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Abstract

Offshore oil and gas assets are highly complexcairas comprising of several components,
designed to have a lifecycle of 20-25 years of wwaykunder harsh operational and
environmental conditions. These assets, during theerational lifetime, are subjected to
various degradation mechanisms such as corrosiosioa, wear, creep and fatigue cracks.
In order to improve economic viability and incregsefitability, many operators are looking
at extending the lifespan of their assets beyordotiginal design life, thereby making life
extension (LE) an increasingly critical and higkligcussed topic in the offshore oil and gas
industry. In order to manage asset aging and nheekE requirements, offshore oil and gas
operators have adopted various approaches suchllagifg maintenance procedures as
advised by the original equipment manufacturer (QEBF using the experience and
expertise of engineers and inspectors. Howevefpimeing these activities often provides
very limited value addition to operators during tie period of operation. This paper aims to
propose a systematic framework to help operatorst hE requirements while optimizing
their cost structure. This framework establishesnéegration between three individual life
assessment modules, namely: condition assessmeemdjring useful life (RUL) prediction
and LE decision-making. The benefits of the progosamework are illustrated through a
case study involving a three-phase separator systemplatform which was constructed in
the mid-1970s in West Africa. The results of thiady affirm the effectiveness of this
framework in minimizing catastrophic failures duithe LE phase of operations, whilst
ensuring compliance to regulatory requirements.
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1. Introduction

Rejuvenating existing fields through life extensi@tE) is regarded as one of the most
lucrative strategies for end-of-life managementimithe offshore oil and gas industry. This
has led to an increase in initiatives aiming aterding the service lifespan of existing
installations operating within these fields. Ovealfiof the installed structures in both the
North Sea and Gulf of Mexico regions have gone fasit original design lives of 20-25
years (Ersdal and Selnes, 2010; Ersdal, 2005; y&ica., 2008). The operational lives of
these assets not only are dependent on environiieating conditions but also are related
to the age of oil field. Hence, for conducting LEadysis, it is imperative to understand the
operational life of an asset tied to a field’s life

A typical operational timeline for an offshore odnd gas asset linked to the
corresponding field life is illustrated in Figure The asset life begins at tinhe 0, which
indicates the time of commissioning of the fieldlaommencement of operation of the asset.
The asset operates until the padintl,, wherel, denotes the end of original field life and
marks the beginning of the life extension phasepafration, owing to the remaining reserves.
However, in order to be granted a license untileatended operational peridd (> o),
companies are obligated to meet some regulatonyireggents. To meet these requirements
while simultaneously ensuring profits from the exted period of operations, the asset
managers need to address the following fundameguoestions:

1) How operators can make sure whether their exisasgets will be satisfactorily
operating after end-of-life or they must be diseardt time=1,?

2) How long will be allowed to extend the life of atstor?

3) What type of integrity management programme needset put into place to support
asset operations over the life extension period?

“Fig. (No. 1)’

Figure 1. The original design life and the extendetife of an asset.

In order to provide appropriate answers to abowstijons, Vaidya and Rausand (2011),
Animahet al. (2016) and Shafieet al. (2016) suggested, in their respective studies,itha
vital for LE decision makers to estimate the renmgruseful life (RUL) of their candidate
equipment, as it will enable stakeholders to achiaccurate conclusions during the LE
decision-making process. Also, Liabal. (2006) suggested that when ageing degradation is
detected, it is important to re-estimate the RULonder to expedite urgent maintenance
decisions and avert possible failures. This is bseathe preliminary RUL estimated for
offshore oil and gas equipment at the design sggéen conservative, since in practice, the
actual operational and environmental conditionslmadifferent than those considered during
design. Hence, during the LE decision-making precaa enhanced computation process is
imperative to determine the actual remaining serlife of critical systems, subsystems and
components, which may be shorter or longer thatifdthestimated during design.



The concept of RUL is popular in operational reskareliability and statistics literature,
and has real life applications in industries such naaterial science, biostatistics and
econometrics (Set al., 2011). However, very little research efforts hdoezn carried out
towards analysing how RUL prediction can supportddeision making in the offshore oil
and gas industry. As a step in that direction, $higly proposes a framework that establishes
an integration between asset condition assessriRfit, estimation and the LE decision
making process. Hence to reiterate, the proposachework is broken down into three
modules, namely: i) condition assessment modulaclwkvaluates the current technical
health status of subsystem and components; ii) Rtédiction module, which estimates the
maximum duration of time a subsystem or componantaperate beyond its original design
life; and (iii) LE management module, which estslbéis the LE management program for the
candidate equipment based on RUL results. The frammiefacilitates assets managers to
provide appropriate answers to above-mentioned tigmss which help minimize the
occurrence of undesirable consequences such agefreqnplanned shutdowns, production
losses and environmental damages attributed tospested failures. The benefits of this
integrated approach are illustrated through a sasey involving a three-phase separator
system on an oil platform.

