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Dear Editor,

On behalf of my co-authors, I would like to submit the attached manuscript entitled: “Mixed Kernel 
Canonical Variate Dissimilarity Analysis for Incipient Fault Monitoring in Nonlinear Dynamic 
Processes” to be considered for publication in the Computers & Chemical Engineering journal.

We first highlight these issues in the current industrial process monitoring literature: 

(a) sensitive detection of incipient faults; and 
(b) the use of kernel-based techniques for nonlinear process monitoring. 

Many studies have covered these topics separately. However, there is no existing technique that 
simultaneously addresses these two issues together. We believe that the reason behind this is the 
proper choice of kernel.

Our study, hence, emphasizes the importance of using mixed kernels for incipient fault monitoring. 
Canonical variate dissimilarity analysis (CVDA) is a recent technique developed for incipient fault 
detection. In our paper, we present Mixed Kernel CVDA (MKCVDA), which is an extension of 
CVDA that incorporates mixed kernels. Using a continuous stirred-tank reactor (CSTR) case study, 
we have demonstrated the superior performance of MKCVDA over the linear CVDA and single 
Kernel CVDA for incipient fault monitoring in nonlinear dynamic processes.

We declare that this work has not been published before and is not being considered for publication 
elsewhere. 

We look forward to hearing from you soon.

Sincerely,
Karl Ezra S. Pilario



Highlights:

 A method consisting of kernel PCA and canonical variate dissimilarity analysis 
is proposed.

 Current kernel-based process monitoring methods only use single kernels.
 Incipient fault growth is depicted more accurately using a mixture of Gaussian 

RBF and linear kernel.
 The grid search method is used to optimize kernel parameters.
 The dissimilarity index achieves the earliest detection time compared to 

conventional statistical indices.



Mixed Kernel Canonical Variate Dissimilarity Analysis for Incipient Fault 
Monitoring in Nonlinear Dynamic Processes

Abstract

Incipient fault monitoring in large industrial plants is becoming more important,
since the early detection of these faults can prevent an emergency
situation. Recently, the Canonical Variate Dissimilarity Analysis (CVDA)
detection method was shown to be efficient especially for processes under
varying operating conditions. CVDA can be extended to nonlinear processes
by introducing kernel-based learning. However, incipient fault monitoring requires
kernels with both good interpolation and extrapolation abilities. Unfortunately,
conventional single kernels only exhibit one ability or the other,
but not both. To overcome this drawback, a Mixed Kernel CVDA method is
presented in this study for incipient fault monitoring in nonlinear dynamic
processes. Due to the use of mixed kernels, both enhanced detection sensitivity
and a better depiction of the growing fault severity in the monitoring
charts were achieved. The proposed method remains effective for handling
the nonlinear, non-Gaussian, and dynamic nature of the data all at once.

Keywords: Fault detection, canonical variate analysis, global kernel, local
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1. Introduction

Large-scale industrial plants are nowadays highly-integrated and more
complex. Hence, the necessary task of process health monitoring becomes
more challenging (Chiang et al., 2005). Fortunately, with the rise of new tech-
nologies in automation and data acquisition, large data sets from these plants
are readily available (Yin et al., 2015). By taking advantage of this, Mul-
tivariate Statistical Process Monitoring (MSPM) methods are deemed most
favorable for monitoring complex industrial processes (Zhang and Zhang,
2010). Since process variables are highly correlated, MSPM methods are
usually dimensionality reduction tools (Chiang et al., 2005) such as principal
components analysis (PCA), partial least squares (PLS), independent com-
ponent analysis (ICA), and canonical variate analysis (CVA). Data-driven
methods are attractive because their use avoids the costly and time-consuming
process of first-principles modelling for distinguishing between normal and
faulty process operating conditions (Yin et al., 2015; Ge et al., 2013).

The key issues in MSPM are outlined by Ge et al. (2013). Plant data
was described to be nonlinear, non-Gaussian, and dynamic in nature. Hence,
through the decades, the MSPM methods are continuously being enhanced
for nonlinear dynamic process monitoring. But aside from these, incipient
fault monitoring is a more important issue and is recently gaining research
attention. As opposed to abrupt faults, incipient faults are slowly developing
process anomalies that start at small magnitudes. If not detected early, these
faults can lead to an emergency situation or catastrophic failure (Vachtse-
vanos et al., 2006). Yet early detection is difficult, especially in closed-loop
systems where the fault is initially masked by process control, and by noise
or disturbances (Zhang et al., 2002).

