. Table 4.1 depicts the link-weighted centrality measures at di↵erent values of
alpha for a subset of twelve highest central nodes (in terms of degree, closeness, eigenvector
and betweenness) from among the forty-seven nodes considered.

The results came out as text files listing the di↵erent columns for each centrality measure,
and for the purpose of calculations of the node-weight modulated centrality, the values from
the text files were exported into Excel where a column was created for the weights on the
nodes. (See Table 4.2).

The sparseness of a sample of 12 stores (nodes A to L) and their linkage to the existing
distribution centre (node M) is as shown in figure 4.2 below:

The exact real-life distribution centre (Node M) that supplies all the other nodes (A
to L) is 9.3 miles to the finally predicted Distribution centre , which is Node C from the
results obtained from the node-weighted centrality measures. The farthest distance apart
of any two nodes is that from Node K to Node L, and it is a distance of 143miles. This
was used in column 9 of Table 4.3, for the calculation of ratio of distances from any node to
that of farthest distance apart. The percentage error of prediction is therefore calculated by

23



T
ab

le
4.
1:

T
ab

le
sh
ow

in
g
th
e
li
n
k-
w
ei
gh

te
d
m
ea
su
re

of
ce
nt
ra
li
ty

C
E
N
T
R
A
L
IT

Y
D
E
G
R
E
E

L
IN

K
-W

E
IG

H
T
E
D

C
E
N
T
R
A
L
IT

Y
E
IG

E
N
-V

E
C
T
O
R

L
IN

K
-W

E
IG

H
T
E
D

C
E
N
T
R
A
L
IT

Y
B
E
T
W

E
E
N
N
E
S
S

L
IN

K
-W

E
IG

H
T
E
D

C
E
N
T
R
A
L
IT

Y
C
L
O
S
E
N
E
S
S

L
IN

K
-W

E
IG

H
T
E
D

N
o
d
e

=
1 4

↵
=

1 2

↵
=

3 4

↵
=
1↵

=
1
1 4

↵
=
1
1 2

↵
=

1 4

↵
=

1 2

↵
=

3 4

↵
=
1↵

=
1
1 4

↵
=
1
1 2

↵
=

1 4

↵
=

1 2

↵
=

3 4

↵
=
1↵

=
1
1 4

↵
=
1
1 2

↵
=

1 4

↵
=

1 2

↵
=

3 4

↵
=
1
1 4

↵
=
1
1 2

↵

A
84
.9
9
15
7

29
0.
1
99
0

18
30

33
80

10
.1
3
2.
23

0.
49

0.
02

0.
01

0.
00
12

9.
04

1.
78

0.
35

0.
01
4
0.
00
3

5E
-

04
46

46
46

46
46

B
82
.2
9
14
7

26
3.
3
84
3

15
07

26
96

9.
93

2.
14

0.
46

0.
02

0
0.
00
1

9.
04

1.
78

0.
35

0.
01
4
0.
00
3

5E
-

04
46

46
46

46
46

C
87
.8
5
16
8

32
0.
4
11
69

22
32

42
63

10
.2
2
2.
27

0.
50

0.
02

0.
01

0.
00
12

9.
04

1.
78

0.
35

0.
01
4
0.
00
3

5E
-

04
46

46
46

46
46

D
91
.1
4
18
1

35
7.
8
14
05

27
83

55
15

10
.4
2
2.
36

0.
53

0.
03

0.
01

0.
00
14

9.
04

1.
78

0.
35

0.
01
4
0.
00
3

5E
-

04
46

46
46

46
46

E
86
.5
3
16
3

30
6.
2
10
84

20
38

38
34

10
.2
0
2.
26

0.
50

0.
02

0.
01

0.
00
12

9.
04

1.
78

0.
35

0.
01
4
0.
00
3

5E
-

04
46

46
46

46
46

F
90
.0
6
17
6

34
5.
3
13
24

25
91

50
74

10
.3
7
2.
34

0.
53

0.
03

0.
01

0.
00
14

9.
04

1.
78

0.
35

0.
01
4
0.
00
3

5E
-

04
46

46
46

46
46

G
82
.7
2
14
9

26
7.
5
86
5

15
55

27
97

9.
98

2.
17

0.
47

0.
02

0
0.
00
1

9.
04

1.
78

0.
35

0.
01
4
0.
00
3

5E
-

04
46

46
46

46
46

H
82
.4
6
14
8

26
5.
0
85
1

15
26

27
36

9.
96

2.
16

0.
47

0.
02

0
0.
00
1

9.
04

1.
78

0.
35

0.
01
4
0.
00
3

5E
-

04
46

46
46

46
46

I
83
.0
6
15
0

27
0.
8
88
3

15
94

28
79

9.
98

2.
17

0.
47

0.
02

0
0.
00
1

9.
04

1.
78

0.
35

0.
01
4
0.
00
3

5E
-

04
46

46
46

46
46

J
83
.5
7
15
2

27
5.
8
91
0

16
53

30
04

10
.0
1
2.
18

0.
47

0.
02

0
0.
00
11

9.
04

1.
78

0.
35

0.
01
4
0.
00
3

5E
-

04
46

46
46

46
46

K
97
.3
6
20
6

43
6.
1
19
54

41
35

87
51

10
.8
0
2.
54

0.
60

0.
03

0.
01

0.
00
18

9.
04

1.
78

0.
35

0.
01
4
0.
00
3

5E
-

04
46

46
46

46
46

L
15
1.
6
50
0

16
46

17
87
4
58
89
8

2E
+
05

15
.0
8
4.
94

1.
62

0.
17

0.
06

0.
01
87

9.
04

1.
78

0.
35

0.
01
4
0.
00
3

5E
-

04
46

46
46

46
46

24



T
ab

le
4.
2:

T
ab

le
sh
ow

in
g
th
e
n
od

e-
w
ei
gh

te
d
ce
nt
ra
li
ti
es

at
d
i↵
er
en
t
al
p
h
a
an

d
at

�
=

1

C
E
N
T
R
A
L
IT

Y
D
E
G
R
E
E

N
O
D
E
-W

E
IG

H
T
E
D

C
E
N
T
R
A
L
IT

Y
E
IG

E
N
-V

E
C
T
O
R

N
O
D
E
-W

E
IG

H
T
E
D

C
E
N
T
R
A
L
IT

Y
B
E
T
W

E
E
N
N
E
S
S

N
O
D
E
-W

E
IG

H
T
E
D

C
E
N
T
R
A
L
IT

Y
C
L
O
S
E
N
E
S
S

N
O
D
E
-W

E
IG

H
T
E
D

N
o
d
e

V
a
lu
e

S
a
le
s

=
1 2

↵
=

3 4

↵
=
1
1 4

↵
=
1
1 2

↵
=

1 2

↵
=

3 4

↵
=
1
1 4

↵
=
1
1 2

↵
=

1 2

↵
=

3 4

↵
=
1
1 4

↵
=
1
1 2

↵
=

1 2

↵
=

3 4

↵
=
1
1 4

↵

A
23
53
9

3.
7E

+
6

6.
8E

+
6

2.
3E

+
7

4.
3E

+
7

5.
2E

+
4

1.
16
E
+
4
55
9.
60

12
3.
18

4.
2E

+
4

8
31
7.
96

62
.5
1

1.
1E

+
6

1.
1E

+
6

1.
1E

+
6

1.
1E

+
6

B
19
06
5

2.
8E

+
6

5.
0E

+
6

1.
6E

+
7

2.
9E

+
7

4.
1E

+
4

8.
8E

+
3

41
1.
67

88
.8
9

3.
3E

+
4

66
63
.3
5

25
7.
3

50
.6
3

8.
8E

+
5

8.
8E

+
5

8.
8E

+
5

8.
8E

+
5

C
27
10
4

4.
5E

+
6

8.
7E

+
6

3.
2E

+
7

6.
1E

+
7

6.
2E

+
4

1.
4E

+
4

67
4.
32

14
9.
79

4.
8E

+
4

9
36
6.
12

71
.9
8

1.
2E

+
6

1.
2E

+
6

1.
2E

+
6

1.
2E

+
6

D
22
11
2

3.
99
E
+
6
7.
9E

+
6

3.
1E

+
7

6.
2E

+
7

5.
2E

+
4

1.
2E

+
4

60
5.
93

13
7.
22

3.
9E

+
4

7
72
8.
30

58
.7
2

1.
02
E
+
6
1.
02
E
+
6
1.
02
E
+
6
1.
02
E
6

E
9

1.
5E

+
3

2.
8E

+
3

9.
8E

+
3

1.
8E

4
2.
0E

+
1

4.
51

0.
22

0.
05

16
.0

3.
15

0.
12

0.
00

41
4

41
4

41
4

41
4

F
11

1.
9E

+
3

3.
8E

+
3

1.
5E

+
4

2.
9E

+
4

2.
6E

+
1

5.
80

0.
30

0.
07

19
.5
6

3.
84

0.
15

0.
03

50
6

50
6

50
6

50
6

G
18
31

2.
7E

+
5

4.
9E

+
5

1.
6E

+
6

2.
8E

+
6

4.
0E

+
3

8.
6E

+
2

40
.5
3

8.
79

3.
3E

+
3

63
9.
95

24
.7
3

4.
86

8.
4E

+
4

8.
4E

+
4

8.
4E

+
4

8.
4E

+
4

H
17
86

2.
6E

+
5

4.
7E

+
5

1.
6E

+
6

2.
7E

+
6

3.
8E

+
3

8.
3E

+
2

39
.0
5

8.
45

3.
2E

+
3

62
4.
22

24
.1
3

4.
74

8.
2E

+
4

8.
2E

+
4

8.
2E

+
4

8.
2E

+
4

I
38
27

5.
7E

+
5

1.
04
E
+
6
3.
4E

+
6

6.
1E

+
6

8.
3E

+
3

1.
8E

+
3

18
.3
8

6.
8E

+
3

1.
33

51
.6
9

10
.1
6

1.
7E

+
5

1.
7E

+
5

1.
7E

+
5

1.
7E

+
5

J
19
34
1

2.
9E

+
6

5.
3E

+
6

1.
8E

+
7

3.
2E

+
7

4.
2E

+
4

9.
2E

+
3

43
3.
35

94
.2
7

3.
4E

+
4

6.
75

26
1.
26

51
.3
6

8.
9E

+
5

8.
9E

+
5

8.
9E

+
5

8.
9E

+
5

K
18
72
4

3.
9E

+
6

8.
2E

+
6

3.
7E

+
7

7.
7E

+
7

4.
8E

+
4

1.
1E

+
4

14
4.
61

33
.9
7

6.
54

25
2.
92

49
.7
2

8.
6

E
+
5

8.
6

E
+
5

8.
6

E
+
5

8.
6

E
+
5

L
51
06

2.
6E

+
6

8.
4E

+
6

9.
1E

+
7

3.
0E

+
8

2.
5E

+
4

8.
3E

+
3

88
8.
71

29
1.
30

9.
1E

+
3

1.
78

68
.9
7

13
.5
6

2.
3E

+
5

2.
3E

+
5

2.
3E

+
5

2.
3E

+
5

25



multiplying this ratio by 100 and from this emerges the percentage accuracy.

Figure 4.2: Figure showing the road network of existing distribution center (node M) to the other sales
outlets. [Google Map of Selected Locations In UK]

4.4 Summary

For the purpose of measures of centralities, the Node-Weighted Betweenness and Node-
Weighted Closeness measures returned highest percentage of accuracies, thus presenting as
better measures of centrality in this case because how close a node is to all the other nodes
is considered more importantly, so also the ability to control the flow between nodes, as op-
posed to Node-Weighted Degree and Node-Weighted EigenVector which concentrates more
on the number of links to a particular node.

4.5 Conclusion

With all the results above one is now in a position to predict the location of a Distribution
Centre based on the resulting centrality measures obtained, for example in the case of node-
weighted centrality measure, Table 4.3 shows the most probable node that could serve as a
Distribution center for all other outlets considering its centrality value and its percentage
accuracy of prediction.

This same exercise when carried out for each of the node-weighted centralities and link-
weighted centralities yield the results of Table 4.4.

From Table 4.4, it could be seen that when the link-weighted centralities for degree and
eigenvectors are considered, node L is the most central but with an accuracy of 23.08 percent
while for the link-weighted betweenness and closeness the most central node is node F with
percentage accuracy of 95.73 percent. However, with the introduction of weights on the
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nodes (i.e. the sales values of each store) it could be seen that in all the 24 cases of node-
weighted centrality scores, node C has the highest centrality in 18 of the cases with the
highest percentage of accuracy of 91.6% except in cases whereby node L has the highest
centrality scores but with low accuracy of 23.08% as shown in Table 4.4.

Thus it could be concluded that Node C is the most probable node to be used as the
distribution centre because of its high centrality in cases of node-weighted centralities and
this is attributed to the corresponding high sales value of 27104 as shown in Table 4.2 . This
value of sales (representing the node-weight) is a significant contributory factor in making
Node C the most central as opposed to the situations when the linkweightedness are consid-
ered.
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Chapter 5

Clique Structure and Node-Weighted

Centrality Measures to Predict

Location of Structures

5.1 Weights on Nodes

The weights/strengths on the nodes can for example in a supply chain management system
(which is the focus of this chapter) be the value of sales made by each shop or cost of rentage
per square feet while the weight on edges might be the distances linking the shops or sales
outlets. There is a need to clarify the distinction between the node strength (herein referred
to as the weights of or on the nodes/vertices/actors) and the tie strength (herein referred
to as the weights attached to the tie/edge/link/line). This way one can give the deserved
considerations to weightedness and how they a↵ect centralities, thus enhancing our analysis.
Obviously networks are usually formed through the combinations of edges and vertices, as
such, considerations of attributes of both will possibly bring out a largely representative and
more robust analytic outcome. In addition to studying the links of the nodes, the attribute
of the nodes itself may be worthy of consideration ( e.g. how the sales values in a depot/store
is a↵ected by the links it has to the supplying unit or distribution centre).

