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Abstract 

Outer membrane vesicles (OMVs) are nano-sized structures that are formed when portions of the 

bacterial membrane bud and pinch off from the cell in a process called vesiculation. This process 

entraps a diverse range of bacterial products within the vesicles (including virulence factors) which are 

later released into the environment. The main project aims were to gain a fundamental understanding of 

vesiculation in a range of bacterial species and to enable targeted expression of recombinant proteins 

and other molecules for delivery and inclusion in OMVs. OMVs were isolated and characterised from 

various strains of Escherichia coli and Pseudomonas aeruginosa. It was found that OMVs from 

different bacterial strains are similar in appearance but have very different compositions and cargo. The 

proteins FimA and Flagellin were found to be heavily enriched within E. coli K-12 OMVs in a mutually 

exclusive way. They are known virulence factors that have been shown to be reciprocally regulated in 

E. coli cells but not in OMVs. FimA has previously been found to have an anti-inflammatory effect on 

human immune cells whereas Flagellin has a pro-inflammatory effect, which may be the reason that the 

two proteins are not packaged within OMVs together. This was further explored by purification of 

OMVs from a series of E. coli gene knockouts and clinical isolates to compare the protein profiles of 

the OMVs. Lastly, an E. coli strain containing GFP fused to FimA was trialled as a method of targeted 

delivery within OMVs. This method was successful as the GFP-FimA protein fusion was detected in the 

OMVs purified from this strain. Recombinant protein fusions such as this could allow use of E. coli 

OMVs for therapeutic applications such as drug delivery and vaccines. Furthermore, the packaging of 

FimA and Flagellin into E. coli OMVs may play a significant role in its pathogenicity and ability to 

modulate the host response to infection. These findings could highlight potential new drug targets 

against OMV-producing pathogens such as E. coli as well as providing further insight into using OMVs 

for drug delivery and vaccines. 
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Abstract 

Outer membrane vesicles (OMVs) are nano-sized structures that are formed when portions of the 

bacterial membrane bud and pinch off from the cell in a process called vesiculation. This process 

entraps a diverse range of bacterial products within the vesicles (including virulence factors) which are 

later released into the environment. The main project aims were to gain a fundamental understanding of 

vesiculation in a range of bacterial species and to enable targeted expression of recombinant proteins 

and other molecules for delivery and inclusion in OMVs. OMVs were isolated and characterised from 

various strains of Escherichia coli and Pseudomonas aeruginosa. It was found that OMVs from 

different bacterial strains are similar in appearance but have very different compositions and cargo.  

 

The proteins FimA and Flagellin were found to be heavily enriched within E. coli K-12 OMVs in a 

mutually exclusive way. They are known virulence factors that have been shown to be reciprocally 

regulated in E. coli cells but not in OMVs. FimA has previously been found to have an anti-

inflammatory effect on human immune cells whereas Flagellin has a pro-inflammatory effect, which 

may be the reason that the two proteins are not packaged within OMVs together. This was further 

explored by purification of OMVs from a series of E. coli gene knockouts and clinical isolates to 

compare the protein profiles of the OMVs. Lastly, an E. coli strain containing GFP fused to FimA was 

trialled as a method of targeted delivery within OMVs. This method was successful as the GFP-FimA 

protein fusion was detected in the OMVs purified from this strain. Recombinant protein fusions such as 

this could allow use of E. coli OMVs for therapeutic applications such as drug delivery and vaccines. 

These findings were also relevant to the study of P. aeruginosa OMVs which were also found to be 

enriched in Flagellin.  

 

E. coli and P. aeruginosa are Gram-negative bacterial strains which produce OMVs derived from the 

outer membrane of the bacterial cell envelope. As a comparison, membrane vesicles (MVs) were also 

purified from Streptomyces S4, which is a Gram-positive bacterium. Gram-positive bacteria do not have 

an outer membrane so MVs are derived from the cytoplasmic membrane instead. It had previously been 

found that Streptomyces S4 produces the antifungal agents candicidin and antimycin but it was not 

known how they were secreted. This study showed for the first time that Streptomyces S4 packages 

candicidin within membrane vesicles for release into the environment. Understanding of the natural 

packaging of cargo into the MVs of each bacterial strain is essential to maximise the selectivity and 

yield of cargo for therapeutic purposes. Furthermore, the packaging of FimA and Flagellin into E. coli 

OMVs may play a significant role in its pathogenicity and ability to modulate the host response to 

infection. These findings could highlight potential new drug targets against MV-producing pathogens 

such as E. coli as well as providing further insight into using MVs for drug delivery and vaccines. 
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Chapter 1: Introduction 

1.1 Introduction to Outer Membrane Vesicles 

Outer membrane vesicles (OMVs) are produced and secreted by Gram-negative bacteria. They are 

nano-sized, spherical vesicles, which are formed from the bacterial Outer Membrane (OM). OMVs can 

contain a wide range of cargo, which travel within the OMVs to reach their target in a concentrated and 

protected form. OMV cargo often includes virulence factors such as toxins or proteases which are 

beneficial to the bacteria that secrete them. Membrane vesicle release is conserved and mechanistically 

similar across a range of both prokaryotic and eukaryotic microorganisms (Prangishvili et al. 2000, 

Deatherage et al. 2012).  

1.1.1 The discovery of OMVs 

The formation of OMVs was first observed by electron microscopy in the 1960s (Chatterjee, Das. 

1967). This was demonstrated using actively growing Vibrio cholerae cells that were in the logarithmic 

stage of growth. The electron microscopy images showed the bulging of certain parts of the bacterial 

cell wall. These portions of the membrane then pinched off to form vesicles that were released 

extracellularly (Figure 1.1). The release of these vesicles had no effect on the cell wall, which remained 

intact (Chatterjee, Das. 1966 and 1967). The authors proposed that this was a novel secretory system 

which allowed the secretion of non-diffusible materials from the bacterial periplasm (Chatterjee, Das. 

1966 and 1967).  

 

Figure 1.1 Electron microscopy images of the 

formation of membrane vesicles from Vibrio cholerae 

cells 

V. cholerae cells were grown in peptone water to 

logarithmic growth phase. The cells were stained with 

lead and electron microscopy was used to visualise the 

bulging and budding from the cell membrane. The 

authors labelled the sequence of the budding process as 

A, B and C. The arrows represent granules associated 

with the cell wall. Magnification x 100,000. Image and 

experiment details sourced from Chatterjee et al. 1967. 
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These membrane sacs were later known as OMVs and were found to be produced by many Gram-

negative bacteria during growth phase (McBroom et al. 2005). The production and secretion of OMVs 

was also established as a new bacterial secretory mechanism (Kuehn et al. 2005). Lastly, OMVs were 

found to contain a range of cargo which are advantageous to the parent cell (discussed in Section 1.3).  

 

1.2 Composition of the cell envelope in Gram-negative bacteria 

1.2.1 Summary of the main differences in the composition of the cell envelope in Gram-

positive and Gram-negative bacteria 

The role of the bacterial cell envelope is to protect bacteria from extreme environments and prevent 

lysis of the cell. The majority of bacterial cell envelopes fall into two categories: Gram-positive or 

Gram-negative. The Gram-positive bacterial cell envelope contains a plasma membrane and a thick 

layer of peptidoglycan cell wall. The Gram-negative bacterial cell envelope is composed of an inner 

(plasma) membrane, a thin peptidoglycan cell wall and an outer membrane (OM). The periplasm is the 

space between the inner and outer membrane in Gram-negative bacteria, which contains the 

peptidoglycan layer (Figure 1.2).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lastly, it should be noted that there are some examples of bacteria that do not fit into either category. 

For example, the cell wall of Mycobacterium tuberculosis contains characteristics of both Gram-

negative and Gram-positive bacteria (Fu et al. 2002). 

  

Figure 1.2 Comparison of the cell envelope in Gram-positive and Gram-negative cells 

The Gram-negative bacterial cell envelope is composed of the inner (plasma) membrane, a thin 

peptidoglycan cell wall and an outer membrane (a). The Gram-positive bacterial cell envelope is 

composed of the plasma membrane and a thick peptidoglycan cell wall (b). Image sourced from 

Brown et al. 2015. 
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1.2.2 Composition of the cell envelope in Gram-negative bacteria 

The Gram-negative cell envelope is composed of the inner (cytoplasmic) membrane, the periplasm and 

the outer membrane which contains the lipopolysaccharide component (Figure 1.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.2.1 The Outer Membrane (OM) 

OMVs are formed from the OM of Gram-negative bacteria. The OM serves as a barrier to protect the 

cell from the environment. The OM is composed of the inner and outer leaflet. The inner leaflet 

contains phospholipids and lipoproteins and the outer leaflet is composed of lipopolysaccharide (LPS).  

 

Lipopolysaccharide (LPS)  

LPS is unique to Gram-negative bacteria and is exposed on the bacterial cell surface. The LPS 

molecules are tightly bound and packed together making an effective barrier against the entry of 

hydrophobic molecules. The LPS component of Gram-negative bacteria is pro-inflammatory and can 

cause the endotoxic shock observed in septicaemia (Raetz, Whitfield. 2002). LPS has three different 

components: lipid A, a core polysaccharide and an O antigen polysaccharide which projects outwards 

from the cell wall (Figure 1.3). 

 

Figure 1.3 The composition of the cell envelope in Gram-negative bacteria  

There are three layers to Gram-negative cell envelope: 1. The outer membrane: an asymmetrical 

bilayer composed of an inner leaflet formed of phospholipids and an outer leaflet composed of 

lipopolysaccharide which projects outwards. 2. The peptidoglycan cell wall: a polymer that provides 

structure to the bacterial cell envelope, located within the periplasm. 3. The inner membrane: 

composed of phospholipids, also known as the cytoplasmic membrane (a). The lipopolysaccharide 

is formed of: 1. Lipid-A 2. Core polysaccharide which split into the inner and outer cores 3. O 

antigen polysaccharide which projects outwards from the cell wall (b). Image sourced from Brown et 

al. 2015 and Okuda et al. 2016. 

1 

2 

3 

a 
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Lipid A 

Lipid A is located next to the phospholipid layer of the OM and anchors the LPS to the bacterial 

membrane. It is composed of a β (1→6)-linked glucosamine disaccharide backbone (Steimle et al. 

2016). It is usually hexa-acylated meaning that there are six acyl chains associated with the backbone 

(Steimle et al. 2016). However, the number of acyl groups can vary as well as the length of the chains. 

Lipid A is responsible for much of the toxicity of Gram-negative bacteria. When Gram-negative 

bacteria are lysed by the hosts’ immune system, LPS (and Lipid A) can be released into the hosts 

circulation. It is a highly potent activator of immune cells and during bacterial infection can cause the 

body to go into septic shock which can be fatal.  

 

Core polysaccharide 

The core polysaccharide links Lipid A to the O antigen which projects outwards from the cell. The outer 

core is composed of more common sugars including hexoses such as glucose and galactose (Erridge et 

al. 2002). The inner core contains many phosphorylated glycan residues which increase the negative 

charge of the outer membrane and help to stabilise the cell. It contains a ‘high proportion of unusual 

sugars such as 3-deoxy-D-manno-octulosonic acid (Kdo) and L-glycero-D-manno heptose (Hep)’ 

(Erridge et al. 2002).  

 

O-antigen 

The O-antigen is composed of repeating oligosaccharides and is highly variable in the number of 

repeating units and sugars. Due to its variability, bacteria are classed by serotype based on the O antigen 

found on each strain (Erridge et al. 2002). On some bacterial species, the O-antigen is truncated or 

absent altogether. As the O antigen is expressed on the outside of the cell, it is one of the main antigens 

targeted by the host immune system (Erridge et al. 2002). 

Outer membrane proteins 

The majority of proteins from the OM can be classed as lipoproteins or β-barrel proteins (Silhavy et al. 

2010). Almost all of the integral, transmembrane proteins found in the OM are in a β-barrel 

conformation (Silhavy et al. 2010). This includes the Outer Membrane Proteins (OMPs) such as the 

porins which form channels in the membrane and allow the passage of small ions and molecules across 

the OM. Example of porins are OmpC and OmpF in E. coli (Figure 1.4). The porins present in the OM 

also prevent the entry of hydrophilic molecules above 700 Daltons to limit diffusion into the cell 

(Silhavy et al. 2010). For these reasons, the OM gives Gram-negative bacteria resistance to 

environmental stress and antibiotics.   
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The stability of the cell envelope is due to the protein links between the IM, peptidoglycan and OM. The 

OM is attached to the peptidoglycan layer by an outer membrane lipoprotein called Lpp. If there are 

places in the membrane where the Lpp link is absent, this is often the location for OMV biogenesis 

(discussed further in Section 1.4). OmpA is a protein in E. coli, which binds and links the OM to the 

peptidoglycan layer (Figure 1.4). OmpA is known to be present in E. coli OMVs, which is discussed 

further in Section 3.1.2. 

Outer membrane-associated enzymes 

OMVs contain proteins from the OM from which they are formed. The OM of Gram-negative bacteria 

(such as E. coli) contain a family of outer membrane proteases called Omptins (Vandeputte-Rutten et al. 

2001). Omptins appear to be virulence factors in pathogenic Gram-negative bacteria as they cleave a 

range of substrates at the host-pathogen interface such as antimicrobial peptides and plasminogen 

(Brannon et al. 2015). An example of this is the finding that the ompT gene is present in E. coli clinical 

isolates from patients with complicated urinary tract infections (Webb et al. 1996). OmpT cleaves and 

inactivates the antimicrobial peptide protamine which is produced by epithelial cells in the urinary tract 

(Stumpe et al. 1998). This degradation in the OM prevents protamine from reaching the inner 

(cytoplasmic) membrane which is its site of action (Stumpe et al. 1998). 

 

Figure 1.4 Structure of the Gram-negative bacterial cell envelope highlighting the location of OmpC, 

OmpF, OmpA and Lpp 

The cell envelope is composed of the inner (cytoplasmic) membrane, the outer membrane and the 

periplasmic space which contains the peptidoglycan layer (PG). The stability of the cell envelope is due to 

the protein links between the IM, peptidoglycan and OM. The lipoprotein Lpp forms crosslinks between 

the OM and the layer of peptidoglycan (purple ovals). OmpA is situated in the OM and also forms 

links to the peptidoglycan (yellow). Lastly, the Tol-Pal complex spans the whole cell envelope from 

the IM to the OM for stability (includes proteins TolQ, TolR, TolA, TolB and Pal). Image sourced 

from Schwechheimer, Kuehn (2015). 
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1.2.2.2 Peptidoglycan and the Periplasm 

The periplasm is a viscous, aqueous compartment between the inner and outer membrane. It is densely 

packed with enzymes and proteins, particularly those associated with the secretory pathway. It is also a 

membrane bound compartment where potentially harmful toxins or degradative enzymes can be 

sequestered. Within the periplasmic space, there is a thin layer of peptidoglycan which is composed of 

the monosaccharides N-acetyl glucosamine (NAG) and N-acetyl muramic acid (NAM). The sugar 

component of the peptidoglycan contains strands of alternating residues of NAG and NAM, which are 

connected by the cross-linking of peptide chains present on the NAM residues (Figure 1.5). The result is 

an extremely strong 3D structure that gives the cell structure and prevents bacterial lysis (Silhavy et al. 

2010) 

 

This layer is rigid and provides structure to the cell to prevent cell lysis (Silhavy et al. 2010). The 

peptidoglycan layer is connected to the outer and inner membrane by various proteins for strength and 

stability of the bacterial cell structure.  

 

1.2.2.3 The Inner Membrane (IM) 

The IM is a phospholipid bilayer that encloses the cytoplasm. The membrane proteins in the IM 

function in lipid biosynthesis, protein secretion and energy production. In Gram-negative bacteria, 

OMVs are formed from the outer membrane rather than the inner membrane.  

1.3 OMV composition and cargo 

1.3.1 OMVs are formed from the Outer Membrane of the Gram-negative cell envelope 

OMVs range from 50 nm to 300 nm in diameter (Brandon et al. 2014) and are spherical in shape 

(Chatterjee, Chaudhuri. 2011). The formation of OMVs from the OM appears to be a controlled process 

Figure 1.5 Schematic representation of 

the structure of peptidoglycan 

Peptidoglycan is formed of the 

monosaccharides N-acetyl glucosamine 

(blue squares labelled NAG) and N-acetyl 

muramic acid (purple squares labelled 

NAM). The sugar component of the 

peptidoglycan contains strands of 

alternating residues of NAG and NAM 

which are connected by the cross-linking 

of peptide chains present on the NAM 

residues (green links). Image sourced 

from Malinicova et al. 2010. 
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that does not affect the cellular structure or integrity. Evidence suggests that OMVs are formed at sites 

where the lipoprotein (Lpp) link between the peptidoglycan layer and OM are missing or broken. The 

formation of OMVs involves the budding and pinching off of a segment of the OM which entraps some 

components of the periplasm (Ellis et al. 2010). Therefore, OMVs contain phospholipids, periplasmic 

proteins, OMPs and LPS which projects outwards (Figure 1.6). It is also evident that OMVs include 

material from the periplasm, which appears to involve a specific sorting mechanism that is not yet fully 

understood.  

 

1.3.2 Chemical components of OMVs 

Within OMVs, the ratios of each lipid type, fatty acid content and the ratio of phospholipid to protein 

(Brandon et al. 2014) resemble that of the bacterial outer membrane but not the inner membrane. As 

discussed in the Section 1.2, the sugar KDO is a marker of LPS from the OM of Gram-negative 

bacteria. KDO has also been detected on OMVs (Kato et al. 2002), which is further evidence that 

OMVs are formed from the OM. Analysis of OMV proteomes also found many OM proteins within 

OMVs such as OmpA and OmpF. OMVs also were found to selectively contain periplasmic proteins 

(Bauman et al. 2006). For example, proteins associated with peptidoglycan were found to be excluded 

from E. coli OMVs. Virulence factors (such as toxins) were found in high concentrations within the 

OMVs as if they were selectively targeted there (Horstman, Kuehn. 2002). 

 

Figure 1.6 Model to show OMV production  

In this model, OMVs bud from the Gram-negative bacterial envelope. OMVs contain proteins and lipids 

from the OM and material from the periplasm. It is thought that budding occurs at sites where the 

lipoprotein (Lpp) link between the peptidoglycan layer and OM are missing or broken. Image sourced 

from Ellis, Kuehn. 2010. 
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Material from the inner membrane (IM) and cytoplasm are generally thought to be excluded from 

OMVs (McBroom et al. 2006) although there have been exceptions. Marker proteins of the inner 

membrane such as succinate dehydrogenase and NADH oxidase are generally absent from purified 

OMVs (Brandon et al. 2014). This is strong evidence that OMV biogenesis is a controlled and 

deliberate process.  

1.3.3 Summary of possible OMV cargo  

There are two main advantages of packing and transporting molecules within OMVs. Firstly, certain 

proteins appear to be enriched in OMVs so that they become concentrated for release into the 

environment. Secondly, the packaged material can be transported while being protected from factors 

that may cause degradation in the environment (for example proteases). Possible cargo within OMVs 

include proteins, DNA and RNA. OMVs purified from pathogenic bacteria can contain toxins, 

multidrug efflux pumps and immunomodulatory compounds (Figure 1.7).  

 

1.3.4 Why do bacteria secrete OMVs? 

1.3.4.1 Aids Pathogenicity 

Toxins 

Many Gram-negative bacteria use OMVs to secrete virulence factors. OMVs are known to contain 

toxins that can cause disease in the host. Toxins known to be OMV-associated include the Shiga toxin 

from Shigella dysenteriae serotype 1 (Knockoutling et al. 1999), which is cytotoxic and causes host cell 

apoptosis (Dutta et al. 2004). Another example is Cytolysin (ClyA) found in OMVs from 

Enterohemorrhagic E. coli (EHEC) strains. ClyA monomers spontaneously form pore complexes at 

membranes, which cause cell membrane rupture and lysis (Roderer et al. 2016). ClyA in the periplasm 

exists in an oxidised form where disulphide bonds between cysteines keep ClyA in an inactive state 

(Wai et al. 2003). In the lumen of the OMVs, however, ClyA was found in a reduced form and was able 

Figure 1.7 Cargo of a typical 

OMV 

Findings from the proteomic, 

biochemical and biological studies 

of OMVs are summarised in this 

schematic diagram. Cargo types 

were split into the following 

categories: Bacterial survival, 

Nutrient sensing, Modulation of host 

immune response, ABC 

transporters, Killing competing 

bacteria and Targeting to the host 

cell. Image sourced from Brandon et 

al. 2014.  
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to form an active pore structure. Evidence suggests that ClyA within the OMV is more potent and 

cytotoxic to mammalian cells than ClyA purified from the periplasm (Wai et al. 2003).  

 

Adhesins 

OMVs contain proteins called adhesins in the outer membrane, which allow them to interact and adhere 

to host cells. Adhesins also allow OMVs to be internalised by host cells efficiently so that virulence 

factors can be released. An example of this is the Ail adhesin/invasin located in the OM of OMVs of 

some E. coli strains. OMVs from a laboratory E. coli strain that contained Ail were internalised by 

eukaryotic cells at a rate that was 10-fold higher than those that did not express Ail (Kesty et al. 2004).   

 

Proteases 

Proteases can also be associated with OMVs and when released they can act on either host cells or other 

competing bacteria. An example of this is the presence of murein hydrolases in P. aeruginosa OMVs. 

When released, these proteases cause degradation of the peptidoglycan layer in bacterial cell walls (Li et 

al. 1998). This is advantageous as this can cause lysis of competitor bacteria so that more resources are 

available in the environment for the OMV-producing bacterium as there is less competition. Another 

advantage may also be that lysis of other bacteria in the environment causes the release of organic 

compounds into the environment which can be used by the OMV-producing bacteria for growth. 

 

1.3.4.2 Aids bacterial cell survival 

Immunomodulatory functions 

Many OMVs contain compounds that modulate the hosts’ immune response. In Helicobacter pylori, the 

LPS of the OMVs are bound to Lewis antigens which induce a strong response from the host immune 

system (Hynes et al. 2005). This is beneficial for the OMV-producing cell as the host cells immune 

system functions to remove the OMVs rather than targeting the bacterial cell. Alternatively, OMV cargo 

can function to inhibit the hosts’ immune response. For example, UspA1 and UspA2 associated with 

OMVs from Moraxella catarrhalis bind to a member of the complement cascade called C3 (Tan et al. 

2007). This inhibits the complement cascade to protect the OMV-producing bacterial cell in its 

immediate environment (this is discussed further in Section 1.10). 

 

Antibiotic resistance 

OMVs have also been found to contain multidrug efflux pumps which are used to move toxic 

compounds and antibiotics out of the OMVs (Gellatly, Hancock. 2013). Some OMVs contain proteases 

to catalyse degradation of antibiotics to remove them from the environment. For example, OMVs from 

Pseudomonas aeruginosa have been found to contain β-lactamase in the lumen of the vesicles 

(Bonnington, Kuehn. 2014), which aids resistance to β-lactam antibiotics such as penicillins (Chatterjee, 

Chaudhuri. 2012). 
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Antibacterial factors 

Antibacterial factors that have been packaged in OMVs include autolysins and murein hydrolases (Li et 

al. 1996). In 1998, OMVs from Gram-negative bacteria were found to lyse both Gram-positive bacteria 

and other Gram-negative bacteria (Li et al. 1998). As well as reducing the competition in the 

environment, lysis of non-self bacterial cells releases nutrients into the environment which can be 

utilised by the OMV-secreting bacterium. For example, Pseudomonas aeruginosa eliminates 

neighbouring bacteria by secreting periplasmic peptidoglycan hydrolases through OMVs when nutrients 

are scarce (Kadurugamuwa, Beveridge. 1997).  

 

Bacteriophage decoy 

Bacteriophages are viruses that infect bacteria to reproduce, which ultimately results in bacterial cell 

lysis. In order to prevent this, evidence suggests that bacteria such a Vibrio cholerae secrete OMVs as a 

decoy for bacteriophages. It appears that bacteriophages bind to receptors on the surfaces of OMVs and 

sequesters them so that they cannot bind to the OMV-producing bacterial cell (Reyes et al. 2018). 

 

Genetic diversity  

Evidence suggests that a range of Gram-negative bacteria package DNA into their OMVs (Kolling et al. 

1999). So far, chromosomal DNA, plasmid DNA and bacteriophage DNA have been detected within 

OMVs (Chatterjee, Chaudhuri. 2012). For example, the DNA within the lumen of P. aeruginosa OMVs 

remains present even after treatment with an extracellular DNase (Kadurugamuwa, Beveridge. 1995). 

This is evidence that the DNA is protected from degradation within the lumen of the OMV. It was 

hypothesised that DNA within OMVs could be transferred to another bacterial cell as a method of gene 

transformation (Yaron et al. 2000). To test this, OMVs were purified from an E. coli strain that 

expressed green fluorescent protein (GFP) on a plasmid with ampicillin resistance. These OMVs were 

able to transform this plasmid into a different E. coli strain that did not contain this plasmid or gene. 

The E. coli cells became ampicillin resistant and fluoresced green due to the GFP (Yaron et al. 2000). 

This evidence suggests that OMVs may play a role in gene transfer between bacteria.   

1.3.4.3 Aids cell to cell communication 

Biofilm formation 

A biofilm is a community of microbial cells attached to a surface enclosed in a self-produced 

extracellular matrix. Biofilms create a protective and nutrient-rich environment that allow microbes to 

thrive. The extracellular matrix is composed of polysaccharides, proteins and extracellular nucleic acids 

such as DNA. The polysaccharide component of the extracellular matrix provides structure and 

protection and its adhesive properties allow bacteria to adhere to the surfaces and other cells. The 

biofilm protects the cells from antibiotics, cells of the hosts’ immune system and extreme environments 

such as desiccation (Limoli et al. 2015). OMVs are used to release exopolysaccharides to form the 

matrix. They also allow bacteria in a biofilm to communicate via quorum sensing. 
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Quorum-sensing (QS) 

Both Gram-negative and Gram-positive bacteria communicate using quorum sensing (Ramsey et al. 

2009). QS involves the release of signalling molecules, which are used for both intraspecies and 

interspecies communication. Bacteria can detect when there is an accumulation of these molecules in 

the environment, which allows the cells to sense the number of bacteria (cell density). The molecules 

involved in QS can be secreted and delivered to neighbouring bacteria using OMVs (Bielig et al. 2001). 

QS allows bacteria in a population to coordinate gene expression according to cell density (Miller, 

Bassler. 2001). Bacteria use QS to work together to respond appropriately to a change in the 

environment. For example, QS is used to adapt to a change in nutrient availability and to form biofilms. 

Bacteria often use QS to co-ordinate their virulence (for example all secreting a toxin simultaneously) 

and to avoid the host immune response by forming biofilms. 

 

Bacteria use different types of QS signalling molecules called autoinducers. The most common are the 

acyl-homoserine lactones (AHLs) (Cataldi et al. 2007). Some QS molecules are secreted into the 

environment without OMVs. However, some QS molecules are highly hydrophobic and unable to cross 

the LPS layer on Gram-negative cell envelopes or they are too large. In these cases, QS signalling 

molecules can be packaged into OMVs. An example of this is the quorum sensing molecule produced 

by P. aeruginosa called Pseudomonas Quinolone Signal (PQS). PQS is packaged into OMVs for 

transport from cell-to-cell as it is hydrophobic. PQS has been found to cause curvature in the OM of 

other P. aeruginosa cells and it has also been found to initiate and increase OMV production in other 

cells (Mashburn-Warren et al. 2008). This is discussed further in Section 1.4.1. 

1.4 OMV biogenesis 

1.4.1 Models of OMV biogenesis 

Electron microscopy images suggest that OMVs are formed by bulging of the OM which pinches off 

and captures proteins from the periplasm. However, analysis of OMV composition suggests that the 

process is more regulated and complicated than this. For example, the composition of the OMV is 

similar but can differ from the bacterial OM it is derived from. Similarly, OMV-associated proteins can 

vary greatly from the periplasm as certain proteins appear to be enriched and others excluded from the 

OMVs (Schwechheimer, Kuehn. 2015). There are many models proposing different theories for the 

process of OMV biogenesis, which are discussed below. OMV biogenesis will be discussed in three 

parts: 1. Bulging 2. Cargo enrichment and exclusion 3. Scission.  

 

 

1.4.1.1 Outer Membrane Bulging 

The first step of OMV biogenesis is the bulging of the OM, which can be explained by the four models 

below (Figure 1.8).   
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Model 3: Lipid microdomains 

• Some areas of the OM can become enriched with certain types 

of LPS, LPS-associated proteins and/or phospholipids. These 

areas are known as Lipid microdomains 

• Lipid microdomains tend to bulge outwards due to the LPS 

charge or increased membrane fluidity. This leads to an 

increase in OMV formation in these areas 

 

 

 

 

 

 

 

Figure 1.8 Four models of how the outer membrane bulges to produce OMVs  

The four models of OM bulging are: 1. Missing lipoprotein link (a) 2. Accumulation of envelope components 

or misfolded proteins (b) 3. Lipid microdomains (c) 4. Insertion of Pseudomonas quinolone signal (PQS) 

into the outer leaflet (d). Image sourced from Schwechheimer, Kuehn (2015).  

Model 4: Insertion of Pseudomonas quinolone signal 

(PQS) into the outer leaflet 

• P. aeruginosa packages the quorum sensing molecule 

Pseudomonas Quinolone Signal (PQS) into OMVs for 

transport from cell-to-cell as it is hydrophobic  

• PQS is bound to LPS in the bacterial outer membrane 

• PQS has been found to cause curvature in the P. aeruginosa 

OM and it has also been found to initiate and increase OMV 

production (Mashburn-Warren et al. 2008) 

 

d 

Model 2: Accumulation of envelope components or misfolded 

proteins 

• OM bulging occurs where there is an accumulation of misfolded 

proteins or cell envelope components such as peptidoglycan 

fragments or LPS. These areas are known as Outer Membrane 

Nanoterritories and also appear to have reduced Lpp crosslinks 

between the OM and peptidoglycan 

• This is thought to induce bulging of the OM and this leads to 

increased OMV production in these areas to remove these 

misfolded proteins from the cell in OMVs 

• There is thought to be an imbalance in the production of 

peptidoglycan in certain regions of the periplasm. This leads to an 

excess of muramic acid which generates turgor pressure and causes 

OM bulging (Zhou et al. 1998) 

 

c 

b 

Model 1: Missing lipoprotein (Lpp link) 

• For an OMV to form, the outer membrane must detach from the 

peptidoglycan layer 

• Peptidoglycan (PG) endopeptidases are thought to form the Lpp 

link between the peptidoglycan and the outer membrane in the 

cell envelope 

• At the position where the Lpp links are reduced or missing, 

localised membrane curvature occurs and OMVs are produced 

a 
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1.4.1.2 Cargo enrichment and exclusion  

The abundance of a particular protein in the OM and periplasm does not necessarily reflect the 

concentration of that protein within the OMV. A selective and regulated process of enriching and 

excluding certain proteins from the OMVs is thought to occur. It appears that cargo, which is destined 

to be incorporated into the OMVs, is targeted to the sites of OMV budding. Similarly, cargo that is not 

destined for the OMVs are located away from the sites of OM bulging (Figure 1.9). Currently, there is 

not a known signal sequence on proteins destined to be incorporated into OMVs (Kulp et al. 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4.1.3 Scission 

It has been proposed that OMVs are released from the cell when the bud grows to a size where the 

membrane curvature forces it to separate and causes scission. The source of energy for membrane 

scission remains unclear. One possibility could be the transfer of energy from the cytoplasm but the 

mechanism is still unknown and further research is needed (Kulp et al. 2010). 

 

1.4.2 How are the contents of OMVs released at the target site? 

1.4.2.1 Entry of OMVs into other Prokaryotic cells 

Gram-negative bacteria 

The fusion of OMVs with other Gram-negative cell membranes is the most likely route of entry as their 

membranes are so similar. Once the OMVs have fused to the bacterial cell, the OMV luminal contents 

are released into the periplasm (Kulp et al. 2018). OMVs may contain peptidoglycan hydrolase enzymes 

Figure 1.9 Model for OMV cargo selection  

Cargo to be included within the OMVs appear to interact with OM-associated proteins which are prone to 

budding. Cargo to be excluded from OMVs are thought to interact with other cell envelope components 

which are not found at the sites of budding and OMV formation 

Image sourced from Schwechheimer, Kuehn (2015).  

 

• Certain cargo from the periplasm appear to be 

selectively included or excluded from OMVs via a 

sorting mechanism 

 

• Cargo to be included within the OMVs appear to 

interact with OM-associated proteins which are 

located in sites prone to budding 

 

• Cargo to be excluded from OMVs are thought to 

interact with other cell envelope components which 

are not found at the sites of budding and OMV 

formation 
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which can degrade the peptidoglycan cell wall in the periplasm and cause bacterial cell lysis 

(Kadurugamuwa, Beveridge. 1996). 

 

Gram-positive bacteria 

Gram-positive bacteria have very different membrane compositions to OMVs produced from Gram-

negative bacteria. Evidence suggests that OMVs adhere to the cell wall of Gram-positive bacterial 

membrane then lyse. The cargo is then released and enters the cell by diffusion through the membrane 

(Kulp et al. 2018). Some OMVs contain peptidoglycan hydrolase enzymes, which digest the Gram-

positive peptidoglycan cell wall and cause lysis (Kadurugamuwa, Beveridge. 1996).  

1.4.2.2 Entry of OMVs into Eukaryotic cells 

There are four main methods that allow OMV entry into eukaryotic host cells which are summarised 

below (Figure 1.10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The routes of entry into host cells can be split into the following categories: 

1. Clathrin dependent: Clathrin is a protein that plays a major role in clathrin-mediated 

endocytosis. Clathrin is the major scaffold protein that can assemble into a cagelike structure on 

cell membranes. When ligands bind to receptors on the cell surface, the clathrin structure forms 

around the desired cargo to become the inside surface of the vesicles formed during 

endocytosis. Clathrin coated pits are formed on the membrane of the host cell. OMVs contain 

ligands on their surface, which bind to the host cell receptors. The OMVs are internalised by 

the cell through clathrin-mediated endocytosis and enter the endosomal trafficking pathway of 

the host cells where the OMV cargo is released. 

2. Caveolin mediated: Lipid rafts are microdomains of the plasma membrane with increased 

concentrations of cholesterol and sphingolipids (Mulcahy et al. 2014). These domains are 

Figure 1.10 Entry of OMVs 

into eukaryotic cells 

Diagrams of four routes of 

entry are shown above: 1. 

Clathrin dependent 2.Caveolin 

mediated 3. Lipid raft 4. 

Membrane fusion. Inhibitors 

of OMV entry are also listed 

above next to the relevant 

method. Image sourced from 

O'Donoghue, Krachler. 2016. 
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sometimes enriched with the membrane protein caveolin. Caveolins form caveolae which are 

cave-shaped invaginations of the host cells plasma membrane. The internalisation of the OMVs 

using caveolin-mediated endocytosis is thought to avoid fusion with lysosomes. This means 

that the cargo of the OMVs is delivered faster with less chance of degradation compared to 

clathrin-dependent endocytosis (Lim et al. 2014). OMVs contain ligands which bind to host 

cell receptors to trigger endocytosis. 

3. Lipid raft mediated: Lipid raft domains are more compact than other areas of the plasma 

membrane and can cause an inwards curvature of the membrane (invaginations). Viruses are 

known to use lipid rafts to enter host cells and it is possible that OMVs use lipid rafts as points 

of entry too (Kulp et al. 2010). This route of OMV uptake is not reliant on clathrin or caveolin 

coated membrane invaginations. 

4. Membrane fusion: OMVs have been found to enter eukaryotic host cells despite the 

differences in membrane architecture. Model membranes representing OMVs and host 

membranes have confirmed that fusion between the two membrane types can occur (Jager et al. 

2014). However, the exact mechanism remains unclear.  

5. Macropinocytosis: Macropinocytosis is a type of endocytosis that involves the internalisation 

of extracellular material from the environment. It is characterised by polymerisation of actin to 

form actin filaments at the cell membrane. The cell membrane ruffles and closes in a way that 

engulfs extracellular material from the surroundings (Weiner et al. 2016). It is possible that 

OMVs enter host cells via micropinocytosis, however, it is not believed to be an event induced 

by the OMVs themselves (O'Donoghue, Krachler. 2016). 

 

1.5  Is OMV secretion a novel secretion system? 

Gram-negative bacteria have six major secretory mechanisms, which are summarised later on in Section 

1.5.2. In order for a molecule to be secreted from bacteria, there are two membranes to cross (the inner 

and outer membranes).  

1.5.1 Summary of the Secretory pathway (Sec) and the Twin-arginine translocation 

pathway (Tat) 

There are two different pathways to transport proteins across the inner membrane in Gram-negative 

bacteria: the Secretory pathway (Sec) and the Twin-arginine translocation pathway (Tat). In the Sec 

pathway, proteins are transported in an unfolded state. They are folded at the trans-side of the 

membrane. The Tat-pathway on the other hand transports proteins in their folded (native state). 
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Sec pathway: transport of unfolded proteins  

Secreted proteins will either be released into the periplasm in an unfolded form or may be embedded in 

the inner membrane (Figures 1.11-1.13). Proteins destined for the Sec pathway have a hydrophobic 

signal sequence which is approximately twenty amino acids long. This signal sequence found at the N 

terminus of the protein is recognised by either SecB or a signal recognition particle (discussed below). 

 

Sec pathway: Proteins destined for the periplasm or extracellular secretion 

Proteins destined for the periplasm or secretion outside of the cell contain a removable signal sequence 

specific for this Sec pathway. SecB recognises the signal sequence and binds to it to keep the protein 

unfolded. SecB delivers the protein to SecA which guides the protein to a channel called SecYEG. The 

protein is transported in an unfolded state using the ATPase activity of SecA for energy (Figure 1.11).  

 

 

 

 

 

 

Sec pathway: Proteins destined for the inner membrane 

Proteins that are destined for the inner membrane contain a different signal sequence recognised by 

SRP. SRP binds to the protein during translation at the ribosome. The docking protein FtsY then guides 

the protein-ribosome complex to the SecYEG channel. However, in this case, the protein passes out of 

the side of the SecYEG channel and remains embedded in the membrane (Figure 1.12).  

 

 

 

 

 

 

Tat pathway: transport of folded proteins 

The Tat pathway is used for the secretion of folded proteins which are folded and/or post-translationally 

modified in the cytoplasm. In this pathway, TatB and TatC bind to a specific signal peptide on the N 

terminal of the protein. TatA is then recruited to the membrane to form a channel across the inner 

membrane to translocate the folded proteins (Figure 1.13). 

 

  

 

Figure 1.12 Secretory pathway 

for proteins destined to be 

embedded in the inner 

membrane 

Image sourced from Green et al. 

2016. 

Figure 1.13 Twin-arginine 

translocation pathway for 

folded proteins  

Image sourced from Green et al. 

2016. 

Figure 1.11 Secretory pathway 

for proteins destined for the 

periplasm 

Image sourced from Green et al. 

2016. 
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1.5.2 Overview of bacterial secretion systems 

Bacterial secretion systems are complexes of proteins which are found on the bacterial cell membrane 

and are used for the extracellular secretion of proteins or other substances. They are used by pathogenic 

bacteria to secrete virulence factors which can cause damage to the host or other competing 

microorganisms in the environment. There are six major bacterial secretory systems in Gram-negative 

bacteria which are outlined in Table 1.1. 

 

Table 1.1 – Comparison of the six secretion systems in Gram-negative bacteria  

 

Name of 

Secretion 

System 

Number 

of steps 

in 

Secretion 

Uses Sec     

or Tat? 

Summary of Mechanism Molecules 

transported 

Type I 

Section 

System 

(T1SS) 

1 No Protein contains a signal sequence specific for the 

ABC transporter. The protein is excreted outside 

of the OM through a tunnel-like protein channel 

Proteins, ions, 

drugs, 

polysaccharides 

Type II 

Section 

System 

(T2SS) 

2 Yes Proteins are initially transported to the periplasm 

through the Sec or Tat systems. Once in the 

periplasm, the molecule passes through the outer 

membrane using a multimeric protein complex 

Proteins 

Type III 

Section 

System 

(T3SS) 

1-2 No Similar to a syringe, proteins are injected into 

eukaryotic cell cytoplasm from the bacterial 

cytoplasm through the complex known as an 

injectosome 

Toxic proteins 

Type IV 

Section 

System 

(T4SS) 

1 Yes Uses an envelope spanning complex of proteins 

that forms a channel from the cytoplasm of the 

bacterial cell to the cytoplasm of a recipient cell.  

DNA and protein 

macromolecules 

Type V 

Section 

System 

(T5SS) 

2 Yes Proteins are transported through the inner 

membrane using the Sec pathway. These proteins 

can form β-barrel structures in their C-terminus 

which allows insertion into the OM (this is known 

as the autotransporter). The rest of the peptide can 

reach outside the cell which is known as the 

passenger domain. The autotransporters are often 

cleaved which releases the passenger domain 

while leaving the β-barrel domain in the OM 

Proteins (such as 

adhesins) 

Type VI 

Section 

System 

(T6SS) 

1 No Current models of this secretion system suggest 

that there is dynamic structure which closely 

resembles a bacteriophage. This is anchored to the 

cell by a complex which spans the cell envelope. 

Proteins can be transported to from the cytoplasm 

of the bacterial cell to a target cell using this 

machinery 

Proteins 
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1.5.3 Evidence that OMVs are a novel secretory system in Gram-negative bacteria 

The formation and secretion of OMVs containing cargo was described as a seventh bacterial secretion 

system (McBroom, Kuehn. 2007). It can be labelled as a secretion system as cargo is packaged into 

OMVs in a deliberate and selective way for later release into the environment. It is also very different 

from the existing secretion systems outlined in Table 1.1 and Figure 1.14 above. The unique 

characteristics of OMVs as a secretion system were outlined in a review in 2010 (Kulp et al. 2010) and 

were as follows: 

1. OMVs can be used to secrete bacterial lipids and other insoluble compounds that cannot be 

secreted via the other six secretory systems. 

2. Cargo is protected within the lumen of the OMVs. This means that they are protected from 

extracellular proteases in the environment until they have reached their target destination. 

3. Proteins (for example virulence factors) can be delivered to the target in high concentrations 

within the OMVs. OMVs allow these molecules to reach the target cells in a concentrated form 

where they are fully folded and biologically active. 

4. OMVs can contain adhesins on their surface to target them to specific target cells bearing the 

correct receptors. 

5. Lastly, multiple virulence factors can be packaged together for maximum damage to the target 

cell (Demuth et al. 2003). 

  

Figure 1.14 Schematic diagram of the bacterial secretory systems 

Secretory systems Type I to VI are represented here along with the Sec and Tat systems. Image 

sourced from Depluverez et al. 2016. 
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1.6 Using Escherichia coli (E. coli) as a model system to study OMVs 

1.6.1 Introduction to E. coli  

E. coli is a commensal organism in humans and is part of the intestinal flora. It can also be found in 

every day food such as raw meat, raw egg, vegetable salads and unpasteurised milk. Some strains of E. 

coli can acquire virulence factors and become pathogenic. These strains can cause a range of diseases 

such as urinary tract infections, kidney infections, cystitis, cholangitis, food poisoning and bacteraemia. 

Treatment for infections caused by E. coli are becoming more difficult as they have developed 

resistance mechanisms to most first-line antibiotics (Sabaté et al 2008). Antibiotic resistance in E. coli 

is a major concern as it is the most common Gram-negative bacterial pathogen in humans (Rasheed et 

al. 2014). Virulence factors of pathogenic E. coli include adhesins, flagella, fimbriae and hemolysin. 

They are also easily able to acquire and accumulate antibiotic resistance genes through horizontal gene 

transfer making many strains multidrug resistant (Poirel et al. 2018). 

 

1.6.2 E. coli pathogenicity 

Urinary tract infections (UTIs) 

Approximately 50 to 60% of women will have UTIs in their lifetimes, the majority of which are caused 

by E. coli (Al-Badr, Al-Shaikh. 2013). Some of these will develop recurrent UTIs where the same 

pathogen re-infects multiple times. UTIs can infect the bladder, urethra or kidneys and can currently be 

treated by antibiotics. In the worst cases, UTIs can cause bacteraemia, which can be fatal (Figure 1.15). 
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Urinary tract infections begin when uropathogens, such as E. coli, contaminate the periurethral area. 

These bacteria can then colonise the urethra (step 1). After entering the urethra, E. coli can then migrate 

upwards towards the bladder (step 2). The bacteria can adhere to uroepthelial cells by expressing Type 1 

fimbriae and adhesins (step 3). The immune response of the host causes neutrophils to arrive to the site 

of invasion (step 4). However, bacteria can evade the immune system due to morphological changes or 

invasion of host cells. These successful bacteria multiply (step 5) then form biofilms (step 6) for 

protection. Bacteria within the biofilm can secrete toxins and proteases to damage host epithelial cells 

(step 7). Bacteria can now migrate towards the kidneys (step 8) and begin colonisation of renal tubular 

epithelial cells by expressing Type 1 fimbriae (step 9). The tissues of the kidney are also damaged by 

release of toxins such a haemolysin (step 10). Cytokines are also induced, which causes an 

inflammatory immune response. This is known as pyelonephritis (a kidney infection). If the bacteria 

cross the kidney tubular epithelial barrier, the uropathogens can enter the blood and cause bacteraemia 

which can be fatal (step 11).     

  

Figure 1.15 The stages of 

urinary tract infections (UTIs) 

The eleven stages of UTIs are 

described in detail below. In the 

case of infection due to a 

catheter, the immune response 

causes the accumulation of 

fibrinogen on the catheter. 

Uropathogens that express 

fibrinogen-binding proteins can 

form biofilms on the catheter 

(see step 3). Image sourced 

from Flores-Mireles et al. 2015. 
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1.6.3 Type 1 fimbriae biosynthesis and introduction to FimA 

Type 1 fimbriae are extracellular appendages that are synthesised by E. coli cells (Figure 1.16 a). 

Fimbriae allow bacteria to adhere to host cells and allow colonisation of host tissues. Type 1 fimbriae in 

E. coli bind to mannose receptors on the surface of urinary epithelial cells (Nishiyama et al. 2005) to 

initiate the colonisation of a certain area. They are 2-7 nm in diameter but can be up to 2 µm in length 

(Costello et al. 2012). Fimbriae are anchored in the outer membrane of Gram-negative bacteria by FimD 

(see Figure 1.16 b). The main structural component of Type 1 fimbriae is FimA. FimA monomer 

proteins polymerise to form the rod portion of the Type 1 fimbriae, which contains approximately 300-

5000 FimA monomer subunits (Nishiyama et al. 2005). The tip fibrillum is synthesised first and 

consists of FimH, FimG and FimF. FimA monomers are then added and polymerise to form the main 

structure of the Type 1 fimbriae. 

 

To assemble the Type 1 fimbriae, the chaperone protein FimC forms complexes with new proteins 

entering the periplasm. Fimbriae-associated proteins FimA, FimF, FimG and FimH are transported 

across the inner membrane (via the Sec pathway) into the periplasm. Type 1 fimbriae components are 

assembled by FimC (the periplasmic chaperone) and an usher protein called FimD. FimD is located in 

the outer membrane and is also known as the assembly platform as it is the location where Type 1 

fimbriae are synthesised (Figure 1.16 b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fimbrial subunits have an immunoglobulin-like fold but are missing the seventh C-terminal β strand 

(known as the ‘pilin fold’). This means that the Ig-like folds are incomplete and that the subunit folding 

is dependent on a periplasmic chaperone for the correct folding. The chaperone protein FimC forms 

complexes with each of the fimbrial subunits in the periplasm. FimC donates the missing β-strand to 

Figure 1.16 Schematic diagram of 

the formation of Type 1 fimbriae 

Type 1 fimbriae are extracellular 

appendages produced by E. coli for 

adhesion which can be visualised using 

electron microscopy (a). Diagram 

shows assembly of Type 1 fimbriae by 

the chaperone-usher pathway (b). 

Image a was sourced from Costello et 

al. 2012. Image b was sourced from 

Nishiyama et al. 2005. 

 

a 

 

b 

 

Type 1 fimbriae  
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complete the protein so it is ready for incorporation into the Type 1fimbriae. The FimC-protein 

complexes are recognised by FimD in the outer membrane. The folded subunits are released from FimC 

are guided by FimD through the outer membrane and on to the growing Type 1 fimbriae.  

 

In the assembled fimbriae, there is an N-terminal extension of approximately 15 residues preceding the 

‘pilin fold’. This acts as a donor strand to the subunit before it. Each fimbrial subunit gives its donor 

strand to the subunit before it and accepts a donor strand from the next subunit in the chain. It is thought 

that a conformation change occurs during subunit assembly, which makes Type 1 fimbriae so stable. 

The quaternary structure of the Type 1 fimbriae produced extracellularly is helical. These fimbrial 

proteins are important as FimA monomer was found to be heavily enriched in some E. coli OMVs.  

1.6.4 Flagella biosynthesis and introduction to Flagellin 

Flagella are extracellular appendages used by bacteria for motility which are used for host invasion. 

Flagella are approximately 10-30 nm in diameter and 5-20 µm in length (Atlas of Oral Microbiology, 

2015). Bacterial flagellum are complex structures and typically over 50 genes are involved in flagellar 

synthesis and function (Figure 1.17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1.17 Schematic diagram of flagellar assembly 

A typical flagellum consists of the following components: 1. The basal body 2. A motor 3. A switch 4. A 

hook 5. A filament 6. Export apparatus (a). The long helical filament portion rotates as a propeller which 

allows motility. List of full protein names are found in (b). Image sourced from Kegg, 2017. 

 

1 

2-3 

4 

5 

6 

FlgA flagella basal body P-ring formation protein FlgA

FlgB flagellar basal-body rod protein FlgB

FlgC flagellar basal-body rod protein FlgC

FlgD flagellar basal-body rod modification protein FlgD

FlgE flagellar hook protein Flg

FlgF flagellar basal-body rod protein FlgF

FlgG flagellar basal-body rod protein FlgG

FlgH flagellar L-ring protein precursor FlgH

FlgI flagellar P-ring protein precursor FlgI

FlgK flagellar hook-associated protein 1 FlgK

FlgL flagellar hook-associated protein 3 FlgL

FlgN flagella synthesis protein FlgN

FlhA flagellar biosynthesis protein FlhA

FlhB flagellar biosynthetic protein FlhB

FliC flagellin

FliD flagellar hook-associated protein 2

FliE flagellar hook-basal body complex protein FliE

FliF flagellar M-ring protein FliF

FliG flagellar motor switch protein FliG

FliH flagellar assembly protein FliH

FliI flagellum-specific ATP synthase

FliJ flagellar FliJ protein

FliK flagellar hook-length control protein FliK

FliM flagellar motor switch protein FliM

FliN flagellar motor switch protein FliN/FliY

FliO flagellar protein FliO/FliZ

FliP flagellar biosynthetic protein FliP

FliQ flagellar biosynthetic protein FliQ

FliR flagellar biosynthetic protein FliR

FliS flagellar protein FliS

FliT flagellar protein FliT

MotA chemotaxis protein MotA

MotB chemotaxis protein MotB

a 

b 
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The main structural component of flagella is the protein Flagellin (FliC). Flagellin monomers are 

transported from the cytoplasm into a central channel through the basal body and hook structures to the 

filament. Flagellin monomer subunits polymerise to form the main structural subunit of the flagella and 

this occurs under the FliD filament cap. The final structure can contain 20,000-30,000 Flagellin subunits 

that form a helical structure.  