The rest of this paper is structured as followsti8e 2 provides an overview of the
state-of-the-art of RUL and its applications withthe offshore oil and gas sector.
Subsequently, Section 3 highlights the factors thfitence RUL prediction for offshore oil
and gas assets. Section 4 proposes the integrameition assessment, RUL prediction and
life extension decision making framework. Thereaft@ection 5 presents a case study to
demonstrate, test and validate the proposed framkearnd further discusses the findings.
Finally, the conclusions as well as future worledtrons are presented in Section 6.

2. State-of-the-art of remaining useful life (RUL)in the oil and gas industry

According to Banjevic and Jardine (2006) and Gataal. (2012), the time left before a
system fails to operate at acceptable levels mmed to as ‘remaining useful lif¢RUL).
The purpose of RUL is to predict failure time befotr occurs, based on current and past
conditions of a system (Jardieeal., 2006). RUL is one of the key factors which sholodd
considered when implementing condition monitorin@M) and prognostic health
management (PHM) (Cwt al., 2004; Leeet al., 2006). Wang and Zhang (2008) suggested
that precise and proper estimation of equipment RELimperative for cost-effective
operations as well as prompt maintenance respo»es. the past few years, RUL has
emerged as a plausible technical health assessandmndecision-making tool for equipment
in the offshore oil and gas industry, while keeplifg cycle costs low and helping operators
meet regulatory requirements.

Literature on RUL estimation to support decisionking in the offshore oil and gas
industry encompasses both deterministic and prébiabimethods. RUL approaches are
classified either as physics-based approach, datardapproach, or fusion approach which
is a hybrid of the physics and data driven appresclVardeet al., 2014), while



Ahmadzadeh and Lundberg (2013) also added the iexgretrbased approach as the fourth
classification. A brief discussion and applicatioheach of these approaches is presented
below.

2.1 Physics-based approach

The fundamental principle behind the physics-basggroach is the formulation of
theoretical mathematical models to interpret eqeipirdegradation and damage modelling
over time. These models involve the evaluationadlfife modes such as crack propagation,
wear and corrosion degradation rate of equipmeataiGet al., 2012). In situations where
the accuracy of prediction is crucial and accestata is limited, these physics-based models
are suitable and they also take various environah@ainditions into account. These models
are often expressed in terms of differential equmatior partial differential equations and can
be solved analytically or numerically due to tHeirel of complexity.

Several studies have so far utilized the physicetaapproach for estimating RUL to
support the decision making process in the offsbdrand gas industry. Dowdst al. (1988)
developed a methodology for predicting the RUL wofimservice mooring chain. Diving
al. (1993) employed both qualitative and quantitaépproaches for determining the RUL of
submersible pumps which were used in the upstrezgtorsof the oil and gas industry.
Ammtatmula and Ohl (1997) investigated the cornosigated, life-limiting conditions of a
double-shell tank, and thereafter developed a mtmealstimate its RUL for an extended
service life. Vaidya (2010) reviewed the technigcaalth factors that influence RUL decision
making process. The paper suggested Bayesian Ba&igiork (BBN) as a useful technique
for RUL estimation. Vaidya and Rausand (2011) psagba LE decision making model
based on RUL prediction by combining heterogene@aggiirements such as degradation
modelling, uncertain environmental and operatioc@hditions, uncertain sensor data and
expert judgement. The study further concluded tha@hysics-based approach is the most
appropriate technique for supporting LE decisiorkimgin the offshore oil and gas industry.
Yasseri and Mahani (2016) presented a simple sfgleeet probabilistic procedure to assist
engineers in determining the RUL of offshore oitlayas pipelines. This approach was based
on reliability index method.

2.2 Data-driven approach

The data-driven approach employs a network of gertsomonitor equipment health status.
Data is extracted from sensor signals and someagbied models such as Bayesian models,
Cox model, regression models, etc. are then usedtimate the RUL of equipment. In the
offshore oil and gas industry, some studies havgliep the data-driven approach for
estimating RUL to support decision making proceksllenberg (1998) developed a
probabilistic approach to determine the remainiaryise life of reformer furnace catalyst
tubes. The proposed methodology was used to estithatcumulative probability of failure,
time-to-crack initiation and time-to-failure, inrtes of furnace operating hours. Kallenberg
and Munsterman (2002) used a data-driven appraaphesent a guideline for estimating the
RUL of a catalytic reformer reactor in a petrocheshirefinery. Garveyet al. (2009)
introduced a pattern-recognition-based frameworkptedict the RUL of a bottom-hole
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assembly tool. Gola and Nystad (2011a) utilizedtissieal methods to calculate the
degradation as well as RUL of choke valves in tthendustry. Wilks (2012) demonstrated
how corrosion process data could be used in a atitonlmodel to predict the RUL of Coker
furnaces in refineries. Nystad al. (2012) scrutinised the problems associated with. RU
prediction in the offshore oil and gas industry hising stochastic models. Shasfial.
(2015) forecasted the RUL of pipes using a machaaning technique, derived from
thickness measurement, which was able to use thdtseto alert maintenance engineers
regarding the timing to undertake appropriate astio

