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Abstract

To mitigate biodiversity loss, we need to understand the environmental and demographic
causes of changes in the distributions and abundances of species. Bird populations are in a
continual state of flux; these fluctuations can be explained by changes in vital rates, such as
survival and productivity (breeding success).

This thesis is the result of three different ecological projects for which we have developed
statistical methods that combine different types of data together. In particular, in this thesis
we describe, implement, and develop statistical models that can be applied to different types
of ecological data such as census, ring-recovery, and capture-recapture data.

In the first project we use data from the British Trust for Ornithology (BTO), which has
developed an extensive historical data set of the total number of birds ringed in Britain and
Ireland, dating back to 1909. However, until 2000 the data were submitted by ringers in
paper form. The way in which such archival data were collected and stored means that the
total number of birds ringed in different age categories is difficult to obtain. Bird survival
changes with age, with younger birds being more vulnerable. Missing information on the
age at ringing compromises our ability to understand historic variation in survival rates. We
examine suitable methods and propose a new model for enhancing the use of such data.
Using blackbird (Turdus merula) and sandwich tern (Thalasseus sandvicensis) data we show
the rigour of our model in estimating unknown age proportions for different species, allowing
the BTO and other European institutions to fully utilise their historical data.

Bi-parental care is crucial in the reproduction success of the little auk (Alle alle) which we
study in the second project. For this species, typically, the female deserts the brood before the
male does. Hypotheses which considered that females left the nest earlier in order to increase
their remating success or to secure their good body conditions have been rejected. As a result,
a biological explanation for this unusual trait has not been found yet. We investigate whether
the length of time that females stay in the nest in a given breeding season may have an impact
on their survival probability in the period following breeding. We combine capture-recapture
data from two sites and use sparse continuous covariates data to study if the survival of the
female little auk is affected by the time spent in the brood guarding the chicks.
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Animals are affected by local environmental conditions that vary with space. In the third
project, we incorporate detailed local spatial information, such as geographical coordinates
and land cover type data, into an spatially-explicit integrated population model. This involves
supplementing census data with ring-recovery data to study demographic rates, while also
incorporating detailed local spatial information into integrated population models. Bird count
data are typically modelled at large scales using state-space models. In classical analysis,
the time-series likelihood component has traditionally been approximated using a Kalman
filter methodology, which is computationally efficient but relies on the assumption of the
suitability of Gaussian approximations.

Rather than one single nation-wide time-series of counts, spatial census data consist of
multiple time-series associated to specific locations. These data are particularly challenging
to model because of the presence of very small counts at some locations, which violates the
Gaussian assumption of the Kalman filter. To address this issue, we consider hidden Markov
models, which are ideally suited to the analysis of very small counts, as their validity does
not rely on Gaussian approximations. Both methodologies, the Kalman filter and hidden
Markov models, are combined in a flexible algorithm which adapts to the varying sample
sizes at different locations—it is therefore able to accommodate data sets of different sizes
for many bird species. We illustrate our methods using starling (Sturnus vulgaris) data.
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Chapter 1

Introduction

Animal populations are in a continuous state of change. It is for this reason that it is important
to understand and to monitor the underlying demographic processes that cause population
fluxes (Robinson et al., 2012). This thesis is focused on building statistical models to detect
and quantify changes in biodiversity. It is the result of three different ecological projects that
combine different types of data together.

Firstly, in this introductory chapter we provide the ecological and statistical background
for the work carried out in this thesis. In Section 1.1 we describe the different types of data
considered. In Section 1.2 we present the background for the models that we use throughout
this thesis. Then, in Section 1.3 we give details about the methods used to fit and compare
our models.

In Chapter 2 we present the work of Jiménez-Muñoz et al. (2019) on analysing historical
age-aggregated ring-recovery data sets to estimate age-dependent survival. Bird ring-recovery
data have been widely used to estimate demographic parameters such as survival probabilities
since the mid-twentieth century. However, while the total number of birds ringed each year
is usually known, historical information on age at ringing is often not available. A standard
ring-recovery model, for which information on age at ringing is required, cannot be used
when historical data are incomplete. We develop a new model to estimate age-dependent
survival probabilities from such historical data when age at ringing is not recorded; we call
this the historical data model. An alternative to the historical data model is the conditional
model of McCrea et al. (2012) which conditions on the numbers of recovered individuals.
We conduct a simulation study to examine the performance of the historical data model and
compare it with other models including the standard and conditional ring-recovery models.
Simulation studies show that the historical data model yields similar parameter estimates to
the standard model but without requiring knowledge of the age at time of ringing. Parameter
redundancy results show that the newly developed historical data model is comparable to
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the standard ring-recovery model, in terms of which parameters can be estimated, and has
fewer identifiability issues than the conditional model. We illustrate the new proposed model
using blackbird (Turdus merula) and sandwich tern (Thalasseus sandvicensis) data. The new
historical data model allows us to make full use of historical data and estimate the same
parameters as the standard model without the need to fully computerise the data. In so doing,
we can detect potential changes in demographic parameters further back in time.

In Chapter 3 we present work on the timing of female brood desertion and survival in the
little auk (Alle alle). For this small seabird bi-parental care is crucial to raise the single chick
successfully (Kidawa et al., 2012). However, at the end of the nesting period, the females
desert their broods, leaving the male counterpart to continue the care alone (Wojczulanis-
Jakubas and Jakubas, 2012). The reason why the female leaves the brood first is unclear.
Using capture-recapture data, we first examine if the survival of this species is affected by
their sex and/or by the site in which they breed. Additionally, using capture-recapture data
with the addition of information on the time-to-brood desertion, termed presence data, we
aim to understand if the length of stay of the female birds in the brood during breeding affects
their survival. The sparse presence data contain a large number of missing values, and to
deal with this, algorithms can become computationally very expensive making it difficult to
implement the flexible capture-recapture methods containing continuous covariates that have
already been developed (see, for example, Bonner et al., 2010; Langrock and King, 2013;
Worthington et al., 2015). Thus, we use a deterministic algorithm to impute the missing data
making possible the capture-recapture analysis with continuous presence covariates. We
take a similar approach to Bonner et al. (2010) who used linear interpolation between an
individual’s first and last capture. We perform a simulation study to check the validity of
our imputation method, and we find that the accuracy of our method depends on the sample
size. From analysing the capture-recapture data on their own we find that survival is site
dependent, with no apparent sex differences in survival. However, the sparse continuous
covariate data do not allow us to reach any strong conclusions regarding the effect of the
length of stay of the female in the brood on its survival probability. Thus, our results in this
case are inconclusive, but will be updated once more data become available.

Chapters 4 and 5 are directly linked. The British Trust for Ornithology (BTO) collects
data through several complementary schemes. These schemes include those recording data
on uniquely identifiable animals (ringing data), and on counts of the number of animals
observed (census data). While census data are used to estimate abundance, ringing data are
used to estimate survival probabilities. Integrated population models (IPMs) combine these
two types of data into one single analysis, making it possible to also estimate productivity,
which is unobtainable from either type of data alone (Besbeas et al., 2002). Additionally,
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results from IPMs are more reliable than those derived from separate analyses (Abadi et al.,
2010).

Chapter 4 presents the methodology needed to implement discrete state-space models
(SSMs) for population census data of different sizes. A popular approach for fitting SSMs
for bird census data is the use of Poisson, or binomial-Poisson non-stationary processes, or
appropriate approximations to normal processes (see, for example, Besbeas et al., 2002).
We describe how to fit this SSM using the Kalman filter (KF). Additionally, we describe
how the SSM can be fitted using these discrete distributions directly, without the need for
approximations using, hidden Markov models (HMMs) (Besbeas and Morgan, 2019). We
implement both methods within a frequentist framework. We run a simulation study, using an
IPM to compare both methods, under different sample sizes, and we find that if time-series
containing small counts are used, a systematic negative bias appears in the estimation of
the productivity parameter, 𝜌. This bias is more pronounced when the KF is used to fit
time-series data sets. The KF is computationally faster than using HMMs. As this bias
reduces when we increase the sample size, we recommend to use the KF to fit time-series
data when the average count size is at least 40, and HMMs otherwise. In an additional
simulation study, we examine the effect of the systematic negative bias when combining
time-series data sets of different sizes. We find that when multiple time-series data sets are
combined, the bias in the estimation of the productivity parameter decreases.

In Chapter 5 we develop a spatially-explicit integrated population model (SE-IPM), which
is formed from the combination of spatial ring-recovery and census data. We do this by
adding spatial information in the form of geographical coordinates and/or land cover data to
the survival parameters of the ring-recovery and the SSMs. In the discussion of Chapter 5 we
argue that other types of spatial information can be easily incorporated to this SE-IPM, and
that in the presence of extensive spatial census data, we could also add spatial dependencies
to the productivity parameter. We use starling (Sturnus vulgaris) data to illustrate the SE-IPM
and show that the model is able to incorporate spatial data at different resolutions.

Finally, in Chapter 6 we discuss the topics covered in this thesis, and outline avenues for
planned and possible future work.

1.1 Data Types

1.1.1 Marking Data

Marking individuals is a widely used technique to identify wild animals in ecological studies.
Individuals can be marked through the attachment of a neck band, ear tag, wing clip, leg
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(a) Great crested newts, (Triturus
cristatus) ©B.Lewis

(b) Straw-coloured fruit bat (Ei-
dolon helvum) ©D.Hayman

(c) Rings for marked birds
©J.Lahoz-Monfort

(d) Semipalmated sandpipers,
(Calidris pusilla) ©B.Brown

Fig. 1.1 Examples of marked individuals. (a) shows the unique belly patterns of two crested
newts; (b) shows a marked straw-coloured fruit bat with a radio-transmitter collar; (c) shows
a picture of plastic rings for marking seabirds; (d) shows a group of sandpipers, with the
third from the left being marked using a green ring with alpha-numeric code.

ring etc. In some cases individuals possess physical characteristics that make them uniquely
identifiable, for example, this is the case of great crested newts or grey whales. Figure 1.1
shows examples of different marking techniques.

Although in quantitative ecology marking data can be used for several purposes (see,
for example, McCrea and Morgan, 2015), in this thesis we use marking data to estimate
demographic rates, such as survival. We study the impact of different variables that might
affect individual survival such as age (see Chapter 2), or sex and location of breeding (see
Chapter 3). Additionally in Chapter 5 we combine marking data with census data to obtain
spatially-explicit survival estimates.

Data on marked individuals can be collected by capturing individuals while they are
alive; we refer to this as capture-recapture (CR) data. Data on marked individuals can also be
collected upon the individual’s death; we refer to this as mark-recovery (MR) data. In some
cases marking data can be collected both when individuals are alive and upon the individual’s
death; we refer to this as mark-recapture-recovery (MRR) data.

In this section we provide a description of these three marking schemes that will be used
throughout the thesis. For further literature on marking data, and other applications we refer
the reader to Williams et al. (2002), King et al. (2009) and McCrea and Morgan (2015).
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Mark-Recovery/ Ring-Recovery Data

In mark-recovery studies a group of individuals are marked, each with a unique mark that
allows for individual identification, and are released in a given year or season, with the
expectation of recovering these individuals upon their death. In such a way, when a marked
individual is found dead, if the attached mark is returned to the organisation that oversees the
study, and its age at ringing was known, the length of the individual’s life can be calculated
(Rydzewski, 1962).

Mark-recovery data can also be referred to as ring-recovery data, tag-recovery data, and
band-recovery data. Ring-recovery (RR) is the terminology used for birds, as usually a ring
is attached to the bird’s leg, and mark-recovery is a general term that comprises marking
for all types of animals (see, for example, Chapter 16, Williams et al., 2002). Tag-recovery
and band-recovery are American terminology, which are often associated with a different
parameterisation (see, for example, Hoenig et al., 2005). In this thesis we consider bird data,
for this reason, from now on we shall refer to the term ring-recovery data.

Ring-recovery data consist of the occasion at time of ringing and occasion at time of
recovery for each individual. Typically, data are collated on a yearly time scale and then
summarised in an upper triangular matrix. The (𝑖, 𝑗)th entry in the matrix corresponds to the
total number of birds ringed in year 𝑖 and recovered in year 𝑗 (McCrea and Morgan, 2015).

Table 1.1 Ring-recovery data for starlings, 1990-1995.

Year of Number Year of recovery Never
ringing ringed 90 91 92 93 94 95 recovered

1990 3101 52 2 1 2 2 0 3042
1991 1454 10 10 3 2 1 1428
1992 1748 10 8 2 1 1727
1993 1725 8 2 1 1714
1994 1227 2 1 1224
1995 309 1 308

For example, Table 1.1 shows six years of the ring-recovery study for starlings (Sturnus
vulgaris) carried out by the BTO. The first column in the table contains the year in which
the birds were ringed; the second column shows the total number of starlings ringed in each
year of study; the following six columns represent how many birds were found and reported
dead in each year of the study; and the last column contains the total number of birds that
were ringed and never recovered dead—these may either have died within the study and not
been recovered; or still be alive at the end of the study. For example, in 1990, 3101 birds
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were ringed of which 52 were recovered dead in the same year, 2 in 1991, and so on. From
the 3101 birds ringed in 1990, by the end of the study 3042 birds were not recovered. Then
in 1991, 1454 birds were ringed of which 10 were recovered dead in the year, and 10 in the
following year, and so on. Out of the 1454 birds ringed in 1991, by the end of the study, 1428
birds were not recovered.

Birds can be ringed at different ages. The British Trust of Ornithology classifies them
into three age cohorts according to their age: nestlings, juveniles, or adults. Nestlings are
newly born birds that have not yet flown the nest, and so they are easier to catch and mark.
Juveniles are free-flying birds in their first year. Adults are all birds in their second or later
calendar year. The category free-flying birds is used to refer to both juveniles and adults
(BTO-Website, 2017).

In ring-recovery studies, covariate information about the ringed individuals can also be
collected and its effect on survival can be accounted for. In Chapter 5 we provide a case
study for ring-recovery data in the presence of spatial covariates.

Capture-Recapture Data

In capture-recapture studies (also referred to as mark-recapture studies), a group of individuals
is marked, each with a unique mark that allows for individual identification, and then released
in a given year or season, with the aim of following them during consecutive years or seasons.
The individuals can be followed in the form of physical captures or by visual resightings.
Note that we use the term “recaptures” to include both physical recaptures and resightings.
Capture-recapture studies are different from ring-recovery studies, as capture-recapture
information on individuals is collected when they are recaptured alive. In contrast, in ring-
recovery or mark-recovery studies, information on a ringed individual is only available if the
individual is found dead.

Capture-recapture data contain information on the specific occasions on which a marked
individual was captured alive. Typically an occasion is a year. Each individual marked has a
documented capture history (h𝑖) in which a 1 is recorded each year in which the individual is
captured or recaptured, and a 0 if the individual is not recaptured. Table 1.2 shows an example
data set of a capture-recapture study for the little auk (Alle alle), in Magdalenefjorden, a fjord
in the Norwegian island of Spitsbergen. This table provides the capture-recapture histories of
three marked birds. Table 1.2 can be read as follows: individual 13711 was first captured
in 2007, the first year of the study in Magdalenefjorden, it was subsequently recaptured in
2010, but it was not recaptured in 2008, 2009 or 2011. Thus, during this study the last time
individual 13711 was seen and recorded was in 2010. Thus, after 2010 the individual could
be dead or alive. Similarly, individual 41876, in the third row, was first captured in 2010
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and it was subsequently recaptured in 2011, the last year of the capture-recapture study for
Magdalenefjorden, so is known to be alive in 2011.

