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Abstract 

Offshore oil and gas assets are highly complex structures comprising of several components, 
designed to have a lifecycle of 20-25 years of working under harsh operational and 
environmental conditions. These assets, during their operational lifetime, are subjected to 
various degradation mechanisms such as corrosion, erosion, wear, creep and fatigue cracks. 
In order to improve economic viability and increase profitability, many operators are looking 
at extending the lifespan of their assets beyond the original design life, thereby making life 
extension (LE) an increasingly critical and highly-discussed topic in the offshore oil and gas 
industry. In order to manage asset aging and meet the LE requirements, offshore oil and gas 
operators have adopted various approaches such as following maintenance procedures as 
advised by the original equipment manufacturer (OEM), or using the experience and 
expertise of engineers and inspectors. However, performing these activities often provides 
very limited value addition to operators during the LE period of operation. This paper aims to 
propose a systematic framework to help operators meet LE requirements while optimizing 
their cost structure. This framework establishes an integration between three individual life 
assessment modules, namely: condition assessment, remaining useful life (RUL) prediction 
and LE decision-making. The benefits of the proposed framework are illustrated through a 
case study involving a three-phase separator system on a platform which was constructed in 
the mid-1970s in West Africa. The results of this study affirm the effectiveness of this 
framework in minimizing catastrophic failures during the LE phase of operations, whilst 
ensuring compliance to regulatory requirements. 
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1. Introduction 

Rejuvenating existing fields through life extension (LE) is regarded as one of the most 
lucrative strategies for end-of-life management within the offshore oil and gas industry. This 
has led to an increase in initiatives aiming at extending the service lifespan of existing 
installations operating within these fields. Over half of the installed structures in both the 
North Sea and Gulf of Mexico regions have gone past their original design lives of 20–25 
years (Ersdal and Selnes, 2010; Ersdal, 2005; Stacey et al., 2008). The operational lives of 
these assets not only are dependent on environmental loading conditions but also are related 
to the age of oil field. Hence, for conducting LE analysis, it is imperative to understand the 
operational life of an asset tied to a field’s life.  

A typical operational timeline for an offshore oil and gas asset linked to the 
corresponding field life is illustrated in Figure 1. The asset life begins at time t = 0, which 
indicates the time of commissioning of the field and commencement of operation of the asset. 
The asset operates until the point t = lo, where lo denotes the end of original field life and 
marks the beginning of the life extension phase of operation, owing to the remaining reserves. 
However, in order to be granted a license until an extended operational period le (> lo), 
companies are obligated to meet some regulatory requirements. To meet these requirements 
while simultaneously ensuring profits from the extended period of operations, the asset 
managers need to address the following fundamental questions:  

1) How operators can make sure whether their existing assets will be satisfactorily 
operating after end-of-life or they must be discarded at time t = lo? 

2) How long will be allowed to extend the life of assets for?  
3) What type of integrity management programme needs to be put into place to support 

asset operations over the life extension period? 

“Fig. (No. 1)” 
Figure 1. The original design life and the extended life of an asset. 

In order to provide appropriate answers to above questions, Vaidya and Rausand (2011), 
Animah et al. (2016) and Shafiee et al. (2016) suggested, in their respective studies, that it is 
vital for LE decision makers to estimate the remaining useful life (RUL) of their candidate 
equipment, as it will enable stakeholders to achieve accurate conclusions during the LE 
decision-making process. Also, Liao et al. (2006) suggested that when ageing degradation is 
detected, it is important to re-estimate the RUL in order to expedite urgent maintenance 
decisions and avert possible failures. This is because the preliminary RUL estimated for 
offshore oil and gas equipment at the design stage is often conservative, since in practice, the 
actual operational and environmental conditions can be different than those considered during 
design. Hence, during the LE decision-making process, an enhanced computation process is 
imperative to determine the actual remaining service life of critical systems, subsystems and 
components, which may be shorter or longer than the life estimated during design. 
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The concept of RUL is popular in operational research, reliability and statistics literature, 
and has real life applications in industries such as material science, biostatistics and 
econometrics (Si et al., 2011). However, very little research efforts have been carried out 
towards analysing how RUL prediction can support LE decision making in the offshore oil 
and gas industry. As a step in that direction, this study proposes a framework that establishes 
an integration between asset condition assessment, RUL estimation and the LE decision 
making process. Hence to reiterate, the proposed framework is broken down into three 
modules, namely: i) condition assessment module, which evaluates the current technical 
health status of subsystem and components; ii) RUL prediction module, which estimates the 
maximum duration of time a subsystem or component can operate beyond its original design 
life; and (iii) LE management module, which establishes the LE management program for the 
candidate equipment based on RUL results. The framework facilitates assets managers to 
provide appropriate answers to above-mentioned questions, which help minimize the 
occurrence of undesirable consequences such as frequent unplanned shutdowns, production 
losses and environmental damages attributed to unsuspected failures. The benefits of this 
integrated approach are illustrated through a case study involving a three-phase separator 
system on an oil platform.  

The rest of this paper is structured as follows. Section 2 provides an overview of the 
state-of-the-art of RUL and its applications within the offshore oil and gas sector. 
Subsequently, Section 3 highlights the factors that influence RUL prediction for offshore oil 
and gas assets. Section 4 proposes the integrated condition assessment, RUL prediction and 
life extension decision making framework. Thereafter, Section 5 presents a case study to 
demonstrate, test and validate the proposed framework and further discusses the findings. 
Finally, the conclusions as well as future work directions are presented in Section 6. 

2. State-of-the-art of remaining useful life (RUL) in the oil and gas industry 

According to Banjevic and Jardine (2006) and Galar et al. (2012), the time left before a 
system fails to operate at acceptable levels is referred to as ‘remaining useful life’ (RUL).  
The purpose of RUL is to predict failure time before it occurs, based on current and past 
conditions of a system (Jardine et al., 2006). RUL is one of the key factors which should be 
considered when implementing condition monitoring (CM) and prognostic health 
management (PHM) (Cui et al., 2004; Lee et al., 2006). Wang and Zhang (2008) suggested 
that precise and proper estimation of equipment RUL is imperative for cost-effective 
operations as well as prompt maintenance responses. Over the past few years, RUL has 
emerged as a plausible technical health assessment and decision-making tool for equipment 
in the offshore oil and gas industry, while keeping life cycle costs low and helping operators 
meet regulatory requirements.  

Literature on RUL estimation to support decision-making in the offshore oil and gas 
industry encompasses both deterministic and probabilistic methods. RUL approaches are 
classified either as physics-based approach, data-driven approach, or fusion approach which 
is a hybrid of the physics and data driven approaches (Varde et al., 2014), while  
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Ahmadzadeh and Lundberg (2013) also added the experiment-based approach as the fourth 
classification. A brief discussion and application of each of these approaches is presented 
below. 