5.2 Modulated Centrality Measure of Node-Weight

A modified centrality measure that combines the weights of nodes, weights/strengths on
edges and number of edges with consideration for each of the four basic centrality measures
(degree, eigenvector, betweenness and closeness) is hereby considered. It will be recalled
that it was earlier mentioned that the tuning parameter ↵ was introduced to determine the
relative importance of the number of the ties compared to the weights on the ties. A tuning
parameter � was introduced by Akanmu et al(2012, 2013) to take care of the weightedness on
the nodes, although the tuning parameter ↵ was applied to the degree/strength of the edges
as denoted earlier in equations (2.9) and (2.14) above. The newly evolved equation by way
of introduction of a tuning parameter � will now be the product of degree of a focal node,
the average weight to these nodes as adjusted by the newly introduced tuning parameter �
and the weight accorded to each node. So, for weighted degree centrality at ↵ and � we shall
now have equation (2.14) being recalled as (5.1) below:
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Cw↵�
d (i) = Ki ⇥ (

Si

Ki
)↵ ⇥ (Zi)

� = K(1�↵)
i ⇥ S↵

i ⇥ (Zi)
� (5.1)

where Ki = degree of nodes, Si = Cw
d (s) as defined in (2.8) above

Zi = weight of nodes, ↵ is � 0 ; {� 2 Z : -1  �  1}
The choice of value of � depends on what e↵ect the weight is having on the new centrality

measure, if for instance the weight is having a positive e↵ect (e.g. profit) the positive value
of � is employed otherwise the negative value(e.g. loss) shall be used in our calculation.

5.3 Case Study: Clique Structure/Node-Weight Modulated Cen-

trality Measures Applied To Supply Chain Management

The network coverage of an existing distribution centre (DC) located at Scotland was inves-
tigated and the retail outlets or shops are considered as nodes with the value of sales taken
to be the weights on the nodes while distances between nodes are regarded as the weights
on the edges. For our sample a 30miles radius coverage of shops from the existing DC was
taken and this makes 63nodes all connected by distances (see figure 5.1 below). The nearest
DC to this existing one is some 171miles away, so our coverage for this purpose is of 60miles
diameter, although this could be extended in future. Out of the community of 63 shops,
the Central and Lothian Counties accommodated 33 of these shops while Glasgow city and
Edinburgh have 30 of these. The existing DC at Livingston is actually situated in-between
these two cities. The clique of shops within Glasgow and Edinburgh were examined and the
most central from the two cliques were considered for the prediction of the new DC.

Tables 5.1 to Table 5.4 show the respective results that were obtained when the Link-
Weight Modulated Centrality and Node-Weight Modulated Centrality Measures are applied
to the 7 nodes of Glasgow and 23 nodes of Edinburgh from the supply chain management
dataset.

5.3.1 Implementation

The results were obtained using the software UCINET and tnet to generate the four weighted
centrality results of Degree, Eigenvector, Betweenness and Closeness, while Excel spreadsheet
was used to carry out the final calculations of the Node-Weight Modulated Centrality mea-
sures of each node/vertex. The schematic diagram of how the process was implemented is
as shown in figure 5.3 .

The initial dataset of the distances between the 30 sales outlets of Glasgow and Edin-
burgh presented as a 7x7 square matrix and 23 x 23 square matrix respectively which was
obtained from the UCINET software, saved in Excel format and later imported into UCINET
for the purpose of centralities calculations. Tables 5.1 & 5.2 depict the link-weighted cen-
trality measures at di↵erent values of alpha (in terms of degree, closeness, eigenvector and
betweenness).

The results came out as text files listing the di↵erent columns for each centrality measure,
and for the purpose of calculations of the node-weight modulated centrality, the values from
the text files were exported into Excel where a column was created for the weights on the
nodes. (See Tables 5.3 & 5.4).
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Figure 5.1: Figure showing the coverage of the 30miles radius, Source www.rightmove.co.uk

	
	

	
Figure 5.2: Figure showing the implementation of the Node-Weighted Centrality Measure
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The radius of coverage according to figure 5.1 is 30miles, accordingly the farthest possible
distance apart of any two nodes will be the diameter of such circle which is 60miles. This
was used (in column 9 of Table 5.5) for the calculation of ratio of distances from any node
to that of farthest distance apart. The percentage error of prediction is therefore calculated
by multiplying this ratio by 100 and from this emerges the percentage accuracy.

5.4 Conclusion and Discussion

From the tables 5.6 and 5.7, the two nodes 5 and 22 are the most central in terms of the
node-weightedness thereby representing the cliques of Glasgow and Edinburgh respectively.
Considering figure 5.3 ,

Figure 5.3: The proportional distance of the proposed DC

x is the proportional distance to the proposed Distribution Centre. TSV = Total Sales
Values The driving distance between node 5 (representing Glasgow clique) and node 22
(representing Edinburgh clique) is 42.8miles.

1-x/ x = 72743/41270 x = 0.36 (i.e. 36% of 42.8) which is 13.1miles
If x is some 13.1miles away from node 5 (Clique 1), and the existing DC is 27.4 miles

away from the same node 5, the di↵erence of the predicted DC will be 14.3miles away from
the existing DC, hence The error rate of the predicted DC = (14.3/42.80) x 100 = 33.4%
i.e. the percentage accuracy of the prediction = 66.6%

With all the results above one is now in a position to predict the most probable (regions
with respect to the nodes) that could serve as a distribution center for all other outlets
considering their node-weighted centrality and clique structures going by the percentage
accuracy of the prediction.

In Table 4.6, the node-weights are taken as the sales-value and:
NODE 43 (EH12 9BH) is 11.30units of distance to the existing DC. NODE 22 (EH12

7UQ) is 13.10units of distance to the existing DC.

37



T
ab

le
5.
5:

T
ab

le
sh
ow

in
g
th
e
sc
or
es

fo
r
th
e
n
od

e-
w
ei
gh

te
d
d
eg
re
e
ce
nt
ra
li
ty

of
ea
ch

n
od

e
w
it
h
p
er
ce
nt
ag
e
ac
cu
ra
cy

of
p
re
d
ic
ti
on

fo
r
G
la
sg
ow

.