Table 1.2 Example of capture-recapture histories for three little auks, in Magdalenefjorden,
for years 2007-2011. The first column contains the specific identification number for each
individual. The remaining columns provide the capture-recapture histories for all individuals.

Individual Year captured
number 2007 2008 2009 2010 2011

13711 1 0 0 1 0
38980 1 0 1 1 0
41876 0 0 0 1 1

Capture-recapture data can also be summarised in an array, traditionally known as m-
array. Table 1.3 shows the capture-recapture m-array for little auks in Magdalenefjorden
for the years 2007-2011. Here, the first column represents the year in which individuals
were released, and the second column the number of individuals released in every year. The
number of individuals released contains information on both the number of individuals that
were first captured, and the number of individuals that were recaptured in a particular year.
This is true for all years of study, except for the first in which we only have first captures.
For example, in Table 1.3 in 2007, 62 individuals were released, these represent only first
captures as 2007 is the first year of study. Then, in 2008, 69 individuals were released, these
69 individuals consist of individuals captured for the first time and individuals recaptured
from the previous year of study. Additionally, in Table 1.3 columns 3-6 contain information
on the first recaptures after each release, and column 6 contains the number of individuals
that were never recaptured. For example, from the cohort of individuals released in 2007, 7
were first recaptured in 2009, 2 in 2010, and no individuals were first recaptured in 2011.
Additionally from the same cohort, 53 individuals were never recaptured. Similarly, from the
cohort of birds released in 2008, 32 were recaptured for the first time (after their release in
2008) in 2009, 4 in 2010, and 1 in 2011. From this same cohort, 32 were never recaptured.

In capture-recapture studies, covariate information about the marked individuals can also
be collected. These covariates can be defined as global if they affect all individuals, for
example the weather conditions, or they can be defined as individual covariates if they are
unique to each specific individual, for example weight. Due to the nature of these data, in
capture-recapture studies it is common to have missing covariate values, especially when
these are collected at a time-varying individual level. For example the weight of individual
13711 in Table 1.2, could only be measured in 2007 and 2010, when the individual was
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Table 1.3 Capture-recapture m-array for little auks in Magdalenefjorden, for years 2007-2011.
These data were collected by D. Jakubas and K. Wojczulanis-Jakubas.

Year of Number Number recaptured Never
study released 08 09 10 11 recaptured

2007 62 0 7 2 0 53
2008 69 32 4 1 32
2009 124 69 2 53
2010 128 47 81

captured and recaptured. Thus, the years in which the individual was not recaptured would
result in missing covariate information. Moreover, even if the individual was recaptured, this
information could be missing for other reasons such as the covariate not being observed, for
example if the individual was resighted rather than physically captured. In Chapter 3 we
present a case study for capture-recapture data in the presence of individual covariates.

Mark-Recapture-Recovery Data

Mark-recapture-recovery data are the result of the combination of mark-recovery and capture-
recapture data. Although none of the studies in this thesis use this data collection technique,
in Chapter 3 we discuss literature developed for mark-recapture-recovery data. Thus, for
completeness we briefly describe the characteristics of these data here. In mark-recapture-
recovery studies, a group of individuals are marked, each with a unique mark that allows for
individual identification, and released in a given year or season, with the aim of following
them during consecutive years or seasons, as well as recovering their tags upon their death.

Mark-recapture-recovery data contains information on the specific occasions on which
a marked individual was captured alive or recovered dead. Typically an occasion is a year.
Each individual marked has a documented capture history (h𝑖) in which a 1 is recorded each
year in which the individual is captured alive or recaptured, a 2 is recorded if the individual
is found dead and a 0 is registered if the individual is not recaptured.

Table 1.4 shows a toy example of a five year mark-recapture-recovery study. We show the
histories for three individuals marked in different years. Individual 00001 was first captured
in 2007, the first year of this mark-recapture-recovery study. It was subsequently recaptured
alive in 2009, and it was finally recovered dead in 2010. Individual 00002, was first captured
in 2008 and it was subsequently recaptured in 2010. This individual was not recaptured alive
or reported dead after 2010, so it may be dead or alive in 2011.
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Table 1.4 Example of mark-recapture-recovery histories for three birds marked in years
2007-2011. The first column contains the year in which these birds were first marked. The
second column contains the specific identification number for each individual. The remaining
columns specify the recapture and recovery histories. In rows 3-5, number 1 indicates a live
capture, while 2 indicates a dead recovery.

Year Individual Recapture Years
marked number 2007 2008 2009 2010 2011

2007 00001 1 0 1 2 0
2008 00002 0 1 0 1 0
2009 00003 0 0 1 0 2

1.1.2 Population Survey Data

Time-series survey or census data have traditionally been used to measure changes in pop-
ulation abundances across years. Throughout the thesis we use the Common Bird Census
(CBC) data, the first scheme developed by the BTO for monitoring population trends among
widespread breeding birds (Marchant et al., 1990). This scheme was operated during the
years 1962 and 2000, and it has now been replaced by the Breeding Bird Survey (BBS).

The observations obtained from the CBC and the BBS surveys are used to build annual
population trends. Traditionally, an annual index that provides a measure of the population
level, 𝑦 𝑗 , has been used. This index is built to accommodate the differences between survey
sites and the existence of a considerable amount of missing values in the data. To obtain
the annual indexes, a generalised linear model is fitted, with counts assumed to follow
a Poisson distribution, and a logarithmic link function, to the combined CBC/BBS data.
Additionally, for these indexes, standard errors are calculated via a bootstrapping procedure.
When BBS data are collected, a weight is applied to account for differences in density
sampling. However, no weight was introduced when the CBC data were collected. Therefore,
whenever these two survey methods are used in combination, a weight is also given to the
CBC counts. This weight is just the average of the overall weights calculated for the BBS
data. For more information on how these survey data are usually combined, we refer the
reader to Freeman et al. (2007a).

Table 1.5 shows the population abundance indexes for 1990 to 1995 and their correspond-
ing standard errors for starlings. These indexes are given in log-scale and the standard errors
are calculated through bootstrapping.
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Table 1.5 Annual population indexes in log scale for starlings, 1990-1995.

year log(𝑦 𝑗 ) standard error

1990 6.0189 0.2508
1991 6.0462 0.2465
1992 6.0084 0.2482
1993 5.9715 0.2539
1994 5.6617 0.2236
1995 5.6871 0.2236

1.2 Models

1.2.1 Models for Marking Data

In this section we present the basic capture-recapture and ring-recovery models that will be
used and extended throughout this thesis.

General assumptions of mark-recapture and ring-recovery models can be found in Chap-
ters 16 and 17 of Williams et al. (2002), and Chapter 4 of McCrea and Morgan (2015). We
list here the relevant assumptions for the models presented in this thesis:

1. The sample is representative of the population.

2. The age and the sex of sampled individuals are correctly determined.

3. Marks are not lost and are registered correctly.

4. Every marked individual present in the population at a specific sampling occasion has
the same probability of being recaptured.

5. Every marked individual which has died within an interval of consecutive sampling
occasions has the same probability of being recovered dead.

6. Every marked individual present in the population immediately following a sampling
occasion has the same probability of surviving until the next sampling occasion.

7. Sampling periods are instantaneous, and recaptured individuals are released immedi-
ately.

8. Survival is not affected by the marking.

9. The fate of each marked individual is independent of the fate of every other marked
individual.
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10. The year in which an individual is found dead is assumed to be the same as the year in
which the individual actually died. An individual can only be recovered if it has died
in the immediate time preceding recovery (we cannot recover long dead animals).

Ring-Recovery Models

We use a multinomial model for the ring-recovery data because we have assumed that in-
dividuals behave independently of one another. We now describe ring-recovery models for
different cases: 1.models for which the probabilities are kept constant; 2. models for which
the probabilities can vary with time; 3. models for which the probabilities can adopt age and
time dependencies.

1. Model with constant probabilities
Suppose there are 𝑛1 years of ringing and 𝑛2 years of recovery, where 𝑛2 ≥ 𝑛1. The total
numbers of individuals ringed in year 𝑖, is 𝑇𝑖 and the number of individuals ringed in year 𝑖
that were recovered dead in year 𝑗 , is 𝑅𝑖 𝑗 , for 𝑖 = 1, . . . , 𝑛1, and 𝑗 = 𝑖, . . . , 𝑛2. The parameters
of interest are:

• 𝜙 is the probability that an individual survives from one occasion to the next;

• 𝜆 is the probability that an individual that dies is recovered and recorded as dead.
The probability of an individual being ringed and recovered is given by

𝑃𝑖, 𝑗 =


(1−𝜙)𝜆 if 𝑗 = 𝑖

𝜙 𝑗−𝑖 (1−𝜙)𝜆 if 𝑗 > 𝑖.
(1.1)

If we make use of the assumption of independence between individuals the likelihood can be
modelled by a product of multinomials

𝐿 (𝜙,𝜆) =
𝑛1∏
𝑖=1

{
𝑛2∏
𝑗=𝑖

𝑃
𝑅𝑖, 𝑗

𝑖, 𝑗

(
1−

𝑛2∑
𝑗=𝑖

𝑃𝑖, 𝑗

)𝑇𝑖−𝑛2∑
𝑗=𝑖

𝑅𝑖, 𝑗
}
, (1.2)

(Cole et al., 2012).
Table 1.6 illustrates the multinomial probabilities for a ring-recovery study which took

place during the years 1990 to 1993.
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Table 1.6 Ring-recovery cell probabilities for a constant model for the years 1990-1993.
Here, 𝜒𝑖 = 1−

∑𝑛2
𝑗=𝑖
𝑃𝑖, 𝑗 .

Year of Year of recovery Never
ringing 90 91 92 93 recovered

1990 (1−𝜙)𝜆 𝜙(1−𝜙)𝜆 𝜙2(1−𝜙)𝜆 𝜙3(1−𝜙)𝜆 𝜒1
1991 - (1−𝜙)𝜆 𝜙(1−𝜙)𝜆 𝜙2(1−𝜙)𝜆 𝜒2
1992 - - (1−𝜙)𝜆 𝜙(1−𝜙)𝜆 𝜒3
1993 - - - (1−𝜙)𝜆 𝜒4

2. Model with time dependent probabilities
We might be interested in time variations or time trends that might affect our parameters. For
example, survival and reporting probabilities could change in time due to weather conditions.
We build on the previous case where the probabilities were kept constant. The parameters of
interest now are:

• 𝜙𝑖 is the annual survival probability for an individual alive at the start of year 𝑗 ;

• 𝜆 𝑗 is the annual probability of recovering a dead individual in year 𝑗 .
The probability of an individual being recovered in year 𝑗 given it was ringed in year 𝑖 is
given by

𝑃𝑖, 𝑗 =


(1−𝜙𝑖)𝜆 𝑗 if 𝑗 = 𝑖∏ 𝑗−1
𝑘=𝑖
𝜙(1−𝜙 𝑗 )𝜆 𝑗 if 𝑗 > 𝑖.

(1.3)

The likelihood function is still defined by Equation 1.2.
This model is parameter redundant, meaning that not all parameters can be estimated.

We discuss parameter redundancy in Section 1.2.4.

3. Model with age and time dependent probabilities
For wild animal populations survival is expected to vary with age, with first-year individuals
being more vulnerable than adults. Thus, in order to account for this age variation, the sur-
vival probability is divided into first-year survival probability and adult survival probability.
The idea of estimating survival from ring-recovery data goes back to (Haldane, 1955). Coul-
son (1961) published estimates of post-fledging, first-year and adult survival of blackbirds
from recoveries assuming a constant reporting rate. These models were further developed by
Brownie et al. (1985) and Freeman and Morgan (1992). For example, Freeman and Morgan
(1992) incorporated age-dependent parameters in these models for ornithological data, and
Catchpole and Morgan (1996) introduced specific notation to distinguish between first-year
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and adult survival. Ring-recovery models have since been used and extended by many others
(see, for example, Gauthier and Lebreton, 2008; King et al., 2009; McCrea et al., 2013;
Thomson et al., 1999).

Suppose there are 𝑛1 years of ringing and 𝑛2 years of recovery, where 𝑛2 ≥ 𝑛1. The total
numbers of individuals ringed in their first-year of life, in year 𝑖, is 𝑇1, 𝑖 and the number
of first-year individuals ringed in year 𝑖 that were recovered dead in year 𝑗 , is 𝑅𝑖, 𝑗 , for
𝑖 = 1, . . . , 𝑛1, and 𝑗 = 𝑖, . . . , 𝑛2. The model depends on the following parameters:

• 𝜙ℎ, 𝑗 is the probability that an individual aged ℎ survives to year 𝑗 of the study, condi-
tionally on being alive in year 𝑗 − 1;

• 𝜆ℎ, 𝑗 is the probability of recovering a dead individual aged ℎ in year 𝑗 of study.

In general, the probability of an individual being recovered in year 𝑗 given it was marked in
year 𝑖 is given by,

𝑃𝑖, 𝑗 =

(
𝑗−1∏
𝑘=𝑖

𝜙𝑘−𝑖+1, 𝑘

)
(1−𝜙 𝑗−𝑖+1, 𝑗 )𝜆 𝑗−𝑖+1, 𝑗 , (1.4)

(Cole et al., 2012).
The likelihood is still given by the product of the multinomial distributions, shown in

Equation 1.2.
Table 1.7 illustrates the multinomial probabilities for a ring-recovery study that took

place during the years 1990 to 1993. Here, we assume that the first-year survival, 𝜙1, and
adult survival 𝜙𝑎 are constant, i.e. they do not vary with time, and the reporting probability 𝜆
is also constant and is shared for both first-year birds and adults, i.e. it does not have any age
dependency.

Table 1.7 Ring-recovery cell probabilities for an age-dependent model for the years 1990-
1993. Here, 𝜒𝑖 = 1−

∑𝑛2
𝑗=𝑖
𝑃𝑖, 𝑗 .

Year of Year of recovery Never
ringing 90 91 92 93 recovered

1990 (1−𝜙1)𝜆 𝜙1(1−𝜙𝑎)𝜆 𝜙1𝜙𝑎 (1−𝜙𝑎)𝜆 𝜙1𝜙
2
𝑎 (1−𝜙𝑎)𝜆 𝜒1

1991 - (1−𝜙1)𝜆 𝜙1(1−𝜙𝑎)𝜆 𝜙1𝜙𝑎 (1−𝜙𝑎)𝜆 𝜒2
1992 - - (1−𝜙1)𝜆 𝜙1(1−𝜙𝑎)𝜆 𝜒3
1993 - - - (1−𝜙1)𝜆 𝜒4

We discuss further ring-recovery models in Chapter 2.
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Capture-Recapture Model

Capture-recapture models can be used to estimate abundance or demographic parameters
such as survival. In Chapter 3 we use capture-recapture models to analyse the survival of
the little auk. Thus, in this section we describe the Cormack–Jolly–Seber model, a capture-
recapture model that can be used to estimate demographic parameters. For other uses of
capture-recapture models or for alternative model fitting methodologies we refer the reader
to Lebreton et al. (1992), Williams et al. (2002), King et al. (2009), and McCrea and Morgan
(2015).