2.1 Physics-based approach 

The fundamental principle behind the physics-based approach is the formulation of 
theoretical mathematical models to interpret equipment degradation and damage modelling 
over time. These models involve the evaluation of failure modes such as crack propagation, 
wear and corrosion degradation rate of equipment (Galar, et al., 2012). In situations where 
the accuracy of prediction is crucial and access to data is limited, these physics-based models 
are suitable and they also take various environmental conditions into account. These models 
are often expressed in terms of differential equations or partial differential equations and can 
be solved analytically or numerically due to their level of complexity.  

Several studies have so far utilized the physics-based approach for estimating RUL to 
support the decision making process in the offshore oil and gas industry. Dowdy et al. (1988) 
developed a methodology for predicting the RUL of an in-service mooring chain. Divine et 

al. (1993) employed both qualitative and quantitative approaches for determining the RUL of 
submersible pumps which were used in the upstream sector of the oil and gas industry. 
Ammtatmula and Ohl (1997) investigated the corrosion-related, life-limiting conditions of a 
double-shell tank, and thereafter developed a model to estimate its RUL for an extended 
service life. Vaidya (2010) reviewed the technical health factors that influence RUL decision 
making process. The paper suggested Bayesian Belief Network (BBN) as a useful technique 
for RUL estimation. Vaidya and Rausand (2011) proposed a LE decision making model 
based on RUL prediction by combining heterogeneous requirements such as degradation 
modelling, uncertain environmental and operational conditions, uncertain sensor data and 
expert judgement. The study further concluded that a physics-based approach is the most 
appropriate technique for supporting LE decision making in the offshore oil and gas industry. 
Yasseri and Mahani (2016) presented a simple spread-sheet probabilistic procedure to assist 
engineers in determining the RUL of offshore oil and gas pipelines. This approach was based 
on reliability index method. 

2.2 Data-driven approach 

The data-driven approach employs a network of sensors to monitor equipment health status. 
Data is extracted from sensor signals and some prediction models such as Bayesian models, 
Cox model, regression models, etc. are then used to estimate the RUL of equipment. In the 
offshore oil and gas industry, some studies have applied the data-driven approach for 
estimating RUL to support decision making process. Kallenberg (1998) developed a 
probabilistic approach to determine the remaining service life of reformer furnace catalyst 
tubes. The proposed methodology was used to estimate the cumulative probability of failure, 
time-to-crack initiation and time-to-failure, in terms of furnace operating hours. Kallenberg 
and Munsterman (2002) used a data-driven approach to present a guideline for estimating the 
RUL of a catalytic reformer reactor in a petrochemical refinery. Garvey et al. (2009) 
introduced a pattern-recognition-based framework to predict the RUL of a bottom-hole 
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assembly tool. Gola and Nystad (2011a) utilized statistical methods to calculate the 
degradation as well as RUL of choke valves in the oil industry. Wilks (2012) demonstrated 
how corrosion process data could be used in a simulation model to predict the RUL of Coker 
furnaces in refineries. Nystad et al. (2012) scrutinised the problems associated with RUL 
prediction in the offshore oil and gas industry while using stochastic models. Sharifi et al. 
(2015) forecasted the RUL of pipes using a machine learning technique, derived from 
thickness measurement, which was able to use the results to alert maintenance engineers 
regarding the timing to undertake appropriate actions. 

2.3 Fusion approach 

The fusion approach was suggested because of the limitations in both physics-based approach 
and data-driven approach (Cheng and Pecht, 2009; Varde et al., 2014). In the fusion 
approach, the strength of one approach mitigates the weakness of the other. The approach 
combines sensor acquired data as well as physics-based monitored data to form a new 
database, in order to predict the RUL of a system. This approach has been deployed for cases 
in electronics, railway and the aircraft industries (see e.g. Cheng and Pecht, 2009; Galar et 

al., 2013; Sankavaram et al., 2009; Xu et al., 2014). In the offshore oil and gas industry, few 
studies have employed fusion approach for estimating RUL to support decision making 
process. Jaske and Shannon (2007) combined specialised analytical models with a multi-
parameter inspection technique to predict the RUL of reformer tubes. Nystad et al. (2010) 
proposed a prognostic model to estimate the RUL of choke valves on a platform subjected to 
erosion due to sand particles in wells. Gola and Nystad (2011b) proposed a diagnostics-
prognostic model for estimating RUL as well as the technical health condition of choke 
valves on oil and gas platforms.  

2.4 Experimental-based approach 

The experimental-based approach collects data for RUL estimation through experiments, in 
order to obtain a better insight and understanding of the lifetime and behaviour of equipment. 
A typical data collection process for this approach is collating data obtained from accelerated 
life testing (ALT) of components in laboratories and then using test rigs to simulate the real 
life conditions. Medjaher et al. (2012) substantiated the physics-based approach and data- 
driven approach, utilizing experimental data obtained from ALT of bearings. 

While reviewing the literature on RUL estimation and its application in the offshore oil 
and gas industry, it is observed that the physics-based and data-driven approach are more 
popular and have been addressed by many researchers in comparison to other approaches. 
However, Vaidya and Rausand (2011) suggested that the physics-based approach is the most 
appropriate approach for LE applications. Hokstad et al. (2010) also indicated that due to 
limited access to good quality data within the offshore oil and gas industry, the physics-based 
approach is the most suitable approach for LE analysis, since it requires lesser amount of data 
in comparison to other approaches. However, to the best of the authors’ knowledge, few 
studies have attempted to establish a relationship between condition assessment of critical 
assets, RUL prediction, and LE decision making. 
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3. Key influencing factors of remaining useful life (RUL) estimation 

The LE decision-making process for structures, systems and components involves a number 
of key technical, economic and organizational aspects. Identification of these factors provides 
a strong foundation for making correct decisions concerning data collection, condition 
assessment, RUL estimation as well as regulatory approval for facilitating continuous 
operation.  

“Fig. (No. 2)” 

Figure 2. Key influencing factors of RUL estimation. 

In this paper, we classify the factors influencing RUL estimation into input and 
constraint factors (see Figure 2). A brief overview of the influencing factors of RUL 
estimation is presented in the next sub-sections.  

3.1 Input factors 

Vaidya (2010) and Vaidya and Rausand (2011) classified the input factors influencing RUL 
estimation into three heads: technical health, design records and environmental conditions.  

3.1.1 Technical health 

The technical health of an asset is gauged or judged using indicators such as technical 
condition, working life history, environmental history, design records and reliability data 
(Vaidya and Rausand, 2009). Thus, the technical health of an asset at any given time t can be 
described as the cumulative knowledge about an asset at that particular time. The technical 
health status of equipment is interpreted based on its technical conditions and working life 
history, which are explained briefly below. 

Technical condition: The technical condition of assets is the health status, measured 
based on factors such as environmental conditions and mechanical loadings. According to 
Vaidya and Rausand (2011), some of these technical condition indicators are more 
informative when monitored based on a continuous scale, for example, temperature, pressure 
and noise, while other indicators are discrete such as leakage. Deterioration models are often 
deployed to determine the health condition of industrial assets.  