Flagellin monomers have strong oligomerisation potential and polymerise into filaments in vitro. It is 

thought that the N and C terminals of FliC are responsible for Flagellin polymerisation. In the 

monomeric form of Flagellin, the N and C terminals are exposed and have no tertiary structure. 

However, these regions become folded and incorporated into the polymer. In the cytosol, spontaneous 

polymerisation is prevented by a cytosolic chaperone protein that is specific for binding to FliC called 

FliS. FliS binds to the C terminal of Flagellin and inhibits premature polymerisation (Auvray et al. 

2008). Bacterial flagella are of interest as the Flagellin (FliC) monomer was found to be heavily 

enriched in some E. coli OMVs.  

 

1.6.5 E. coli K-12 strains vs. B strains 

E. coli K-12 strains and E. coli B strains are very commonly used as a model organism in the scientific 

community. E. coli is widely used in biotechnology due to its rapid doubling time, ease of genetic 

manipulation and our extensive knowledge of the genome, metabolomics and biochemistry. The origin 

of the E. coli K-12 strain can be traced to a stool sample in 1922 at Stanford University (Bachmann et 

al. 1972). Although the origins of the E. coli B strain are unclear, they are commonly used for bacterial 

transformations and expression of recombinant proteins. B strains are deficient in extracellular 

appendages such as flagella and fimbriae, which reduces their pathogenicity compared to K-12 strains 

(Marisch et al. 2013). E. coli B strains (such as BL21) are also deficient in certain proteases such as Lon 

and OmpT. They also have enhanced membrane permeability to allow uptake of plasmid DNA. 

 

One of the ultimate project aims was to manipulate E. coli strains into producing OMVs with specific 

cargo for therapeutic use. For this study, OMVs were purified from the E. coli B strains: BL21 and 

BL21 (DE3). The DE3 designation means that the strain carries the gene for T7 RNA polymerase under 

control of the lacUV5 promoter. This allows inducible protein expression of any gene controlled by the 

T7 promoter when induced with IPTG. It is called DE3 as the T7 RNA polymerase gene is carried on a 

DE3 lysogen. OMVs were also purified from a range of K-12 strains and six clinical isolates for 

comparison (Chapter 4). 
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1.7 Using Pseudomonas aeruginosa OMVs as Gram-negative comparison 

1.7.1 Introduction to Pseudomonas aeruginosa (P. aeruginosa) 

P. aeruginosa are ubiquitous Gram-negative bacteria, which are commonly found in the environment in 

soil and water. They are classed as opportunistic pathogens as they rarely cause disease in healthy 

individuals, but are a major cause of infection in patients that are immunocompromised. P. aeruginosa 

is one of the most common causes of hospital-acquired infections and ventilator-associated pneumonia 

(Barbier et al. 2013). P. aeruginosa infection can be fatal in immunocompromised patients such as 

those with cystic fibrosis (CF). CF leads to the formation of a thick layer of mucus within the lungs of 

the patients. This prevents mucociliary clearance by the cilia, which line the lungs and function to clear 

any pathogens or inhaled particles from blocking the airways. This provides an ideal area for P. 

aeruginosa to colonise and form biofilms with other opportunistic pathogens such as Bukholderia 

cenocepacia (Eberl et al. 2004). Treating P. aeruginosa infections is becoming increasingly difficult as 

P. aeruginosa strains are versatile and able to adapt well to environmental changes. P. aeruginosa 

strains have now developed resistance to many of the current antibiotics available (Okamoto et al. 

2001). The strains not only have intrinsic resistance to antibiotics, but are also easily able to acquire 

genes encoding resistance mechanisms making this strain a global threat to human health.  

 

1.7.2 Roles of OMVs in the pathogenicity of P. aeruginosa  

P. aeruginosa strains can form biofilms with other bacteria, such as Burkholderia cenocepacia, in the 

lungs of CF patients. Bacteria can communicate during the formation of biofilms by quorum sensing 

(Eberl et al. 2004). P. aeruginosa strains produce OMVs, which have been found to contain virulence 

factors, such as toxins and β-lactamases. The OMVs can diffuse across the mucus layer found within the 

lungs and are internalised by lung epithelial cells that cause the release of the cargo (Koeppen et al. 

2016). Interestingly, the virulence factor Cif (CFTR inhibitory factor) has been found in OMVs which 

was found to reduce the host immune response (Koeppen et al. 2016). Cif causes lysosomal degradation 

of CFTR (CF transmembrane conductance regulator), which is essential for mucociliary clearance 

within the lungs. Also, Cif has been found to decrease MHC class 1 antigen presentation on lung 

epithelial cells (Koeppen et al. 2016). P. aeruginosa OMVs were studied as a Gram-negative bacterial 

comparison for E. coli OMVs with an aim to compare and contrast OMV cargo in another clinically 

relevant strain.  
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1.8 Membrane Vesicles from Gram-positive bacteria 

1.8.1 Gram-positive cell envelope 

As discussed in Section 1.2.1, the Gram-positive cell envelope is composed of a cytoplasmic membrane 

and a thick peptidoglycan cell wall, with no outer membrane present (Figure 1.18). Instead, there is a 

thick layer of peptidoglycan to protect the cell membrane from harsh environments and turgor pressure 

(Silhavy et al. 2010). 

 

 

 

The composition of peptidoglycan was summarised in Section 1.2.2. The peptidoglycan layer in the 

Gram-positive cell envelope is approximately 20-80 nm in diameter with many layers compared with 

the peptidoglycan of Gram-negative bacteria which is less than 10 nm thick (Mai-Prochnow et al. 

2016). Threading through the layers of peptidoglycan are teichoic acids. These are long anionic 

polymers that are covalently linked to the peptidoglycan layer. Lipoteichoic acids are also present, 

which are anchored to the cytoplasmic membrane and run through the peptidoglycan layer (Silhavy et 

al. 2010). There are also a range of proteins found within the cell envelope and some are associated with 

the cytoplasmic membrane and peptidoglycan layer. Lastly, surface proteins such as adhesins allow 

adhesion to host cells. 

1.8.2 Comparison of Membrane Vesicle (MV) composition between Gram-negative and 

Gram-positive bacteria 

Recent evidence in the literature suggests that Gram-positive bacteria produce membrane vesicles 

(MVs). These are different to OMVs in cargo and composition due to differences in the membrane 

structure (Brown et al. 2015, Bitto et al. 2017). OMVs derived from Gram-negative bacteria are 

composed of the outer membrane and contain cargo from the periplasm. Gram-positive membrane 

vesicles, however, are composed of the cytoplasmic membrane only and cargo from the cytosol (Figure 

1.19). The term membrane vesicles (MVs) will be used to describe vesicles from Gram-positive bacteria 

as they are not outer membrane vesicles (OMVs). MVs may also be used as a term to describe both 

MVs from Gram-positive bacteria and OMVs from Gram-negative bacteria as it encompasses both. 

Figure 1.18 Gram-positive bacteria cell 

envelope 

The Gram-positive bacterial cell envelope 

is composed of the plasma membrane and 

a thick peptidoglycan cell wall. Image 

sourced from Brown et al. 2015. 
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1.8.2.1 Gram-positive MV composition and cargo 

In 2009, membrane vesicles were visualised on the surface of Staphylococcus aureus cells using TEM 

(Lee et al. 2009). The MVs were very similar in appearance to OMVs as they were nano-sized, 

spherical membranous structures of 20-100 nm in diameter (Lee et al. 2009). MVs were then purified 

from S. aureus using a method very similar to that used for OMV purification. The purified MVs were 

visualised by TEM and the size of the MVs was determined using dynamic light scattering. To 

determine the MV proteome, MV protein profiles were visualised by SDS-PAGE and proteins were 

characterised by microscopy (Lee et al. 2009).    

MVs from Gram-positive organisms, (such as Staphylococcus aureus), have been found to contain 

cytoplasmic proteins, metabolic enzymes, DNA polymerases, ribosomal proteins and virulence 

factors (Lee et al. 2009). Many of the virulence factors found in Gram-negative OMVs have also 

been found in Gram-positive MVs. These include toxins, haemolysin, adhesins and β-lactamases 

(Joffe et al. 2016). As with OMVs, it appears that Gram-positive cells have a specific sorting 

mechanism for packaging cargo into the MVs. In 2010, it was found that MVs from Bacillus 

anthracis contained toxins (edema factor, lethal factor and protective antigen), which were not 

present freely in the supernatant (Rivera et al. 2010). The protein profile of the MVs were also 

confirmed to be different from that of the cytoplasmic membrane and cytosol making it unique. 

Figure 1.19 Comparison of membrane vesicles formed from Gram-negative and Gram-positive 

bacterial membranes.  

There are significant differences in the composition of Gram-negative and Gram-positive bacterial 

membranes. This leads to variations in the composition of membrane vesicles produced and methods 

of MV biogenesis. This schematic summarises the OMV cargo and membrane composition of typical 

Gram-negative and Gram-positive OMVs. Image sourced from Joffe et al. 2016. 
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1.8.3 Models for Gram-positive MV biogenesis 

The method of MV biogenesis from Gram-positive bacteria is not fully understood. At first glance, it 

seems unclear how membrane vesicles can bud from the cytoplasmic membrane when the 

peptidoglycan layer is so thick. Three hypotheses of how membrane vesicles are formed from Gram-

positive bacteria are outlined in Figure 1.20.  

 

 

 

 

 

 

 

 

 

1.8.3.1 Turgor pressure  

The first theory is that the turgor pressure produced after MVs are released from the cytoplasmic 

membrane is enough to force the MVs through the peptidoglycan cell wall. In this theory, there may be 

pore sizes within the cell wall which are large enough to allow MVs through or that there are certain 

parts of the cell wall which are thinner than others (Brown et al. 2015). 

1.8.3.2 Proteases degrade peptidoglycan 

MVs released by Gram-positive strains have been found to contain peptidoglycan-degrading enzymes. 

This may suggest that enzymes are secreted with the MVs which degrade the peptidoglycan layer, 

allowing the MVs to bud (Brown et al. 2015).  

1.8.3.3 MVs are transported through a channel 

One final hypothesis is that MVs are transported through the peptidoglycan layer using protein 

channels. This would allow the passage of MVs through the peptidoglycan layer without disrupting the 

cell wall (Brown et al. 2015). 

 

Figure 1.20 Hypotheses of MV formation in Gram-positive bacteria 

Three main hypotheses exist of how Gram-positive bacteria secrete membrane vesicles through such a 

thick layer of peptidoglycan. The first is that MVs can be forced through by turgor pressure (a), the 

second is that enzymes degrade the peptidoglycan cell wall to allow MVs to bud (b) and the third is that 

protein channels are used to guide MVs extracellularly (c). These hypotheses are not mutually exclusive 

and may all be possible. Image sourced from Brown et al. 2015.  
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1.9 Using Streptomyces S4 as a model system to study MVs 

1.9.1 Introduction to Streptomyces  

Antimicrobial resistance (AMR) hinders the effective treatment and prevention of infections caused by 

microbes such as bacteria, fungi, viruses and protozoa. AMR is a serious threat to health globally as the 

infections can no longer be treated and may then be spread to others (World Health Organization, Fact 

sheets on AMR, 2018). Bacteria from the genus Streptomyces produce the majority of antibiotics used 

for medicine, agriculture and veterinary practice (Chater, 2016). With a global emergence of multi-drug 

resistant pathogens, the study of Streptomyces bacteria for new antimicrobial compounds has never been 

more important.    

 

Streptomyces are filamentous soil bacteria that play a key role in the decomposition and recycling of 

plants and fungi. Some have also developed symbiotic relationships with insects or plants and some 

have evolved pathogenic traits (Chater, 2016). Streptomyces are Gram-positive bacteria but are unusual 

as they grow as filamentous hyphae that resemble fungi. Streptomyces have a complex life cycle which 

includes the formation of spores (Figure 1.21). 

 

 

 

  

 

 

 

 

 

 

 

 

 

In this life cycle, free spores germinate to form a substrate mycelium. These are networks of branching 

hyphae that grow by tip extension. When nutrients are depleted, these hyphae grow away from the 

substrate to reach nutrients. The hyphae can also grow upwards and outwards to form aerial mycelium. 

The unbranched cell at the tip of the aerial filament differentiates and eventually the aerial hyphae 

develop into chains of spores. Spores are dispersed into the environment and when settled in the soil, 

start to germinate, which restarts the life cycle (Angert, 2005). 

1.9.2 Streptomyces S4 

In this study, Streptomyces S4 was used, which has a symbiotic relationship with the leaf-cutting ants 

Acromyrmex octospinosus. These ants are highly evolved as they cultivate fungus in specialised 

chambers in their nests (Haeder et al. 2009), which they use as a food source. These ants bring leaves to 

Figure 1.21 Life cycle of 

Streptomyces coelicolor 

Diagram representing the 

stages of the S. coelicolor 

life cycle including the 

development of the 

substrate mycelium, aerial 

mycelium, spore 

development and 

dispersal. Image sourced 

from Angert, 2005. 
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the nest and cut them into smaller pieces to feed to the fungus, which later becomes their main food 

source. The ants maintain the fungal gardens and need to protect the garden from microfungal weeds. 

They do this by removing waste and secreting antifungal compounds from metapleural glands (Haeder 

et al. 2009). There is now evidence that there is a symbiosis between these ants and bacterial strains that 

produce antifungal compounds. One example of this is the strain Streptomyces S4, which is known to 

produce antifungal agents (Haeder et al. 2009). 

 

Streptomyces S4 contains biosynthetic gene clusters which lead to the synthesis of the antifungal 

compounds candicidin (Barke et al. 2010) and antimycin (Seipke et al. 2011). Candicidin is a polyene 

antifungal that is known to be highly effective against Candida albicans. Ergosterol is the main sterol in 

the cytoplasmic membrane of fungi. Candicidin binds to ergosterol, which affects the permeability and 

membrane integrity. This leads to a rapid efflux of potassium ions within the cell which causes death. 

Antimycins are a group of compounds that are toxic towards a range of pathogenic fungi including 

Candida albicans. Antimycins inhibit cytochrome c reductase, which is an enzyme in the mitochondrial 

electron transport chain. This disrupts the entire electron transport chain and inhibits cellular respiration 

which leads to cell death. Previous evidence has found that Streptomyces S4 produces both candicidin 

and antimycins but it is currently not known how they are released extracellularly. 

1.9.3 AmBisome (amphotericin B liposome) 

The AmBisome is a drug delivery system used to treat fungal infections. The AmBisome is a liposome 

which is an artificially made spherical vesicle formed of a phospholipid bilayer (Walker et al. 2018). 

The liposome is decorated with the antifungal agent amphotericin B (see Figure 1.22).  

 

 

 

 

 

 

 

 

 

 

 

The liposomes in the AmBisome preferentially bind to the fungal cell wall. The active amphotericin B 

is released from the liposome and travels to the fungal cell membrane. Amphotericin B is a polyene 

antifungal agent which binds to ergosterol in the fungal cell membrane. The exact mechanism of 

transport of the amphotericin B from the AmBisome to the fungal cell is unknown. However, it is 

hypothesised that this occurs because amphotericin B has a higher binding affinity for ergosterol 

compared with cholesterol (the main lipid component in the AmBisome) (Stone et al. 2016). 

Figure 1.22 The structure of 

the AmBisome  

The AmBisome is a liposome 

which is an artificially made 

spherical vesicle formed of a 

phospholipid bilayer. This 

liposome is decorated with 

the antifungal agent 

amphotericin B. Images 

sourced from AmBisome 

website 2018. 
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Amphotericin B forms transmembrane channels within the fungal membrane which cause efflux of ions 

such as potassium, sodium, chloride and hydrogen from the cell. This loss of ions leads to cell death. 

Due to the known success of the delivery of Amphotericin B within a liposome to fungal cells, it led us 

to wonder if a similar process occurs in nature. This was tested by purifying membrane vesicles from 

Streptomyces S4 to see if any antifungal agents were present (Chapter 5). 

 

1.10 Therapeutic applications of membrane vesicles  

Interest in the MV field is growing and more methods are being developed to use bioengineered MVs 

for drug delivery and vaccines. MVs are often used by bacteria to secrete virulence factors so blocking 

MV production could be a target for preventing infection by these pathogens.  

1.10.1 Using MVs for development of vaccines 

MVs secreted by bacteria are naturally immunogenic and have the potential to be used as vaccines 

against a range of diseases. MVs also can be manipulated and engineered to display specific antigens 

needed for the vaccines against particular bacteria. An ideal vaccine should provoke a strong and 

specific immune response but in a way that is safe and has minimal adverse effects to the host. The 

immune response is triggered by pathogen-associated molecular patterns (PAMPs). PAMPs are unique 

and conserved motifs found in different pathogens and are recognised by the immune system as foreign. 

PAMPs are found on the surface of MVs and can activate the antigen presenting cells of the immune 

system. Another advantage of using MVs for vaccines is that they are non-replicating and cannot 

colonise the host or replicate and cause infection. They have also been shown to be thermostable and 

can withstand chemical treatment (Gerritzen et al. 2017). Antigens can be presented on the surface of 

MVs or within the MVs (luminal) when designing a vaccine. Surface exposed antigens activate antigen-

specific B cells of the adaptive immune response. Antigens within the lumen of MVs can be detected by 

cytotoxic T cells (Gerritzen et al. 2017).  

 

OMVs have been developed for use in the vaccination against the Neisseria meningitidis serogroup B, 

which causes bacterial meningitis. There are currently effective vaccines against the meningococcal 

serogroups A, C, W and Y, but there has been little success with group B. The meningococcal group B 

polysaccharide is very weakly immunogenic as the antigens have strong similarity to those expressed on 

human nerve tissues. This means that there is the potential to cause the production of autoantibodies 

which could be fatal (Hedari et al. 2014). This makes vaccines very difficult to produce and different 

strains can vary in their antigens. In 2013, OMVs were used to produce multicomponent OMV vaccines 

using antigens from various strains. The OMVs were engineered to express three recombinant proteins 

from the serogroup B strain and has been predicted to be effective against 78% of the Neisseria 

meningitidis serogroup B strains currently in Europe (Hedari et al. 2014). It is also safe to use and can 

be co-administered with other vaccines (Hedari et al. 2014). Findings from this project could be used in 

the development of vaccines against other pathogenic bacterial strains. 
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1.10.2 Using MVs for drug delivery 

OMVs produced by bacteria can be manipulated to include certain proteins/antigens of interest for drug 

delivery and vaccines. OMVs produced by various bacterial strains are studied to determine their 

composition and cargo compared with that of the periplasm, outer membrane and whole cell. Although 

the exact mechanism is unclear, certain proteins and lipids appear to be selected and excluded from 

packaging into OMVs. Knowledge of this has allowed the targeting of proteins of interest to OMVs by 

fusion with proteins known to be incorporated into OMVs. 

1.10.2.1 Using E. coli OMVs as recombinant protein delivery vehicles 

In 2009, a foreign antigen FLAG was targeted to OMVs of an engineered E. coli O157:H7 strain. FLAG 

is a short peptide of 8 amino acids that is used for detection and purification of the recombinant proteins 

it is added to. It is hydrophilic and its short length allows it to be present on the surface of the protein of 

interest with minimal disruption to protein function and transport throughout the cell. In this study, the 

FLAG peptide was fused to the β-barrel domain of OmpA which resided in the OM by chromosomal 

tagging. The peptide was located to the periplasmic side of the OM and was more protected from 

extracellular protease degradation (Figure 1.23). The study was successful as the OmpA protein 

containing the FLAG peptide was successfully delivered to the OMVs (Kim et al. 2009). Studies such 

as these establish models for targeting antigens of interest to OMVs for either drug delivery or vaccines.   

  

Figure 1.23 The incorporation of OmpA into E. coli OMVs 

Image sourced from Kim et al. 2009. In this paper, a foreign epitope (FLAG) was targeted to E. 

coli OMVs by fusion with OmpA. The polypeptide tag (FLAG) is an artificial antigen 

commonly used in recombinant DNA and protein technology. FLAG was fused to the β-barrel 

domain of OmpA which resided in the OM by chromosomal tagging.  

https://www.sciencedirect.com/science/article/pii/S0005273609002582
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1.10.3 Effect of OMVs on the host immune response  

1.10.3.1 OMVs can modulate the innate immune response  

OMVs can stimulate a proinflammatory response from the host 

The innate immune response is the first line of response to prevent infection. The innate immune 

response is activated when PAMPs are detected. Host cells display pattern recognition receptors (PRRs) 

that detect specific PAMPs. Recognition of PAMPs leads to activation of the host innate immune 

response, which includes inflammation, recruitment of phagocytes and the complement cascade. OMVs 

are formed from the Gram-negative cell envelope and therefore contain PAMPs that are recognised by 

the hosts’ immune system. These include LPS, certain lipids, lipoproteins, virulence factors as well as 

OM and periplasmic proteins which are conserved in pathogens. PRRs are present on host cells of the 

innate immune system including dendritic cells and macrophages and so are activated by the presence 

of OMVs (Kuehn, Kesty. 2005). OMVs are often one of the main factors that initiate an inflammatory 

response in macrophages and host epithelial cells (Chatterjee, Chaudhuri. 2012). 

 

Interaction of OMVs with the complement cascade 

The complement system plays a key role in the immune response. The complement proteins circulate as 

inactive precursors that are activated in response to PAMPs. A cascade is produced where the binding 

of one protein causes the binding of the next protein and so on. The final product is a membrane attack 

complex, which causes cell lysis of bacterial cell membranes. In order to prevent this, OMVs from the 

Gram-negative bacteria Morexella contain the virulence factors UspA1 and UspA2, which bind to one of 

the essential proteins in the complement system called C3 to inactivate it. Without C3, the complement 

cascade is inhibited and no membrane attack complex is formed to lyse pathogens (Tan et al. 2007)). 

 

In contrast to this, Neisseria meningitidis OMVs were found to cause high complement activation 

compared to LPS on N. meningitidis cell OM. This research indicated that the major complement 

activation with meningococcal septicaemia may be due to the immune response reacting to the OMVs 

produced by N. meningitidis rather than the cells themselves (Bjerre et al. 2002). The immune system 

reacting to the OMVs instead of the cells is beneficial as they can evade the immune system response 

more easily. 

1.10.3.2 OMVs modulate the adaptive immune response 

Detection of OMVs 

The adaptive immune response is slower to respond to infection than the innate immune response. 

However, it is a specific response, which is unique to the pathogen. The adaptive immune response is 

carried out by lymphocytes including B and T cells. B cells are produced in the bone marrow and 

generate antibodies, which are specific to the pathogen detected. This opsonises the bacterial cells for 

phagocytosis. T cells can be divided into CD4+ (known as helper T cells) and CD8+ (known as 

cytotoxic T cells). CD4+ T cells induce other cells of the immune response including B cells and CD8+ 

T cells to proliferate and respond to the pathogen. CD8+ T cells specifically kill virally infected cells in 

https://link.springer.com/chapter/10.1007%2F978-3-642-30526-9_9#CR182
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the host. The adaptive immune response can react to OMVs in the same way as it would to a pathogen 

as they contain many of the same PAMPs. 

 

OMVs can contain superantigens 

Neisseria lactamica are commensal Gram-negative bacteria that colonise the nasopharynx area. N. 

lactamica have been found to produce OMVs that contain a mitogen on their surface. Mitogens 

stimulate mitosis and the mitogen associated with N. lactamica OMVs was found to activate B cell 

proliferation, independent of T cells. This mitogen/antigen found on N. lactamica OMVs was found to 

have properties of a superantigen which results in excessive activation of the immune system (Vaughan 

et al. 2010). Superantigens cause activation of high frequencies of T cells or B cells, which are not 

specific for particular antigens. In this case, naive B cells are stimulated to produce polyclonal 

antibodies, which have low affinity for removing the OMV-producing pathogen. This leads to a non-

specific immune response and allows the OMV-producing bacteria to evade specific adaptive immune 

responses (Vaughan et al. 2010). 

1.10.3.3 Example of using of E. coli OMVs for cancer therapy 

In 2014, OMVs were used in the cell-specific delivery of drugs. A mutant strain of E. coli was 

engineered to produce OMVs which were later loaded with a small interfering RNA (siRNA) by 

electroporation. The siRNA chosen was known to target kinesin spindle protein mRNA. Kinesin spindle 

protein plays a critical role in mitosis and its inhibition leads to cell cycle arrest at mitosis then cell 

death. The OMVs were targeted to cancerous cells using a HER2-specific affibody in the membrane. 

HER2 is a transmembrane receptor, which is overexpressed in certain cancers such as breast, ovarian 

and gastric carcinomas (Gujrati et al. 2014). HER2 is therefore used as a target for cancer therapies. In 

order to target the OMVs to the cancerous cells, a genetic fusion was made between the ClyA monomer 

(known to be packaged into OMVs) and an anti-HER2 affibody. OMVs produced from this strain 

displayed the HER2 ligand on their surfaces to target them to cancer cells where the siRNA could be 

delivered. The study appeared to be successful as the OMVs caused cytotoxic effects against cancerous 

cells that overexpressed HER2. 

 

The E. coli OMVs were engineered to have low immunogenicity and minimal endotoxicity to human 

cells. In order to do this, the E. coli K-12 strain used (W3110) had a msbB mutation. This mutation 

causes the cell to produce defective, penta-acylated LPS and reduces the toxicity towards host cells 

compared to the usual hexa-acylated LPS. These findings agreed with a previous study that reported that 

hexa-acylated LPS stimulates the production of TNFα from THP1 cells more than penta-acylated LPS 

(Hajjar, et al. 2002). It is also thought that the expression of the HER2 affibody on the surface of the 

OMVs may have prevented the innate immune response by shielding the OMV PAMPs.  

 

The results of this study were promising as the OMVs appeared to successfully target tumour tissue 

(due to the HER2 affibody) and release the siRNA. Once released, the siRNA induced cytotoxic effects 

and inhibited tumour growth. The investigation found that the engineered OMVs were well tolerated by 
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the host with only very weak immunogenic responses (Gujrati et al. 2014). The use of attenuated 

bacterial strains with minimal virulence factors and toxicity could be used in the future to produce 

therapeutic OMVs for use in vaccines or drug delivery. 

1.11 Project aims and unanswered questions 

One of the main project aims was to compare the cargo identified within membrane vesicles from a 

range of bacterial strains and to speculate on the function of the molecules packaged (ie. are the 

secretion of these molecules beneficial to the OMV-producing cell?). Another essential aim of the 

project, was to bioengineer bacterial cells to produce OMVs containing a target protein of interest. This 

could ultimately be beneficial for therapeutic applications, such as cell-specific drug delivery or 

development of vaccines. 

1.11.1 What are the best methods to purify and characterise OMVs? 

The first aim (addressed in Chapter 3) was to develop a cost-effective method to purify OMVs 

reproducibly, giving the best yield possible. There is no universal protocol for OMV purification in the 

literature (Klimentová et al. 2015) so this needed to be developed. The isolated OMVs should be intact 

with as few contaminants from the bacterial cell as possible. OMV characterisation methods were 

sourced and developed from previous studies in the literature (McCaig et al. 2013, Klimentová et al. 

2015). This included using electron microscopy, SDS-PAGE, Western blotting, mass spectrometry, 

protein quantification and dynamic light scattering. 

1.11.2 What are the differences in (O)MV composition, cargo and function from both 

Gram-negative and Gram-positive bacterial strains?  

Membrane vesicles were studied in the Gram-negative bacteria E. coli and P. aeruginosa and the Gram-

positive organism Streptomyces S4. 

 

1.11.2.1 Using E. coli to study OMV biogenesis 

One of the ultimate project aims was to manipulate a bacterial strain of interest into producing OMVs 

with specific cargo for therapeutic use. The E. coli genome has been sequenced and annotated across a 

broad range of strains and the information is widely available (for example, the EcoCyc database). E. 

coli K-12 strains and E. coli B strains are very commonly used as a model organism in the scientific 

community. This made E. coli a good candidate for bioengineering to enable targeted expression of 

recombinant proteins for delivery and inclusion in OMVs and there are also previous studies that have 

been successful (Gujrati et al. 2014, Kim et al. 2009). Additionally, the study may give insight into 

which molecules pathogenic E. coli package into OMVs, which could potentially have clinical 

relevance. 

 

1.11.2.2 P. aeruginosa 

P. aeruginosa can form biofilms in the lung of CF patients and are known to communicate during the 

formation of biofilms by quorum sensing (Eberl et al. 2004). P. aeruginosa strains are known to 
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produce OMVs which have been found to contain virulence factors such as toxins and β-lactamases. 

OMVs from P. aeruginosa were studied as a Gram-negative bacterial comparison for E. coli OMVs 

with an aim to compare and contrast OMV cargo in another pathogenic and clinically relevant strain.   

 1.11.2.3 Streptomyces S4 

At the outset of the project, there had been reports that Gram-positive bacteria produced extracellular 

membrane vesicles (MVs). This was originally shown in Mycobacterium ulcerans (Marsollier et al. 

2007) and summarised by Brown et al. 2015, Kim et al. 2015 and Liu et al. 2018. MV production had 

also been documented in Streptomyces coelicolor (Schrempf et al. 2011) and Streptomyces lividans 

(Schrempf & Merling 2015). In both publications it was shown that the Streptomyces species produced 

visible exudates that were enriched in MVs and contained a range of proteins, lipids and bioactive 

molecules such as actinorhodin (a benzoisochromanequinone dimer polyketide antibiotic produced by S. 

coelicolor) and undecylprodigiosin (an alkaloid produced by S. lividans).   

 

In this study, Streptomyces S4 was used which has a symbiotic relationship with the leaf-cutting ants 

Acromyrmex octospinosus. These attine ants are highly evolved as they cultivate fungus in specialised 

chambers in their nests (Haeder et al. 2009) which they use as a food source. Streptomyces S4 contains 

biosynthetic gene clusters which leads to the synthesis of the antifungal compounds candicidin (Barke et 

al. 2010) and antimycin (Seipke et al. 2011). Unlike both S. lividans and S. coelicolor, S4 does not 

produce highly coloured and visible exudates but it was known that candicidin and antimycin were 

secreted extracellularly and produce a visible zone of inhibition when plated with C. albicans (Barke et 

al. 2010). We reasoned that the antifungals may be packaged into MVs to facilitate their diffusivity and 

targeting. This was particularly applicable to candicidin which is a complex and highly insoluble 

molecule. Streptomyces S4 mutants were also available which were unable to produce antimycin 

(ΔantC), candicidin (ΔfscC) and a double mutant which was unable to produce antimycin or candicidin 

(ΔantC ΔfscC). This enabled us to investigate whether the biosynthesis of either candicidin or antimycin 

was specifically linked to MV biogenesis in Streptomyces S4.  

1.11.3 Can we target a protein of interest to be incorporated into bacterial MVs?  

During these studies, E. coli K-12 clearly demonstrated an enrichment of FimA into OMVs. For this 

reason, fusion of GFP and mNeon green to FimA were chosen to trial targeting a chosen protein to the 

OMVs. However, at the outset of the project, it was not clear whether fusion of a protein to FimA alone 

was sufficient to facilitate correct targeting. We trialled this with FimA monomer protein which was 

tagged with either GFP (chromosomal FimA-GFP fusion) or Neon Green (exogenously expressed 

FimA-mNeon Green fusion using a plasmid) to see which (if any) were successful. 
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Chapter 2: Materials and Methods 

2.1 Materials 

Table 2.1 General reagent list 

 

 

 

 

Chemical name Supplier Product code

Acetic acid Fisher Scientifc A0360 

Acetone Fisher Scientifc A0560

Agar technical No3 Oxoid LP0013

Ammonium sulphate Acros Organics 205870010

Bacto peptone BD Chemicals 211677

Bacto tryptone BD Chemicals 211705

Bacto yeast extract BD Chemicals 212750

Bovine serum albumin Sigma-Aldrich A2153

Butanol Fisher Scientifc B4850

Calcium chloride, anhydrous Sigma-Aldrich C1016

Casein enzymic hydrolate Sigma-Aldrich 22090

Chloroform Fisher Scientifc C4960

D-glucose anhydrous Fisher Scientifc G/0500/61

D-Mannitol Sigma-Aldrich M9546

Ethanol (absolute, 99.8+%) Fisher Scientifc E0650

Glucose Fisher Scientifc G05002

Glycerol Fisher Scientifc G/0600/17

Glycine Fisher Scientifc G/0800/60

HEPES (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid)
Melford B2001

Hydrochloric acid (HCl) Fisher Scientifc H1150

Isopropyl β-D-1-thiogalactopyranoside (IPTG) Melford MB1008

Malt extract Oxoid LP0039

Methanol Fisher Scientifc M4000

OptiPrep (density gradient medium) Sigma-Aldrich D1556

Phenylmethylsulfonyl fluoride (PMSF) Sigma-Aldrich 78830

Phosphate buffered saline Oxoid BR0014G

Protein assay dye reagent concentrate (Bradford 

assay)
Bio-rad 5000006

Sodium bicarbonate Sigma-Aldrich S5761

Sodium chloride Fisher S/3160/60

Sodium dodecyl sulphate (SDS) Melford B2008

Sucrose Fisher S/8600/60

Trichloroacetic acid (TCA) Sigma-Aldrich T4885

Tris (hydroxymethyl methylamine) Fisher T/P630/60

Tryptone soy broth Sigma-Aldrich 22092

Tween 20 Sigma-Aldrich P9416
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Table 2.2 Enzymes, substrates and inhibitors 

 

 

Table 2.3 SDS-PAGE reagents 

 

 

Table 2.4 Wet transfer/Western blotting reagents 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Enzymes and Substrates Supplier Product code

4-Nitrophenyl acetate Sigma-Aldrich N8130 

Mini Protease Inhibitor Cocktail tablets Sigma-Aldrich 11836153001 ROCHE

Protease from Streptomyces griseus Sigma-Aldrich P5147 

Proteinase K Sigma-Aldrich P6556

Trypsin Sigma-Aldrich 59430C-100ML

SDS-PAGE Supplier Product code

InstantBlue Protein Stain Expedeon ISB1L

NuPAGE 4-12% Bis-Tris Protein Gels, 1.0 

mm, 10-well
Thermo-Fisher NP0321BOX

NuPAGE MOPS SDS Running Buffer 20x Thermo-Fisher NP0001

NuPAGEMES SDS Running Buffer 20x Thermo-Fisher  NP0002

Pierce Silver Stain Kit Thermo-Fisher 24612

Precision Plus Protein Dual Color Standards Bio-rad 1610374

Reducing sample buffer (4x) Invitrogen NP0008

Wet transfer/Western blotting Supplier Product code

BCIP/NBT tablets Sigma B5655

Milk (Instant Dried Skimmed) Tesco N/A

PVDF membrane 0.2 µm pore Roche 3010040001

PVDF membrane 0.45 µm pore Thermo-Fisher 88518
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Table 2.5 Antibodies used for Western blotting and immunogold labelling 

 

  

AntibodiesG10C8B2:

GB2:G10

Immunogen 

(molecular weight, 

kDa)

Supplier and 

Catalogue number
Clonality Host Antibody Specificty

Anti-FimA monoclonal FimA (18 kDa)

Professor Hultgren, 

Washington 

University in St. 

Louis

Polyclonal Rabbit

"Gel slice antibodies were made by 

treating rabbits with material from 

gel slices containing FimA (from 

SDS PAGE of UTI89 type 1 pilus 

preps)"

Anti-FimA polymer
Polymerised FimA 

found in wells

Professor Hultgren, 

Washington 

University in St. 

Louis

Polyclonal Rabbit

"Whole pili antibodies were made 

by treating rabbits with non-

denatured UTI89 type 1 pilus preps"

Anti-Flagellin Flagellin (51 kDa) Abcam #ab93713 Polyclonal Rabbit

This antibody is specific for 

bacterial Flagellin (FliC). Reacts 

with Flagellin from: E. coli, 

Salmonella anatum, Salmonella 

selandia

Anti-GFP antibody GFP (27 kDa)
Professor Gullick, 

UKC
Monoclonal Mouse GFP

Anti-mouse secondary 

antibody (Alkaline-

phosphatase conjugated)

N/A Promega #S372B Polyclonal Goat

Heavy and light chains for all IgG 

subclasses. Immunoaffinity-purified 

using immobilized antigens and 

conjugated to alkaline phosphatase 

(AP) enzyme

Anti-Neon green 

antibody

mNeon green        (34 

kDa)
Chromotek #32F6 Monoclonal Mouse

 The antibody recognizes 

mNeonGreen at the N-terminus, C-

terminus, or internal site of the 

fusion protein  

Anti-OmpA antibody
Native E.coli OmpA 

(37 kDa)

Antibody research 

corporation #111120
Polyclonal Rabbit

E.coli and other Gram-negative 

bacteria

Anti-rabbit secondary 

antibody (Alkaline-

phosphatase conjugated)

N/A Sigma #A3687 Polyclonal Goat
Purified rabbit IgG as the 

immunogen
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Table 2.6 Reagents for TEM 

 

Table 2.7 Reagents for Confocal Microscopy 

 

 

 

Table 2.8 Reagents for Mass Spectrometry 

 

Table 2.9 Antibiotics/Antifungals used 

 

Table 2.10 Reagents used for cloning techniques 

 

  

Electron Microscopy Supplier Product code

Gelatin capsules Agar Scientific G29208

Glutaraldehyde fixative Agar Scientific AGR1011

Immunogold conjugate 10 nm particle size BBI solutions EM.GMHL.10

Immunogold conjugate 15 nm particle size BBI solutions EM.GAR15

LR White Medium Grade Resin Agar Scientific AGR1281

Paraformaldehyde Agar Scientific R1018

Uranyl acetate Agar Scientific AGR1260A

Mass Spectrometry Supplier Product code

4-HCCA matrix solution Aldrich 14,550-5

Acetonitrile (ULC/MS - CC/SFC) Biosolve 12041

Ammonium bicarbonate (LCMS grade) Fluka 40867

DTT Melford MB1015

Formic acid (LC/MS grade) Fisher Scientific A117-50

Iodoacetamide Sigma-Aldrich I6125

Peptide Calibration Standard II Bruker 8222570

Trypsin (Sequencing Grade Modified Trypsin) Promega V511A

Water (HPLC grade) Fisher 10449380

Antibiotics/Antifungals Supplier Product code

Antimycin Sigma A8674

Candicidin Bioaustralis BIA-C1564

Chloramphenicol Sigma C0378

Confocal Microscopy Supplier Product code

ProLong Gold antifade mountant Life Technologies P36930

Lectin from Triticum vulgaris  (wheat) 

FITC conjugate
Sigma-Aldrich L4895

Cloning materials Supplier Product code

1 KB DNA ladder Promega G5711

10x Ligase buffer Promega C1268

10x NEB buffer Cutsmart New England BioLabs B7204S

10x Promega enzyme buffer Promega R9991

10x T4 Polynucleotide Kinase 

Reaction Buffer 
New England BioLabs B0201S

2x PCRBIO Taq Mix Red PCR Biosystems PB10.13

6x loading dye New England BioLabs B70245

AscI restriction enzyme New England Biolabs R0558S

EcoRI restriction enzyme New England BioLabs R0101S

Ethidium bromide Sigma E7637

NdeI restriction enzyme New England BioLabs R0111S

PstI restriction enzyme Promega R611A

Q5® High-Fidelity 2X Master Mix New England BioLabs M0492S

T4 DNA ligase Promega M180A

T4 Polynucleotide Kinase New England BioLabs M0201S
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2.2 Equipment list 

2.2.1 Autoclave:  

Classic Prestige Medical autoclave sterilises by heating contents at 121ºC for 11 mins (1.4 bar pressure).  

2.2.2 Vacuum pump 

The vacuum pump was used for sterilisation of 150 mL volumes and above. 

Table 2.11 Comparison of the different filters used for sterilisation 

2.2.3 Thermo Scientific Barnstead Easypure II system 

Double deionised water was filtered through a Barnstead D3750 irradiated hollow fibre filter (pore size 

0.2 µm, resistance 18.2 MΩ.cm). This is referred to as ‘MQ water’ throughout the thesis. 

Table 2.12 Centrifuges used throughout this project 

 

2.2.4 Spectrophotometers 

• UV-Vis spectrophotometer: Shimadzu UV-1800 spectrophotometer was used to measure the 

optical density of cultures (at 600 nm) and protein concentration by Bradford assay (at 595 

nm). Plastic 1 mL cuvettes were used with a 1cm path length. 

• Cary Spectrophotometer: The spectrophotometer Agilent Technologies Cary 60 UV-Vis was 

used to draw UV-Vis spectrum to detect candicidin and antimycin. 500 μL samples were 

loaded on to the spectrophotometer in UV quartz cuvettes (Sigma-Aldrich Z276723-1EA).   

• NanoDrop Spectrophotometer: DNA and protein concentration were quantified using the 

NanoPhotometer 50 (Implen). 

2.2.5 SDS-PAGE, protein transfer and Western blotting 

• SDS-PAGE tank: XCell SureLock Mini-Cell Electrophoresis System 

• Western blot wet transfer tank: Mini Trans-Blot (Bio-Rad). 

Centrifuge used Rotor used Centrifuge tubes/Sample size

 Eppendorf Centrifuge 5415 R F45-24-11  1.5 mL microcentrifuge tubes

  Beckman Coulter Optima LE-80K 

Ultracentrifuge 
Type 70 Ti 26.3 mL polycarbonate ultracentrifuge tube

Beckman Coulter TL-100 Ultracentrifuge TLA-100.3 750 µL sample volume in 3 mL ultracentrifuge tube

Beckman Coulter. Avanti J-265 centrifuge JLA-16.250 250 mL polycarbonate centrifuge tube

Sigma 2K15 centrifuge  #12149 15 mL or 50 mL Falcon tubes

Thermo Scientific Savant SPD111V230 N/A (fixed rotor) 1.5 mL microcentrifuge tubes

Pore size 

(µm)
Filter brand

Membrane 

type

Volume 

(mL)
Use

0.2 Nalgene Rapid-Flow SFCA 150 Sterilise buffers/solutions

0.2 Nalgene Rapid-Flow PES 500 OMV purification

0.45 Nalgene Rapid-Flow PES 500 OMV purification
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• Agarose gel preparation and tank: Agarose gels were prepared using the multiSUB Midi 

electrophoresis unit, 10 x 10 cm UV Tray, 2 x 16 sample combs, loading guides and dams. Gels 

were run on the Fisherbrand multiSUB Midi Horizontal Gel System. 

• SDS-PAGE gel and Western blot photos: Photos were taken using the G:Box Chemi XX6 

machine by SynGene and associated software. 

2.2.6 Mass Spectrometry  

Proteins of interest on silver stained gels were identified using Bruker ultrafleXtreme MALDI-

TOF/TOF mass spectrometer and associated software.  

2.2.7 Dynamic Light Scattering (DLS)  

The Litesizer 500 Anton Paar was used to characterise the OMVs using the DLS mode. 

2.2.8 Sonication 

Sonication was performed using the Soniprep 150 (MSE).  

2.2.9 Microplate reader 

Growth curves were produced by culturing E. coli in CELLSTAR 48 Well Cell Culture Plates (Greiner 

Bio-One, #677 180). Two identical microplate readers were used to generate growth curves at 25ºC and 

37ºC concurrently. The microplate readers used were SPECTROstar Nano (BMG Labtech) with 

associated SPECTROstar Nano software.  

2.2.10 Microscopy 

• Electron microscopy: Jeol transmission electron microscope model JEM 1230. Photos taken 

using a Gatan multiscan digital camera and operated at an accelerating voltage of 80 kV. 

• Confocal microscopy: Zeiss lsm 880 with airscan with associated Zen Black software. 

• Light microscopy: GXM L2800 Premium Compound Microscope at 400x magnification and 

photos were taken using the associated camera.  

2.2.11 Imaging of agar plates 

Photos of plates taken using aCOLyte (Synbiosis). 

2.2.12 Cloning 

• UV transilluminator: BioView UV transilluminator was used to locate DNA bands for gel 

extraction.  

• PCR machine: PCR reactions were performed in Veriti 96 Well Thermocycler (Applied 

Biosystems). 
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2.3 Media and buffers 

All media and buffers were stored at 4ºC unless otherwise stated. 

2.3.1 MQ water 

In all solutions prepared for experiments, double deionised water was used. This was filtered further 

using Thermo Scientific Barnstead Easypure II system. 

2.3.2 Media and buffer sterilisation 

All media and PBS buffers were autoclaved or filter sterilised using filters of 0.2 µm pore size (Cole-

Parmer). For volumes over 100 mL, Nalgene filters with a 0.2 µm pore size and a vacuum pump were 

used. 

2.3.3 Media  

All media described below were prepared by addition of components listed to the desired volume of 

MQ water, mixed well then autoclaved. Agar technical No 3 was added (20 g/L) to media before 

autoclaving for preparation of agar plates.  

 

Table 2.13 Media recipes 

 

Table 2.14 Media supplements  

 

 

Media supplement stocks were stored at -20ºC. Chloramphenicol stock was mixed into ‘hand hot’ LB 

agar then plates were poured and left to set for 20-30 mins. Agar plates were left to dry next to a Bunsen 

burner for a minimum of 30 mins and stored at 4ºC. 

Media name Media recipe and preparation details

Lysogeny broth (LB)-Lennox 10 g/L Bacto tryptone, 5 g/L Bacto yeast extract, 5 g/L sodium chloride

Yeast Extract Peptone Dextrose 

(YPD) 
20 g/L glucose, 20 g/L Bacto peptone, 10 g/L Bacto yeast extract

Tryptone Soy Broth (TSB) 30 g/L TSB pre-made powder

Yeast Extract-Malt Extract 

Medium (YEME) 

3 g/L Bacto yeast extract, 3 g/L Malt extract, 5 g/L Bacto peptone, 10 g/L 

glucose

Mannitol Soya (MS) Agar plates
20 g/L soya flour (Holland and Barrett), 20 g/L mannitol, 20 g agar. Media 

was autoclaved twice before pouring to ensure there were no spores

Milk (casein) agar plates

28 g/L skimmed milk powder, 5 g/L casein enzymic hydrolysate, 2.5 g/L 

yeast extract, dextrose 1 g/L dextrose, 15 g/L agar, final pH at 25ºC 7.0. 

Heat to boiling to dissolve then sterilise by autoclaving. Mix well after 

autoclaving and pour.

Supplement
Supplier & Catalogue 

number
Stock concentration Sterilisation

Working 

concentration

Chloramphenicol Sigma #C0378
25 mg/mL in ethanol, 

absolute
N/A 25 µg/mL

IPTG Melford #MB1008 1 M in sterile MQ water
Filter sterilised (0.2 

µm pore size)
0.5 mM
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2.3.4 Buffer and Solution preparations 

Table 2.15 Buffer and solution recipes  

 

 

2.3.4.1 Preparation of 4% (w/v) formaldehyde fix for EM 

To prepare 4% (w/v) formaldehyde in PBS, 8% (w/v) paraformaldehyde was prepared then mixed 1:1 

with 2X concentrated PBS. 2 g paraformaldehyde was dissolved in 20 mL water total in a glass beaker. 

The mixture was heated to 65-70ºC with continuous stirring. When condensation had formed on the 

beaker, 2-3 drops of 1 M sodium hydroxide in water was added until the solution changed from white 

and cloudy to clear. Once dissolved, the solution was left to cool to room temperature. MQ water was 

added to make the total volume 25 mL then 25 mL 2X PBS was added to make a final solution of 4% 

(w/v) formaldehyde in 1X PBS. Fix was stored at 4ºC.  

  

Buffer category Buffer name Buffer preparation details

HEPES buffer 10 mM HEPES/0.85% NaCl, adjusted to pH 7.4 and filter sterilised

HEPES buffer with CaCl2

10 mM HEPES/0.85% NaCl/20 mM CaCl2, adjusted to pH 7.4 and filter 

sterilised

Phosphate buffered saline 

(PBS)
  1 tablet dissolved in 100 mL MQ water and autoclaved

100% TCA stock 

A 100% stock solution of TCA was prepared by adding 227 mL sterile 

MQ water to 500 g powder as described by the Trichloroacetic acid 

SigmaUltra datasheet (T9159)

Western transfer buffer 25 mM Tris and 192 mM glycine (no pH adjustment)

TBS 137 mM sodium chloride, 10 mM Tris and 0.1% Tween 20 pH 7.4. 

TBST 137 mM sodium chloride, 10 mM Tris and 0.1% Tween 20 pH 7.4. 

TEM
TBST for immunogold 

labelling

20 mM Tris, 500 mM NaCl, 0.1% BSA, 0.05% Tween 20, pH 7.2. Made 

fresh on the day

PMSF stocks

200 mM stocks of PMSF in absolute ethanol were prepared and stored at 

-80ºC. Immediately prior to use in a Proteinase K test, stocks were 

diluted to 50 mM using HEPES buffer

SDS stocks Various concentrations of SDS were prepared in MQ water

Outer membrane and 

periplasmic protein 

purification

Tris-sucrose-EDTA (TSE 

buffer)

 200 mM Tris-HCl, 500 mM sucrose, 1 mM EDTA, pH 8.0. Add 

protease inhibitor cocktail tablet immediately before use and store at 4ºC

T salts
 75 mM CaCl2, 6 mM MgCl2 and 15% glycerol in MQ water (filter 

sterilised)

Magnesium chloride 0.1 M MgCl2, 15% glycerol in MQ water (filter sterilised)

Annealing buffer for Oligos 0.1 M Tris, 10 mM EDTA, 0.5 M NaCl2 in MQ water, pH 7.6-7.8

Agarose gel
50x Tris-Acetate-EDTA 

buffer (TAE) buffer
 1 M Tris, 50 mM EDTA, 28.6 mL glacial acetic acid, pH 8.27

General use buffers

Cloning reagents 

(prepared by Dr Alex 

Moores)

Proteinase K test

SDS-PAGE, protein 

transfer and Western 

blotting
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2.4 Microbial strains 

Table 2.16 Microbial strains used in this study 

   

   

Strain name Strain characteristics and additional information Reference/Source for further information

Burkholderia cenocepacia 

J2315 

Pathogenic strain originally isolated from a cystic 

fibrosis patient

Dr. Vittorio Venturi, International Centre for 

Genetic Engineering (Holden et al.  2009)

Candida albicans SC5314

Commonly used Candida albicans wild type strain 

from which most laboratory strains are derived 

(pathogenic)

Dr Luisa Sordi, University of Kent (Candida 

Genome Database)

Clinical isolate 1 (E.coli 

MS207)
Bacteraemia isolate belonging to clonal group ST685

Strain originates from East Kent Hospitals 

University NHS Foundation

Clinical isolate 2  (E.coli 

MS10)

EEC958: Uropathogenic strain (UPEC) strain 

belonging to clonal group ST131 

Dr Mark Shepherd, University of Kent (Totsika 

et al.  2011)

Clinical isolate 3 (E.coli 

MS1)

CFT073: Uropathogenic strain (UPEC) belonging to 

clonal group ST73 

Dr Mark Shepherd, University of Kent (Welch 

et al. 2002

Clinical isolate 4 (E.coli 

MS343)
83972: Asymptomatic bacteriuria strain 

Dr Mark Shepherd, University of Kent. 