The Cormack-Jolly-Seber (CJS) model, was the first capture-recapture model to estimate
the probability of survival, rather than to estimate population size from capture-recapture data.
This model was developed independently by Cormack (1964), Jolly (1965) and Seber (1965)
and considers capture-recapture data conditional on the initial capture of each individual.
This model has been extended in several ways. For example, Pollock (1981) extended the
CJS model by adding age-dependencies to the survival parameters. Lebreton et al. (1992)
provides many examples in which categorical covariates are added to model survival. Several
methods for modelling CR data in the presence of continuous covariates are described in
Chapter 3. Moreover, Lebreton et al. (1992) performed diagnostic goodness-of-fit tests using
as an example the European dipper (Cinclus cinclus). Additionally, Cowen and Schwarz
(2006) considered the problem of mark loss and incorporated mark-retention parameters.
This could be achieved by marking the animals with two marks rather than one.

Suppose there are 𝑇 years of a capture-recapture study. Individuals are marked in years
𝑡 = 1, ..,𝑇 − 1. These marked individuals may be recaptured in any year after the year in which
they were marked for the first time, 𝑡 = 2, ..,𝑇 . Thus, in 𝑇 years of capture-recapture studies
there are 𝑛1 = 𝑇 − 1 years of marking and 𝑛2 = 𝑇 − 1 years of recaptures.

The model depends on the following parameters:

• 𝜙 𝑗 is the probability that an individual alive at time 𝑗 survives to time 𝑗 + 1;

• 𝑝 𝑗 is the probability that an individual is (re)captured given that it is alive at time 𝑗 .

Each individual has a capture history, h𝑖, which is a vector of length 𝑇 with entry ℎ𝑖, 𝑘
indicating whether the individual was captured (1) or not (0) at time 𝑘 . We denote the first
year in which the individual is captured as 𝑎 and the last year in which the individual is
recaptured alive as 𝑏. The probability of observing capture-recapture history h𝑖 is

𝑃𝑟 (h𝑖) =
{

𝑏∏
𝑘=𝑎+1

𝜙𝑘−1(ℎ𝑖, 𝑘 𝑝𝑘 + ℎ𝑖, 𝑘 𝑝𝑘 )
}
𝜒𝑏, (1.5)
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where 𝑥 = (1−𝑥), and 𝜒 𝑗 = 𝜙 𝑗 +𝜙 𝑗 𝑝 𝑗+1𝜒 𝑗+1 is the probability that an individual alive at time 𝑗
is not recaptured during the study period, with 𝜒𝑇 = 1, and where, if 𝑎 = 𝑏, the empty product∏𝑎
𝑎+1 is taken to be unity.

For example, the probability of the capture-recapture history h1=01010 is

𝑃(h1) = 𝜙2𝑝3𝜙3𝑝4(𝜙4 +𝜙4𝑝5).

Under the assumption of independence between individuals, the likelihood expression is
given by the product of the probabilities of all the individual capture-recapture histories, and
can be expressed as

𝐿 (𝜙, 𝑝;ℎ) =
𝑁∏
𝑖=1

𝑃𝑟 (h𝑖), (1.6)

where 𝑁 is the total number of individuals followed during the capture-recapture study.

1.2.2 Discrete State-Space Model for Census Data

Discrete state-space models (SSMs) are often used to model time-series count data, such as
census or survey data. SSMs consist of two discrete stochastic time processes running in
parallel: an underlying state process and an observation process. The state process equation
is also called the system or transition equation. The observation process equation is also
called measurement or output equation. The state process is a first-order Markov process that
describes the annual population change. This is modelled by a conditional probability density
function (pdf) or probability mass function (pmf) that describes how the state vector changes
from time 𝑡 to time 𝑡 + 1. We denote this as 𝑔𝑡 . The observation process, 𝑓𝑡 , is a conditional
process that models the relationship between the collected data or observations y𝑡 and the
state vector N𝑡 (Newman et al., 2014).

Initial state process : 𝑔0 (N0 |Θ) (1.7)

State 𝑡 process : 𝑔𝑡 (N𝑡+1 |N𝑡 ,Θ) (1.8)

Observation 𝑡 process : 𝑓𝑡 (y𝑡 |N𝑡 ,Ψ) (1.9)

where Θ is the vector of parameters of the state model and Ψ is the vector of parameters
corresponding to the observation model, and 𝑡 = 1, . . . ,𝑇 .

An example of a two-state SSM is given below.
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Two States State-Space Model for Census Data

Besbeas et al. (2002) used a two-state SSM for census data on lapwing (Vanellus vanellus)
birds. This two-state SSM represented two age classes. The data consist of the number
of breeding adult birds counted each year. However, the process also needs to account for
first-year birds because these transition into adults after their first year of life. We assume
that breeding starts at age 2, that only breeding birds are observed, no sex information is
available, and that there is no emigration or immigration in the population.

Suppose 𝑁𝑎, 𝑡 is the number of adult individuals (of age ≥2) in the population at time 𝑡,
𝑁1, 𝑡 is the number of first-year individuals in the population at time 𝑡, and N𝑡 = (𝑁1, 𝑡 , 𝑁𝑎, 𝑡).
The number of observed individuals in both categories in year 𝑡 is 𝑦𝑡 , the time-invariant
survival probabilities are 𝜙1 and 𝜙𝑎 for first-year and adult birds respectively. The parameter
𝜌 represents the mean number of young per individual recruited into the adult population
every year. The state process is

𝑁𝑎, 𝑡+1 |N𝑡 ∼ Bin(𝑁1, 𝑡 +𝑁𝑎, 𝑡 , 𝜙𝑎), (1.10)

𝑁1, 𝑡+1 |N𝑡 ∼ Pois(𝑁𝑎, 𝑡𝜙1𝜌). (1.11)

The binomial distribution is used to model survival, and the Poisson distribution to model
new arrivals in the population, i.e. births. Figure 1.2 and the following discussion describe
the population process in detail.

The observation process is

𝑦𝑡 |N𝑡 ∼ Pois(𝑁𝑎, 𝑡), (1.12)

as only adult (breeding) birds are observed in the census data.
Figure 1.2 is a graphical representation of the SSM with two states, where we can observe

the relation between the states and the observations. Figure 1.2 shows that observations
are only made for adult birds in the population. Moreover, Figure 1.2 shows a graphical
representation of the underlying processes for both the adult and the first-year populations.
At time 𝑡, individuals in the adult population, 𝑁𝑎, 𝑡 , breed and recruit new chicks. If these
chicks survive they become part of the first-year population 𝑁1, 𝑡+1, at time 𝑡 + 1. Subsequently,
the adult population at time 𝑡 + 1 is comprised of those adults and first-year individuals that
were alive at time 𝑡 and survive to time 𝑡 + 1.

The state equations are a stochastic version of the matrix projection models (Caswell,
2001). Following Buckland et al. (2004) and Newman et al. (2014) we can use first-order
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𝑁1, 𝑡−1 𝑁1, 𝑡 𝑁1, 𝑡+1

𝑁𝑎, 𝑡 𝑁𝑎, 𝑡 𝑁𝑎, 𝑡+1

𝑦𝑡−1 𝑦𝑡 𝑦𝑡+1

𝜙𝑎 𝜙𝑎

𝜙1𝜌

𝜙𝑎

𝜙1𝜌

𝜙𝑎

Fig. 1.2 Diagram of the SSM with two states. It shows the life cycle of the population, and the
connection between the underlying adult population size 𝑁𝑎, 𝑡 and the number of individuals
observed at time 𝑡, 𝑦𝑡 .

Markovian transition matrices to represent animal population dynamics. Equations (1.10)
and (1.11) can be conveniently rewritten as a population matrix using the following Leslie
matrix (Leslie, 1945), (

𝑁1,𝑡+1

𝑁𝑎,𝑡+1

)
=

(
0 𝜌𝜙1

𝜙𝑎 𝜙𝑎

) (
𝑁1,𝑡

𝑁𝑎,𝑡

)
. (1.13)

The observation process of equation (1.12) can also be written as an observation matrix

𝑦𝑡 = (0, 1)
(
𝑁1,𝑡

𝑁𝑎,𝑡

)
. (1.14)

Different distributions can be used to model both the observation process, (see, for
example, Knape et al., 2011), and the state process (see, for example, King et al., 2008b).
Moreover, extensions or variations of the model to include productivity and more or fewer
states are also possible. In Chapter 4 we provide an alternative one-state model.

A general explicit form of the likelihood, 𝐿𝑆𝑆𝑀 (𝜙1, 𝜙𝑎, 𝜌), does not exist. To make infer-
ence on the estimates for the SSM, different approaches have been developed. Traditionally,
the time-series likelihood for the census SSM has been approximated using Kalman Filter
methodology, for which normal approximations are required (see, for example, Besbeas
et al., 2002; Besbeas and Morgan, 2012). Alternatively, Brooks et al. (2004) use a Bayesian
approach which does not require the normal approximations needed in the KF. More recently,
Besbeas and Morgan (2018) have introduced the use of HMMs to fit the time-series likeli-
hood using either a frequentist or a Bayesian approach. We discuss in detail these different
methodologies in Chapter 4.
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For this two-state SSM, two of the parameters, 𝜙1 and 𝜌, are confounded, so that it is
only possible to estimate them as a product. This is known as parameter redundancy (see,
for example, Cole et al., 2010). The model remains parameter redundant even if the number
of first-year birds is observed (Catchpole et al., 2001). To solve the parameter redundancy
problem, Besbeas et al. (2002) combined the SSM with a ring-recovery model into an IPM.
IPMs are discussed in Section 1.2.3 and parameter redundancy is discussed in Section 1.2.4.

1.2.3 Integrated Population Models

Traditionally, separate studies have been carried out to assess animal demographic processes
which include studies to model productivity, survival and movement. These studies could
use capture-recapture, ring-recovery, nest records, or census data, for example, to account
for population changes and abundance. However, ecological data can be sparse, limiting the
ability for analysis, due to problems in parameter estimation, such as parameter redundancy
(Catchpole et al., 2001; Cole and McCrea, 2016). To tackle this problem, and obtain
self-consistent parameter estimates, some studies have jointly analysed several data sets
simultaneously: Catchpole et al. (1998a); King and Brooks (2002a); Jiménez-Muñoz et al.
(2019) combine several capture-recapture or ring-recovery data sets; King and Brooks
(2002b); King and Brooks (2003) combine multisite capture-recapture data sets.

IPMs consist of the combination of population count data and demographic data into one
single analysis that gives information about population trajectories, and facilitate consistent
analyses of population processes. Particularly, in this thesis we describe and implement
IPMs that combine census data, such as population time-series counts, with demographic
data such as ring-recovery into a unified analysis. These types of IPMs were developed by
Besbeas et al. (2002) and have since been widely implemented and extended to include more
types of data both within the frequentist (see, for example, Besbeas et al., 2002; Besbeas and
Freeman, 2006; Besbeas and Morgan, 2012) and the Bayesian (see, for example, Brooks
et al., 2004, King et al., 2008b, Abadi et al., 2010) paradigms.

In this section we provide information on the evolution of IPMs, listing here in chrono-
logical order some of the relevant publications in this area. As their implementation is
continuously growing for ecological studies, we focus on studies that have involved the
statistical development of IPMs, centering our attention on those IPMs that combine census
and marking data.

Besbeas et al. (2002), showed that by combining a SSM for census data with ring-recovery
data one can obtain productivity estimates which would not be available from any of the data
sets on their own. They provided two case studies, one for a SSM with two states, similar to
that presented in Section 1.2.2, and another for a three-state SSM. In these, they assumed
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that the underlying population processes, for example, 𝑁𝑎, 𝑡 and 𝑁1, 𝑡 , described in Equations
(1.10) and (1.11), can be approximated by normal distributions. Moreover they assumed the
observation process, 𝑦𝑡 , to be normally distributed. As a result, they were able to maximise
the likelihood equation using the KF.

Brooks et al. (2004) provided a Bayesian approach to combining census and demographic
data, in which the assumption of normality can be relaxed. Rather than using normal
approximations in the state process, the binomial and Poisson distributions can be used
directly. Amongst the benefits of this Bayesian approach was the ability to analyse census
data with smaller counts, as no normal approximations are needed. In Chapter 4 we provide
a case study on different SSM fitting methodologies when different sample sizes are used.

Typically, when collecting census data, especially at large scales, species are observed
through surveys of samples of the populations at different sites and times. For this reason, to
account for the differences in sampling when using large populations, Besbeas et al. (2002)
used a derived index of the population to model abundance. Besbeas et al. (2005) combined
count data from different sites with different types of habitats jointly with ring-recovery data
for an entire population and obtained habitat-specific productivity estimates. Additionally,
Besbeas and Freeman (2006) proposed an alternative approach, modelling the data using
a log-linear Poisson distribution that accounted for the site and the years in which each
observation was recorded. In Chapter 5 we develop an SE-IPM which allows us to obtain
spatially-explicit demographic estimates.

Schaub et al. (2007) applied IPMs to estimate demographic parameters from sparse
data from a colony of greater horseshoe bats (Rhinolophus ferrumequinum) in Switzerland.
They implemented an extension of the IPMs presented in Besbeas et al. (2002) and Brooks
et al. (2004) by incorporating capture-recapture and count data into a Bayesian IPM. They
considered two age classes, and a sex-specific survival. In so doing they obtained estimates
of fecundity that could not be estimated otherwise, as well as more accurate estimates of
population growth and survival.

Freeman et al. (2007b) implemented an IPM to national and regional data on starlings
(Sturnus vulgaris) and found that the steep decline in the number of starlings after the 70s
was due to a reduction in survival, particularly, first-year survival. In Chapter 5 we use data
on starlings to illustrate our models. Our findings are similar to those presented in Freeman
et al. (2007b).

King et al. (2008b) extended the existing work on Bayesian IPMs by changing the
measurement error in the observation process 𝑁𝑡 from constant to time dependent. Moreover,
they provided model-averaged inference to help to inform management policies.
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Baillie et al. (2009) used a Bayesian IPM to analyse the causes of decline of the British
song thrush (Turdus philomelos) and discussed the utility and the direction of IPMs.

McCrea et al. (2010) developed a multi-site integrated population model for the joint
analysis of capture-recapture and census data. They used data for great cormorants Phalacro-
corax carbo in three colonies (sites) in Denmark. Moreover, through a simulation study they
demonstrated that parameter estimation was improved when site-specific census data are
combined with demographic data.

Schaub and Abadi (2011) provided a review on 25 existing IPMs which consisted of
the joint modelling of counts and one or several types of demographic data. They reviewed
publications that use IPMs to study birds or mammals, and excluded fisheries studies as in
the latter the data were different. In this thesis, we use IPMs with a focus on birds, but with
slight variations our models could also be applied to study mammals.

In their review, Schaub and Abadi (2011) remarked that the main benefit of the types
of IPMs that we describe here is that they are able to provide estimates of productivity.
Furthermore, they found that in all the reviewed publications the use of IPMs resulted in an
increased precision of the parameter estimates.

The IPM’s assumptions are the union of each of the models’ assumptions separately.
In this case these are, the ring-recovery’s assumptions, together with the correct use of
the population models (in this case Leslie matrix), in which the population processes are
described. Additionally, there are two IPM specific assumptions: 1. the demography of the
individuals included in the different data sets is assumed to be the same; 2. the data sets
used in conjunction in the IPM should be independent to each other to avoid overestimated
precision of the estimates (Schaub and Abadi, 2011).