To address this, nonlinear dynamic MSPM methods with enhanced sensi-
tivity were recently proposed. Shang et al. (2018) used an augmented kernel
Mahalanobis distance metric for improved fault detection, which avoids space
partitioning in PCA. This produced a more sensitive detection index than
CVA and PCA variants when tested in the Tennessee Eastman Plant. Mean-
while, Rato and Reis (2014) proposed sensitivity enhancing transformations,
which also uses augmented data for accounting dynamics and nonlinearities.
The adaptive kernel PCA by Cheng et al. (2010) uses the multivariate ex-
ponentially weighted moving average for capturing small mean shifts in the
process. Recently, Pilario and Cao (2018) proposed the Canonical Variate
Dissimilarity Analysis (CVDA) to detect incipient faults even at dynamically
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varying process operating conditions. However, the nonlinear issue was not
addressed sufficiently in that work. Indeed, incipient faults may develop to a
point where the process behaves differently in a way that linear models can-
not describe. One way to address this is to introduce kernel-based learning
in CVDA.

Kernel methods are currently being used to handle the nonlinear issue
with promising results. In kernel methods, the idea is to project the data
onto a high-dimensional space using kernel functions, so that linear MSPM
can be applied to the transformed data. Ever since Schölkopf et al. (1998)
laid the foundations of kernel PCA, several other kernel MSPM methods have
been reported in the literature. Recent works include the kernel dynamic
PCA by Fezai et al. (2018) and Jaffel et al. (2016), the enhanced kernel PCA
by Nguyen and Golinval (2010), the kernel PLS based generalized likelihood
ratio test by Botre et al. (2016), the kernel dynamic ICA by Fan and Wang
(2014), the weighted kernel ICA for non-Gaussian data by Cai et al. (2017),
and the kernel CVA by Samuel and Cao (2015). Fault diagnosis using kernels
applied to support vector machines (SVM) was also explored in numerous
works, as surveyed by Yin and Hou (2016). For example, Zhang (2009) used
kernel PCA and kernel ICA features as input to SVM for classifying faults.
The most widely used kernel function in these studies, e.g. Cheng et al.
(2010); Nguyen and Golinval (2010); Fan and Wang (2014); Samuel and Cao
(2015); Bernal-de Lázaro et al. (2016), is the Gaussian radial basis function,
or simply, the RBF kernel. Other choices include the polynomial and sigmoid
kernels, to name a few.

In this paper, we first highlight some drawbacks in using the RBF kernel
or any single kernel on their own for monitoring specifically incipient faults.
Also, since CVDA is recognized as a dynamic MSPM method that is sensitive
to incipient faults, we extend its applicability to nonlinear processes using
kernel methods. As a result, a new kernel MSPM method is presented that is
called Mixed Kernel Canonical Variate Dissimilarity Analysis (MK-CVDA).
The overall method consists of a kernel PCA (KPCA) followed by CVDA.
The grid search method is also used for finding optimal kernel parameters.
In MK-CVDA, the same detection indices from CVDA, namely the T 2, Q,
and D, are adopted. The non-Gaussianity issue is handled by using kernel
density estimation for computing the detection limits of these indices. The
new method is intended for monitoring nonlinear dynamic processes under
varying operating conditions, where no prior fault information is needed.

The structure of the paper is organized as follows. KPCA is first revisited
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in Section 2. Afterwards, mixed kernels are introduced in Section 3. Section 4
discusses the overall MK-CVDA method. The performance of MK-CVDA is
evaluated in Section 5. Finally, the work is concluded in Section 6.

2. Kernel PCA Revisited

In general, kernel dynamic MSPM methods consist of: (i) data projection
to the kernel space; (ii) augmentation of lagged variables to treat dynamics;
and (iii) dimensionality reduction for partitioning the data space into the
state and residual subspaces. For MK-CVDA, step (i) is done using kernel
PCA (KPCA) and steps (ii)-(iii) are performed using CVDA. In this section,
KPCA is revisited as follows.

Let xk =
[
uTk yTk

]T ∈ <m, k = 1, . . . , N denote a data set of N observa-
tions of m variables, where u and y represent the process inputs and outputs,
respectively. The xk are normalized to zero mean and unit variance, giving
us x̂k.

In PCA, it is required to analyze features that live in a linear space. Thus,
some nonlinear map Φ(·) must be used to project the data from the nonlinear
input space onto a linear feature space F , i.e. Φ : <m → F . Assuming that∑N

k=1 Φ(x̂k) = 0, PCA seeks to solve an eigenvalue problem on the sample
covariance in F , as follows:

CF =
1

N

N∑
k=1

Φ(x̂k)Φ(x̂k)
T , (1)

CFw = λw, (2)

where CF is the sample covariance in F , w is an eigenvector, and λ is an
eigenvalue.