2.3 Fusion approach

The fusion approach was suggested because oftitations in both physics-based approach
and data-driven approach (Cheng and Pecht, 200¢jeV& al., 2014). In the fusion
approach, the strength of one approach mitigatesmakness of the other. The approach
combines sensor acquired data as well as physgedbmonitored data to form a new
database, in order to predict the RUL of a sysfEnis approach has been deployed for cases
in electronics, railway and the aircraft industrisse e.g. Cheng and Pecht, 2009; Getlar
al., 2013; Sankavaramt al., 2009; Xuet al., 2014). In the offshore oil and gas industry, few
studies have employed fusion approach for estigaRbL to support decision making
process. Jaske and Shannon (2007) combined spedianalytical models with a multi-
parameter inspection technique to predict the Rfketormer tubes. Nystadt al. (2010)
proposed a prognostic model to estimate the RUthoke valves on a platform subjected to
erosion due to sand particles in wells. Gola andtaty (2011b) proposed a diagnostics-
prognostic model for estimating RUL as well as thehnical health condition of choke
valves on oil and gas platforms.

2.4 Experimental -based approach

The experimental-based approach collects data ftr &stimation through experiments, in
order to obtain a better insight and understandirge lifetime and behaviour of equipment.
A typical data collection process for this appro&chollating data obtained from accelerated
life testing (ALT) of components in laboratoriesdatmen using test rigs to simulate the real
life conditions. Medjaheet al. (2012) substantiated the physics-based approactdaitad
driven approach, utilizing experimental data oledifrom ALT of bearings.

While reviewing the literature on RUL estimationdaits application in the offshore oil
and gas industry, it is observed that the physased and data-driven approach are more
popular and have been addressed by many researnhessparison to other approaches.
However, Vaidya and Rausand (2011) suggested hbattysics-based approach is the most
appropriate approach for LE applications. Hokstadl. (2010) also indicated that due to
limited access to good quality data within the lodie oil and gas industry, the physics-based
approach is the most suitable approach for LE amglgince it requires lesser amount of data
in comparison to other approaches. However, tobigs of the authors’ knowledge, few
studies have attempted to establish a relationsbipreen condition assessment of critical
assets, RUL prediction, and LE decision making.
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3. Key influencing factors of remaining useful life(RUL) estimation

The LE decision-making process for structures,esystand components involves a number
of key technical, economic and organizational atspédentification of these factors provides
a strong foundation for making correct decisionsiceoning data collection, condition
assessment, RUL estimation as well as regulatoproapl for facilitating continuous
operation.

“Fig. (No. 2)"
Figure 2. Key influencing factors of RUL estimation

In this paper, we classify the factors influenciRiL estimation into input and
constraint factors (see Figure 2). A brief overvieW the influencing factors of RUL
estimation is presented in the next sub-sections.

3.1 Input factors

Vaidya (2010) and Vaidya and Rausand (2011) classthe input factors influencing RUL
estimation into three heads: technical health,gieiecords and environmental conditions.

3.1.1 Technical health

The technical health of an asset is gauged or pidgeng indicators such as technical
condition, working life history, environmental rosy, design records and reliability data
(Vaidya and Rausand, 2009). Thus, the technicdthhefan asset at any given tirhean be
described as the cumulative knowledge about art asgbat particular time. The technical
health status of equipment is interpreted basedsotechnical conditions and working life
history, which are explained briefly below.

Technical condition: The technical condition of assets is the healttustameasured
based on factors such as environmental conditioisnaechanical loadings. According to
Vaidya and Rausand (2011), some of these techrdoalition indicators are more
informative when monitored based on a continuoasesdor example, temperature, pressure
and noise, while other indicators are discrete ascleakage. Deterioration models are often
deployed to determine the health condition of indalsassets.

Working life history/Operational conditions: As oil and gas production field matures,
operators will have access to huge amount of opeedtdata or working life data. Therefore,
determining the RUL of critical assets at titn® support LE decision making process must
involve all operational information gathered frohettime of installation to the time of LE
decision. The working life information comprisestiboé age of the asset, degradation records,
failure records, condition monitoring informatianaintenance and modification information,
etc. The sources of these data include the expprigiement, manufacturers’ manuals,
operations and maintenance log books, inputs bkfaare working on the platforms as well
as electronic databases kept by the companies.

3.1.2 Environmental conditions



The environmental conditions predicted at early §fage of the asset life may change over
its lifetime as the asset may be subjected tomiffeenvironmental conditions. This may not
only introduce new failure modes but also incrdhserate of deterioration growth of existing
defects. Therefore, it is essential that the texdirealth assessment of an asset takes into
account the environmental conditions in which tesea is operating. According to Vaidya
and Rausand (2011), environmental conditions in&dion must include geographical
location of operations, geology of the well, wedesific data such as temperature, pressure,
viscosity level of the well product, gas content@atevr content and sand particles. Also,
depending on the location of the critical assetjrenmental factors such as wave height,
current and wind speed may also need to be takercamsideration.