Abadi et al. (2010) tested the assumption of independence for an IPM containing three
data sources: population census data, capture-recapture, and reproductive success data with
different degrees of non-independence. They found that if these three types of data are
combined into one single analysis, the lack of independence between data sets had almost no
effect in the accuracy of parameter estimates. In contrast, Besbeas et al. (2009) compared
the effect of combining census and ring-recovery data into an IPM, under dependence and
independence scenarios. They found that if dependent data sets were combined, the estimates
were considerably less accurate, and higher mean square errors were obtained than if the
data sets combined were independent. Thus, they warned that caution should be taken when
combining dependent ring-recovery and census data sets. The difference in the effect of
dependence in both studies might be given by the nature of the data sets incorporated in both
studies. Abadi et al. (2010) suggested that if the independence assumption is violated, this
would have stronger impact on parameter accuracy if ring-recovery data are used instead of



1.2 Models 21

capture-recapture data. They reason that this happens as in contrast with ring-recovery data,
the capture-recapture data dominate the survey data to provide information about common
parameters. Further, Abadi et al. (2010) suggest that if the level of dependence is higher, by
combining data sets in which the same animals have been observed or recorded, serious bias
in parameter estimation is expected.

Besbeas and Morgan (2012) evaluated a new method for initialising the KF, the so-called
stable age method (SA), for IPMs. This approach was already introduced in Besbeas et al.
(2009), however it was not fully developed, and it had not been used to analyse real data,
but simulated data. The SA method incorporates ring-recovery parameter estimates in the
Leslie matrix to derive the SA distribution. Moreover, if productivity data were available
these would contribute to the estimation of the parameter 𝜌 as well. Besbeas and Morgan
(2012) compared the SA method to the following initialising methods: approximate diffuse
initialisation (AD), the exact diffuse initialisation (ED) and maximum likelihood initialisation
(ML). Through a simulation study they found that all the initialising methods perform well,
and they highlighted the simplicity of the SA method. However they recommended the SA
method for initialising the KF when it is used to form a likelihood for a SSM in ecology,
specifically when using IPMs, as one can add extra information to the estimation of the
parameters.

Robinson et al. (2012) extended IPMs by adding direct estimation of brood size and
nesting success to the model. To do this, they incorporated data on brood sizes and the daily
probability of nest failure together with census and ring-recovery data for blackbirds (Turdus
merula). They used a Bayesian approach to add productivity data into an IPM for the first
time.

Moreover, Robinson et al. (2014) used IPMs to estimate demographic parameters from
incomplete data sets both across and within 17 species. For some of these species not all the
demographic processes were quantified directly, so they introduced a scaling parameter to
account for unmeasured variation. In so doing, they were able to reinforce the value of the
volunteer-based monitoring programmes for the understanding of the demographic processes
driving animal populations.

Finke et al. (2019) proposed an efficient particle Monte Carlo methodology to estimate the
demographic parameters of IPMs formed by a SSM for the noisily observed population sizes
as well as other components, such as capture-recapture or nest success models. Moreover,
they developed strategies for model comparison by incorporating the MCMC algorithm into
a sequential Monte Carlo sampler. They demonstrated the methodology on two different
applications: little owls and grey herons previously explored by Abadi et al. (2010) and
Besbeas and Morgan (2012) respectively. For the owls, they found no evidence in favour of
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some of the more complex models proposed in the literature and for the herons they showed
that existing models did not describe the data well.

Plard et al. (2019) developed an integrated integral projection model that combined
an integrated population model and an integral projection model. This model can estimate
demographic parameters and predict population dynamics, and can be viewed as the extension
of an IPM which links individual traits to demographic rates and their inheritance.

Riecke et al. (2019) examined, within a Bayesian framework, the effect on parameter
estimates when the following model assumptions of the capture-mark-recapture-recovery
were violated: marker-induced mortality or marker loss and unmodelled heterogeneity of
survival probabilities among individuals. They found that if these assumptions are violated,
estimation of additional, previously unidentifiable, parameters may be biased.

Besbeas and Morgan (2019) proposed a new method to model discrete SSMs, the use
of HMMs. This new method avoids the KF approximations and Bayesian Monte Carlo
simulations. The analysis of SSMs using HMMs is the main topic of Besbeas and Morgan
(2018). We evaluate the KF and the HMM in the presence of different time-series sample
sizes in Chapter 4 and implement them in a spatial context in Chapter 5.

In this context, the general form of the likelihood equation, and the one that we shall be
using in this thesis, is given by the product of the ring-recovery and the SSM likelihoods

𝐿 𝐼𝑃𝑀 (𝜙1, 𝜙𝑎,𝜆𝑡 , 𝜌) = 𝐿𝑅𝑅𝑀 (𝜙1, 𝜙𝑎,𝜆𝑡) × 𝐿𝑆𝑆𝑀 (𝜙1, 𝜙𝑎, 𝜌),

where 𝐼𝑃𝑀 stands for integrated population model, 𝑅𝑅𝑀 for ring-recovery model, and 𝑆𝑆𝑀
for state-space model.

The main benefits of using such IPMs, as listed in Schaub and Abadi (2011), are: 1. being
able to estimate additional parameters without explicit data; 2. their implementation has been
shown to improve the estimation of demographic parameters (Besbeas et al., 2002; Abadi
et al., 2010); different temporal lengths or data sets with time periods can be combined and
missing data can be incorporated (Brooks et al., 2004; Schaub et al., 2007) 3. flexibility in
the model set up. For these reasons, IPMs are increasingly being developed and implemented.
In Chapter 5 we present for the first time an SE-IPM consisting of the combination of several
census and ring-recovery data sets.

1.2.4 Parameter Redundancy

In ecological studies it is frequent to have two parameters in a model that only appear as a
product, and hence cannot be estimated independently (see, for example, Chapter 10, McCrea
and Morgan, 2015). This estimation issue is called parameter redundancy. Alternatively, a
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model in which not all the parameters can be independently estimated is described as not
identifiable. Methods for detecting parameter redundancy were described by Catchpole and
Morgan (1997), Gimenez et al. (2004), Cole et al. (2010) and Choquet and Cole (2012).
Parameter redundancy results for ring-recovery models are given in Cole et al. (2012) and
Jiménez-Muñoz et al. (2019). Parameter redundancy results for capture-recapture models are
given in Hubbard et al. (2014). Methods for investigating parameter redundancy in discrete
SSMs and IPMs are given in Cole and McCrea (2016). In particular, Cole and McCrea (2016)
demonstrated that through the joint analysis of data sets identifiability issues may be solved.

In general, to determine parameter redundancy, symbolic algebra is used to determine the
rank of a matrix derived by differentiating the probability of each event occurring with respect
to the parameters in the model (Cole et al., 2010). The rank is the number of parameters that
can be estimated in the model. A model is parameter redundant when the rank is smaller than
the total number of parameters in the model. Alternatively, as in Choquet and Cole (2012)
a hybrid symbolic-numeric method can be used to find the rank numerically. To overcome
parameter redundancy, models could be reparameterised into a smaller number of parameters
or constraints on the models could be used (Jiménez-Muñoz et al., 2019).

Parameter redundancy can also be caused by the data. In ring-recovery models this can
occur when there are several 𝑅𝑖,𝑡 equal to zero, as zero values are equivalent to missing data.
Cole et al. (2012) showed that one 𝑅𝑖,𝑡 for 𝑡 = 𝑖, . . . , 𝑛2 can be zero for each 𝑡, and parameter
redundancy results will always remain unchanged. Other patterns of zeroes can, but do not
always, result in parameter redundancy, as demonstrated in Cole et al. (2012).

Models can also behave as if they were parameter redundant for certain data sets. This is
known as near-parameter redundancy, and normally occurs if there exists a nested parameter
redundant model, and the maximum likelihood parameter estimates are close to those of the
nested model (Catchpole et al., 2001). Catchpole et al. (2001) showed how near-parameter
redundancy can be detected by examining the standardised eigenvalues, i.e computing the
ratio of all the eigenvalues over the smallest eigenvalue of the Hessian matrix. A value that
is close to zero indicates near-parameter redundancy. Chis et al. (2016) define a Hessian
matrix as sloppy if 𝜆min/𝜆max < 0.001, where 𝜆min is the smallest eigenvalue and 𝜆max is
the largest eigenvalue. Similarly, Zhou et al. (2019) and Cole (2019) used the same ratio
of smallest and largest eigenvalues to investigate near-parameter redundancy. In Chapter 2
the sparse sandwich tern data set is used to explore the potential effects of near-parameter
redundancy on the models presented here. We do not recommend using near-parameter
redundant models.
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1.3 Model Fitting and Model Comparison

The maximisation of the likelihood and computation of the information matrix are performed
with the optim() function, which is part of the stats package in R (R Core Team, 2018). If the
demographic parameter estimates are the result of a logistic function, the associated standard
errors are obtained by employing the delta method using the deltamethod() function in the
msm package in R (Jackson, 2011).

The parameter estimates obtained from maximum likelihood estimation enjoy an invari-
ance property. Suppose, the parameterisation of a model is changed from 𝜽 to 𝜼 = 𝜓(𝜽). For
example, if we use a logistic transformation, 𝜓, on 𝜽 , the maximum likelihood estimate of 𝜼
is 𝜼̂ = 𝜓(𝜽̂). If 𝜂 is a scalar function, an approximation for the variance of can be found via
the delta method.

The delta method states that,

𝑉𝑎𝑟 (𝜂) ≈ 𝒂′𝑺𝒂, (1.15)

where 𝑺 represents the variance-covariance matrix for 𝜽̂ and 𝒂′ =
( 𝜕𝜂
𝜕𝜃1
,
𝜕𝜂

𝜕𝜃2
, . . . ,

𝜕𝜂

𝜕𝜃𝑛

)
, evaluated

at 𝜽̂. We refer the reader to Morgan (2008) for a more detailed explanation of the delta
method.

In the presence of small data sets, the delta method might be insufficient. Throughout
this thesis we analyse some small data sets, for example, in Chapters 4 and 5 we make
use of small valued time series census data. These data are however jointly modelled with
ring-recovery data, which in contrast are abundant, hence together they provide sample sizes
for which the asymptotics are likely to be satisfied. Additionally in Chapter 3 we use a
small capture-recapture data set for female little auks. To check our results for these data
we performed a bootstrap, which resulted in results similar to those we are reporting here.
As these are the same, we do not present the bootstrap results in this thesis. However, the
bootstrap results are available in Wojczulanis-Jakubas et al. (2019).

In the presence of continuous covariates, we standardise them when needed using the
scale() function in R which is part of the R base package (R Core Team, 2018). The
standardisation consists of calculating the mean and standard deviation of the entire vector
of covariates, and then “scaling” each element by those values by subtracting the mean and
dividing by the standard deviation.

For model comparison we use the Akaike Information Criterion (AIC) developed by
Akaike (Akaike, 1974). The AIC of a model is defined as:

𝐴𝐼𝐶 = −2log𝐿 (𝜃;𝑥) +2𝑑, (1.16)
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where 𝑑 is the number of parameters estimated, and 𝐿 (𝜃;𝑥) is the maximised likelihood. This
general approach provides a versatile procedure to compare models fitted using maximum
likelihood using the same data.

Traditionally in ecological studies AIC, or variations such as AICc, have been used to
perform model selection. Specifically, in IPMs (which are one of the main focuses of this
Thesis) AIC is currently the most commonly employed method for model selection (see
for example, Besbeas and Morgan, 2019). There are however some disadvantages of using
AIC. For example, when the sample size is small, there is a substantial risk that AIC will
select models that have too many parameters. As an alternative, AICc is recommended in
theses cases (Anderson and Burnham, 2004). Unfortunately, given the nature of IPMs, it
is not straightforward to find simple corrections of AIC as these depend on the notion of
sample size, which is not easy or even possible to define for IPMs, given the use of multiple
heterogeneous data sets. Model selection methods for IPMs is the topic of Besbeas et al. (in
prep.) and their recommendations should be implemented in future work.
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Chapter 2

Estimating Age-Dependent Survival
from Age-Aggregated Ring-Recovery
Data

Forward

This chapter summarises the work presented in Jiménez-Muñoz et al. (2019) where ring-
recovery methods are extended to maximise the use of historical ringing records. The material
in Jiménez-Muñoz et al. (2019) is the result of a joint collaboration between all the authors,
for which I contributed in the development of the methodology. I wrote the computer code,
performed the simulation study, and analysed the data and led the writing of the manuscript
assisted by all authors. The work on parameter redundancy was carried out by Dr. Cole.

We mostly use the same wording as the paper but add in links to relevant parts of the
thesis. The section on parameter redundancy has changed to highlight just the results that are
relevant to the thesis. The methods to derive the parameter redundancy results are given in
the paper.

2.1 Introduction

Ringing schemes have been running for a long period of time, and for example in Europe
and North America they date back to the early 20th century (Greenwood, 2009). Due to their
long history, abundant literature for these methods can be found (see, for example, Williams
et al., 2002). Initially data were recorded in paper form. Although the process of digitising
these data started two decades ago, there are still many ringing records that have not been
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computerised. The way in which this historical data was collected and stored means that the
total number of fledged birds ringed in different age categories is difficult or often impossible
to obtain, due to the sheer size and heterogeneity of the records.

Younger birds tend to have a lower probability of survival than adult birds (Martin, 1995;
Péron et al., 2016). Moreover, as behaviour and habitat use change with age, the probability
of recovering an individual after death may also be age-dependent. These variations should
be taken into account when building models. It is possible to include this information when
the numbers of birds ringed annually in the various age classes is known, which is usually the
case for most recent studies (see, for example, the Standard ring-recovery model in Section
1.2.1). However, for historical data information on the age of the individual at ringing is often
not available. When these totals are unknown, a model that is conditional on the number of
birds recovered can be used. The most commonly used model assumes a constant probability
of reporting after death for all members of the cohort (Seber, 1971), but this can result in
biased parameter estimates (McCrea et al., 2012).

As an alternative to the conditional model, which ignores the annual numbers ringed,
Robinson (2010) described a model for when the annual number of pulli (chicks) and fledged
birds are separately known, but the latter includes both fully mature, breeding birds and
juvenile birds of the year, which will have very different survival prospects. Robinson (2010)
estimated survival by assuming that a fixed proportion of the birds ringed as fledged birds
were juveniles.

In this chapter, we present a model where the proportion of juveniles is treated as an
unknown parameter. In Section 2.2 we introduce the reader to the two data sets, blackbirds
(Turdus merula) and sandwich terns (Thalasseus sandvicensis), used to illustrate our methods.
In Section 2.3 we describe the existing ring-recover models, and present the historical ring-
recovery models developed in Jiménez-Muñoz et al. (2019). We provide model fitting details
and summarise these models in Section 2.4. In Section 2.5 we show the parameter redundancy
results obtained in Jiménez-Muñoz et al. (2019). In Section 2.6 we perform a simulation
study to show that this model gives similar parameter estimates to the standard model that
requires that all the ringing totals are known. We provide an analysis on blackbirds and
sandwich terns to show the relevance of the proposed model for different types of data in
Section 2.7. Finally in Section 2.8 we provide a discussion of the work presented in this
chapter.
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2.2 Data

The BTO has been collecting ringing data on the total number of birds ringed in Britain
and Ireland for several species since 1909. However until 2000 the data were submitted in
paper form. Starting in 2010 we can find digitized data distinguishing three age groups: pulli,
juveniles, and adults. Although ringing data have been digitized for the years before 2010,
only two age categories have been registered: pulli, which are first-year birds, and fledged
birds, which refers to fledged birds of unknown age, including juveniles (also first-year birds)
and adults. We refer to the digitized data with two categories as historical data. It would be
possible to fully computerise historic data, or find ringing totals for the three age categories,
however this would be time consuming. This has been stated for several species (Robinson,
2010). Figure 2.1 illustrates the three age categories in which birds are ringed.