Many kinds of nonlinear relationships must be accounted to design an
ideal Φ(·), but it may inevitably result in a large dimensionality in F . So to
avoid specifying Φ(·) explicitly, Schölkopf et al. (1998) suggested to represent
dot products in F using kernel functions K for (i, j) = 1, . . . , N as follows:

K(xi,xj) , Kij = 〈Φ(xi),Φ(xj)〉, (3)

where 〈 · , · 〉 denotes dot product. Then, they modified Eq. (2) into the
following set of equations for k = 1, . . . , N :

〈Φ(x̂k),C
Fw〉 = λ〈Φ(x̂k),w〉. (4)
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Noting that there exists some v such that w = 〈v,Φ(x̂k)〉, the expression
in Eq. (4) is then expanded, where all instances of 〈Φ(xi),Φ(xj)〉 are replaced
with the kernels in Eq. (3), yielding a different eigenvalue problem:

K̂v = Nλv, (5)

where v is an eigenvector, λ is an eigenvalue, K ≡ [Kij] is an N ×N sym-

metric kernel matrix, and K̂ is matrix K mean-centered in F by:

K̂ = K− 1NK−K1N + 1NK1N , (6)

where 1N ∈ RN×N and (1N)ij = 1/N .
A form of nonlinear PCA now involves solving Eq. (5) instead of Eq. (2).

Thus, the need to specify Φ(·) is eliminated since the nonlinear mapping is
implicitly achieved by a so-called kernel trick. However, as it will be discussed
in Section 3, not all functions can be used as kernels.

KPCA proceeds by forming the kernel matrix K from x̂k using Eq. (3)

and centering K to K̂ using Eq. (6). Due to Eq. (5), K̂ is then diagonalized
as

K̂/N = SΛST , (7)

where S = [v1,v2, . . . ,vN ] ∈ RN×N represents N eigenvectors and Λ =
diag(λ1, . . . , λN) ∈ RN×N are eigenvalues where λ1 ≥ λ2 ≥ · · · ≥ λN . For
the purpose of this study, only r number of principal components (PCs) that
explain 99% of the total variance are retained. Denoting Sr as the first r
columns of S, PCs tk are finally obtained by using the following equation:

T ≡ [tk] = STr K̂ ∈ Rr×N . (8)

In KPCA monitoring, the widely used T 2 and Q indices are computed for
monitoring the principal subspace T and the residual subspace, respectively.
However, dynamics in the data are not handled by KPCA alone. Hence, the
MK-CVDA method takes the PCs tk as input features to CVDA. So aside
from data projection to the kernel space, KPCA effectively serves as a data
whitening step (as did Fan and Wang (2014)), as well as a way to avoid
singular matrices in CVDA afterwards (as did Samuel and Cao (2015)).

In summary, KPCA involves the transformation of training data xk ∈ <m
into tk ∈ Rr by nonlinear projection to a feature space F , and further onto
a subspace of F so as to perform whitening in MK-CVDA. In the following
section, we discuss the choice of kernel functions in Eq. (3).
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Figure 1: Sample plots of kernel values, where x′ = 0.1, for: (a) a local kernel (RBF
kernel); and (b) a global kernel (polynomial kernel) (Zhu et al., 2012; Jordaan, 2002).

3. Choice of Kernel

In functional analysis, Mercer’s theorem gives conditions for kernel func-
tions that can act as a dot product in a possibly ∞-dimensional space, for-
mally known as a Hilbert space (Cristianini and Shawe-Taylor, 2014). In
loose terms, admissible kernels are said to be those that produce a positive
semi-definite kernel matrix, K. Although many different functions satisfy
this requirement, Jordaan (2002) noted two main types of kernels: local and
global. A typical example of a local kernel is the widely used Gaussian radial
basis function (RBF), that is given by:

Kg(x,x
′) = exp

(
−‖x− x′‖2

c

)
, (9)

where c is the kernel width. It satisfies the Mercer condition for c > 0. It also
corresponds to an ∞-dimensional space F , because the exponential can be
viewed as a polynomial of infinite degree, when expressed as a power series.
On the other hand, a typical example of a global kernel is the polynomial
kernel, given by:

Kp(x,x
′) = (〈x,x′〉+ 1)d, (10)

where d is the kernel parameter that denotes the degree of the polynomial.
This kernel satisfies the Mercer condition for d ∈ N (Smola et al., 2000).
Others have found polynomial kernels more suitable than the RBF kernel for
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certain applications, e.g. the penicillin process (Jia et al., 2012; Lee et al.,
2004).

Sample plots of local and global kernel values are shown in Fig. 1, where
x′ represents a training sample from the normal process and x represents
any unseen test sample to be mapped using Kg or Kp, as in Eqs. (9)-(10).
Using these plots, the differences and limitations of each type of kernel are
discussed as follows.