(Klemm et al . 2006)

Clinical isolate 5 (E.coli 

MS190)
Bacteraemia isolate belonging to clonal group ST162

Strain originates from East Kent Hospitals 

University NHS Foundation

Clinical isolate 6 (E.coli 

MS234)
Bacteraemia isolate belonging to clonal group ST69

Strain originates from East Kent Hospitals 

University NHS Foundation

E. coli B, wildtype 
Wild type (Parental) strain of E. coli B strains such 

as BL21
Keio collection #2507 (Baba et al. 2006)

E.coli ∆fimA (JW4277-1) BW25113 ΔfimA782::kan Keio collection #11065 (Baba et al.  2006)

E.coli ∆fimB ( JW4275-1) BW25113 ΔfimB780::kan Keio collection #11063 (Baba et al.  2006)

E.coli ∆fimC (JW4279-1) BW25113 ΔfimC784::kan Keio collection #11066 (Baba et al. 2006)

E.coli ∆fimD ( JW5780-1) BW25113 ΔfimD785::kan Keio collection #11607 (Baba et al . 2006)

E.coli ∆fimE ( JW4276-1) BW25113 ΔfimE781::kan Keio collection #11064  (Baba et al.  2006)

E.coli ∆fimF ( JW4281-1) BW25113 ΔfimF786::kan Keio collection #11067 (Baba et al. 2006)

E.coli ∆fimG (JW4282-2) BW25113 ΔfimG787::kan Keio collection #11770 (Baba et al. 2006)

E.coli ∆fimH (JW4283-3) BW25113 ΔfimH788::kan Keio collection #11068 (Baba et al.  2006)

E.coli ∆fimI (JW5779-1) BW25113 ΔfimI783::kan Keio collection #11573 (Baba et al.  2006)

E.coli ∆fimZ  (JW5073-1) BW25113 ΔfimZ745::kan Keio collection #11159 (Baba et al . 2006)

E.coli ∆fliC ( JW1908-1) BW25113  ΔfliC769::kan Keio collection #9586 (Baba et al. 2006)

E.coli AAEC278

E.coli MG1655 ∆(fimBE)-sacB Neo . Allelic 

exchange intermediate strain produced in the 

construction of 'E.coli  with fimbriae locked on' 

strain.  In this strain, the invertible element (fimS ) is 

in the 'on' position to produce T1F. The fim  fragment 

has been replaced by the sacB Neo gene cassette

Dr. Ian Blomfield, University of Kent, 

#AAEC278 (McClain et al. 1993)

E.coli  BL21

E.coli B strain derivative. fhuA2 [lon] ompT gal 

[dcm] ΔhsdS. Competent E.coli  B strain for routine 

non-T7 expression

New England BioLabs #C2530H

E.coli  BL21 (DE3)

 E.coli B strain derivative. fhuA2 [lon] ompT gal (λ 

DE3) [dcm] ∆hsdS. λ DE3  = λ sBamHIo ∆EcoRI-B 

int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5 

Identical to E.coli BL21 except this strain contains 

the λDE3 lysogen that carries the gene for T7 RNA 

polymerase under control of the lacUV5 promoter

New England BioLabs #C25271

E.coli DH5α 

NEB® 5-alpha Competent E. coli (High Efficiency). 

Derivative of DH5α cells used for routine non-T7 

expression

New England BioLabs #C2987I
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Strain name Strain characteristics and additional information Reference/Source for further information

E.coli FimB-LacZ fusion

E.coli WT MG1655 ∆lacZYA ∆fimB (-457 to +209 

relative to fimB ORF) FimB-LacZ translational 

fusion. This strain contains a deletion of the Lac 

operon (lacZYA ) and fimB and an insertion of a 

FimB-LacZ fusion protein. T1F production locked 

off is FimB is no longer functional.

Dr. Ian Blomfield, University of Kent, 

#BGEC056 (El-Labany et al. 2003)

E.coli  fimbriae locked on

E.coli MG1655 fimB-am6 fimE-aml8 (produced 

from intermediate strain AAEC278). T1F production 

locked on. The invertible element (fimS ) is locked 

on due to the modifications in the parental 

intermediate strain (AAEC278)

Dr. Ian Blomfield, University of Kent, 

#AAEC356 (McClain et al. 1993)

E.coli parental (BW25113)

E. coli  K-12 strain derivative. Contains six 

mutations: Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), 

λ-, rph-1, Δ(rhaD-rhaB)568,  hsdR514. The E. coli 

K-12 BW25113 parent strain is the common 

background genotype used for the generation of the 

E. coli Keio Knockout Collection

Keio collection #7636 (Baba et al.  2006)

E.coli WT MG1655

E.coli K-12 derivative. Contains 2 mutations: λ-, 

rph-1 . Used as the wild-type strain to produce 

E.coli FimB-LacZ fusion strain and E.coli with 

fimbriae locked on

Keio collection #6300 (Baba et al. 2006)

E.coli ΔflhA (JW1868-1) BW25113 ΔflhA732::kan Keio collection # 9554 (Baba et al.  2006)

E.coli ΔfliD  (JW1909-1)   BW25113 ΔfliD770::kan Keio collection #9587 (Baba et al.  2006)

E.coli ΔfliS  (JW1910-1) BW25113 ΔfliS771::kan Keio collection #9588 (Baba et al. 2006)

E.coli Δlon (JW0429-1) BW25113 Δlon-725::kan Keio collection #8592 (Baba et al. 2006)

E.coli ΔlrhA ( JW2284-6) BW25113 ΔlrhA771::kan Keio collection #11785 (Baba et al. 2006)

E.coli ΔompT (JW0554-1 ) BW25113 ΔompT774::kan Keio collection #8680 (Baba et al.  2006)

MG1655 with GFP-FimA 

protein fusion
ASC129 (MG1655 fimAΩGFPmut2 ) 

Professor Sander Tans, AMOLF, The 

Netherlands (Tans et al. 2009)

Pseudomonas aeurginosa 

PA01

Clinical isolate. Two P. aeruginosa pathogenicity 

islands (PAPI-1 and PAPI-2) are absent from 

PA01 which means it is less virulent than PA14.

Dr Luisa De Sordi, University of Kent (He et 

al. 2004)

Pseudomonas aeurginosa 

PA14

Clinical isolate. Two P. aeruginosa  pathogenicity 

islands (PAPI-1 and PAPI-2) are present in the 

genome of PA14  which is a highly virulent clinical 

isolate

Dr Luisa De Sordi, University of Kent (He et 

al. 2004)

Saccharomyces cerevisiae 

BY4741

Commonly used laboratory strain derived from S. 

cerevisiae S288C 
EuroSCARF #Y00000

Streptomyces S4  ∆fscC
S4 fscC null mutant: this strain does not produce 

Candicidin

Professor Matt Hutchings UEA (Seipke et al. 

2011)

Streptomyces  S4 ∆antC
S4 antC  disruption mutant: this strain does not 

produce Antimycin

Professor Matt Hutchings UEA (Seipke et al. 

2011)

Streptomyces  S4 ∆antC 

∆fscC

S4 strain containing knockouts of both fscC  and 

antC  genes meaning that there is no production of 

Candicidin or Antimycin

Professor Matt Hutchings UEA (Seipke et al. 

2011)

Streptomyces  S4 WT
Wild type Streptomyces  S4 strain: originally isolated 

from attine ant nests

Professor Matt Hutchings UEA (Seipke et al. 

2011)
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2.5 Microbial growth and storage conditions 

2.5.1 Preparation of bacterial glycerol stocks 

50% autoclaved glycerol (in MQ water) was mixed with stationary phase bacterial culture in a sterile 

cryotube vial in a 1:1 ratio. All strains were stored at -80oC. 

2.5.2 Preparation of Streptomyces S4 spore stocks 

Streptomyces S4 strains were supplied by Professor Matt Hutchings from the University of East Anglia. 

Strains were spread on MS agar plates and incubated for 1 week at 30ºC to form a lawn of spores. 1 mL 

of sterile 10% (v/v) glycerol (in MQ water) was added to the surface of the plate and mixed using a 

sterile swab. Any residual liquid from the plate was removed to form the -20ºC spore stock. 1 mL 10% 

(v/v) glycerol was also used to rinse any spores from the sterile swab. This stock was split into aliquots 

and stored at -20ºC.  

2.5.3 Culture conditions 

Cultures were grown in conical flasks containing at least one-fifth of their own volume of medium or 

500 mL to 1 L of medium in a 2 L baffled flask. Cultures were incubated at 37oC, shaking at 180 RPM 

for 18 hrs unless otherwise stated. Cultures were inoculated into LB from either a -80 °C glycerol stock 

or from colonies on a freshly streaked agar plate. Bacteria were streaked from -80 °C glycerol stocks 

and agar plates were inverted and incubated overnight at 37oC unless otherwise stated. 

2.5.4 Measuring optical density 

Culture optical density was measured at 600 nm using a Shimadzu UV-1800 spectrophotometer in 

plastic 1 mL cuvettes with a 1 cm path length. 

2.5.5 E. coli growth curves on the microplate reader (25ºC and 37ºC) 

Growth curves were produced for the following E. coli strains: BL21 (DE3), Parental BW25113, FimB-

LacZ fusion, ∆fimA and ∆fimC. Each strain was grown to stationary phase at 37ºC, 180 RPM overnight.  

Two 48 well plates were prepared in duplicate containing the following samples: 

• Growth curves in LB: Each strain was diluted to OD600 0.1 using LB before addition of 500 

μL to each well. There were 4 repeats for each strain.  

• Growth curves in LB + 1.5 M ammonium sulphate: Ammonium sulphate was slowly added 

to E. coli strains at OD600 0.1 so that cells were cultured in LB with 1.5 M ammonium 

sulphate. 500 μL was added to each well and each sample was done in triplicate.  

• Growth curves in chloramphenicol: Chloramphenicol stock was added to E. coli strains at 

OD600 0.1 so that cells were cultured in LB + 25 µg/mL chloramphenicol. Only 1 repeat for 

each strain. 
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One of the 48 well plates was run on the microplate reader at 37ºC and the other was at 25ºC. OD600 

readings were taken every 8 mins and the growth curve graphs were generated using Microsoft Excel.  

 

2.6 OMV standard purification protocol 

2.6.1 Standard protocol for purifying OMVs from Gram-negative bacteria 

The strain of interest was inoculated into 500 mL to 1L LB media and incubated at 37°C, 180 RPM for 

18 hrs in 2 litre baffled flasks. The bacterial culture was pelleted by centrifugation at 12,000 RPM 

(14,515 x g) for 10 min at 4°C. The supernatant (containing OMVs) was extracted and filtered through a 

0.2 µm PES membrane filter for Pseudomonas aeruginosa strains or 0.45 µm PES membrane filter for 

E. coli strains. This was to remove any whole bacterial cells or large bacterial fragments. To ensure that 

all live bacterial cells had been removed, 500 μL-1 mL of filtered supernatant was spread onto LB agar 

plates and incubated for 24-48 hrs at 37°C to check for growth. OMVs were precipitated out of solution 

by slowly adding 1.5 M ammonium sulphate then incubated overnight at 4°C with gentle stirring. The 

OMVs were pelleted by centrifugation at 16,000 RPM (25,805 x g) for 30 mins at 4°C. The resulting 

OMV pellets were resuspended in 1-5 mL 10 mM HEPES/0.85% NaCl, pH 7.4 for further analysis. P. 

aeruginosa OMV samples were filter sterilised once more using 0.2 µm pores to give a cleaner sample. 

OMVs resuspended in 10 mM HEPES buffer were stored at 4ºC then at -20ºC for future use in SDS-

PAGE gels or Western blotting. 

2.6.2 Standard protocol for purifying OMVs from competent cells containing desired 

plasmid 

1 colony from a successful transformation was inoculated into 50 mL LB containing 25 µg/mL 

chloramphenicol in a 250 mL flask then incubated at 37°C, 180 RPM overnight. The OD600 of cultures 

of interest were recorded and flasks were prepared as described in Table 2.17. Flasks were incubated at 

37ºC, with shaking at 180 RPM for 18 hrs.  

Table 2.17 Set up of E. coli cultures for induction with pJB005 plasmid  

 

 
 

Flask name
Volume of 

LB (mL)

Volume of 

starter 

culture added 

(mL)

Volume of 

25mg/mL 

chloramphenicol 

added (mL)

Volume of  

1M IPTG 

added (µL)

1A - Parental strain + IPTG 500 5 0.5 250

1B - Parental strain - IPTG 500 5 0.5 0

2A) ΔfimA strain + IPTG 500 5 0.5 250

2b) ΔfimA strain - IPTG 500 5 0.5 0
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The OD600 was monitored and cells were induced with 0.4 mM IPTG at an OD600 of 0.25-0.3 (early 

stationary phase). Cells were grown to mid-late exponential phase (Figure 2.1). When the induced cells 

had reached an OD600 of approximately 1.0, OMVs were purified using the standard protocol for 

Gram-negative bacteria (Section 2.6.1). Flask 1B is a negative control of Flask 1A and Flask 2B is a 

negative control of Flask 2A with no addition of IPTG. Once Flasks 1A and Flask 2A had reached the 

correct OD600, OMVs were purified immediately and with their respective negative controls.   

 

 

2.6.3 Standard protocol for purifying MVs from Streptomyces S4 strains 

20 μL of spore stock was added to 1 mL sterile MQ water and spread on to a sterile MS agar plate. The 

plate was incubated at 30ºC for 5-7 days. Colonies were inoculated into 12.5 mL YEME:TSB (both 

media mixed 1:1) and incubated at 30ºC, 180 RPM for 72 hrs. 5 mL of each culture was inoculated into 

500 mL LB in 2 litre baffled flasks then incubated at 30°C, 180 RPM for 72 hrs. OD600 of each culture 

was determined using a range of dilutions and confirmed to be approximately 3.0 for each strain. The 

bacterial culture was pelleted by centrifugation at 5000 x g for 30 mins at 4ºC and the supernatant was 

removed to be filtered through a 0.45 µm PES membrane filter. MV purification protocol from this 

point onwards was as described above in Section 2.6.1.   

2.6.4 Ultracentifugation 

For ultracentrifugation, the OMV pellets were resuspended in 4.5 mL 45% (v/v) OptiPrep in 10 mM 

HEPES/0.85% NaCl, pH 7.4. 4 mL was layered on to the bottom of a 26.3 mL polycarbonate 

ultracentrifuge tube (Beckman). A gradient of 4 mL of 40%, 35%, 30%, 25% and 20% (v/v) OptiPrep in 

10 mM HEPES buffer was prepared and slowly added in layers on top of the OMVs in 45% OptiPrep. 

Tubes were balanced by addition/removal of the 20% OptiPrep layer. Ultracentrifugation was 

performed at 111,000 x g for 2 hrs at 4 °C for P. aeruginosa strains or 50,000 RPM (183,960 x g) for 3 

hrs at 4ºC for E. coli strains. Ultracentrifuge tubes were incubated at 4ºC overnight to allow each layer 

Figure 2.1 Growth curve of E. coli parental strain and ΔfimA at 37 °C. Strains were grown in triplicate, 

error bars represent 1 Standard Deviation from the mean 

E. coli ΔfimA 

E. coli BW25113 

parental strain 
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to settle. Without disturbing the ultracentrifuge tube, each layer was removed sequentially then kept at 

4°C for further analysis. 240 μL of the sample of interest was precipitated using 60 μL TCA using the 

standard protocol prior to loading on an SDS-PAGE gel. In order to visualise the OMVs by TEM, the 

OptiPrep needed to be removed from the samples. Each sample of interest was diluted with PBS so that 

the percentage of OptiPrep was now 2-3 % in each sample. The OptiPrep was then removed by 

centrifugation at 16,000 RPM (25,805 x g) for 3 hrs at 4ºC. Each pellet was resuspended in 1.5 mL 10 

mM HEPES buffer. 1.2 mL OMVs in HEPES was centrifuged at 13,200 RPM (14,220 x g) for 30 mins 

at 4ºC and finally resuspended in 12 μL 10 mM HEPES buffer. 10 μL of this sample was added to the 

EM grids for visualisation of the OMVs. 

2.6.5 Alternative techniques to remove flagella 

OMVs were purified from 500 mL culture using the standard protocol and were resuspended in 5 mL 10 

mM HEPES buffer. 

The following methods were compared: 

1. Standard method: 1 mL OMVs in 10 mM HEPES buffer were centrifuged at 4ºC for 30 mins, 

13,200 RPM. The resulting OMV pellet was resuspended in 30 μL 10 mM HEPES buffer. 

2. Low speed spin: 1 mL OMVs in 10 mM HEPES buffer was centrifuged at 6000 x g at 4ºC for 30 

mins. The resulting OMV pellet was resuspended in 30 μL 10 mM HEPES buffer. 

3. Proteinase K: 900 μL OMV sample was mixed with 100 μL Proteinase K sample (100 µg/mL in 

HEPES /CaCl2 buffer). Samples were incubated at 37ºC for 30 mins. 5 mM PMSF was added to inhibit 

the protease and incubated at 37ºC for another 30 mins. OMV were centrifuged at 13,200 RPM (14,220 

x g) for 30 mins at 4 °C. The resulting OMV pellet was resuspended in 30 μL 10 mM HEPES buffer. 

4. OMVs before filtration through a 0.45 µm membrane filter: 2 mL OMVs in 10 mM HEPES 

buffer were centrifuged at 4ºC for 30 mins, 13,200 RPM.  The pellet was resuspended in 30 μL 10 mM 

HEPES buffer.  

5. OMVs after filtration through a 0.45 µm membrane filter: 2 mL OMVs in 10 mM HEPES buffer 

was filtered through a 0.45 µm membrane. The sample was centrifuged at 4ºC for 30 mins, 13,200 

RPM.  The pellet was resuspended in 30 μL 10 mM HEPES buffer. 

6. Addition of proteases from Streptomyces griseus. A protease stock of 10% (w/v) was prepared in 

10 mM HEPES buffer with CaCl2. This was then diluted to give other concentrations of proteases from 

1% to 0.1%. OMVs resuspended in HEPES were incubated with proteases of the relevant 

concentrations at 37ºC for 30 mins. The samples (450 μL) were centrifuged at 4ºC for 30 mins, 13,200 

RPM (14,220 x g) and the pellet was resuspended in 20 μL 10 mM HEPES buffer in preparation for 

TEM. 

2.6.6 Alternative techniques to remove fimbriae 

As ultracentrifugation was unsuccessful, alternative techniques were compared to see if OMVs could be 

isolated from the co-purified fimbriae in E. coli K-12 strains. OMVs were purified from 500 mL culture 

using the standard protocol and were resuspended in 5 mL 10 mM HEPES buffer. 

The following methods were compared: 
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1. OMVs untreated: 500 μL OMV in 10 mM HEPES buffer 

2. OMVs heat treated at 95ºC for 30 mins: 500 μL OMVs in 10 mM HEPES buffer were heated 

at 95ºC for 30 mins 

3. OMVs sonicated: OMVs were subject to 6 cycles of sonication for 30 seconds then resting for 

30 seconds at 30% power (maximum is 40%)  

2.6.7 Lipid extraction  

Lipids and proteins were separated in OMV samples using chloroform-methanol extraction method 

(Ferrez, et al. 2003). 1 mL E. coli OMVs were mixed with 4 mL chloroform-methanol mixture (2:1 

v/v). Briefly, the mixture was vortexed for 20 seconds then centrifuged at 2500 x g for 10 mins. The 

aqueous layer (top layer, mostly methanol and water) was discarded. The interphase layer (containing 

OMV proteins) was extracted and transferred to a new 1.5 mL microfuge tube. Samples were spun in a 

vacuum centrifuge to remove all surrounding liquid and OMV proteins were resuspended in 10 mM 

HEPES buffer for Proteinase K test. As a control, 1 mL 100 µg/mL BSA was added to 4 mL of 

chloroform-methanol mixture and was treated in the same way as the OMVs. 

2.7 Outer membrane and periplasmic protein extractions 

Outer membrane proteins and periplasmic proteins were isolated using Tris-sucrose-EDTA (TSE) 

buffer extraction (Quan et al. 2013). This method was chosen as it appears to be an efficient method of 

extracting outer membrane and periplasmic proteins with minimal contamination of proteins from the 

inner membrane and cytoplasm (Quan et al. 2013). Isolation of periplasmic proteins, OM proteins and 

OMVs were performed on the same E. coli culture concurrently for direct comparison. In each case, the 

colony of interest was inoculated into 750 mL LB and grown overnight. 500 mL of this culture was 

used to purify OMVs and 100 mL was used for the periplasmic and OM extraction.  

 

Briefly, 100 mL fresh overnight culture was diluted to be OD600 1.0. The bacterial cells were harvested 

by centrifugation at 3000 x g for 20 mins at 4ºC and the supernatant was discarded. The cell pellet was 

carefully resuspended into 1 mL TSE buffer then incubated on ice for 30 mins. This sample was then 

centrifuged at 16,000 RPM for 30 mins at 4ºC and the supernatant was transferred to a new microfuge 

tube suitable for ultracentrifugation. The supernatant at this stage contained the soluble extracted 

bacterial envelope proteins. To separate outer membrane proteins from periplasmic proteins, the 

supernatant was centrifuged at 43,000 RPM for 1 h at 4 °C (TL-100 Ultracentrifuge rotor Beckman). 

The pellet from this step contained the outer membrane proteins and the supernatant contained the 

soluble periplasmic proteins (Quan et al. 2013). 
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2.8 Protein manipulation techniques 

2.8.1 Bradford assay 

The concentration of protein in both cells and OMV samples were determined using a Bradford assay. 

A standard curve was produced using a range of BSA concentrations between 0-1000 µg/mL diluted in 

MQ water. 20 μL of the BSA standard at each concentration was vortexed with 1 mL 1x Bradford 

reagent and incubated at room temperature for 15 mins. The Absorbance of the samples were read at a 

wavelength of 595 nm and a standard curve was constructed. The Bradford assay was performed using 

the same procedure as for the BSA standards and the protein concentration (µg/mL) was calculated 

from the standard curve. Standards and OMV/cell samples were performed in triplicate and an average 

was taken.  

2.8.2 Standardisation of protein samples for SDS-PAGE gel 

All samples were standardised to the same protein concentration prior to loading on an SDS-PAGE gel 

unless otherwise stated. A Bradford assay was performed to determine the protein concentration of all 

samples. The sample with the lowest concentration of protein was determined and all other samples 

were diluted to be the same. Once all samples were the same protein concentration, they were either 

loaded on to an SDS-PAGE gel or TCA precipitated to concentrate (see method below). Any empty 

lanes on an SDS-PAGE gel were filled with 10 mM HEPES buffer (details in Section 2.15) and 4x 

reducing sample buffer (RSB).   

2.8.3 TCA-precipitation of OMVs 

Purified OMVs (resuspended in HEPES) were vortexed with cold 100% TCA stock solution to make a 

final concentration of 20% TCA. Samples were incubated on ice for 30 mins then centrifuged for 30 

mins, 13,200 RPM (14,220 x g) at 4 °C. The supernatant was removed and 0.5 mL cold acetone was 

added. After briefly vortexing, the samples were centrifuged for 15 mins, 13,200 RPM (14,220 x g) at 4 

°C. The supernatant was removed and each OMV pellet resuspended in 10 mM HEPES buffer (details 

in Section 2.15) and 4x RSB in a 3:1 ratio. 

2.8.4 SDS-PAGE 

SDS-PAGE gels were run using the Novex Xcell II Mini-Cell system for Electrophoresis with pre-cast 

10 well 4-12% Bis-Tris gels. SDS-PAGE gels were run using 1x MOPS or 1x MES SDS running 

buffer. Each sample was mixed with the appropriate volume of 4X reducing sample buffer (RSB) and 

heated to 95 °C for 5 mins prior to loading. 20 μL of each sample was loaded into each well. 0.2 μL 

markers were used each time to estimate protein size when the SDS-PAGE was due to be silver stained. 

5-10 μL markers were used when staining with Coomassie. Gels were run at 165 V for 48 mins (MES 

running buffer) or 55 mins (MOPS running buffer). 

2.8.4.1 Detection of proteins via Coomassie 
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SDS-PAGE gel was placed in 25 mL InstantBlue and left on a shaker for 1 hour at room temperature. 

2.8.4.2 Detection of proteins via silver staining 

SDS-PAGE gels were developed using the Pierce Silver Stain kit as described in the manufacturer’s 

protocol. All steps below were carried out on an orbital shaker. Briefly, SDS-PAGE gels were subject to 

2 x 5 min washes in MQ water then 2 x 15 min washes minimum in Gel Fix (30% ethanol, 10% acetic 

acid, 60% MQ water). Gels were washed for 2 x 5 mins in 10% (v/v) ethanol then 2 x 5 mins in MQ 

water. Gels were sensitised for 1 min (in 50 μL sensitiser in 25 mL MQ water) then washed 2 x with 

MQ water for 1 min. Gels were stained for 30 mins minimum in Staining Solution (0.5 mL Enhancer 

with 25 mL Silver Stain solution). After 2 x 20 second washes with MQ water, gels were developed 

using Developer Solution (0.5 mL Enhancer with 25 mL Developer solution) for 1-3 mins. Once bands 

appeared, the reaction was stopped using 5% (v/v) acetic acid for 10 mins. After imaging, gels were 

stored long term in 5% (v/v) acetic acid or MQ water at 4ºC. 

2.8.4.3 Imaging of SDS-PAGE gels and Western blots 

Gels and blots were imaged using Syngene G:BOX and associated software. 

2.8.4.4 Densitometry analysis of protein profiles on SDS-PAGE gel 

Densitometry analysis was performed using Image J (Miller, 2010). 

2.8.4.5 Extraction of FimA monomer protein from an SDS-PAGE gel 

An SDS-PAGE gel was run containing protein markers and OMVs from E. coli with fimbriae locked on 

strains. After running, the SDS-PAGE gel was cut in half. One half (containing 1 lane of protein 

markers and 1 lane of the OMV sample) was silver stained so that the FimA protein could be visualised 

(at 18 kDa). This was called the ‘stained FimA’ sample. The other half of the gel containing 1 lane of 

protein markers and 1 lane of OMVs was not stained. However, using the protein markers and other 

stained half of the gel, the location of FimA at 18 kDa could be estimated and this was extracted. This 

sample was called the ‘unstained FimA’ sample as no silver staining had taken place. The excised gel 

pieces were cut as small as possible and were incubated with 1 mL elution buffer (50 mM Tris-HCl, 150 

mM NaCl, and 0.1 mM EDTA, pH 7.5) at 30 °C, shaking at 180 RPM. The samples were centrifuged at 

5000 x g for 10 minutes and the supernatant, (containing the extracted protein), was removed.  

2.8.5 Wet transfer 

An SDS-PAGE gel was run of the samples as described above including 5-10 µL protein markers. 

Transfer from the SDS-PAGE gel to PVDF membrane was performed using the Bio-Rad electro 

transfer cell equipment using the manufacturer’s instructions.  

2.8.5.1 Western blot protocol for anti-OmpA antibody 

All steps below were carried out on an orbital shaker. After transfer, the membrane was blocked in 10% 

BSA in TBST for 30 mins then incubated overnight at 4ºC with anti-OmpA antibody (diluted 1:50,000 
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in 5% (w/v) BSA in TBST). Membranes were then subject to 3 x 15 min washes in 1X TBST then 

incubated for 1 hour with 10 mL secondary antibody (diluted in 5% BSA in TBST). Membranes were 

then subject to 3 x 5 min washes in 1X TBST then 2 x 5 min washes in 1X TBS. Bands were developed 

in the dark using BCIP/NBT substrate for 1-10 mins and the reaction was stopped by washing in MQ 

water. See Table 2.18 for further information about PVDF membranes and secondary antibodies used 

for each primary antibody. 

2.8.5.2 Western blot protocol for all other antibodies 

All steps below were carried out on an orbital shaker. After transfer, the membrane was blocked in 5% 

(w/v) milk in TBST for 30 mins then incubated overnight at 4ºC with primary antibody diluted in 5% 

milk in TBST (see Table 2.18 for details of dilutions for each primary antibody). Membranes were then 

subject to 4 x 5 min washes in 1X TBST then incubated for 1 hour with of secondary antibody (diluted 

in 5% milk in TBST). Membranes were then subject to 4 x 5 min washes in 1X TBST. Bands were 

developed in the dark using BCIP/NBT substrate for 1-10 mins and the reaction was stopped by 

washing in MQ water. 

Table 2.18 Dilutions for primary and secondary antibodies during Western blotting and PVDF 

membrane types used for transfer 

 

 

2.8.5.3 Imaging of Western blots 

Gels and blots were imaged using Syngene G:BOX and associated software. 

2.8.6 Mass spectrometry (matrix-assisted laser desorption/ionisation, MALDI) 

All preparation for the mass spectrometry described below was performed in Kevin Howland’s 

laboratory (UKC). Microfuge tube preparation: Before use microfuge tubes used in this procedure 

were rinsed with ethanol and air-dried overnight in a foil covered beaker to reduce keratin 

contamination. Band excision: SDS-PAGE gels containing the bands of interest were subject to 2 x 10 

min washes with MQ water. Bands of interest were then carefully excised from the SDS-PAGE with a 

clean washed scalpel and cut further into 1 mm x 1 mm squares. The extracted gel pieces were 

incubated overnight at 4ºC in 500 μL MQ water in a clean microfuge tube. Reduction and alkylation: 

All solutions used were prepared on the day and all centrifugation steps were performed at 5000 RPM 

for 1 min at room temperature. Firstly, the gel pieces were centrifuged and the MQ water was removed. 

Antibody name
Dilution used in 

Western blots 
Host

Secondary alkaline-

phosphatase conjugated 

antibody used

Dilution used 

in Western 

blots 

PVDF 

Membrane pore 

size used with 

antibody (µm)

Anti-FimA monoclonal 1 in 5000 Rabbit Anti-rabbit (Sigma) 1 in 5000 0.2

Anti-FimA polymer 1 in 5000 Rabbit Anti-rabbit (Sigma) 1 in 5000 0.45

Anti-Flagellin 1 in 10,000 Rabbit Anti-rabbit (Sigma) 1 in 5000 0.45

Anti-GFP antibody 1 in 3333 Mouse
Anti-mouse secondary 

antibody (Promega)
1 in 5000 0.45

Anti-Neon green 

antibody
1 in 1000 Mouse Anti-mouse (Promega) 1 in 5000 0.45

Anti-OmpA antibody 1 in 50,000 Rabbit Anti-rabbit (Sigma) 1 in 5000 0.45
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Gel pieces were incubated in 1 mL 50 mM NH4HCO3:acetonitrile (1:1) for 15 mins then spun down to 

remove liquid. Gel pieces were shrunk by addition of 100 μL acetonitrile for 15 mins then centrifuged 

and all liquid removed. 50 μL 10 mM DTT in NH4HCO3 was added to cover the gel pieces then 

incubated at 56ºC for 30 mins. Gel pieces were spun down and any excess liquid was removed. The gel 

pieces were then shrunk briefly by incubation in acetonitrile for 2 mins. Acetonitrile was removed and 

55 mM iodoacetamide in 50 mM NH4HCO3 was added. Iodoacetamide is light sensitive so gel pieces 

were incubated for 20 mins in the dark. Gel pieces were then washed in 100 μL 50 mM 

NH4HCO3:acetonitrile (1:1) then 50 mM NH4HCO3 then acetonitrile in the same way as described 

above and all excess liquid was removed. In-gel Digestion: Gel pieces were rehydrated in 20 μL 

digestion buffer (25 mM NH4HCO3, 10% acetonitrile and 10 ng/μL Trypsin) and incubated on ice for 

30 mins. Any remaining liquid was removed and gel pieces were rehydrated in 10 μL 25 mM 

NH4HCO3, 10% acetonitrile (no Trypsin) and incubated at room temperature overnight for digestion. 

Extraction of peptides: 5 μL acetonitrile was added to the gel pieces and sonicated for 15 mins in an 

ultrasound bath. Gel pieces were briefly centrifuged and the supernatant was collected and transferred to 

a fresh microfuge tube. 10 μL 50% acetonitrile, 5% formic acid solution was added to the gel pieces and 

sonicated for 15 mins in an ultrasound bath. Gel pieces were spun down and the supernatant was 

transferred to the same microfuge tube as in the previous step. These combined supernatants were stored 

at 4ºC if samples were to be analysed in the next 24 hrs or stored at -20ºC.  

Analysis of samples 

Proteins were identified using Bruker ultrafleXtreme MALDI-TOF/TOF mass spectrometer and 

associated software. Samples to be identified were added to the MTP Anchorchip MALDI-TOF plate 

(Bruker). 0.5 μL sample (prepared above) was added to the MALDI-TOF plates in known coordinates 

and left to air dry. 1 μL matrix solution (0.7 mg/mL α-Cyano-4-hydroxycinnamic acid dissolved in 

solvent mixture 85% acetonitrile, 15% water, 0.1% TFA and 1 mM NH4H2PO4) was then added on top 

of each sample and left to air dry. 0.5 μL Peptide Calibration Standard solution was added to the plate 

and left to air dry. The plate was loaded on to the instrument and the following settings were used: 

Polarity: positive, Laser frequency: 2 kHz, Ion sources: 25 kV and 22.35 kV, Lens: 7.5 kV, Pulsed 

ion extraction: 80 nS, Peptide Calibration Range: 700-3500 Da, Data sampling rate: 4 Gs/s. For 

each sample 3500 shots were summed and saved. Protein was identified by a Peptide Mass Fingerprint 

(PMF) search in the Mascot database. A match is significant if it has a score greater than 70.  

2.9 Microscopy  

2.9.1 Transmission Electron Microscopy (TEM) 

2.9.1.1 Preparation of copper and gold grids used for TEM  

EM grids (Table 2.19) used for TEM and were prepared and supplied by Ian Brown (UKC). 
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Table 2.19 Comparison of grids used for TEM 

  

2.9.1.2 Standard TEM protocol to visualise OMVs 

OMVs resuspended in 10 mM HEPES buffer were concentrated for EM by centrifugation at 13,200 

RPM (14,220 x g) for 30 mins at 4°C. The OMV pellets were then resuspended in 10-15 μL 10 mM 

HEPES buffer. 10 μL purified OMVs were added to a copper EM grid and left to settle for 10 mins. 

OMVs were then fixed by adding 10 μL of 4% (w/v) formaldehyde in PBS and the grids were left for 

10 mins. The grids were subject to 4 x 1 min washes in MQ water then negatively stained using 2% 

(w/v) uranyl acetate in PBS. Grids were air dried for 20 mins and loaded on to the EM for analysis.  

2.9.1.3 Time lapse experiment to observe OMV biogenesis 

Colonies of P. aeruginosa PA14 and E. coli BL21 (DE3) were inoculated into 25 mL LB and incubated 

for 18 hrs at 37ºC, 180 RPM. 15 mL was centrifuged at 3000 RPM for 8 mins at room temperature. The 

bacterial pellets were resuspended in 15 mL PBS then subject to two washes in PBS (3000 RPM for 8 

mins). The bacterial pellet was resuspended in 10 mL fresh LB and the OD600 of the culture was 

measured. Cells were diluted in LB to give an OD600 of 0.1. 10 μL of cells in LB was added to gold 

carbon coated EM grids and incubated at 37ºC. Grids were fixed at various time points over 22 hrs by 

adding 10 μL 5% (v/v) glutaraldehyde in 200 mM CAB (sodium cacodylate arsenic pH 7.2) for 5 mins. 

The grids were then washed in 20 μL 2.5% (v/v) glutaraldehyde in 100 mM CAB for 2 mins then 30 

mins. The grids were then subject to 3 x 1 min water washes. Grids were air dried for 20 mins then 

loaded on to the EM for analysis (JEOL 1230) at 80 KV. 

2.9.1.4 Immunolabelling OMVs using anti-OmpA antibody 

Purified E. coli BL21 (DE3) OMVs were concentrated 10x by centrifugation at 13,200 RPM (14,220 x 

g) for 30 mins at 4ºC then resuspended in 10 mM HEPES buffer. 10 μL OMVs were added to each grid 

and left to settle for 10 mins. Grids were fixed by washes in 20 μL 2% (w/v) formaldehyde + 0.5% (v/v) 

glutaraldehyde in 100 mM CAB pH 7.2 for 1 min then 30 mins. Grids were then subject to 2 x 5 min 

washes in 100 mM CAB then 2 x 5 min washes in TBST. Grids were washed in 2% (w/v) BSA in 

TBST for 1 min then 30 mins. Grids were then incubated with anti-OmpA antibody (Antibody Research 

Corporation 111120) diluted 1 in 50 in TBST. An identical grid was used as a negative control and was 

incubated in TBST only. Grids were left in primary antibody at 4ºC overnight. The next day, grids were 

washed 5x in TBST for 1 min then grids were incubated in immunogold conjugated anti-rabbit antibody 

TEM grid 

material
Coating

Mesh 

size
Use

Copper Formvar/carbon 400
Used to visualise purified (O)MVs. Default 

grid type used unless otherwise stated 

Gold Formvar/carbon 400 Immunogold labelling (O)MVs

Gold None 400
Immunogold labelling cells and (O)MVs 

embedded in resin 
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(BBI solutions EM.GAR15) which was diluted 1 in 50 in TBST. Grids were washed in secondary 

antibody for 1 min then left for 30 mins. Grids were subject to 5 x 1 min washes in TBST then 5 x 1 

min washes in Milli-Q water. Lastly, grids were negatively stained using 2% (w/v) uranyl acetate in 

PBS then air dried for 20 mins. Grids were loaded on to the EM for analysis (JEOL 1230) at 80 KV. 

2.9.1.5 Embedding bacterial cells in resin for immunogold labelling and TEM analysis 

Colonies were inoculated into 12.5 mL LB and incubated at 37 °C, 180 RPM for 20 hrs. 1 mL overnight 

culture was harvested by centrifugation at 13,000 RPM for 2 mins. Cells were fixed in 1.5 mL 2.5% 

(v/v) gluteraldehyde in 100 mM sodium cacodylate buffer pH 7.2 (CAB) for 3 hrs with gentle rotation 

at 20 RPM. Fixed cells were pelleted by centrifugation at 13,000 RPM for 2 mins then washed twice in 

100 mM CAB buffer, followed by final resuspension in 1.5 mL CAB. Cells were pelleted by 

centrifugation at 13,000 RPM for 2 mins then resuspended in 1.5 mL 50% (v/v) ethanol. Resuspended 

cells were mixed with gentle rotation at 20 RPM for 10 mins. This was repeated so that the cells were 

washed in 70% (v/v) ethanol, 90% (v/v) ethanol and 3x washes in 100% ethanol to remove all water. 

Cell pellet was finally resuspended in 1.5 mL LR White Resin Medium Grade (Agar scientific, 

AGR1281) and left spinning on the rotor overnight at room temperature. Cells were pelleted by 

centrifugation at 13,000 RPM for 2 mins, the supernatant was removed and the cells were resuspended 

in fresh LR White Resin (Agar Scientific). This was repeated once more. Cells resuspended in resin 

were left spinning at 20 RPM at room temperature for 5 hrs. Cells were then added to Gelatin capsules 

(Agar Scientific G29208). They allow resin polymerisation in the absence of oxygen as they are sealed. 

Cells were pelleted (13,000 RPM for 2 mins) and resuspended in 0.5 mL resin. The cells (resuspended 

in resin) were then added to the capsules and fresh resin was used to top up the capsules to the point of 

overflowing to leave as little air is in the capsule as possible. The capsules were placed into new 1.5 mL 

Eppendorfs (cut in half) so they could be microfuged at 1000 RPM for 5 mins so that the cells were at 

the bottom of the capsule. Capsules were incubated at 60ºC for 22 hrs to allow polymerisation of resin 

inside the gelatin capsules. The gelatin capsules were cut off the resin using a Teflon coated razor blade. 

The bottom of the resin capsule contained the cell sample (was visible as a LB-coloured pellet). The top 

part of the resin (away from the sample) was filed down to the flat then the sample was labelled with 

permanent marker. The resin pieces were stored in a Petri dish for sectioning and EM at a later date. 

2.9.1.6 Embedding OMVs in resin for immunogold labelling and TEM analysis 

E. coli strains were grown in 750 mL LB and purified using the standard OMV purification protocol for 

E. coli. The final OMV pellet was resuspended in 1 mL 10 mM HEPES buffer. 800 μL E. coli OMVs 

were harvested by centrifugation at 13,200 RPM (14,220 x g) for 30 mins at 4 ºC. OMVs were then 

fixed in 1.5 mL 2.5% gluteraldehyde in 100 mM sodium cacodylate buffer pH 7.2 (CAB) for 1.5 hrs 

with gentle rotation. Fixed OMVs were pelleted by centrifugation at 13,200 RPM (14,220 x g) for 30 

mins then washed twice in 100 mM CAB, followed by final resuspension in 25 μL CAB. 25 μL of fixed 

OMVs were added to PCR tubes immersed in a 54°C water bath. After warming, 25 μL of pre-heated 

3% (w/v) agarose solution in 100 mM CAB was added to the OMV suspension and mixed thoroughly 

by careful pipetting. Pre-heated agarose was mixed 1:1 with sample. The agarose-cell suspension was 
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then transferred into a pre-warmed frame constructed from two glass microscope slides separated by an 

acetate gasket, held together by bulldog clips. The slides were incubated at 4ºC for 10 mins to set. The 

microscope slides were separated and the agarose gel was cut into small (~2 mm) squares with a 

razorblade. The agarose pieces were transferred to a petri dish into a droplet of 0.1% Alcian blue in 1% 

acetic acid (v/v). Agarose squares were then transferred to a glass vial and washed twice in 3 mL 100 

mM CAB. Using this process, agarose pieces were washed in 50% (v/v) ethanol, 70% (v/v) ethanol, 

90% (v/v) ethanol and finally 3x in 100% ethanol. All 100% ethanol was removed and agarose pieces 

were left in approximately 3 mL resin overnight at room temperature so that all remaining ethanol 

evaporated. All resin liquid was removed around the agarose pieces then fresh resin was added. This 

was repeated and the agarose pieces were left in resin for 5 hrs. This was then added to gelatin capsules 

which were filled with resin to the top until overflowing. 1 blue agarose piece was added to the bottom 

of the gelatin capsule filled with resin. Capsules were incubated at 60ºC for 22 hrs to allow 

polymerisation. The gelatin capsules were cut off the resin using a Teflon-coated razor blade. The 

bottom of the resin capsule contained the OMV sample (visible due to the blue dye) and the top part of 

the resin (away from the sample) was filed down to the flat then labelled with permanent marker. The 

resin pieces were stored in a Petri dish for sectioning and EM at a later date. 

2.9.1.7 Sectioning and visualisation of embedded samples  

Sectioning was performed by Ian Brown (UKC) on a RMC MT-XL ultra-microtome with a diamond 

knife. Sections were added to un-coated 300 mesh gold grids (Ian Brown). Grids were washed in 2% 

(w/v) BSA in TBST for 1 min then 30 mins. Grids were incubated in 15 μL primary antibody in TBST 

at 4°C overnight. See Table 2.20 for further details on the primary and secondary antibodies used. 

Table 2.20 Description of all antibodies used for immunogold labelling 

 

Primary antibody 

name

Dilution of 

primary 

antibody used in 

(TBST)

Host
Secondary antibody 

used

Dilution of 

secondary 

antibody used 

(in TBST)

Anti-FimA monoclonal 1 in 50 Rabbit
Anti-rabbit 15 nm gold 

(BBI solutions )
1 in 50

Anti-FimA monomer 

and Anti-GFP antibody 

mix

1 µL FimA 

antibody, 1 µL 

GFP, 48 µL 

TBST

Rabbit & 

Mouse

Anti-mouse 10 nm gold 

(BBI solutions) then anti-

rabbit 15 nm gold 

1 in 50

Anti-FimA polymer 1 in 50 Rabbit
Anti-rabbit 15 nm gold 

(BBI solutions )
1 in 50

Anti-Flagellin 1 in 50 Rabbit
Anti-rabbit 15 nm gold 

(BBI solutions )
1 in 50

Anti-GFP antibody 1 in 50 Mouse
Anti-mouse 10 nm gold 

(BBI solutions )
1 in 50

TBST only (anti-mouse 

negative control)
N/A N/A

Anti-mouse 10 nm gold 

(BBI solutions )
1 in 50

TBST only (anti-rabbit 

negative control)
N/A N/A

Anti-rabbit 15 nm gold 

(BBI solutions )
1 in 50
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Grids were subject to 5 x 1 min washes in TBST then incubated in secondary immunogold conjugated 

antibody for 30 mins. For the samples probed with both anti-FimA monomer and anti-GFP primary 

antibodies, grids were incubated in anti-mouse secondary antibody for 15 mins then anti-rabbit 

secondary antibody for 15 mins. Grids were subject to 5 x 1 min washes in TBST then 5 x 1 min washes 

in TBST. Grids were incubated in 4.5% (v/v) uranyl acetate in 1% (v/v) acetic acid solution for 15 mins 

then washed in a stream of MQ water. Lastly, grids were stained by incubation in Reynolds lead citrate 

for 3 mins then washed in a stream of MQ water. Grids were air dried for 30 mins then loaded on to the 

EM for analysis. For further details about antibodies used, see Section 2.1. 

2.9.2 Confocal microscopy  

Confocal microscopy for Streptomyces S4 cells and MVs 

Streptomyces S4 cells were inoculated into 12.5 mL YEME:TSB (two media mixed in a 1:1 ratio) and 

incubated at 30ºC, 180 RPM for 48 hrs. 1 mL cells were pelleted by centrifugation at 13,200 RPM 

(14,220 x g) for 30 mins so that both cells and OMVs were pelleted together. The supernatant was 

removed and 1 mL 2% (w/v) paraformaldehyde in PBS was used to fix cells. Cells were pelleted again 

and 1 mL 100 µg/mL WGA-FITC (Sigma L4895) was mixed with the cells and incubated in the dark 

for 1 hour. 15 μL cells were added onto a 1.5 mm thickness coverslip before being inverted into a drop 

of ProLong Gold antifade mountant (Life Technologies, P36930) on a glass slide. Slides were incubated 

at room temperature in the dark overnight to cure. Samples were visualised the next day by confocal 

microscopy (Zeiss lsm 880 with airscan with associated Zen Black software) under the supervision of 

Matt Lee. A scale bar was added to images using Fiji (Image J). The only modification to the protocol 

when using Streptomyces S4 MVs was that there was an additional concentration step after the 

incubation with WGA-FITC for 1 hour. MVs were pelleted by centrifugation at 13,200 RPM (14,220 x 

g) for 30 mins then resuspended in 15 μL PBS which was added to the glass slide in the same way as 

above. 

2.9.3 Light microscopy 

Light microscopy for fimbriae agglutination assay 

Each E. coli strain was inoculated into LB and incubated at 37ºC for 18-24 hrs, 180 RPM. 

Saccharomyces cerevisiae was inoculated into YPD and incubated at 30ºC for 18-24 hrs, 180 RPM. 5 

μL of overnight E. coli strain was mixed with 5 μL Saccharomyces cerevisiae on a glass microscope 

slide. Yeast cell agglutination was visualised using GXM L2800 Premium Compound Microscope at 

400x magnification and photos were taken using the associated camera.  
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2.10 Protease studies 

2.10.1 Proteinase K test 

Purified OMV samples were treated with a working concentration of 10 µg/mL Proteinase K 

(resuspended in HEPES/CaCl2 buffer, details in Section 2.15) and/or varying concentrations of SDS (in 

MQ water). The OMVs were incubated in the presence and absence of Proteinase K and SDS for 30 

mins while shaking at 37°C, 180 RPM. PMSF was added to every sample to inhibit Proteinase K (0.5 

mM working concentration) then samples were incubated for another 30 mins while shaking at 37°C, 

180 RPM. Samples were then TCA precipitated to concentrate then run on an SDS-PAGE gel for 

analysis. For pre-lysed OMVs, OMVs were heated for 95°C for 30 mins then left at room temperature 

to cool before Proteinase K addition. 

 

 

Table 2.21 Description of the contents of each sample in a Proteinase K test 

 

2.11 Detergent studies 

2.11.1 E. coli and Streptomyces S4 detergent studies 

Various concentrations of SDS were added to E. coli/Streptomyces S4 MVs then incubated for 60 mins 

at 37 ºC, shaking at 180 RPM. Samples were TCA precipitated and finally resuspended in 30 μL 10 mM 

HEPES buffer and 10 μL 4x RSB prior to loading on to an SDS-PAGE gel. 

 

  

Lane 

number
Lane description

OMVs (or 

substituted with 

10 mM HEPES 

buffer)

100µg/mL Proteinase 

K (or substituted with 

10 mM HEPES/CaCl2 

buffer)

SDS stock (w/v) 

added (or 

substituted with 

MQ water)

2 OMVs - Prot K - SDS 168 µL OMVs 24 µL HEPES/CaCl2 48 µL water 

3 OMVs + Prot K - SDS 168 µL OMVs 24 µL Proteinase K 48 µL water 

4 OMVs - Prot K + SDS 168 µL OMVs 24 µL HEPES/CaCl2 48 µL 20% SDS

5 OMVs heated to 95°C + Prot K 168 µL OMVs 24 µL Proteinase K 48 µL water 

6 OMVs + Prot K + SDS 0.02% 168 µL OMVs 24 µL Proteinase K 48 µL 0.02% SDS

7 OMVs + Prot K + SDS 1% 168 µL OMVs 24 µL Proteinase K 48 µL 5% SDS

8 OMVs + Prot K + SDS 2% 168 µL OMVs 24 µL Proteinase K 48 µL 10% SDS

9 OMVs + Prot K + SDS 4% 168 µL OMVs 24 µL Proteinase K 48 µL 20% SDS

10 Proteinase K + SDS only 168 µL HEPES 24 µL Proteinase K 48 µL 20% SDS
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2.12 Cloning / DNA manipulation techniques 

2.12.1 Plasmid design and cloning overview 

The plasmid pJB005 was donated by Dr Alex Moores (UKC) for use in cloning. See Figure 2.2 for 

plasmid map and details. The vector is a derivative of the pCA24N plasmid with mNeonGreen fused at 

the C-terminal. The pCA24N vector originated from Japan’s coli stocks.  

Reference: https://shigen.nig.ac.jp/ecoli/strain/locale/change?lang=en 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 pJB005 plasmid map used for cloning. Plasmid map generated using SnapGene. 
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Aim: To re-introduce the fimA and fimC genes back into E. coli ΔfimA/ΔfimC strains using the pJB005 

plasmid. The resulting proteins are a FimA-mNeon Green fusion protein and a FimC-mNeon Green 

fusion protein. Figure 2.3 gives an overview of the cloning procedure. 

 

 

2.12.1.2 Cloning Oligos into pJB005 plasmid overview 

Aim: To create an mNeon Green protein with the FimA signal peptide sequence on the N-terminus of 

the protein. Figure 2.4 gives an overview of the cloning procedure. 

 

  

Figure 2.3 Overview 

for cloning fimA and 

fimC genes into pJB005 

plasmid  

 

 

Figure 2.4 

Overview for 

cloning Oligos into 

pJB005 plasmid 

 

 

 



 

77 

 

2.12.2 Primer design and preparation 

The following primers (listed in Table 2.22) were ordered from Integrated DNA Technologies (IDT). 

Further information of primer design can be found in Appendix A.1-A.2. 

Table 2.22 List of primers ordered from IDT with brief descriptions of their use 

 

 

2.12.2.1 Primer stocks (-80 ºC freezer) 

DNA was resuspended in sterile MQ water to make a 100 µM stock solution (stored at -80ºC). 

2.12.2.2 Working stocks of DNA (-20 °C) 

-80°C primer stocks were diluted to be 10 µM DNA which were then stored at -20°C.   