1st year︷                                   ︸︸                                   ︷
Pulli︷             ︸︸             ︷ Juveniles︷              ︸︸              ︷ Adults︷              ︸︸              ︷

︸              ︷︷              ︸
In nest (cannot fly)

︸                                   ︷︷                                   ︸
Fledged birds

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Fig. 2.1 Diagram of the three age categories in which birds are ringed. For this illustration
we use pictures of blackbirds. From left to right the pictures were taken by: Simon Thurgood,
John Harding, and Tommy Holden.

To illustrate the methods described in this chapter we analyse data provided by the BTO
for two different bird species: blackbirds and sandwich terns. We describe these species and
the data collected for them in Sections 2.2.1 and 2.2.2 respectively.

2.2.1 Blackbird Data

The blackbird (Turdus merula) is a common passerine that occurs throughout Britain. The
blackbird data set contains ring-recovery data for birds ringed as pulli, juveniles and adults
during the breeding season (April to September) for the years 1964-1983. These data are
taken from Robinson et al. (2012), and can be found in Appendix A.1. For this data set
the total numbers of birds ringed for all three age categories, pulli, juvenile and adults, are
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separately known. We use this data set, as well as the simulated data sets to compare the
existing methods and the methods developed in Jiménez-Muñoz et al. (2019) to analyse the
historical ringing data.

2.2.2 Sandwich Tern Data

The sandwich tern (Thalasseus sandvicensis) is a long-lived migrant seabird. Although
population fluctuates dramatically among years, the sandwich tern is on the RSPB’s amber
list (of the second highest conservation priority level) in the UK (Eaton et al., 2015). The
sandwich tern ring-recovery data set contains ring-recovery data for birds ringed as pulli
and fledged birds during the breeding season (June to August) in the years 1970-1990.
The sandwich tern data set contains information on the total number of birds ringed as
pulli, however the total numbers of birds ringed for adults and juveniles are are not known
separately. Instead, the total number of fledged birds is given. Moreover, the number of
recoveries per year contained in each of the three data classes are very small, making the
sandwich tern data very sparse. This data set can also be found in in Appendix A.2. We use
the sandwich tern data to explore the suitability of the models presented in Jiménez-Muñoz
et al. (2019) in terms of parameter redundancy caused by the structure or paucity of data.

2.3 Models

In this section we describe the models that can be fitted to different ring-recovery data sets.
In all of the models, we suppose there are 𝑛1 years of ringing and 𝑛2 years of recovery of
dead birds. The total numbers of birds ringed in age category 𝑐, in year 𝑖, is 𝑇𝑐, 𝑖 and the
number of birds ringed in age category 𝑐, in year 𝑖 that were recovered dead in year 𝑡, is
𝑅𝑐, 𝑖, 𝑡 , for 𝑖 = 1, . . . , 𝑛1, and 𝑡 = 𝑖, . . . , 𝑛2. The age category 𝑐 represents the age at which birds
were ringed, which could be pulli, denoted by 𝑝, juveniles ( 𝑗), first-year birds (1), fledged
birds ( 𝑓 ) , or adults (𝑎). As mentioned in the data section, first-year birds, may be either
pulli, or juveniles, and fledged birds may be either juveniles, or adults.

The models depend on the following parameters:
• 𝜙1, 𝑡 is the annual survival probability for a first-year bird alive at the start of year 𝑡;

• 𝜙𝑎, 𝑡 is the annual survival probability for an adult bird alive at the start of year 𝑡;

• 𝜆1, 𝑡 is the annual probability of recovering a first-year dead bird in year 𝑡;

• 𝜆𝑎, 𝑡 is the annual probability of recovering a dead adult bird in year 𝑡.
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2.3.1 Standard Model

The standard model refers to the ring-recovery model that estimates the survival and reporting
probability of birds that were ringed early in their first year of life. This model is similar to
that presented in Section 1.2.1, however for consistency with the following models, we use
slightly different parameterisation here.

The probability that a bird ringed in its first year of life in year 𝑖 is recovered dead in year
𝑡 is denoted by 𝑃1, 𝑖, 𝑡 with,

𝑃1, 𝑖, 𝑡 =


(1−𝜙1, 𝑡)𝜆1, 𝑡 if 𝑡 = 𝑖

𝜙1, 𝑖

(
𝑡−1∏
𝑘=𝑖+1

𝜙𝑎, 𝑘

) (
1−𝜙𝑎, 𝑡

)
𝜆𝑎, 𝑡 if 𝑡 > 𝑖

for 𝑖 = 1, . . . , 𝑛1, 𝑡 = 𝑖, . . . , 𝑛2.
Parameters can be estimated using maximum likelihood, and the likelihood function for

the standard model for birds ringed in their first year of life is

𝐿𝑆 ∝
{

𝑛1∏
𝑖=1

𝑛2∏
𝑡=𝑖

𝑃
𝑅1, 𝑖, 𝑡
1, 𝑖, 𝑡

}{
𝑛1∏
𝑖=1

(
1−

𝑛2∑
𝑡=𝑖

𝑃1, 𝑖, 𝑡

)𝑇1, 𝑖−𝑛2∑
𝑡=𝑖

𝑅1, 𝑖, 𝑡
}
. (2.1)

Gauthier and Lebreton (2008) demonstrate how a ring-recovery model can be written as
a multi-state model so that the program M-Surge (Choquet et al., 2004) could be used to fit
this model.

The model of equation (2.1) can be used either for birds ringed as pulli, or for birds
ringed as pulli and juveniles, i.e. birds ringed in their first year of life for which we know the
ringing totals. While in practice it is not uncommon for data to be available for pulli alone,
and thus modelled using equation (2.1), they are unlikely to ever be available for fledged
juveniles alone. The latter data will almost always be analysed in conjunction with those of
other age-classes, as outlined in the following section.

2.3.2 Standard Combined Model

As stated by Robinson (2010), it is possible to fit a ring-recovery model to the fledged birds’
data, with age specific ringing totals, when the total numbers of birds ringed as juveniles and
as adults are known. The standard combined model can be used when there is separate data
available on the total numbers of birds ringed in two different age classes. These two age
classes are: (1) birds in their first year of life (juveniles and/or pulli) and (2) adult birds. We
use the word combined, as two different data sets are pooled together, and the likelihood
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function is obtained, under the assumption of independence, by multiplying two likelihood
functions: the one for birds being ringed in their first year of life and the other for birds
ringed as adults.

The probability that a bird ringed in the adult age class in year 𝑖 is recovered dead in year
𝑡 is denoted by 𝑃𝑎,𝑖,𝑡 with,

𝑃𝑎, 𝑖, 𝑡 =

(
𝑡−1∏
𝑘=𝑖

𝜙𝑎, 𝑘

) (
1−𝜙𝑎, 𝑡

)
𝜆𝑎, 𝑡 ,

for 𝑖 = 1, . . . , 𝑛1, 𝑡 = 𝑖, . . . , 𝑛2.
If the fledged bird data are fully computerised, we have information on the number of

birds ringed as juveniles, 𝑇1, 𝑖 and as adults, 𝑇𝑎, 𝑖. Then the likelihood function for the standard
combined model is a straightforward product of that in equation (2.1) and that for birds
ringed as adults, i.e.,

𝐿𝑆𝐶 ∝
{

𝑛1∏
𝑖=1

𝑛2∏
𝑡=𝑖

𝑃
𝑅1, 𝑖, 𝑡
1, 𝑖, 𝑡

𝑃
𝑅𝑎, 𝑖, 𝑡
𝑎, 𝑖, 𝑡

}
×

{
𝑛1∏
𝑖=1

(
1−

𝑛2∑
𝑡=𝑖

𝑃1, 𝑖, 𝑡

)𝑇1, 𝑖−𝑛2∑
𝑡=𝑖

𝑅1, 𝑖, 𝑡

×

(
1−

𝑛2∑
𝑡=𝑖

𝑃𝑎, 𝑖, 𝑡

)𝑇𝑎, 𝑖−𝑛2∑
𝑡=𝑖

𝑅𝑎, 𝑖, 𝑡
}
,

(2.2)

(see, for example, Brownie et al., 1985, and Freeman and Morgan, 1992).
We use the age category (1) for the 𝑇𝑗 , 𝑖 = 𝑇1, 𝑖 birds ringed as known juveniles that are by

definition in their first year of life. If additional data on ringed pulli were available, this model
can be used to fit these two data sets. If we were to add the pulli data, the age category (1)
would include now birds ringed as juveniles, ( 𝑗), and as pulli, (𝑝). This is always assuming
that the total numbers of birds ringed in each age category are known, and also that the
same ‘first-year’ survival probability applies to birds ringed as pulli or slightly older fledged
juveniles. For a model separately estimating survival probabilities for the period immediately
following fledging (see, for example, Thomson et al., 1999).

2.3.3 Historical Data Model

For records that are not computerised, only the total numbers of fledged birds ringed are
known rather than the separate total numbers for juveniles and adults. The models developed
by Jiménez-Muñoz et al. (2019) for the historical fledged bird data are similar to the standard
combined model for ring-recovery data, but with the addition of a parameter that represents
the unknown yearly proportion of birds ringed as juveniles. In these models, the proportion
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of juveniles ringed can be estimated as a constant parameter for all the years of study, or as a
time dependent parameter allowing for variation between years. Robinson (2010) fixed this
proportion to the mean observed in recent years, when the age at ringing data are recorded,
and then tested sensitivity to this assumption. Here we consider estimating this proportion.
As this model is used to analyse historical data, it is termed the historical data model.

In the historical data model, the total numbers of birds ringed as juveniles, 𝑇𝑗 , 𝑖, and as
adults, 𝑇𝑎, 𝑖 are unknown. We only know the sum of both, 𝑇 𝑓 , 𝑖 = 𝑇𝑗 , 𝑖 +𝑇𝑎, 𝑖, where 𝑇 𝑓 , 𝑖 is the
total number of fledged birds ringed in each year 𝑖, for 𝑖 = 1, . . . , 𝑛1.

The historical data model has an additional parameter to be estimated
• 𝜋𝑡 is the proportion of fledged birds ringed as juveniles in year 𝑡, and (1− 𝜋𝑡) is the

proportion of fledged birds ringed as adults.
The probability that a bird ringed in year 𝑖 was a juvenile, and was found dead in year 𝑡 is

𝑄 𝑗 , 𝑖 ,𝑡 =


𝜋𝑡 (1−𝜙1, 𝑡)𝜆1, 𝑡 if 𝑡 = 𝑖

𝜋𝑖𝜙1, 𝑖

(
𝑡−1∏
𝑘=𝑖+1

𝜙𝑎, 𝑘

) (
1−𝜙𝑎, 𝑡

)
𝜆𝑎, 𝑡 if 𝑡 > 𝑖

for 𝑖 = 1, . . . , 𝑛1, 𝑡 = 𝑖, . . . , 𝑛2. The probability that a bird ringed in year 𝑖 was an adult, and
was recovered dead in year 𝑡 is

𝑄𝑎,𝑖,𝑡 = (1− 𝜋𝑖)
(
𝑡−1∏
𝑘=𝑖

𝜙𝑎, 𝑘

) (
1−𝜙𝑎, 𝑡

)
𝜆𝑎, 𝑡

for 𝑖 = 1, . . . , 𝑛1, 𝑡 = 𝑖, . . . , 𝑛2. The likelihood function for the historical data model for fledged
birds is

𝐿𝐻 =

{
𝑛1∏
𝑖=1

𝑛2∏
𝑡=𝑖

𝑄
𝑅 𝑗 , 𝑖, 𝑡

𝑗 , 𝑖, 𝑡
𝑄
𝑅𝑎, 𝑖, 𝑡
𝑎, 𝑖, 𝑡

}
×

[
𝑛1∏
𝑖=1

{
1−

𝑛2∑
𝑡=𝑖

(𝑄 𝑗 , 𝑖, 𝑡 +𝑄𝑎, 𝑖, 𝑡)
}𝑇 𝑓 ,𝑖−𝑛2∑

𝑡=𝑖

(𝑅 𝑗 , 𝑖, 𝑡+𝑅𝑎, 𝑖, 𝑡 )]
. (2.3)

There has been extensive work on mixture models dealing with unknown ages for capture-
recapture data (see, for example, Pledger et al., 2009; Pradel, 2009). Pledger and Schwarz
(2002) developed mixture models in band-recovery models (which is a reparameterisation
of the ring-recovery model) and McCrea et al. (2013) examined age-dependent mixture
ring-recovery models. Both mixture models assumed that the group an individual belongs
to, in this case juveniles and adults, is unknown for all individuals, although to be able to
estimate parameters McCrea et al. (2013) used a combined model including data of known
age. In this chapter however we know which group some individuals belong to (the birds that
were marked and recovered dead), but this information is unknown for the birds that were
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never recovered. Alternatively, this model could be written in a multi-event format (Pradel,
2005), as demonstrated in Supporting Information Appendix S3 of Jiménez-Muñoz et al.
(2019).

2.3.4 Historical Combined Data Model

If there are separate data for birds ringed as pulli, the numbers of these will generally be
known and, as in Robinson (2010), it is possible to use a standard model for the pulli data
and a historical data model for the fledged birds of unknown age, in one combined analysis.
This model will be referred to as the historical combined data model. Let 𝑅𝑝, 𝑖, 𝑡 denote the
number of pulli ringed in year 𝑖 that were recovered dead in year 𝑡 and let 𝑇𝑝, 𝑖 denote the total
number of pulli ringed in year 𝑖. The probability that a pullus ringed in year 𝑖 is recovered in
year 𝑡 is 𝑃𝑝, 𝑖, 𝑡 = 𝑃1, 𝑖, 𝑡 . The likelihood function for the historical combined data model is then

𝐿𝐻𝐶 ∝
{

𝑛1∏
𝑖=1

𝑛2∏
𝑡=𝑖

𝑃
𝑅𝑝, 𝑖, 𝑡
𝑝,𝑖,𝑡

𝑄
𝑅 𝑗 , 𝑖, 𝑡

𝑗 , 𝑖, 𝑡
𝑄
𝑅𝑎, 𝑖, 𝑡
𝑎, 𝑖, 𝑡

}
×

[
𝑛1∏
𝑖=1

(
1−

𝑛2∑
𝑡=𝑖

𝑃𝑝, 𝑖, 𝑡

)𝑇𝑝, 𝑖−𝑛2∑
𝑡=𝑖

𝑅𝑝, 𝑖, 𝑡

×
{
1−

𝑛2∑
𝑡=𝑖

(𝑄 𝑗 , 𝑖, 𝑡 +𝑄𝑎, 𝑖, 𝑡)
}𝑇 𝑓 , 𝑖−𝑛2∑

𝑡=𝑖

(𝑅 𝑗 , 𝑖, 𝑡+𝑅𝑎, 𝑖, 𝑡 )]
. (2.4)

2.3.5 Conditional Model

In the case of unknown ringing totals, the conditional model, which conditions on the
numbers of recovered individuals only, can be considered as an alternative to the historical
data model. The conditional probabilities for birds ringed in year 𝑖 that are recovered in year
𝑡, in both age classes are

𝑃𝐶𝑗, 𝑖, 𝑡 =
𝑃 𝑗 , 𝑖, 𝑡
𝑛2∑
𝑡=𝑖

𝑃 𝑗 , 𝑖, 𝑡

and 𝑃𝐶𝑎,𝑖, 𝑡 =
𝑃𝑎, 𝑖, 𝑡
𝑛2∑
𝑡=𝑖

𝑃𝑎, 𝑖, 𝑡

(McCrea et al., 2012). The likelihood function for the conditional model for the fledged birds
is

𝐿𝐶 =

𝑛1∏
𝑖=1

𝑛2∏
𝑡=𝑖

(𝑃𝐶𝑗, 𝑖, 𝑡)𝑅 𝑗 , 𝑖, 𝑡 (𝑃𝐶𝑎,𝑖, 𝑡)𝑅𝑎, 𝑖, 𝑡 . (2.5)
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The conditional model is known to be parameter redundant, except when 𝜆 is constant,
(see, for example, Cole et al., 2012).