Working life history/Operational conditions: As oil and gas production field matures, 
operators will have access to huge amount of operational data or working life data. Therefore, 
determining the RUL of critical assets at time t to support LE decision making process must 
involve all operational information gathered from the time of installation to the time of LE 
decision. The working life information comprises of the age of the asset, degradation records, 
failure records, condition monitoring information, maintenance and modification information, 
etc. The sources of these data include the experts’ judgement, manufacturers’ manuals, 
operations and maintenance log books, inputs by workforce working on the platforms as well 
as electronic databases kept by the companies. 

3.1.2 Environmental conditions 
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The environmental conditions predicted at early life stage of the asset life may change over 
its lifetime as the asset may be subjected to different environmental conditions. This may not 
only introduce new failure modes but also increase the rate of deterioration growth of existing 
defects. Therefore, it is essential that the technical health assessment of an asset takes into 
account the environmental conditions in which the asset is operating. According to Vaidya 
and Rausand (2011), environmental conditions information must include geographical 
location of operations, geology of the well, well specific data such as temperature, pressure, 
viscosity level of the well product, gas content, water content and sand particles. Also, 
depending on the location of the critical asset, environmental factors such as wave height, 
current and wind speed may also need to be taken into consideration. 

3.1.3 Design history 

Some offshore oil and gas assets (i.e. Christmas tree, umbilical, manifold templates, control 
modules, subsea pumps, subsea separators, pipelines, etc.) are principally designed not to be 
maintained. Therefore, estimating the RUL of such assets to support LE decision making 
must take into account the verification of calculations made during the design phase of the 
asset life cycle. Design phase information typically include material selection information, 
equipment specification, design codes and standards, design drawings, design life 
calculations, and engineering variations post design. 

3.2 Constraints 

The two key constraints that hamper the LE decision making process in offshore oil and gas 
industry are the lack of access to good quality data for techno-economic feasibility 
assessment as well as the ageing working force. Hokstad et al. (2010) reported that the 
offshore oil and gas industry lacks data with a high degree of assurance to support the LE 
decision making process. Also, workforce ageing and lack of trained personnel will 
negatively impact the success of the LE decision making process. This is because by the time 
when LE is due, some workforce with vital information may have been retired from active 
service. 

4. Proposed framework for risk based condition and RUL estimation 

In this study, a framework to establish the inter-relationship between condition assessment, 
RUL estimation and LE decision making process is presented. The framework is divided into 
three modules as shown in Figure 3. 

“Fig. (No. 3)” 

Figure 3. A process flowchart to estimate RUL for LE decision making 

An essential facet in developing the above framework was a strong collaboration among 
researchers as well as industrial experts, having several years of experience, ranging from 5 
to over 30 years, in undertaking LE projects (see Table 1). These experts were drawn in from 
Norway, UK and Gabon. 
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“Table (No. 1)” 

Table 1. List of industrial participants 

These facilitated in-depth interactions and sharing of expertise by industrial experts 
formed the basis for RUL data collection as well as for collating the challenges of LE in 
relation to offshore oil and gas assets. The modes of data collection involved face-to-face 
semi-structured interviews, on-line surveys as well as review of company internal documents. 

4.1 Module 1: Condition assessment module 

This module is responsible for assessing the current health status of critical subsystems or 
components for extended operations. The key tasks under this module are detailed below: 

4.1.1 Selection of critical system 

Since offshore oil and gas assets comprise of several pieces of static, rotating, electrical and 
communication systems, it is a technically and financially daunting task to assess the 
condition of all systems operating on an asset during LE phase of operation. Hokstad et al. 
(2010) suggested that one of the key tasks during LE decision making process is to screen 
and prioritize critical systems that need special attention. This can be accomplished by 
excluding pieces of equipment which present low risk to safety and production. Critical 
systems can be determined using experts’ judgement and risk assessment tools such as 
Failure Mode Effect Analysis (FMEA), Fault Tree Analysis (FTA) and Event Tree Analysis 
(ETA). This study selected the critical systems for condition assessment by using an in-house 
prepared list of critical assets, thereby considering equipment having higher risk of failure 
and greater corresponding consequences during LE phase of operation. 

4.1.2 Breakdown of system into manageable units 

In order to minimize the risk posed by equipment during LE period of operation, the 
condition of each subsystem or component of the selected equipment is assessed. The 
subsystems and components which are in the worst condition and can have major detrimental 
impacts on reliability, availability, economic loss, safety and the environment, are identified. 
This is achieved by dividing the selected equipment into manageable subsystems and 
components, in order to identify safety and production relevant subsystems. Khan and 
Haddara (2004), Krishnasamy et al. (2005) and Khan et al. (2008) showed that breaking 
down a complex system into manageable units helped decision makers focus on subsystems 
and components whose failure may significantly impact overall system availability, result in 
economic loss and raise safety and environmental concerns. 

4.1.3 Condition assessment  

A qualitative condition ranking matrix is used to rank the condition of the subsystems and 
components. For equipment that have been in use for over 20 years, the probability of failure 
depends on both the current asset condition and the performance history of individual 
components over the years. For our case study, the current condition of subsystems or 
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components in relation to consequence will be assessed based on technical conditions and 
equipment operability. 

A typical asset condition ranking matrix is shown in Table 2. As can be seen, both the 
probability and the consequences of failure are categorized on a scale from 1 to 5. By 
applying this equipment condition categorization, the subsystems or components appearing in 
the red zone will be discarded. This is because these subsystems and components are 
considered to have failed the evaluation and can no longer perform their intended function in 
the specific environment. However, those found in the yellow and green zones may be 
qualified for LE. This process is repeated until all subsystem and components condition gets 
assessed. 

“Table (No. 2)” 

Table 2. Condition ranking matrix 

As depicted in Table 3, three colour codes are used to indicate potential courses of 
action. This colour coding methodology has so far used as an equipment condition acceptance 
criteria for some industries such as electric power, offshore oil and gas and petrochemical 
industries (Amir and Muttalib, 2014; Hameed and Khan, 2014; Carvalho et al., 2015). 

“Table (No. 3)” 

Table 3. Categorization of asset conditions 

However, it should be noted that different condition factors may influence the 
construction of the matrix structure. The structure will be dependent on operational 
philosophy of the respective company. Therefore, depending on the type of organization, the 
matrix may change from 5×5 to 4×4 or 3×3. 

4.2 Module 2: RUL prediction techniques for LE 

In this module, we utilize the concept of RUL to predict the maximum duration of time that a 
subsystem or component can operate beyond its original designated life span, with the 
purpose of optimizing operations while minimizing catastrophic failures during LE phase of 
operation. In this case, RUL prediction models can either be probabilistic or deterministic, 
but must take into account degradation factors, material properties, geometry, operational and 
environmental conditions, etc. (Vaidya and Rausand, 2011). The fundamental stages of the 
second module are explained below:  

4.2.1 Collect RUL data 

The first step of the second module is to collate all relevant RUL data for candidate 
subsystems or components. This data includes laboratory testing measurements, ALT data, 
sensor data from monitoring systems, expert knowledge, environmental data and operational 
information. 