V
A
R
IE

S
F
R
O
M

0
.2
5
T
O

1
.7
5

C
E
N
T
R
A
L
IT

Y
A
S

↵
N
O
D
E

W
E
IG

H
T
E
D

N
o
d
e

=
1 4

↵
=

1 2

↵
=

3 4

↵
=
1
1 4

↵
=
1
1 2

↵
=
1
3 4

↵
D

C
E
X
IS

T
IN

G
D
IS

T
A
N
C
E
S

F
R
O
M

F
A
R
T
H
E
S
T

S
P
A
N

O
F

N
E
T
W

O
R
K

E
X
IS

T
IN

G
D
C

&
T
H
E

F
R
O
M

T
H
IS

N
O
D
E

T
O

R
A
T
IO

O
F

D
IS

T

A
C
C
U
R
A
C
Y

P
E
R
C
E
N
T

1
44
87
1

—
63
61
0

—
90
17
4

—
18
12
13

—
25
68
89

—
36
41
67

—
29
.6
0

—
0.
49
3

—
50
.7

3
97
68
1

—
14
19
56

—
20
63
00

—
43
57
04

—
63
31
95

—
92
02
03

—
29
.1
0

—
0.
48
5

—
51
.5

4
65
36
0

—
10
31
71

—
16
28
56

—
40
57
86

—
64
05
36

—
10
11
09
0

—
28
.1
0

—
0.
46
8

—
53
.2

5
12
67
72

—
20
17
89

—
32
11
98

—
81
38
10

—
12
95
38
3

—
20
61
92
9

—
29
.7
0

—
0.
49
5

—
50
.5

11
36
54
8

—
58
71
4

—
94
32
4

—
24
34
35

—
39
10
77

—
62
82
63

—
29
.6
0

—
0.
49
3

—
50
.7

13
38
96

—
55
44

—
78
88

—
15
97
1

—
22
72
4

—
32
33
4

—
30
.6
0

—
0.
51
0

—
49
.0

15
31
99

—
46
17

—
66
64

—
13
88
4

—
20
03
9

—
28
92
4

—
30
.1
0

—
0.
50
2

—
49
.8

38



T
ab

le
5.
6:

P
er
ce
nt
ag
e
ac
cu
ra
cy

of
p
re
d
ic
ti
on

w
it
h
re
sp
ec
t
to

th
e
cl
iq
u
e
at

G
la
sg
ow

w
it
h
al
l
sh
op

s
lo
ca
te
d
w
it
h
in

a
30
m
il
es

ra
d
iu
s
of

th
e
d
is
tr
ib
u
ti
on

ce
nt
re

at
L
iv
in
gs
to
n
e
(E

H
54

8Q
W

).

↵
=

0.
25

↵
=

0.
5

↵
=

0.
75

↵
=

1.
25

↵
=

1.
5

↵
=

1.
75

T
y
p
e

C
en

tr
a
li
ty

N
o
d
e

C
en

tr
a
l

M
o
st

A
cc

u
ra

cy
P
er

ce
n
t

N
o
d
e

C
en

tr
a
l

M
o
st

A
cc

u
ra

cy
P
er

ce
n
t

N
o
d
e

C
en

tr
a
l

M
o
st

A
cc

u
ra

cy
P
er

ce
n
t

N
o
d
e

C
en

tr
a
l

M
o
st

A
cc

u
ra

cy
P
er

ce
n
t

N
o
d
e

C
en

tr
a
l

M
o
st

A
cc

u
ra

cy
P
er

ce
n
t

N
o
d
e

C
en

tr
a
l

M
o
st

A
cc

u
ra

cy
P
er

ce
n
t

L
in
k
W
ei
gh

te
d

D
eg
re
e

C
en
-

tr
al
it
y

N
O
D
E

11
50
.7

N
O
D
E

11
50
.7

N
O
D
E

11
50
.7

N
O
D
E

11
50
.7

N
O
D
E

11
50
.7

N
O
D
E

11
50
.7

L
in
k
W
ei
gh

te
d

E
ig
en
V
ec
to
r

C
en
tr
al
it
y

N
O
D
E

11
50
.7

N
O
D
E

11
50
.7

N
O
D
E

11
50
.7

N
O
D
E

11
50
.7

N
O
D
E

11
50
.7

N
O
D
E

11
50
.7

L
in
k
W
ei
gh

te
d

B
et
w
ee
n
n
es
s

C
en
tr
al
it
y

N
O
D
E

4
53
.2

N
O
D
E

4
53
.2

N
O
D
E

4
53
.2

N
O
D
E

4
53
.2

N
O
D
E

4
53
.2

N
O
D
E

4
53
.2

L
in
k
W
ei
gh

te
d

C
lo
se
n
es
s

C
en
tr
al
it
y

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
od

e
W
ei
gh

te
d

D
eg
re
e

C
en
-

tr
al
it
y

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
od

e
W
ei
gh

te
d

E
ig
en
V
ec
to
r

C
en
tr
al
it
y

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
od

e
W
ei
gh

te
d

B
et
w
ee
n
n
es
s

C
en
tr
al
it
y

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

4
53
.2

N
od

e
W
ei
gh

te
d

C
lo
se
n
es
s
C
en
-

tr
al
it
y

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

N
O
D
E

5
50
.5

39



Chapter 6

Weighted Marking, Clique Structure

and Node-Weighted Centrality in

Predicting Location of Structure

6.1 Weighted Marking Method and Clique Structure :

NodeWeight Modulated Centrality Measures Applied To Sup-

ply Chain Management

6.1.1 Weighted Marking Method

	
	
	
	

Existing	
Distribution	
Centre	

Airport	

Figure 6.1: Figure showing schematic diagram of Weighted Marking Method, with cones as shops & EDC
as existing DC.

Three main stages were proposed by [Thai & Grewal, 2005] in choosing a location for DC
using the Weighted Marking Method (WMM):

Stage1 Identification of a general geographical area for DC based on the principle of
centre of gravity while considering socio-economic factors. For the Scotland region in our
case study, Glasgow and Edinburgh are considered as being the most populated and with
tendencies for more economic activities.

Stage2 Identification of alternative locations of DC, these are the shops (cones) as in
figure 5.1 whereby EDC is the existing DC. The considered criteria for the cities in stage1
are: Criteria1 - C1 (proximity to customer bases); C2(Expansion capability); C3(percentage
of unemployment [to measure availability of labour force]) and C4(Average Income of resi-
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dents[to measure standard of living]).

Stage3 Selection of specific sites among the alternative locations in Stage2 using quan-
titative approach after having set a certain treshold (e.g. Composite functions greater than
or equal to 5), i.e. the composite point for each node is calculated using the formula below:

CompositePoint =
4X

1

{Pointofeachcriteria⇥ weightingfactorofcriteria} (6.1)

Thereafter the minimum from the products of Sales Volume and Distance is chosen as in
(5.10) below

MinV D = min{V olume of Sales⇥ Distance} (6.2)

Applying the technique of [Thai, V.V. & Grewal, D.(2005)], the result of Table 6.1 was
obtained: From above, node 79 is the winner and its distance from the existing DC is 14.1
units, therefore the error of prediction is 14.1/60 * 100 = 23.5%, which gives an accuracy of
76.5%.

The network coverage of an existing distribution centre (DC) located at Scotland was
investigated and the retail outlets or shops are considered as nodes with the value of sales
taken to be the weights on the nodes while distances between nodes are regarded as the
weights on the edges. For our sample a 30miles radius coverage of shops from the existing
DC was taken and this makes 63nodes all connected by distances (see figure 5.2 below). The
nearest DC to this existing one is some 171miles away, so our coverage for this purpose is
of 60miles diameter, although this could be extended in future. Out of the community of
63 shops, the Central and Lothian Counties accommodated 33 of these shops while Glasgow
city and Edinburgh have 30 of these. The existing DC at Livingston is actually situated in-
between these two cities. The clique of shops within Glasgow and Edinburgh were examined
and the most central from the two cliques were considered for the prediction of the new DC.