Conditional Combined model

As with the historical combined data model, separate data on pulli can be combined with the
data on fledged birds. The standard model can be used for the pulli and the conditional model
can be used for fledged birds. This model, which we refer to as the conditional combined
model, has likelihood function

𝐿𝐶𝐶 =

𝑛1∏
𝑖=1

𝑛2∏
𝑡=𝑖

(𝑃𝐶𝑗, 𝑖, 𝑡)𝑅 𝑗 , 𝑖, 𝑡 (𝑃𝐶𝑎,𝑖, 𝑡)𝑅𝑎, 𝑖, 𝑡𝑃
𝑅𝑝, 𝑖, 𝑡
𝑝, 𝑖, 𝑡

×
𝑛1∏
𝑖=1

(
1−

𝑛2∑
𝑡=𝑖

𝑃𝑝, 𝑖, 𝑡

)𝑇𝑝, 𝑖−𝑛2∑
𝑡=𝑖

𝑅𝑝, 𝑖, 𝑡

. (2.6)

2.4 Model Fitting

R code for fitting the historical data model is provided in Supporting Information Appendix
S7 of Jiménez-Muñoz et al. (2019). The historical data model could alternatively be fitted in
the program E-surge (Choquet et al., 2009), as explained in Supporting Information Appendix
S3 of Jiménez-Muñoz et al. (2019).

The models examined in this chapter are summarised in Table 2.1. This can be interpreted
as follows: the standard model with likelihood equation (2.1) is implemented when the
ringing total numbers available are for birds in their first year of life. The standard combined
model, with likelihood function (2.2), is presented in two lines as this model can be used when
we have two known separate ringing totals for juveniles and adults, or three known separate
ringing totals, for pulli, juveniles and adults. The historical data model, with likelihood
equation (2.3), is implemented when the ringing totals available are for fledged birds, thus
we do not know the ringing totals for each age class separately. That is, we do not know
how many birds were ringed as juveniles and how many birds were ringed as adults, instead
we know the sum of both numbers. The historical combined data model, with likelihood
function (2.4), results as the combination of the standard and the historical data model. We
use this model when the total number of birds ringed as pulli is known, but the total numbers
of birds ringed as juveniles and as adults are unknown separately, and instead we only have
information on the sum of both numbers. The conditional and the conditional combined
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models with likelihood equations (2.5) and (2.6), are the alternative models to the historical
and historical combined data models.

Table 2.1 Description of the models defined above and used throughout the chapter. The
models in bold are the models developed in this chapter, and have an extra parameter 𝜋, the
yearly proportion of birds ringed as fledged birds that are juveniles. Likelihood refers to the
equation number of the likelihood function given in the chapter. The last column specifies
whether the total number of birds ringed per year per age category is known.

Model name Likelihood Data on birds ringed as Totals known?
Standard (2.1) first year of life yes

Standard Combined (2.2) fledged (juveniles and adults) yes
Standard Combined (2.2) pulli and fledged yes

Historical (2.3) fledged no
Historical Combined (2.4) All age-categories: pulli and fledged pulli only

Conditional (2.5) fledged no
Conditional Combined (2.6) All age-categories: pulli and fledged pulli only

2.5 Parameter Redundancy

Jiménez-Muñoz et al. (2019) used parameter identifiability theory to determine which param-
eters in the historical and combined models can be estimated, and these were compared to
the parameters that can be estimated in the standard ring-recovery model, which are given by
Cole et al. (2012). These results are given in Table 2.2. They found that all of the models that
are identifiable for the standard form of the model are also identifiable in the historical form
of the model (Table 2.2). A combined model, formed from pulli data and data on fledging
birds, increases the number of models that are identifiable. The combined historical data
model is shown to have identical identifiability results to the standard combined model, so in
terms of parameter redundancy it does not matter whether or not the data have been fully
computerised.

The alternative to the historical data model is the conditional model. However for ring-
recovery data most conditional models are parameter redundant. When the pulli data are
combined with the data on fledged bird data, the conditional combined model does not do
any better than the pulli data alone, in terms of parameter redundancy. Therefore, in terms of
parameter redundancy the best model to use for historical data is the historical data model.

Being able to show theoretically that a model is identifiable, however, is no guarantee
that for some specific data the model would not be parameter or near-parameter redundant.
We also consider parameter redundancy in practice by using simulation and considering
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data on two different ring-recovery data sets. In Section 2.6 we run a simulation study and
show that the historical data model gives almost identical parameter estimates as the standard
model. We explore the blackbird data set, where we know the total numbers of birds ringed
by age-class, and compare the performance of the historical data model with the standard
model. Then, similarly to Robinson (2010) we use a subset of sandwich tern data, where we
do not know these totals.

Table 2.2 Table taken from Jiménez-Muñoz et al. (2019). Parameter redundancy results. The
main body of the table gives the deficiency, which is the difference between the number of
parameters and the number of parameters that can be estimated. A deficiency of > 0 indicates
the model is parameter redundant. A deficiency of 0 indicates the model is identifiable.
The first row specifies the type of model, with Stand. short for standard, Cond. short for
conditional and Cond. Comb. short for conditional combined. The combined column is
applicable for both the combined historical data model and the combined standard model.
The second row specifies which types of data the model is suitable for, either pulli, fledged
(Fl) or both combined (Pulli + Fl). The third row specifies the proportion parameter, which is
either constant (𝜋) or time dependent (𝜋𝑡), or not included in that type of model (-). The first
column specifies the parameters in the model. Results here are for the same number of years
of ringing as recovery, 𝑛 = 𝑛1 = 𝑛2.

Model Stand. Historical Combined Cond. Cond. Comb.
Data set(s) Pulli Fl Pulli + Fl Fl Pulli + Fl
Proportion - 𝜋 𝜋𝑡 𝜋 or 𝜋𝑡 - -
𝜙1, 𝜙𝑎,𝜆 0 0 0 0 0 0
𝜙1, 𝜙𝑎,𝜆𝑡 0 0 0 0 2 0

𝜙1, 𝜙𝑎,𝜆1,𝜆𝑎 1 1 0 0 2 1
𝜙1, 𝜙𝑎,𝜆1, 𝑡 ,𝜆𝑎,𝑡 1 1 0 0 3 1
𝜙1, 𝜙𝑎, 𝑡 ,𝜆 0 0 0 0 0 0
𝜙1, 𝜙𝑎, 𝑡 ,𝜆𝑡 0 0 0 0 3 0

𝜙1, 𝜙𝑎, 𝑡 ,𝜆1,𝜆𝑎 1 1 0 0 2 1
𝜙1, 𝜙𝑎, 𝑡 ,𝜆1, 𝑡 ,𝜆𝑎, 𝑡 2 2 3 1 𝑛+2 3

𝜙1, 𝑡 , 𝜙𝑎,𝜆 0 0 0 0 0 0
𝜙1, 𝑡 , 𝜙𝑎,𝜆𝑡 0 0 0 0 2 0

𝜙1, 𝑡 , 𝜙𝑎,𝜆1,𝜆𝑎 0 0 0 0 2 0
𝜙1, 𝑡 , 𝜙𝑎,𝜆1, 𝑡 ,𝜆𝑎, 𝑡 2 2 3 1 𝑛+ 1 3
𝜙1, 𝑡 , 𝜙𝑎, 𝑡 ,𝜆 0 0 0 0 1 0
𝜙1, 𝑡 , 𝜙𝑎, 𝑡 ,𝜆𝑡 2 1 2𝑛+ 1 1 𝑛+ 1 2

𝜙1, 𝑡 , 𝜙𝑎, 𝑡 ,𝜆1,𝜆𝑎 0 0 0 0 3 0
𝜙1, 𝑡 , 𝜙𝑎, 𝑡 ,𝜆1, 𝑡 ,𝜆𝑎, 𝑡 𝑛+ 1 3 𝑛+2 2 2𝑛 𝑛+2
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2.6 Simulation Study

To compare how the historical data model performs in practice we provide two different
simulation studies, which represent data on fledged birds. For all the simulations, all the
parameters are kept constant over time. The first simulation study is for a population in
which the adult survival is set to be the same for all individuals. For the second simulation
study, we consider a population with heterogeneous adult survival. We simulate two types of
heterogeneous populations; a heterogeneous population in which adult survival 𝜙𝑎, 𝑖, varies
individually, where 𝑖 denotes a logit-normal individual random effect; and a heterogeneous
population formed by two sub-populations with two different adult survival probabilities:
𝜙𝑎, 𝐴, and 𝜙𝑎, 𝐵. The simulation studies for the heterogeneous populations allow us to test
how the proposed models perform in practice when there is individual variation in survival
caused by factors other than age. Furthermore, or the two simulation scenarios (i.e. for
homogeneous and heterogeneous populations), we compare results for different lengths of
study, providing results for five, 10 and 20 years of ring-recovery studies, with 𝑛 = 𝑛1 = 𝑛2
(i.e the number of years of ringing is equal to the number of years of recovery).

For the homogeneous population, in each simulation 100 data sets are simulated from
the standard combined model with 1000 birds ringed with a constant proportion 𝜋 of the
birds ringed in their first year of life, and (1− 𝜋) of the birds ringed as adults. In the model
there are separate constant survival probabilities for first year and adult birds, 𝜙1 and 𝜙𝑎
respectively, and a constant reporting probability, 𝜆. We provide two different types of
heterogeneous populations, first we look at a population in which adult survival 𝜙𝑎, 𝑖, varies
individually, where 𝑖 denotes a logit-normal individual random effect. We also simulate data
for a population formed by two different sub-populations with two different adult survival
probabilities 𝜙𝑎, 𝐴, and 𝜙𝑎, 𝐵.

Both the standard combined model and the historical data model described above are
then fitted to each simulated data set. In the standard combined model the total numbers of
birds ringed in each of the two age classes are known, whereas in the historical model only
the total number of birds ringed is used. Otherwise, the forms of the two models are identical
and match the form used in generating the data. We also fit the historical data model with 𝜋
fixed either to the true value or to an arbitrary wrong value.

The simulation results for 10 years of study for a homogeneous population are given in
Table 2.3; further results for five, and 20 years of study can be found in Appendix A.3. The
heterogeneous populations results for five, 10 and 20 years of study are given in Appendix
A.4. By simulating data for different study lengths we show how the magnitude of parameter
bias is affected by the length of the study. We compare model performance by looking at
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the bias, the standard deviation and the mean squared error of the parameters across 100
simulations.

Table 2.3 Simulation study for 10 years of ring-recovery data. The first column specifies the
type of model, with Stand. Comb. short for standard combined, and Hist. short for historical.
In this first column, the last last two rows contain information for the models in which the
proportion parameter was fixed and the values used. The remaining columns contain the
average parameter estimate (par est) and the average standard error, given in parentheses,
along with the mean square error (MSE).

𝜙1 𝜙𝑎 𝜆 𝜋

par est MSE par est MSE par est MSE par est MSE
True Value 0.50 - 0.60 - 0.05 - 0.40 -

Stand. Comb. 0.50(0.04) 0.0014 0.60(0.02) 0.0005 0.05(0.002) 0.0000 - -
Hist. 0.50(0.04) 0.0014 0.60(0.02) 0.0005 0.05(0.002) 0.0000 0.40(0.02) 0.0006

Hist. 𝜋 = 0.40 0.50(0.04) 0.0014 0.60(0.02) 0.0005 0.05(0.002) 0.0000 - -
Hist. 𝜋 = 0.20 0.46(0.04) 0.0024 0.63(0.03) 0.0010 0.05(0.001) 0.0000 - -

The simulation studies show that for a homogeneous population, the historical data
model gives almost identical parameter estimates for survival and recovery to the standard
combined model. The same is true for the heterogeneous populations. Both homogeneous
and heterogeneous populations result in unbiased estimates of the proportion of birds ringed
in their first year of life, 𝜋. This demonstrates that the historical data model can be used
to estimate the additional parameter 𝜋 as well as the survival and recovery parameters as
accurately as the standard ring-recovery model, which requires additional information.

If 𝜋 is fixed at the true value then the historical data model with a fixed 𝜋 also performs
just as well, as would be expected. However if 𝜋 is not fixed at the true value then there
is bias in the estimation of the survival parameters, the mean square error is bigger, and
the standard error is higher than in other models. For example, when 𝜋 is fixed at a lower
value than the true value, fewer birds are estimated to survive their first year and, to retain a
match to the subsequent numbers recovered, adult survival is increased in compensation. For
constant 𝜋 the bias decreases as the number of years of ringing and recovery increases. It is
therefore recommended that the historical data model is used rather than fixing 𝜋.

Further simulation studies for different parameter estimates show very similar results
and the recommendation from these simulation studies and Table 2.2 is that if total ringing
numbers in each category are unavailable it is preferable to use the historical data model and
estimate the proportion in each age class.
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2.7 Results

Blackbird Case Study

Using the blackbird data set for comparison purposes, we run two different analyses. In
the first analysis we assume we only have historical data, for which the total numbers of
juveniles and adults ringed every year are unknown. That is, we add together the total of
birds ringed in the fledged category. Then we fit historical data models to this data set. In
the second analysis we use all the available data (using either two, or three, known ringing
totals, i.e. juveniles and adults, or pulli, juveniles and adults), and we fit standard combined
models. The parameter estimates for survival and reporting probabilities for the historical
and historical combined data model, and their standard errors, are almost identical to those
for the standard combined models (Table 2.4). However, the first year survival probability,
𝜙1, is slightly smaller for the models that analyse pulli data. Birds ringed as pulli are younger
than those fledged juveniles, thus their survival is likely to be lower. Therefore adding the
pulli data to the first year age class brings the survival probability 𝜙1 down.

Table 2.4 Estimates of survival and reporting probabilities for blackbird data using the
standard combined, historical and historical combined data model. The parameter estimates
are given alongside standard errors in parentheses. The first row specifies the type of model,
with Stand. Comb. and Hist. Comb. short for standard and historical combined. The second
row specifies the data used for the analysis, with Juv, Ad, and Fl short for ringing totals for
juvenile, adult and fledged birds.