For the RBF kernel in Fig. 1(a), the behavior of an exponential function
is expected: Kg tends to one as the difference between x and x′ become zero,
and tends to zero when their difference become large. However, the fact that
the Kg mapping “vanishes” beyond a certain distance from the training data
is undesirable in process monitoring. If two faulty samples differ in fault
magnitude, but both are mapped to Kg = 0, then they would be perceived
as the same. Worse, they may even be mistaken as normal. In most studies,
much larger kernel widths c are chosen to increase the spread of Kg, e.g. Fan
and Wang (2014) used c = 500m (where m is the number of variables) and
Samuel and Cao (2015) used a constant c = 1720 for the Tennessee Eastman
Plant. However, these mappings still vanish beyond a certain distance from
the training data. Although the RBF kernel can learn an effective mapping
in the vicinity of the training data, i.e. good interpolation ability, it cannot
influence a mapping over the entire data space. Thus, whenever c is said to
be obtained empirically, it is actually chosen too large, hoping that the RBF
kernel would extrapolate well. As a local kernel, however, the RBF kernel
loses its interpolation ability at large c. The extent of this occurrence depends
on the case study at hand. Hence, local kernels alone cannot exhibit both
good interpolation and extrapolation abilities at the same time, as noted by
Zhu et al. (2012).

On the other hand, Fig. 1(b) shows that the polynomial kernel extrapo-
lates well because it creates a mapping on the entire data space, regardless
of where it was trained. However, it only interpolates well at higher d. Thus,
when global kernels are used alone, good extrapolation and interpolation
abilities cannot be achieved at the same time either, as noted by Zhu et al.
(2012).

In practice, a kernel that has both good interpolation and extrapolation
abilities, i.e. good generalization, is desired. In a particular development of
soft sensors, Jordaan (2002) proposed the use of a mixture of local and global
kernels, which was also proven to satisfy Mercer’s condition. In that work, a
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convex combination of kernels was formed as given by:

Kmix = ωKp + (1− ω)Kg, (11)

where ω ∈ [0, 1] is the mixture weight. Note that the mixed kernel reduces
to the polynomial and RBF kernels at ω = 1 and ω = 0, respectively. Since
then, more studies on mixed kernels have also been published. For instance,
mixed kernel canonical correlation analysis (MKCCA) was proposed by Zhu
et al. (2012) for various learning applications. Also, Zhong and Carr (2016)
used mixed kernels for a support vector regression model. Moreover, a gram-
mar for combining kernels was studied by Duvenaud (2014) for Gaussian
process models. In this paper, the mixed kernel in Eq. (11) is used for non-
linear process monitoring of incipient faults. Having both interpolation and
extrapolation abilities, mixed kernels are able to handle the nonlinear issue
in process monitoring and also depict the notion of incipient fault growth
properly as the process degrades in time.

According to Jordaan (2002), the weighted sum of a linear (d = 1) and
RBF kernel is sufficient to balance good interpolation and extrapolation abil-
ities. Hence, we adopt d = 1 for the rest of this paper. After the KPCA step
in Section 2, we continue the MK-CVDA algorithm description in the follow-
ing section, including a discussion on how to choose parameters in Eq. (11).

4. Mixed Kernel CVDA

CVDA is a framework based on canonical variate analysis (CVA), which is
an effective dynamic MSPM method (Odiowei and Cao, 2010). CVDA aims
to enhance CVA for incipient fault detection (Pilario and Cao, 2018). In this
paper, the proposed MK-CVDA consists of a KPCA followed by CVDA. As
KPCA was discussed in Section 2, we proceed with CVDA as follows.

4.1. Dimensionality reduction by CVDA

In CVDA, data are first arranged into past and future matrix blocks.
However, only the process output variables must appear in the future data,
considering that future inputs are independent from the past data. Thus,
KPCA must be performed for xk only, and another KPCA for yk only.

Let t
(1)
k ∈ Rr1 denote the PCs from xk, and t

(2)
k ∈ Rr2 denote the PCs from

yk. Although r1 and r2 are each chosen using the same cutoff criteria, they
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are not necessarily equal. Lagged variables are formed in Hankel matrices as
in Eqs. (12)-(13):

Yp =


t
(1)
p t

(1)
p+1 t

(1)
p+2 · · · t

(1)
p+M−1

t
(1)
p−1 t

(1)
p t

(1)
p+1 · · · t

(1)
p+M−2

...
...

...
. . .

...

t
(1)
1 t

(1)
2 t

(1)
3 · · · t

(1)
M



T

, (12)

Yf =


t
(2)
p+1 t

(2)
p+2 t

(2)
p+3 · · · t

(2)
p+M

t
(2)
p+2 t

(2)
p+3 t

(2)
p+4 · · · t

(2)
p+M+1

...
...

...
. . .