4.2.2 Analyse failure mechanism 
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In real life scenarios, there are more than one failure mechanisms associated with a particular 
failure mode of subsystems or components operating in the offshore environment. Therefore, 
it is vital for LE decision makers to explore various failure mechanisms associated with 
failure modes and choose a dominant failure mechanism that impacts the functionality of the 
subsystem or component. According to Vaidya and Rausand (2011), the selection of this 
dominant failure mechanism plays a pivotal role in predicting the RUL of candidate 
subsystems or components for LE.  

4.2.3 Select RUL prediction model 

Lifetime estimation models applied in the offshore oil and gas industry to predict RUL of 
systems and structures include Bayesian models, statistical and stochastic models, 
computational intelligence models, physics-of-failure models and experts’ judgements. After 
analysis of the possible failure mechanisms associated with subsystems and components, 
decision makers will be required to select the most appropriate prediction model for the 
specific application. One of the methods to select the most suitable model is to map the 
techniques against degradation mechanisms or against the type of data. Table 4 illustrates the 
mapping of RUL prediction techniques against the possible degradation mechanisms 
available in the offshore oil and gas sector. 

“Table (No. 4)” 

Table 4. Technique versus degradation mechanism (adapted from Okoh et al., 2014) 

The selection of a suitable lifetime prediction model is contingent on the dominant 
failure mechanisms associated with the subsystem or components. The different RUL 
prediction models are briefly explained below: 

- Bayesian model 

The Bayesian technique deals with how prior estimates should be modified in the light of 
additional information (e.g. information received later or information from another source). 
In order to estimate, a parameter must be known on the basis of some prior information that 
was available at that time and known to have a certain value. Since this information is 
incomplete or of a probabilistic character, there is a ‘prior probability distribution’ of that 
parameter. Further information with a different value and probability distribution for the 
same parameter may be now available. Bayesian technique allows the initial estimate (prior 
distribution) to be modified based on this additional information, in order to obtain a 
redefined updated estimate (posterior distribution). Vaidya (2010) endorsed that the Bayesian 
based RUL model presents the opportunity to combine both data from monitoring systems as 
well as expert judgement, simultaneously for assessment purposes. The selection of prior data 
is a difficult task during the LE decision making process, as availability of high quality 
reliable data is always a challenge. In the absence of prior data, the ideal way to select prior 
distribution will be to start with expert elicitation. For a comprehensive literature on Bayesian 
approach, readers are referred to Gelman et al. (2014).  

- Statistical techniques and stochastic models 
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In the case of increasing rate of occurrence of failures (ROCOF), often statistical techniques 
are used for processing event data to assist in narrowing in on the possible failures. Statistical 
analysis is also commonly employed for reliability calculations and maintenance 
optimization, and is derived from available failure records collected over the life time of a 
system. Some of the techniques used are the counting process, regression analysis and trend 
test. The MIL-HDBK-189 (1981); MIL-HDBK-217F (1991) and OREDA (2015) handbooks 
contain statistical data and models for mechanical and electronic/electrical components, 
respectively. For a more comprehensive review on statistical data driven RUL approach, refer 
to Si et al. (2011). However, Vaidya and Rausand (2011) mentioned in a study that this 
approach should not be used to estimate RUL of some offshore oil and gas components, due 
to the paucity of data. On the other hand, stochastic models are used to model equipment 
degradation process. This approach has the capability to incorporate both dynamic covariate 
as well as the environmental conditions. Some commonly used stochastic models are 
regression models, proportional hazard models, Cox regression models and Weibull 
regression models (Cox, 1972; Kumar and Westberg, 1996; Newby, 1994; Singpurwalla and 
Wilson, 1995; Vlok et al., 2002; Wang, 2002). A comprehensive review on stochastic models 
for RUL prediction can be found in Singpurwalla (1995). 

- Computational intelligence models   

Computational intelligence (CI) models adopt techniques such as artificial neural network 
(ANN), genetic algorithms (GA) and fuzzy logic. The CI techniques require inputs data to 
achieve the requisite outputs and are often referred to as Soft Computing techniques (Okoh et 

al., 2014). Data obtained from sensors and other monitoring equipment can be utilised by 
these intelligent models to predict RUL. A comprehensive review on CI models can be found 
in Siddique et al. (2003). Nonetheless, Vaidya and Rausand (2011) implied that it may be 
impossible to use this approach for predicting RUL of subsea facilities to support LE decision 
making process. This is primarily due to lack of data availability, the impossibility of 
obtaining training data as well as the lack of knowledge and trained personnel to use these 
models. 

- Physic of failure  

Physics of failure (PoF) techniques require parametric data and leverages engineering 
knowledge on topics such as life cycle assessment, environmental stresses, operating 
conditions, material selection and degradation mechanisms. The purpose of this RUL 
prediction technique is to identify possible failure causes and analyse how to eliminate the 
potential operational failures through design. This technique is based on accurate 
mathematical principles, which, in turn, provide the details of component life and reliability. 
It can be applied across a wide range of systems including mechanical and 
electrical/electronics. According to Vaidya and Rausand (2011), this approach is suitable for 
predicting RUL of offshore oil and gas systems to support LE decision making. This is 
because offshore operations are remote and require accurate and precise models to support 
LE decision making. The PoF techniques are considered as consistent methods for 
performing LE analysis and require less sensor data for performing possible RUL predictions. 
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Also, Winning and Belhimer (2006) described data obtained from monitoring sensors in 
offshore oil and gas industry as unreliable, thereby popularising the PoF technique. The 
technique is also viable for RUL predictions of components that suffer from degradation such 
as fatigue cracks, corrosion, erosion and wear.  

- Expert judgement 

This technique is highly reliant on the experience and knowledge gathered by experts over a 
period of time. In the offshore oil and gas industry, environmental and operational factors 
change over a period of time with respective to the base factors considered during the time of 
design. In this case, expert judgement and experience becomes decisive in predicting the 
RUL of systems and components. This approach has been employed in literature for 
maintenance optimization and reliability analysis of various systems and components (van 
Noortwijk et al., 1992). Vaidya and Rausand (2011) advocated the reasons for mandating the 
engagement of experts for RUL prediction in the offshore oil and gas industry. Data gathered 
from experts through elicitation can be of great essence in situations where sensor data, 
observation, experimental and simulated results are unavailable.   

4.2.4 Prediction of RUL 

At this stage, the RUL of the candidate subsystems or components is estimated for further 
decision making process.  

4.3 Module 3: LE decision making 

The third module deals with decision making for future operations based on the RUL results. 
The suitable LE decisions include: replacement of the entire systems, replacement of some 
subsystems and components, remanufacturing and refurbishment of the system for 
continuous operation, etc. In case of a process driven system, the introduction of additional 
safety and process control measures could also be a possible solution for continuous 
operation.  