2.12.3 Transformation of DNA 

2.12.3.1 Preparation of competent cells    

The following strains from The Coli Genetic Stock Center (Keio collection) were made chemically 

competent with the guidance of Dr Alex Moores (UKC). The desired strain was inoculated into 10 mL 

LB and grown overnight at 37°C, 180 RPM. 50 μL of this culture was inoculated into 50 mL LB and 

was incubated at 37°C, 180 RPM until an OD600 0.5 was reached. 3.75 mL pre-warmed sterile 100% 

glycerol was added slowly to the flask 5 mins before reaching OD600 0.5. After OD600 0.5 was 

reached, the cells were chilled on ice for 10 mins. The cells were centrifuged for 10 mins at 4000 RPM, 

4°C and the supernatant discarded. Cells were resuspended gently in 50 mL of ice-cold magnesium 

chloride solution (see Section 2.15 for details). Cells were pelleted by centrifugation for 8 mins at 3800 

RPM and the supernatant was discarded. The cell pellet was resuspended gently in 12.5 mL ice cold T 

Primer name Primer description Primer sequence (5' - 3')

pJB.gene.seq.f
Forward primer for insert in plasmid 

pJB005
GTGAGCGGATAACAATTATAATAG

pJB.fluro.seq.r
Reverse primer for insert in plasmid 

pJB005 including mNeon green protein
CTAATTAAGCTTGGCTGCAGGT 

fimA .full.f
Forward primer for full fimA gene in 

E.coli  MG1655

TTTTCATATGAAAATTAAAACTCT

GGCAATCGTTG

fimA .full.r
Reverse primer for full fimA  gene in 

E.coli MG1655

TTTTGGCGCGCCTTGATACTGAAC

CTTGAAGG

fimC .full.f
Forward primer for full fimC gene in 

E.coli  MG1655

TTTTCATATGAGTAATAAAAACGT

CAATGTAAGG

fimC .full.r
Reverse primer for full fimC  gene in 

E.coli MG1655

TTTTGGCGCGCCTTCCATTACGCC

CGTCATTTTG

Oligo.FimA.sp.f
Oligo - FimA signal peptide sequence - 

Forward sequence

TATGATGAAAATTAAAACTCTGGC

AATCGTTGTTCTGTCGGCTCTGTC

CCTCAGTTCTACAGCGGCTCTGGC

CGG

Oligo.FimA.sp.r
Oligo - FimA signal peptide sequence - 

Reverse sequence

CGCGCCGGCCAGAGCCGCTGTAGA

ACTGAGGGACAGAGCCGACAGAAC

AACGATTGCCAGAGTTTTAATTTT

CATCA
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salts (containing CaCl2 and MgCl2, see Section 2.15 for details) and incubated on ice for 20 mins with 

occasional mixing. Cells were pelleted at 4ºC at 3600 RPM for 6 mins then the cells were finally 

resuspended gently into 2.5 mL T salts. Competent cells were split into aliquots of 200 μL into pre-

chilled tubes and stored immediately at -80 ºC. All steps above were performed in a sterile environment 

and cells remained on ice for as long as possible.      

2.12.3.2 Transformation protocol 

Competent cells were thawed on ice for 20-30 mins before addition of exogenous DNA. 1 μL of 

purified plasmid (approximately 150 ng/µL) was mixed with 50 μL competent cells then incubated for 

30 mins on ice. 50 μL competent cells only were used as a negative control. The cells were then heat 

shocked at 42ºC for 45 seconds to allow uptake of exogenous DNA through the disrupted membrane. 

Cells were then incubated on ice for 2 mins for recovery and retention of the exogenous DNA. 500 μL 

sterile LB was added to each reaction then incubated at 37ºC for 1 hour. 50 μL was then spread on a LB 

plate containing 25 µg/mL chloramphenicol for selection of cells containing the desired plasmid. To 

concentrate the cells further, 450 μL cells were centrifuged at 3500 RPM for 3 mins. The supernatant 

was removed and cells were resuspended in 50 μL LB and spread on to LB plate containing 25 µg/mL 

chloramphenicol. All plates were incubated at 37ºC overnight. 

2.12.4 DNA isolation  

2.12.4.1 Isolation of genomic DNA 

Genomic DNA from E. coli MG1655 was supplied by Dr Alex Moores (UKC). 

 

2.12.4.2 Isolation of fimA and fimC inserts from genomic DNA 

 

Table 2.23 PCR to isolate fimA and fimC genes from genomic DNA 

 

 

  

Volume (µL) Component

25 2x Q5 Master Mix

2.5 Forward primer (10 µM)

2.5 Reverse primer (10 µM)

19 MQ water

1 Genomic DNA from E.coli MG1655 (201 ng/L)
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2.12.4.3 Isolation of plasmid DNA 

A sterile pipette tip was used to pick up a colony of interest from a successful transformation. This 

pipette tip containing the colony was then used as described in Figure 2.5. 

 

 

 

 

 

 

 

 

 

 

 

Cells were grown in LB with 25 µg/mL chloramphenicol overnight (37ºC, shaking at 180 RPM). 5 mL 

of culture was used and plasmid DNA was isolated using QIAprep® Spin Miniprep Kit (Qiagen). 

Isolated plasmid DNA was eluted using either 50 μL sterile MQ water or 50 μL supplied EB buffer (10 

mM Tris·HCl, pH 8.5). DNA concentration was determined by using a NanoDrop Spectrophotometer. 

  

2.12.5 Preparation of plasmid and inserts for ligation (fimA/fimC inserts) 

2.12.5.1 Preparation of pJB005 plasmid for ligation  

Undigested pJB005 plasmid was provided by Dr Alex Moores (UKC).  

2.12.5.2 Plasmid digestion with restriction enzymes NdeI and AscI 

The reaction was set up as follows (Table 2.24). NdeI restriction enzyme was added and the mixture 

was incubated for 1 hour at 37°C. AscI was then added and incubated for another 1 hour at 37°C. NdeI 

enzyme needs 3 base pairs or more on each side of the cleavage site to recognise the sequence (NEB 

catalogue 2013-2014, page 330). For this reason, NdeI was added first then AscI was added 1 hour later. 

Table 2.24 Digestion of plasmid with restriction enzymes NdeI and AscI 

  

Volume (µL) Component

3 10x NEB Cutsmart enzyme buffer

7 pJB005 plasmid (to make 1 µg DNA)

18 Sterile MQ water

1 NdeI restriction enzyme (20 Units/µL)

1
AscI restriction enzyme added after 1 hour (10 

Units/µL)

Figure 2.5 

Procedure for 

the isolation of 

DNA for colony 

PCR 
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2.12.5.3 Gel extraction of plasmid to prevent re-ligation 

6 μL 6x loading dye was added to the 30 μL reaction above and ran on a 1% agarose gel. 12 μL was 

loaded into 3 consecutive wells. The location of the plasmid was determined using a UV box and the 

bands from all 3 lanes were extracted using a scalpel. The plasmid was extracted using QIA quick gel 

extraction kit (Qiagen) and quantified using the NanoDrop spectrophotometer. The extracted plasmid 

was used immediately for ligation.       

2.12.5.4 Preparation of fimA and fimC inserts for ligation (restriction digest) 

Gel extraction of fimA and fimC insert DNA 

fimA and fimC inserts were extracted from genomic DNA as described above. In order to purify 

fimA/fimC only (and no other genomic DNA), a gel extraction was performed. 30 μL of the PCR 

reaction was mixed with 6 μL 6x loading dye and ran on a 1% (w/v) agarose gel. 15 μL was loaded into 

2 consecutive wells. The location of the DNA was determined using a UV box and the bands from both 

lanes were extracted using a scalpel. The plasmid was extracted using QIA quick gel extraction kit 

(Qiagen) and quantified using the NanoDrop spectrophotometer. The extracted insert DNA was used 

immediately for ligation.       

 

Digestion with restriction enzymes NdeI and AscI 

The reaction was set up as follows (Table 2.25) and incubated for 2 hrs at 37 °C. 

Table 2.25 Digestion of inserts with restriction enzymes NdeI and AscI 

 

PCR clean up 

Immediately after digestion, restriction enzymes were removed using QIAquick PCR Purification Kit. 

 

2.12.6 Preparation of plasmid and inserts for ligation (Oligo insert) 

2.12.6.1 Preparation of pJB005 plasmid for ligation  

Plasmid digestion with restriction enzymes NdeI and AscI 

The reaction was set up as follows (Table 2.26). NdeI restriction enzyme was added and the mixture 

was incubated for 1 hour at 37 °C. AscI was then added and incubated for another 1 hour at 37 °C. 

 

 

Volume (µL) Component

6 10x NEB Cutsmart enzyme buffer

45 fimA/fimC extracted DNA (to make 1 µg) 

7 Sterile MQ water

1 NdeI restriction enzyme  (20 Units/µL)

1 AscI restriction enzyme  (10 Units/µL) 
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Table 2.26 Restriction digest of pJB005 plasmid with restriction enzymes NdeI and AscI 

 

 

PCR clean up  

Restrictions enzymes were removed from the DNA after digestion using the QIAquick PCR Purification 

Kit (Qiagen) using the manufacturer’s instructions.  

2.12.6.2 Preparation of Oligos for ligation  

Phosphorylation 

Oligos were phosphorylated using the reagents listed in Table 2.27 and incubated at 37°C for 45 mins. 

Table 2.27 Phosphorylation of Oligo DNA 

 

Annealing forward and reverse Oligos 

50 μL forward primer oligo for FimA signal peptide was mixed with 50 μL associated reverse primer 

oligo for FimA signal peptide. 11 μL annealing buffer was added and the tube was added to a heat block 

and incubated at 95ºC for 5 mins. The heat block was then turned off and left to cool to room 

temperature 

 

2.12.7 Ligation protocol 

2.12.7.1 Ligation of plasmid with fimA and fimC insert 

The following ligation mixtures were prepared with varying ratios of Insert:Vector (see Table 2.28). 

 

 

 

  

Volume (µL) Component

3 10x NEB Cutsmart enzyme buffer

7 pJB005 plasmid (to make 1 µg DNA)

18 Sterile MQ water

1 NdeI restriction enzyme (20 Units/µL)

1
AscI restriction enzyme added after 1 hour (10 

Units/µL)

Volume 

(µL)
Component

6 Oligo DNA (10 µM)

5 10 mM ATP 

5 10x T4 Polynucleotide Kinase Reaction Buffer

37 Sterile MQ water

2 T4 Polynucleotide Kinase 
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Tables 2.28 Ligation mixtures prepared with differing ratios of Insert:Vector 

0:1 Insert:Vector 

 

 

1:1 Insert:Vector 

 

 

3:1 Insert:Vector 

 

 

5:1 Insert:Vector 

 

 

All tubes were centrifuged briefly to spin down then incubated at 4ºC overnight. 50 µL DH5α 

competent cells were transformed with 5 μL ligation reaction. 

  

Volume 

(µL)
Component

0 Digested PCR insert 

1 Digested vector (5 ng/µL)

1 10x ligase buffer (Promega C1268)

1 T4 DNA ligase (Promega M180A)

7 Sterile MQ water

Volume 

(µL)
Component

1 Digested PCR insert

1 Digested vector (5 ng/µL)

1 10x ligase buffer (Promega C1268)

1 T4 DNA ligase (Promega M180A)

6 Sterile MQ water

Volume 

(µL)
Component

3 Digested PCR insert

1 Digested vector (5 ng/µL)

1 10x ligase buffer (Promega C1268)

1 T4 DNA ligase (Promega M180A)

4 Sterile MQ water

Volume 

(µL)
Component

5 Digested PCR insert

1 Digested vector (5 ng/µL)

1 10x ligase buffer (Promega C1268)

1 T4 DNA ligase (Promega M180A)

2 Sterile MQ water
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2.12.7.2 Ligation of plasmid with Oligo DNA 

Ligation of plasmid with Oligo DNA was performed as described below in Table 2.29. 

Table 2.29 Ligation of plasmid with annealed Oligo DNA   

 

 

Negative control 

 

 

All tubes were centrifuged briefly to spin down then incubated at 4ºC overnight. 50 µL DH5α 

competent cells were transformed with 5 μL ligation reaction. 

2.12.8 DNA analysis techniques 

2.12.8.1 Colony PCR 

Colony PCR reactions were set up as described in the Table 2.30 below. A negative control was run 

using undigested plasmid only (no colonies). See Appendix A.3-A.4 for results. 

Tables 2.30 Reaction mixtures set up for colony PCR 

 

 

Negative control: 

 

 

  

Volume (µL) Component

0.5
Annealed Oligos (annealed Oligos diluted 1 in 6 with 

sterile MQ water)

0.5 Digested pJB005 plasmid (5 ng/µL DNA)

1 10x ligase buffer (Promega C1268)

1 T4 DNA ligase (Promega M180A)

7 Sterile MQ water

Volume (µL) Component

0.5 Digested pJB005 plasmid (5 ng/µL DNA)

1 10x ligase buffer (Promega C1268)

1 T4 DNA ligase (Promega M180A)

7.5 Sterile MQ water

Volume (µL) Component

12.5 2x PCRBIO Taq Mix Red (PCR Biosystems)

1.25 Forward primer for plasmid (10 µM)

1.25 Reverse primer for plasmid (10 µM)

10 MQ water

0
Colony of interest (colony taken from patch and mixed 

straight into the colony PCR reaction)

Volume (µL) Component

12.5 2x PCRBIO Taq Mix Red (PCR Biosystems)

1.25 Forward primer for plasmid (10 µM)

1.25 Reverse primer for plasmid (10 µM)

9 MQ water

1 Undigested plasmid (pJB005)
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Colony PCR reactions were added to the PCR machine and ran using settings in Table 2.31 below. 

Table 2.31 PCR reaction program used for colony PCR 

 

 

 

 

 

 

2.12.8.2 Agarose gel electrophoresis 

1% or 2% (w/v) agarose gels were made by dissolving agarose in 1x TAE buffer by heating in a 

microwave. Once fully dissolved, this was then poured into a gel mould (Fisher Scientific) and left to 

set for 20-30 mins. 5 μL DNA 1KB ladder (Promega) was loaded into the first well of all gels to 

estimate DNA fragment sizes. 6x loading dye was added to samples (unless the reaction contained Taq 

polymerase) and 5 μL was loaded into each well unless otherwise specified. Gels were run at 150 V for 

25 mins then stained for 30 mins in 0.5 µg/mL ethidium bromide in MQ water. Bands were visualised 

using G:Box machine by SynGene and associated software. 

 

2.12.8.3 Double digest of plasmid to confirm insert  

pJB005 plasmid containing fimA insert 

The reactions were set up as follows (Table 2.32) and incubated for 1 hour at 37 °C.  

 

Table 2.32 Double digest of plasmids containing inserts to confirm the gene has been inserted correctly  

 

 

 

pJB005 plasmid containing fimC insert 

The reactions were set up as follows (Table 2.33) and incubated for 1 hour at 37 °C. 

 

Table 2.33 Double digest of plasmids containing inserts to confirm the gene has been inserted correctly  

 

 

 

 

Stage of PCR
Temperature 

(°C)

Time 

(minutes)

Number of 

cycles

1. Initial denaturation 95 3 1

2a. Denaturation 95 1

2b. Annealing 53 1

2c. Elongation 72 2

3. Final extension time 72 5 1

4. Storage 4 ∞ N/A

30

Volume 

(µL)
Component

1 pJB005 with fimA  insert (160 ng/µL)

1 10x Promega enzyme buffer

1 PstI restriction enzyme (10 Units/µL)

1 NdeI restriction enzyme  (20 Units/µL)

6 Sterile MQ water

Volume 

(µL)
Component

1 pJB005 only (empty vector)

1 10x Promega enzyme buffer

1 PstI restriction enzyme (10 Units/µL)

1 NdeI restriction enzyme (20 Units/µL)

6 Sterile MQ water

Volume 

(µL)
Component

1 pJB005 with fimC  insert  (214 ng/µL)

1 10x Promega enzyme buffer

1 AscI restriction enzyme (10 Units/µL)

1 EcoRI restriction enzyme (20 Units/µL)

6 Sterile MQ water

Volume 

(µL)
Component

1 pJB005 only (empty vector)

1 10x Promega enzyme buffer

1 AscI restriction enzyme (10 Units/µL)

1 EcoRI restriction enzyme (20 Units/µL)

6 Sterile MQ water
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2 μL 6x loading dye was added to each sample. 5 μL was then loaded into each well of a 1% agarose gel 

and stained using ethidium bromide. See Appendix A.5-A.6 for results. 

 

2.12.8.4 DNA sequencing 

Samples were shipped to Genewiz for Sanger Sequencing. Plasmids to be sequenced were diluted to 

100 ng/μL using autoclaved MQ water. These were sent with the relevant primers which were diluted to 

5 µm (5 pmol/μL). All inserts were confirmed as the correct sequence. See Appendix A for results.   

 

2.13 Streptomyces S4 specific techniques 

2.13.1 Bioassay of Streptomyces S4 cells and MVs on C. albicans 

Preparation of MVs for ZOI plates was outlined in Figure 2.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2.6 Preparation of MVs for zone of inhibition plates with C. albicans 
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2.13.1.1 Preparation of Streptomyces S4 WT MVs with various number of washes in 10 mM 

HEPES buffer (Figure 2.7). 

  

Figure 2.7 Preparation of MVs with various numbers of wash steps for zone of inhibition plates with 

C. albicans 
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2.13.1.2 Effect of Streptomyces S4 cells on C. albicans growth 

Streptomyces S4 colonies (from MS plates) were inoculated into TSB:YEME (two media mixed 

together in a 1:1 ratio) and incubated at 30ºC, 180 RPM for 72 hrs. 5 μL of this culture was spotted at 

the centre of an LB agar plate and left to soak/dry for 2 hrs. Plates were incubated at 30ºC for 72 hrs. C. 

albicans was added to the plates and the zones of inhibition (ZOI) were measured. All plates were 

prepared in triplicate and the average ZOI and standard deviation was calculated for each strain. 

2.13.1.3 Effect of candicidin and antimycin on C. albicans growth 

Candicidin (Bioaustralis) and antimycin (Sigma) were resuspended in ethanol to give 1 mg/mL 

concentration. These stocks were then diluted with ethanol to give various concentrations ranging from 

1 mg/mL to 1 µg/mL. All candicidin stocks were stored at -20ºC and antimycin at 4ºC. 10 μL 

candicidin/antimycin at each concentration was added to LB plates and left to soak/dry for a minimum 

of 2 hrs at room temperature. 10 μL ethanol only was used as a negative control.  C. albicans was added to 

the plates and the zones of inhibition (ZOI) were measured. All plates were prepared in triplicate and 

the average ZOI and standard deviation was calculated for each concentration of antifungal. 

2.13.1.4 Effect of Streptomyces S4 MVs on C. albicans growth 

5 μL or 10 μL purified MVs (depending on experiment) were added to LB plates and left to soak/dry for 

a minimum of 2 hrs at room temperature. C. albicans was added to the plates and the zones of inhibition 

(ZOI) were measured. 

2.13.1.5 C. albicans addition to plate 

C. albicans was streaked from the -80 ºC glycerol stock on to a YPD agar plate and incubated for 18-24 

hrs at 37°C. Colonies were inoculated into YPD media and incubated at 37ºC for 18-24 hrs in 

preparation for the experiment. 5 μL MVs/cells/antifungals were added to LB plates and left to soak/dry 

for a minimum of 2 hrs at room temperature. The OD600 of C. albicans was measured then diluted to 

OD600 1.0. Cells were centrifuged at 5000 RPM for 5 mins and the supernatant was discarded. C. 

albicans cell pellets were resuspended into 50 mL ‘hand hot’ LB agar (0.5% w/v) then 10 mL was 

slowly added to each plate. Plates were incubated at 37ºC for 18 hrs and the diameter of the ZOI 

measured using a ruler in mm. All plates were prepared in triplicate and the average ZOI and standard 

deviation was calculated for MVs from each strain. 

2.13.2 Identification of candicidin in Streptomyces S4 MVs 

2.13.2.1 Butanol extraction 

Streptomyces S4 MVs were purified from all 4 strains using the usual protocol (Section 2.6.3). After the 

final spin at 16,000 RPM (25, 805 x g) to pellet the MVs, the following 3 methods were used to extract 

the antifungal components for further analysis (see Figure 2.8). 
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Analysis of candicidin/antimycin by UV-Vis spectrophotometer 

UV-Vis spectrum was determined using the Cary spectrophotometer.   

Figure 2.8 Different methods of butanol extraction trialled on Streptomyces S4 MVs to identify 

candicidin 
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Chapter 3  

Optimisation of techniques for OMV purification 

and characterisation 

3.1 Introduction 

3.1.1 Optimisation of OMV purification procedure 

In order to complete the project aims outlined in Section 1.11, optimisation of OMV isolation and 

characterisation was essential. The aim was to optimise a method to purify OMVs reproducibly, giving 

the best yield possible. The purified OMVs should be intact with as few contaminants from the bacterial 

cell as possible. Methods were also developed to characterise the purified OMVs and determine the 

differences in OMV composition and cargo between different bacterial strains and compared with the 

whole cell. Various methods are used to purify OMVs within the literature and this is summarised in 

Figure 3.1. 

 

 

 

 

 

  

Figure 3.1 Summary of different methods of OMV purification used in the literature  

Bacterial strains are cultured (1) then centrifuged to remove whole cells. OMV production can be 

increased if the cells are under stress. The supernatant from the centrifugation is filtered to remove any 

whole cells (2). OMVs can be concentrated by precipitation (for example with ammonium sulphate) or 

ultrafiltration (3). Lastly, OMVs can be purified further using either gel filtration or density gradient 

ultrafiltration (4). Image sourced from Klimentová et al. 2015. 
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The starting point to develop this protocol was to optimise one that had been successfully used to purify 

OMVs by a previous student of Dr Gary Robinson (Dr Luisa de Sordi). This protocol involved growing 

the bacteria of interest overnight in LB, centrifuging the culture then filtering the supernatant through a 

PES membrane filter to remove any remaining bacterial cells. The supernatant was treated with 1.5 M 

ammonium sulphate to precipitate the OMVs so that they could be concentrated with another 

centrifugation step at 16,000 RPM (25,805 x g). Lastly, any remaining contaminants were removed 

using buoyant density ultracentrifugation. Ultracentrifugation is often the final step in OMV isolation 

protocols as it separates the OMVs from any contaminating proteins or extracellular appendages which 

may have been co-purified with the OMVs (such as Type 1 fimbriae or flagella). If performed correctly, 

OMVs settle into a lower-density region of the gradient whereas any contaminating proteins, flagella or 

fimbriae remain in the bottom layer.  

 

3.1.2 Methods of OMV characterisation 

During this study, OMVs were purified from one Burkholderia cenocepacia strain, two Pseudomonas 

aeruginosa strains (Chapter 3), thirty-three E. coli strains (Chapters 3-4) and four Streptomyces S4 

strains (Chapter 5). In order to ultimately manipulate membrane vesicles for therapeutic purposes, the 

OMVs must first be characterised from each strain using the techniques described below. Evidence is 

also needed to show that the purified OMVs are genuine, entire and that the cargo within is still 

functional (e.g. treatment with proteases). 

3.1.2.1 Visualisation of OMVs by Transmission Electron Microscopy TEM 

Purified OMVs were visualised using electron microscopy (EM) and compared to those found in the 

literature to confirm that they were the correct size, shape and appearance. To observe OMV biogenesis, 

E. coli BL21 (DE3) cells and P. aeruginosa (PA14) cells were grown in LB on gold EM grids and fixed 

at various time points over 24 hours. The cells were examined using TEM and photos were taken at 

each time point. Lastly, immunolabelling using an anti-OmpA antibody was applied to OMVs purified 

from E. coli BL21 (DE3). OmpA is a major protein in the outer membrane of E. coli and is known to be 

found on the surface of E. coli OMVs (Figure 3.2). Detecting OmpA on the surface of purified OMVs is 

evidence of successful isolation. 

Figure 3.2 The incorporation of 

OmpA into E. coli OMVs 

Image sourced from Kim et al. 2009. 

In this paper, proteins of interest were 

targeted to E. coli OMVs by fusion 

with OmpA. See Figure 1.23 for full 

explanation.  

https://www.sciencedirect.com/science/article/pii/S0005273609002582
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3.1.2.2 Proteome analysis of OMVs 

SDS-PAGE  

The protein profiles of OMVs purified from various bacterial strains were visualised using SDS-PAGE 

gels, which were silver stained. The protein profile of the purified OMVs was compared to that of the 

whole cell, periplasmic proteins and outer membrane proteins. This provides evidence that the OMVs 

have their own protein composition and shows which proteins are enriched and excluded from the 

OMVs.  

 

Mass Spectrometry 

Bands of interest in OMVs were excised from the SDS-PAGE gels and identified by mass spectrometry.  

 

Western blotting 

Western blots were performed to detect OmpA in purified OMVs from various strains of E. coli. This 

evidence complements the immunogold labelling images of E. coli OMVs using the anti-OmpA 

antibody.  

3.1.2.3 Evidence that purified OMVs are intact: Proteinase K treatment of OMVs 

The Proteinase K test was used to confirm that isolated OMVs are intact and to distinguish which 

proteins are outside the OMVs or within the lumen. This test is based on an experiment found in the 

literature (Figure 3.3). The principle is that the enzyme Proteinase K will degrade most proteins outside 

of the OMVs. However, proteins within the lumen of the OMVs will be protected from Proteinase K 

degradation. OMVs were incubated with Proteinase K in the presence and absence of SDS. SDS is a 

detergent and lyses OMVs which allows Proteinase K into the interior lumen of the OMVs where it can 

degrade proteins.  

  

Figure 3.3 Proteinase K test on OMVs from Francisella novicida in the literature 

OMVs were treated (or untreated) with 10 μg/ml Proteinase K in the presence or absence of 0.02% (w/v) 

SDS to disrupt vesicle integrity. OMVs were incubated for 1 hour at room temperature then 0.1 mM 

PMSF was added to inhibit the protease. The white arrows indicate which proteins in the OMVs are 

susceptible to Proteinase K digestion when no SDS is added (comparing lanes 1 and 2). Experiment, 

methodology and image sourced from McCaig et al. 2013 

1            2            3           4 
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3.1.2.4 Quantification of OMVs 

Bradford assay 

OMVs can be quantified by measuring either the protein or lipid components in the sample. Proteins in 

OMV samples can be quantified using a Bradford assay (Bradford, 1976). This method was used 

throughout the project to quantify OMVs and standardise the samples prior to loading on an SDS-PAGE 

gel. 

3.1.2.5 Dynamic light scattering (DLS) 

DLS is used to determine the number, intensity and size distribution of nanosized particles in a solution. 

Brownian motion is the random movement of particles in a solution due to constantly colliding with 

solvent molecules around them. Smaller particles move faster than larger molecules in solution. DLS is 

based on measuring the Brownian motion of particles in a solution which can be used to determine 

particle size.   

 

During DLS, the sample in the cuvette is illuminated by a laser beam. The particles (for example OMVs 

resuspended in buffer) scatter the light of the laser beam in all directions. The scattered light is detected 

at a certain angle which is known as the scattering angle θ. Here, a photon detector analyses the 

fluctuation of the scattered light (Figure 3.4 a). The DLS can analyse the scattered light and use this 

information to estimate particle size distribution and numbers. Smaller particles give faster fluctuations 

of scattered light than larger particles Figure 3.4 b.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Diagram showing the main principle of DLS technique 

Diagram to show the main components of Dynamic Light Scattering (DLS). Firstly, the sample in the cuvette 

is illuminated by a laser beam. The particles scatter the light of the laser beam in all directions. A photon 

detector analyses the fluctuation of the scattered light (a). Smaller particles give faster fluctuations of 

scattered light than larger particles (b). Image sourced from Anton Paar website, 2019  

 

a 

b 
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This technique has been used to estimate the size of E. coli OMVs in the literature (Bielaszewska et al. 

2017). The Litesizer 500 (Anton Paar) used in this study gives a value called the Mean Intensity for 

each sample run using the DLS setting. This gave the mean light intensity detected in kcounts/s and was 

trialled to quantify the OMVs. 

 

3.1.3 Bacterial strains used to study OMVs 

Table 3.1 Brief introduction to the bacterial strains used in Chapter 3. See Section 1.11 for rationale for 

using these strains. 

 

 

 

  

Strain name Strain characteristics/additional information 

B. cenocepacia 

J2315 
Pathogenic strain isolated from a cystic fibrosis patient

E. coli B Parental          

(B strain) 

E. coli B wildtype strain. Parental strain of E. coli BL21 and BL21 

(DE3)

E.coli  BL21                

(B strain)

Competent E.coli  B strain for routine non-T7 expression.  Deficient in 

proteases Lon and OmpT. No flagella or fimbriae produced. Resistant 

to phage T1 

E.coli  BL21 (DE3)       

(B strain)

Identical to E.coli BL21 except this strain contains the λDE3 lysogen 

that carries the gene for T7 RNA polymerase under control of the 

lacUV5 promoter

E.coli FimB-LacZ 

fusion                          

(K-12 strain)

This strain contains a deletion of the Lac operon (lacZYA ) and fimB 

and an insertion of a FimB-LacZ fusion protein. Fimbriae production 

is locked off as FimB is no longer functional

E.coli  fimbriae 

locked on                              

(K-12 strain)

Fimbriae production locked on. The invertible element (fimS ) is 

locked on due to the modifications in the parental intermediate strain 

E.coli WT MG1655 

(K-12 strain)

Used as the wild type strain to produce E.coli FimB-LacZ fusion strain 

and E.coli with fimbriae locked on

E.coli WT Parental 

BW25113                                

(K-12 strain)

The parental strain of the Coli Genetic Stock Center Keio collection 

(from which the knock-out strains are derived) 

E.coli ΔfimA                    

(K-12 strain)

Strain contains a knockout of the protein FimA which is the main 

structural subunit of Type 1 fimbriae

E.coli ΔfliC               

(K-12 strain)

Strain contains a knockout of the protein Flagellin (FliC) which is the 

main structural subunit of flagella

P. aeurginosa PA01
Two P. aeruginosa pathogenicity islands (PAPI-1 and PAPI-2) are 

absent from PA01  which is less virulent than PA14

P. aeurginosa PA14
Two P. aeruginosa  pathogenicity islands (PAPI-1 and PAPI-2) in the 

genome of PA14  which is a highly virulent clinical isolate
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3.1.4 Main chapter aims 

1. To determine a reproducible and cost-effective method of isolating OMVs, which can be applied to 

all Gram-negative bacterial strains 

2. To determine if OMVs can be purified with no contaminants from the bacterial cell. For example, can 

co-purification of proteins, flagella or fimbriae from the bacterial supernatant be prevented? 

3. To gain strong evidence that the purified OMVs are genuine, entire and still functional 

4. To compare the composition and cargo of OMVs between bacterial strains  

5. To determine which proteins are enriched and excluded in OMVs from a range of strains  

 

3.2 Results 

3.2.1 Optimisation steps for OMV purification 

The initial OMV purification protocol was taken from the thesis of Dr Luisa de Sordi. The protocol was 

optimised to give the standard OMV purification protocol below (Figure 3.5). After centrifugation at 

16,000 RPM (25,805 x g), an OMV pellet is produced which is often visible. This pellet was either 

resuspended in 10 mM HEPES buffer for further analysis or resuspended into 45% (v/v) OptiPrep so the 

OMVs could be purified further by ultracentrifugation. 

3.2.1.1 OMV purification protocol summary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.5 Standard OMV purification protocol 

An OMV purification protocol was optimised and used as the standard for all experiments unless otherwise 

stated. This flow chart is a simplified summary of the OMV purification procedure. Ultracentrifugation 

diagram was adapted from: (Klimentová, Stulik 2015)  
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3.2.1.2 How reproducible is the OMV purification protocol?  

OMVs purified from E. coli BL21 (DE3) on five different dates were compared. This was to confirm 

that the OMV purification protocol developed was reproducible.  Firstly, the TEM images of the OMVs 

were compared (Figure 3.6) and then the protein profile of the purified OMVs (Figure 3.7a). Protein 

densitometry plots were also generated using Fiji (Image J) to compare the protein profile of the MVs 

from each strain (Figure 3.7b).  

  

 

 

  

Figure 3.6 Comparison of OMVs purified from E. coli BL21 (DE3) on five separate occasions  

TEM images of OMVs from E. coli BL21 (DE3) purified on five separate occasions. ‘Purification 1’ 

was performed on 30/06/16 (a, f). ‘Purification 2’ was performed on 14/02/17 (b, g). ‘Purification 3’ 

was performed on 23/01/17 (c, h). ‘Purification 4’ was performed on 06/12/16 (d, i). ‘Purification 5’ 

was performed on 17/01/17 (e, j). 

 

a b c 

d e 

h f g 

i j 
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The SDS-PAGE gels showed that the OMV protein profile is different to that of the cells. The protein 

profile is almost identical each time OMVs are purified from E. coli BL21 (DE3) meaning that the 

purification protocol is reproducible. Each time, the E. coli cells grew to an OD600 of approximately 

5.0 and produced OMVs with an average protein concentration of 26 µg/mL (Figure 3.7 b).  

a 

Previously identified 

as OmpF 

kDa 

 

b Lane number on 

SDS-PAGE gel   

(Figure 3.6a)

Protein 

concentration 

(µg/mL)

OD600 after 18 

hours growth at 

37°C

5 26 5.07

6 35 4.75

7 21 4.74

8 22 4.86

9 25 4.89

Figure 3.7 Comparison of the protein profiles of OMVs purified from E. coli BL21 (DE3) on five 

separate occasions  

OMVs from E. coli BL21 (DE3) purified on five separate occasions. ‘Purification 1’ was performed on 

30/06/16. ‘Purification 2’ was performed on 14/02/17. ‘Purification 3’ was performed on 23/01/17. 

‘Purification 4’ was performed on 06/12/16. ‘Purification 5’ was performed on 17/01/17. A Bradford 

assay was performed and all samples were standardised to be the same protein concentration. TCA 

precipitation was used to concentrate samples prior to loading on an SDS-PAGE gel. The SDS-PAGE gel 

was run then silver stained to visualise the MV protein profile (a). The prominent band at around 37 kDa 

had previously been identified as OmpF (see Appendix B.1 for details). OMVs were quantified using a 

Bradford assay for comparison of yield (b). 
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The only major difference in the protein profiles is the extra band between 100 and 150 kDa in 

Purification 1 and is faintly visible in Purifications 4 and 5, which has not been identified. The 

prominent band in the E. coli BL21 (DE3) OMV protein profile at around 37 kDa had previously been 

identified as OmpF (see Appendix B.1). OmpF is a porin protein located in the outer membrane. One of 

its functions is to allow diffusion of small hydrophilic molecules across the membrane and into the 

periplasm (Duval et al. 2009). An enrichment of OmpF in OMVs is expected as it is an outer membrane 

protein.  

 

3.2.1.3 Are any live bacterial cells present in the purified OMV sample when using this 

protocol? 

During the OMV purification procedure, the cells are centrifuged at 12,000 RPM (14,515 x g) and the 

supernatant (containing the OMVs) is filtered through a PES membrane filter to remove any whole 

bacterial cells. Each time, 1 mL of filtered supernatant was spread on to a LB agar plate and incubated 

at 37°C for 24-48 hours to confirm that there was no growth. 1.5 M ammonium sulphate was then 

slowly added to the supernatant to precipitate the OMVs. The addition of 1.5 M ammonium sulphate to 

LB was shown to fully inhibit the growth of five strains of E. coli (Figure 3.8). These two checks 

strongly indicate that the OMV samples used in every study did not contain any live bacterial cells.  

 

  

Figure 3.8 Addition of 1.5 M ammonium sulphate to LB inhibits the growth of five E. coli strains 

Growth curves were produced by culturing E. coli in 48 well cell culture plates. Two identical microplate 

readers were used to generate growth curves at 25ºC and 37ºC concurrently. Addition of 1.5 M ammonium 

sulphate (AS) to LB was shown to inhibit the growth of the following E. coli strains at 25ºC: BL21 (DE3), 

WT Parental BW25113, ΔfimA, ΔfimC and FimB-LacZ fusion. For graphs with error bars of 1 standard 

deviation and growth curves at 37ºC see Appendix B.2. 

 

 

ΔfimC in LB 

BL21 (DE3) in LB 

BL21 (DE3) in LB + 1.5 M AS

WT Parental BW25113 in LB 

WT Parental BW25113 in LB 
+ AS 

ΔfimC in LB + 1.5 M AS 

ΔfimA in LB 

ΔfimA in LB + 1.5 M AS 

FimB-LacZ fusion strain in LB 

FimB-LacZ fusion strain in LB + 
1.5 M AS 
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3.2.1.4 Does the type of membrane filter used affect the OMVs purified?  

In most OMV purification protocols, there is a filtration of the bacterial supernatant through a 

membrane filter of pore size 0.2 µm and 0.45 µm to remove any remaining live cells. 0.2 µm pore size 

was used with OMVs from P. aeruginosa as the OMVs were less than 200 nm in diameter. The larger 

pore size of 0.45 µm was used for E. coli cells as the OMVs found were often between 200-400 nm in 

diameter. A comparison of the OMVs purified using a polyethersulfone (PES) membrane filter was 

compared to a surfactant-free cellulose acetate (SFCA) membrane filter. PES membrane filters are 

commonly used for cell culture media and allow rapid filtration. SFCA membrane filters, however, are 

described as having the lowest protein binding so may improve the purity of the OMVs (Thermo-Fisher 

Nalgene Filter Brochure).  

 

To compare the OMV profile produced when using PES and SFCA membrane filters, 1 L of PA01 and 

PA14 culture supernatants were split into 2 x 500 mL. One half of the supernatant was filtered through a 

PES filter (Nalgene rapid-flow, Fisher 10300461) and the other half was filtered through a SFCA 

membrane filter (Nalgene rapid-flow, Fisher 10201371). After this step, the standard OMV purification 

protocol was then followed as usual and the OMVs were resuspended in 10 mM HEPES buffer (details 

in Section 2.15). The TEM images of the OMVs were first compared (Figure 3.9a) to assess the purity 

of the OMV sample (ie. to determine whether flagella and other debris were also present in the OMV 

sample). Next, the protein profiles of the OMVs were compared after purification with PES and SFCA 

membranes (Figure 3.9b-f). 

  

a 

OMVs 

Co-purified 

Flagella 

OMVs 

Co-purified 

Flagella 

OMVs 

Co-purified 

Flagella 

Co-purified 

Flagella 

OMVs 



 

99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

b 

c 

kDa 



 

100 

 

 

 

 

 

  

 

  

kDa 

Figure 3.9 Comparing the use of PES vs. SFCA membranes during the OMV purification process 

PA01 and PA14 cultures were grown overnight in 1 L LB. The cells were pelleted and the supernatant was 

extracted and split into two. One half of the supernatant was filtered through a PES membrane filter and 

the other half was filtered through a SFCA membrane filter. After this step, the standard OMV 

purification protocol was followed as usual and the OMVs were resuspended in 3 mL 10 mM HEPES 

buffer. The OMVs were concentrated then visualised using TEM (a). Samples were taken from various 

steps of the OMV purification procedure which is explained in b and d. A Bradford assay was performed 

and all samples from each strain were standardised to be the same protein concentration. TCA 

precipitation was used to concentrate samples prior to loading on an SDS-PAGE gel. The SDS-PAGE gel 

was run for PA01 (c) and PA14 (e) samples then silver stained to visualise the OMV protein profile. 

 

d 

e 
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The TEM images (Figure 3.9 a), showed no difference in the purity of the OMVs as there was flagella 

co-purified when using both filters. There was also no difference in the protein profile when using either 

filter (b-e). After reviewing the data, PES membranes were used for the OMV purification protocol as 

they are most cost effective and have a faster flow rate than SFCA membrane filters.   

 

3.2.1.5 Can flagella and fimbriae co-purified with OMVs be removed by buoyant density 

ultracentrifugation?  

Flagella and fimbriae can be co-purified with OMVs and this was initially studied in 3 strains (Figure 

3.10). TEM images were compared to see if it was possible to distinguish flagella and fimbriae in OMV 

samples be eye (Figure 3.10a-b). E. coli WT MG1655 is a K-12 strain which was studied extensively 

during this project and has been reported previously to express Type 1 fimbriae (Blumer et al. 2005). 

An E. coli FimB-LacZ (translational) fusion strain was used as a positive control for visualising flagella 

as fimbriae production is locked off. Also, an E. coli strain with fimbriae production locked on was used 

as a positive control for fimbriae production as there should be excessive fimbriae.  

 

These images (Figure 3.10b) can be used as a reference point for later decisions on how to differentiate 

between the two by eye. These images show that flagella are thicker and longer than fimbriae. They are 

also curvy/wavy whereas fimbriae are short, thin and straight appendages. As a final test, OMVs 

purified from E. coli WT BW25113 (a strain very closely related to MG1655 were fixed on to an EM 

grid. They were then immunogold labelled using an anti-polymerised FimA antibody and Flagellin. 

This confirmed the presence of fimbriae surrounding the OMVs and not flagella (Figure 3.10c). 

Methods of differentiating between fimbriae and flagella were re-visited and optimised in Section 4.2.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 
Strain name Strain characteristics/additional information 

E.coli WT 

MG1655

Used as the wild-type strain to produce E.coli FimB-LacZ fusion strain and 

E.coli with fimbriae locked on

E.coli FimB-

LacZ fusion

This strain contains a deletion of the Lac operon (lacZYA ) and fimB and an 

insertion of a FimB-LacZ fusion protein. Fimbriae production is locked 

off as FimB is no longer functional.

E.coli  fimbriae 

locked on

Fimbriae production locked on. The invertible element (fimS ) is locked 

on due to the modifications in the parental intermediate strain (see Strain 

information in Chapter 2)
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b 

c 

Figure 3.10 TEM images of OMVs purified from three E. coli strains to compare co-purification of 

flagella and fimbriae 

The TEM images of OMVs from three E. coli strains were compared: E. coli MG1655, E. coli FimB-LacZ 

fusion and E. coli with fimbriae locked on (a). These images (b) can be used as a reference point for later 

decisions on how to differentiate between flagella and fimbriae by eye. As a final test, OMVs purified from 

E. coli WT BW25113 (a strain very closely related to MG1655) and were fixed on to an EM grid. They 

were then immunogold labelled using an anti-polymerised FimA antibody and Flagellin. This confirmed 

the presence of fimbriae surrounding the OMVs and not flagella (c).  
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Ultracentrifugation to remove flagella co-purified with P. aeruginosa and E. coli OMVs 

The TEM images in Figures 3.9 and 3.10 indicate that OMVs are co-purified with flagella in the 

following strains: PA01, PA14 and E. coli FimB-LacZ fusion. OMVs were subject to buoyant density 

gradient ultracentrifugation by flotation through layers of OptiPrep. OMVs were resuspended in 45% 

(v/v) OptiPrep then the following layers of OptiPrep were added: 40%, 35%, 30%, 25% and 20% (v/v). 

If performed correctly, OMVs settle into a lower-density region of the gradient whereas any 

contaminating flagella or fimbriae remain in the bottom layer. After ultracentrifugation, a thin orange 

band could be seen within the ultracentrifuge tube (Figure 3.11a) which was suspected to contain the 

OMVs (blue arrow). All six layers of OptiPrep were extracted and then run on an SDS-PAGE gel to 

identify which layer contained the OMVs (Figure 3.11b). The OptiPrep layers of interest were then 

visualised by TEM (Figure 3.11c).   
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Figure 3.11 Comparing the purity of OMV samples before and after buoyant density ultracentrifugation 

PA14 OMVs were subject to buoyant density ultracentrifugation using OptiPrep to separate them from any 

contaminating flagella. After ultracentrifugation, a thin orange band could be seen within the ultracentrifuge 

tube (a) which was suspected to contain the OMVs (blue arrow). All six layers of OptiPrep were extracted and 

a portion of the sample was TCA precipitated. The concentrated samples were run on an SDS-PAGE gel and 

silver stained to identify which layer contained the OMVs (b). The OptiPrep layers of interest were then 

visualised by TEM and the purity of the sample was compared before and after ultracentrifugation (c).   
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Figure 3.11 shows the PA14 OMVs before and after ultracentrifugation. The layer of 30% OptiPrep 

contains purified OMVs without the contaminating flagella. This was also successful with PA01 OMVs 

(see Appendix B.3). Although this technique was successful with OMVs from P. aeruginosa, this 

technique was not successful at separating E. coli WT OMVs from contaminating flagella (Figure 3.12).  

 

 

 
 
 
 
  

Figure 3.12 Comparing the purity of OMV samples before and after buoyant density 

ultracentrifugation 

E. coli FimB-LacZ fusion strain OMVs were subject to buoyant density ultracentrifugation using OptiPrep 

to separate them from any contaminating flagella. All six layers of OptiPrep were extracted and a portion of 

the sample was TCA precipitated. The concentrated samples were run on an SDS-PAGE gel and silver 

stained to identify which layer contained the OMVs (a). The OptiPrep layers of interest were then visualised 

by TEM and the purity of the sample was compared before and after ultracentrifugation (b).   
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Instead of the OMVs settling into one layer of the OptiPrep gradient, the OMVs were spread across 

almost all OptiPrep layers and the contaminating flagella was still present. This would lead to a 

decrease in OMV yield if only one layer was chosen.  

3.2.1.6 Alternative methods to remove flagella from purified OMV samples 

Although ultracentrifugation was successful for separating P. aeruginosa OMVs from contaminating 

flagella, this was not successful for E. coli flagella. Three new methods were trialled to remove the 

contaminating flagella. The first method was an additional low speed spin of the purified OMVs at 6000 

x g for 30 minutes (Figure 3.13a). The second was addition of Proteinase K at 10 µg/mL (a). This 

concentration was chosen as it is known to degrade extracellular proteins without affecting the OMVs 

themselves (McCaig et al. 2013). The purified OMVs resuspended in 10 mM HEPES buffer (details in 

Section 2.15) were also subject to filtration through a membrane with 0.45 µm pore size to see if the 

flagella contamination reduced (b).  

 

 

  

b 

Figure 3.13 Comparison of methods to remove the co-purified flagella in E. coli K-12 OMV samples 

OMVs were purified from 500 mL culture using the standard protocol and were resuspended in 5 mL 10 

mM HEPES buffer. The following methods were compared (shown in a): 1. Usual method: 1 mL 

OMVs in 10 mM HEPES buffer were centrifuged at 4ºC for 30 mins, 13,200 RPM. The resulting OMV 

pellet was resuspended in 30µL 10 mM HEPES buffer. 2. Low speed spin: 1 mL OMVs in 10 mM 

HEPES buffer was centrifuged at 6000 x g at 4ºC for 30 mins. The resulting OMV pellet was resuspended 

in 30µL 10 mM HEPES buffer. 3. Proteinase K: 900µL OMV sample was mixed with 100µL Proteinase 

K sample (100 µg/mL in HEPES/CaCl2 buffer). Samples were incubated at 37ºC for 30 mins then the 

protease was inhibited with PMSF. OMVs were centrifuged at 13,200 RPM (14,220 x g) for 30 mins at 

4°C. The resulting OMV pellet was resuspended in 30µL 10 mM HEPES buffer. The following methods 

were compared (shown in b): OMVs in 10 mM HEPES buffer were compared when additional filtration 

step through a 0.45 µm membrane was added and were concentrated for TEM as usual.  

 

a 



 

106 

 

None of the methods trialled to separate OMVs from flagella in Figure 3.13 were successful. Lastly, 

OMVs were treated with a mix of proteases from Streptomyces griseus at varying concentrations 

(Figure 3.14).  

 

 

 

 

 

 

 

The addition of this mix of proteases appeared to be successful at the removal of most flagella at a 

concentration of 0.5% (w/v) proteases. However, this mix of proteases produced many prominent bands 

on the SDS-PAGE gel ranging from approximately 10 kDa to 42 kDa. Bands at these molecular weights 

can obscure the protein profile of the OMVs on the SDS-PAGE gels. Additionally, the addition of 0.5% 

(w/v) proteases appeared to lyse the OMVs and degrade the OMV-associated proteins (see Appendix 

B.4 for Figures).      

 

 

3.2.1.7 Can ultracentrifugation be used to remove Type 1 fimbriae from purified E. coli OMV 

samples?  

OMVs were purified from the E. coli strain with fimbriae production locked on. This strain 

overexpresses fimbriae and produces flagella too. The OMV pellet was resuspended in 45% (v/v) 

OptiPrep then subject to ultracentrifugation to remove fimbriae (Figure 3.15). 

Figure 3.14 Using a mix of Streptomyces griseus proteases to remove the co-purified flagella in E. 

coli K-12 OMV samples 

A protease stock of 10% (w/v) was prepared in HEPES/CaCl2 buffer which was then diluted to give the 

other protease concentrations. OMVs resuspended in HEPES were incubated with proteases of varying 

concentrations at 37ºC for 30 mins. The samples (450 µL) were centrifuged at 4ºC for 30 mins, 13,200 

RPM (14,220 x g) and the pellet was resuspended in 20 µL 10 mM HEPES buffer in preparation for TEM 
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b 

Figure 3.15 Comparing the purity of OMV samples before and after buoyant density 

ultracentrifugation 

OMVs purified from E. coli with fimbriae production locked on strain were subject to buoyant density 

ultracentrifugation using OptiPrep. All six layers of OptiPrep were extracted and a portion of the sample 

was TCA precipitated. The concentrated samples were run on an SDS-PAGE gel and silver stained to 

identify which layer contained the OMVs (a). The OptiPrep layers of interest were then visualised by 

TEM and the purity of the sample was compared before and after ultracentrifugation (b).   
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The SDS-PAGE gel in Figure 3.15a shows that the purified OMVs are spread between five of the 

OptiPrep layers (Lanes 5-9) instead of settling into one layer. The TEM images (Figure 3.15b) show 

that the contaminating fimbriae and flagella are still present and have not been separated from the 

OMVs.  

 

Both the SDS-PAGE gel and TEM images suggested that ultracentrifugation causes E. coli OMVs to 

spread between all six of the OptiPrep layers rather than settling within one layer. The fimbriae and 

flagella are also not separated from the OMVs in any sample tested. For this reason, E. coli OMVs were 

resuspended in 10 mM HEPES buffer (details in Section 2.15) for analysis in subsequent experiments 

rather than using ultracentrifugation so that no OMVs were lost. 

 

3.2.2 Visualisation of OMVs using Transmission Electron Microscopy (TEM) 

In this study, OMVs have been purified from a range of Gram-negative bacteria and visualised using 

TEM. OMVs are approximately 50 nm to 200 nm in diameter and are very similar to those found in the 

literature. Although there are small variations in size and staining intensity of the OMVs, OMVs from 

each bacterial strain generally appear the same (Figures 3.16-3.17). 
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Figure 3.16 Comparison of OMVs purified from a range of Gram-negative bacteria 

TEM analysis of purified OMVs from the following strains: E. coli WT MG1655 (a, j) E. coli 

FimB-LacZ fusion (b, k) E. coli with fimbriae locked on (c, l) E. coli BL21 (DE3) (d, m) E. 

coli BL21 (e, n) E. coli B strain (f, o) Burkholderia cenocepacia (g, p) Pseudomonas 

aeruginosa PA01 (h, q) Pseudomonas aeruginosa PA14 (i, r).  
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The purified OMVs from each strain were consistent, reproducible and are the correct size and 

appearance when compared to those in the literature. 

 

Figure 3.17 Comparison of OMVs purified from a range of Gram-negative bacteria from the 

literature 

TEM images of OMVs from Pseudomonas aeruginosa strains PA01 and PA14 sourced from Shan et al. 