...

t
(2)
p+f t

(2)
p+f+1 t

(2)
p+f+2 · · · t

(2)
N



T

, (13)

where Yp ∈ RM×r1p and Yf ∈ RM×r2f are respectively the past and future
data matrices, p and f are respectively the number of lags in the past and
future, and M = N − p− f + 1. Here, the amount of lags are chosen using
autocorrelation analysis (Odiowei and Cao, 2010), but it must be ensured
that r1p < M and r2f < M for results to make sense (Samuel and Cao, 2015).
The Hankel matrices are normalized using the mean and standard deviation
of each column, giving us Ŷp and Ŷf . Canonical correlation analysis (CCA)

is then performed between Ŷp and Ŷf . But since they may be rank-deficient
after KPCA, they must first be factored QR decomposition:

Ŷp = QpRpΠ
T
p , (14)

Ŷf = QfRfΠ
T
f , (15)

where Qp and Qf are M ×M column orthogonal matrices, Rp and Rf are
upper triangular matrices of size M × r1p and M × r2f respectively, and Πp

and Πf are permutation matrices of size r1p× r1p and r2f × r2f , respec-
tively. The latter are used to permute the rows of R to have non-increasing
absolute value of diagonal elements.

Let ρ1 = rank(Ŷp) and ρ2 = rank(Ŷf ). Only the first ρ1 columns of Qp

and the first ρ2 columns of Qf are taken and denoted as Q′p and Q′f , re-
spectively. The corresponding top-left ρ1 × ρ1 submatrix of Rp and top-left
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ρ2 × ρ2 submatrix of Rf are also taken as R′p and R′f , respectively. Now,
CCA involves the singular value decomposition (SVD) of the sample corre-
lation matrix H as follows:

H = (Q′f )
TQ′p = UΣVT , (16)

where U and V consist of the left and right singular columns of H, respec-
tively, and Σ is a diagonal matrix of sorted singular values, σ1 ≥ σ2 ≥ . . . ≥
σρ with ρ = min(ρ1, ρ2). The singular vectors are rescaled and reordered by:

U∗ =

[
(R′f )

−1U
√
M − 1

0

]
ΠT
f ∈ Rr2f×r2f , (17)

V∗ =

[
(R′p)

−1V
√
M − 1

0

]
ΠT
p ∈ Rr1p×r1p, (18)

wherein the zero rows would appear only if dependent columns exist in Ŷp or

Ŷf . The CCA implementation above is same as the CCA built-in function
in MATLAB R©.

Since only n (with n < ρ) dominant singular values explain the system
dynamics (Pilario and Cao, 2018), only the first n columns of U∗ and V∗ are
collected and denoted as U∗n and V∗n, respectively. Projection matrices J, L
and F are formed as:

J = (V∗n)T ∈ Rn×r1p, (19)

L = (U∗n)T ∈ Rn×r2f , (20)

F = (I− JTJ)T ∈ Rr1p×r1p, (21)

which are used to reveal the state Z and residual E subspaces, as follows:

Z ≡ [zk] = JŶT
p ∈ Rn×M , (22)

E ≡ [ek] = FŶT
p ∈ Rr1p×M , (23)

where zk are the state variables and ek are the residual variables for k =
1, . . . ,M . Lastly, dissimilarity features D are computed as:

D ≡ [dk] = LŶT
f −ΣnJŶT

p ∈ Rn×M , (24)

where Σn = diag(σ1, σ2, . . . , σn) from Eq. (16).
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4.2. MK-CVDA monitoring

The same detection indices from the CVDA framework are adopted for
MK-CVDA, defined as follows:

T 2
k = zTk zk, (25)

Qk = eTk ek, (26)

Dk = dTk (I−Σ2
n)−1dk. (27)

Upper control limits (UCL), denoted by T 2
UCL, QUCL, and DUCL, are com-

puted using kernel density estimation (KDE) as explained in Odiowei and
Cao (2010) and Pilario and Cao (2018). In KDE, the distributions of the
indices are estimated, which may not necessarily be Gaussian. Given a sig-
nificance level, α, the UCLs are solved such that P (J < JUCL) = α where
J ∈ {T 2, Q,D}. The kth sample is considered faulty if any of T 2

k , Qk, or
Dk exceeded T 2

UCL, QUCL, or DUCL, respectively. In this paper, we adopted
a 99.9% significance level for all monitoring tasks.

During online monitoring, a data block of the last l = p+ f test samples
xtest
i ∈ <m, i = (k− l+ 1), . . . , k are taken at the kth sampling instant. This

data is normalized using the mean and standard deviation of the training set,
giving us x̂test

i . The x̂test
i is projected to the feature space F using Ktest =

K(x̂test
i , x̂j) ∈ Rl×N where x̂j represents all training samples j = 1, . . . , N .

Ktest is then centered as

K̂test = Ktest − 1test
N K−Ktest1N + 1test

N K1N , (28)

where 1test
N ∈ Rl×N and (1test

N )ij = 1/N . The KPCA step gives the PCs
obtained from the test data as

Ttest ≡ [ttesti ] = (K̂testSr)
T ∈ Rr×l. (29)

The above projections are done to the output variables ŷtest
i as well, using

the same kernel parameters. For the CVDA step, lagged data vectors yp
and yf are formed as in the first rows of Eq. (12) and Eq. (13). After
normalizing, ŷp and ŷf are subjected to projection matrices, J, F, and L,
to yield zk, ek, and dk as in Eqs. (22)-(24). Finally, detection indices are
obtained using Eqs. (25)-(27) for fault detection. In summary, we outline the
overall algorithm of MK-CVDA in Fig. 2.
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Figure 2: MK-CVDA algorithm for nonlinear process monitoring.