5. Application to an offshore process facility 

The proposed framework is applied to support LE decision-making for a separator system on 
offshore platform which was commissioned in the mid-1970s in West Africa. Figure 4 shows 
a schematic process layout of this separation system found on the offshore platform. The 
operator is required to extend the operations of the field by an additional 5 years, owing to the 
remaining reserves. 

“Fig. (No. 4)” 

Figure 4. A schematic process layout of the separation system 

The function of this system is to carry out a three-phase separation process on the well 
product to segregate oil, water and gas. Separation is primarily achieved by utilizing gravity 
along with the assistance from application of some chemical and heat processes. Separated 
gas is routed to the gas dehydration system, and is later transported using pipelines. The 
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separated water flows into a produced water treatment tank for conditioning. The volume of 
the vessel is approximately 2.54m3 which is equivalent to 16BBL and 25.9mm of thickness. 
At the top of the shell, there are two lifting lugs to support hoisting of the vessel. The inlet, 
gas outlet, oil outlet, water outlet and other nozzles pass through the shell of the vessel as 
shown in Figure 4. 

5.1 Results and discussion 

5.1.1 Module 1 

The core function of this system is to separate three-phase well fluids from the three-phase oil 
and gas producing wells. The system comprises of a horizontal separator vessel and is fitted 
with primary subsystems and components, along with a dehydrator to remove moisture in the 
gas. Individual outlets for gas, oil and outlet are provided to discharge each of these 
components separately. Table 5 contains the breakdown of subsystems and components 
within the separation system. 

“Table (No. 5)” 

Table 5. Subsystem and components breakdown 

Condition assessment was performed for each of the subsystems and components 
identified in Table 5. The information used to assess the condition of the subsystems and 
components was gathered from face-to-face semi-structured interviews with experienced 
personnel actively involved in LE projects as well as the company’s internal documents on 
asset integrity. Figure 5 depicts the outcome of the assessment, based on the condition 
ranking matrix (in relation to Table 2). 

“Fig. (No. 5)” 

Figure 5. Results of the condition matrix 

From Figure 5, applying the condition categorization in Table 3, approximately 60% of 
components and subsystems in the separation system are qualified for RUL estimation. 

5.1.2 Module 2 

- RUL data collection 

The RUL of the qualified subsystems and components are derived using module 2 of the 
proposed framework as shown in Figure 3. For example, according to the experts’ opinion, 
the vessel was designed according to BS 1515: Part 1 (1965) standard, which is now 
outdated. In addition to that, the material used for manufacturing the vessel was a carbon 
steel with the grade of carbon steel unknown. The RUL data accumulated for the separator 
vessel is presented in Table 6. The RUL data for the other 32 subsystems and components 
were also obtained from monitoring data, taking expert judgement and referring to 
operational handbooks for the appropriate failure thresholds. 

“Table (No. 6)” 
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Table 6. RUL data collection 

- Analysis of failure mechanism 

In addition to the RUL data obtained from various sources, annual sampling and monitoring 
records such as chloride content, pH level, water content and iron count were also analysed 
across a 9-year period. From the obtained RUL data and fluid analysis, the most important 
failure mechanisms were identified as follows: 

1. Hydro embrittlement  
2. CO2 corrosion 
3. H2S damages 
4. Fatigue cracks  
5. Drop object 

 

- Selection of RUL prediction model 

Based on the acknowledged damage mechanisms, it was apparent that the predominant 
probable causes of failure were hugely attributed to metal loss due to corrosion as well as 
fracture due to crack propagation. Hence, it was evident that corrosion and fatigue are the 
dominant failure mechanisms and RUL must be estimated on the basis of corrosion and 
fatigue records. A PoF technique was selected in combination with expert judgement to 
determine the RUL of the subsystems and components. The corrosion model for estimating 
the RUL is based on API 570 (2016). Hence, the remaining life of a subsystem or component 
can be calculated using Eq. (1) as follows: 

CR

TT
RUL RA −

= ,                                                          (1) 

where TA represents the actual thickness measured during inspection, TR is the design 
thickness without corrosion allowance and CR represents the measured corrosion rate 
(mm/year). A subsystem/component is deemed failed if its RUL equals to or below zero. This 
is expressed mathematically as: 

Probability of failure = Pr )0( ≤RUL .                                         (2) 

The fatigue crack growth rate is estimated using the Paris law: 

mKC
dN

da
)(∆= ,                                                                (3) 

where 
dN

da
 represents the crack growth rate, K∆ is the stress intensity, C and m are constant 

parameters related to component’s material properties and are obtained through experiments.  
The number of fatigue cycle to failure Nf is expressed as: 
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where aK πσβ∆=∆ , minmax σσσ ∆−∆=∆ , β is the Young’s modulus and depends on 

components geometry. Thus, expressing the number of cycles to failure Nf in time is defined 
as: 
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where a1 represents initial crack size and acr is the critical crack size. A crack beyond acr will 
be considered to be a failure. The above model is deterministic and convenient for 
ascertaining the number of cycles; however, during the LE decision process, probabilistic 
modelling is essential to handle uncertainties in crack growth. The probabilistic model is 
expressed as: 

                [ ] [ ] [ ]0)(0)( 0 <−+=<−=≤ taTTPtAaPtTP crGcrf ,                            (6) 

where fT  is the time to failure, t is a specific time, acr is critical crack depth, )(tA  is the 

crack size at the time t, T0 is the time for crack initiation and TG is the time for crack growth 
to critical path. Figure 6 shows the RUL values for 33 subsystems and components in the 
separation system that required RUL estimation, to further carry out the LE decision making 
process. 

“Fig. (No. 6)” 

Figure 6. RUL estimation results for the separation system 

The results indicate that none of the subsystems/components considered for LE are 
below the anticipated extension period of 5 years. However, the separator vessel’s RUL is the 
range of five to six years, depicting the component with the least extended service life. This 
indicates that the existing integrity management strategy is suitable for the 32 subsystems and 
components during LE period of operation; however, the existing integrity management 
strategy may not guarantee the safety and continual operation of the separator vessel during 
this period. Therefore, a suitable LE strategy for the vessel will need to be initiated during LE 
period of operation. The selection of suitable LE strategy must be done, keeping in mind 
economic and safety perspectives. 

5.1.3 Module 3 

RUL equal to six years was estimated for the vessel. Hence, the operation of the vessel can 
safely be extended, without considering replacement for the next five years. However, 
corrosion control in the vessel must be closely monitored to ensure it is within regulatory 
safety limits. Therefore, in consultation with experts, it was agreed that a more active 
corrosion control and mitigation strategy will be devised for short to medium term 
implementation, while the replacement of this vessel will be considered for long term 
implementation. Some portions of the LE corrosion management strategy in Table 7 have 
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been adapted from Nettikaden et al. (2014) in order to support LE operation of the separation 
system. 