2014 (a). Scale bars missing in the published images. TEM photo of P. aeruginosa PA01 biofilm OMVs 

sourced from Couto et al. 2015 (b). Scale bar missing in the published image. TEM image of P. 

aeruginosa PA01 OMVs sourced from Chutkan et al. 2013 (c). TEM image of B. cenocepacia OMVs 

from Martins et al. 2016 (d). TEM image of Uropathogenic E. coli OMVs sourced from Svennerholm et 

al. 2017 (e).  TEM images of OMVs purified from the probiotic E. coli strain EcN, serotype O6:K5:H1 (f) 

and E. coli ECOR12 which is a human commensal strain isolated from a stool sample (g). Images sourced 

from Fábrega et al. 2016. The final TEM image is of OMVs from a BL21 (DE3) ΔtolR(pET) strain and the 

image is sourced from (Bartolini et al. 2013) (h). This is referred to as the ‘empty OMV’ in the paper and 

is the negative control for expression of their recombinant protein of interest which is HtrA from 

Chlamydia muridarum.  
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3.2.2.1 Immunogold labelling of E. coli BL21 (DE3) OMVs using an anti-OmpA antibody  

OmpA is an outer membrane protein in E. coli that is known to be present on the surface of OMVs 

(Kim et al. 2009). Detecting OmpA on the surface of purified OMVs is evidence that OMVs have been 

purified successfully. Purified E. coli BL21 (DE3) OMVs were immunogold labelled using an anti-

OmpA antibody (Figure 3.18). These immunogold labels are indicated by the blue arrows below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.18 Immunolabelling E. coli BL21 (DE3) OMVs using anti-OmpA antibody.  

Purified E. coli BL21 (DE3) OMVs were concentrated 10x. 10 µL OMVs were added to each grid and 

grids were fixed by washes in 2% (w/v) formaldehyde + 0.5% (v/v) glutaraldehyde in 100 mM CAB 

pH 7.2. Grids were then washed in 100 mM CAB followed by washes in Tris-buffered saline with 

0.05% (v/v) Tween 20 (TBST). Grids were blocked in 2% (w/v) BSA then incubated with anti-OmpA 

antibody (diluted 1 in 50 in TBST). An identical grid was used as a negative control and that was 

incubated in TBST only. Grids were left in primary antibody or TBST only at 4ºC overnight. The next 

day, grids were washed in TBST then incubated in immunogold-conjugated anti-rabbit antibody 

(which was diluted 1 in 50 in TBST). Grids were incubated in secondary antibody for 1 min then left 

for 30 mins. Grids were subject to washes in TBST then MQ water. Lastly, grids were negatively 

stained using 2% (w/v) uranyl acetate in PBS then air dried for 20 mins. Grids were analysed by TEM. 

The immunogold labels (15 nm in diameter) are indicated by the blue arrows above. 
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3.2.2.2 Visualising OMV biogenesis from E. coli BL21 (DE3) and Pseudomonas aeruginosa 

(PA14) cells 

In order to gain evidence of OMV budding from bacterial cells, E. coli BL21 (DE3) cells and PA14 

cells, (resuspended in LB), were grown on gold EM grids and fixed at various time points over 24 

hours. The cells at each time point were examined using EM and studied for evidence of OMV 

biogenesis (Figure 3.19). 

 

 

The OMV biogenesis images produced were similar to those found in the literature and appear to 

successfully show OMV biogenesis from the E. coli BL21 (DE3) and PA14 cells.  

Figure 3.19 Visualisation of OMV biogenesis from E. coli BL21 (DE3) and PA14 cells using EM 

E. coli BL21 (DE3) and PA14 cells were diluted to an OD600 of 0.1 in LB and added to a gold EM grid. 

The grids were incubated at 37ºC for 22 hrs and grids were fixed at various time points. Grids were 

negatively stained using 2% (w/v) uranyl acetate then visualised using EM at various magnifications. 

Figure 3.19 a-b shows E. coli BL21 (DE3) cells after 30 mins since addition to the gold EM grid. Figure 

3.19 c shows E. coli BL21 (DE3) cells 22 hrs after addition to the gold grid. Figure 3.19 d shows PA14 

cells 6 hrs after addition to the gold grid. Figure 3.19 e-f shows PA14 cells after 22 hrs after addition to 

the gold grid. Blue arrows indicate budding and released OMVs from cells. Figure 3.19 g shows OMV 

biogenesis from S. marcescens and is sourced from Li et al. 1998. Figure 3.19 h shows OMV biogenesis 

from H. pylori and is sourced from Parker et al. 2012. 
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3.2.3 How does the OMV protein profile compare across bacterial strains and species 

The protein profiles of OMVs purified from various bacterial strains were visualised using SDS-PAGE 

and silver staining (Figure 3.20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OMVs from wild type E. coli K-12 strains (lanes 5-6) have a very different protein composition to 

OMVs from recombinant/engineered strains (lanes 7-10). OMVs from the wild type E. coli K-12 strains 

appear to be enriched with specific proteins (for example the prominent band at approximately 55 kDa 

in lanes 5-6). OMVs from E. coli B strains, however, appear to have many more proteins and at 

different molecular weights (lanes 7-10). Certain proteins also appear to be selectively included and 

excluded from P. aeruginosa and B. cenocepacia wild type OMVs compared with the engineered E. 

coli B strains (lanes 2-6 compared with lanes 7-10). The difference in OMVs produced from E. coli K-

12 and B strains was explored further (see Chapter 4, section 4.2.1). For further information on the E. 

coli BL21 strains in Lanes 8-10 see Appendix B.5. 

  

Figure 3.20 – Comparison of protein profiles of OMVs from various bacterial strains  

OMVs were purified from a range of B. cenocepacia, P. aeruginosa and E. coli K-12 and B strains. A 

Bradford assay was performed and all samples were standardised to be the same protein 

concentration. TCA precipitation was used to concentrate samples prior to loading on an SDS-PAGE 

gel. Proteins were separated using SDS-PAGE and silver stained to visualise OMV protein profiles. 

Brightness on the original gel images was increased by 15% (no adjustment on contrast). 
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3.2.3.1 Comparison of the protein profile of OMVs and whole cells  

The protein profile of the OMVs was compared to the protein profile of the whole cell (Figure 3.21) to 

see which proteins are enriched and excluded from the OMVs. The protein profile of OMVs from E. 

coli FimB-LacZ fusion strain, PA01 and PA14 show that certain proteins are concentrated within the 

OMVs when compared to the cells. The prominent bands within OMVs from each strain were extracted 

and identified by mass spectrometry.   

 

 

 

  

Figure 3.21 Comparison of protein profiles of OMVs compared with the whole bacterial cell.  

OMVs were purified from E. coli BL21 (DE3), PA14, PA01 and E. coli FimB-LacZ fusion strain. 1 

mL of each overnight culture was saved from each strain to be used in the ‘cell’ lanes. All samples 

were standardised to the same protein concentration then TCA-precipitated prior to loading. Proteins 

were separated using SDS-PAGE and silver stained to visualise OMV protein profiles.  
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3.2.3.2 Identification of proteins of interest by mass spectrometry 

Bands of interest were extracted from SDS-PAGE gels and identified by mass spectrometry (Table 3.2 

and Appendix B.6 for further detail).  

 

Table 3.2 Identification of OMV proteins by mass spectrometry 

Bands of interest were excised from silver stained SDS-PAGE gels then identified by mass 

spectrometry. Proteins were identified by a Peptide Mass Fingerprint (PMF) search in the Mascot 

database. A match is significant if it has a score greater than 70.  

 

 

 

 

 

 

 

 

Organism protein 

originated from

Approx. 

MW on 

gel (kDa)

Protein detected (using Peptide 

Mass Fingerprinting and 

SwissProt database unless 

otherwise stated)

Score (score 

needed to be 

significant) 

Protein 

MW (Da)

UniProt accession 

number

E.coli  BL21 DE3 35 OmpF 125 (70) 39309 OMPF_ECOLI

38 Flagellar hook protein 100 (70) 42019 FLGE_ECOLI

52
Flagellin OS=Escherichia coli 

(strain K12)
255 (70) 51265 FLIC_ECOLI

55 Flagellin 257 (70) 51265 FLIC_ECOLI

17 FimA 71 (70) 18214 FIMA1_ECOLI

16
Type-1 fimbrial protein, A chain 

OS=Escherichia coli (strain K12)
71 (70) 18214 FIMA1_ECOLI

37
Outer membrane protein A 

OS=Escherichia coli O157:H7
93 (70) 37292 OMPA_ECO57

55 Antigen 43 120 (70) 106818 AG43_ECOLI

55 Antigen 43 148 (70) 106818 AG43_ECOLI

17 FimA 71 (70) 18214 FIMA1_ECOLI

49 B-type flagellin 241 (70) 49213 FLICB_PSEAE

40
Putative prophage major tail 

sheath protein
209 (70) 41339 Y807_PSEAB

32 Elastase 135 (70) 53882 ELAS_PSEAE

52 Aminopeptidase 108 (70) 57818
LAP_PSEAB or 

LAP_PSEAE

50 B-type flagellin 281 (70) 49213 FLICB_PSEAE

31 Elastase 76 (70)
53796 

53882

ELAS_PSEAB or 

ELAS_PSEAE

31 Chitin-binding protein 71 (70)
42390   

42347

CBPD_PSEA or 

CBPD_PSEAE

42
Putative prophage major tail 

sheath protein
135 (70) 41339 Y807_PSEAB

E.coli  WT MG1655

E.coli  WT parental  

BW25113

P. aeruginosa PA01

P. aeruginosa PA14

E.coli FimB-LacZ 

fusion 

E.coli  WT fimbriae 

locked on
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3.2.3.3 Identification of OmpA in E. coli OMV samples 

A range of E. coli OMV samples were probed with an anti-OmpA antibody (Figure 3.22a). A band is 

expected at 37 kDa according to the manufacturer’s guidelines. The whole E. coli cells were run 

alongside the OMVs as a positive control. The Western blot was also repeated using cell and OMV 

samples from E. coli BL21 (DE3), E. coli FimB-LacZ fusion protein, PA01 and PA14 (Figure 3.22b). 

Bands appeared at 37 kDa and 25 kDa for the E. coli strains but not for P. aeruginosa. This indicates 

that there was no non-specific binding of the anti-OmpA antibody to P. aeruginosa proteins.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bands at approximately 37 kDa were found indicating OmpA in all E. coli whole cells and OMVs 

(Figure 3.22a). A band was also present at approximately 25 kDa and there appears to be double 

banding at each of these molecular weights which could be due to the presence/absence of a signal 

peptide (see Section 3.3.2.3 for further discussion). OprF is the P. aeruginosa equivalent of OmpA in E. 

coli (Confer, Ayalew. 2013). The molecular weight of OprF is 37.6 kDa but has only 37.5% identity to 

OmpA in E. coli (see Appendix B.8). As expected, there were no bands at 25 kDa and 37 kDa in the P. 

aeruginosa cell or OMV samples (b). 

b 

Figure 3.22. Western blotting to detect OmpA in purified OMV and whole cell samples 

A Bradford assay was performed and all samples were standardised to be the same protein 

concentration. E. coli and P. aeruginosa whole cells and OMV samples from each strain of interest 

used to run an SDS-PAGE gel. Proteins were separated using SDS-PAGE and then transferred to a 

PVDF membrane for Western blotting. The membrane was probed with an anti-OmpA antibody 

(Antibody research corporation #111120). The original Western blot images can be found in Appendix 

B.7. 
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3.2.3.4 Enrichment of certain proteins within E. coli OMVs compared to the whole cell, outer 

membrane and the periplasm  

Previous SDS-PAGE gels and mass spectrometry results (Table 3.2) showed that OMVs from the E. 

coli K-12 strains appear to be heavily enriched with FimA (18 kDa) and/or Flagellin (51 kDa). In order 

to see if this cargo was enriched in other parts of the cell, six different strains of E. coli were subject to a 

periplasmic and outer membrane extraction protocol. The SDS-PAGE gels in Figure 3.23 indicated that 

the levels of FimA and Flagellin in the whole cell, periplasm and outer membrane are relatively low and 

that these proteins are specifically selected to be packaged in OMVs. 
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The OMV protein profiles were found to be very different to the lysed cells, periplasmic proteins and 

OM proteins. It also appeared that certain proteins were enriched and/or excluded from the OMVs. For 

example, E. coli K-12 OMVs were enriched with (or excluded) the following proteins: FimA (18 kDa), 

Flagellin (51 kDa) and Antigen 43 α-chain (50 kDa). Interestingly, the presence of FimA and Flagellin 

appeared to be mutually exclusive in the OMVs except for the E. coli strain where fimbriae production 

is locked on (this is discussed further in Section 4.2.2). 

 

Lastly, the major outer membrane prolipoprotein Lpp was detected in high levels in the periplasmic and 

OM samples. This was expected as the Lpp protein is located in the periplasm and links the OM with 

the peptidoglycan layer (Schwechheimer, Kuehn. 2015). OMVs have been found to bud in locations 

where the Lpp link is absent. The major outer membrane prolipoprotein Lpp is not present in OMVs and 

so is absent in the OMV samples above (Schwechheimer, Kuehn. 2015). 

Figure 3.23 FimA and Flagellin are enriched in E. coli K-12 OMVs compared to levels in the 

periplasm and whole cell 

A Bradford assay was performed and all samples were standardised to be the same protein concentration. 

TCA precipitation was used to concentrate samples prior to loading on an SDS-PAGE gel. The SDS-PAGE 

gel was run and silver stained to visualise protein profiles of E. coli OMVs were compared to the whole cell, 

OM and periplasm. Samples were purified from the following E. coli strains: BW25113 Parental (a), ΔfimA 

(b), ΔfliC (c), FimB-LacZ (d), Fimbriae locked on strain (e), and ΔfimC strain (f).  
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3.2.4 Are the purified OMVs whole and intact?  

3.2.4.1 Proteinase K test: E. coli BL21 (DE3) OMVs 

The Proteinase K test is used to confirm that isolated OMVs are intact and to distinguish which proteins 

are outside the OMVs or within the lumen (see Section 3.1.2 for further information). E. coli BL21 and 

BL21 (DE3) OMVs were incubated with Proteinase K in the presence and absence of SDS (Figure 3.24 

and Appendix B.9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The sample in Lane 3 contains OMVs that have been treated with Proteinase K but no SDS. The bands 

in Lane 3 indicate which proteins are present within the lumen of the OMVs and are therefore protected 

from Proteinase K degradation (compared to Lanes 2 and 4).  However, when the OMVs were treated 

with both SDS and Proteinase K, the majority of the bands disappeared (lanes 6-9). SDS disrupts OMV 

membranes and allows Proteinase K access to the proteins within the OMVs. Figure 3.24 therefore 

provides evidence that the OMVs were present and intact. 

 

Figure 3.24 Proteinase K test on OMVs from E. coli BL21 (DE3) strain 

OMVs were incubated in the presence and absence of 10 µg/mL Proteinase K and various 

concentrations of SDS for 30 mins at 37ºC. 5 mM PMSF was added to inhibit Proteinase K and samples 

were incubated for another 30 mins at 37ºC. TCA precipitation was used to concentrate samples prior to 

loading on an SDS-PAGE gel. The SDS-PAGE gel was run then silver stained to visualise the OMV 

protein profile. 
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3.2.4.2 Proteinase K test: P. aeruginosa PA14 OMVs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As above, the sample in Lane 3 contains OMVs that have been treated with Proteinase K but no SDS. 

The bands in Lane 3 indicate which proteins are protected from Proteinase K within the lumen of the 

OMVs when compared to Lanes 2 and 4. When E. coli BL21 (DE3) OMVs were treated with both SDS 

and Proteinase K, the majority of the bands disappeared (Figure 3.25). In this case, the protein profile of 

Lanes 6-9 remains almost unchanged. However, when the OMVs are heated to 95°C before Proteinase 

K addition, many of the bands disappear. This evidence suggests that PA14 OMVs are resistant to 

disruption by SDS detergent. This was also found in the PA01 strain (see Appendix B.10).  

 

 

 

 

 

Figure 3.25 Proteinase K test on OMVs from PA14  

OMVs were incubated in the presence and absence of 10 µg/mL Proteinase K and various 

concentrations of SDS for 30 mins at 37ºC. 5 mM PMSF was added to inhibit Proteinase K and 

samples were incubated for another 30 mins at 37ºC. TCA precipitation was used to concentrate 

samples prior to loading on an SDS-PAGE gel. The SDS-PAGE gel was run then silver stained to 

visualise the OMV protein profile. 
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3.2.4.3 Proteinase K test: E. coli FimB-LacZ fusion strain OMVs 

 

 

 

 

 

 

 

 

 

The band in Lane 3 indicates that the main enriched protein in the OMVs (later confirmed as Flagellin) 

is protected from Proteinase K degradation within the lumen of the OMV. When SDS was added alone 

to the OMVs (with no Proteinase K), many new bands appeared (Lane 4). The hypothesis was that 

when the structure of the OMVs was disrupted by SDS, active proteases (that were originally contained 

within the OMVs) were now released extracellularly. These proteases could then degrade OMV proteins 

to produce the extra bands seen on the SDS-PAGE gel. This was explored further in Section 3.2.5. 

 

 

 

Figure 3.26 Proteinase K test on OMVs from E. coli FimB-LacZ fusion 

OMVs were incubated in the presence and absence of 10 µg/mL Proteinase K and various concentrations 

of SDS for 30 mins at 37ºC. 5 mM PMSF was added to inhibit Proteinase K and samples were incubated 

for another 30 mins at 37ºC. TCA precipitation was used to concentrate samples prior to loading on an 

SDS-PAGE gel. The SDS-PAGE gel was run then silver stained to visualise the OMV protein profile. The 

brightness of the photo was increased by 10% for clarity. 
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3.2.5 Do E. coli OMVs contain active proteases? 

E. coli FimB-LacZ OMVs were treated with various concentrations of SDS to determine the minimal 

concentration needed to disrupt the OMVs and release the proteases. OMVs were incubated with 

various concentrations of SDS at 37°C for 60 minutes (Figure 3.27a). The OMV samples before and 

after incubation with 1% SDS were visualised by TEM (Figure 3.27b). 
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Figure 3.27 The effect of SDS on OMVs from E. coli FimB-LacZ fusion 

OMVs were incubated in the presence and absence of SDS of various concentrations for 60 mins at 37ºC. 

30 µl sample was mixed with 10 µl 4x Reducing sample buffer and heated at 95°C for 5 mins before 

loading on to an SDS-PAGE gel. The SDS-PAGE gel was run then silver stained to visualise the OMV 

protein profile (a). The brightness of the photo was increased by 10% for clarity. OMVs untreated with 

SDS (Lane 2) and OMVs treated with 1% SDS (Lane 6) were concentrated 3x by centrifugation at 13,200 

RPM. 10µL of sample was visualised by TEM. 
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As found in Figure 3.26, the addition of SDS causes the extra bands to appear in each sample (Lanes 3-

9 of Figure 3.27a). Interestingly, the main Flagellin band in the OMV is still present and is not degraded 

by any released proteases. OMVs with no SDS treatment and OMVs treated with 1% (w/v) SDS were 

visualised by TEM and compared Figure 3.27b. The images indicate that once SDS was added to the 

OMVs, proteases were released that degraded the co-purified flagella. It seemed possible that the extra 

banding produced could be flagella-associated proteins, which were degraded when the OMV proteases 

are released.  

3.2.5.1 Evidence that E. coli FimB-LacZ fusion strain OMVs contain active proteases 

To test this theory further, OMVs were treated with SDS in the presence and absence of protease 

inhibitors (Figure 3.28). Lastly, a range of the bands produced by the incubation of OMVs with SDS 

were extracted and identified by mass spectrometry (bands indicated by the blue arrows below). 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 3.28 The effect of SDS on OMVs from E. coli FimB-LacZ fusion in the presence and 

absence of protease inhibitors 

OMVs were incubated in the presence and absence of 0.1% and 1% SDS for 60 mins at 37ºC. 10 mM 

HEPES buffer was prepared containing a Protease Inhibitor Cocktail (Roche) and this was used in the 

samples of Lanes 4, 5 and 7. 30 µl sample was mixed with 10 µl 4x Reducing sample buffer and heated 

at 95°C for 5 mins before loading on to an SDS-PAGE gel. The SDS-PAGE gel was run then silver 

stained to visualise the OMV protein profile (a). The brightness of the photo was increased by 15% for 

clarity.  

 

kDa 
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All 12 bands above were detected as Flagellin by mass spectrometry (see Appendix B.11). Figure 5.28 

shows that the addition of the protease inhibitor prevented the appearance of the additional Flagellin 

bands (Lanes 4, 5 and 7). This indicates that there are proteases within the E. coli OMVs, which are 

released when SDS is added and the membrane is disrupted. It appears that the proteases degrade the 

co-purified flagella around the OMVs which causes the appearance of the extra Flagellin bands (as 

Flagellin is the main structural subunit in flagella). The Flagellin monomer within the OMVs (at 51 

kDa) is still protected, however, even after SDS addition. This is evidence that the Flagellin is protected 

somehow within the OMV separate to the proteases (discussed further in Section 3.3).   

3.2.5.2 4-Nitrophenyl acetate substrate  

The chromogenic esterase substrate 4-nitrophenyl acetate was used to quantify protease activity from 

purified OMVs. OMVs were incubated with the substrate in the presence and absence of 0.1% SDS at 

37°C for 60 minutes. As an additional negative control, OMVs were heated to 95ºC to inhibit any 

protease activity in the sample. Protease activity is detected by a colour change from clear to yellow 

which is measured by the increase in absorbance at 405 nm (Figure 3.29). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.29 Detection of OMV proteases using 4-Nitrophenyl acetate substrate 

OMVs were incubated with the chromogenic esterase substrate (4-nitrophenyl acetate) in the 

presence and absence of 0.1% SDS at 37°C for 60 mins. As an additional negative control, 

OMVs were heated to 95ºC for 60 mins prior to the assay to inhibit any protease activity in the 

sample. Protease activity was detected by a colour change from clear to yellow which is 

measured by the increase in absorbance at 405 nm. The error bars represent 1 Standard 

Deviation from the mean. 

 

Source of OMVs 
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There was a large increase in absorbance at 405 nm when OMVs (resuspended in HEPES) were 

incubated with the 4-nitrophenyl acetate substrate. There was also no reaction at all with 10 mM 

HEPES buffer only (negative control). However, it was found that heating the OMVs to 95ºC for 1 hour 

did not have any effect on the absorbance detected which was unexpected. To explore this further, 1 mL 

samples were extracted from 3 different points in the OMV purification protocol (see Figure 3.30a) and 

used in the assay. Samples extracted from all points of the OMV purification protocol reacted with the 

substrate in the same way. After further investigation, it was found that that 4-nitrophenyl acetate 

reacted with both ammonium sulphate and LB (see Figure 3.30b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The evidence showed that the protease activity of the OMVs could not be correlated to increase in 

absorbance using this method.  

b 

a 

Figure 3.30 4-Nitrophenyl acetate substrate reacts with LB and ammonium sulphate 

1 mL samples were extracted from 3 different points in the OMV purification protocol and used 

for the assay (a). OMVs were incubated with the chromogenic esterase substrate (4-nitrophenyl 

acetate) at 37°C for 60 mins. Protease activity was detected by a colour change from clear to 

yellow which is measured by the increase in absorbance at 405 nm. The assay was repeated with 

the following 4 samples: 10 mM HEPES buffer only, 10 mM HEPES buffer with 1.5 M 

ammonium sulphate added, LB media only and LB with 1.5 M ammonium sulphate added. 

Photos were taken of the cuvettes to show the colour change found (b). 
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3.2.6 What is the best method to quantify and compare the number of purified OMVs? 

The best method to quantify OMVs is widely debated (Wieser et al. 2014). In this project, Bradford 

assays were used to determine protein concentrations in OMV samples. This was used to standardise 

samples for loading on to SDS-PAGE gels and as a method to quantify OMVs isolated from different 

strains. Alternative methods of OMV quantification techniques were also trialled and are outlined 

below. 

3.2.6.1 Quantification of OMVs using a NanoPhotometer 50 (Implen) 

An alternative method of determining protein concentration was to use the NanoPhotometer 50 (Implen) 

using the Protein UV Bradford Assay setting. Known protein concentrations of BSA and lysed E. coli 

OMVs in HEPES were trialled on the NanoPhotometer. However, it was concluded that the 

NanoPhotometer N50 could not accurately detect low protein concentrations of 75 µg/mL and under 

(see Appendix B.12). Purified OMV samples can range between 20 µg/mL to 200 µg/mL protein. For 

this reason, the Bradford assay was used for determining all protein concentrations as it was more 

accurate. 

3.2.6.2 Characterisation and Quantification of OMVs using Dynamic Light Scattering (DLS) 

The Litesizer 500 was used to characterise OMVs using the DLS mode. The DLS was optimised to be 

used as an alternative method to quantify isolated OMVs and compare OMV production between 

various strains. Details of the DLS machine set up and optimisation are given in Appendix B.13. 

 

The Relative Frequency of the OMVs are given in 3 forms: 

1. Intensity weighted: this represents the size at which most light is scattered 

2. Volume weighted: this indicates the size where most of the vesicles are by volume 

3. Number weighted: this indicates how many vesicles there are at specific sizes 

 

Samples from the following E. coli strains were trialled on the DLS and the Relative Frequency of the 

OMVs was determined: 

1. E. coli B Parental strain 

2. E. coli BL21 strain 

3. E. coli BL21 (DE3) strain 

4. E. coli K-12 BW25113 Parental strain 

5. E. coli ΔfimA 

6. E. coli ΔfliC 

The DLS results for all three OMV samples purified from E. coli B strains showed very distinct peaks 

in the 100-300 nm region (Figure 3.31a). The average particle size for the E. coli B strains appeared to 

be correct as the TEM images showed that the OMVs can range from approximately 50-400 nm in 

diameter (Figure 3.31b). See Appendix B.14 for individual Figures for each strain. 
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Comparison of E. coli B strain OMV particle size using DLS  

  

Figure 3.31 Dynamic light scattering to analyse particle size of E. coli B strain OMVs 

The Litesizer 500 was used to calculate the Relative Frequency of OMVs (Intensity Weighted). 

OMVs resuspended in 10 mM HEPES buffer were purified from E. coli B strains: BL21 

(DE3), BL21 and B strain parental and 1 mL samples were run on the DLS. An average of all 

repeats was taken to generate a graph using Microsoft Excel for each strain showing the 

average size of the OMVs in nm (a). The particle size diameter was compared to the TEM 

images of OMVs from each strain (b). 

 

a 

b 
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Comparison of E. coli K-12 strain OMV particle size using DLS  

  

Figure 3.32 Dynamic light scattering to analyse particle size of E. coli K-12 strain OMVs 

The Litesizer 500 was used to calculate the Relative Frequency of OMVs (Intensity Weighted). 

OMVs resuspended in 10 mM HEPES buffer were purified from E. coli K-12 strains: ΔfimA, 

BW25113 and ΔfliC and 1 mL samples were run on the DLS. An average of all repeats was 

taken to generate a graph on Microsoft Excel for each strain showing the average size of the 

OMVs in nm (a). The particle size diameter was compared to the TEM images of OMVs from 

each strain (b). 

 

a 

b 
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The OMVs from the E. coli K-12 strains were found to be approximately 100-200 nm in diameter in the 

TEM images (Figure 3.32b). However, OMV samples from the E. coli WT BW25113 strain and the 

ΔfliC strain show no peak at 100-200 nm (Figure 3.32a). Instead, peaks of 811 nm and 1034 nm were 

detected which is most likely to represent the co-purified Type 1 fimbriae. OMVs from the ΔfimA strain 

gave a peak of 333 nm and 1034 nm. The first of these peaks could represent the OMVs, however, this 

value seems high when compared to the TEM images. It is likely that flagella are being detected rather 

than the OMVs. 

3.2.6.3 Quantification of OMVs using DLS 

An attempt was made to quantify E. coli OMVs using the average mean intensity value of each 

sample. This has previously been used to compare light scattering in the literature (Simpanya et al. 

2008). Unfortunately, the mean intensity value for each replicate varied hugely which is reflected 

in the error bars of 1 Standard Deviation (Figure 3.33). The co-purification of flagella and fimbriae 

will also cause this value to be mis-representative of the OMV concentration. For this reason, the 

DLS was no longer used for OMV quantification.        

 

  

Figure 3.33 Dynamic light scattering to quantify purified E. coli OMVs 

OMVs resuspended in 10 mM HEPES buffer were purified from E. coli strains: BL21 (DE3), 

BL21, B strain Parental, ΔfimA, BW25113 and ΔfliC and 1 mL samples were run on the DLS. 

For each repeat of an individual OMV sample, a Mean Intensity is calculated. An average of 

all repeats was taken and displayed as a bar chart with error bars representing 1 Standard 

Deviation. 
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3.3 Discussion 

3.3.1 Optimisation of the OMV purification protocol 

3.3.1.1 The OMV purification protocol developed is reproducible (Section 3.2.1) 

OMVs purified from E. coli BL21 (DE3) on five different dates were compared to confirm that the 

OMV purification protocol developed was reproducible. The TEM images and the protein profile 

densitometry plots of the purified OMVs were compared. The protein profile and TEM images were 

almost identical each time the OMVs were purified from E. coli BL21 (DE3). OMV yield was 

quantified by using the Bradford assay. The average protein yield was 26 µg/mL protein and all OMV 

samples were between 21 and 35 µg/mL protein. The protein profile of E. coli OMVs shows many 

proteins of all sizes. This agrees with other SDS-PAGE gels in the literature (Figure 1, Fantappiè et al. 

2014).  

 

3.3.1.2 Live bacterial cells are not purified using this OMV purification protocol (Section 3.2.1) 

During each OMV purification, 1 mL of PES membrane filtered supernatant was spread on to a LB agar 

plate and incubated at 37 °C for 24-48 hours to check that there was no bacterial growth. During the 

OMV purification protocol, 1.5 M ammonium sulphate was then slowly added to the supernatant to 

precipitate the OMVs. The addition of 1.5 M ammonium sulphate to LB was shown to fully inhibit the 

growth of five strains of E. coli (Figure 3.7).  

 

3.3.1.3 The choice of PES or SFCA membrane type does not affect the OMV sample purity, yield 

or proteome (Section 3.2.1) 

During OMV purification, there is a filtration of the bacterial supernatant through a membrane filter of 

pore size 0.2 µm or 0.45 µm to remove any remaining live cells. A 0.22 µm pore size was chosen to 

filter P. aeruginosa OMVs as the majority appear to be 200 nm or less. E. coli OMVs, however, can 

range up to 400 nm in diameter. A study in 2005 found that filtration of Neisseria lactamica OMVs 

through a 0.22 µm pore caused loss of approximately 50% of the OMVs (Gorringe et al. 2005). Care 

was taken to gain the highest yield of E. coli OMVs as possible so a 0.45 µm pore membrane filter was 

used.  

 

To test the type of membrane filter to use, PA14 and PA01 were filtered using PES and SFCA 

membranes to see if the OMV purification was enhanced or affected. The TEM images showed no 

difference in the purity of the OMVs as there was flagella was co-purified when using both filters. 

There was also no difference in the protein profile when using either filter. PES membranes were 

chosen for future OMV purifications as they are most cost effective and have a faster flow rate than 

SFCA membrane filters.    
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3.3.1.4 Purified P. aeruginosa OMVs were separated from flagella by ultracentrifugation but this 

was not the case for E. coli OMVs (Section 3.2.1) 

The ultimate aim of the ultracentrifugation step was to purify OMVs without any contaminants from the 

cell. Ultracentrifugation of PA14 and PA01 OMVs was successful at removing contaminating flagella 

from the sample. However, this technique was not successful at separating E. coli K-12 OMVs from 

contaminating flagella. Both the SDS-PAGE gels and EM images suggested that the OMVs were spread 

between all six of the OptiPrep layers rather than settling within one layer. Furthermore, in every layer 

both OMVs and flagella were present so there was no benefit to ultracentrifugation of the OMVs. 

Further attempts to remove flagella and fimbriae from the OMV sample were unsuccessful. This 

included extra filtration steps, extra centrifugation steps and addition of proteases. For this reason, the 

E. coli OMVs pellets were resuspended in 10 mM HEPES buffer for analysis in subsequent experiments 

rather than using ultracentrifugation so that no OMVs were lost. It also appears that others in the 

literature struggle to separate OMVs from contaminating flagella and fimbriae even after 

ultracentrifugation (Figure 3.34). 

 

 

 

  

B. cenocepacia OMVs 
Uropathogenic 

E. coli OMVs 
Salmonella typhimurium  

OMVs 

Co-purified flagella Co-purified fimbriae 

a b c 

Co-purified 

flagella 

Co-purified 

flagella 

Figure 3.34 Comparison of OMVs purified from a range of Gram-negative bacteria from the 

literature 

TEM images of OMVs from: B. cenocepacia OMVs sourced from Martins et al. 2016 (a). Salmonella 

typhimurium OMVs sourced from Bitto et al. 2016 (b). Uropathogenic E. coli OMVs sourced from 

Svennerholm et al. 2017 (c) P. aeruginosa (PA01) OMVs sourced from Metruccio et al. 2016 (d). 

 

 

d 
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3.3.2 Success and limitations of OMV characterisation techniques 

Table 3.3 Characterisation methods used on purified OMVs (Section 3.2.2-3.2.6) 

OMV characterisation techniques used Figure number 

Visualisation of OMVs by transmission electron microscopy 3.10, 3.16 

Immunogold labelling of E. coli OMVs using an anti-OmpA antibody 3.18 

Visualisation of OMV biogenesis by growing E. coli and PA14 on EM grids 3.19 

Visualisation of OMV protein profiles using SDS-PAGE 3.20 

Comparison of the protein profiles of OMVs compared with whole cells, 

periplasmic proteins and OM proteins 

3.21, 3.23 

Mass spectrometry identification of OMV proteins Table 3.2 

Western blotting to detect OmpA in E. coli OMVs 3.22 

Evidence that purified OMVs are whole and intact (Proteinase K test) 3.24, 3.25, 3.26 

Evidence that purified E. coli OMVs contain active proteases 3.27, 3.28 

Quantification of OMVs by dynamic light scattering 3.31, 3.32, 3.33 

 

3.3.2.1 Purified OMVs were visualised by TEM and compared to those in the literature 

(Section 3.2.2) 

All evidence indicates that the purification protocol has successfully isolated OMVs from all bacterial 

strains tested. The EM images show OMVs of the expected size, shape and appearance when compared 

with those in the literature (see Figure 3.17). OMV biogenesis was observed by growing E. coli BL21 

(DE3) cells and Pseudomonas aeruginosa (PA14) cells on gold EM grids and fixing at various time 

points over 24 hours. When comparing the EM images to OMV biogenesis images in the literature, it 

appears that the experiment was successful (see Figure 3.19). Lastly, immunolabelling using an anti-

OmpA antibody was applied to OMVs purified from E. coli BL21 (DE3). OmpA was found on the 

surface/membrane of the OMVs as expected. However, this could be optimised further as there were too 

few immunogold labels. The OMV biogenesis experiment using E. coli BL21 (DE3) cells could also be 

repeated using immunogold labelling of OmpA.  

3.3.2.2 Analysis of the OMV proteomes from different bacterial strains (Section 3.2.3) 

The SDS-PAGE gels of the OMV protein profiles indicated that OMVs from the recombinant E. coli B 

strains contained a greater range of proteins than OMVs from the E. coli K-12, PA01 and PA14 strains. 

The non-recombinant (or ‘wild type’) strains produced OMVs which consistently contained large 

amounts of particular proteins and less of others. This suggests that certain proteins are selectively 

targeted to the OMVs in large concentrations and others are excluded. If a protein was to be targeted to 

OMVs for therapeutic purposes, it could be fused with one of the dominant proteins within these OMVs 

which are very prominent on the SDS-PAGE gels and consistently found in OMVs of that strain.  

 

Understanding of the natural packaging of cargo into the OMVs of wild type strains is essential to 

maximise the selectivity and yield of cargo for therapeutic purposes. Similarly, engineered strains such 

as E. coli BL21 (DE3) produce higher yields of OMVs than wild type strains but have more diversity in 

the OMV proteome. E. coli B strains also have no extracellular appendages (ie. fimbriae or flagella) and 
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are not pathogenic in nature. All of these factors should be taken into consideration when choosing 

bacterial strains for drug delivery or vaccines. Table 3.4 outlines the main proteins found in P. 

aeruginosa OMVs and how the findings relate to the literature. The proteome of E. coli OMVs are 

discussed further in Chapter 4. 

 

Table 3.4 Proteins identified within P. aeruginosa OMVs 

 

 

One limitation of identifying bands of interest by mass spectrometry (MS) is that the proteins identified 

may not be truly OMV-associated and may have been co-purified along with the OMVs and still present 

within the sample. To ensure that proteins of interest are OMV-associated, Proteinase K tests were also 

performed on OMV samples to determine which proteins are protected within the OMVs. Flagellin and 

FimA became proteins of interest in E. coli OMVs (Chapter 4) so antibodies to each protein were 

purchased. These antibodies were used for Western blotting and immunogold labelling OMVs as extra 

evidence that these proteins are OMV associated along with the mass spectrometry data. Lastly, 

although MS is very sensitive, it does not show the relative abundance of each protein found which is 

another limitation.  

3.3.2.3 OmpA was detected in E. coli OMV samples by Western blotting (Section 3.2.3) 

Western blotting of E. coli OMV samples gave rise to two bands at 37 kDa and 25 kDa. OmpA in E. 

coli is known to have a molecular weight of approximately 37 kDa. The protein also contains a signal 

peptide which is 21 amino acids long and could give OmpA a 2-3 kDa difference when run on an SDS-

PAGE gel depending on if the signal peptide is present or absent. In the literature, 25 kDa and 27 kDa 

Protein found in P. 

aeruginosa  OMVs

Bacterial strain 

OMV originated 

from

Further information about the 

protein identified
References

B-type flagellin PA01, PA14

Main structural component of 

flagella, used for motility. Virulence 

factor

Previously identified 

in PA01 biofilms 

and OMVs (Couto 

et al. 2015)

Putative prophage major 

tail sheath protein
PA01, PA14

OMVs are thought to be used as a 

‘decoy’ to sequester bacteriophages 

so that they cannot lyse the bacterial 

cell from which the OMVs were 

secreted. 

Probable 

bacteriophage 

components 

identified in PA01 

biofilms and OMVs 

(Couto et al. 2015)

Elastase PA01, PA14

Aminopeptidase PA01, PA14

Chitin-binding protein PA01, PA14

Known to be 

excreted 

extracellularly in 

PA01  biofilms 

(Couto et al. 2015)

"Seven secreted factors are

known to exist extracellularly [in 

PA01 biofilms] : elastase LasB, 

esterase EstA,

PasP, chitin binding domain 

protein CbpD, chitinase ChiC,

lactonizing lipase LipA, and an 

aminopeptidase (PA2939) of

the M28 family of metalloproteases."
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proteins have also been found to be products of the ompA gene (Crowlesmith et al. 1980). However, the 

37 kDa band was the main focus when analysing the Western blots. 

3.3.2.4 Purified OMVs were whole and intact: Proteinase K test (Section 3.2.4) 

The bands remaining when Proteinase K is added to the OMVs (in the absence of SDS) indicated which 

proteins are within the lumen of the OMV. This is because these proteins were protected from 

degradation by Proteinase K within the OMVs.  However, when the OMVs were treated with both SDS 

and Proteinase K, the majority of the bands disappeared. This test provided evidence that the purified E. 

coli OMVs were present and intact before SDS addition. It also showed which proteins are OMV-

associated and which proteins to select for mass spectrometry. P. aeruginosa OMVs, however, appeared 

to be resistant to membrane disruption by SDS. Treatment with 5% SDS had no effect on the protein 

profile when Proteinase K was added compared with E. coli OMVs which are disrupted with as little as 

0.02% SDS. This could be investigated further using a range of detergents and comparing the lipid 

composition of E. coli and P. aeruginosa OMVs.  

3.3.2.5 Purified E. coli OMVs contained active proteases (Section 3.2.5) 

An initial Proteinase K test on the E. coli FimB-LacZ fusion strain OMVs indicated that active 

proteases were present within the OMVs (Figures 3.25). When these OMVs were incubated with SDS, 

it appeared that proteases were released which caused degradation of proteins to form additional bands 

on the SDS-PAGE gel. TEM images suggest that SDS caused lysis of the OMVs and release of active 

proteases which then degraded the surrounding flagella. All of the extra bands formed on the SDS-

PAGE gel were identified to be Flagellin by mass spectrometry which is the main structural subunit of 

flagella (Figures 3.2.7-3.2.8). 

  

Next, OMVs from a range of bacterial strains were incubated for 1 hour with a chromogenic esterase 

substrate (4-nitrophenyl acetate) (Figure 3.29-3.30). Unfortunately, it was discovered that the substrate 

was unexpectedly reacting with both LB and 1.5 M ammonium sulphate. For this reason, the colour 

change could not clearly be correlated with OMV protease activity. In order to characterise OMV 

proteases further, kits such as Sigma Protease Fluorescent Detection Kit PF0100 or Zymogram gels 

(Novex) could be used. If OMV protease activity directly correlates to OMV production, a colorimetric 

assay could potentially be developed to quantify OMVs and learn more about factors that trigger OMV 

release. 

3.3.2.6 There are limitations to the quantification of OMVs (Section 3.2.6) 

Bradford assay 

The best method to quantify OMVs is widely debated (Wieser et al. 2014). OMVs can be quantified 

using protein concentration or lipid concentration. Bradford assays are a reliable way to determine 

protein concentrations in OMV samples. This was used to standardise samples for loading on to SDS-

PAGE gels and as a method to quantify OMVs isolated from different strains.   
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Quantification of OMVs using a NanoPhotometer 50 (Implen)  

The NanoPhotometer 50 (Implen) was trialled to quantify protein in OMVs. However, it was concluded 

that the NanoPhotometer could not accurately detect below 75 µg/mL of protein. As purified OMV 

samples can range between 20 µg/mL to 200 µg/mL, this method of quantification was not appropriate.  

 

Characterisation and Quantification of OMVs using DLS 

Lastly, The Litesizer 500 was used to characterise the OMVs using the DLS function. Although the 

DLS gave reproducible results for E. coli B strains, the DLS detected the co-purified fimbriae and 

flagella rather than the OMVs in E. coli K-12 strains. For this reason, the E. coli K-12 OMVs could not 

successfully be quantified and compared. A limitation of the DLS is that often values can be slightly 

larger than expected. The Litesizer assumes that all particles are spherical and so if there is movement 

of the OMVs during measurement or aggregation of OMVs, it may detect particles to be larger than 

their true size.  

3.3.3 Comparison of OMVs between different bacterial strains 

3.3.3.1 OMVs from wild type and recombinant strains have different protein profiles (Section 

3.2.3) 

The number of OMVs released from the engineered and proprietary BL21 strains was higher than E. 

coli WT strains when comparing numbers on the TEM images. Unfortunately, the quantification of E. 

coli K-12 and B strain OMVs using the Bradford assay are not directly comparable. This is because 

purified K-12 strain OMV samples also contain flagella and/or fimbriae so not all proteins quantified 

are OMV-associated.  

 

The SDS-PAGE gels of the OMV protein profiles indicated that OMVs from the recombinant E. coli B 

strains contained a greater range of proteins than OMVs, from the wildtype E. coli K-12, PA01 and 

PA14 strains. The non-recombinant strains produced OMVs which consistently contained large amounts 

of particular proteins and less of others. This suggests that certain proteins are selectively targeted to the 

OMVs in large concentrations for release and others are excluded. If a protein was to be targeted to 

OMVs, it could be fused with one of the dominant proteins within the OMVs of PA01/PA14/E. coli 

WT, which are very clear on SDS-PAGE gels and consistently found in OMVs of that strain.  

 

The OMV purification protocol and characterisation techniques developed in this Chapter were used 

further in Chapters 4 and 5 to study vesicle production in both Gram-negative and Gram-positive 

bacteria. 
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Chapter 4  

E. coli K-12 strains package FimA and Flagellin 

into OMVs in a mutually exclusive way 

4.1 Introduction 

4.1.1 Brief comparison of E. coli K-12 and B strains 

E. coli K-12 strains and E. coli B strains are very commonly used as model organisms in the scientific 

community. E. coli is widely used in biotechnology due to its rapid doubling time, ease of manipulation 

and our extensive knowledge of the genome. One of the main differences between E. coli B strains and 

K-12 strains is that B strains are deficient in producing fimbriae and flagella. B strains are also deficient 

in certain proteases including Lon and OmpT (Bachmann, B.J. et al. 1972). The ultimate aim is to 

manipulate E. coli strains into producing OMVs with specific cargo for therapeutic use.  

4.1.2 E. coli pathogenicity and extracellular appendages 

As discussed previously in Section 1.6, E. coli cells express fimbriae and flagella during infection. Type 

1 fimbriae and flagella are crucial for colonisation of the urinary tract, but mediate opposing virulence 

objectives, as flagella are used for motility and fimbriae are used for adhesion to sites to cause infection. 

Previous studies in the literature indicate that pathogenic E. coli cells reciprocally regulate the 

expression of flagella and fimbriae (Cooper et al. 2012). However, this finding has never been applied 

to OMVs. In this study, FimA and Flagellin monomers were found in E. coli K-12 OMVs packaged in a 

mutually exclusive way which, has not yet been addressed in the literature. Polymerised FimA 

monomer forms the main structural subunit of Type 1 fimbriae and polymerised Flagellin monomer 

forms the main structural subunit of flagella. 

4.1.3 Coli Genetic Stock Center (CGSC): Keio collection series 

The Keio collection is a series of E. coli strains where individual genes were systematically deleted. The 

parent strain (from which all the knockout strains were made) is named ‘BW25113’ and is very closely 

related to E. coli K-12 MG1655 (Baba et al. 2006). To study the mutually exclusive packaging of FimA 

and Flagellin monomers into E. coli K-12 OMVs, a series of Keio collection knockout strains were 

used. Table 4.1 below briefly describes the role of each protein in the E. coli cell which can be used as a 

reference. Diagrams of flagella and fimbriae biosynthesis can be found in Section 1.6. 
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Table 4.1 Description of the Keio collection knockout strains used to study the mutually exclusive 

packaging of FimA and Flagellin. Note: T1F refers to Type 1 fimbriae. 

 

 

4.1.4 Main chapter aims: 

1. To compare OMV cargo and composition from a variety of both E. coli B strains and K-12 strains  

2. To gain insight into how specific proteins are enriched and/or excluded from E. coli OMVs 

3. To gain insight into the function of any cargo discovered (i.e. why would this be beneficial in vivo)  

4. To identify any target proteins of interest in OMVs, which could be used for therapeutic purposes e.g. 

drug delivery and vaccines. 

Strain name Function of the protein knocked-out Reference

E.coli ∆fimA 

(JW4277-1)
"FimA monomers comprise the bulk of the type 1 pilus structure"

E.coli ∆fimB 

( JW4275-1)

"The site-specific recombination that allows phase variation to occur requires two trans-acting 

factors located proximally upstream of fimS , encoded by fimB  and fimE ."  "FimB can bind to the 

fimS element to either switch from Phase-ON to Phase-OFF or vice versa, with a slight bias 

towards the Phase-OFF over the Phase-ON orientation."

E.coli ∆fimC 

(JW4279-1)

FimC is a periplasmic chaperone protein that helps translocate the fimbrial proteins through the 

periplasm until the FimC-Fim protein complex reaches the FimD usher. 

E.coli ∆fimD 

( JW5780-1)

"FimD is an integral outer membrane protein that serves as an usher, allowing surface localization of 

the nascently forming T1F"

E.coli ∆fimE 

( JW4276-1)

"The site-specific recombination that allows phase variation to occur requires two trans-acting 

factors located proximally upstream of fimS,  encoded by fimB  and fimE ". "FimE binds to switch 

fimS  from Phase-ON to Phase-OFF."

E.coli ∆fimF 

( JW4281-1)

E.coli ∆fimG 

(JW4282-2)

E.coli ∆fimH 

(JW4283-3)

"FimA does not mediate binding to the mannose containing receptor. An adhesin, encoded by the 

fimH  gene, is responsible for this binding"

E.coli ∆fimI 

(JW5779-1)

"The fimI  gene was the last gene within the fim operon to be characterized. FimI’s function is not 

known." 

E.coli ∆fimZ 

(JW5073-1)

"Our results indicate that FimY and FimZ independently activate the PfimA promoter which controls 

the expression of the fim structural genes. FimY and FimZ were also found to strongly activate each 

other's expression and weakly activate their own expression."

Saini et al. 

2009

E.coli ∆fliC 

( JW1908-1)
"Each filament may comprise as many as ˜30000 flagellin subunits and can grow up to ˜15 μm"

Vonderviszt 

et al. 2000-

2013

E.coli ΔlrhA 

(JW2284-6)

“It is suggested that LrhA is a key regulator controlling the transcription of flagellar, motility and 

chemotaxis genes by regulating the synthesis and concentration of FlhD”

Lehnen et al. 

2002

E.coli ΔfliD 

(JW1909-1)   

“Flagella are crucial for bacterial motility and pathogenesis. The flagellar capping protein (FliD) 

regulates filament assembly by chaperoning and sorting flagellin (FliC) proteins after they traverse 

the hollow filament and exit the growing flagellum tip. In the absence of FliD, flagella are not 

formed”

Postel et al. 

2016

E.coli ΔfliS 

(JW1910-1)

“To prevent premature polymerization of newly synthesized flagellin molecules, FliS, the flagellin-

specific chaperone, binds flagellin and facilitates its export”

Galeva et al. 

2014

E.coli ΔflhA 

(JW1868-1)

“The major filament protein (flagellin) and the filament-cap protein (FliD) bind to the FlhA 

cytoplasmic domain (FlhA-C) only in complex with their cognate chaperones (FliS and FliT).” 

“Deletion of flhA caused severely defective biofilm formation.”

Bange et al. 

2010          

Svensson et 

al.  2014

"FimF and FimG are associated with FimH adhesin, forming a fibrillum structure that anchors the 

adhesin to the pilus shaft and controls the length of the T1F"

Schwan et 

al. 2011*
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4.2 Results 

4.2.1 Comparison of OMVs purified from E. coli B strains and K-12 strains 

4.2.1.1 TEM images of purified OMVs  

OMVs were purified from two recombinant E. coli B strains: BL21 and BL21 (DE3) and two E. coli K-

12 WT strains: E. coli WT MG1655 and E. coli FimB-LacZ fusion strain (see Table 3.1 in Section 3.1.3 

for strain introduction). OMVs were purified from the four strains above concurrently for a direct 

comparison. The TEM images (Figure 4.1), indicate that E. coli B strains (a, c) hypervesiculate 

compared to WT K-12 strains (b, d). Furthermore, purified OMVs from E. coli K-12 strains are co-

purified with flagella and/or fimbriae whereas E. coli B strain cells are deficient in flagella and fimbriae. 

This results in a purer OMV sample with no contaminants. For attempts at quantification of these OMV 

samples, see Section 3.2.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.1.2 Protein profile of E. coli OMVs (SDS-PAGE gel)  

In Section 3.2.5, E. coli OMVs were incubated with SDS which appeared to cause disruption to the 

membranes and allow release of proteases from the OMVs. These proteases degraded some of the 

OMV-associated proteins and changed the OMV protein profile. Although in this case the addition of 

SDS had no effect on the OMV protein profile, there was a clear difference in the banding profile of the 

recombinant (B strain) and WT (K-12 strain) OMVs (see Figure 4.2 and Appendix C.1 for the original 

sample labelling). 