4.3. Grid search method

The parameters that must be set prior to the application of MK-CVDA
are: the mixed kernel parameters c and ω, and the number of dominant sin-
gular values, or states, n in CVDA. Because these parameters are difficult to
determine automatically, they must be subjected to an optimization proce-
dure, where the objective might be to select [c, ω, n] that best distinguishes
normal from faulty process conditions (as did Bernal-de Lázaro et al. (2016)).
However, we assume that no prior fault information is available for checking
this criteria. So to choose [c, ω, n], we take two different data sets, both from
the normal operation of the process: SET 1 (the training set) is used to train
an MK-CVDA model and SET 2 (the validation set) is used to evaluate the
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Figure 3: MK-CVDA offline training with grid search algorithm.

model trained from SET 1. The optimal [c, ω, n] is defined as that which
minimizes the combined false alarms incurred by the T 2, Q, and D indices
in monitoring SET 2.

Several approaches exist for optimizing kernel parameters. Bernal-de
Lázaro et al. (2016) used differential evolution (DE) and particle swarm op-
timization (PSO), and Jia et al. (2012) used genetic algorithms (GAs), to
name a few. Although the use of these metaheuristics is attractive, the pre-
cision of results is not worth the computational effort. In reality, only a small
range of [c, ω, n] needs to be explored, since under- or overitting may occur
outside these ranges (Zhu et al., 2012). For example, too small c makes the
RBF kernel sensitive to noise, while too large c creates a smooth mapping
that may behave as linear (Bernal-de Lázaro et al., 2016). A similar case for
choosing n is discussed by Ruiz-Cárcel et al. (2015). Hence, the grid search
method is adopted to find optimal parameters (see Zhu et al. (2012)). In grid
search, combinations from only a finite set of values of [c, ω, n] are explored.
The set of values are pre-defined manually depending on the problem.

In summary, the grid search method is used to decide kernel parameters
c and ω, and the number of states, n, in MK-CVDA, by way of minimizing
false alarms in a validation data set. After defining the sets of [c, ω, n] to
explore, grid search is performed as represented in Fig. 3.
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Figure 4: Schematic of the CSTR case study.

5. Case Study

In this section, the proposed MK-CVDA is evaluated using a closed-loop
continuous stirred-tank reactor (CSTR) case study, described in Pilario and
Cao (2018). A schematic of the CSTR is given in Fig. 4. Simulated data
from this process are produced by the following nonlinear state-space model:

dC

dt
=
Q

V
(Ci − C)− akC + ν1, (30)

dT

dt
=
Q

V
(Ti − T )− a(∆Hr)kC

ρCp
− b UA

ρCpV
(T − Tc) + ν2, (31)

dTc
dt

=
Qc

Vc
(Tci − Tc) + b

UA

ρcCpcVc
(T − Tc) + ν3, (32)

where the inputs are u =
[
Ci Ti Tci

]T
, the outputs are y =

[
C T Tc Qc

]T
,

and k = k0 exp
(−E
RT

)
. Here, the same controller settings and parameter values

in Eqs. (30)-(32) were used as those in Pilario and Cao (2018). Simulations
of normal and faulty data were carried out under varying operating condi-
tions every 60 min. In this paper, we investigate only the incipient faults
listed in Table 1. Fault 1 is a slow decay in catalyst activity, introduced
by decreasing the value of a in Eq. (30) and Eq. (31) to zero. Fault 2 is a
fouling fault in the cooling jacket, introduced by decreasing the value of b
in Eq. (31) and Eq. (32) to zero. Lastly, fault 3 is a drift in the readings
of reactor temperature, which is the controlled variable. This fault produces
oscillations to the coolant flow rate, as the controller becomes saturated.
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Table 1: Incipient fault scenarios in the CSTR

Fault Description† Nominal Values Name

1 a = a0 exp (−0.0005 t) a0 = 1 Catalyst Decay

2 b = b0 exp (−0.001 t) b0 = 1 Fouling

3 T = T0 + 0.01 t T0 = 430 K Sensor Drift

† All t in minutes.

In the following, we first demonstrate the importance of mixed kernels
visually using KPCA on 2-dimensional CSTR data, and then present MK-
CVDA online monitoring results using the entire input-output CSTR data.