“Table (No. 7)” 

Table 7. LE corrosion mitigation strategy 

Implementation of the corrosion mitigation plan in Table 7 could reduce the annual 
corrosion rate of 0.77mm/year to lower acceptable thresholds which is closer to the 
regulatory requirements, thereby extending the life of the vessel for another five years. 
However, if quarterly reviews suggest that the rate of corrosion being controlled does not 
meet the required threshold of <0.125mm/year, then other options such as replacement must 
be considered. 

6. Conclusions 

The prediction of remaining useful life (RUL) for subsystems or components is described as 
an effective strategy to establish the maximum duration of time that they could operate, 
beyond their original design life. This is replete with the advantages of enhancing the 
operational efficiency of a system and prompting quick maintenance response during the 
extended period of operation. In this study, a new framework establishing an integration 
between condition assessment, RUL estimation and life extension (LE) decision making 
process has been proposed. The proposed framework consists of three modules, namely, 
condition assessment module - aimed at assessing the current health status of critical 
subsystems or components for extended operations, RUL prediction module - responsible for 
determining the maximum length of operation of each subsystem or component and the LE 
decision making module - used for establishing a suitable LE integrity management 
programme. 

In order to test the efficacy of the proposed framework, it was tested with three-phase 
separation system on a platform which is operating for over 25 years. The results of the case 
study indicated that the framework provided answers to the questions raised by asset 
managers, with regard to satisfying LE requirements. It also demonstrated the flexibility for 
operators to select condition matrix factors that reflect their company’s operational criteria, 
since these may vary significantly from one company to another.  

Although the framework has been validated using the case of the three-phase separation 
system, it is recommended that future work should apply the propose framework to other 
offshore oil and gas assets such as structural parts, subsea facilities and pipelines to further 
establish the credibility of the framework. Also, despite the growing interest in LE as a 
suitable end of life management strategy within the offshore oil and gas industry, very few 
studies focused on maintenance decision-making beyond the original design life; thus, future 
research must concentrate on determining the cost-effectiveness of a life extension 
programme and analysing the corresponding maintenance policies (i.e., frequency and 
degree/quality of repair) required to enable LE. It is also recommended that the knowledge 
sharing between operators and consultants should be encouraged and prioritised, since data 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 
 

collection and collation is the most crucial and challenging tasks during the LE decision 
making process. This amalgamation of data not only defines the accuracy of results but also 
impacts the inspection and maintenance schedules. 

References 

American Petroleum Institute (API) 570 (2016). Piping Inspection Code: Inspection, Repair, Alteration, and 
Rerating of In-service Piping Systems.  

Ahmadzadeh, F. and Lundberg, J. (2013). Remaining useful life estimation: review. International Journal of 
Systems Assurance Engineering and Management, 5(4), 461–474.  

Amir, M.D.M. and Muttalib, E.S.A. (2014). Health index assessment of aged oil-filled ring main units. In: 8th 
IEEE International Power Engineering and Optimization Conference, 24-25 March, Langkawi, Malaysia,  
pp. 347–351.   

Ammtatmula, R. and  Ohl, P. (1997). Double-shell tank remaining useful life estimates. In: Proceeding of the  
Corrosion 97, 9-14 March, New Orleans, Louisiana, USA. pp. 1–12. 

Animah, I., Shafiee, M., Simms, N. and Considine, M. (2016). Techno-economic feasibility assessment of life 
extension decision for safety critical assets. In 26th European Safety and Reliability Conference (ESREL), 
Glasgow, UK. 

Banjevic, D. and Jardine, A.K.S. (2006). Calculation of reliability function and remaining useful life for a 
Markov failure time process. IMA Journal of Management Mathematics, 17(2), 115–130.  

BS 1515: Part 1. (1965). Specification for fusion welded pressure vessels (advanced design and construction) for 
use in the chemical, petroleum and allied industries, Part 1: Carbon and ferritic alloy steels. 

Carvalho, E., Tang, F., Allen, E. and Sharma, P. (2015). A case study of asset integrity and risk assessment for 
subsea facilities and equipment life extension. In Offshore Technology Conference, 04-07 May, Houston, 
Texas, USA pp. 1–12.  

Cheng, S. and Pecht, M. (2009). A fusion prognostics method for remaining useful life prediction of electronic 
products. In: IEEE International Conference on Automation Science and Engineering, 22 - 25 August, 
Bangalore, India, pp. 102–107. 

Cox, D. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, 34, 
187–220. 

Cui, L. R., Loh, H.T. and Xie, M. (2004). Sequential inspection strategy for multiple systems under availability 
requirement. European Journal of Operational Research, 155(1), 170–177.  

Divine, D.L., Lannom, R.W. and Johnson, R.A. (1993). Determining pump wear and remaining life from 
electric submersible pump test curves. SPE Production & Facilities, 8(3), 217–221. 

Dowdy, M.J., Graham, D.J. and Diamond, M. (1988). A method for evaluating and extending the useful life of 
in-service anchor chain. In: Offshore Technology Conference, 2-5 May,  Houston, Texas, pp. 333–341. 

Ersdal, G. and Selnes, P.O. (2010) Life extension of aging petroleum production facilities offshore. In: SPE 
International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, 
12–14 April, Rio de Janeiro, Brazil, pp. 1–14. 

Ersdal, G. (2005) Assessment of existing offshore structures for life extension. PhD thesis, University of 
Stavanger, Norway. 

Galar, D., Kumar, U., Lee, J. and Zhao, W. (2012). Remaining useful life estimation using time trajectory 
tracking and support vector machines. Journal of Physics: Conference Series (Vol. 364, p. 12063). IOP 
Publishing. 

Galar, D., Kumar, U., Villarejo, R. and Johansson, C.-A. (2013). Hybrid prognosis for railway health 
assessment: an information fusion approach for PHM deployment. In: Prognostic and System Health 
Management, 8-11 September,  Milan, Italy, pp. 1-6. 

Garvey, D.R., Baumann, J., Lehr, J., Hughes, B. and Hines, J.W. (2009). Pattern recognition-based remaining 
useful life estimation of bottomhole assembly tools. In: SPE/IADC Drilling Conference and Exhibition. 
17-19 March, Amsterdam, The Netherlands, pp. 82–89. 

Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2014). Bayesian data analysis. Boca Raton, FL, USA: 
Chapman & Hall/CRC. 

Gola, G. and Nystad, B.H. (2011a). Comparison of time- and state-space non-stationary gamma processes for 
estimating the remaining useful life of choke valves undergoing erosion. In: 24th International 
Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM), 30 May–1 
June, Stavanger, Norway. 

Gola, G. and Nystad, B.H. (2011b). From measurement collection to remaining useful life estimation : defining 
a diagnostic-prognostic frame for optimal maintenance scheduling of choke valves undergoing erosion. In: 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

18 
 

Annual Conference of the Prognostics and Health Management society, 25-29 September,  Montreal, 
Canada, pp. 1–8. 

Hameed, A. and Khan, F. (2014). A framework to estimate the risk-based shutdown interval for a processing 
plant. Journal of Loss Prevention in the Process Industries, 32(1), 18–29.  