3.1.3 Design history

Some offshore oil and gas assets (i.e. Christnegs trmbilical, manifold templates, control
modules, subsea pumps, subsea separators, pipetiogsare principally designed not to be
maintained. Therefore, estimating the RUL of suskets to support LE decision making
must take into account the verification of calcualias made during the design phase of the
asset life cycle. Design phase information typicaticlude material selection information,
equipment specification, design codes and standadgsign drawings, design life
calculations, and engineering variations post aesig

3.2 Constraints

The two key constraints that hamper the LE decisiaking process in offshore oil and gas
industry are the lack of access to good qualityadfr techno-economic feasibility
assessment as well as the ageing working forcestddlet al. (2010) reported that the
offshore oil and gas industry lacks data with ahhilggree of assurance to support the LE
decision making process. Also, workforce ageing dack of trained personnel will
negatively impact the success of the LE decisiokingaprocess. This is because by the time
when LE is due, some workforce with vital infornmatimay have been retired from active
service.

4. Proposed framework for risk based condition andRUL estimation

In this study, a framework to establish the inationship between condition assessment,
RUL estimation and LE decision making process &sented. The framework is divided into
three modules as shown in Figure 3.

“Fig. (No. 3)"
Figure 3. A process flowchart to estimate RUL for [E decision making

An essential facet in developing the above fram&waas a strong collaboration among
researchers as well as industrial experts, hawengral years of experience, ranging from 5
to over 30 years, in undertaking LE projects (sabld 1). These experts were drawn in from
Norway, UK and Gabon.



“Table (No. 1)”

Table 1. List of industrial participants

These facilitated in-depth interactions and shamfgexpertise by industrial experts
formed the basis for RUL data collection as wellf@scollating the challenges of LE in
relation to offshore oil and gas assets. The madegata collection involved face-to-face
semi-structured interviews, on-line surveys as aglieview of company internal documents.

4.1 Module 1: Condition assessment module

This module is responsible for assessing the cuhrealth status of critical subsystems or
components for extended operations. The key tas#terithis module are detailed below:

4.1.1 Selection of critical system

Since offshore oil and gas assets comprise of akperces of static, rotating, electrical and
communication systems, it is a technically and rfoally daunting task to assess the
condition of all systems operating on an assetndukiE phase of operation. Hoksteidal.
(2010) suggested that one of the key tasks durlaglécision making process is to screen
and prioritize critical systems that need specia¢rgion. This can be accomplished by
excluding pieces of equipment which present lovk tis safety and production. Critical
systems can be determined using experts’ judgeraedtrisk assessment tools such as
Failure Mode Effect Analysis (FMEA), Fault Tree Aysis (FTA) and Event Tree Analysis
(ETA). This study selected the critical systemsdondition assessment by using an in-house
prepared list of critical assets, thereby consmgequipment having higher risk of failure
and greater corresponding consequences during agepdt operation.

4.1.2 Breakdown of system into manageable units

In order to minimize the risk posed by equipmentirdy LE period of operation, the
condition of each subsystem or component of thectsll equipment is assessed. The
subsystems and components which are in the wonslitoen and can have major detrimental
impacts on reliability, availability, economic lgssafety and the environment, are identified.
This is achieved by dividing the selected equipmiei® manageable subsystems and
components, in order to identify safety and productrelevant subsystems. Khan and
Haddara (2004), Krishnasangy al. (2005) and Kharet al. (2008) showed that breaking
down a complex system into manageable units hallgetion makers focus on subsystems
and components whose failure may significantly iotpaverall system availability, result in
economic loss and raise safety and environmentaleros.

4.1.3 Condition assessment

A qualitative condition ranking matrix is used tnk the condition of the subsystems and
components. For equipment that have been in useviar20 years, the probability of failure
depends on both the current asset condition andpérrmance history of individual

components over the years. For our case studycuhent condition of subsystems or



components in relation to consequence will be assebased on technical conditions and
equipment operability.

A typical asset condition ranking matrix is shownTiable 2. As can be seen, both the
probability and the consequences of failure aregmized on a scale from 1 to 5. By
applying this equipment condition categorizatidrg subsystems or components appearing in
the red zone will be discarded. This is becauseseth®ibsystems and components are
considered to have failed the evaluation and calomger perform their intended function in
the specific environment. However, those found he fellow and green zones may be
gualified for LE. This process is repeated untilsalbsystem and components condition gets
assessed.

“Table (No. 2)"

Table 2. Condition ranking matrix

As depicted in Table 3, three colour codes are usethdicate potential courses of
action. This colour coding methodology has so &aduas an equipment condition acceptance
criteria for some industries such as electric powéiishore oil and gas and petrochemical
industries (Amir and Muttalib, 2014; Hameed and Kh2014; Carvalhet al., 2015).

“Table (No. 3)”

Table 3. Categorization of asset conditions

However, it should be noted that different conditidactors may influence the
construction of the matrix structure. The structwél be dependent on operational
philosophy of the respective company. Thereforeedding on the type of organization, the
matrix may change from 5x5 to 4x4 or 3x3.

4.2 Module 2: RUL prediction techniques for LE

In this module, we utilize the concept of RUL tegict the maximum duration of time that a
subsystem or component can operate beyond itsnatiglesignated life span, with the

purpose of optimizing operations while minimizingtastrophic failures during LE phase of
operation. In this case, RUL prediction models e#&her be probabilistic or deterministic,

but must take into account degradation factorsematproperties, geometry, operational and
environmental conditions, etc. (Vaidya and Raus&@d,1). The fundamental stages of the
second module are explained below:

4.2.1 Collect RUL data

The first step of the second module is to collateralevant RUL data for candidate

subsystems or components. This data includes largréesting measurements, ALT data,
sensor data from monitoring systems, expert knogdeenvironmental data and operational
information.