6.2 Clique Structure and Node-Weight Modulated Centrality Mea-

sures

The first case study was the region of Scotland and the second was for the region of Northern
Ireland. As depicted in figure 5.3 below, the clique of a graph is considered from among which
the most central of the nodes is taken to be representative of that clique, which in turn is
considered for the prediction test along with the other cliques.

From the Node-Weighted Centrality Measure, the two nodes 5 and 22 are the most central
in terms of the nodeweightedness, thereby representing the cliques of Glasgow and Edinburgh
respectively.

Tables 6.1 & 6.2 show the respective results that were obtained when the Node-Weight
Modulated Centrality Measures are applied to the 7 nodes of Glasgow and 23 nodes of
Edinburgh from the supply chain management dataset.
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Figure 6.2: Figure showing the coverage of the 30 miles radius of Scotland, cliques at Glasgow & Edinburgh.

	
	

	

	
	

Figure 6.3: Figure showing the cliques at Northern Ireland cities (Londonderry, NewtonAbbey & Belfast)
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6.3 Implementation

The initial dataset of the distances between the 30 sales outlets of Glasgow and Edinburghś
cliques were presented as a 7x7 square matrix and 23 x 23 square matrix respectively, these
were obtained from the UCINET and tnet software, saved in Excel format and later imported
into UCINET for the purpose of centralities calculations, see figure 6.2 . The results came
out as text files listing the di↵erent columns for each centrality measure, and for the purpose
of calculations of the node-weight modulated centrality, the values from the text files were
exported into Excel where a column was created for the weights on the nodes. Table 6.1 &
Table 6.2 depict the node-weighted centrality measures at di↵erent values of alpha (in terms
of degree, closeness, eigenvector and betweenness).

	
Figure 6.4: Figure showing the implementation of node-weighted centrality measure to the cliques of SCM

The radius of coverage according to figure 6.3 is 30miles, accordingly the farthest possible
distance apart of any two nodes will be the diameter of such circle which is 60miles. This
was used for the calculation of ratio of distances from any node to that of farthest distance
apart. The percentage error of prediction is therefore calculated by multiplying this ratio by
100 and from this emerges the percentage accuracy.
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6.4 Clique/Node-Weighted Measure Applied to the Supply Chain

Management (SCM)

x is the proportional distance to the proposed Distribution Centre.
TSV = Total Sales Values and the driving distance between node 5 (representing Glasgow
clique) and node 22 (representing Edinburgh clique) is 42.8miles.

1-x/x = TSV1 / TSV2
1-x/ x = 41270/72743
x = 0.36 (i.e. 36% of 42.8) which is 13.1miles

If x is some 13.1miles away from the highest sales valued node 22 (Edinburgh) , and the
existing DC is 15.4 miles away from the same node 22, the di↵erence of the predicted DC
will be 2.3miles away from the existing DC, hence,
the error rate of the predicted DC = (2.3/42.80) x 100 = 5.37%
i.e. the percentage accuracy of the prediction = 94.63%

With all the results above one is now in a position to predict the most probable (regions
with respect to the nodes) that could serve as a distribution center for all other outlets
considering their node-weighted centrality and clique structures going by the percentage ac-
curacy of the prediction.

Similar argument is also extended to some 51 shops at the Northern Ireland whereby three
cliques are considered, that is the cliques at Belfast (14 shops); Londonderry (three shops)
and NewtonAbbey (four shops). See figure 6.4 , whereby the centre of mass of the triangle
was considered to be the predicted Distribution Centre, while the angles of the nodes are
calculated using the cosine rule, see figure 6.5 :

Figure 6.5: Figure showing the angles of triangle BNL, distances apart of the nodes and sales values of each
clique.

Since only the distance between the shops are available, from the calculated angles the
co-ordinates were arrived at. See figure 6.6 :

From the figure 5.5 above, B(0,0) indicates origin whereby x1= 0 and y1 = 0
a1 = 74.2 Cos46.4 = 51.17
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Figure 6.6: Figure showing the co-ordinates of the triangle

h = 74.2 Sin46.4 = 53.73

The co-ordinate of the centre of mass for the triangle BNL is calculated using facts from
figure 5.6. above,
whereby x1= 0; x2= 7.4 ; x3=51.17 ; y1 = 0; y2 = 0; and y3 = 53.73
Total sales value at clique B (w1 = 88732) ; at clique N (w2 =18929) and at clique L (w3 =
16279) .
Hence, for the predicted DC (the centre of mass), the co-ordinates are

xcm =
1

n

Pn
i=1 mixi

M
(6.3)

ycm =
1

n

Pn
i=1 miyi
M

(6.4)

where M =
Pn

i=1 mi (the total weights on the nodes) and n = number of nodes/vertices.
Substituting in the values from figure 6.6 , equation (6.3) becomes,

xcm =
[0 x 88732]/[88732+18929+16279] + [7.4 x 18929]/[88732+18929+16279] + [51.17 x 16279]/[88732+18929+16279]/3

therefore, xcm =2.62 .

Similarly, ycm = 2.35
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So, the predicted DC has co-ordinates (2.62, 2.35), hence the distance from clique B as
shown in figure 6.7 below is BP

Figure 6.7: Figure showing the carved out portion of triangle BPH from triangle BNL of figure 6.6 above.
P is the predicted DC.

BP = {2.3522 + 2.6222} 1/2 = 3.52
Recall that from figure 6.3, the existing DC is 6.3 miles to the clique at Belfast, so the

error is 6.3 - 3.52 = 2.78 , that is, the percentage error is (2.78/73.6 x 100) , the farthest
distance apart from the existing DC being 73.6, therefore the percentage accuracy for this
prediction is 96.2% .

6.5 Summary and Conclusion

Two case studies were considered in the supply chain management, one considered two cliques
with horizontal distance apart (case study of Glasgow clique and Edinburgh cliques in Scot-
land), while the second case study considered the triangular shaped cliques of (Londonderry,
NewtonAbbey and Belfast, in the Northern Ireland).