Figure 4.1 Comparison of OMVs purified from E. coli B strain and K-12 strains 

TEM analysis of purified OMVs from four different E. coli strains: E. coli BL21 (a), E. coli WT MG1655 

(b), E. coli BL21 (DE3) (c) and E. coli FimB-LacZ fusion (d)  

a b 

c d 
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OMVs from E. coli B strains (lanes 3-6) have many proteins of all sizes with no particular protein band 

dominating the lane profile. However, OMVs from K-12 strains (in lanes 7-10) appear to have 1 main 

protein enriched in the OMVs and very few other proteins. One unexpected result was the difference in 

the banding pattern between E. coli WT MG1655 and E. coli FimB-LacZ fusion strain OMVs. In E. coli 

WT MG1655 OMVs, the prominent band at approximately 18 kDa was identified as FimA by mass 

spectrometry and the band at approximately 51 kDa was identified as Flagellin (see Appendix C.1). 

This finding was repeated three times for each band from three different gels. E. coli WT MG1655 

OMVs (lanes 7-8) are enriched with the protein FimA (18 kDa) but the Flagellin band (51 kDa) is 

missing entirely. In the E. coli FimB-LacZ fusion strain OMVs (lanes 9-10), Flagellin is present but 

FimA is absent. It appears that FimA and Flagellin are packaged in a mutually exclusive way when 

comparing OMVs from these two strains. 

 

4.2.1.3 What causes hypervesiculation in E. coli B strains compared to K-12 strains? 

E. coli B strains have a deletion of the ompT and lon gene which are present in the K-12 strains. E. coli 

Δlon and ΔompT strains were purchased from the Keio mutant collection at the Coli Genetic Stock 

Center (CGSC). The OMVs from these two mutant strains were compared to the Keio collection 

Figure 4.2 Comparison of the protein profile of OMVs purified from E. coli B strain and K-12 

strains. 

A Bradford assay was performed and all samples were standardised to be the same protein 

concentration. TCA precipitation was used to concentrate samples prior to loading on an SDS-PAGE 

gel. The SDS-PAGE gel was run then silver stained to visualise the OMV protein profile. FimA and 

Flagellin bands labelled were extracted and identified by mass spectrometry (see Appendix C.1).  
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parental strain BW25113. OMVs were also isolated from E. coli BL21, BL21 (DE3) and the parent of 

the E. coli B strains (see Section 2.4 for further information on strains used).  

 

As previously found, there appeared to be a higher number of OMVs purified from B strains compared 

to K-12 strains (see Figure 4.3 and Appendix C.2 for additional EM images). An overview of how to 

identify fimbriae and flagella by eye from EM images was developed in Section 3.2.1.5. E. coli B 

strains did not have any co-purified fimbriae or flagella. E. coli parental BW25113 strain OMVs were 

co-purified with fimbriae (g), E. coli ΔfimA OMVs were co-purified with flagella (f) and E. coli ΔfliC 

OMVs were co-purified with fimbriae. Interestingly, deletion of either ompT or lon resulted in the co-

purification of flagella instead of fimbriae (d, e). When either protease (OmpT or Lon) is absent, the cell 

switches from production of fimbriae to flagella. 

 

The protein profiles of the OMVs from all 8 strains were compared by SDS-PAGE and Western blotting 

(Figure 4.4). 

Figure 4.3 Comparison of OMVs purified from E. coli B strain and K-12 strains including 

Δlon and ΔompT  

TEM analysis of purified OMVs from a range of E. coli B and K-12 strains. B strains: E. coli B 

strain parental (a), E. coli BL21 (b), E. coli BL21 (DE3) (c). K-12 strains: E. coli ΔompT (d), 

E. coli Δlon (e), E. coli ΔfimA (f), E. coli WT Parental BW25113 (g), E. coli ΔfliC (h). 
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OMVs purified from E. coli B strains have many proteins with no particular one enriched in the OMVs. 

Interestingly, deletion of either the ompT or lon gene caused Flagellin to be packaged within the OMVs, 

while still packaging FimA monomer too (compare lanes 5-6 to lane 7). It also caused the E. coli cell to 

produce flagella instead of fimbriae and package Flagellin along with FimA monomer in OMVs.  

Figure 4.4 Comparison of the protein profile of OMVs purified from E. coli B strain and K-12 strains. 

OMVs were purified from a range of E. coli K-12 and B strains including ΔompT and Δlon. A Bradford 

assay was performed and all samples were standardised to be the same protein concentration. TCA 

precipitation was used to concentrate samples prior to loading on an SDS-PAGE gel. Proteins were 

separated using SDS-PAGE and silver stained to visualise OMV protein profiles (a). Purified OMV 

samples were probed using the following antibodies anti-FimA monomer, anti-FimA polymer and anti-

Flagellin (b). See Appendix C.3 for original Western blot images. 
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4.2.2 Evidence for Enrichment of FimA and/or Flagellin monomer into E. coli K-12 

OMVs 

4.2.2.1 OMVs were purified from an E. coli K-12 strain with fimbriae production locked on  

FimA is the main structural component of Type 1 fimbriae and is not usually found in a monomeric 

form. During the formation of Type 1 fimbriae, FimA enters the periplasm in an unfolded form and 

binds to the periplasmic chaperone FimC. FimC catalyses FimA folding then delivers it to the usher 

protein FimD. Lastly, the FimA monomer is incorporated into the Type 1 fimbriae (Nishiyama.et al. 

2005). Similarly, Flagellin is believed to bind to the chaperone FliS in the cytosol to prevent premature 

polymerisation of Flagellin monomers until they are needed for flagella biosynthesis (Muskotál et al. 

2006). To explore this further, OMVs were purified from an additional E. coli K-12 strain with fimbriae 

production locked on (further details this strain can be found in Section 2.4). Interestingly, OMVs from 

this strain contain both Flagellin and FimA and the packaging is no longer mutually exclusive (see 

Figure 4.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

Figure 4.5 Comparison of the protein profile of OMVs purified from E. coli MG1655 OMVs, 

FimB-LacZ fusion and E. coli with fimbriae production locked on  

A Bradford assay was performed and all samples were standardised to be the same protein 

concentration. TCA precipitation was used to concentrate samples prior to loading on an SDS-PAGE 

gel. The SDS-PAGE gel was run then silver stained to visualise the OMV protein profile. The bands 

at 18 kDa and 51 kDa have been identified as FimA and Flagellin in previous mass spectrometry of 

OMVs from E. coli with fimbriae locked on. 
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4.2.2.2 Immunogold labelling of embedded E. coli cells and OMVs to detect FimA and 

Flagellin monomer within the OMVs  

Further evidence was needed to confirm if the Flagellin and FimA bands in the SDS-PAGE gel reflected 

proteins packaged within the OMVs or whether the bands represented subunits of whole flagella or 

fimbriae which had been co-purified with the OMVs. Cells and OMVs from various E. coli strains were 

embedded in resin and sectioned to give a cross-section of the proteins inside the OMVs. Immunogold 

labelling was used to detect FimA and Flagellin monomer within the OMVs. Figure 4.6 shows 

immunogold labelled cells and OMVs purified from the Keio collection parental strain BW25113. Both 

FimA monomer and Flagellin monomer were detected within the whole cells (d and e). However, only 

FimA monomer was detected within the OMVs and not Flagellin (a and b). This confirms the findings 

in Figure 4.5. Lastly, it was noted that the immunogold labels present around the OMVs in Figure 4.6a 

were most likely due to the leakage of OMV contents during the OMV fixing and embedding process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2.3 How do the levels of FimA and Flagellin in OMVs compare to FimA/Flagellin levels in 

the whole cell and periplasm? 

Six different strains of E. coli were grown overnight in 750 mL LB. 500 mL of this culture was used to 

purify OMVs and 100 mL was used for periplasmic protein extraction. The ‘whole cell’ sample is the E. 

coli culture only. The SDS-PAGE gels indicated that the levels of FimA and Flagellin in the whole cell 

and periplasm are relatively low and that these proteins are specifically selected to be packaged in 

OMVs (Figure 4.7).  

 

a b c 

d e f 

Figure 4.6 Immunogold labelling of embedded E. coli parental BW25113 strain cells and OMVs 

TEM analysis of thin-sectioned cells and OMVs embedded in resin. The sections were immunogold 

labelled and probed with anti-FimA monomer antibody (a and d), anti-Flagellin antibody (b and e). As a 

negative control, the embedded OMVs were incubated in TBST only (no primary antibody). The samples 

were still incubated with the secondary antibody as usual (c and f). 
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Figure 4.7 FimA and Flagellin are enriched in E. coli K-12 OMVs compared to levels in the 

periplasm and whole cell 

A Bradford assay was performed and all samples were standardised to be the same protein concentration. 

TCA precipitation was used to concentrate samples prior to loading on an SDS-PAGE gel. The SDS-PAGE 

gel was run then silver stained to visualise protein profiles of E. coli OMVs were compared to the whole 

cell and periplasm. SDS-PAGE gel a shows the E. coli WT parental strain BW25113, E. coli FimB-LacZ 

strain and the E. coli fimbriae locked on strain. Gel b shows the ΔfimA strain, ΔfliC strain and ΔfimC strain. 

The identity of proteins labelled in b were confirmed by mass spectrometry (Appendix C.14). 
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The samples from Figure 4.7 were used for Western blotting to detect Flagellin and FimA monomers in 

all samples (Figure 4.8).  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 indicated that there was a clear enrichment of monomeric FimA and/or Flagellin in OMV 

purification samples compared with the periplasm and whole cell. The presence of FimA or Flagellin 

was also found to be mutually exclusive in the OMVs except for the E. coli strain where fimbriae 

production was locked on (c). The regulation of which protein was packaged had somehow been 

disrupted, which was explored further in Chapter 4.2.3. 

 

In the E. coli parental strain BW25113 (a), a faint band was present that appeared to be Flagellin within 

the periplasmic fraction. However, previous mass spectrometry results have identified this as an 

Antigen 43 subunit (50 kDa) rather than Flagellin (51 kDa). This band was also found in the ΔfliC 

periplasmic protein sample (e), which has also previously been identified as Antigen 43. Flagellin and 

Antigen 43 proteins have 41% amino acid identity (see Appendix C.5 for BLAST alignment). Antigen 

43 is composed of two protein subunits: α (50 kDa) and β (53 kDa) (Kjærgaard et al. 2000). As 

Figure 4.8 FimA and Flagellin are enriched in E. coli K-12 OMVs compared to levels in the 

periplasm and whole cell 

A Bradford assay was performed and all samples were standardised to be the same protein concentration. 

TCA precipitation was used to concentrate samples prior to loading on an SDS-PAGE gel. Western blots 

were performed on periplasmic proteins, OMVs and proteins from the whole cell using anti-FimA 

monomer and anti-Flagellin antibodies. The presence of FimA and Flagellin was compared in the 

following strains: E. coli WT parental BW25113 (a), E. coli FimB-LacZ fusion protein (b), E. coli with 

fimbriae locked on (c), ΔfimA (d), ΔfliC (e) and ΔfimC (f). See Appendix C.4 for full photos of the Western 

blots. 
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Flagellin is 51 kDa, this makes differentiating between Flagellin and Antigen 43 bands difficult and 

cross-reactivity of the anti-Flagellin antibody with Antigen 43 is possible. For this reason, mass 

spectrometry was used to differentiate between Flagellin and Antigen 43 bands on SDS-PAGE gels if 

needed. 

 

4.2.2.4 Proteinase K test: Evidence for Flagellin monomer protection within E. coli K-12 OMVs 

As discussed in Section 3.2.4, the Proteinase K test confirms which proteins are present within the 

OMVs. To confirm the presence of FimA and Flagellin within E. coli K-12 OMVs, the Proteinase K test 

was applied. According to ExPASy peptide cutter tool (see Appendix C.6), Proteinase K will cause 251 

cleavages in Flagellin (FLIC_ECOLI) and 108 cleavages in FimA (FIMA1_ECOLI). When Proteinase 

K is added to the OMVs alone (without SDS), proteins within the lumen of the OMVs should be 

protected from degradation and the bands representing them will still be present on the SDS-PAGE gels. 

Any proteins outside the OMVs will be degraded and the bands will disappear on the SDS-PAGE gel. 

Figure 4.9 gives strong evidence that Flagellin is protected within OMVs from E. coli FimB-LacZ 

fusion strain (lane 3 compared to lanes 5-9).  

 

Proteinase K test: OMVs from E. coli FimB-LacZ fusion strain 

 

 

 

 

 

  

Figure 4.9 Proteinase K test on OMVs from E. coli FimB-LacZ fusion strain 

OMVs were incubated in the presence and absence of 10 µg/mL Proteinase K and various concentrations of 

SDS for 30 mins at 37ºC. 5 mM PMSF was added to inhibit Proteinase K and samples were incubated for 

another 30 mins at 37ºC. TCA precipitation was used to concentrate samples prior to loading on an SDS-

PAGE gel. The SDS-PAGE gel was run then silver stained to visualise the OMV protein profile. 

 

kDa 

Flagellin              

(51 kDa) 

Proteinase K              

(29 kDa) 



 

147 

 

4.2.2.5 Proteinase K test: Evidence for FimA monomer protection within OMVs 

 

Proteinase K test: OMVs from E. coli WT MG1655 strain 

The Proteinase K test was applied to OMVs from the WT MG1655 strain to confirm the presence of 

FimA within the OMVs as in Figure 4.9. Unexpectedly, the FimA monomer band remained unchanged 

in all lanes (Figure 4.10).     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This result was unexpected as addition of Proteinase K to FimA (FIMA1_ECOLI) should cause 108 

cleavages (see Appendix C.6) and the FimA band should have disappeared. OMVs from E. coli with 

fimbriae production locked on contained Flagellin and FimA so the Proteinase K test was repeated 

using OMVs from this strain (Figure 4.11). The Proteinase K test successfully showed the protection of 

Flagellin within the OMVs that were structurally intact in Lane 3. However, the FimA monomer band 

remained undegraded by Proteinase K which was explored further. 

  

 

Figure 4.10 Proteinase K test on OMVs from E. coli WT MG1655 strain 

OMVs were incubated in the presence and absence of 10 µg/mL Proteinase K and various 

concentrations of SDS for 30 mins at 37ºC. 5 mM PMSF was added to inhibit Proteinase K and 

samples were incubated for another 30 mins at 37ºC. TCA precipitation was used to concentrate 

samples prior to loading on an SDS-PAGE gel. The SDS-PAGE gel was run then silver stained to 

visualise the OMV protein profile. 
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E. coli WT MG1655 with fimbriae locked on 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

The conditions were optimised to allow degradation of FimA by Proteinase K. Addition of Proteinase K 

to FimA (FIMA1_ECOLI) should result in 108 cleavages but in this case the protein remains uncleaved. 

There were various hypotheses about why the FimA monomer was not degraded in these conditions. It 

could be that the protein was not in the correct conformation to be digested and that all the cleavage 

sites were inaccessible and protected within the protein. Alternatively, the FimA monomer could be 

protected from Proteinase K degradation due to its location within the OMV. For example, it could be 

compartmentalised within the OMV or FimA could be protected by being part of a compound which 

makes it inaccessible to proteases. Reference for the structure of FimA monomer can be found here: 

https://www.uniprot.org/uniprot/P04128. 

 

4.2.2.6 Optimisation of the Proteinase K test conditions in order to apply the test to OMV samples 

containing FimA monomer 

The following methods were trialled to degrade FimA monomer in the OMV samples: 

Figure 4.11 Proteinase K test on OMVs from E. coli WT with fimbriae locked on 

OMVs were incubated in the presence and absence of 10 µg/mL Proteinase K and various concentrations 

of SDS for 30 mins at 37ºC. 5 mM PMSF was added to inhibit Proteinase K and samples were incubated 

for another 30 mins at 37ºC. TCA precipitation was used to concentrate samples prior to loading on an 

SDS-PAGE gel. The SDS-PAGE gel was run then silver stained to visualise the OMV protein profile. 
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a 

1. Temperature: Performing the Proteinase K test at 60ºC (instead of 37ºC) to aid FimA protein 

unfolding and allow Proteinase K easier access to the protein cleavage sites. 

2. Method of OMV lysis: OMVs were previously lysed by heating at 95ºC for 30 minutes. OMVs were 

also lysed by sonication to allow proteases full access to the FimA protein. The sonication conditions 

chosen were those used in a paper in the literature (Metruccio et al. 2016). 

3. Protease used: OMVs were treated with both Proteinase K and Trypsin alone and together. The 

concentration of proteases used was increased to be 10x more than those used in the literature for 

similar experiments (Mugita et al. 2017).  

4. Assay time: The proteases were incubated with the OMV samples for: 0, 30, 60, 120 and 180 

minutes.  

 

The Proteinase K test was repeated on OMVs from E. coli with fimbriae locked on with variations in 

the proteases used, protease concentration, reaction temperature and method of OMV lysis (Figures 4.12 

and 4.13). The FimA band remained unchanged in all conditions despite the Flagellin band degradation 

in all conditions tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Proteinase K test on OMVs from E. coli WT with fimbriae locked on 

The Proteinase K test was repeated on OMVs from E. coli with fimbriae locked on with variations in 

protease concentration, reaction temperature and method of OMV lysis (a). TCA precipitation was used to 

concentrate samples prior to loading on an SDS-PAGE gel. The SDS-PAGE gel was run then silver stained 

to visualise the OMV protein profile (b). 
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All the methods trialled were unsuccessful at degrading FimA. Previously, the FimA monomer band at 

18 kDa had been extracted and successfully verified by mass spectrometry. During the mass 

spectrometry procedure, the proteins were digested with trypsin and FimA had been successfully 

digested and identified. During the mass spectrometry procedure, the proteins were treated with 10 mM 

DTT in 50 mM ammonium bicarbonate and 55 mM iodoacetamide in ammonium bicarbonate. DTT 

disrupts the structure of proteins by reducing the disulphide bonds. Iodoacetamide then prevents 

reformation of disulphide bonds in proteins to keep them denatured. DTT and iodoacetamide were 

added to the OMV samples to denature the FimA monomer and allow Proteinase K access to the 

cleavage sites (Figure 4.14 and Appendix C.7) 

Figure 4.13 Proteinase K test on OMVs from E. coli WT with fimbriae locked on 

The Proteinase K test was repeated on OMVs from E. coli with fimbriae locked on with variations in 

protease concentration, reaction temperature and method of OMV lysis (a). TCA precipitation was used to 

concentrate samples prior to loading on an SDS-PAGE gel. The SDS-PAGE gel was run then silver stained 

to visualise the OMV protein profile (b). 
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Flagellin was degraded (at least partially) in all the conditions tested (Figure 4.14). However, the FimA 

monomer still remained uncleaved by Proteinase K or trypsin (see Appendix C.7). As Flagellin was 

very easily degraded and FimA monomer was not, the next hypothesis to test was whether FimA 

monomer was protected by lipids within the OMV in a different location to Flagellin. A lipid extraction 

was performed on the OMV samples to remove any lipid-protein interactions that could be protecting 

FimA. This ‘lipid-free’ OMV sample was then subject to digestion with Proteinase K and trypsin and 

was still unsuccessful (Figure 4.15). 

 

 

Figure 4.14 Proteinase K test on OMVs from E. coli WT with fimbriae locked on 

The Proteinase K test was repeated on OMVs from E. coli with fimbriae locked on with the addition of 

DTT, iodoacetamide and ammonium bicarbonate alone (a). TCA precipitation was used to concentrate 

samples prior to loading on an SDS-PAGE gel. The SDS-PAGE gel was run then silver stained to 

visualise the OMV protein profile (b). 
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Figure 4.15 Proteinase K test on the proteins of OMVs from E. coli WT with fimbriae locked on (all 

lipids extracted) 

The Proteinase K test was repeated on the lipid-free OMV sample from E. coli with fimbriae locked on 

using both Proteinase K (a) and Trypsin (b). TCA precipitation was used to concentrate samples prior to 

loading on an SDS-PAGE gel. The SDS-PAGE gel was run then silver stained to visualise the  

OMV protein profile. 
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It was known that the FimA band (18 kDa) was cleaved successfully by trypsin during mass 

spectrometry when the band was extracted from the SDS-PAGE gels. In order to recreate these 

conditions, OMV samples from E. coli with fimbriae locked on were run on an SDS-PAGE gel in 

duplicate. One lane was silver stained to locate the FimA monomer protein and the next lane was 

unstained and had not been processed using the silver staining procedure (see Section 2.8.4 for more 

details). This was to see if it was part of the silver staining procedure that made FimA susceptible to 

protease degradation. The bands containing FimA were extracted and the FimA protein was purified 

from the SDS-PAGE gel. This purified FimA was then subject to digestion by Proteinase K and trypsin 

(see Figure 4.16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The FimA monomer protein that had been isolated from the SDS-PAGE gel was now susceptible to 

digestion by Proteinase K and trypsin. The silver staining process had no effect on whether the protein 

was digested as the FimA was still degraded in Lanes 3 and 8. In the only cases where digestion of 

FimA had been successful, the OMV samples have been TCA precipitated first before Proteinase K/ 

trypsin digestion. The final method trialled was to compare digestion of FimA monomer by Proteinase 

K before and after TCA precipitation for the SDS-PAGE gel (see Figure 4.17).  

Figure 4.16 Proteinase K test on the proteins of OMVs from E. coli WT with fimbriae locked on (all 

lipids extracted) 

The Proteinase K test was repeated on FimA protein that was isolated from the SDS-PAGE gel of OMV 

sample from E. coli with fimbriae locked on. The SDS-PAGE gel was run then silver stained to visualise 

the OMV protein profile. 
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It appeared that TCA precipitation of the FimA monomer made it susceptible to Proteinase K 

degradation. TCA is an acid that disrupts hydrogen bonding and causes the denaturation of proteins as 

they lose their secondary structure (Koonz et al. 2014). This appears to denature FimA in a way that 

allows Proteinase K access to the cleavage sites that were previously sequestered. Although the FimA 

monomer could now be digested, this method could not be incorporated into the Proteinase K test 

because the OMVs would no longer be intact. Evidence that FimA is present within the OMVs by the 

Proteinase K test was not possible so EM and Western blotting studies with an anti-FimA monomer 

antibody was favoured.  

  

Figure 4.17 Proteinase K test on OMVs from E. coli WT with fimbriae locked on before and after 

TCA precipitation of the OMV proteins 

The digestion of FimA was compared before and after TCA precipitation. The SDS-PAGE gel was run 

then silver stained to visualise the OMV protein profile. 
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4.2.3. Is the packaging of FimA and Flagellin into OMVs mutually exclusive? 

4.2.3.1 Comparison of OMVs from a variety fimbriae-associated protein knockouts and Flagellin 

The aim was to see if deletion of a range of proteins involved in Type 1 fimbriae synthesis affects the 

presence of FimA and/or Flagellin in the OMVs produced. This was also to gain insight into which 

proteins play a role in targeting FimA and Flagellin to the OMVs. Figure 4.18 shows TEM images of 

the OMVs purified from each knockout strain compared to the parent strain of the Keio collection 

(BW25113). Each E. coli cell generally has flagella or fimbriae expressed, which can switch depending 

on which protein is knocked out. Flagella or fimbriae are co-purified with the OMVs and can also be 

seen in the EM images. A description of how to distinguish fimbriae or flagella on the TEM images can 

be found in Section 3.2.1.5.  

The OMV samples were then ran on an SDS-PAGE gel to compare the protein profiles produced after 

each knockout (Figure 4.19). Bands of interest were identified by mass spectrometry and are labelled 

below (see Appendix C.8). The whole E. coli cells were also run on an SDS-PAGE gel to compare the 

protein profile to the OMVs (see Appendix C.8). The whole cells have many proteins with no particular 

band dominating the protein profile. This is opposite to the protein profile of the OMVs which are 

dominated by bands at 18 kDa and/or 50-51 kDa. 

a b c d 

e f g h 

i j k l 

Figure 4.18 Comparison of OMVs from a variety of fimbriae-associated deletion mutants and 

Flagellin by TEM  

TEM analysis of purified OMVs from twelve different E. coli strains: a ΔfimA, b Parental BW25113, c 

ΔfliC, d ΔfimC, e ΔfimB, f ΔfimE, g ΔfimD, h ΔfimZ, i ΔfimF, j ΔfimG, k ΔfimH, l ΔfimI 
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Figure 4.19 Comparison of OMV protein profile from a variety of fimbriae-associated deletion 

mutants and Flagellin by SDS-PAGE 

 

OMVs were purified from twelve different E. coli strains from the Keio collection (CGSC) and three 

strains which had previously been studied (MG1655, FimB-LacZ fusion and fimbriae locked on strain). 

A Bradford assay was performed and all samples were standardised to be the same protein 

concentration. TCA precipitation was used to concentrate samples prior to loading on an SDS-PAGE 

gel. The SDS-PAGE gel was run then silver stained to visualise the OMV protein profile. Bands of 

interest were identified by mass spectrometry and are labelled above. 
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The purified OMV samples from Figures 4.18 and 4.19 were used to produce Western blots, which 

were probed with the following antibodies: anti-Flagellin, anti-FimA monomer and anti-polymerised 

FimA (Figure 4.20). FimA monomer and Flagellin antibodies were used to test the hypothesis that 

FimA and Flagellin are packaged in a mutually exclusive way in E. coli K-12 OMVs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Western blots showed clear enrichment of FimA and/or Flagellin in E. coli K-12 OMVs compared 

with all other proteins. The packaging of FimA and Flagellin also appears to be mutually exclusive 

unless there’s a specific mutation to disrupt the regulation (summarised on Table 4.2). The hypotheses 

behind each result is discussed in Section 4.3.3. 

 

Figure 4.20 Comparison of OMV protein profile from a variety of fimbriae-associated deletion 

mutants and Flagellin by Western blotting 

OMVs were purified from twelve different E. coli strains from the Keio collection (CGSC). A Bradford 

assay was performed and all samples were standardised to be the same protein concentration. TCA 

precipitation was used to concentrate samples prior to loading on an SDS-PAGE gel. Purified OMV 

samples were probed using the following antibodies anti-FimA monomer, anti-FimA polymer and anti-

Flagellin. For original Western blot images see Appendix C.9. 
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Table 4.2 Mutual exclusivity of FimA and Flagellin packaging in OMVs from various E. coli 

strains. The introduction to the fimbriae-associated proteins can be found in Section 4.1.3 and the 

discussion of findings can be found in Section 4.3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3.2 Purification of OMVs from E. coli strains containing a range of knock outs of flagella-

associated proteins 

 

OMVs were purified from E. coli strains containing deletions of various genes associated with flagella 

biosynthesis. Figure 4.21 shows TEM images of the OMVs purified from each knockout strain 

compared to the parent strain of the Keio collection (BW25113). Each E. coli cell generally has flagella 

or fimbriae expressed and these are co-purified with the OMVs and can also be seen in the EM images.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

E.coli  strain name
FimA monomer 

in OMVs?

Flagellin 

monomer in 

OMVs?

Is packaging 

mutually 

exclusive?

WT parental 

BW25113
Yes No Yes

ΔfliC Yes No Yes

ΔfimA No Yes Yes

ΔfimC No Yes Yes

ΔfimB No Yes Yes

ΔfimE Yes Yes No

 ΔfimF No Yes Yes

ΔfimG Yes Yes No

ΔfimH Yes Yes No

ΔfimD No No Neither present

ΔfimI Yes Yes No

ΔfimZ Yes No Yes

WT MG1655 Yes No Yes

FimB-LacZ fusion No Yes Yes

Fimbriae locked on Yes Yes No

BL21 No No Neither present

BL21 (DE3) No No Neither present

Figure 4.21 Comparison of OMVs from a variety of flagella-associated deletion mutants by TEM 

TEM analysis of purified OMVs from four extra E. coli strains: a ΔfimA, b Parental BW25113, c ΔfliC, 

d ΔlrhA, e ΔfliD, f ΔfliS, g ΔflhA  

a b c 

d e f g 
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The OMV samples were then ran on an SDS-PAGE gel to compare the protein profiles produced after 

each knockout (Figure 4.22a). Bands of interest were identified by mass spectrometry and are labelled 

below. Deletion of lrhA appeared to cause dysregulation of the packaging of FimA and Flagellin in 

OMVs as both were found together (Lane 5). These samples were then used to produce Western blots 

which were probed with the following antibodies: anti-Flagellin, anti-FimA monomer and anti-

polymerised FimA (Figure 4.22b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.22 Comparison of OMV protein profile from a variety of flagella-associated deletion 

mutants by SDS-PAGE and Western blotting 

OMVs were purified from four additional E. coli strains from the Keio collection (CGSC). A Bradford 

assay was performed and all samples were standardised to be the same protein concentration. TCA 

precipitation was used to concentrate samples prior to loading on an SDS-PAGE gel. The SDS-PAGE gel 

was run then silver stained to visualise the OMV protein profile. Bands of interest were identified by mass 

spectrometry and are labelled above (a). Purified OMV samples were used to perform Western blots which 

were probed using the following antibodies anti-FimA monomer, anti-FimA polymer and anti-Flagellin 

(b). Original Western blot images and mass spectrometry details are listed in Appendix C.10. 
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The packaging of FimA and Flagellin also appeared to be mutually exclusive unless there’s a specific 

mutation to disrupt the regulation (summarised in Table 4.3). The introduction to the flagella-associated 

proteins can be found in Section 4.1.3. 

 

Table 4.3 Mutual exclusivity of FimA and Flagellin packaging in OMVs from various E. coli strains  

 

The reasons for the mutual exclusivity are discussed further in Section 4.3.3.  

E.coli  strain name
FimA monomer 

in OMVs?

Flagellin 

monomer in 

OMVs?

Is packaging 

mutually 

exclusive?

WT parental 

BW25113
Yes No Yes

ΔfliC Yes No Yes

ΔfimA No Yes Yes

ΔlrhA Yes Yes No

ΔfliD Yes No Yes

fliS Yes No Yes

flhA Yes No Yes
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4.2.4. Which conditions lead to packaging of FimA and Flagellin into E. coli K-12 OMVs? 

4.2.4.1 Packaging of FimA monomer into OMVs under different conditions 

OMVs were purified from E. coli WT parental strain (BW25113) at three different temperatures: 18ºC, 

25ºC and 37ºC to see if temperature affects the packaging of FimA monomer into OMVs. OMVs were 

also purified from three different points on the growth curve at 37ºC: early log phase, mid log phase and 

stationary phase (indicated on Figure 4.23a). This was to determine at which stage of bacterial growth 

FimA is packaged. Firstly, growth curves were produced by growing the E. coli parental strain 

(BW25113) at 25ºC and 37ºC using a microplate reader (Figure 4.23a).  

 

  

Figure 4.23 Growth of E. coli parental (BW25113) strain at 25ºC and 37ºC 

Growth curves were produced for E. coli parental (BW25113) strain at 25ºC and 37ºC, 180 RPM, 

overnight. The strain was diluted to OD600 0.1 using LB before addition of 500 μL to each well of the 48 

well sterile plates. OD600 readings were taken every 8 mins and the growth curve graphs were generated 

on Microsoft Excel using the raw data (a). The growth curve of each strain was done in triplicate and the 

average was taken. See Appendix C.11 for graphs with error bars of 1 standard deviation. The arrows on 

the growth curves indicate the time point that the OMVs were harvested at the following stages: early-log, 

mid-log and stationary phase. The purified OMVs were visualised by TEM (b).  

 

 

a 
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The protein profile of the OMVs was visualised using SDS-PAGE and silver staining (Figure 4.24a). 

The same samples were used for a Western blot, probing with anti-FimA monomer antibody and FimA 

polymer (Figure 4.24b).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24b indicates that FimA is packaged into OMVs in mid-late log stage and stationary phase but 

not early log phase. Also, the Western blot shows that the more fimbriae there are (represented by 

polymerised FimA), the more FimA is packaged into the OMVs. Lastly, FimA is packaged into OMVs 

at 37°C and 25°C but not 18°C so is affected by changes in temperature. 

Figure 4.24 What conditions lead to the packaging of FimA into E. coli WT BW25113 OMVs? 

OMVs were purified from E. coli WT BW25113 at three different stages of growth and at 3 different 

temperatures. TCA precipitation was used to concentrate samples prior to loading on an SDS-PAGE 

gel. One SDS-PAGE gel was silver stained to visualise the OMV protein profile (a) the others were 

transferred to a PVDF membrane for a Western blot probing with the anti-FimA monomer and anti-

FimA polymer antibodies (b). Original Western blot images can be found in Appendix C.12. 
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4.2.5. FimA and Flagellin are reciprocally regulated in some OMVs from clinical isolates 

OMVs were purified from 6 clinical isolates which were either isolated from the urine of patients with 

UTI infections or the blood from patients with bacteraemia caused by E. coli. See Appendix C.13 for 

the antibiotic resistance information of each clinical isolate strain. The purified OMVs were visualised 

by TEM and compared to OMVs from the E. coli WT Parental BW25113 strain, ΔfimA and ΔfliC 

(Figure 4.25).     

 

 

 

 

 

 

 

 

 

  

 

  

Figure 4.25 TEM images and protein profiles of OMVs purified from six E. coli clinical isolates, 

BW25113, ΔfimA and ΔfliC strains 

TEM analysis of purified OMVs from the following E. coli strains: ΔfimA (a), Parental BW25113 (b), 

ΔfliC (c), Clinical isolate 1 (d), Clinical isolate 2 (e), Clinical isolate 3 (f), Clinical isolate 4 (g), Clinical 

isolate 5 (h), Clinical isolate 6 (i). A Bradford assay was performed and all samples were standardised to 

be the same protein concentration. TCA precipitation was used to concentrate samples prior to loading on 

an SDS-PAGE gel. The SDS-PAGE gel was run then silver stained to visualise the OMV protein profile. 

Bands of interest were identified by mass spectrometry and are labelled above (j). Full mass spectrometry 

results can be found in Appendix C.14.  
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A Western blot was performed using the samples from Figure 4.25 to detect FimA monomer, FimA 

polymer and Flagellin in the OMV samples (Figure 4.26). For a direct comparison of the SDS-PAGE 

gel and Western blot see Appendix C.15d. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Two proteins related to fimbriae were detected in OMVs from Clinical isolates 3 and 4. A BLAST 

protein alignment was performed to see if these proteins were similar to FimA and could have been mis-

identified. Clinical isolate 3 OMVs contain F7-2 fimbrial protein. However, this only has 34% amino 

acid identity to FimA. Similarly, Clinical isolate 4 OMVs were found to contain KS71A fimbrillin 

which has 33% amino acid similarity with FimA (see Appendix C.16 for BLAST protein alignments). 

Although both are fimbriae-associated proteins, it appears that they were not a mis-identified FimA 

monomer. Lastly, the Flagellin band in the OMVs of Clinical isolate 3 is higher than that of Clinical 

isolate 6 and ΔfimA. However, it should be noted that Clinical isolate 3 is a UPEC strain where Flagellin 

has a molecular weight of 61 kDa rather than 51 kDa (see Appendix C.17 for further discussion). The 

mutually exclusive packaging of FimA and Flagellin is summarised in Table 4.4. Clinical isolates 1, 2 

and 4 have neither FimA or Flagellin present in the OMVs. Clinical isolate 3 has both FimA and 

Flagellin present and Clinical isolates 5 and 6 have FimA and Flagellin monomers packaged in a 

mutually exclusive way. 

 

 

Table 4.4 Mutual exclusivity of FimA and Flagellin packaging in OMVs from various E. coli clinical 

isolate strains  

 

 

 

 

 
 

  

Figure 4.26 Comparison of FimA/Flagellin packaging in OMVs purified from six E. coli clinical 

isolates, BW25113, ΔfimA and ΔfliC strains 

A Bradford assay was performed and all samples were standardised to be the same protein concentration. 

TCA precipitation was used to concentrate samples prior to loading on an SDS-PAGE gel. Purified OMV 

samples were probed using the following antibodies anti-FimA monomer, anti-FimA polymer and anti-

Flagellin. For original Western blot images, see Appendix C.15. 

1 MS207 0 No No Neither present

2 MS10 4 No No Neither present

3 MS1 0 Yes Yes No

4 MS343 0 No No Neither present

5 MS190 5 Yes No Yes

6 MS234 3 No Yes Yes

Is Flagellin 

monomer in 

OMVs?

Is packaging 

mutually 

exclusive?

Clinical 

isolate 

number

Strain name

Number of antibiotics 

strain is known to be 

resistant to

FimA monomer  

in OMVs?
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Table 4.5 summarises the mutual exclusive packaging of FimA and Flagellin monomer in E. coli OMVs 

from all strains of interest. The results of this Table are discussed in Section 4.3.3.  

 

Table 4.5 Final summary tables to compare mutual exclusivity of FimA and Flagellin packaging 

in OMVs from various E. coli strains (K-12 and B strains). Table a is a summary of the findings 

from all strains tested. Table b summarises the percentage of E. coli strains that give rise to OMVs with 

FimA and Flagellin packaged in a mutually exclusive way. Table gives c the percentage of E. coli 

strains that give rise to OMVs with FimA and Flagellin packaged in a mutually exclusive way 

excluding from the data set any strains do not contain FimA or Flagellin in their OMVs.  

E.coli  strain name
FimA monomer 

in OMVs?

Flagellin 

monomer in 

OMVs?

Is packaging 

mutually 

exclusive?

WT parental BW25113 Yes No Yes

ΔfliC Yes No Yes

ΔfimA No Yes Yes

ΔfimC No Yes Yes

ΔfimB No Yes Yes

ΔfimE Yes Yes No

 ΔfimF No Yes Yes

ΔfimG Yes Yes No

ΔfimH Yes Yes No

ΔfimD No No Neither present

ΔfimI Yes Yes No

ΔfimZ Yes No Yes

WT MG1655 Yes No Yes

FimB-LacZ fusion No Yes Yes

Fimbriae locked on Yes Yes No

BL21 No No Neither present

BL21 (DE3) No No Neither present

ΔlrhA Yes Yes No

ΔfliD Yes No Yes

fliS Yes No Yes

flhA Yes No Yes

Clinical isolate 1 No No Neither present

Clinical isolate 2 No No Neither present

Clinical isolate 3 Yes Yes No

Clinical isolate 4 No No Neither present

Clinical isolate 5 Yes No Yes

Clinical isolate 6 No Yes Yes

Criteria

Number of strains 

that meet the criteria 

(27 strains studied)

% of total strain 

number studied that 

meet the criteria

OMVs contain neither FimA or Flagellin 6 22

OMVs have mutually exclusive packaging of FimA 

and Flagellin monomer
14 52

OMVs have both FimA and Flagellin packaged 

together
7 26

a 

b 
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4.2.6. Are Type 1 fimbriae and/or flagella co-purified with the E. coli OMVs? 

It could be argued that the SDS-PAGE gels and Western blots are detecting FimA monomer and 

Flagellin monomer from co-purified fimbriae and flagella respectively and not the OMVs. For example, 

it could be argued that during the SDS-PAGE process, co-purified fimbriae and/or flagella may 

depolymerise to give rise to the FimA and Flagellin monomers. However, this section will outline the 

evidence that suggests that this is not true.  

 

The following questions were addressed:  

1. Is FimA monomer packaged into OMVs independently of fimbriae production? Similarly, is Flagellin 

monomer packaged into OMVs independently of flagella production?  

2. Is the packaging of FimA and Flagellin into OMVs directly linked to fimbriae and flagella expression 

on the parent cells? 

4.2.6.1 Identification of fimbriae and/or flagella co-purified with the OMVs 

Using TEM to identify fimbriae and flagella 

All the strains in Tables 4.5a-c were analysed to determine if fimbriae and/or flagella were co-purified 

with the OMVs from each strain. TEM images alone were used to detect flagella in OMV samples as 

they are very distinctive (discussed in Section 3.2.1.5). Figure 4.27 shows TEM images of OMVs 

known to be co-purified with either flagella or fimbriae. This can be used as a reference point for later 

decisions on how to differentiate between the two by eye.  

 

 

 

 

   

 

 

 

 

 

 

 

 

Criteria

Number of strains 

that meet the criteria 

(/21 strains)

% of total strain 

number studied that 

meet the criteria

OMVs have mutually exclusive packaging of FimA 

and Flagellin monomer
14 67

OMVs have both FimA and Flagellin packaged 

together
7 33

c 

Figure 4.27 TEM images 

of OMVs purified from 

six E. coli strains to 

compare co-purification 

of flagella and fimbriae 

TEM analysis of purified 

OMVs from E. coli 

strains: a ΔfimA, b 

Parental BW25113, c 

ΔfliC, d FimB-LacZ 

fusion, e MG1655 and f 

fimbriae production 

locked on strain. 
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Figure 4.27 shows that flagella are thicker and longer than fimbriae and are also curvy/wavy. Type 1 

fimbriae were found to be short, thin and straight appendages compared with the flagella. This agrees 

with the previous findings in Section 3.2.1.5. 

 

Western blotting with anti-polymerised FimA to detect fimbriae 

Additional methods were used to confirm the presence of fimbriae along with EM images. As 

previously described, FimA monomers polymerise to form the main structural subunit of fimbriae. 

These polymers are so stable that they do not depolymerise during SDS-PAGE and are therefore too 

large to migrate through the gel (see Appendix C.18 for further details on the stability of fimbriae). For 

this reason, polymerised FimA was detected in the wells of Western blots when probing with the anti-

FimA polymer antibody. As polymerised FimA is the main structural subunit of fimbriae, detection of 

polymerised FimA can be used to indicate the presence of fimbriae. OMVs purified from ΔfimA were 

always run as a negative control and ΔfliC OMVs were always used as a positive control (Figure 4.28).  

Fimbriae agglutination test with E. coli cells to detect fimbriae 

In order to determine whether E. coli cells (from which the OMVs are purified from) express functional 

and intact fimbriae, a simple yeast agglutination test can be performed. The E. coli cells of interest were 

mixed 1:1 with Saccharomyces cerevisiae cells on a glass microscope slide. If fimbriae are present, 

FimH (the adhesin on the tip of Type 1 fimbriae) adheres to the S. cerevisiae cells. This causes the 

agglutination of the yeast cells which can be visualised by light microscopy Figure 4.29 a and b.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.28 Polymerised FimA positive and negative Western 

blot controls 

A Bradford assay was performed and all samples were standardised 

to be the same protein concentration. TCA precipitation was used to 

concentrate samples prior to loading on an SDS-PAGE gel. Purified 

OMV samples were probed using anti-FimA polymer antibody. 

Image was cropped from Figure 4.27 to show positive and negative 

controls for this antibody.   

a

 

b

 

Figure 4.29 Yeast 

agglutination test to 

detect fimbriae 

expression on E. coli 

cells 

Saccharomyces 

cerevisiae were mixed 

1:1 with the following E. 

coli strains:  fimbriae 

locked on (a),  MG1655 

(b), FimB-LacZ fusion 

(c), BL21 (d), BL21 

(DE3) (e), LB only (f). 

Yeast cell agglutination 

was visualised using light 

microscopy at 400x 

magnification. Green 

ticks indicate yeast cell 

agglutination and 

therefore fimbriae.  

 

c

d

 

e

 

f
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For yeast agglutination test of all other strains, see Appendix C.19. All the evidence for whether E. coli 

strains are producing fimbriae and/or flagella are summarised in Table 4.6. 

 

Table 4.6 Summary table to confirm which strains produce fimbriae and/or flagella using all 

available strain evidence. Purple indicates which strains express fimbriae only, yellow indicates which 

strains produce flagella only and orange represents strains that produce both fimbriae and flagella 

together. 

 

In order to address the two questions outlined at the start of Section 4.26, the packaging of FimA and 

Flagellin into OMVs should be compared to whether the parent cell produces fimbriae and/or flagella. 

Table 4.7 addresses the questions: if fimbriae is produced in the parent cell, is FimA monomer always 

packaged into the OMVs? Similarly, if flagella are produced in the parent cell, is Flagellin monomer 

always packaged into OMVs?  

EM images

Anti-

polymerised 

FimA 

antibody 

(Western blot)

Yeast 

agglutination 

test 

WT parental BW25113 Yes Yes Yes No Fimbriae only

ΔfliC Yes Yes Yes No Fimbriae only

ΔfimA No No No Yes Flagella only

ΔfimC No No No Yes Flagella only

ΔfimB No No No Yes Flagella only

ΔfimE Yes Yes Yes No Fimbriae only

 ΔfimF No No No Yes Flagella only

ΔfimG No No No Yes Flagella only

ΔfimH No No No Yes Flagella only

ΔfimD No No No No Neither

ΔfimI Yes Yes Yes Yes Both

ΔfimZ Yes Yes No No Fimbriae only

WT MG1655 Yes Yes Yes No Fimbriae only

FimB-LacZ fusion No No No Yes Flagella only

Fimbriae locked on Yes Yes Yes No Fimbriae only

BL21 No No No No Neither

BL21 (DE3) No No No No Neither

ΔlrhA No Yes Yes Yes Both

ΔfliD Yes Yes Yes No Fimbriae only

ΔfliS Yes Yes Yes No Fimbriae only

ΔflhA Yes Yes Yes No Fimbriae only

Clinical isolate 1 No Unclear No No Neither

Clinical isolate 2 No Unclear No Yes Flagella only

Clinical isolate 3 Yes Unclear Yes No Fimbriae only

Clinical isolate 4 Yes Unclear No No Fimbriae only

Clinical isolate 5 Yes Yes Yes No Fimbriae only

Clinical isolate 6 No Unclear No Yes Flagella only

Evidence for 

flagella 

expression 

in strain: 

EM images

Final conclusion 

for whether T1F 

and/or flagella 

are expressed

Evidence for T1F expression in strain

E.coli  strain name
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4.2.6.2 Is the packaging of FimA/Flagellin monomers into OMVs independent of the 

production of fimbriae and/or flagella on the parent E. coli strain? 

 

Table 4.7 Summary table to compare the packaging of FimA and Flagellin monomers into OMVs 

with the production of fimbriae and/or flagella in the parental strain. The criteria for a ‘match’ is 

explained in Table a and the results are found in b. Type 1 fimbriae is abbreviated to ‘T1F’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are 7 instances out of 27 strains in total (26%) where packaging of FimA and/or Flagellin 

monomers into OMVs is independent of whether fimbriae or flagella are expressed on the parent 

cell. These examples will be discussed further in Section 4.3.3. 

E.coli  strain name

FimA 

monomer in 

OMVs?

Flagellin 

monomer in 

OMVs?

Fimbriae or 

Flagella co-purified 

with the OMVs

Is it a 

match?

WT parental BW25113 Yes No Fimbriae only Yes

ΔfliC Yes No Fimbriae only Yes

ΔfimA No Yes Flagella only Yes

ΔfimC No Yes Flagella only Yes

ΔfimB No Yes Flagella only Yes

ΔfimE Yes Yes Fimbriae only No

 ΔfimF No Yes Flagella only Yes

ΔfimG Yes Yes Flagella only No

ΔfimH Yes Yes Flagella only No

ΔfimD No No Neither Yes

ΔfimI Yes Yes Both Yes

ΔfimZ Yes No Fimbriae only Yes

WT MG1655 Yes No Fimbriae only Yes

FimB-LacZ fusion No Yes Flagella only Yes

Fimbriae locked on Yes Yes Fimbriae only No

BL21 No No Neither Yes

BL21 (DE3) No No Neither Yes

ΔlrhA Yes Yes Both Yes

ΔfliD Yes No Fimbriae only Yes

ΔfliS Yes No Fimbriae only Yes

ΔflhA Yes No Fimbriae only Yes

Clinical isolate 1 No No Neither Yes

Clinical isolate 2 No No Flagella only No

Clinical isolate 3 Yes Yes Fimbriae only No

Clinical isolate 4 No No Fimbriae only No

Clinical isolate 5 Yes No Fimbriae only Yes

Clinical isolate 6 No Yes Flagella only Yes

FimA/Flagellin monomer present in OMVs T1F/Flagella present on cell

FimA monomer only T1F expression only

Flagellin monomer only Flagella expression only

FimA and Flagellin monomer T1F and flagella expression 

No FimA or Flagellin monomer No T1F or flagella expression 

a 

b 
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4.2.7. Can FimA be used to target proteins and other molecules for delivery within 

OMVs?  

A construct of E. coli MG1655 strain with a FimA-GFP fusion protein was available to use from 

Professor Sander Tans from AMOLF in the Netherlands (Adiciptaningrum et al. 2009). In this strain, 

GFP was inserted within the chromosomal fimA DNA sequence, which is the first gene of the fim 

operon (Adiciptaningrum et al. 2009). This results in the production of GFP-FimA protein fusion 

instead of FimA. See Appendix C.20 for full details about the FimA-GFP fusion strain.  

 

4.2.7.1 Visualisation of purified OMVs from the E. coli FimA-GFP fusion strain using TEM  

The OMVs purified from the MG1655 FimA-GFP fusion strain and the WT MG1655 strain were 

visualised by TEM (Figure 4.30). OMVs isolated from E. coli WT MG1655 are co-purified with 

fimbriae which the parent cells express. Interestingly, the FimA-GFP fusion strain produces flagella 

instead of fimbriae.  

 

 

 

 

 

  

Figure 4.30 TEM images of OMVs purified from E. coli MG1655 strain and FimA-GFP 

fusion strain   

TEM images of purified OMVs from E. coli strains: a MG1655 b MG1655 GFP-FimA fusion 

strain 

b a 
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Immunogold labelling of resin-embedded OMVs 

 

Immunogold labelling showed co-localisation of both FimA and GFP in the OMVs, which indicates that 

the GFP-FimA fusion protein was successfully delivered. Flagellin also appeared to be detected within 

the OMVs too (Figure 4.31). Photos g and h show how the immunogold labels are localised to the sites 

containing the embedded OMVs and are not spread evenly over the grid. Additional TEM photos can be 

found in Appendix C.21. 

 

Figure 4.31 Immunogold labelling of embedded E. coli FimA-GFP strain OMVs 

TEM analysis of thin-sectioned OMVs embedded in resin. The sections were immunogold labelled 

and probed with: anti-GFP antibody (a) anti-FimA monomer antibody (b, g and h), anti-FimA 

monomer and anti-GFP antibodies mixed (c), anti-Flagellin antibody (d). As a negative control, the 

embedded OMVs were incubated in TBST only (no primary antibody). The samples were then 

incubated with the following secondary antibodies: 15 nm gold label (e) or 10 nm gold label (f) 

 

 

a c b 

d e f 

g h 
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The E. coli FimA-GFP fusion strain cells were embedded in resin and the sections were immunogold 

labelled to show the location of the FimA-GFP protein and Flagellin (Figure 4.32).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.7.2 Co-localisation of both FimA and GFP in the OMVs 

Western blots also confirmed co-localisation of both FimA and GFP in the OMVs, which indicated that 

the GFP-FimA fusion protein was successfully delivered. Proteins were purified from the OM and 

periplasm of the GFP-FimA fusion strain and MG1655 strain (without the protein fusion). This was 

compared to the OMV protein profile and whole cell profile (Figure 4.33). 

 

 

 

 

 

 

 

 

 

Figure 4.32 Immunogold labelling of embedded E. coli FimA-GFP strain cells 

TEM analysis of thin-sectioned and cells embedded in resin. The sections were immunogold labelled 

and probed with: anti-GFP antibody (a) anti-FimA monomer antibody (b), anti-FimA monomer and 

anti-GFP antibodies mixed (c), anti-Flagellin antibody (d) and TBST only as a negative control (e and 

f).  