Model Stand. Comb. Historical Stand. Comb. Hist. Comb.
Data set(s) Juv + Ad Fl Pulli + Juv + Ad Pulli + Fl

𝜙1 0.5925(0.0085) 0.5933(0.0085) 0.5451(0.0067) 0.5454(0.0067)
𝜙𝑎 0.6965(0.0050) 0.6958(0.0049) 0.6915(0.0045) 0.6909(0.0044)
𝜆 0.0375(0.0005) 0.0375(0.0005) 0.0361(0.0004) 0.0361(0.0004)
𝜋 0.5760(0.0066) 0.5741(0.0066)

Tables 2.5 and 2.6 compare the best models in terms of the Akaike information criterion
(AIC; Akaike, 1974) for the standard combined and the historical data models. To compare
the model selection for the historical and the standard combined models, we check if the
dependencies for the survival and recovery parameters for the best models agree. For example,
the standard model with parameters (𝜙1, 𝜙𝑎, 𝜆𝑡) would be equivalent, demographically, to
the historical data models with parameters (𝜙1, 𝜙𝑎, 𝜆𝑡 , 𝜋), and (𝜙1, 𝜙𝑎, 𝜆𝑡 , 𝜋𝑡). Table 2.5
shows that the best models for the historical and the standard combined agree; the same
parameterisation is chosen for the two different models. Moreover Table 2.6 shows that
although the same best (demographic) models are chosen for the historical combined and
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the standard combined models, the order of preference differs. The best model for the
historical combined data model has parameters (𝜙1, 𝜙𝑎,𝜆1, 𝑡 ,𝜆𝑎, 𝑡 , 𝜋), followed very closely by
the models with parameters the (𝜙1, 𝑡 , 𝜙𝑎,𝜆𝑡 , 𝜋) and (𝜙1, 𝜙𝑎,𝜆𝑡 , 𝜋𝑡) ; for the standard combined
model the best model has parameters (𝜙1, 𝜙𝑎,𝜆𝑡), followed, some distance behind, by the
model with parameters (𝜙1, 𝜙𝑎,𝜆1, 𝑡 ,𝜆𝑎, 𝑡). Nonetheless, the difference in AIC between the
top historical data models is very small, and seems to show that the age dependency in the
recovery probability does not contribute significantly to the model when the proportion of
juvenile birds ringed is not known, but estimated. We provide the parameter estimates for all
the models presented in Tables 2.5 and 2.6 in Appendix A.5.

Table 2.5 Comparison between the historical ring-recovery and standard combined model
selection for blackbirds. The first and the third columns show the models fitted and the
parameterisation used.

Historical Δ AIC Standard Combined Δ AIC
Fl Juv + Ad

𝜙1, 𝜙𝑎,𝜆𝑡 , 𝜋𝑡 0.00 𝜙1, 𝜙𝑎,𝜆𝑡 0.00
𝜙1, 𝜙𝑎, 𝑡 ,𝜆𝑡 , 𝜋𝑡 3.68 𝜙1, 𝜙𝑎, 𝑡 ,𝜆𝑡 11.89
𝜙1, 𝜙𝑎,𝜆𝑡 , 𝜋 6.65
𝜙1, 𝜙𝑎, 𝑡 ,𝜆𝑡 , 𝜋 18.30
𝜙1, 𝑡 , 𝜙𝑎,𝜆𝑡 , 𝜋 20.30 𝜙1,𝑡 , 𝜙𝑎,𝜆𝑡 23.87
𝜙1, 𝑡 , 𝜙𝑎,𝜆𝑡 , 𝜋𝑡 22.59
𝜙1, 𝜙𝑎,𝜆, 𝜋 148.56 𝜙1, 𝜙𝑎,𝜆 140.58

Table 2.6 Comparison between historical combined and standard combined ring-recovery
model selection for blackbirds. The first and the third columns show the models fitted and the
data used, with Juv, Ad, and Fl short for ringing totals for juvenile, adult and fledged birds.

Historical Combined Δ AIC Standard Combined Δ AIC
Pulli + Fl Pulli + Juv + Ad

𝜙1, 𝜙𝑎,𝜆1, 𝑡 ,𝜆𝑎, 𝑡 , 𝜋 0.00 𝜙1, 𝜙𝑎,𝜆1, 𝑡 ,𝜆𝑎, 𝑡 26.48
𝜙1, 𝑡 , 𝜙𝑎,𝜆𝑡 , 𝜋 2.30 𝜙1,𝑡 , 𝜙𝑎,𝜆𝑡 38.38
𝜙1, 𝜙𝑎,𝜆𝑡 , 𝜋𝑡 2.60 𝜙1, 𝜙𝑎,𝜆𝑡 0.00

𝜙1, 𝜙𝑎,𝜆1, 𝑡 ,𝜆𝑎,𝑡 , 𝜋𝑡 5.10
𝜙1, 𝜙𝑎,𝜆𝑡 , 𝜋 5.80
𝜙1, 𝜙𝑎, 𝑡 ,𝜆𝑡 , 𝜋𝑡 17.70 𝜙1, 𝜙𝑎, 𝑡 ,𝜆𝑡 30.40
𝜙1, 𝜙𝑎,𝜆, 𝜋 146.10 𝜙1, 𝜙𝑎,𝜆 148.33

Finally, Figure 2.2 shows that the total number of juvenile blackbirds estimated from
the fledged bird data set for the best historical combined data model with parameters
(𝜙1, 𝜙𝑎,𝜆𝑡 , 𝜋𝑡) is very similar to the real number of ringed juvenile blackbirds.
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Fig. 2.2 Comparison between the total number of juvenile blackbirds ringed per year, indi-
cated by the continuous line, and the estimated total number of juveniles, indicated by the
dashed line, obtained from the time dependent proportion of juveniles (𝜋𝑡), for the historical
combined data model with parameters (𝜙1, 𝜙𝑎,𝜆𝑡 , 𝜋𝑡). The dotted lines represent the 95 %
confidence interval.

Sandwich Tern Case Study

For longer-lived species, juvenile survival may be substantially lower, so we analyse sandwich
tern data for which the separate ringing totals are unknown for juveniles and adults. This
is a longer-lived species than the blackbird, but it is rarer and the data are consequently
sparser. When fitted, most of the historical data models prove to be parameter redundant or
near-parameter redundant. In fact, the only model which did not present any identifiability
issues, was that in which all the parameters were kept constant. However, when looking at
the parameter estimates, the first year survival probability was estimated much higher than
the adult survival probability, which does not appear realistic. Moreover, for most of the
models we were unable to maximise the likelihood function.
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The results described above are a clear example of parameter redundancy caused by
the data. The issue of parameter redundancy improved when adding the pulli data to the
historical data model by fitting the historical combined data model. As a result, many more
models could be fitted, however there were only three models that did not present any sign
of parameter redundancy. The parameter estimates for these models can be found in Table
2.7. The parameter estimates for the time dependent parameters can be found in Appendix
A.6. Furthermore, when adding the pulli data, the constant model presented more reliable
results, with a higher survival probability for adults than for first years, and with parameters
estimates closer to those expected based on the results obtained when fitting the standard
model to pulli data alone.

Table 2.7 Historical combined ring-recovery model selection and parameter estimates for
sandwich terns for the years 1970-1990. The standard errors are given in parentheses. The
parameter estimates for these models can be found in Appendix A.6 (Figures A.1 and A.2).

Parameters Δ AIC 𝜙1 𝜙𝑎 𝜆 𝜋

𝜙1, 𝜙𝑎,𝜆𝑡 , 𝜋 0.00 0.74(0.016) 0.87(0.010) - 0.32(0.076)
𝜙1, 𝜙𝑎,𝜆, 𝜋 27.67 0.73(0.015) 0.87(0.010) 0.02(0.001) 0.32(0.076)
𝜙1, 𝑡 , 𝜙𝑎,𝜆, 𝜋 34.01 - 0.86(0.010) 0.02(0.001) 0.32(0.076)

Sandwich terns are bigger than blackbirds and most do not begin to breed until their third
year of life, thus a more complex age structure may well be more realistic, although these
extra parameters may hinder further parameter identifiability. Robinson (2010) explores a
model with three age classes, where he estimates survival and reporting probabilities for
first-year birds, birds in their second or third year and older birds. We do not have data
on ringing totals for birds ringed in their second or third year of life, though these are
possibly few as the young birds relocate to West Africa before returning to breed. As for
most species, we also do not know the age of the adult sandwich terns at ringing. If this
information was known, for this or a similarly long-lived species, a better alternative would
be to model this age structure with the approach presented in this chapter in combination
with the age-dependent mixture model proposed by McCrea et al. (2013).

2.8 Discussion

We have presented the model from Jiménez-Muñoz et al. (2019) that estimates age-dependent
survival probabilities from ring-recovery data where the number of individuals ringed in each
age class is unknown. Moreover, Jiménez-Muñoz et al. (2019) used identifiability theory to
show that it is possible to estimate the proportion of individuals in each age class. Using
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simulation and a data set where the ringing numbers are known by age category we have
demonstrated that the historical data model gives almost identical parameter estimates as
the standard ring-recovery model. Therefore we have shown that it is possible to fit useful
age-dependent survival models to historical ringing data even though the data may not have
been fully computerised.

This new model provides an extension to the analysis of UK ringing data of Robinson
(2010), where the proportion in each age category was fixed. The new historical data model
has the advantage that, by estimating rather than assuming age-specific ratios at ringing,
estimates of precision and hypothesis tests are more reliable - if a constraint is imposed
unnecessarily, there is bias in estimating survival and the resulting standard errors may
overestimate the uncertainty in selecting this value, as demonstrated in the simulation study.

Although these results were motivated by an analysis of UK ringing data (Robinson,
2010), many national ringing schemes, in Europe and North America (Tautin, 2008), face a
similar challenge. For European schemes details of birds ringed and subsequently recovered
have been routinely collated and are accessible for analysis. The Euring Data Bank (EDB)
currently holds in excess of 10 million such records (Du Feu et al., 2016). Moreover, although
here we just look at estimating probabilities for two age categories: first year and adult birds,
the historical data model can be extended with the addition of an age-mixture model (McCrea
et al., 2013) to incorporate other age dependencies that accommodate for differences in
breeding age between species.

These results indicate that it is possible to incorporate age-specific variation in models of
survival, further unlocking the potential of a valuable historical data archive compiled over
several decades to better characterise temporal dynamics in the population processes of many
species. Such data are, of course, often the only source of demographic data ever likely to be
available as a benchmark against which to compare estimates from more recent years and
different climatic and agricultural contexts.
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Chapter 3

Analysing Capture-Recapture Data in
the Presence of Covariates

3.1 Introduction

The little auk or dovekie (Alle alle) is a small bird that breeds on islands in the high Arctic.
Bi-parental care is crucial for successfully raising the (single egg) offspring of the little auk
(Kidawa et al., 2012). However, this species is known for the female deserting the brood
during the last week of the chick rearing period, with the male parent staying in the nest to
continue the chick’s care (Harding et al., 2004; Wojczulanis-Jakubas and Jakubas, 2012).
This is an unusual trait of these birds, as for most bird species, the male parent deserts the
brood earlier than the mother. The time at which each female desserts the brood – although
constrained to the very last week of the chick rearing period - seems to be flexible; sometimes
females desert the brood a week before chick fledgling, sometimes they stay until the end
of the fledgling period (Wojczulanis-Jakubas and Jakubas, 2012). There are premises that
in less favourable environmental conditions the female stays longer (possibly bi-parental
care is still necessary to provision the chick adequately). Why it is the female and not the
male that deserts the brood is not clear. Body condition does not seem to be the main trigger
(Wojczulanis-Jakubas and Jakubas, 2012; Wojczulanis-Jakubas et al., 2014). Nevertheless
females usually (but not always) have lower body mass than males, so may be more prone to
body reserve depletion, which could be the trigger for leaving the brood first.

In this chapter we analyse two different capture-recapture data sets for female auks
breeding in two different colonies which differ in terms of oceanographic conditions. The
first data set consits of capture-recapture data for which sex and site covariates are recorded
for 950 individuals. The second data set consits of capture-recapture data for 56 female little
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auks for which site and presence covariates are recorded. The presence covariates contain
information about the female’s length of stay in the brood.

In order to understand the relationship between female little auks brood desertion and
their survival, in this chapter we analyse the capture-recapture data. We use covariates to
study if survival rates are affected by sex, or by the environmental conditions in which these
birds breed. Additionally, we use presence data, in the form of continuous covariates, to
assess if a longer presence in the brood has an impact on female survival.

In Section 3.2 we describe the characteristics of the data, giving some background on
how the capture-recapture and female presence data are collected, and what these comprise.
In Section 3.3 we describe the models implemented, and capture-recapture models in the
presence of categorical and continuous covariates. In Section 3.4 we provide a simulation
study to check the adequacy of our models. In Section 3.5 we discuss the results obtained for
the little auk data. Finally, in Section 3.6 we provide an overview of the work carried out in
this chapter.

3.2 Data

For the purpose of this study, data were collected in two breeding colonies in the Norwe-
gian island of Spitsbergen, Hornsund (77°00’N, 15°33’E) and Magdalenefjorden (77°00’N,
15°33’E). These sites were selected they are considered the two largest breeding aggregations
of the little auk on this island (Isaksen and Gavrilo, 2000; Keslinka et al., 2019). Figure 3.1
shows a map of Spitsbergen indicating the location of both colonies.

The oceanographic conditions in the foraging grounds are different for the two colonies.
In Hornsund, birds utilise profitable, cold water masses (Jakubas and Wojczulanis-Jakubas,
2013; Jakubas et al., 2014). In Magdalenefjorden, birds forage in an area that is dominated
by less profitable warm water masses. However, they have also been reported to utilise
more distant foraging areas, at the edge of the sea ice (Jakubas et al., 2012; Jakubas and
Wojczulanis-Jakubas, 2013). Specific information regarding the conditions of both sites can
be found in Wojczulanis-Jakubas et al. (2019)

Across the two colonies capture-recapture data were collected on 950 individuals of
both sexes. Additionally, capture-recapture data on another 56 female little auks were also
collected. For these data rather than considering randomly sampled individuals, nests were
randomly selected and monitored. That is, occupied nests were chosen at random and
presence covariates for the females found breeding in them were recorded. The studies were
made at different times at the two sites. While some of the data for Magdalenefjorden have
already been used in Wojczulanis-Jakubas and Jakubas (2012), the data from Hornsund are
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Fig. 3.1 Map of the little auk colonies discussed in this chapter. Here, H stands for Hornsund
and M for Magdalenefjorden. The map is taken with permission from Jakubas et al. (2011).
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considered here for the first time. The next sections explain the characteristics of these data:
the capture recapture data for all individuals studied and the capture-recapture and presence
data collected on the 56 females.

3.2.1 Capture-Recapture Data

Capture-recapture data were collected during the seasons 2001-2017 in Hornsund and in
2007-2011 in Magdalenefjorden. We consider birds marked between 2001 and 2016 in
Hornsund, and between 2007 and 2010 in Magdalenefjorden. These birds are recaptured
between 2002 and 2017 in Hornsund, and between 2009 and 2011 in Magdalenefjorden. The
birds considered in this study were captured by hand while incubating and/or brooding in
the nests. Each newly caught bird was ringed with a unique number and a small blood or
feather sample was taken for purposes of molecular sexing, following the methods described
in Jakubas and Wojczulanis (2007). Table 3.1 shows the total number of birds marked in
each site during the study. From Table 3.1 we can observe that more birds were ringed in
Hornsund than in Magdalenefjorden. This is due to the number of years in which data were
collected in both sites, with 15 years of capture-recapture data collection in Hornsund, and
five in Magdalenefjorden. Moreover, roughy the same number of female and male birds have
been ringed within each site.

Table 3.1 Total number of individuals marked in each site between 2001 and 2016 for both
sexes.

Site Female Male Total

Hornsund 337 375 712
Magdalenefjorden 107 131 238

Total 444 506 950

Table 3.2 shows the total number of birds captured each year from 2001 to 2017 in
Hornsund for each sex. The years 2003, and 2013 are not included in Table 3.2, as Hornsund
was not visited. Table 3.2 also discloses the total of birds captured, the number of birds that
were captured for the first time each year and the number of birds that were recaptured. In
Table 3.2 we can see that the number of first captures increases from 2001 to 2006, and the
number of recaptures are low until 2006. Between 2007 and 2009 both first captures and
recaptures are very low. The numbers of first captures and recaptures are highest between
2011 and 2017.
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Table 3.2 Total number of individuals captured and recaptured in Hornsund per sex in every
year of the study. The first column (S) indicates the sex of the individuals, with F for female
and M for male birds. The rows in black indicate the total number of birds that were captured.
The rows in grey indicate the number of birds that were captured for the first time (First) and
the number of birds that were recaptured (Recap).