5.1. Illustrative study of mixed kernels for 2D data

Consider a data set of 300 normal samples and 300 faulty samples of only
the reactor temperature T and concentration C in the CSTR, where the
fault condition is fault 1 in Table 1. Fig. 5(a) illustrates the raw data in the
original data space. Due to process control, the normal samples are expected
to cluster at the desired setpoint, which is [Tsp, Csp] = [430 K, 0.1 mol/L].
These samples are then normalized to zero mean and unit variance prior
to KPCA. To illustrate, the dashed box in Fig. 5(a) represents the range
[µ− 3σ, µ+ 3σ] in each dimension of the normal data samples.

Following the kernel parameter recommendations of Choi et al. (2005),
projection maps of the first 3 KPCA components of the normalized data
using an RBF kernel of width c = 10 are shown in Fig. 5(b). Due to the use
of only a local kernel with an arbitrarily chosen kernel parameter, the normal
data samples were able to influence mappings only within their vicinity in the
data space. When these mappings are applied to the faulty samples, most
of the samples will be undesirably projected to zero kernel value. In effect,
the notion of increasing fault severity as test samples move farther from the
normal data is not encoded. Even worse, far-away faulty samples may be
perceived as normal. Although increasing c may enlarge the influence of the
mappings, an influence over the entire data space is not guaranteed. Also, at
large c, the RBF kernel loses its interpolation ability within the vicinity of
the normal data samples. Thus, the ability of KPCA to handle the nonlinear
issue is compromised.

On the other hand, Fig. 5(c) shows the projection maps of the first 3
KPCA components using a mixed kernel. Several advantages of using mixed
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Figure 5: KPCA monitoring of CSTR data: (a) raw data in T -C space; (b) projection
maps from the first 3 principal components using RBF kernel (c = 10); (c) projection
maps from the first 3 principal components using Mixed kernel (ω = 0.1, d = 1, c = 10).
Normal and faulty samples are shown in blue and red, respectively.

kernels can be deduced from the figure: (i) the interpolation ability of the
mixed kernel is retained as evidenced by nonlinear contours within the vicin-
ity of the normal data samples; (ii) the extrapolation ability of the mixed
kernel is also retained as evidenced by influencing a mapping over the entire
data space; and, (iii) the notion of increasing fault severity as test samples
move farther from the normal data is encoded. The latter is required in any
kernel-based incipient fault monitoring method since the kernel-based model
should exhibit a degradation behavior as the fault grows in time. Hence,
mixed kernels must be used for incipient fault monitoring rather than single
(local or global) kernels.

For the rest of this section, the performance of MK-CVDA is discussed
using the entire CSTR input-output data.

5.2. MK-CVDA offline training

To proceed with offline training, a training set and a validation set is
generated from the CSTR, each consisting of 1200 samples of the 7 variables.
The sampling interval is 1 min. Random seeds for input disturbances and
noise are different between the training and validation sets. Grid search
(Fig. 3) was then used to find MK-CVDA parameters, [c, ω, n], such that false
alarms in the validation set are minimized. For this case, we considered the
sets: c ∈ {1, 0.5, 2, . . . , 10}, ω ∈ {0, 0.05, 0.1, . . . , 1}, and n ∈ {2, 3, . . . , 12}.
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Besides, if smaller increments are used in the c and ω sets, a change in the
number of false alarms may not occur between adjacent choices.

In Fig. 6(a), the minimum number of false alarms ever recorded for each n
(at any [c, ω]) are plotted, indicating that the CSTR must have n = 6 states.
Further in Fig. 6(b), a bar graph of the number of false alarms against choices
of [c, ω] for n = 6 is shown. These results agrees with those from (Jordaan,
2002; Zhu et al., 2012) in that the choice of mixture weight is desirable
at ω ≥ 0.9, i.e. only a “pinch” of the RBF kernel needs to be added to
improve the interpolation ability of a low-order polynomial kernel. In other
words, the influence of each kernel type in the mixture may not necessarily
balance at ω = 0.5. At low c and ω, Fig. 6(b) shows that the resulting MK-
CVDA models are not suitable since the detection indices are found above
the detection limits most of the time. In the end, the grid search found
[c, ω, n] = [4.5, 0.95, 6] as the optimal parameters for MK-CVDA monitoring
of the CSTR.
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respectively.

5.3. MK-CVDA online monitoring

The performance of any process monitoring method can be evaluated
using detection delays (DD), false alarm rates (FAR), and missed detection
rates (MDR). In this paper, detection time is defined as the first time when
10 consecutive alarms were raised from the start of operation. Hence, DD is
the period between the start of fault and the detection time. Also, standard
FAR and MDR definitions are given as:

FAR =
no. of samples (J > JUCL|fault-free)

total samples (fault-free)
× 100%, (33)

MDR =
no. of samples (J < JUCL|fault)

total samples (fault)
× 100%. (34)

Using these performance metrics, we compared our proposed MK-CVDA
method with linear CVDA and KCVDA (which uses RBF kernels only). For
linear CVDA, the settings found in (Pilario and Cao, 2018) are adopted. For
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KCVDA, we adopt c = 350 and n = 8 as obtained from the guidelines by
Choi et al. (2005).