 

a b c

d e
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The Western blots confirmed that there was a protein present in the OMV sample at approximately 50 

kDa which was detected by both the anti-GFP antibody and anti-FimA monomer antibody. This was 

further evidence that the FimA-GFP protein had successfully been delivered to the OMVs. This protein 

Figure 4.33 Detection of FimA, Flagellin and GFP in MG1655 and the MG1655 GFP-FimA protein 

fusion strain 

Proteins were purified from the OM and periplasm of the cells and compared to the OMVs and whole 

cells. A Bradford assay was performed and all samples were standardised to be the same protein 

concentration. TCA precipitation was used to concentrate samples prior to loading on an SDS-PAGE gel. 

The SDS-PAGE gel was silver stained and the two bands labelled were excised from the gel and 

identified by mass spectrometry (a). Western blots were performed on these samples using the following 

antibodies: anti-GFP, anti-FimA monomer and anti-Flagellin (b). Mass spectrometry data and original 

Western blot images can be found in Appendix C.22. 

 

b 

kDa 

a 



 

174 

 

was also detected in the periplasm meaning that the GFP fusion to FimA did not disrupt the export of 

the protein to the periplasm or the signals necessary to package the protein within the OMVs. 

 

In the WT MG1655 strain, FimA monomer (18 kDa) was packaged into the OMVs but not Flagellin (51 

kDa). OMVs from the GFP-FimA fusion strain did not contain the FimA monomer (18 kDa) due to its 

absence in the FimA-GFP protein fusion strain. As seen in OMVs from the ΔfimA strain, the GFP-FimA 

fusion caused packaging of Flagellin (51 kDa) into OMVs and not FimA monomer. The mutually 

exclusive packaging of FimA and Flagellin remained in the OMVs. 

 

4.2.7.3 Is the FimA-GFP fusion protein protected within the OMVs? 

The Proteinase K test was performed using the OMVs purified from the FimA-GFP fusion strain 

(Figure 4.34).  

 

The Proteinase K test was performed on the OMVs from the E. coli FimA-GFP fusion strain. As 

explained previously, the sample containing ‘OMVs + Proteinase K – SDS’ reveals which proteins are 

protected within the OMVs. Flagellin was protected within the OMVs from degradation by Proteinase 

K but the FimA-GFP fusion protein was degraded. This may be because the addition of the GFP to the 

FimA protein disrupted how the FimA monomer protein is usually packaged within the OMVs. For 

example, when GFP is fused to FimA, the protein is more than double its usual molecular weight and 

therefore it could be more exposed to degradation by proteases than usual. Furthermore, applying the 

Proteinase K test to FimA has previously been unsuccessful (Section 4.2.2). The FimA monomer may 

be packaged into a different part of the OMVs where it is less protected from Proteinase K (for 

example, it could be OM-associated). Therefore, the degradation of the FimA-GFP protein in this 

Proteinase K test should not be used as evidence either way for whether the FimA-GFP fusion protein is 

OMV-associated. 

Figure 4.34 Proteinase K test on OMVs from E. coli FimA-GFP fusion strain 

OMVs were incubated in the presence and absence of 10 µg/mL Proteinase K and various concentrations 

of SDS for 30 mins at 37ºC. 5 mM was added to inhibit Proteinase K and samples were incubated for 

another 30 mins at 37ºC. TCA precipitation was used to concentrate samples prior to loading on an SDS-

PAGE gel. The samples were used for Western blotting and probing with the following antibodies: anti-

GFP, anti-FimA monomer and anti-Flagellin. Original Western blot images can be found in Appendix 

C.23. 
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4.2.8. Can FimA be used to target proteins and other molecules for delivery within OMVs 

using an alternative method (ie. expression of the fusion protein on a plasmid)? 

4.2.8.1 Targeting a FimA-mNeon green fusion protein to E. coli OMVs 

After the success of the FimA-GFP fusion protein targeting to the OMVs, expression of a FimA fusion 

protein using a plasmid was trialled. If successful, this could be very useful therapeutically for targeting 

proteins of interest to E. coli OMVs. A pJB005 plasmid (details in Section 2.12.1) was produced which 

resulted in the synthesis of a FimA-mNeon green fusion protein when induced in a competent E. coli K-

12 strain. The plasmid was selectable by using the antibiotic chloramphenicol. The plasmid was used to 

transform competent E. coli ΔfimA cells and E. coli WT parental BW25113 cells which were induced to 

produce the FimA-mNeon green fusion protein. The OMVs were purified and the protein profile was 

compared from both E. coli strains. The first aim was to see if the FimA-mNeon green fusion protein 

had been packaged into the OMVs successfully. The second aim was to see if the re-introduction of 

FimA changed the proteins packaged within the OMVs. A pJB005 plasmid containing a FimC-mNeon 

green fusion protein was also produced. However, this plasmid was never used due to time constraints.  

 

Expression of a plasmid containing FimA-Neon green protein fusion in E. coli BW25113 parental 

and ΔfimA strains 

The plasmid was transformed into competent E. coli ΔfimA and E. coli WT parental BW25113 cells. 

One colony from each successful transformation was used to produce an overnight strain, which was 

then used to inoculate 2 identical flasks containing LB with chloramphenicol. When the OD600 of the 

cells was 0.25-0.3 (early stationary phase), IPTG was added to one of the flasks. The other was not 

induced as a negative control. When the induced cells had reached an OD600 of approximately 1.0, 

OMVs were purified using the standard protocol (see Section 2.6.1). The OMVs were visualised using 

TEM (Figure 4.35). It appears that induction with IPTG causes hypervesiculation (comparing a and b to 

c and d). 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.35 TEM images of 

OMVs purified from E. coli 

strains expressing pJB005 

plasmid 

The plasmid was transformed 

into competent E. coli ΔfimA and 

E. coli WT parental BW25113 

cells. When the OD600 of the 

cells was 0.25-0.3 (early 

stationary phase), IPTG was 

added to one of two identical 

flasks containing either E. coli 

WT Parental BW25113 or ΔfimA 

competent cells (c and d). The 

other was not induced as a 

negative control (a and b). When 

the induced cells had reached an 

OD600 of approximately 1.0, 

OMVs were purified using the 

standard protocol and visualised 

using TEM. 

b 

  

a 

c d 
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A Western blot was performed on the purified OMVs and compared to the whole cell protein profile. 

This was to detect the FimA-mNeon green fusion protein using an anti-mNeon green antibody (Figure 

4.36 and Appendix C.25).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although, the FimA-mNeon green protein was expressed when the cells were induced with IPTG, there 

was no indication that the fusion protein was packaged in the OMVs. 

 

Is the FimA-mNeon green fusion protein transported to the periplasm? 

To investigate further, transformed E. coli ΔfimA and E. coli WT parental BW25113 cells were grown 

and induced with IPTG as done previously. However, this time periplasmic proteins and OM proteins 

were also isolated from the cells as well for comparison, The OMVs were visualised by TEM as done 

previously (Figure 4.37).  

  

Figure 4.36 Detection of FimA-mNeon green fusion protein in OMVs purified from E. coli strains 

expressing pJB005 plasmid 

The plasmid was used to transform competent E. coli ΔfimA and E. coli WT parental BW25113 cells. 

When the OD600 of the cells was 0.25-0.3 (early stationary phase), IPTG was added to one of two 

identical flasks containing either E. coli WT parental BW25113 or ΔfimA competent cells. The other was 

not induced as a negative control. When the induced cells had reached an OD600 of approximately 1.0, 

OMVs were purified using the standard protocol. A Bradford assay was performed and all samples were 

standardised to be the same protein concentration. TCA precipitation was used to concentrate samples 

prior to loading on an SDS-PAGE gel. A Western blot was performed on these samples using anti-mNeon 

green antibody.  

 

Figure 4.37 TEM images of OMVs 

purified from E. coli strains expressing 

pJB005 plasmid 

The plasmid was transformed into 

competent E. coli ΔfimA and E. coli WT 

parental BW25113 cells. When the OD600 

of the cells was 0.25-0.3 (early stationary 

phase), IPTG was added to one of two 

identical flasks containing either E. coli WT 

Parental BW25113 or ΔfimA competent 

cells (c and d). The other was not induced 

as a negative control (a and b). When the 

induced cells had reached an OD600 of 

approximately 1.0, OMVs were purified 

using the standard protocol and visualised 

using TEM. 

a b 

c d 
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A Western blot was performed to detect whether the FimA-mNeon green fusion protein had been 

transported to the periplasm (Figure 4.38 and Appendix C.26). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.38 (a) shows that the FimA-mNeon green protein was expressed as the band was present in the 

whole cell samples after induction with IPTG (Lane 1). However, the protein was not transported to the 

periplasm in either strain and was therefore not found in the OM or OMVs either (Lanes 2-4). The E. 

coli WT Parental BW25113 strain OMVs always contain FimA. An anti-FimA monomer antibody was 

used to check that the FimA monomer was still packaged into E. coli WT parental BW25112 OMVs 

successfully in the conditions trialled. If the conditions were not correct for FimA monomer to be 

packaged, this may be the reason that the FimA-mNeon green fusion protein was not packaged into the 

OMVs. However, Lane 4 of Figure 4.38 (b) does have a band representing FimA monomer in the 

Figure 4.38 Detection of FimA-mNeon green fusion proteins from E. coli strains expressing pJB005 

plasmid 

Proteins were purified from the OM and periplasm of the cells and compared to the OMVs and whole 

cells, A Bradford assay was performed and all samples were standardised to be the same protein 

concentration. TCA precipitation was used to concentrate samples prior to loading on an SDS-PAGE gel. 

Western blots were performed on these samples using the following antibodies: anti-Neon green (a), anti-

FimA monomer (b) and anti-Flagellin (c). 

b 
c E. coli Parental BW25113 strain 

containing plasmid with FimA-Neon green 

fusion protein 

E. coli ΔfimA strain containing plasmid 

(FimA-Neon green fusion protein) 

a 
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OMVs. The usual 18 kDa FimA was successfully delivered to the OMVs in these conditions but the 

FimA-mNeon green protein was not. E. coli ΔfimA OMVs normally contain Flagellin so an anti-

Flagellin antibody was used to see if the Flagellin had successfully been packaged within the OMVs. 

Lane 4 of Figure 4.38 (c) shows that Flagellin was packaged as normal. Although FimA and Flagellin 

monomers were packaged as usual into the OMVs, the FimA-mNeon green protein was not transported 

to the periplasm and was not packaged within the OMVs. This is discussed further in Section 4.3.5. 

4.2.8.2 mNeon green fused with FimA signal peptide  

SDS-PAGE gels and Western blots have shown FimA at a molecular weight of 18 kDa and not 15 kDa. 

FimA is synthesised in vivo in a precursor form with an N terminal signal peptide sequence that allows 

it to be exported across the IM using the Sec translocase in the Sec pathway (Natale, et al. 2008). After 

this has occurred, the FimA signal peptide sequence is cleaved off to make a 15 kDa protein. 

Interestingly, the FimA monomer in OMVs has always been found at 18 kDa and never 15 kDa. This 

makes it possible that the signal peptide sequence remains on the FimA protein if it is destined to be 

packaged into OMVs (rather than into fimbriae). To test this hypothesis, a FimA signal peptide 

sequence was added to the N terminus of a mNeon green protein through cloning into a pJB005 plasmid 

(see Section 2.12) to see if the protein was packaged into the E. coli OMVs.  

 

The plasmid was transformed into competent E. coli ΔfimA and E. coli WT parental BW25113 cells. 

Two identical flasks containing LB with chloramphenicol were inoculated with a transformed colony. 

When the OD600 of the cells was 0.25-0.3 (early stationary phase), IPTG was added to one of the 

flasks. The other was not induced as a negative control. When the induced cells had reached an OD600 

of approximately 1.0, OMVs were purified using the standard protocol. The OMVs were visualised 

using TEM (Figure 4.39).  

  

 

 

  

Figure 4.39 TEM images of 

OMVs purified from E. coli 

strains expressing pJB005 

plasmid 

The plasmid was transformed into 

competent E. coli ΔfimA and E. coli 

WT parental BW25113 cells. When 

the OD600 of the cells was 0.25-0.3 

(early stationary phase), IPTG was 

added to one of two identical flasks 

containing either E. coli WT 

parental BW25113 or ΔfimA 

competent cells (c and d). The other 

was not induced as a negative 

control (a and b). When the 

induced cells had reached an 

OD600 of approximately 1.0, 

OMVs were purified using the 

standard protocol and visualised 

using TEM. 

a b 

c d 
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Interestingly, induction by IPTG appeared to cause hypervesiculation of the strain and a reduction in 

production of fimbriae and flagella. This was seen previously with expression of the FimA-mNeon 

green fusion protein (Figure 4.35). The OMV protein profiles were visualised using SDS-PAGE (Figure 

4.40). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Induction using IPTG appeared to disrupt the regulation of which proteins were packaged to the OMVs. 

After IPTG was added in the E. coli parental WT BW25113 strain, FimA monomer was no longer 

packaged into the OMVs. There were also many more additional proteins packaged with no particular 

enrichment of any protein. Similarly, in the ΔfimA strain, there were many more proteins packaged into 

the OMVs after induction. Interestingly, Flagellin was still enriched in the OMVs from the ΔfimA strain. 

This is further evidence that FimA and Flagellin are packaged into the OMVs using different 

mechanisms as disruption of FimA does not also mean disruption of Flagellin. Due to time contraints, 

this experiment was not optimised further.   

Figure 4.40 Detection of FimA-mNeon green fusion proteins in OMVs from E. coli strains 

expressing pJB005 plasmid 

The plasmid was transformed into competent E. coli ΔfimA and E. coli WT parental BW25113 cells. When 

the OD600 of the cells was 0.25-0.3 (early stationary phase), IPTG was added to one of two identical 

flasks containing either E. coli WT parental BW25113 or ΔfimA competent cells. The other was not 

induced as a negative control. When the induced cells had reached an OD600 of approximately 1.0, OMVs 

were purified using the standard protocol A Bradford assay was performed and all samples were 

standardised to be the same protein concentration. TCA precipitation was used to concentrate samples 

prior to loading on an SDS-PAGE gel. The SDS-PAGE gel was silver stained. 
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4.3 Discussion 

4.3.1 Comparison of OMVs purified from E. coli K-12 vs B strains 

4.3.1.1 E. coli B strains hypervesiculate compared to K-12 strains (Section 4.2.1) 

The number of OMVs released from the engineered and proprietary BL21 strains was higher than E. 

coli WT strains. The possible reasons for this are discussed below. 

 

Gene knockouts that may lead to hypervesiculation of B strains 

Kulp and Kuehn (2015) determined the vesiculation production for the whole CGSC Keio collection 

library of E. coli mutant strains. The study found approximately 150 new genes, which are thought to be 

involved in OMV production (Kulp, Kuehn. 2015). The study indicated that a gene mutation that 

disrupts outer membrane structures such as LPS leads to hypervesiculation. These genes are outlined in 

Supplementary tables S1-S5 (Kulp, Kuehn. 2015). 

 

OmpC and OmpF 

It has previously been found that OMV production increased when there were disruptions in genes 

involved in outer membrane protein expressions, the synthesis of peptidoglycan and the σE envelope 

stress response. In this study, they found that disruption of the outer membrane porin proteins OmpC 

and OmpF genes gave increased vesiculation levels (McBroom et al. 2006). In E. coli BL21 strains, the 

ompC gene contains an insertion element making it non-functional. OmpC is not produced, which could 

contribute to the increased hypervesiculation of this strain (Marisch et al. 2013).  

 

cAMP and ppGpp 

Cyclic adenosine monophosphate (cAMP) is a derivative of ATP and is an indicator of metabolic stress 

in the cell. In an environment with low concentrations of glucose, levels of cAMP increase. cAMP can 

form a complex with a regulatory protein called cAMP receptor protein (CRP). The binding of CRP to 

cAMP causes a conformational change to form an active transcriptional regulator. CRP controls the 

transcription initiation of over 100 promoters (Zhan et al. 2008). These genes which are regulated by 

CRP are mainly involved in the catabolism of non-glucose carbon sources. As E. coli preferentially uses 

glucose as a carbon source, the CRP regulon is activated when glucose is absent in the environment. In 

this way, elevated cAMP levels are an indicator of glucose starvation. A study in 2013 found that levels 

of cAMP in E. coli B strains (BL21) were consistently higher than in K-12 strains despite the presence 

of glucose in the media (Marisch et al. 2013). It is possible that CRP-cAMP play a role in causing 

hypervesiculation in B strains either directly (by activation of specific genes that induce 

hypervesiculation) or indirectly (due to the cell being in a state of stress). 

 

Similarly, the nucleotide (guanosine pentaphosphate) ppGpp is a signalling molecule which causes up-

regulation of many of the genes involved in the stringent stress response. Some of these genes encode 

proteins needed for amino acid biosynthesis and uptake from the environment in order for the cell to 
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survive harsh conditions. E. coli B strains were also found to contain high levels of ppGpp compared 

with the K-12 strains, indicating that the cells are in a state of stress (Marisch et al. 2013). The higher 

levels of ppGpp are another indicator that E. coli B strain cells are in states of stress, which could be the 

reason for their hypervesiculation.  

 

4.3.1.2 E. coli K-12 OMVs are enriched with specific proteins unlike OMVs from B strains 

(Section 4.2.1) 

OMVs from E. coli BL21 and BL21 (DE3) strains contain many more proteins than E. coli K-12 WT 

OMVs and there are no dominant bands on the SDS-PAGE gels. In E. coli K-12 WT OMVs, specific 

proteins (identified as FimA and Flagellin) appear to be selectively included and excluded. The 

appearance of the OMVs from E. coli BL21 (DE3) in the TEM photos match those in the literature 

(Figure 2A of Bartolini et al. 2013). The protein profile of BL21 and BL21 (DE3) OMVs is not clear 

from the literature. For example, OMVs have been isolated from E. coli BL21 ΔompA and an SDS-

PAGE gel has been run to show the OMV protein profile. However, the strain contains a deletion of 

OmpA and expression of recombinant proteins of interest, which means that they are not directly 

comparable to the results in this study (Fantappie et al. 2014). After reviewing the available evidence in 

the literature, it appears that E. coli B strain cells are producing and secreting OMVs as part of a stress 

response. The cargo packaged is non-specific whereas E. coli K-12 strain OMVs is a more regulated 

process with careful enrichment and exclusion of certain proteins such as FimA and Flagellin monomers 

(as explained in Section 4.3.1.1 above).  

 

4.3.2 Evidence that FimA and Flagellin are packaged into E. coli K-12 OMVs (Sections 

4.2.1 - 4.2.6) 

4.3.2.1 Methods used as evidence that FimA and Flagellin are packaged within E. coli K-12 

OMVs 

Firstly, the immunogold labelling of E. coli OMVs embedded in resin confirmed the presence of FimA 

and Flagellin (Figures 4.6 and 4.31). Secondly, SDS-PAGE gels, Western blots and mass spectrometry 

identified FimA and Flagellin in the periplasmic fraction of E. coli cells and their respective purified 

OMV samples (Figures 4.7-4.8). Lastly, the Proteinase K showed that Flagellin monomer is OMV-

associated and protected within the OMVs (Figures 4.9 and 4.11). 

4.3.2.2 The Proteinase K test cannot be used to prove that FimA monomer is packaged into 

K-12 OMVs (Section 4.2.1) 

According to ExPASy peptide cutter tool, Proteinase K should cut at 108 cleavage sites within the 

FimA monomer protein (see Appendix C.6). However, it was not possible to optimise the Proteinase K 

test in a way that would allow the degradation of FimA. Only two conditions were found that made 

FimA susceptible to Proteinase K degradation which are summarised below.  



 

182 

 

Firstly, TCA precipitation of the OMV sample prior to the Proteinase K test made the FimA monomer 

susceptible to degradation. It may be that the FimA monomers within OMVs are in a conformation 

where all cleavage sites are sequestered from proteases. As discussed previously, TCA causes a protein 

to denature in a way that it loses its secondary structure (Koontz et al. 2014). This change in protein 

conformation may make the protease cleavage sites now accessible to Proteinase K and allow 

degradation. 

 

Secondly, the creation of the fusion protein FimA-GFP resulted in a protein that was now susceptible to 

degradation by Proteinase K under the usual assay conditions. ExPASy peptide cutter tool indicates that 

GFP (GFP_AEQVI) contains 112 cleavage sites that can be cut by Proteinase K (Appendix C.24). GFP 

has a molecular weight of 27 kDa so adding this within the FimA protein (18 kDa) will drastically 

disrupt the protein conformation as well as adding 112 new cleavage sites for Proteinase K.  

 

4.3.3.3 FimA monomer in OMVs may be in a different conformer to FimA in fimbriae 

It is possible that the FimA monomer found in OMVs is a conformer of the usual FimA monomer found 

in fimbriae. Puorger et al. (2011) produced an incredibly stable variant form of FimA, which was 

generated to mimic the state of the usual FimA monomer in the context of the quaternary structure of 

the pilus rod. It was made by ‘elongation of FimA at the C-terminus by its own donor strand generated a 

self-complemented variant (FimAa) with alternative folding possibilities that spontaneously adopts the 

more stable conformation’ (Puorger et al. 2011). Perhaps the form of FimA monomer found in OMVs is 

in a different conformation to the usual FimA monomer (found in fimbriae), which is more resistant to 

proteolytic degradation (see further discussion in Section 4.3.4). 

 

4.3.3 Discussion of the mutual exclusive packaging of FimA and Flagellin into OMVs 

from a variety of E. coli strains (Sections 4.2.3-4.2.6). 

In the literature, Flagellin has already been reported as present in the lumen of E. coli W3110 OMVs 

which is a K-12 strain (Manabe et al. 2013). Similarly, FimA has also been found in OMVs in the 

literature (Bai, et al. 2014). However, the mutually exclusive packaging of FimA and Flagellin has not 

yet been addressed in the literature. One particular study indicates that pathogenic E. coli cells 

reciprocally regulate the expression of flagella and fimbriae (Cooper et al. 2012). It is possible that the 

regulation of packaging FimA and Flagellin monomers into OMVs could also be reciprocally regulated 

or linked to the expression of flagella and fimbriae. Table 4.8 a-c below summarises whether FimA and 

Flagellin monomers are packaged into the OMVs of each strain and whether the packaging is mutually 

exclusive.  
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Table 4.8 Is the packaging of FimA and Flagellin monomers into OMVs mutually exclusive?  

Table a compares OMVs from five commonly used E. coli strains from Chapters 3 and 4. Table b 

compares OMVs purified from a range of E. coli strains with deletions of various fimbriae or flagella 

associated proteins. Table c compares OMVs purified from 6 clinical isolates. In the following tables, 

Type 1 fimbriae is abbreviated to ‘T1F’. 

 

 

 

 

 

  

  

a 

E.coli  strain 

name

FimA 

monomer 

in OMVs?

Flagellin 

monomer 

in OMVs?

Is packaging 

mutually 

exclusive?

Discussion of mutual exclusivity of FimA and 

Flagellin packaging within OMVs

WT MG1655 Yes No Yes

MG1655 is K-12 WT strain. The OMVs contain FimA 

monomer but not Flagellin (same as the Keio collection 

WT parental strain BW25113).

FimB-LacZ fusion No Yes Yes

The FimB-LacZ fusion strain contains a deletion of fimB 

which inhibits the production of T1F and so flagella is 

expressed instead. This leads to the packaging of Flagellin 

into the OMVs and not FimA.

Fimbriae locked 

on
Yes Yes No

When T1F expression is locked on, both FimA and 

Flagellin are packaged into the OMVs. The exclusion of 

Flagellin from the OMVs has been disrupted.

BL21 No No Neither present

BL21 (DE3) No No Neither present

All E.coli  B strains examined do not express T1F or 

flagella and do not package FimA or Flagellin into the 

OMVs. There appears to be a loss of regulation into 

which proteins are packaged into the OMVs.
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E.coli  strain 

name

FimA 

monomer 

in OMVs?

Flagellin 

monomer 

in OMVs?

Is packaging 

mutually 

exclusive?

Discussion of mutual exclusivity of FimA and 

Flagellin packaging within OMVs

WT parental 

BW25113
Yes No Yes

The Parental strain of the Keio collection (from which the 

other knockout strains are derived) has FimA packaged in 

the OMVs but not Flagellin.

ΔfliC Yes No Yes
Deletion of Flagellin from the E.coli  BW25113 Parental 

strain does not affect the packaging of FimA.

ΔfimA No Yes Yes
Deletion of fimA causes a switch where Flagellin is 

packaged instead of FimA (mutual exclusivity).

ΔfimC No Yes Yes

Deletion of fimC causes a switch where Flagellin is 

packaged instead of FimA. FimC is a chaperone protein 

which could play a role in directing FimA monomers to be 

packaged within OMVs. 

ΔfimB No Yes Yes

FimB is a site-specific recombinase that can bind to fimS 

and switch T1F expression either on-to-off or off-to-on. 

When FimB is absent, all fimbriae production is locked 

off which means that there is no expression of FimA. In 

this case, Flagellin is packaged instead of FimA.

ΔfimE Yes Yes No

FimE is a site-specific recombinase that can bind to fimS 

and switch T1F expression on-to-off. When FimE is 

absent, T1F production is locked on. As with the other 

strain where fimbriae production was locked on, both 

FimA and Flagellin are packaged within the OMVs.

 ΔfimF No Yes Yes

FimF binds to FimA in the formation of T1F. Perhaps 

FimF plays a role in the packaging of FimA to the OMVs 

as FimA is no longer packaged when it is absent. 

ΔfimG Yes Yes No

ΔfimH Yes Yes No

ΔfimD No No Neither present

FimD is an OM protein that is an usher to aid the 

formation of T1F. When FimD is absent, neither flagella 

or T1F appear to be expressed on the cells and no FimA 

or Flagellin is packaged into the OMVs.

ΔfimI Yes Yes No

The role of FimI in T1F formation is unclear from the 

literature. However, deletion of fimI led to the packaging 

of Flagellin as well as FimA into the OMVs.

ΔfimZ Yes No Yes

FimY and FimZ independently activate the promoter 

which controls the expression of fim structural genes. 

Therefore, even though FimZ was absent, FimY could 

promote fimA expression and there was no effect on the 

OMV protein profile. 

ΔlrhA Yes Yes No

LrhA is a key regulator of the transcription of genes 

relating to flagella. Without the regulation of LrhA, flagella 

are expressed and Flagellin is packaged along with FimA.

ΔfliD Yes No Yes

ΔfliS Yes No Yes

ΔflhA Yes No Yes

FimG and FimH are fimbrial tip proteins that have no 

known interaction with FimA monomer. When FimG and 

FimH are absent, FimA is still packaged into OMVs in the 

usual way. However, there are no functional T1F without 

the tip proteins and this leads to the expression of flagella 

on the cells. This also led to the packaging of Flagellin 

into the OMVs from these strains.

Absence of these proteins that interact with Flagellin did 

not affect the packaging of FimA into the OMVs.

b 
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4.3.4 What is the function of packaging FimA and Flagellin into E. coli OMVs? 

It appears that in the majority of strains, FimA and Flagellin are reciprocally regulated and are packaged 

into OMVs independently (see Section 4.2.6). In 2012, a study proposed that there is a reciprocal 

regulation of adherence (by expressing Type 1 fimbriae) and motility (by expressing flagella) in UPEC 

E. coli (Cooper et al. 2012). The cells are either motile or adhering, which are opposing virulence 

objectives but both essential for colonisation of the urinary tract (Cooper et al. 2012). From this 

evidence, it seems possible that FimA and Flagellin could also be packaged into OMVs in a way that is 

also reciprocally regulated. 

 

4.3.4.1 Discussions of FimA monomer in the literature 

FimA can form a stable monomer conformation  

During the formation of Type 1 fimbriae, FimA monomers polymerise by donor-strand 

complementation (see Section 1.6.3). The FimA monomer has a donor strand which inserts into an 

immunoglobulin-like fold of the preceding FimA monomer to complete it. In this way, chains of FimA 

monomers form stable polymers. More recently, however, FimA has been found to adopt a monomeric 

self-complemented form. To remain stable, the self-donor strand is inserted in the opposite orientation 

to that during polymerisation to prevent any other FimA monomers from forming oligomers (Walczak 

et al. 2014).  

c 

E.coli  strain 

name

FimA 

monomer 

in OMVs?

Flagellin 

monomer 

in OMVs?

Is packaging 

mutually 

exclusive?

Discussion of mutual exclusivity of FimA and 

Flagellin packaging within OMVs

Clinical isolate 1 No No Neither present

Clinical isolate 1 did not appear to express flagella or T1F. 

Previous analysis of the virulence genes determined that 

the strain was deficient in fimA. Neither FimA or Flagellin 

was packaged within the OMVs.

Clinical isolate 2 No No Neither present

Genetic analysis of this strain determined that FimB was 

non-functional and that there was no expression of T1F. 

Although, flagella was expressed on the cell, neither FimA 

or Flagellin were found in the OMVs.

Clinical isolate 3 Yes Yes No

This strain appeared to express fimbriae only but both 

FimA and Flagellin were packaged within the OMVs. F7-

2 fimbrial precursor protein was also identified in the 

OMVs by mass spectrometry.

Clinical isolate 4 No No Neither present

Neither FimA or Flagellin were found in OMVs from 

Clinical isolate 4. However, KS71A fimbrillin protein was 

also found which is related to fimbriae and may have a 

similar function to FimA.

Clinical isolate 5 Yes No Yes

Clinical isolate 5 expressed T1F and is evidence of the 

mutually exclusive packaging of FimA (and not Flagellin) 

in a real-life clinical isolate E.coli strain.

Clinical isolate 6 No Yes Yes

Clinical isolate 6 expressed flagella and is evidence of the 

mutually exclusive packaging of Flagellin (and not FimA) 

in a real-life clinical isolate E.coli  strain.
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FimA monomers can inhibit cell apoptosis (innate immune response) 

In 2010, a study found a soluble, monomeric form of FimA that could suppress host cell apoptosis by 

targeting a Mitochondrial complex (Sukumaran et al. 2010). Many bacterial pathogens improve the 

chances of survival by inhibiting the apoptosis of host cells, which is part of the innate immune 

response. A pro-apoptotic protein called Bax is known to play a major role in the mitochondrial 

signalling pathway. When apoptosis is induced, Bax inserts into mitochondrial membranes and causes 

the release of cytochrome c into the cytosol (Heimlich et al. 2004). Cytochrome c then induces 

formation of an apoptosome which triggers a cascade of events resulting in cell apoptosis. In this study, 

FimA (from E. coli K1 supernatants) was shown to be a potent inhibitor of Bax-mediated release of 

cytochrome c from mitochondria (Sukumaran et al. 2010).  

 

This soluble form of FimA was also found in Shigella flexneri and Salmonella enterica supernatants. It 

was also shown to selectively block Bax from integrating into the mitochondrial membrane (Sukumaran 

et al. 2010). Interestingly, FimA was found to later dissociate from the mitochondria, which allowed 

apoptosis to resume. The authors hypothesised that the bacteria may benefit from stalling apoptosis 

temporarily for bacterial survival then allow apoptosis to occur to facilitate dissemination (Sukumaran 

et al. 2010). They also contemplate how a soluble FimA monomer could be found in the supernatant. 

Based on the results of this study, one could argue that these FimA monomers are the same as those 

found in E. coli K-12 OMVs here. Their FimA monomer was also found at approximately 18 kDa in 

their Western blots rather than the usual 15 kDa FimA in fimbriae. 

 

FimA monomer has been detected in OMVs from other bacterial strains 

FimA has also been found in OMVs from other bacterial strains including Porphyromonas gingivalis 

(Mantri et al. 2015). P. gingivalis is a Gram-negative OMV-producing pathogen that plays a role in 

causing chronic periodontitis (gum disease). OMVs were found to contain virulence factors such as 

hemagglutinin and a protease called gingipain, which degrades cytokines and reduces inflammation.  

4.3.4.2 Discussions of Flagellin monomer in the literature 

Flagellin monomer has been detected in the lumen of E. coli K-12 OMVs as well as other bacterial 

strains 

In 2013, a study found that an E. coli K-12 strain (W3110) produced OMVs that were enriched with 

Flagellin monomer (Manabe et al. 2013). In this study, the authors detected Flagellin within the lumen 

of the OMVs which agrees with the findings in the current study. Flagellin type B was detected in P. 

aeruginosa OMVs in this study. This agrees with another study in the literature which found Flagellin 

type B in OMVs from PA01s and S470 strain. S470 is a P. aeruginosa clinical isolate from the sputum 

of a cystic fibrosis patient, which makes this finding clinically relevant (Bauman et al. 2006). Similarly, 

Flagellin has also been found in the supernatant and OMVs from pathogenic enterotoxigenic E. coli 

(ETEC) strains (Roy et al. 2010). 
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Flagellin monomer is pro-inflammatory 

Flagellin is a bacterial virulence factor that is recognised by the innate immune system. Flagellin is 

detected by receptors on innate immune cells which leads to the production of cytokines. In 2012, a 

study showed that E. coli K-12 Flagellin induced a pro-inflammatory immune response in mice (Zgair, 

2012). Flagellin is known to bind to Toll-like receptor 5 (TLR-5) which activates NF-κB signalling in 

the cell (Yoon et al. 2017). NF-κB is a transcription factor that induces the expression of cytokines, 

chemokines and expression of pro-inflammatory genes. These pro-inflammatory cytokines activate the 

adaptive immune response which is specific for the bacterial antigen. TLR-5 receptors are found on a 

range of cell types including macrophages, neutrophils, lymphocytes, dendritic cells and epithelial cells 

(Hajam et al. 2017).  

 

In the 2012 study, Flagellin was purified from depolymerising E. coli K-12 flagella into Flagellin 

monomers. To observe the effect on the immune system in the lungs of mice, Flagellin was instilled 

intranasally. The presence of Flagellin induced the expression and production of the pro-inflammatory 

cytokine’s interleukin 1 beta, interleukin 6 and tumour necrosis factor alpha. High numbers of 

neutrophils were also recruited to the lungs after 24 hours (Zgair, 2012) as well as high levels of 

cytokines and chemokines. Flagellin from E. coli has also been reported to be recognised by TLR11 in 

mice (Hatai et al. 2016). Lastly, it appears that Flagellin is also recognised by the NAIP5/NLRC4 

inflammasome, which promotes the secretion of pro-inflammatory cytokines (Hajam et al. 2017). 

 

4.3.4.3 Current hypothesis 

Table 4.9 below outlines how packaging FimA and Flagellin into OMVs may be beneficial to the 

OMV-producing cell. If an E. coli cell is adhering to a surface to colonise and cause infection, releasing 

OMVs that contain an anti-inflammatory molecule to the host system would be beneficial. Similarly, if 

a cell is motile, releasing a trail of OMVs containing a pro-inflammatory molecule such as Flagellin 

may be beneficial to cause the immune response to react to the OMVs rather than the parent cell. 

 

Table 4.9 Hypotheses of how packaging FimA and Flagellin monomers inti OMVs may be 

beneficial to the parent cell. 

 

 
 

Current hypothesis: FimA and Flagellin monomers have opposite effects on the hosts’ immune 

response so it makes sense to package them in a mutually exclusive way into OMVs. This is discussed 

further in Chapter 6.1.5. 

Cell Adhering Cell Motile

Fimbriae expressed Flagella expressed

OMVs enriched with 

monomeric FimA

OMVs enriched with 

monomeric Flagellin

FimA monomer is anti-

inflammatory

Flagellin monomer is pro-

inflammatory
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4.3.5 How can this finding be used for therapeutic purposes? 

GFP was successfully targeted to E. coli K-12 OMVs by protein fusion to FimA. Table 4.10 below 

summarises the differences between the two methods of targeting a protein of interest to the OMVs 

using FimA. 

 

Table 4.10 Comparison of targeting GFP/mNeon green to OMVs by fusion with FimA using two 

different methods 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

The experiments showed that to target a protein of interest to E. coli K-12 OMVs, a chromosomal insert 

of the protein within the fimA gene is required. Expression of a FimA fusion protein by plasmid caused 

an unexpected hypervesiculation of the strain. Furthermore, the OMVs produced appeared to contain 

many proteins with no particular protein dominant. Both the appearance of the OMV protein profile and 

hypervesiculation resembled an E. coli B strain rather than a K-12 strain. This could be because plasmid 

expression puts the cell under stress and causes hypervesiculation as in the B strains and loss of specific 

protein inclusion/exclusion from the OMVs. This method would need to be optimised further if plasmid 

expression was to be used to target cargo to OMVs for therapeutic applications. 

Was the FimA fusion protein 

successfully targeted to the OMVs?
Yes No

Was the FimA fusion protein  

transported to the periplasm?
Yes No

Was there hypervesiculation compared 

to OMVs produced in the WT strain?
No Yes

Were plasmids used to express the FimA 

fusion protein of interest?
No Yes

Was IPTG added in the media? No Yes

Was antibiotic added to the media? No Yes

OMVs from E.coli 

MG1655 GFP-FimA 

fusion strain

OMVs from E.coli 

MG1655 with plasmid 

containing FimA-Neon 

green protein fusion

Characteristic



 

189 

 

Chapter 5  

Streptomyces S4 cells secrete Membrane Vesicles 

containing the antifungal compound Candicidin 

5.1 Introduction 

5.1.1 Comparison of OMVs (from Gram-negative bacteria) to MVs (Gram-positive 

bacteria) 

Chapter 3 and 4 focussed on OMVs that are secreted by Gram-negative bacteria. As discussed 

previously, OMVs are formed from the bacterial outer membrane and contain a range of cargo including 

some periplasmic proteins. Gram-positive bacteria do not have an outer membrane (Figure 5.1a) and so 

do not produce outer membrane vesicles. Instead, the vesicles produced are thought to be composed of 

the cytoplasmic membrane and contain cytoplasmic proteins (Figure 5.1b). These will be referred to as 

Membrane Vesicles (MVs) instead of OMVs. For details on the hypotheses for the formation of Gram-

positive MVs, see Section 1.8.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 

b 

Figure 5.1 Comparison of membrane vesicles from Gram-positive and Gram-negative bacteria 

Gram-positive and Gram-negative bacteria have different membrane compositions (a). Gram-negative 

bacteria produce OMVs which are formed from the Outer Membrane and contain some periplasmic proteins. 

MVs from Gram-positive bacteria are thought to be composed of the cytoplasmic membrane and contain 

cytoplasmic proteins (b). Image (a) was sourced from: http://simbac.gatech.edu/outer-membrane-proteins/. 

Image (b) sourced from: Bitto, et al. 2017. 

http://simbac.gatech.edu/outer-membrane-proteins/
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5.1.2 Streptomyces S4 strains 

As summarised in Chapter 1, membrane vesicles (MVs) have previously been purified from the Gram-

positive strain Streptomyces lividans (Schrempf, Merling. 2015). The Streptomyces S4 strain produces 

the antifungal compounds candicidin and eight antimycins (Seipke et al. 2011). Due to the known 

success of the delivery of amphotericin B within a liposome to fungal cells (Section 1.9.3), it led us to 

hypothesise if a similar process occurs in nature. This was tested by purifying membrane vesicles from 

Streptomyces S4 and we hypothesised that candicidin and/or antimycin is packaged and released in 

Streptomyces S4 MVs for enhanced uptake in the target cells. Professor Hutchings (UEA) kindly 

donated the following strains for study into MV production in Streptomyces S4 (Table 5.1 and 

Appendix D.1).  

 

Table 5.1 Brief introduction to the Streptomyces S4 strains used in Chapter 5.  

 

 

Membrane vesicles produced by Gram-positive bacteria (such as Streptomyces) is a new and emerging 

field with many unanswered questions. The standard OMV purification protocol was applied to 

Streptomyces S4 and the three mutant strains to see if MVs could be isolated.  

5.1.3 Main chapter aims: 

1. To compare and contrast MV composition, cargo and function from both Gram-negative and Gram-

positive bacterial strains  

2. To gain a deeper understanding into cross-species signalling using MVs 

3. To gain insight into the function of any cargo discovered (i.e. why would this be beneficial in vivo?)  

4. To develop and optimise new protocols for MV purification, characterisation and manipulation 

5. To gain a fundamental understanding of vesiculation in Gram-positive bacteria.  

Strain name Strain information References

Streptomyces S4 

wild type

The Streptomyces S4 strain was isolated from the attine ant 

species A. octospinosus  in Panama. Attine ants cultivate fungus 

for food and have developed a symbiotic relationship with 

Actinobacteria to protect their cultured fungus from other 

microorganisms. Streptomyces S4 produces the antifungal 

compounds candicidin and eight antimycins which likely offer 

their food source protection against microfungal weeds.

Streptomyces S4 

ΔantC

AntC encodes a nonribosomal peptide synthetase which is 

thought to play a role in the biosynthesis of antimycins. Deletion 

of the gene antC  inhibits the synthesis of all eight antimycin 

compounds usually produced by Streptomyces S4. The 

antifungal compound candicidin, however, is still produced by 

this strain.

Streptomyces  S4 

ΔfscC 

In the ΔfscC strain, the polyketide synthase gene (fscC ) is 

deleted. This encodes the candicidin biosynthetic module and 

disruption of this gene causes inhibition of candicidin production. 

In this strain, antimycin is still produced.

Streptomyces S4 

ΔantCΔ fscC 

This double mutant strain does not produce candicidin or 

antimycins and has no antifungal activity against C. albicans.

Barke et al.  2010     

Haeder et al. 2009    

Seipke et al.  2011  

Hopwood et al. 2012    

McLean et al. 2016
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Figure 5.2. Visualisation of purified MVs from Streptomyces S4 strains using TEM 

TEM analysis of purified MVs from the following Streptomyces S4 strains: Streptomyces S4 WT (a-c),     

Streptomyces ΔantC (d-f), Streptomyces ΔfscC (g-i), Streptomyces ΔantC ΔfscC (j-l). White asterisks in 

image a indicate MVs. 

 

 

 

6. To identify drug targets to prevent infection by MV-producing pathogens or use MVs in therapeutic 

applications such as drug delivery or vaccines. 

5.2 Results 

5.2.1 Visualisation of Membrane Vesicles (MVs) from Streptomyces S4 by TEM 

The OMV purification protocol was applied to Streptomyces S4 WT and the three mutant strains to see 

if any MVs could be isolated (see Section 2.6.3 for further details). The resulting samples were 

concentrated then visualised using TEM and photos were taken at various magnifications (Figure 5.2). 

The TEM images indicated that MVs had been purified from all four Streptomyces S4 strains. The 

purified MVs were very similar in appearance to OMVs purified from E. coli and P. aeruginosa 

(Chapters 3-4) and MVs from Streptomyces lividans in the literature (Appendix D.2). 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

a b c 
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g h i 

j k l 

Streptomyces     

S4 WT MVs 

Streptomyces 

ΔantC MVs 

Streptomyces 

ΔfscC MVs 
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ΔantC 

ΔfscC MVs 
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5.2.2 Visualisation of Streptomyces S4 cells and MVs using WGA-FITC  

Streptomyces S4 cells and MVs were visualised using WGA-FITC based on a protocol found in the 

literature (Celler et al. 2016). WGA refers to wheat germ agglutinin, a lectin from Triticum vulgaris 

(wheat) conjugated to the fluorescent conjugate fluorescein isothiocyanate (FITC). This product was 

developed for the fluorescent detection of glycoproteins containing β(1→4)-N-acetyl-D-glucosamine 

(Sigma-Aldrich L4895). This is found in the peptidoglycan layer of Gram-positive cell walls. In the 

literature, evidence suggests that Gram–positive MVs are formed from the cytoplasmic membrane 

without the peptidoglycan layer (see Figure 5.1). If this theory is correct, the WGA-FITC will bind 

successfully to the peptidoglycan on whole Streptomyces S4 cells but will not bind and fluoresce when 

applied to purified MVs. Figure 5.3 shows whole Streptomyces S4 cells treated with WGA-FITC. 

Before incubation with WGA-FITC, half of the cells were washed 3x in PBS to remove any MVs from 

around the cells (a). The other half of the cells remained unwashed in PBS and may still have MVs in 

the sample (b). 
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WGA-FITC successfully bound to the Gram-positive Streptomyces S4 cells so that they could be 

visualised. Furthermore, areas of intense fluorescence were found on the membranes of the cells which 

may be the sites of vesiculation (white arrows on Figure 5.3b). This appeared to be more present in the 

cells which had not been washed 3x with PBS (discussed further in Section 5.3.1).  

Next, purified MVs from all four Streptomyces S4 stains were incubated with WGA-FITC (Figure 5.4). 

Any areas of fluorescence were very dispersed and difficult to find (Figure 5.4 a-d). This suggests that 

the MVs are composed of the cytoplasmic membrane only and do not contain peptidoglycan on their 

surface (Figure 5.4 e).   

 

Figure 5.3. Visualisation of Streptomyces S4 cells and MVs using WGA-FITC.  

Streptomyces S4 cells were grown for 48 hrs then concentrated by centrifugation at 13200 RPM. Half 

of the cells were washed 3x in PBS in an attempt to remove all MVs around the cells (a). The other 

half remained unwashed with PBS and may contain MVs (b). Cells were fixed in 2% (w/v) 

paraformaldehyde then incubated in 100 µg/mL WGA-FITC (Sigma L4895) in the dark for 1 hour. 15 

μL cells were added onto a coverslip before being inverted onto a drop of ProLong Gold antifade 

mountant on a glass slide. Samples were visualised the next day by confocal microscopy (Zeiss lsm 

880 with airscan) under the supervision of Matt Lee. Scale bar was added to images using Fiji (Image 

J). White arrows indicate potential MVs budding from the Streptomyces cells. 

 

b 
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Figure 5.4. Visualisation of Streptomyces S4 MVs using WGA-FITC.  

MVs were purified from the following strains: Streptomyces S4 WT (a), ΔantC (b), ΔfscC (c) and ΔantC 

ΔfscC (d). MVs were concentrated by centrifugation at 13200 RPM.  MVs were fixed in 2% (w/v) 

paraformaldehyde then incubated in 100 µg/mL WGA-FITC (Sigma L4895) in the dark for 1 hour. 15 μL 

cells were added onto a coverslip before being inverted into a drop of ProLong Gold antifade mountant on 

a glass slide. Samples were visualised the next day by confocal microscopy (Zeiss lsm 880 with airscan) 

under the supervision of Matt Lee. Scale bar was added to images using Fiji (Image J). Lastly, the same 

Streptomyces S4 MV WT sample was concentrated by centrifugation 50x and the images of the sample 

taken by EM and confocal were compared (e). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 

b c d 

Streptomyces S4 MVs in HEPES 

EM image of MV sample Confocal image of MV sample 

(WGA-FITC tagged) 
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Figure 5.5 Comparison of MV protein profile from Streptomyces S4 and the 3 mutant strains 

MVs were purified from four different Streptomyces S4 strains: WT, ∆antC, ∆fscC and ∆antC ∆fscC. 

A Bradford assay was performed and all samples were standardised to be the same protein 

concentration. TCA precipitation was used to concentrate samples prior to loading on an SDS-PAGE 

gel. The SDS-PAGE gel was run then silver stained to visualise the MV protein profile.  

 

5.2.3 Characterisation of Streptomyces S4 MV proteome 

5.2.3.1 Comparison of the Streptomyces S4 MV protein profiles  

The protein profile of MVs purified from the four Streptomyces S4 strains was compared (Figure 5.5). 

The protein profile of MVs from Streptomyces S4 WT (lane 3), ∆antC (lane 5) and ∆fscC (lane 7) 

appear the same. However, the protein profile of ∆antC ∆fscC appears to contain extra proteins (lane 9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.3.2 Densitometry comparison 

Protein densitometry plots were generated using Fiji (Image J) to compare the protein profile of the 

MVs from each strain (Figure 5.6). The densitometry plots indicated that the MVs purified from the 

double mutant did have extra proteins compared with MVs from the other 3 strains. Perhaps the 

regulation of which proteins enter the MVs was disrupted when the cell no longer produces the 

antifungals antimycin or candicidin. However, the exact reason for this change is unclear. 

  

kDa 
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Figure 5.6 Densitometry comparison of MV protein profile from Streptomyces S4 and the 3 

mutant strains 

MVs were purified from four different Streptomyces S4 strains: WT, ∆antC, ∆fscC and ∆antC ∆fscC. A 

Bradford assay was performed and all samples were standardised to be the same protein concentration. 

TCA precipitation was used to concentrate samples prior to loading on an SDS-PAGE gel. The SDS-

PAGE gel was run then silver stained to visualise the MV protein profile (a). Protein densitometry plots 

were generated from the SDS-PAGE gel photos using Fiji (Image J) (b). 

 

b Lane 3 Lane 3 

Lane 5 Lane 5 

Lane 7 Lane 7 

Lane 9 Lane 9 

a 
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5.2.3.3 Protein profile of Streptomyces S4 MVs compared with the whole cell 

The Streptomyces S4 MV protein profile was compared to the whole cell to see which proteins are 

enriched and excluded from Streptomyces S4 MVs (Figure 5.7). One band in particular appears to be 

enriched in Streptomyces S4 MVs compared to the levels in the cell (labelled with a blue arrow). This 

protein was later extracted and identified by mass spectrometry to be a serine protease (see Section 

5.2.4).  

 

 

  

  

  

Figure 5.7 Comparison of MV protein profile from Streptomyces S4 and the 3 mutant strains 

MVs were purified from four different Streptomyces S4 strains: WT, ∆antC, ∆fscC and ∆antC ∆fscC and 

were compared to the whole cell samples. A Bradford assay was performed and all samples were 

standardised to be the same protein concentration. TCA precipitation was used to concentrate samples 

prior to loading on an SDS-PAGE gel. The SDS-PAGE gel was run then silver stained to visualise the MV 

protein profile (a). Protein densitometry plots were generated from the SDS-PAGE gel photos using Fiji 

(Image J) (b). 

 

a 
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Serine protease  
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5.2.4 Do Streptomyces S4 MVs contain proteases?  

Two bands of interest in Streptomyces S4 MVs were extracted and identified by mass spectrometry 

(Figure 5.8). The mass spectrometry results indicate that all Streptomyces S4 MV samples contain a 

serine protease and that the ∆antC ∆fscC strain MVs contain a fumarate reductase/succinate 

dehydrogenase flavoprotein subunit. 

  

Figure 5.8 Comparison of MV protein profile from Streptomyces S4 and the 3 mutant strains 

MVs were purified from four different Streptomyces S4 strains: WT, ∆antC, ∆fscC and ∆antC 

∆fscC. A Bradford assay was performed and all samples were standardised to be the same protein 

concentration. TCA precipitation was used to concentrate samples prior to loading on an SDS-PAGE 

gel. The SDS-PAGE gel was run then silver stained to visualise the MV protein profile (a). The two 

proteins labelled were extracted and identified by mass spectrometry (b). 

 

Serine protease 
(113 kDa) 

Succinate dehydrogenase        

(73 kDa) 

a 

b 

kDa 

Approx. 

MW on 

gel (kDa)

Protein detected (using NCBIprot 

database)

Score (score 

needed to be 

significant) 

Protein 

MW  

(kDa)

Protein reference 

code for NCBI 

Protein database

65-72

Fumarate reductase/succinate 

dehydrogenase flavoprotein subunit

            [Streptomyces sp. S4].