Hokstad, P., Habrekke, S., Johnsen, R. and Sangesland, S. (2010). Ageing and life extension for offshore 
facilities in general and for specific systems (Vol. A15322). Norway: SINTEF Technology and Society. 

Jardine, A.K.S., Lin, D. and Banjevic, D. (2006). A review on machinery diagnostics and prognostics 
implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(7), 1483–
1510.  

Jaske, C.E. and Shannon, B.E. (2007). Current issues in optimizing the useful life of reformer tubes. In: 
Proceeding of the Corrosion Conference and Expo,  11-15 March, Nashville, Tennessee. pp. 1–13. 

Kallenberg, G.P. (1998). Remaining life assessment of steam/methane and hydrogen reformer furnace tubes. In: 
NACE International Conference, 22-27 March , San Diego, California, USA. pp. 1–10. 

Kallenberg, G.P. and Munsterman, T. (2002). Remaining life assessment of catalytic reforming reactors. In: 
NACE International Conference, 7-11 April, Denver, Colorado, USA. 

Khan, F. I. and Haddara, M. (2004). Risk-based maintenance (RBM): A new approach for process plant 
inspection and maintenance. Process Safety Progress, 23(4), 252–265. 

Khan, F. I., Haddara, M. and Krishnasamy, L. (2008). A new methodology for risk-based availability analysis. 
IEEE Transactions on Reliability, 57(1), 103–112. 

Krishnasamy, L., Khan, F. and Haddara, M. (2005). Development of a risk-based maintenance (RBM) strategy 
for a power-generating plant. Journal of Loss Prevention in the Process Industries, 18(2), 69–81. 

Kumar, D. and Westberg, U. (1996). Proportional hazards modeling of time-dependent covariates using linear 
regression: a case study. IEEE Transactions on Reliability, 3(45), 386–392. 

Lee, J., Ni, J., Djurdjanovic, D., Qiu, H. and Liao, H. (2006). Intelligent prognostics tools and e-maintenance. 
Computers in Industry, 57(6), 476–489.  

Liao, H., Zhao, W. and Guo, H. (2006). Predicting remaining useful life of an individual unit using proportional 
hazards model and logistic regression model. In: IEEE Annual Reliability and Maintainability Symposium, 
23-26 Jan, Washington, DC, USA, pp. 127–132. 

Medjaher, K., Tobon-Mejia, D.A. and Zerhouni, N. (2012). Remaining useful life estimation of critical 
components with application to bearings. IEEE Transactions on Reliabilit, 61(2), 292–302.  

MIL-HDBK-189. (1981). Miltary Handbook  Reliability Growth Management, Department of Defence, 
Washington, DC, USA. 

MIL-HDBK-217F. (1991). Miltary Handbook Reliability Prediction of Electronic Equipment, Department of 
Defence, Washington, DC, USA. 

Nettikaden, V.C., Ifezue, D. and Tobins, F.H. (2014). Assessment of corrosion damage in a finger-type slug 
catcher. Journal of Failure Analysis and Prevention, 14(1), 43–54.  

Newby, M. (1994). Perspective on Weibull proportional-hazards models. IEEE Transactions on Reliability, 
2(43), 217–223. 

Nystad, B.H., Gola, G. and Hulsund, J.E. (2012). Lifetime models for remaining useful life estimation with 
randomly distributed failure thresholds. In European Conference of Prognostics and Health Management 
Society, 3-5 July, Dresden, Germany, pp. 1–7. 

Nystad, B. H., Gola, G., Hulsund, J. E. and Roverso, D. (2010). Technical condition assessment and remaining 
useful life estimation of choke valves subject to erosion. In: Annual Conference of the Prognostics and 
Health Management Society, 10-14 October, Portland, USA, pp. 1–9. 

Okoh, C., Roy, R., Mehnen, J. and Redding, L. (2014). Overview of Remaining Useful Life prediction 
techniques in Through-life Engineering Services. Procedia CIRP, 16, 158–163.  

Sankavaram, C., Pattipati, B., Kodali, A., Pattipati, K., Azam, M., Kumar, S. and Pecht, M. (2009). Model-
based and data-driven prognosis of automotive and electronic systems. In: IEEE International Conference 
on Automation Science and Engineering, 22-25 August, Bangalore, India, pp. 96–101.  

Sharifi, M., Yao, K., Raghavendra, S., Ershaghi, I., House, R. and Jacques, B. (2015). Prediction of remaining 
life in pipes using machine learning from thickness measurement. In: SPE Western Regional Meeting, 27-
30 April, Garden Grove, California, USA, pp. 1–9. 

Shafiee, M., Animah, I. and Simms, N. (2016). Development of a techno-economic framework for life extension 
decision making of safety critical installations. Journal of Loss Prevention in the Process Industries, 44, 
299–310. 

Si, X.S., Wang, W., Hu, C.H. and Zhou, D.H. (2011). Remaining useful life estimation - A review on the 
statistical data driven approaches. European Journal of Operational Research, 213(1), 1–14.  

Siddique, A., Yadava, G.S. and Singh, B. (2003). Applications of artificial intelligence techniques for induction 
machine stator fault diagnostics: review. In; 4th IEEE International Symposium Diagnostics for Electric 
Machines, Power Electronics and Drives, 24-26 August, Georgia USA, pp. 29–34. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

19 
 

Singpurwalla, N.D. (1995). Survival in dynamic environments. Statistical Science, 1(10), 86-103 
Singpurwalla, N.D. and Wilson, S.P. (1995). The exponentiation formula of reliability and survival: Does it 

always hold? Lifetime Data Analysis, 1(2), 187–194. 
Stacey, A., Birkinshaw, M. and Sharp, J.V. (2008) Life extension issues for ageing offshore installations. In: 

Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering 
(OMAE), June 15–20, Estoril, Portugal, pp. 199–215. 

Vaidya, P. (2010). Prognosis - subsea oil and gas industry. Annual Conference of the Prognostics and Health 
Management Society, 10 - 14 October, Portland, USA, pp. 1–10. 

Vaidya, P. and Rausand, M. (2009). Life extension of machinery in the oil and gas industry. In Proceedings of 
European Safety and Reliability Conference (ESREL), 7-10 September, Prague, Czech Republic, pp. 
2223-2230. 

Vaidya, P. and Rausand, M. (2011). Remaining useful life, technical health, and life extension. Journal of Risk 
and Reliability, 225(2), 219–231.  

van Noortwijk, J.M., Dekker, R., Cooke, R.M. and Mazzuchi, T.A. (1992). Expert judgment in maintenance 
optimization. IEEE Transactions on Reliability, 41(3), 427–432.  

Varde, P.V., Tian, J. and Pecht, M.G. (2014). Prognostics and health management based refurbishment for life 
extension of electronic systems. In: IEEE International Conference on Information and Automation, 28 - 
30 July, Hailar, Hulun Buir, China. pp. 1260–1267.  

OREDA (2015). Offshore Reliability Data Handbook, 6th edition, Volume I - Topside Equipment and Volume, 
2 - Subsea Equipment, SINTEF Energy, Norway. 