The results obtained show that the combined weights have an obvious e↵ect on the cen-
tralities of the nodes considered as evidenced in the case studies of the Supply Chain Man-
agement(SCM). The tuning parameters alpha (whose values range between 0.25 and 1.75)
acts as the bounds for the relative importance of number of ties/weight of ties and the tuning
parameter beta (whose values are -1 and +1) serves as multiplicative/dividing factors for
weights of nodes. Graphs in the SCM were considered and e↵ects of the combined weights
on edges (distance between shops) and weights on nodes (sales value for SCM) were eval-
uated taking the betweenness, closeness, eigenvector and degree centrality into cognisance.
The resulting node-weight modulated centrality was then applied to the sales dataset while
introducing an additional tuning parameter � thereby making use of two parameters � and
↵.
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The resulting predictions in both cases were 94.6% accurate for the Scotland cliques
compared with the accuracy of 76.5% obtained with the Weighted Marking Method while
96.2% of accuracy was obtained in the case study involving the Northern Ireland with the
clique/node-weighted centrality measure.
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Chapter 7

Top Eigen-Vector Weighted Centrality

for Predicting Distribution Center

Location of a Supply Chain Network

7.1 Top-Eigen Weighted Vector Centrality Applied to a Quadri-

lateral

The node-weights of the sample used for this study is the sales value while the edges are
the driving distances between the shops in the sampled area. The sampled shops here are
maximally connected as all of them have road links, hence we take the advantage of the
clique structure by making the most central node of the chosen clique to be representative
of that clique. By that, we have a representative node each from the four cliques considered
for the purpose of the prediction of a proposed DC (see figure 7.1). In the county of Greater
Manchester, four cities were chosen for our sample, the city of Manchester (M); Bolton
(B); Oldham(L); and Wigan(W). In each of the cities, the ranking of the nodes(i.e. shops)
based on eigenvector centrality were considered, tested for all the four centralities (degree,
closeness, betweeness and eigenvector), thereafter, the highest ranking node called the top
eigenvector weight based was made to be representative of that city (see Table 7.1). The
driving distances apart of each of the representative cliques (M, B, L & W) were obtained
from google MAPI. UCINET , tnet and Excel software are used for obtaining the centralities
and doing the final calculations.

In Table 7.1, Node 18 with postcode BL4 9LS being the highest ranking always, was
chosen as the representative of the clique from Bolton when the Top eigen-vector weighted
centrality is used. Similar procedure was carried out for the other three nodes of Manch-
ester , Wigan and Oldham, hence the outcome of figure 6.1 In order to find the predicted
Distribution Centre (P), the following geometry had to be resolved.

Find � BML:
17.92 = 1.32 +18.52 -2 * 1.3 * 16.4 Cos� BML (using Cosine rule)
therefore � BML = 60.70

Find | LP | :
Sin29.3o= | LP |/18.5 (using Sine of a right angle)
| LP |=9.1 units
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Figure 7.1: Figure showing the clique representative of County of Greater Manchester

Similarly, by using Cosine of a right angle | MP |=16.1units
The mass mi’s (node-weights) of each of the representative node for each clique is as

shown below:
Manchester ’ M ’ = 16,330
Oldham ’ L ’ = 16,501
Bolton ’ B ’ = 8,550
Wigan ’ W ’ = 7,753
Total = 49,134

To find the co-ordinates for the centre of mass (xc,yc) which eventually becomes the
predicted DC, we use the calculation as shown below:

xc =
1

n

P
mixiP
m

(7.1)

= 1
4 {(16330*7.5 + 16501*23.6 + 8550*7.5 + 7753*0)/49134} =2.93

Similarly,

ycm =
1

n

P
miyiP
m

(7.2)

= 1
4 {(16330*0 + 16501*9.1 + 8550*1.3 + 7753*0)/49134} =0.82

Distance from E to Q is then calculated by solving the right angle triangle formed from
EQ , which makes | EQ | = 5.69units.
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Therefore, the error rate of prediction is:
| EQ |/(farthest span of any nodes) * 100
= 5.69/80 * 100
=7.11%
Hence the percentage accuracy of prediction = 100% - 7.11% = 92.89%

7.2 Summary/Conclusion

The TEVW centrality provides a more accurate percentage of 92.9% when the Manchester
county was introduced. The set of input resources for this method are the nodeweights and
link-weights, even though there are other factors to consider in the citing of a distribution
centre, this makes this method a cheaper one with high accuracy of prediction. The assump-
tions in this study is that the driving distances are taken to be a straight line in the model
figures, whereas in reality this might not necessarily be so.

It is clear that the node-weights (node attributes) actually count in any network as con-
firmed in this research whereby it forms the basis of prediction of a distribution centre with a
high accuracy while making use of the new centrality measure - Top Eigen-Vector Weighted
Centrality (TEVWC).
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Chapter 8

Newtonian Gravitational Force for

Predicting Distribution Centre

Location of a Supply Chain Network

8.1 Top-Eigen Weighted Vector Centrality and Newtonian Grav-

itational Force

The node-weights of the sample used for this study is the sales value while the edges are
the driving distances between the shops in the sampled area. The sampled shops here are
maximally connected as all of them have road links. Hence, we take the advantage of the
clique structure by making the most central node (the one with highest centrality) from each
clique to be a representative of that clique. By that, we have a representative node each
from the two cliques considered for the purpose of the prediction of a proposed DC (see
figure 8.1 below). In the county of Scotland, two major cities with higher concentration of
shops were chosen for our sample, the city of Glasgow and Edinburgh. In each of the cities,
the ranking of the nodes(i.e. shops) based on eigen-vector centrality were considered, tested
for all the four centralities (degree, closeness, betweeness and eigen-vector), thereafter, the
highest ranking node called the top eigen-vector weight was made to be representative of
that city (see Table 8.1). The driving distances apart of each of the representative cliques
for Glasgow and Edinburgh were obtained from google MAPI. UCINET , tnet and Excel
software are used for obtaining the centralities and doing the final calculations (see Figure
8.2).

The newtonian gravitational force was later introduced after the implementation of the
Top eigenvector weighted centrality.

8.1.1 Top-Eigen Weighted Vector Centrality

Node 22 with postcode EH12 7UQ being the highest ranking always, was chosen as the
representative of the clique from Edinburgh when the Top eigenvector weighted centrality is
used. Similar procedure was carried out for Glasgow clique and Node 5 with postcode G21
1YL came out being the representative of that clique.(Figure 8.3 and Figure 8.4)

From Figure 8.4, let x be the proportional distance to the predicted Distribution Centre,
and since the driving distance between node 5 (representing Glasgow clique) and node 22
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Figure 8.1: Figure showing the two cliques of Scotland shops (Glasgow on the left and Edinburgh on the
right)

Figure 8.2: Figure showing the implementation of TopEigen vector weighted centrality measure to the cliques
of Scotland
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Figure 8.3: Figure showing the Existing DC at Livingston(encircled) and the clique representative node at
Edinburgh marked ”2”.

Figure 8.4: Figure showing the representative cliques at Scotland cities of Glasgow and Edinburgh
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(representing Edinburgh clique) is 42.8miles, by proportion
1-x / x = 72743/41270, then x = 0.36 (i.e. 36% of 42.8) which is 15.4miles
If x is some 15.4miles away from the Edinburgh clique representative, and the existing

DC is 13.1 miles away from node 22, the di↵erence of the predicted DC will be 2.3miles
away from the existing DC, hence, the error rate of the predicted DC = (2.3/42.80) x 100
= 5.37% i.e. the percentage accuracy of the prediction = 94.63%

8.2 Newtonian Gravitational Force

This method is fashioned after the Newtonś gravitational law which ascerts that every objectś
mass will ascertain some amount of force on any neighboring object, no matter the distance
between them. The formula is:

F = K ⇥ m ⇤M
R2

(8.1)

where
F = Gravitational Force
k = constant
m =the mass of the first object
M=the mass of the second object
R=Distance between the two objects (it can be driving distance or the earth distance)

In case of the objects, which in this case are the 30 shops of Scotland (consisting of seven
shops from Glasgow and 23 shops from Edinburgh) as shown in Figure 8.4 . The shops
have pull e↵ects on the DC at Livingston, as such the vectorial resultant force F of each
node(shop) is calculated using the earth distances apart and the driving distances apart.