4.2.2 Analyse failure mechanism



In real life scenarios, there are more than orlaramechanisms associated with a particular
failure mode of subsystems or components operatitige offshore environment. Therefore,
it is vital for LE decision makers to explore varsofailure mechanisms associated with
failure modes and choose a dominant failure meshatiat impacts the functionality of the
subsystem or component. According to Vaidya andskwad (2011), the selection of this
dominant failure mechanism plays a pivotal role predicting the RUL of candidate
subsystems or components for LE.

4.2.3 Select RUL prediction model

Lifetime estimation models applied in the offshaieand gas industry to predict RUL of

systems and structures include Bayesian modeldjstetal and stochastic models,

computational intelligence models, physics-of-fe@lunodels and experts’ judgements. After
analysis of the possible failure mechanisms assmtiaith subsystems and components,
decision makers will be required to select the nmaggtropriate prediction model for the

specific application. One of the methods to setbet most suitable model is to map the
techniques against degradation mechanisms or agaeg/pe of data. Table 4 illustrates the
mapping of RUL prediction techniques against thessgme degradation mechanisms
available in the offshore oil and gas sector.

“Table (No. 4)”

Table 4. Technique versus degradation mechanism (agted from Okoh et al., 2014)

The selection of a suitable lifetime prediction rabds contingent on the dominant
failure mechanisms associated with the subsystentoomponents. The different RUL
prediction models are briefly explained below:

- Bayesian model

The Bayesian technique deals with how prior esesahould be modified in the light of
additional information (e.g. information receivetdr or information from another source).
In order to estimate, a parameter must be knowtherbasis of some prior information that
was available at that time and known to have aatertalue. Since this information is
incomplete or of a probabilistic character, theseai‘prior probability distribution’ of that
parameter. Further information with a differentusaland probability distribution for the
same parameter may be now available. Bayesianitpeh@allows the initial estimate (prior
distribution) to be modified based on this addigibmnformation, in order to obtain a
redefined updated estimate (posterior distributid@idya (2010) endorsed that the Bayesian
based RUL model presents the opportunity to combatk data from monitoring systems as
well as expert judgement, simultaneously for agseess purposes. The selection of prior data
is a difficult task during the LE decision makingopess, as availability of high quality
reliable data is always a challenge. In the absehgeior data, the ideal way to select prior
distribution will be to start with expert elicitati. For a comprehensive literature on Bayesian
approach, readers are referred to Gelstah. (2014).

- Satistical techniques and stochastic models
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In the case of increasing rate of occurrence tdres (ROCOF), often statistical techniques
are used for processing event data to assist nowigng in on the possible failures. Statistical
analysis is also commonly employed for reliabiligalculations and maintenance
optimization, and is derived from available failuexords collected over the life time of a
system. Some of the techniques used are the cgumtotess, regression analysis and trend
test. The MIL-HDBK-189 (1981); MIL-HDBK-217F (19989nd OREDA (2015) handbooks
contain statistical data and models for mechana&al electronic/electrical components,
respectively. For a more comprehensive review atissical data driven RUL approach, refer
to Siet al. (2011). However, Vaidya and Rausand (2011) meatlom a study that this
approach should not be used to estimate RUL of saffskore oil and gas components, due
to the paucity of data. On the other hand, stoah&sbdels are used to model equipment
degradation process. This approach has the cdpabilincorporate both dynamic covariate
as well as the environmental conditions. Some contynoaised stochastic models are
regression models, proportional hazard models, @egression models and Weibull
regression models (Cox, 1972; Kumar and Westb&96;1Newby, 1994; Singpurwalla and
Wilson, 1995; Vlok et al., 2002; Wang, 2002). A gmehensive review on stochastic models
for RUL prediction can be found in Singpurwalla 959.

- Computational intelligence models

Computational intelligence (CI) models adopt tegmes such as artificial neural network
(ANN), genetic algorithms (GA) and fuzzy logic. Tk techniques require inputs data to
achieve the requisite outputs and are often refdoeasSoft Computing techniques (Okokt

al., 2014). Data obtained from sensors and other m@ng equipment can be utilised by
these intelligent models to predict RUL. A compmediee review on Cl models can be found
in Siddiqueet al. (2003). Nonetheless, Vaidya and Rausand (2011hadhphat it may be
impossible to use this approach for predicting Riflsubsea facilities to support LE decision
making process. This is primarily due to lack oftadavailability, the impossibility of
obtaining training data as well as the lack of klemlge and trained personnel to use these
models.