Vlok, P.J., Coetzee, J.L., Banjevic, D., Jardine, A.K.S. and Makis, V. (2002). Optimal component replacement 
decisions using vibration monitoring and the proportional-hazards model. Journal of the Operational 
Research Society, 2(53), 193–202. 

Wang, W. (2002). A model to predict the residual life of rolling element bearings given monitored condition 
information to date. IMA Journal of Management Mathematics, 1(13), 3–16. 

Wang, W. and Zhang, W. (2008). An asset residual life prediction model based on expert judgments. European 
Journal of Operational Research, 188(2), 496–505.  

Wilks, G.W. (2012). Remaining life assessments of refinery coker furnace tubes. In: NACE International 
Conference, 11-15 March,  Salt Lake City, Utah, pp. 1–16. 

Winning, I.G. and Belhimer, E. (2006). Practical Aspects of Field Monitoring of Corrosion. In: NACE 
International Conferene, 12-16 March, San Diego, California, USA, pp. 1-18. 

Xu, J., Wang, Y. and Xu, L. (2014). PHM-oriented integrated fusion prognostics for aircraft engines based on 
sensor data. IEEE Sensors Journal, 14(4), 1124–1132.  

Yasseri, S.F. and Mahani, R.B. (2016). Remaining useful life (RUL) of corroding pipelines. In: 26th 
International Ocean and Polar Engineering Conference, 26 June - 2 July Rhodes, Greece, pp. 390–397. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 

Table 1. List of industrial participants 

Participant Background Years of experience 

P1 Researcher 30 

P2 Regulator  8 

P3 Chief Engineer- Technical safety 20 

P4 Oil and gas facility manager 5 

P5 Consultant 20 

P6 Safety case manager 10 

P7 Offshore facility manager 5 

 

Table 2. Condition ranking matrix 

Probability of 
occurrence category 

 

Frequent 5 (2) Uncertain (3) Poor (3) Poor (3) Poor (3) Poor 

Probable 4 (1) Good (2) Uncertain (2) Uncertain (3) Poor (3) Poor 

Occasional 3 (1) Good (2) Uncertain (2) Uncertain (2) Uncertain (3) Poor 

Remote 2 (1) Good (1) Good (2) Uncertain (2) Uncertain (2) Uncertain 

Extremely 
unlikely 

1 (1) Good (1) Good (1) Good (1) Good (1) Good 

Consequence category 1 2 3 4 5 

Operation 
condition 

 Minor 
maintenance 
activity 

Less shutdown 
with less repair 
cost and less 
implication on 
system 
availability 

Moderate shutdown 
with moderate 
repair cost and 
moderate 
implication on 
system availability 

Longer shutdown 
with more 
significant cost of 
repair with 
implications on 
system 
availability 

Permanent 
shutdown 

Production loss  <5% 5-10% 10-30% 30-60% >60% 

Material 
degradation 

 No Slight Obvious Serious Extreme 

Fatigue cracks  No flaw 0 < � ≤ 0.001 

 

0.001 < � ≤ 0.03 

 

0.03 < � ≤ 0.15 

 

� > 0.15 

 

Corrosion  
 ≤ 0.005 0.005 < 


≤ 0.03 

 

0.03 < 
 ≤ 0.08 0.08 < 
 ≤ 0.25 

 


 > 0.25 

 

α andη represent, respectively, the corrosion factor and the fatigue crack factor 
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Table 3. Categorization of asset conditions 

Class Description 

Poor The condition of the subsystem or component is significantly outside design limits 
and should be discarded. 

Uncertain The condition of the subsystem or component may be outside design limit or 
unknown and RUL should be determined 

Good The condition of the subsystem or component is within design limit and RUL must 
be determined. 

 

 

Table 4. Technique versus degradation mechanism (adapted from Okoh et al., 2014) 

Degradation 
mechanism 

Bayesian 
model 

Statistical techniques 
and stochastic models 

Computational 
intelligence models 

Physic of 
failure 

Expert 
Judgement 

Fatigue × × × × - 

Wear × × × × - 

Deformation - - - × × 

Corrosion × × × × - 

 

 

Table 5. Subsystem and components breakdown 

Separation system   

Subsystem and component description Subsystem/component Number 

Vessel  Component 1 

Piping  Component 35 

Pump  Subsystem 2 

Produced water treatment tank  Component 1 

Surge tank  Component 1 

Gas dehydrator  Subsystem 1 

Pressure relief valve  Subsystem 3 

Drain valve Subsystem 1 

Other valves Subsystem 8 

Export lines Subsystem 2 

Total  55 
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Table 6. RUL data collection 

Description Value 

Design pressure 51barg 

Current operating pressure 25barg 

Measured thickness 25.9mm 

Required minimum thickness per design 21.3mm 

Average corrosion rate 0.77mm/year 

Targeted corrosion rate <0.125mm/year 

CO2 partial pressure 1.93–2.89barg 

 

 

Table 7. LE corrosion mitigation strategy 

Responsible 
officer 

Action Critical 
subsystem 

Frequency Threshold Corrective actions 

Process 
technician 

Monitor water 
content in well 
product 

A1.A Monthly/every 
sphere run 

<20% vol.% water Notify asset integrity 
manager 

Process 
technician 

Monitor iron 
count in the 
vessel fluid 

A1.A Monthly <50ppm Notify asset integrity 
manager 

Process 
technician 

Monitor pH 
level of well 
product 

Well Monthly 7.0<pH<9.0 Notify asset integrity 
manager if pH is 
beyond threshold 

Process 
technician 

Monitor 
chloride 
content in 
produced 
water 

A1.E Monthly/every 
sphere run 

<10,000ppm Notify asset integrity 
manager 

Corrosion 
engineer 

Inject inhibitor Glycol/ME
G plant 

Monthly >100ppm If lower than threshold 
increase dosage 

Corrosion 
engineer 

On-line 
degradation 
monitoring 

A1.E Annually <0.125mm/year If greater than 
threshold. Notify asset 
integrity manager 

Asset 
integrity 
management 
team 

Review of 
results 

- Quarterly - If threshold is above 
regulatory limit, 
replacement option 
should be considered 
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Figure 1. The original design life and the extended life of an asset. 

 

 

 
Figure 2. Key influencing factors of RUL estimation. 

 

t=0 t=lo t=le 
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Figure 3. A process flowchart to estimate RUL for LE decision making 
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Figure 4. A schematic process layout of the separation system 

 

 

 

 

 

Figure 5. Results of the condition matrix 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
 

 

 

 

 

Figure 6. RUL estimation results for the separation system 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 
RESEARCH HIGHLIGHTS 

 
 

� To propose a systematic framework to help offshore oil and gas operators meet life 

extension (LE) requirements; 

� An integration between three individual life assessment modules, namely: condition 

assessment, remaining useful life (RUL) prediction and LE decision-making.  

� A case study involving a three-phase separator system on a platform. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