8.2.1 Earth Distance with 30 shops/nodes

When the representative clique (EH12 7UQ , i.e. Node 22) was used as origin (leaving 29
shops for consideration) as shown in Figure 8.5 , the total force is 314.53units but when the
actual DC for Scotland (EH54 8QW) was used as origin (as in Figure 8.3) for all 30shops
the total force was 12.28units.

In the Figure 8.5 above, the point marked ”1” is the representative clique (node 22) EH12
7UQ. This node is used as the origin for the other 29nodes in the region of Glasgow and
Edinburgh, which is, excluding the existing DC (EH54 8QW) at Livingston.

To make things clearer, the figure 8.6 below shows the existing DC - EH54 8QW (at
Livingston) as ”1” while ”2” represents the predicted DC - EH12 7UQ (at Edinburgh)

8.2.2 Driving Distance with 30 shops/nodes

For the driving distance, the total force for the DC as origin is 1,394,170.15 while the
representative clique as origin yielded 29,690,905.18 . The Table 8.2 summarises the findings
of the resultant forces when each of the driving distances and earth distances is used in the
calculations.
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Figure 8.5: Figure showing the representative clique of Edinburgh herein marked ”1” with other shops in
Scotland

Figure 8.6: Figure showing the Existing DC at Livingston and the representative clique at Edinburgh

Table 8.2: Table showing the total force for Earth and Driving forces for Scotland shops

S/No. of Distance
Type

CentreC
Distribution

Existing

Centre
Distribution
Predicted

1 EARTH
DISTANCE

1.23 E01 6.0 E01

2 DRIVING
DISTANCE

1.39 E06 4.76 E06
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8.3 Sample Nodes and Outliers

We consider three additional shops which are outliers , that is, not within Glasgow and
Edinburgh but within an increased coverage radius of 36miles against the previous 30miles
radius. This means we now consider 33 shops as our sample instead of the previous 30 shops,
these newly added shops are at South Queenferry, Hardington and Bathgate. With these
additional three shops added from within Scotland but outside Glasgow and Edinburgh, we
have the results in Figure 8.7 below:

Figure 8.7: Figure showing newly added nodes 32, 33 & 34 outside Glasgow and Edinburgh

The details of the new shops/nodes are as shown in the Table 8.3 :

Table 8.3: Table showing details of the three new nodes added to the existing 30 nodes/shops

Node Code
Post

Centre
Distribution

Existing
to

Distance

City Value
Sales

Latitude Longitude

32 EH30
9QZ

11.9 SOUTH
QUEENS-
FERRY

7948 55.9828 3.3990

33 EH41
3LZ

36.4 HADDINGTON 9358 55.9571 2.7777

34 EH48
2ES

3.8 BATHGATE 13746 55.8936 3.6215

With the addition of the three new shops and using each one as the origin to the remaining
32 shops, Table 8.4 compares the results with the existing DC and former representative
clique node using centrality measures.
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Figure 8.8: Figure shows the newly predicted DC as against the earlier predicted node labeled 2

8.4 Newtonian Gravitational Force with 30 nodes of Glasgow and

Edinburgh

Using the Earth distance between the shops and the Existing Distribution Centre (EDC) as
origin, we have the results in Table 8.5:

Using the driving distance between the shops and the Existing Distribution Centre (EDC)
as origin, we have the results in Table 8.6:

8.5 Newtonian Centrifugal Force with 33 shops of Glasgow and

Edinburgh

Using the driving distance between the shops and the Existing Distribution Centre (EDC)
as origin, we have the results in Table 8.7 :

Using the earth distance between the shops and the Existing Distribution Centre (EDC)
as origin, we have the results in Table 8.8 :

8.6 Summary of Accuracy with the Sales Values Used as Node-

Weights

It is hereby summarised in Table 8.9

8.7 Conclusion

The Newtonian Gravitational force provides a more accurate percentage of 4.4% more than
when the TEVW centrality was applied. The set of input resources for this method are
the node-weights and link-weights, even though there are other factors to consider in the
citing of a distribution centre, this makes this method a cheaper one with high accuracy of
prediction. The assumptions in this study is that the driving distances are taken to be a
straight line in the model figures in this study, whereas in reality this might not necessarily
be so.
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Table 8.9: Accuracy of results obtained for both earth/driving distances for 30 shops and 33 shops

to Edinburgh
From Glasgow
Force Nodes
of Highest

Percentage Accuracy

to Edinburgh
From Glasgow
Force Nodes
of Lowest

Percentage Accuracy

EARTH DISTANCE WITH 30 SHOPS 64.9% 63.2%
EARTH DISTANCE WITH 33 SHOPS 99.1% 99%
DRIVING DISTANCE WITH 30 SHOPS 64.9% 79.9%
DRIVING DISTANCE WITH 33 SHOPS 63.5% 84%

8.8 Summary

It is clear that the node-weights (node attributes) actually count in any network as confirmed
in this research whereby it forms the basis of prediction of a distribution centre with a
higher accuracy while making use of the newtonian gravitational force as compared with the
centrality measure - Top Eigen-Vector Weighted Centrality (TEVWC).
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Chapter 9

Future Studies, Summary and

Conclusion

9.1 Future Studies

Future Studies:
(i) The concept developed herein shall be applied to real data aggregate from cloud data
centres while taking betweenness centrality into consideration.
(ii) The tuning parameters ↵ and � can each be considered as a range of values, thereby
introducing dynamism as a measure of centrality, In future, the range of values for ↵ might
transcend the range of 1

4 and 13
4 as some interesting outcomes might surface.

(iii) While considering the centrality for the location of the high/low energy consuming
nodes/edges, other important factors to take into cognizance are the Power Usage E↵ective-
ness (PUE) and Tra�c Density Ratio (TDR).
(iv) So far, the links considered is just one link/edge between two nodes, whereby in this
case the weights on the links are distances. Occasion could arise in which case there could be
more than one link between two nodes, e.g communication bandwidth within two nodes and
physical distances between them could be combined in future, this could be a more complex
problem to solve in the future.
(v) This scenario is presently applied to the energy e�ciency in the data centres, authorship
network (Social network analysis) and supply chain management system. In future one can
consider applications on issues arising from the distribution systems of wireless ad-hoc net-
works, educational system (e.g. siting of new institutions), security issues (siting of the most
sensitive and central nodes) in a network and the models could be further extended to other
datasets such as in the area of disease control, whereby the model can be used to detect the
most central region where epidemic diseases are proned to spread easily or to find the most
vulnerable group in the society to an epidemic disease. Here the node weight could be the
preponderance of an infectious disease in a particular node and the edge weight will be the
distance apart from of highly infected nodes to other nodes in such a graph.
The domain of application could still be further expanded to cover area such as bioinfor-
matics whereby the visualisation and understanding of biology networks will make one to be
able to predict the reaction of cells to pharmaceutical drugs due to their positioning in such
a network.
Healthcare is another area of consideration, as the study of the connections between hospi-
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tals, patients, doctors and healthworkers can help a lot in the prediction of where to cite
new hospitals and even how to arrest or prevent epidemics.
In terms of network security, a more central node is protected and given more attention in
order to prevent or repel attacks from any form of intrusion.