- Physic of failure

Physics of failure (PoF) techniques require paramedata and leverages engineering
knowledge on topics such as life cycle assessmemgjronmental stresses, operating
conditions, material selection and degradation raeisms. The purpose of this RUL
prediction technique is to identify possible fadurauses and analyse how to eliminate the
potential operational failures through design. Thechnique is based on accurate
mathematical principles, which, in turn, provide tthetails of component life and reliability.
It can be applied across a wide range of systemdudimg mechanical and
electrical/electronics. According to Vaidya and Band (2011), this approach is suitable for
predicting RUL of offshore oil and gas systems tport LE decision making. This is
because offshore operations are remote and reqoagrate and precise models to support
LE decision making. The PoF techniques are considems consistent methods for
performing LE analysis and require less sensor fdatgerforming possible RUL predictions.
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Also, Winning and Belhimer (2006) described dataami®d from monitoring sensors in
offshore oil and gas industry as unreliable, therpbpularising the PoF technique. The
technique is also viable for RUL predictions of gmmnents that suffer from degradation such
as fatigue cracks, corrosion, erosion and weatr.

- Expert judgement

This technique is highly reliant on the experience knowledge gathered by experts over a
period of time. In the offshore oil and gas indysenvironmental and operational factors
change over a period of time with respective tolthge factors considered during the time of
design. In this case, expert judgement and expezidrecomes decisive in predicting the
RUL of systems and components. This approach ha® leenployed in literature for
maintenance optimization and reliability analysfsvarious systems and components (van
Noortwijk et al., 1992). Vaidya and Rausand (20d4dyocated the reasons for mandating the
engagement of experts for RUL prediction in theslodire oil and gas industry. Data gathered
from experts through elicitation can be of greadeese in situations where sensor data,
observation, experimental and simulated resultsiaasailable.

4.2.4 Prediction of RUL

At this stage, the RUL of the candidate subsystemsomponents is estimated for further
decision making process.

4.3 Module 3: LE decision making

The third module deals with decision making fowufet operations based on the RUL results.
The suitable LE decisions include: replacementhef éntire systems, replacement of some
subsystems and components, remanufacturing andbigiment of the system for
continuous operation, etc. In case of a proces&rsystem, the introduction of additional
safety and process control measures could also Ipesaible solution for continuous
operation.

5. Application to an offshore process facility

The proposed framework is applied to support LESi@e-making for a separator system on
offshore platform which was commissioned in the 118¥0s in West Africa. Figure 4 shows
a schematic process layout of this separation sy$teind on the offshore platform. The
operator is required to extend the operations efi#ld by an additional 5 years, owing to the
remaining reserves.

“Fig. (No. 4)"
Figure 4. A schematic process layout of the sepafah system

The function of this system is to carry out a thpbase separation process on the well
product to segregate oil, water and gas. Separaipnmarily achieved by utilizing gravity
along with the assistance from application of sarnemical and heat processes. Separated
gas is routed to the gas dehydration system, anatas transported using pipelines. The
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separated water flows into a produced water treattt@ak for conditioning. The volume of
the vessel is approximately 2.54mhich is equivalent to 16BBL and 25.9mm of thickse

At the top of the shell, there are two lifting lugssupport hoisting of the vessel. The inlet,
gas outlet, oil outlet, water outlet and other nezzass through the shell of the vessel as
shown in Figure 4.

5.1 Results and discussion
5.1.1 Module 1

The core function of this system is to separateeiphase well fluids from the three-phase oill
and gas producing wells. The system compriseshafrizontal separator vessel and is fitted
with primary subsystems and components, along avidlehydrator to remove moisture in the
gas. Individual outlets for gas, oil and outlet gme@vided to discharge each of these
components separately. Table 5 contains the breakddf subsystems and components
within the separation system.

“Table (No. 5)”

Table 5. Subsystem and components breakdown

Condition assessment was performed for each ofstilessystems and components
identified in Table 5. The information used to a&sséhe condition of the subsystems and
components was gathered from face-to-face senutsted interviews with experienced
personnel actively involved in LE projects as wadl the company’s internal documents on
asset integrity. Figure 5 depicts the outcome @f #issessment, based on the condition
ranking matrix (in relation to Table 2).

“Fig. (No. 5)"
Figure 5. Results of the condition matrix

From Figure 5, applying the condition categorizatio Table 3, approximately 60% of
components and subsystems in the separation sgseequalified for RUL estimation.

5.1.2 Module 2
- RUL data collection

The RUL of the qualified subsystems and componantsderived using module 2 of the
proposed framework as shown in Figure 3. For exaymatcording to the experts’ opinion,
the vessel was designed according to BS 1515: P4965) standard, which is now
outdated. In addition to that, the material usednf@anufacturing the vessel was a carbon
steel with the grade of carbon steel unknown. Thi Rata accumulated for the separator
vessel is presented in Table 6. The RUL data feratmer 32 subsystems and components
were also obtained from monitoring data, taking ezkpjudgement and referring to
operational handbooks for the appropriate failbregholds.