For a robust comparison, 200 test data sets were generated for each fault
scenario in Table 1, while varying the random seeds for disturbances and
noise. For all test data sets, an initial 200 min of normal operation is followed
by the introduction of each incipient fault until 1200 min. After monitoring
all test data, performance results are summarized in Fig. 7(a) as box plots.
Each row of box plots correspond to a fault scenario, while each column of
box plots correspond to DD, FAR, and MDR results. Within a box plot,
the detection indices from CVDA, KCVDA, and MK-CVDA are compared
with each other. In Fig. 7(b), sample monitoring charts for the Fault 1
scenario (catalyst decay) are given, along with part of the test data that was
monitored in these charts. In general, a good detection index must have low
DD, FAR, and MDR, and must also depict the severity of the fault properly
above the detection limit. Using these criteria, the detection indices were
evaluated as follows.

KCVDA has significant merits over linear CVDA. Due to the handling
of nonlinear data, KCVDA is expected to create tighter bounds around the
normal data. Hence, T 2

KCVDA and DKCVDA detected faults 1 and 2 earlier
than T 2

CVDA and DCVDA in Fig. 7(a). Also, less false alarms were incurred by
T 2
KCVDA and QKCVDA compared to T 2

CVDA and QCVDA for all faults. However,
T 2
KCVDA and QKCVDA performed worse than T 2

CVDA and QCVDA for fault 3, in
terms of DD and MDR. More importantly, since the RBF kernel lost its inter-
polation ability at a large c (= 350), DKCVDA gave an unacceptably large FAR
in all fault scenarios. In the KCVDA monitoring chart (Fig. 7(b)), DKCVDA

achieved a low DD precisely because of prevalent false alarms. Lastly, the
KCVDA indices do not reflect the fault severity properly above the detection
limit. Note that the incipient fault continues to degrade the process (as seen
in the C, T , and Tc profiles), especially at 600-1200 min of operation. Yet,
the KCVDA indices remain levelled during these times. Although this can
be resolved by increasing c further, it will be at the expense of the interpola-
tion ability of the RBF kernel. This demonstrates the limitation of KCVDA
using the RBF kernel alone.

Now, MK-CVDA also improves upon CVDA by handling nonlinear data:
Earlier detection and lesser MDR were achieved by T 2

MKCVDA and DMKCVDA

compared to those of CVDA in faults 1 and 2. For fault 3, all MK-CVDA
indices performed better than their CVDA counterparts in terms of all the
metrics. As seen in Fig. 7(b), the spiking behavior found in the CVDA

19



monitoring charts (caused by the abrupt disturbance change every 60 min
(Pilario and Cao, 2018)), was eliminated in any of the MK-CVDA indices.
Hence, the MK-CVDA indices resulted in less false alarms than CVDA as
seen in Fig. 7(a). This demonstrates the good interpolation ability of the
mixed kernel. More importantly, fault severity is reflected properly in all the
MK-CVDA indices, which demonstrates good extrapolation ability. Due to
this, we argue that any kernel MSPM method must consider mixed kernels
for a more general approach to process monitoring. Finally, we emphasize
the advantage of the canonical variate dissimilarity index, D, observed in
all results above: It provides enhanced sensitivity for incipient faults as ev-
idenced by having the earliest detection time among the three indices in all
fault scenarios.

In summary, using the CSTR case study, the improved performance of the
proposed MK-CVDA over the linear CVDA and RBF-kernel based KCVDA
is realized.

6. Conclusion

In this paper, a new Mixed Kernel Canonical Variate Dissimilarity Analy-
sis (MK-CVDA) method was proposed for process monitoring. The proposed
method has the capability of handling the nonlinear, non-Gaussian, and dy-
namic nature of the data all at once, while being sensitive to incipient faults
at the same time. For addressing nonlinearities using kernel methods, we first
examined the drawbacks of using the RBF kernel or the polynomial kernel on
their own. To address these, we adopted the use of mixed kernels, where the
RBF and linear kernels were combined to achieve good generalization ability.
To decide parameters for MK-CVDA, the grid search optimization method
was used. A closed-loop continuous stirred tank reactor (CSTR) case study
demonstrated the improved performance of the MK-CVDA indices over the
linear CVDA indices in terms of detection delay, false alarm rates, and missed
detection rates. More importantly, the growth of a fault across time is better
depicted by the MK-CVDA indices beyond their detection limits.

The MK-CVDA method in this study can be extended in the future for
fault diagnosis and prognosis. More importantly, the idea of combining ker-
nels for enhancing generalization capabilities (Duvenaud, 2014) of kernel-
based methods offers new directions for nonlinear process monitoring re-
search.
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