9.2 Original Contributions

My original contributions are :
(i) Introduction of an additional tuning parameter � (spanning from -1 to +1) thereby mak-
ing use of two parameters ↵ and �.
(ii) Mixed-Mean Centrality
(iii) Introduction of node-weighted degree centrality as measures in predicting the citing or
allocation of resources.
(iv) Node-Weighted Eigen-Vector Centrality
(v) Top Eigen-Vector Weighted Centrality and Newtonian Gravitational Force .

Finally, the workdone in the past and on-going can be described briefly as below:

Table 9.1: Table of the past research on the area of Degree centrality measure

Measure
Centrality

Author Year Concern

1 Degree Centrality Granovetter 1973 Edges (i.e.
number of edges
connecting focal
nodes)

2 Degree Centrality Freeman 1978 Edges (i.e.
number of edges
connecting focal
nodes)

3 Degree Centrality Barrat et al 2003 Edges (i.e.
number of edges
connecting focal
nodes)

4 Degree Centrality Brandes 2001 Edges (i.e.
number of edges
connecting focal
nodes)

5 Degree Centrality Borgatti 2009 Edges (i.e.
number of edges
connecting focal
nodes)
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Table 9.2: Table of the past research on the area of Closeness centrality measure

Measure
Centrality

Author Year Concern

6 Closeness
Centrality

Granovetter 1973 Edges (i.e.
shortest path
between the
source node and
the target node)

7 Closeness
Centrality

Freeman 1978 Edges (i.e.
shortest path
between the
source node and
the target node)

8 Closeness
Centrality

Brandes 2001 Edges (i.e.
shortest path
between the
source node and
the target node)

9 Closeness
Centrality

Barrat et al 2003 Edges (i.e.
shortest path
between the
source node and
the target node)

10 Closeness
Centrality

Borgatti 2009 Edges (i.e.
shortest path
between the
source node and
the target node)

Table 9.3: Table of the past research on the area of Eigen-Vector centrality measure

Measure
Centrality

Author Year Concern

11 Eigenvector
Centrality

Bonacich P. 1972 Edges( Status
scores of nodes)

12 Eigenvector
Centrality

Bonacich P. 1987 Edges (Power and
Centrality of
measures)

13 Eigenvector
Centrality

Costenbader E. Valente T.W 2003 Edges(
Correlations
between
centralities)

14 Eigenvector
Centrality

Valente T.W et al 2008 Edges
(Correlations and
Regressions
among
centralities)
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Table 9.4: Table of the past research in the area of Betweenness centrality measure

Measure
Centrality

Author Year Concern

15 Betweenness
Centrality

Granovetter 1973 Edges and nodes
(i.e. number of
shortest paths
that pass through
a particular node)

16 Betweenness
Centrality

Freeman 1977to1978 Edges and nodes
(i.e. number of
shortest paths
that pass through
a particular node)

17 Betweenness
Centrality

Brandes 2001 Edges and nodes
(i.e. number of
shortest paths
that pass through
a particular node)

18 Betweenness
Centrality

Newman 2001 Edges and nodes
(i.e. number of
shortest paths
that pass through
a particular node)

19 Betweenness
Centrality

Borgatti 2009 Edges and nodes
(i.e. number of
shortest paths
that pass through
a particular node)

Table 9.5: Table of the past and On-going research in the other areas of centrality measure

Measure
Centrality

Author Year Concern

20 Generalised
Degree Centrality

Opsahl 2010 Edges (i.e.
Number of edges
and weights of
edges)

21 Topological
Centrality

Zhuge 2010 Edges and nodes
(i.e. number of
edges and number
of nodes)

22 Node-Weight
Modulated
Centrality

Akanmuś Thesis 2012/13/14/16 Edges and nodes
(i.e. mergers of
numbers/weights
of edges and
nodes)
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Table 9.6: Advantages/Disadvantages of the Degree, Closeness and Betweenness Centrality Measures

Measure
Centrality

Advantage Disadvantage Scenario
Recommended

1 Degree Centrality It is easier to
calculate ,as only
the local ties to
the focal node is
considered, and
also, the focal
node with the
highest centrality
has more nodes to
interact with.

The global
structure of the
network is not
taken into
consideration.
There could be
many ties from
other nodes to the
focal node but the
distances apart
may not be close
enough for good
interaction.

Where farness is
not important.

2 Closeness
Centrality

Takes into
consideration the
shortest distance
from the focal
node to all other
nodes.

It lacks
applicability to
disconnected
components.

Applicable where
proximity is of
essence.

3 Betweenness
Centrality

This determines
the control or flow
of resources
through the
shortest path
between the
nodes.

It can create a
bottleneck due to
the pressure on
the focal node
that sits
in-between the
shortest paths
between nodes.

Recommended for
a scenario
whereby there is a
need for
censorship and
control.
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Table 9.7: Advantages/Disadvantages of the Eigen-Vector and Generalised Degree Centrality Measures

Measure
Centrality

Advantage Disadvantage Scenario
Recommended

4 Eigenvector
Centrality

It is global
because it takes
into consideration
the importance of
the nodes to
which a focal node
is connected,
therefore it
includes the whole
network structure.

Nodes that are
not attched or
connected to more
centralised nodes
are penalised, even
though they might
have their own
local importance.

Recommended for
a scenario
whereby greater
outreach
connectivity is
needed.

5 Generalised
Degree Centrality

Considered the
number of the ties
and weights
attached to the
ties, thereby
improving on the
idea of
dichotomous
weightedness.

There are no
weights attached
to the nodes, only
the ties get
weights.

Recommended for
a scenario
whereby it is of no
importance to
attach weights to
the nodes.

Table 9.8: Advantages/Disadvantages of the Topological and Node-Weighted Centrality Measures

Measure
Centrality

Advantage Disadvantage Scenario
Recommended

6 Topological
Centrality

Considered the
topological
positions of nodes
and ties as well as
influence between
nodes and ties.

The nodes have no
weights attached.

Recommended for
situations where
there is need to
measure influence
between the ties
and nodes.

7 Node-Weight
Modulated
Centrality

Considered the
number of ties,
weights on the ties
and weights
attached to the
nodes.

It does not take
care of the
momentary
dynamism of the
weights attached
to the ties and
nodes. Discrete
values of ↵ and �
were only
considered.

Recommended for
situation whereby
the weights of the
nodes, ties and
consideration for
di↵erent centrality
measures is
important.
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