“Table (No. 6)"
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Table 6. RUL data collection

- Analysis of failure mechanism

In addition to the RUL data obtained from varioosirges, annual sampling and monitoring
records such as chloride content, pH level, wabetent and iron count were also analysed
across a 9-year period. From the obtained RUL dathfluid analysis, the most important
failure mechanisms were identified as follows:

1. Hydro embrittlement
CO, corrosion

H,S damages
Fatigue cracks

Drop object

A

- Sdlection of RUL prediction model

Based on the acknowledged damage mechanisms, itapgarent that the predominant
probable causes of failure were hugely attributednetal loss due to corrosion as well as
fracture due to crack propagation. Hence, it wadest that corrosion and fatigue are the
dominant failure mechanisms and RUL must be eséichain the basis of corrosion and
fatigue records. A PoF technique was selected mbowmation with expert judgement to
determine the RUL of the subsystems and compon&hts.corrosion model for estimating
the RUL is based on API 570 (2016). Hence, the neimg life of a subsystem or component
can be calculated using Eq. (1) as follows:

T, T
TR .
where T represents the actual thickness measured durisgedtion, Tz is the design
thickness without corrosion allowance a@R represents the measured corrosion rate
(mm/year). A subsystem/component is deemed faileésl RUL equals to or below zero. This
is expressed mathematically as:

RUL =

Probability of failure = Pr(RUL < 0) . (2)
The fatigue crack growth rate is estimated usiregRhris law:

da _ m
N C(AK)™, 3

Where;l—g represents the crack growth rafek is the stress intensit{; andm are constant

parameters related to component’s material praggeend are obtained through experiments.
The number of fatigue cycle to failulkg is expressed as:

da
(AK)™

N _N _1acr
f—ng—Ea{ (4)
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where AK = Ao, Ao=Ao,,, Ao,

min ?

p is the Young's modulus and depends on

components geometry. Thus, expressing the numbeyabés to failure\; in time is defined
as:

T 2 (ac,il‘(nzqﬂ - ail‘@ﬂ j , (5)

T 2-mc(aron)”

wherea; represents initial crack size aag is the critical crack sizeA crack beyondg will

be considered to be a failure. The above model eterrhinistic and convenient for
ascertaining the number of cycles; however, duthng LE decision process, probabilistic
modelling is essential to handle uncertainties riack growth. The probabilistic model is
expressed as:

P[T, <t|=Pla, - At) <0]=P[T, +Ts(a,) -t <0], (6)

where T, is the time to failuret is a specific timega. is critical crack depthA(t) is the

crack size at the timi Ty is the time for crack initiation ant; is the time for crack growth
to critical path. Figure 6 shows the RUL values 3@ subsystems and components in the
separation system that required RUL estimatioriutther carry out the LE decision making
process.

“Fig. (No. 6)"
Figure 6. RUL estimation results for the separatiorsystem

The results indicate that none of the subsystemyiooents considered for LE are
below the anticipated extension period of 5 yeldmswyever, the separator vessel’'s RUL is the
range of five to six years, depicting the componeith the least extended service life. This
indicates that the existing integrity managemerattsgy is suitable for the 32 subsystems and
components during LE period of operation; howeubg existing integrity management
strategy may not guarantee the safety and contiopedation of the separator vessel during
this period. Therefore, a suitable LE strategytfar vessel will need to be initiated during LE
period of operation. The selection of suitable ltEategy must be done, keeping in mind
economic and safety perspectives.

5.1.3 Module 3

RUL equal to six years was estimated for the vessehce, the operation of the vessel can
safely be extended, without considering replacenfentthe next five years. However,
corrosion control in the vessel must be closely itooed to ensure it is within regulatory
safety limits. Therefore, in consultation with exge it was agreed that a more active
corrosion control and mitigation strategy will beevised for short to medium term
implementation, while the replacement of this vess#l be considered for long term
implementation. Some portions of the LE corrosioanagement strategy in Table 7 have
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been adapted from Nettikadehal. (2014) in order to support LE operation of the sapan
system.

“Table (No. 7)”

Table 7. LE corrosion mitigation strategy

Implementation of the corrosion mitigation plan Table 7 could reduce the annual
corrosion rate of 0.77mm/year to lower acceptaliilesholds which is closer to the
regulatory requirements, thereby extending the difethe vessel for another five years.
However, if quarterly reviews suggest that the mdteorrosion being controlled does not
meet the required threshold of <0.125mm/year, thteer options such as replacement must
be considered.

6. Conclusions

The prediction of remaining useful life (RUL) foulssystems or components is described as
an effective strategy to establish the maximum ftilnmaof time that they could operate,
beyond their original design life. This is repletgth the advantages of enhancing the
operational efficiency of a system and promptingckjumaintenance response during the
extended period of operation. In this study, a rfmmework establishing an integration
between condition assessment, RUL estimation aedebktension (LE) decision making
process has been proposed. The proposed framewaosdists of three modules, namely,
condition assessment module - aimed at assessmgculrent health status of critical
subsystems or components for extended operatiddis,dRediction module - responsible for
determining the maximum length of operation of eaghsystem or component and the LE
decision making module - used for establishing #able LE integrity management
programme.

In order to test the efficacy of the proposed frevomd, it was tested with three-phase
separation system on a platform which is operdtmgver 25 years. The results of the case
study indicated that the framework provided answersthe questions raised by asset
managers, with regard to satisfying LE requiremehtalso demonstrated the flexibility for
operators to select condition matrix factors thedtect their company’s operational criteria,
since these may vary significantly from one comptngnother.