126 (92) 72.819 WP_010639587.1
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5.2.4.1 Release of proteases from Streptomyces S4 MVs when SDS is added 

In Section 3.2.5, E. coli OMVs were incubated with SDS, which appeared to cause disruption to the 

membrane of the OMVs and release of active proteases from within. These proteases degraded some of 

the OMV-associated proteins (and flagella) and changed the OMV protein profile. This method was 

applied to purified Streptomyces S4 WT MVs to see if they contain active proteases (Figure 5.9). 

Streptomyces S4 WT MVs were purified and resuspended in 10 mM HEPES buffer. Half of the purified 

MVs were resuspended in 10 mM HEPES buffer only (Lanes 3-6). The other half were resuspended in 

10 mM HEPES buffer then filtered through a 0.22 µm filter (Lanes 7-10). Many of the bands 

disappeared when various concentrations of SDS were added (Lanes 4-6 compared to Lane 3 and Lanes 

8-10 compared to Lane 7). This indicates that proteases are present which are released when MVs are 

disrupted by SDS. One of these proteases could be the serine protease detected by mass spectrometry. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

  

Figure 5.9 Do Streptomyces S4 MVs contain proteases? 

Streptomyces S4 WT MVs were incubated with various concentrations of SDS at 37 ºC for 60 mins. 

The samples were run on an SDS-PAGE gel then silver stained to visualise the MV protein profile (a). 

Protein densitometry plots were generated from the SDS-PAGE gel photos using Fiji (Image J) (b). 
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5.2.5 Are any antifungal agents present within the purified Streptomyces S4 MVs? 

5.2.5.1 Positive control: Candicidin 

In order to determine if Streptomyces S4 MVs contained any antifungal compounds, a method to 

observe the effect on the growth of Candida albicans was developed. This was initially trialled with 

various concentrations of candicidin (purchased from Bio-Australis) and antimycin (purchased from 

Sigma-Aldrich). Candicidin was dissolved in absolute ethanol and diluted to give various concentrations 

of candicidin ranging from 200 µg/mL to 1 µg/mL. 10 μL was spotted on to a LB agar plate and left to 

soak in. This was then overlayed with C. albicans mixed in with LB 0.5% (w/v) agar and left to set and 

the diameter of the zones of inhibition (ZOI) were measured the next day (Figure 5.10). The ZOI are 

defined as the areas where C. albicans growth is inhibited and the agar is transparent and clear. 

  

 

 

 

 

 

 

 

 

 

  

Figure 5.10 Effect of varying concentrations of candicidin on C. albicans   

Candicidin was resuspended in ethanol then diluted to give various concentrations ranging from 200 

µg/mL-1 µg/mL. 10 μL candicidin was added to LB plates and left to soak/dry for a minimum of 2 hrs at 

room temperature. 10 μL ethanol only was used as a negative control. This was then overlayed with C. 

albicans mixed in with LB 0.5% (w/v) agar and left to set. Plates were incubated at 37 ºC for 18 hrs and the 

diameter of the ZOI was measured (a). All plates were prepared in triplicate and the average ZOI was 

calculated and presented as a graph (b). 

 

 

 

a 
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5.2.5.2 Positive control: Antimycin 

The experiment above was repeated with antimycin purchased from Sigma-Aldrich (Figure 5.11). 

 

 

 

  

a 

Figure 5.11 Effect of varying concentrations of antimycin on C. albicans   

Antimycin was resuspended in ethanol then diluted to give various concentrations ranging from 200 

µg/mL-1 µg/mL. 10 μL antimycin was added to LB plates and left to soak/dry for a minimum of 2 hrs at 

room temperature. 10 μL ethanol only was used as a negative control. This was then overlayed with C. 

albicans mixed in with LB 0.5% (w/v) agar and left to set. Plates were incubated at 37 ºC for 18 hrs and 

the diameter of the ZOI was measured (a). All plates were prepared in triplicate and the average ZOI was 

calculated and presented as a graph (b). 
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5.2.5.3 Effect of Streptomyces S4 cells on C. albicans growth 

This method was then trialled by observing the ZOI caused by the four Streptomyces S4 strains 

overlayed with C. albicans. As expected, ZOI were produced from Streptomyces S4 WT strain, ∆antC 

and ∆fscC but not from the ∆antC ∆fscC strain (Figure 5.12).  

 

  

Figure 5.12. Effect of Streptomyces S4 cells on C. albicans growth 

Streptomyces S4 colonies (from MS plates) were inoculated into TSB:YEME (two media mixed 1:1) 

grown up for 72 hrs. 5 μL of this culture was spotted at the centre of a LB agar plate and left to soak/dry 

for 2 hrs. Plates were incubated at 30ºC for 72 hrs to allow growth of Streptomyces. C. albicans mixed 

with LB 0.5% agar was overlayed on to the plates and left to set. Plates were incubated at 37ºC for 18 

hrs and the diameter of the ZOI was measured (a). All plates were prepared in triplicate and the average 

ZOI was calculated and presented as a graph (b). 
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5.2.5.4 Effect of Streptomyces S4 MVs on C. albicans growth 

Purified MVs from the four Streptomyces S4 strains were concentrated and added to a LB agar plate and 

left at room temperature to dry/soak in. This was then overlayed with C. albicans mixed in with LB 

0.5% (w/v) agar and left to set (see Section 2.13.1 for full protocol). Plates were incubated at 37ºC for 

18 hours and the diameter of the ZOI measured using a ruler. The aim of this was to determine if the 

antifungal compounds candicidin or antimycin were present within any of the purified MVs by 

measuring the ZOI produced (Figure 5.13a). Each experiment was done in triplicate and the zones of 

inhibition were measured in mm. The findings were summarised as a bar chart for comparison (Figure 

5.13b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of Figure 5.13 suggest that Streptomyces S4 MVs contain the antifungal compound 

candicidin and not antimycin (see Table 5.2) which is a novel finding. 

Figure 5.13 Do Streptomyces S4 MVs contain antifungals?   

5 μL concentrated MVs (in 10 mM HEPES buffer) were added to LB plates and left to soak/dry 

for at room temperature. C. albicans mixed with LB 0.5% (w/v) agar was overlayed on to the 

plates and left to set. Plates were incubated at 37ºC for 18 hrs and the diameter of the ZOI was 

measured (a). All plates were prepared in triplicate and the average ZOI was calculated and 

presented as a graph (b). 
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Table 5.2 Interpretation of results from Figure 5.13 indicating that Streptomyces S4 MVs contain 

candicidin 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.5.5 Further comparison of MVs from all Streptomyces S4 strains 

To explore this further, Streptomyces S4 MVs were treated in 3 different ways to observe the effect on 

the ZOI. Streptomyces MV pellets were resuspended in 5 mL 10 mM HEPES buffer and filter sterilised 

as part of the OMV purification procedure. 5 μL of this sample was added to LB agar plates labelled as 

the ‘MV 1x concentration’ sample (Figure 5.14 a). The MVs were then concentrated 25x by pelleting 

the MVs and resuspending in a smaller volume of 10 mM HEPES buffer to give an ‘MV 25x 

concentrated’ sample (b). Lastly, the MVs were pelleted and washed 3x in 10 mM HEPES buffer to 

remove anything that is not MV-associated (c).  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.14 Preparation of MVs for zone of inhibition plates with C. albicans                

Streptomyces S4 MVs were treated in 3 different ways to observe the effect on the ZOI. The 

preparation of the following samples was summarised: ‘MV 1x concentration’ (a), ‘MV 25x 

concentrated’ (b) and ‘MVs 3x washed’ (c).  

 

 

Strain 

purified MVs 

originated 

from 

Is a zone of 

inhibition 

produced 

with C. 

albicans ?

Explanation for the result

Streptomyces 

S4 wild-type

The Streptomyces S4 strain produces both of the antifungal compounds candicidin and 

antimycin. The MVs must contain at least one of these compounds as there's a zone of 

inhibition against C. albicans.

Streptomyces 

S4 ΔantC

The Streptomyces  ΔantC strain produces candicidin but not antimycin as its 

production is inhibited. There is a zone of inhibition produced so the MVs must 

contain candicidin.

Streptomyces 

S4 ΔfscC 

The Streptomyces ΔfscC strain produces antimycin but not candicidin. The MVs must 

not contain antimycin as otherwise there would be a zone of inhibition against C. 

albicans.

Streptomyces 

S4 ΔantCΔ 

fscC 

The Streptomyces  ΔantCΔ fscC  strain does not produce candicidin or antimycin so as 

expected, the MVs have no zone of inhibition against C. albicans.

a b c 
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A B Sample key 

A = MV 1x concentration 

B = MV 25x 

concentrated 

C = MVs 3x washed 

D = 10 mM HEPES 

buffer only 

C D 

Figure 5.15 Do Streptomyces S4 MVs contain antifungals?   

Streptomyces S4 MVs were treated in 3 different ways to observe the effect on the ZOI. 5 μL of the 

following MV samples were added to the LB plates: ‘MV 1x concentration’, ‘MV 25x concentrated’ 

and ‘MVs 3x washed’. C. albicans mixed with LB 0.5% (w/v) agar was overlayed on to the plates 

and left to set. Plates were incubated at 37ºC for 18 hrs and the diameter of the ZOI was measured 

(a). All plates were prepared in triplicate and the average ZOI was calculated and presented as a 

graph (b). 
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The results from Figure 5.15 still indicate that the Streptomyces S4 WT MVs contain candicidin. 

Although the MVs are concentrated 25x, the ZOI produced is only slightly larger for the ‘MV 25x 

concentrated’ sample compared to the ‘MV 1x concentration’ sample and is not proportional (discussed 

in Section 5.3.3). Lastly, the MV pellets were also washed 3x with 10 mM HEPES buffer to remove any 

non-OMV associated contaminants and the ZOI remained. This is evidence that the candicidin is MV-

associated and this was explored further. 

5.2.5.6 Is Candicidin MV-associated? 

In order to find further evidence that candicidin is MV-associated, Streptomyces S4 MVs were washed 

1x, 2x and 3x with 10 mM HEPES buffer. This was to remove any extracellular material from around 

the MVs so that any antifungal activity observed was from MVs only. Figure 5.16 summarises how the 

wash steps were performed and the procedure used to generate each sample and Figure 5.17 shows the 

results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.16 Preparation of MVs with 

various numbers of wash steps for zone of 

inhibition plates with C. albicans. The 

supernatant samples are highlighted here too. 
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Streptomyces S4 WT MVs still appear to contain candicidin. As in Figure 5.17, ZOI produced for the 

‘MV concentrated’ sample compared to the ‘MV dilute’ sample is not proportional. The Streptomyces 

S4 MVs were washed in 10 mM HEPES buffer either 1x, 2x or 3x. The supernatant was also taken each 

time and added to the LB plates to see if there was a ZOI with C. albicans. The supernatants from the 

concentrated MV sample and the supernatant after 1 wash in 10 mM HEPES buffer contained 

candicidin and/or antimycin as there was a ZOI. However, after two or three washes in 10 mM HEPES 

buffer, the MV supernatants do not contain candicidin or antimycin as there is no ZOI produced. This 

indicates that anything extracellular to the MVs (e.g. antifungals or lysed cells in the supernatant) has 

now been washed away with the 10 mM HEPES buffer. Therefore, this provides further evidence that 

the ZOI found for the MVs after two or three washes is genuinely MV-associated. 

 

 

 

 

Figure 5.17 Do Streptomyces S4 MVs contain antifungals? Various numbers of washes of the MV 

pellet with 10 mM HEPES buffer  

Streptomyces S4 MVs were washed up to 3x in 10 mM HEPES buffer to observe the effect on the 

ZOI. 5 μL of the following MV samples were added to the LB plates: ‘MV Dilute’, ‘MV 

Concentrated’, ‘MV washed 1x’, ‘MV washed 2x’ and ‘MV washed 3x’ as well as 5 μL of their 

corresponding supernatants (as explained in Figure 5.15). C. albicans mixed with LB 0.5% (w/v) 

agar was overlayed on to the plates and left to set. Plates were incubated at 37ºC for 18 hrs and the 

diameter of the ZOI was measured (a). All plates were prepared in triplicate and the average ZOI 

was calculated and presented as a graph (b-c). 
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5.2.6 Detection of candicidin in Streptomyces S4 MVs by Ultraviolet–visible spectroscopy 

(UV-Vis) 

Candicidin and antimycin can both be identified by their distinct UV-Vis spectra (see Appendix D.3 for 

examples in the literature). Candicidin and antimycin were purchased and dissolved in absolute ethanol 

which was then diluted to give various concentrations. These samples were run on the 

spectrophotometer (Agilent Technologies Cary 60 UV-Vis) to give the UV-Vis spectra characteristic to 

candicidin and antimycin (Figure 5.18). These spectra were used as positive controls to detect 

candicidin (and/or antimycin) in Streptomyces S4 MVs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18 UV-Vis spectra of candicidin and antimycin  

500 μL samples were loaded on to the spectrophotometer (Agilent Technologies Cary 60 UV-Vis) in 

quartz cuvettes to give the UV-Vis spectra. Candicidin dissolved at 1 mg/mL which gave the clearest 

spectra and there was a proportional decrease in Absorbance when 100 µg/mL was run (a). 

Antimycin dissolved at 1 mg/mL gave the clearest spectra and there was a proportional decrease in 

Absorbance when 100 µg/mL was run (b). The peaks that are ‘characteristic’ of each antifungal 

compound is labelled above. 
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5.2.6.1 Extraction of candicidin from Streptomyces S4 MVs was trialled using 3 different 

methods 

Detection of candicidin and/or antimycin was then investigated in Streptomyces S4 MV samples. 

Initially, Streptomyces S4 MVs resuspended in 10 mM HEPES buffer were trialled on the UV/Vis 

spectrophotometer with no success (see Appendix D.4). Three methods were trialled to extract the 

antifungal compounds from the other contaminating MV components using butanol (Figure 5.19). 

Methods to extract candicidin using butanol were based on a method in the literature which was used to 

extract candicidin from the supernatant of Streptomyces S4 strains for LC-MS (Seipke et al. 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Butanol and 10 mM HEPES buffer only were run on the spectrophotometer to visualise the UV-Vis 

spectra as negative controls (Figure 5.20).    

  

Figure 5.19 Different methods of butanol extraction trialled on Streptomyces S4 MVs to identify 

candicidin 

In Method 1, MVs were resuspended directly into butanol then the butanol was extracted for analysis. In 

Method 2, MVs were resuspended into 10 mM HEPES buffer first then extracted using butanol. In Method 

3, MVs were washed 3x in 10 mM HEPES buffer then extracted using butanol 

 

Figure 5.20 UV-Vis 

spectra of butanol 

and 10 mM HEPES 

buffer 

500 μL butanol or 10 

mM HEPES buffer 

were loaded on to the 

spectrophotometer 

(Agilent Technologies 

Cary 60 UV-Vis) in 

quartz cuvettes to give 

the UV-Vis spectra.  
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5.2.6.2 Candicidin extraction Method 1 (MV pellet resuspended directly into butanol) 

At the last step of the MV purification protocol, MV pellets were resuspended directly into butanol 

(rather than into 10 mM HEPES buffer) and ran on the spectrophotometer to generate the UV-Vis 

spectra (Figure 5.21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MVs from Streptomyces S4 and ΔantC gave peaks characteristic of candicidin. There was no indication 

of candicidin in MVs from the ΔfscC or from the ΔantC ΔfscC strain and there was no indication of 

antimycin in MVs from any of the strains. The ZOI plates in Section 5.2.5 showed that MVs from 

Streptomyces S4 and ΔantC gave a ZOI against C. albicans. This indicated that candicidin was present 

in the MVs which agree with the findings here. Another method to detect candicidin in the MVs 

involved resuspending the MVs in 10 mM HEPES buffer first then extracting using butanol. The results 

of using Methods 2 and 3 to identify candicidin can be found in Appendix D.5-D.6. 

a 

b 

Figure 5.21 UV-Vis spectra of Streptomyces S4 MVs resuspended directly into butanol 

Streptomyces S4 MVs were purified using the standard protocol but the MV pellets were resuspended 

directly into butanol. 500 μL MVs (extracted in butanol) were loaded on to the spectrophotometer (Agilent 

Technologies Cary 60 UV-Vis) in quartz cuvettes to give the UV-Vis spectra. The Absorbance range used 

was 200-450 nm (a) and the area of interest was enlarged to see the characteristic  

Candicidin peaks (b). 
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5.3 Discussion 

5.3.1 Streptomyces S4 secretes MVs which were purified and characterised (Sections 

5.2.1-5.2.6) 

5.3.1.1 Presence of Streptomyces S4 MVs were confirmed by TEM 

The OMV purification protocol was applied to the Streptomyces S4 WT strain and the three mutant 

strains (ΔantC, ΔfscC and ΔantC ΔfscC). The resulting samples were visualised by TEM. There 

appeared to be vesicles which were the same shape, size and appearance as OMVs purified from E. coli 

and P. aeruginosa in Chapters 3-4. The purified MVs were also very similar to those purified from 

Streptomyces lividans in the literature (Schrempf, Merling. 2015). 

5.3.1.2 Streptomyces S4 MVs are composed of the cytoplasmic membrane  

WGA-FITC bound successfully to the peptidoglycan on Streptomyces S4 WT cells and the cells could 

clearly be seen. WGA-FITC did not bind and fluoresce when added to purified MVs. The most likely 

explanation for this is that the MVs are composed of the cytoplasmic membrane of the cells with no 

peptidoglycan layer as suggested in the literature (Figure 5.1). This could be resolved further by using a 

specialised EM grid with coordinates so that the same area can be used for confocal microscopy. MVs 

can be tagged with WGA-FITC then the same grid can be negatively stained and used for TEM. The 

images can be overlayed and this would determine the percentage of the MV population that is stained 

with WGA-FITC.  

 

Figure 5.3 shows whole Streptomyces S4 cells treated with WGA-FITC. Before incubation with WGA-

FITC, half of the cells were washed 3x in PBS to remove any MVs from around the cells (a). The other 

half of the cells remained unwashed in PBS and may still have MVs in the sample (b). Areas of intense 

fluorescence were found on the membranes of the cells, which may be points of MV biogenesis. These 

were seen on the cells that were unwashed in PBS but not on the washed cells. It is currently unclear 

why these areas fluoresce more intensely than the membranes alone. Perhaps the peptidoglycan layer in 

these areas is being broken down (in order for the MVs to bulge from the cytoplasmic membrane) and 

the WGA-FITC binds more giving greater fluorescence.  

5.3.1.3 MV protein profile 

SDS-PAGE gels were run to show the protein profile of the purified Streptomyces S4 MVs. The 

densitometry plots indicated that the MVs purified from the double mutant (ΔantC ΔfscC) did have 

extra proteins compared with MVs from the other 3 strains. It appears that there is less regulation of 

which proteins enter the MVs when the cell no longer produces antimycin or candicidin. However, the 

exact reason for this change is unclear.  



 

213 

 

5.3.2 Streptomyces S4 MVs contain proteases (Section 5.2.4) 

The protein profile of the MVs from Streptomyces S4 and the three mutants were compared to that of 

the MV-producing cells. One protein in particular appeared to be enriched in the Streptomyces S4 MVs 

compared with the cells. This was identified by mass spectrometry to be a serine protease. Serine 

proteases have been found within OMVs in the literature although not yet in Streptomyces MVs. The 

serine protease VesC has been found within OMVs from Vibrio cholerae (Mondal et al. 2016). VesC 

was found in an active form within the OMVs and was suspected of play a role in the intestinal 

colonisation of V. cholerae in adult mice. VesC also induced a ‘proinflammatory response in human 

cultured intestinal epithelial cells’ (Mondal et al. 2016). The serine protease detected in the MVs should 

be characterised further to determine its function in vivo.  

 

Lastly, Figure 5.9 provided evidence of active proteases within the Streptomyces S4 MVs. When SDS 

was added to the MVs, the protein profile changed. SDS is a detergent and is known to disrupt the 

membrane of OMVs. It is likely that the MVs are disrupted after SDS addition and any active proteases 

(including the serine protease) were released. These proteases may have caused degradation of other 

proteins and altered the protein profile.  

5.3.3 Streptomyces S4 MVs contain Candicidin (Section 5.2.5-5.2.6) 

5.3.3.1 Positive controls 

Candicidin and antimycin were used as positive controls to optimise the development of the C. albicans 

ZOI plates. The Minimum Inhibitory Concentration (MIC) of candicidin was determined to be 10 

µg/mL and the MIC of antimycin was found to be 5 µg/mL using this method. In the literature, the 

MICs were reported as antimycin (0.125 μg/mL) and candicidin (2 μg/mL) against C. albicans (McLean 

et al. 2016). MICs in this paper were determined by growing C. albicans in 96 well plates with various 

concentrations of candicidin and antimycin. In Chapter 5, zones of inhibition were only measured when 

the growth of C. albicans was fully inhibited and the agar was clear and transparent. At some of the 

lower concentrations of candicidin and antimycin, zones of inhibition were starting to develop but were 

not measured due to the criteria chosen. This made this method of determining the MIC less accurate 

than the 96 well plate method in the literature. 

5.3.3.2 Effect of Streptomyces S4 MVs on C. albicans growth 

MVs were added to a LB agar plate which was then overlayed with C. albicans (in LB 0.5% agar). This 

was to determine if the antifungals candicidin or antimycin were present within the MVs purified from 

each Streptomyces strain. Each strain of Streptomyces was also grown on a LB agar plate and tested in 

the same way as the MVs. Zones of inhibition were produced when an antifungal was present that was 

active against C. albicans. Table 5.3 summarises the main findings from the plates which indicate that 

Streptomyces S4 MVs contain candicidin. 
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Table 5.3 Summary of findings from the effect of Streptomyces S4 cells and purified MVs on              

C. albicans 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to find further evidence that candicidin is MV-associated, Streptomyces S4 MVs were washed 

up to 3x with 10 mM HEPES buffer. This was to remove any extracellular material (for example lysed 

cells) from around the MVs so that any antifungal activity observed was from MVs only. Even after 

three washes with 10 mM HEPES buffer, the ZOI was still present which could be evidence that the 

candicidin is genuinely MV-associated. 

5.3.3.3 Detection of Candicidin in Streptomyces S4 MVs by UV-Vis 

Candicidin and antimycin were purchased and run on the spectrophotometer (Agilent Technologies 

Cary 60 UV-Vis) to give their characteristic UV-Vis spectra. These spectra were used as positive 

controls to detect candicidin (and/or antimycin) in Streptomyces S4 MVs as they were almost identical 

to those found in the literature (Seipke et al. 2011). 

 

Streptomyces S4 MVs resuspended in 10 mM HEPES buffer were added to the spectrophotometer but 

no peaks were found in the UV-Vis spectra. Three different methods to extract candicidin using butanol 

were developed. These were based on a method used to extract candicidin from the supernatant of 

Streptomyces S4 strains for LC-MS (Seipke et al. 2011). The optimum method to identify candicidin 

was to resuspend the MVs into butanol instead of 10 mM HEPES buffer. This gave a clear UV-Vis 

spectra characteristic of candicidin found in MVs from Streptomyces S4 WT and ΔantC. These results 

are in agreement with the results of the ZOI plates with C. albicans. 

5.3.3.4 Identification of candicidin by mass spectrometry 

MALDI-TOF and LC-MS have both been trialled to detect candicidin in the Streptomyces S4 MV 

samples. Unfortunately, this has been unsuccessful so far including with the candicidin purchased from 

Bio-Australis. The reason for this is unclear as the purchased candicidin is active against C. albicans 
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and produces a UV-Vis spectrum characteristic of candicidin so appears to be correct. Optimisation of 

LC-MS to detect candicidin is currently ongoing. 

5.3.3.5 Limitations of the ZOI with C. albicans 

Measuring the zones of inhibition using C. albicans is a good method to confirm if an antifungal is 

present within the MV samples or not. The diameter of the ZOI, however, is not necessarily 

representative of the concentration of candicidin in the MVs as it is too variable. The ZOI can vary if 

the 5 μL sample has not dried fully before addition of C. albicans as the sample can smudge and distort 

the ZOI shape. Also, ZOI are not always an exact circle and the diameter measured can vary depending 

on which part is measured. Lastly, the ZOI was only measured when the LB agar was fully clear and 

transparent. Sometimes the start of a ZOI was visible but was not measured due to the criteria as it was 

not fully transparent. 

5.3.4 Wider Implications  

Streptomyces S4 cells appear to secrete MVs containing the antifungal candicidin which is a novel 

discovery. Within the MVs, candicidin is in a concentrated and protected form for release into the 

environment. Streptomyces S4 has a symbiotic relationship with attine ants which use the antifungals 

produced by the bacteria to keep their cultivated food free from fungal contamination. Packaging 

candicidin within a vesicle may increase the uptake of candicidin by the target cells and enhance the 

killing. This is a similar method to the AmBisome where ampthotericin B is packaged in a liposome for 

enhanced uptake (see Section 1.9.3). Although the proteome analysis of the MVs was more limited than 

for the OMVs in Chapters 3 and 4, a serine protease was detected in Streptomyces S4 MVs. This could 

potentially be used as a fusion protein to target cargo to MVs. Lastly, study of MV biogenesis in 

Streptomyces S4 may lead to enhancing the delivery of anti-fungal drugs within vesicles. This will be 

discussed further in Chapter 6. 
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Chapter 6 

Final Discussion 

6.1 Main conclusions 

6.1.1 What are the best methods to purify and characterise OMVs? 

6.1.1.1 A protocol was developed that successfully purifies OMVs from bacterial cultures 

The OMV protocol was used successfully to purify OMVs from a wide range of E. coli and P. 

aeruginosa strains. The protocol was also applied to the Gram-positive organism Streptomyces S4 and 

allowed purification of MVs with minimal modifications. It was confirmed that live bacterial cells were 

not co-purified with OMVs using this protocol and that the choice of PES or SFCA membrane type for 

filtration of the supernatant did not affect the OMV purity, yield or proteome. Purified P. aeruginosa 

OMVs were separated from flagella by buoyant density ultracentrifugation but this was not successful 

for E. coli K-12 OMVs. However, separation of OMVs from co-purified fimbriae and/or flagella has 

also been an unresolved issue for others in the literature (Figure 3.34). 

6.1.1.2 E. coli and P. aeruginosa OMV characterisation (Gram-negative bacteria) 

Purified OMVs were visualised by TEM and were very similar in size and appearance to those in the 

literature (Figure 3.17). The proteins found within the purified OMVs were identified by SDS-PAGE 

gels and mass spectrometry and Western blotting was used to confirm the presence of FimA monomer, 

Flagellin monomer and OmpA in E. coli OMV samples. Purified OMVs were confirmed as being whole 

and intact by using a Proteinase K test. The Proteinase K test was optimised during this study and also 

identified which proteins were protected within the OMVs from extracellular proteases. Purified E. coli 

K-12 OMVs were found to contain active proteases capable of degrading flagella. Methods of OMV 

quantification trialled were using a Bradford assay, a NanoPhotometer 50 and DLS. It became apparent 

that the presence of fimbriae or flagella co-purified with OMVs causes errors in DLS readings (Figure 

3.32) and that the protein concentration was below the detection limit for NanoPhotometer 50 (Section 

3.2.6.1). For this reason, a Bradford assay was used for OMV quantification in this study. 

6.1.1.3 Streptomyces S4 MV characterisation (Gram-positive bacteria) 

MVs were purified from Streptomyces S4 and the three mutant strains: ΔantC, ΔfscC and ΔantC ΔfscC. 

The purified MVs were visualised using TEM and were found to be similar in diameter and appearance 

to purified Streptomyces lividans MVs in the literature (Schrempf, Merling. 2015). Confocal 

microscopy using WGA-FITC indicated that the MVs are composed of the cytoplasmic membrane with 

no peptidoglycan layer present (Section 5.2.2). Furthermore, a serine protease was found within all of 

the purified S4 MVs which was identified by SDS-PAGE gels and mass spectrometry. Lastly, a 

reproducible bioassay was developed to measure the antifungal effect of Streptomyces S4 MVs against 

C. albicans.  
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6.1.2 What are the differences in (O)MV composition, cargo and function from both 

Gram-negative and Gram-positive bacterial strains? 

6.1.2.1 E. coli OMV cargo 

OMVs from E. coli wild type and recombinant strains have different protein profiles 

The number of OMVs released from the engineered E. coli B strains was higher than the E. coli K-12 

WT strains. Moreover, E. coli K-12 OMVs are enriched with specific proteins unlike OMVs from B 

strains which appear to contain many proteins with no particular proteins enriched. 

 

FimA and Flagellin monomers are packaged into E. coli K-12 OMVs 

One of the most convincing pieces of evidence to support the packaging of FimA and Flagellin 

monomers into OMVs is the immunogold labelling of OMVs embedded in resin (probed with anti-

FimA monomer and anti-Flagellin antibody). Secondly, SDS-PAGE gels and Western blots repeatedly 

showed FimA and/or Flagellin monomers in the periplasmic fraction of E. coli cells and their respective 

purified OMV samples. Lastly, the Proteinase K tests repeatedly gave evidence that the Flagellin 

monomer is protected (most likely structurally) within the OMVs. Unfortunately, the Proteinase K test 

could not be used as evidence that FimA monomer is packaged into K-12 OMVs. This is because FimA 

monomer was not degraded by Proteinase K under the usual assay conditions. 

FimA and Flagellin monomers are packaged into E. coli K-12 OMVs in a mutually exclusive 

way unless there are mutations in the OMV-producing cell 

E. coli K-12 strains MG1655 and the Keio collection parental strain BW25113 produce Type 1 fimbriae 

and package FimA monomer into their OMVs. Deletions in certain fimbriae or flagella-associated genes 

caused alterations to the FimA/Flagellin packaging into OMVs as follows: 

• If Type 1 fimbriae production is disrupted in an E. coli MG1655 or BW25113 strain, the cell 

switches to production of flagella. This results in the packaging of Flagellin into OMVs instead 

of FimA.  

Examples: FimB-LacZ fusion strain, ΔfimA, ΔfimB, ΔfimF strains. 

• Certain mutations in the E. coli cell lead to a dysregulation in the packaging of Flagellin and 

FimA monomers in a way that both are packaged together. 

Examples: Fimbriae locked on strain, ΔfimE, ΔfimG, ΔfimH, ΔfimI, ΔlrhA strains 

• Mutations in proteins relating to flagella biosynthesis did not affect the cells production of 

Type 1 fimbriae or the packaging of FimA into the OMVs. 

Examples: ΔfliD, ΔfliS, ΔflhA strains 

• If neither flagella or fimbriae are expressed on a cell, neither FimA or Flagellin were packaged 

into the OMVs. 

Examples: E. coli Parental B strain, BL21 and BL21 (DE3), ΔfimD strains 
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It was noted that deletion of either FimC or FimF caused the cell to produce flagella rather than Type 1 

fimbriae. This resulted in the packaging of Flagellin into OMVs and not FimA. Both FimC and FimF 

interact with FimA monomers during the formation of Type 1 fimbriae. This could suggest that FimC 

and FimF play a role in preparing FimA monomers for incorporation into OMVs. It is also possible that 

the chaperone protein FimC delivers the FimA monomers to the site needed for incorporation into 

OMVs. 

 

Current theory on the reason for the mutually exclusive packaging of FimA and Flagellin 

It appears that in the majority of E. coli K-12 strains, FimA and Flagellin are reciprocally regulated and 

are packaged in OMVs independently of each other. FimA and Flagellin monomers have opposite 

effects on the hosts’ immune response so it makes sense to package them in a mutually exclusive way 

into OMVs. Table 6.1 outlines other studies in the literature that have found FimA and Flagellin 

monomers in OMVs. 

 

Table 6.1 Summary of findings and hypotheses for the mutually exclusive packaging of FimA and 

Flagellin 

 

 

 

 

 

 

 

 

 

 

Clinical E. coli K-12 isolate study 

Finally, six E. coli clinical isolates were examined to see if the purified OMVs contained FimA and/or 

Flagellin monomers. Three of the six clinical isolate strain OMVs contained neither FimA or Flagellin. 

One of the clinical isolates contained both FimA and Flagellin packaged together. One clinical isolate 

expressed Type 1 fimbriae and packaged FimA monomer into the OMVs (but not Flagellin). Another 

clinical isolate expressed flagella and produced OMVs containing Flagellin (but not FimA). This makes 

these findings clinically relevant and will be discussed further in Section 6.3.1. However, it does 

highlight that the mutually exclusive packaging of FimA and Flagellin into OMVs is not a clear-cut 

story and that there is further research needed to understand the cargo selection and exclusion process.  

Characteristics Cell Adhering Cell Motile

Extracellular appendages Type 1 fimbriae Flagella 

Protein OMVs are most 

enriched with
Monomeric FimA Monomeric Flagellin

Effect of protein on the 

immune system

FimA monomer is anti-

inflammatory

Flagellin monomer is pro-

inflammatory

Evidence of effect of 

FimA/Flagellin monomer 

on host immune response 

from the literature

Sukumaran et al . 2010

Heimlich et al. 2004

Zgair, 2012

Yoon et al.  2017

Hatai et al. 2016

Hajam et al.  2017
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6.1.2.2 Streptomyces S4 MV cargo 

All evidence found suggests that Streptomyces S4 MVs contain candicidin. There were zones of 

inhibition formed against C. albicans when purified MVs from both Streptomyces S4 wild type and 

ΔantC strains were added to the plates. However, there were no zones of inhibition formed from MVs 

isolated from ΔfscC and ΔantC ΔfscC strains. As the ΔantC strain cannot produce antimycin, candicidin 

must be the antifungal compound present within the MVs (see Section 5.3.3 for full explanation). Three 

different methods were developed to extract candicidin from the Streptomyces S4 MVs using butanol. 

This gave a clear UV-Vis spectra characteristic of candicidin found in MVs from Streptomyces S4 WT 

and ΔantC. These results are also in agreement with the results of the zone of inhibition plates with C. 

albicans. 

6.1.3 Can we target a protein of interest to be incorporated into bacterial MVs? 

6.1.3.1 FimA (E. coli OMVs) 

GFP was successfully targeted to E. coli K-12 OMVs by fusion to FimA monomer. However, 

expression of a FimA fusion protein using a plasmid caused an unexpected hypervesiculation of the 

strain. Furthermore, the OMVs produced appeared to contain many proteins with no particular proteins 

enriched in the OMVs. The experiments showed that to target a protein of interest to E. coli K-12 

OMVs, a chromosomal insert of the protein within the fimA gene was required. 

6.1.3.2 Flagellin (E. coli and P. aeruginosa OMVs) 

It is possible that Flagellin could be used in the same way as FimA to target cargo to E. coli K-12 

OMVs. Additionally, B-type Flagellin was detected as one of the most heavily enriched proteins found 

in P. aeruginosa OMVs so, in theory, could be used in the same way. 

6.1.3.3 Serine protease (Streptomyces S4 MVs) 

One protein in particular appeared to be enriched in the Streptomyces S4 MVs compared with the 

protein profile of the whole cells. This protein was identified by mass spectrometry and it was found to 

be a serine protease. Perhaps this could be used as a target to fuse proteins of interest to or as a 

biomarker of Streptomyces S4 MVs. 

6.2 Unanswered questions and further work 

6.2.1 Possible improvements to the methods used to characterise purified MVs 

6.2.1.1 Is there a better method for purifying OMVs than the protocol developed? 

The OMV purification protocol successfully isolated OMVs from all bacterial strains tested. However, 

fimbriae and flagella are consistently co-purified with E. coli OMVs which was not resolved. One 

solution for this could be to purchase a specialised OMV purification kit which claims to purify OMVs 

quickly and with minimal contaminants from the cell. The main OMV isolation kit currently on the 



 

220 

 

market is the System Biosciences ExoBacteria™ OMV Isolation Kit (EXOBAC100A-1). However, 

unfortunately it was not cost effective to purify OMVs using this kit for this project.  

6.2.1.2 What is the best method to quantify MVs? 

In this study, MVs were quantified using a Bradford assay which measures the concentration of protein 

present in each MV sample. Dynamic light scattering (DLS) was also trialled to quantify OMVs. 

However, the DLS appeared to detect the fimbriae and flagella in the samples rather than the OMVs. 

This led to inaccurate quantification of the OMVs. The NanoPhotometer 50 (Implen) also was trialled to 

quantify MVs, however, this technique was found to not accurately detect protein concentrations under 

50 µg/mL. Alternative options for MV quantification are by flow cytometry (Wieser et al. 2014) or 

Nanoparticle tracking analysis (Gerritzen et al. 2017).  

6.2.2.3 Further characterisation of MV proteases 

Further attempts to characterise proteases within P. aeruginosa, E. coli and Streptomyces S4 MVs could 

be beneficial. Characterisation of proteases was trialled in an attempt to couple cargo function to MV 

production. If MV protease activity directly correlates to MV production, a colorimetric assay could 

potentially be developed to quantify MVs and learn more about factors that affect vesiculation. In this 

study, MVs from E. coli, P. aeruginosa and Streptomyces S4 were incubated for 1 hour with the 

chromogenic esterase substrate 4-nitrophenyl acetate. Unfortunately, it was discovered that the substrate 

was unexpectedly reacting with both LB and ammonium sulphate. For this reason, the colour change 

could not clearly be correlated with MV protease activity. In order to characterise MV proteases further, 

kits such as the Sigma Protease Fluorescent Detection Kit (PF0100) or Zymogram gels (Novex) could 

be used. 

6.2.2.4 Characterisation of the lipid and DNA components of purified MVs 

The main focus of this study was to characterise the protein profile of the MVs. Unfortunately, time did 

not allow for characterisation of the lipid content of the MVs. Initially, purified membrane vesicles 

could be visualised using Nile red or FM4-64 dyes, which would provide further evidence that the 

OMVs purified are genuine. During the Proteinase K test in Chapter 3, the presence of 0.02% (w/v) 

SDS caused disruption of E. coli and Streptomyces S4 MVs. This allowed Proteinase K access to the 

proteins, which are usually protected within the MVs and allowed their degradation. However, this did 

not seem to be the case for OMVs purified from P. aeruginosa strains PA01 and PA14, which did not 

appear to be disrupted after addition of 5% (w/v) SDS. This could be investigated further using a range 

of detergents and comparing the lipid composition of E. coli and P. aeruginosa OMVs. A study into 

differences in lipid composition may provide insight into the differences in OMV stability in the 

presence of detergents. Lastly, time did not allow characterisation of any DNA found within the OMVs. 

The development of a technique to amplify OMV DNA by PCR may also be useful.  
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6.2.2 Main unanswered questions about OMV cargo 

6.2.2.1 How are FimA or Flagellin monomers delivered to the OMVs? 

FimA and Flagellin are likely to be packaged into OMVs via different mechanisms due to their 

locations within the cell. Flagellin monomers usually reside in the cytoplasm whereas FimA monomers 

are found in the periplasm. During flagella biosynthesis, Flagellin monomers are transported directly 

from the cytoplasm into a central channel (which bypasses the periplasm) to be added to the growing 

filament (see Section 1.6.4). However, Western blotting in this study indicated that Flagellin destined 

for the OMVs was transported to the periplasm first (Figure 4.8). In order to elucidate the mechanisms 

of targeting proteins such as Flagellin to the periplasm, the Sec or Tat pathways could be disrupted to 

see the effect on the proteins packaged within the OMVs. An example of this would be inhibition of the 

Type I signal peptidase enzyme, which cleaves the signal peptide of proteins during translocation.   

6.2.2.2 How does the cell prevent premature polymerisation of FimA or Flagellin monomers 

destined for OMVs? 

Both FimA and Flagellin monomers have strong oligomerisation potential and bind to chaperone 

proteins to prevent premature polymerisation (FimC and FliS). It is also known that FimA monomers 

can adopt an alternative conformation which prevents polymerisation (Zyla et al. 2019). It is possible 

that the FimA and Flagellin monomers have an additional signal sequence that targets them to sites 

where vesiculation occurs. To identify any differences in signal sequence, FimA purified from Type 1 

fimbriae can be compared to those found in OMVs by N-terminal sequencing. Similarly, Flagellin 

purified from flagella and OMVs can also be compared. 

6.2.2.3 Is the mutually exclusive packaging of FimA and Flagellin monomers beneficial in 

vivo? 

The effect of FimA monomers and Flagellin monomers on the human immune system from OMVs 

could be studied either in vitro and in vivo. This may give further insight into why these proteins are 

enriched in E. coli OMVs.  

 

6.2.3 Discussion of findings about Streptomyces S4 MVs 

Further characterisation of Streptomyces S4 MVs 

Further MV characterisation is needed to reach the same standard of OMV characterisation from Gram-

negative bacteria. Characterisation work could include application of the Proteinase K test to confirm 

that the MVs are intact and also confirm which proteins are protected within the MVs. Streptomyces S4 

MVs could also be run on the DLS machine to estimate MV size and quantity. MV biogenesis could 

also be studied using TEM and further confocal microscopy using the WGA-FITC tag. In the literature, 

MV biogenesis from Streptomyces lividans was observed using lipid-specific dyes. They discovered 

that “lipid- and phospholipid-rich sites at the substrate hyphae correlate with clusters of vesicle-like 
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particles” (Schrempf, Merling. 2015). TEM images could also be improved by embedding the cells and 

MVs in resin for EM to see a cross-section inside the cells/MVs. 

6.3 Wider Implications of study  

6.3.1 Blocking FimA and/or Flagellin incorporation into OMVs could be a drug target for 

preventing or treating E. coli infection 

In this study, six clinical E. coli isolates were examined to see if the OMVs produced contained FimA 

and/or Flagellin. One of the clinical isolates expressed Type 1 fimbriae and the OMVs produced 

contained FimA monomers. Another clinical isolate expressed flagella and produced OMVs containing 

Flagellin. The selective enrichment of these two proteins indicates that the packaging is deliberate and 

most likely beneficial to the pathogenicity of the E. coli cell. For this reason, preventing OMV 

production or disrupting the OMVs produced could be a potential drug target for preventing or treating 

E. coli infection. In this study, B type Flagellin monomer was also detected in OMVs from both PA01 

and PA14 which express flagella. This indicates that this finding could be relevant to a range of other 

bacterial species including P. aeruginosa. 

6.3.2 Using targeted expression of recombinant proteins and other molecules for drug 

delivery using OMVs 

As demonstrated in Chapter 4, GFP was successfully targeted to E. coli K-12 OMVs by protein fusion 

to FimA. Other proteins of interest could be targeted to OMVs using this method which could be used 

for drug delivery. Other enriched proteins in OMVs such as Flagellin could also be used for protein 

fusions. For this application, further research on the effect of these OMVs on the host immune system is 

needed as well as modification of the OMV to reduce its immunogenicity.  

6.3.3 Using Gram-positive MVs for targeted drug delivery 

Packaging antifungal compounds (such as candicidin) within a vesicle may enhance its uptake by the 

target cells and enhance the killing. This is a similar method to the AmBisome where Amphotericin B is 

packaged in a liposome for enhanced uptake (see Section 1.9.3). Studying the natural packaging of 

antifungals in MVs by Streptomyces S4 could be useful in enhancing the delivery of anti-fungal drugs 

within vesicles for therapeutic purposes. The study of MVs from Gram-positive bacteria is a relatively 

new area of research which could have potential for use in vaccines and drug delivery in the same way 

as OMVs. Although the proteome analysis of the Streptomyces S4 MVs was limited, a serine protease 

was detected. Fusion of a protein of interest to the serine protease could be a potential method to target 

cargo to S4 MVs.  

6.3.4 Vaccines and immunogenic properties 

The membrane vesicles secreted by bacteria are naturally immunogenic and so have the potential to be 

used as vaccines against a range of diseases. One advantage of using MVs for vaccines are that they can 

be easily manipulated and engineered to display specific bacterial antigens either inside or on their 
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surface. An example of this was the targeting of GFP to E. coli K-12 OMVs by fusion to FimA. Purified 

E. coli OMVs are also being sold as inducers of the immune response for research purposes. For 

example, purified E. coli BL21 OMVs are currently sold as potent inducers of Caspase 11-4/5 

inflammasome and activators of TLR2 and TLR4 which recognise bacterial cell walls (InvivoGen, 

catalogue code: tlrl-omv).  

6.3.5 Packaging of recombinant proteins into OMVs impacts biotechnology 

Information about E. coli OMV biogenesis and cargo is useful as B strains are commonly used for 

recombinant protein production. It is possible that some of the recombinant proteins of interest are being 

packaged and secreted in OMVs, decreasing the final yield of purified protein. It is also still unclear 

how the expression of plasmids influence OMV production and cargo. Further research is needed to 

quantify the yield of recombinant proteins lost through packaging into E. coli OMVs.  

 

6.4 Contributions to the field and final thoughts 

Throughout this project, membrane vesicles have been isolated and characterised from a wide range of 

bacterial strains. During the project, it became possible to separate the membrane vesicles into three 

distinct categories based on their different characteristics. Table 6.2 is a final summary of the findings 

for each membrane vesicle type. Some of the findings in this study are novel and will contribute to the 

current MV knowledge already in the literature. This information may be used in the development of 

using MVs for therapeutic purposes in the future.  
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Table 6.2 Final summary of MV findings which are separated into three categories 

  

 

  

Wild type OMVs Recombinant OMVs 

Proposed function of 

vesicles

Signalling function in vivo : 

secreting OMVs that contain 

specific cargo to benefit the 

OMV-producing cell

(e.g. virulence factors)

Secreted as part of a stress 

response. For example, to remove 

any accumulations of unwanted 

products in the cell

Produced to secrete the insoluble 

antifungal compound candicidin 

into the environment

Examples of bacterial 

strains studied

PA01 , PA14 , E. coli  K-12, E. 

coli clinical isolates
E. coli B strains Streptomyces  S4 strains

Membrane vesicle 

composition

Formed from the outer membrane 

and contains cargo from the 

periplasm

Formed from the outer membrane 

and contains cargo from the 

periplasm

Formed from the cytoplasmic 

membrane and contains cargo 

from the cytoplasm

Enrichment of 

particular proteins 

within vesicles?

Does the strain 

hypervesiculate?

Co-purification of 

fimbriae or flagella 

with OMVs?

Antifungal compounds 

detected in MVs?

Protein cargo detected 

in vesicles

PA01/PA14 : B type flagellin,

phage tail protein, elastase, 

aminopeptidase, chitin-binding 

protein 

                                                                                                                   

E. coli K-12: FimA, Flagellin, 

OmpA, Antigen 43, Flagellar 

hook protein FlgE 

E. coli BL21 (DE3): OmpF, 

OmpA

Streptomyces  S4: Serine 

protease, succinate 

dehydrogenase

Gram-negative bacteria
Purified vesicle 

characteristic
Gram-positive bacteria

Streptomyces S4 

wild-type

Streptomyces  S4 

ΔantC

Streptomyces S4 

ΔfscC 

Streptomyces  S4 

ΔantCΔ fscC

Bacterial cells

Purified 

membrane 

vesicles

Conclusions 

drawn

WT cells are known 

to produce 

Candicidin and 

Antimycin. MVs 

contain at least 1 

antifungal as there 

was a zone of 

inhibition

ΔantC cells 

produce Candicidin 

only (no 

Antimycin). MVs 

must contain 

Candicidin as there 

was a zone of 

inhibition

ΔfscC cells 

produce Antimycin 

only (no 

Candicidin). MVs 

must not contain 

Antimycin as there 

was no zone of 

inhibition

Streptomyces  S4 

ΔantCΔ fscC cells 

do not produce 

Antimycin or 

Candicidin so there 

was no zone of 

inhibition with the 

cells or the MVs 

Sample

Is a zone of inhibition produced with C. albicans ?

Streptomyces S4 

wild-type

Streptomyces  S4 

ΔantC

Streptomyces S4 

ΔfscC 

Streptomyces  S4 

ΔantCΔ fscC

Bacterial cells

Purified 

membrane 

vesicles

Conclusions 

drawn

WT cells are known 

to produce 

Candicidin and 

Antimycin. MVs 

contain at least 1 

antifungal as there 

was a zone of 

inhibition

ΔantC cells 

produce Candicidin 

only (no 

Antimycin). MVs 

must contain 

Candicidin as there 

was a zone of 

inhibition

ΔfscC cells 

produce Antimycin 

only (no 

Candicidin). MVs 

must not contain 

Antimycin as there 

was no zone of 

inhibition

Streptomyces  S4 

ΔantCΔ fscC cells 

do not produce 

Antimycin or 

Candicidin so there 

was no zone of 

inhibition with the 

cells or the MVs 

Sample

Is a zone of inhibition produced with C. albicans ?

Streptomyces S4 

wild-type

Streptomyces  S4 

ΔantC

Streptomyces S4 

ΔfscC 

Streptomyces  S4 

ΔantCΔ fscC

Bacterial cells

Purified 

membrane 

vesicles

Conclusions 

drawn

WT cells are known 

to produce 

Candicidin and 

Antimycin. MVs 

contain at least 1 

antifungal as there 

was a zone of 

inhibition

ΔantC cells 

produce Candicidin 

only (no 

Antimycin). MVs 

must contain 

Candicidin as there 

was a zone of 

inhibition

ΔfscC cells 

produce Antimycin 

only (no 

Candicidin). MVs 

must not contain 

Antimycin as there 

was no zone of 

inhibition

Streptomyces  S4 

ΔantCΔ fscC cells 

do not produce 

Antimycin or 

Candicidin so there 

was no zone of 

inhibition with the 

cells or the MVs 

Sample

Is a zone of inhibition produced with C. albicans ?

Streptomyces S4 

wild-type

Streptomyces  S4 

ΔantC

Streptomyces S4 

ΔfscC 

Streptomyces  S4 

ΔantCΔ fscC

Bacterial cells

Purified 

membrane 

vesicles

Conclusions 

drawn

WT cells are known 

to produce 

Candicidin and 

Antimycin. MVs 

contain at least 1 

antifungal as there 

was a zone of 

inhibition

ΔantC cells 

produce Candicidin 

only (no 

Antimycin). MVs 

must contain 

Candicidin as there 

was a zone of 

inhibition

ΔfscC cells 

produce Antimycin 

only (no 

Candicidin). MVs 

must not contain 

Antimycin as there 

was no zone of 

inhibition

Streptomyces  S4 

ΔantCΔ fscC cells 

do not produce 

Antimycin or 

Candicidin so there 

was no zone of 

inhibition with the 

cells or the MVs 

Sample

Is a zone of inhibition produced with C. albicans ?

Streptomyces S4 

wild-type

Streptomyces  S4 

ΔantC

Streptomyces S4 

ΔfscC 

Streptomyces  S4 

ΔantCΔ fscC

Bacterial cells

Purified 

membrane 

vesicles

Conclusions 

drawn

WT cells are known 

to produce 

Candicidin and 

Antimycin. MVs 

contain at least 1 

antifungal as there 

was a zone of 

inhibition

ΔantC cells 

produce Candicidin 

only (no 

Antimycin). MVs 

must contain 

Candicidin as there 

was a zone of 

inhibition

ΔfscC cells 

produce Antimycin 

only (no 

Candicidin). MVs 

must not contain 

Antimycin as there 

was no zone of 

inhibition

Streptomyces  S4 

ΔantCΔ fscC cells 

do not produce 

Antimycin or 

Candicidin so there 

was no zone of 

inhibition with the 

cells or the MVs 

Sample

Is a zone of inhibition produced with C. albicans ?

Streptomyces S4 

wild-type

Streptomyces  S4 

ΔantC

Streptomyces S4 

ΔfscC 

Streptomyces  S4 

ΔantCΔ fscC

Bacterial cells

Purified 

membrane 

vesicles

Conclusions 

drawn

WT cells are known 

to produce 

Candicidin and 

Antimycin. MVs 
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