Although the framework has been validated usingctiee of the three-phase separation
system, it is recommended that future work shogdlyathe propose framework to other
offshore oil and gas assets such as structurad,peubsea facilities and pipelines to further
establish the credibility of the framework. Alsogspite the growing interest in LE as a
suitable end of life management strategy within dffshore oil and gas industry, very few
studies focused on maintenance decision-makingrktfee original design life; thus, future
research must concentrate on determining the dfesttieeness of a life extension
programme and analysing the corresponding maintengolicies (i.e., frequency and
degree/quality of repair) required to enable LEslalso recommended that the knowledge
sharing between operators and consultants shoukhbeuraged and prioritised, since data
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collection and collation is the most crucial andalidnging tasks during the LE decision
making process. This amalgamation of data not defines the accuracy of results but also
impacts the inspection and maintenance schedules.
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Table 1. List of industrial participants

Participant  Background Years of experience
P1 Researcher 30

P2 Regulator 8

P3 Chief Engineer- Technical safety 20

P4 Oil and gas facility manager 5

P5 Consultant 20

P6 Safety case manager 10

P7 Offshore facility manager 5

Table 2. Condition ranking matrix

Probability of
occurrence category
Frequent 5 | (2) Uncertain
Probable 4 (2) Uncertain (2) Uncertain
Occasional 3 (2) Uncertain (2) Uncertain (2) Uncertain
Remote 2 (2) Uncertain (2) Uncertain (2) Uncertain
Extremely 1
unlikely
Consequence category 1 2 3 4 5
Operation Minor Less shutdown] Moderate shutdown Longer shutdown Permanent
condition maintenance | with less repair| with moderate| with more | shutdown
activity cost and lesg repair cost and significant cost of

implication on| moderate repair with

system implication on| implications on

availability system availability | system

availability
Production loss <5% 5-10% 10-30% 30-60% >60%
Material No Slight Obvious Serious Extreme
degradation
Fatigue cracks No flaw 0<a<0.001 0.001 < a <0.03 0.03<a<0.15 a > 0.15
Corrosion n < 0.005 0.005 <7 0.03<n<0.08 0.08 <n <0.25 n > 0.25
<0.03

a andy represent, respectively, the corrosion factortaedatigue crack factor



Table 3. Categorization of asset conditions

Class Description
The condition of the subsystem or componesigsificantly outside design limits
and should be discarded.

Uncertain The condition of the subsystem or compbmeay be outside design limit or

unknown and RUL should be determined

The condition of the subsystem or componewitisin design limit and RUL must
be determined.

Table 4. Technique ver sus degradation mechanism (adapted from Okoh et al., 2014)

Degradation  Bayesian Statistical techniques Computational Physic of Expert
mechanism model  and stochastic models intelligence models  failure Judgement
Fatigue x x X x -
Wear X x X X -
Deformation - - - X X
Corrosion X x X x -

Table 5. Subsystem and components breakdown

Separation system

Subsystem and component description Subsystem/component Number
Vessel Component 1
Piping Component 35
Pump Subsystem 2
Produced water treatment tank Component 1
Surge tank Component 1
Gas dehydrator Subsystem 1
Pressure relief valve Subsystem 3
Drain valve Subsystem 1
Other valves Subsystem 8
Export lines Subsystem 2

Total 55




Table 6. RUL data collection

Description

Value

Design pressure

Current operating pressure

Measured thickness

Average corrosion rate
Targeted corrosion rate

CO, partial pressure

Required minimum thickness per design

51barg
25barg

25.9mm
21.3mm

0.77mmlyear

<0.125mmlyear
1.93-2.89barg

Table 7. LE corrosion mitigation strategy

Responsible  Action Critical Frequency Threshold Corrective actions
officer subsystem
Process Monitor water AlA Monthly/every <20% vol.% water  Notify asset integrity
technician content in well sphere run manager

product
Process Monitor iron Al.A Monthly <50ppm Notify asset integrity
technician count in the manager

vessel fluid
Process Monitor  pH Well Monthly 7.0<pH<9.0 Notify asset integrity
technician level of well manager if pH is

product beyond threshold
Process Monitor Al.E Monthly/every <10,000ppm Notify asset integrity
technician chloride sphere run manager

content in

produced

water
Corrosion Inject inhibitor  Glycol/ME Monthly >100ppm If lower than threshold
engineer G plant increase dosage
Corrosion On-line Al.E Annually <0.125mm/year If greater than
engineer degradation threshold. Notify asset

monitoring integrity manager
Asset Review of - Quarterly - If threshold is above
integrity results regulatory limit,
management replacement  option
team should be considered
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Figurel. Theoriginal design life and the extended life of an asset.
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Figure 2. Key influencing factors of RUL estimation.
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RESEARCH HIGHLIGHTS

To propose a systematic framework to help offshore oil and gas operators meet life
extension (LE) requirements;

An integration between three individual life assessment modules, namely: condition
assessment, remaining useful life (RUL) prediction and LE decision-making.

A case study involving a three-phase separator system on a platform.