S Cap Year
01 02 04 05 06 07 08 09 10 11 12 14 15 16 17

F Total 17 18 0 32 63 7 2 12 8 85 105 93 40 43 37
First 17 15 0 32 46 1 1 11 5 71 54 50 19 15 -

Recap 0 3 0 0 17 6 1 1 3 14 51 43 21 28 37
M Total 18 20 1 36 60 9 2 14 10 92 120 104 45 65 51

First 18 15 0 34 40 0 2 9 9 81 57 59 26 25 -
Recap 0 5 1 2 20 9 0 5 1 11 63 45 19 40 51

Similarly, Table 3.3 shows the total number of birds captured each year from 2007 to
2011 in Magdalenefjorden for each sex. Table 3.3 shows that although in Magdalenefjorden
in 2008 some individuals were captured and marked for the first time, none of the birds
marked in 2007 were recaptured in 2008, for either sex.

Table 3.3 Total number of individuals captured and recaptured in Magdalenefjorden per sex
in every year of the study. The first column (S) indicates the sex of the individuals, with F for
female and M for male birds. The rows in black indicate the total number of birds that were
captured. The rows in grey indicate the number of birds that were captured for the first time
(First) and the number of birds that were recaptured (Recap).

Sex Cap Year
07 08 09 10 11

F Total 33 26 46 38 9
First 33 26 36 12 -

Recap 0 0 10 26 9
M Total 29 36 58 64 26

First 29 36 36 30 -
Recap 0 0 22 34 26

3.2.2 Capture-Recapture and Presence Data—Female Nest Data

Across both sites, for 56 females capture-recapture data and presence data were collected,
with 25 females in Hornsund and 31 in Magdalenefjorden. In this section we explain the
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details for both the capture-recapture and the presence data for these individuals. The
capture-recapture encounters for these females are analysed separately from the larger
capture-recapture data set explained in Section 3.2.1, for this reason we refer to the data
collected for these female birds as the female nest data.

Capture-Recapture Data

The number of birds within the female nest data captured for each year of study are shown
in Table 3.4 for Hornsund, and in Table 3.5 for Magdalenefjorden. For each site both the
number of birds first captured and the number of birds recaptured are very low for every year
of study.

Table 3.4 shows that in Hornsund capture-recapture data were collected for 11 years
during the years 2001-2017. At this site there were eight years of marking (as no marking
took place in 2005 or 2006) and 9 years of recaptures, as there were no recaptures in 2002).
Table 3.4 does not contain information for the years 2003, 2007, 2008, 2009, 2010 and 2013
as the female individuals considered for this study were not captured or recaptured during
these years. The lack of information for these years does not necessarily mean that there
were no attempted recaptures in these given years. Instead, this means that no individuals
were observed. As a result, the parameter estimates for the capture probability will be 0 for
these years.

Table 3.4 Total number of female birds in the female nest data captured and recaptured in
Hornsund in every year of the study. The rows in black indicate the total number of females
that were captured. The rows in grey indicate the number of female birds that were captured
for the first time (First) and the number of female birds that were recaptured (Recap).

Cap Year

01 02 04 05 06 11 12 14 15 16 17
Total 1 3 1 5 4 4 6 9 9 17 10
First 1 3 0 3 0 3 2 3 4 6 -

Recap 0 0 1 2 4 1 4 6 5 11 10

Table 3.5 shows that for Magdalenefjorden there are only three years of marking (2008-
2010), and three years of recaptures (2009-2011). Although more females were marked in
Magdalenefjorden, the number of captures and recaptures are very low. For example, Table
3.5 shows that in total there were 31 individuals marked, and for all these there were 37
recaptures during the study period.
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Table 3.5 Total number of female birds in the female nest data captured and recaptured in
Magdalenefjorden in every year of the study. The rows in black indicate the total number
of females that were captured. The rows in grey indicate the number of female birds that
were captured for the first time (First) and the number of female birds that were recaptured
(Recap).

Cap Year
08 09 10 11

Total 7 20 26 15
First 7 13 11 -

Recap 0 7 15 15

Presence Data

To track colony presence of females, direct observations were carried out in Hornsund and
Magdalenefjorden for some females. Additionally in some cases video recording was also
carried out in Hornsund. Presence data were collected in 2009 and 2010 in Magdalenefjorden
and in 2004, 2016 and 2017 in Hornsund.

Direct observations were performed 2-3 times per season on marked individuals, during
the time of the chick rearing period. Each observation lasted uninterruptedly for either 24h
or 48h. Each focal individual was monitored continuously, and its presence status was noted
every 10 min.

For the video recorded individuals, a video camera filmed continuously for more than
24 hours all the individuals present in a 3 m radius of focal nest entrance. There were 2-4
cameras operating simultaneously, with changing position according to the birds phenology,
aiming to register the birds presence pattern mainly at the fourth week of the chick rearing
period.

For both sites most individuals in the female nest data were only observed once while
nesting. Table 3.6 shows that only for three females presence data were collected in two
different years, and for 22 females presence data were collected in one year of the study. In
Magdalenefjorden presence data for six females were collected in two different years, and
presence data for 25 females were collected only in one year of the study.

For those female birds that were observed, the following information was recorded:

• The number of days that a chick took to fledge. This information was always observed
precisely. Therefore there is perfect detection for the fledging day. We refer to the
number of days that a chick took to fledge as “fledge”.
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Table 3.6 The number of females for which presence data were collected on either one or
two occasions, for each site.

Presence occasions Hornsund Magdalenefjorden

1 22 25
2 3 6

Total 25 31

• Female presence in the nest. When a nest was observed if the female was there, a 1
was recorded. The female was observed precisely before the chick fledged. However,
from the day of chick fledging there was imperfect detection for females in the nest. In
addition, some nests were observed after the chick fledged, but some others were not.
We refer to the last day in which a female was recorded as “last1”.

• First day the female was not seen. If the nest was observed throughout the whole
period, the day that the female left was perfectly detected. However some nests were
not observed on some particular days, therefore, the record for the first day of not
seeing a female might be an over (or under) estimate of the actual day of departure.
We refer to the first day in which the female was not observed in the nest as “first0”.

• The index of departure day. For some females the specific day in which they left the
nest is not known precisely. For this reason we estimate the departure day from the
colony, using the arithmetic mean:

Index of departure day =
first0 + last1

2
.

We refer to this as “index”.

Table 3.7 shows the summary statistics for the presence data. We use the three different
days recorded and the index of departure day as an indicator of female presence in our
analysis, including them as individual covariates. Specific details on the modelling can be
found in Section 3.3.
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Table 3.7 Summary statistics for the presence data. The first column specifies the type of
statistic, with Min. short for minimum value, 1st Qu. short for first quartile, 3rd Qu. short for
third quartile, and Max. short for maximum value. The remaining columns specify the type
of information that was recorded for those female birds that were observed.

Stat fledge last1 first0 index

Min. 21 11 18 14.5
1st Qu. 26 21 25 23
Median 27 24 26 25
Mean 26.94 22.82 26.33 24.58

3rd Qu. 28 26 28 27
Max. 31 29 32 30.5

Capture-Recapture and Presence Data

We use the presence data as continuous individual time-varying covariates. However the size
of the female nest data is small, and the existing presence data contain many missing values.

It is common when using time-varying covariates in capture-recapture or mark-recapture-
recovery studies that many missing values arise. This is because usually for the years
in which the individuals are not captured, the covariate data available are not observed.
Moreover, missing data can also arise if the individual is captured in a particular year, but its
corresponding covariate is not observed (see for example, Bonner et al., 2010, Langrock and
King, 2013, and Worthington et al., 2015).

For our female nest data set the information available is limited. This data set consists of
56 marked female little auks, which were encountered on 136 occasions. Of these encounters,
covariate data were recorded only for 65 capture and recapture encounters. That is, 47% of
the encounters for the female nest data contain covariate information. However, we must
bear in mind that, even considering both sites together, only approximately five birds were
being marked each year in the female nest data (see Tables 3.4 and 3.5 for details on the
capture-recapture histories of the female nest data). Moreover, covariate data were recorded
on two occasions for only 9 of the 56 females. For the remaining females covariate data were
recorded only on one occasion each.

Thus, given the limitations of our data, we perform a simple deterministic imputation
approach and we proceed with the capture-recapture analysis as if the missing values had
been observed. For the individuals for which we have only one presence observation, we
use the same value from the first year of capture, until the end of the capture-recapture study,
regardless of the year in which this covariate observation was made. For those individuals for
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which we have two different values in two different years, we keep those values in the specific
years in which they were recorded, and for the remaining years we impute using the average
between the two observed values. Tables 3.8, shows an example of capture-recapture and
presence histories for two individuals, and the imputation of the missing covariate data for
the Magdalenefjorden site. In Table 3.8 we observe that female 41163 was first captured in
2008 and that no presence information was recorded for her. This female was also recaptured
in 2009 when it was recorded that its chick took 26 days to fledge, and also in 2010 when it
was recorded that its chick took 28 days to fledge. We impute presence data with the average,
27 days, for the years 2008, when this female was first captured, and in 2011, the last year of
the capture-recapture study in Magdalenefjorden, in which this female was not recaptured.
Equally, Table 3.8 contains information regarding the last day in which the female was seen
in the brood (last1), and the first day in which she was noticed missing.

Table 3.8 Example of two capture-recapture histories with presence covariate data for two
females in Magdalenefjorden. The first column indicates the individual identification number
given at marking. The rows labelled as Encounter contain the corresponding individual’s
capture-recapture history. The covariate data recorded can be found in the rows labelled as
fledge, last1 and first0. In these rows, ? denotes that no presence information was recorded.
Immediately after these rows, the rows in grey rows labelled as Impute, contain the imputed
covariate information for the particular covariate.

Indiv Year captured Data
no 2007 2008 2009 2010 2011

41163 0 1 1 1 0 Encounter
- ? 26 28 ? fledge
- 27 26 28 27 Impute
- ? 25 26 ? last1
- 25.5 25.5 25.5 25.5 Impute
- ? 27 28 ? first0
- 27.5 27.5 27.5 27.5 Impute

41185 0 0 1 0 0 Encounter
- - 26 ? ? fledge
- - 26 26 26 Impute
- - 26 ? ? last1
- - 26 26 26 Impute
- - 27 ? ? first0
- - 27 27 27 Impute
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3.3 Capture-Recapture Models

The objective of this study is to establish if the survival of the little auk is affected by its sex
and/or the site where it breeds. Moreover, we are interested in understanding if the females’
efforts in raising their chicks have an effect on survival.

As explained in Section 3.2, two capture-recapture data sets are available, we refer to
them as the capture-recapture data set and the female nest data set. The former contains
information about the sex and the site in which each individual was captured while breeding.
The model for these data is described in Section 3.3.1. The latter contains capture-recapture
information on female birds, as well as additional covariate information regarding the length
of the female stay in the brood. The model for these data is described in Section 3.3.2.

We use an extension of the Cormack-Jolly-Seber (CJS) Cormack (1964), Jolly (1965)
and Seber (1965) model to fit the capture-recapture data by adding sex, site and presence
data as covariates. The CJS model specifications can be found in Chapter 1, in Section 1.2.1.

Covariates are added through the use of logistic regression.

3.3.1 Capture-Recapture Data

For the capture-recapture we use the individual’s sex and the individual’s breeding site as
covariates. Both are categorical covariates with two levels that do not change with time.

These covariates can be added to the survival or to the capture probability using logistic
regression (Lebreton et al., 1992). Different combinations are possible, for example, survival
can depend only on the site covariate, or only on the sex covariate, or it can depend both
on site and sex. The capture probability can also adopt similar dependencies, and these
dependencies can be added in one or both parameters at the same time. Equation 3.1 shows
the logistic regression model to estimate survival with site and sex as covariates

𝜙𝑠𝑖𝑡𝑒, 𝑠𝑒𝑥 =
1

1+ 𝑒−(𝛼+𝛽𝑠𝑖𝑡𝑒𝑥1, 𝑖+𝛽𝑠𝑒𝑥𝑥2, 𝑖)
, (3.1)

where 𝑥1, 𝑖 is an indicator covariate which represents the site in which individual 𝑖 was
captured breeding, with 𝑥1, 𝑖 = 1 if individual 𝑖 breeds at Hornsund and 𝑥1, 𝑖 = 0 if it breeds
at Magdalenefjorden. Similarly, 𝑥2, 𝑖 is the indicator covariate that represents the sex of the
individual 𝑖, with 𝑥2, 𝑖 = 1 if individual 𝑖 is female and 𝑥2, 𝑖 = 0 if individual 𝑖 is male.

As the discrete covariates are known for each individual observed in the study, the
likelihood function follows immediately by specifying the parameter dependencies given in
the standard CJS likelihood. The data likelihood corresponds to the joint distribution of the
encounter histories and all covariate values.
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3.3.2 Female Nest Data

For the female nest data we use two types of covariates. The first is the individual’s breeding
site which does not change with time. The second utilises the presence data, which is a
time-varying covariate with missing values.

These covariates can be added to the survival or to the capture probability using logistic
regression. Different combinations are possible, for example, survival can depend only on
the site covariate, or only on presence covariate, or it can depend both on site and presence
covariates. The capture probability can also adopt site dependencies however, we do not
add presence covariates to this parameter. These dependencies can be added in one or both
parameters at the same time. Equation 3.2 shows the logistic model to estimate survival with
site and presence data as covariates

𝜙𝑠𝑖𝑡𝑒, 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 =
1

1+ 𝑒−(𝛼+𝛽𝑠𝑖𝑡𝑒𝑥1, 𝑖+𝛽𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒𝑥2, 𝑖, 𝑡 )
, (3.2)

where 𝑥1,𝑖 is the indicator covariate that represents the site in which individual 𝑖 was captured
breeding, with 𝑥1, 𝑖 = 1 if individual 𝑖 breeds at Hornsund and 𝑥1, 𝑖 = 0 if it breeds at Magdalene-
fjorden. The covariate 𝑥2, 𝑖, 𝑗 represents the number of presence days for female 𝑖 in year 𝑗 .
The presence data can be measured by the number of days that the chick took to fledge, the
number of days that the female stayed in the nest, or by the day number in which the female
was last seen in the nest.

The missing values for the covariate 𝑥2, 𝑖, 𝑗 , are imputed as explained in Section 3.2.2.Thus,
the likelihood expression for this model is equally obtained by multiplying the contributions
for each individual.

3.4 Simulation Study

We perform a simulation study to: 1. assess how the number of individuals marked affects the
precision of the parameter estimation when we include categorical and continuous covariates,
and 2. examine the accuracy of our imputation method for the female nest data. For each
simulation, 100 capture-recapture data sets were simulated, and we provide the average
parameter estimate, the average standard error and the mean squared error. Further details
are given in the following two sections, 3.4.1 and 3.4.2.
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3.4.1 Assessing the Effect of Sample Size on Parameter Estimation

The data described in this chapter, and particularly the female nest data, have some limitations
in terms of sample size. For this reason the aim of this simulation study is to validate the
accuracy of the results obtained depending on the number of individuals marked in each
sample and for different parameter values. We consider four capture-recapture studies with
𝑇 = 11 capture-recapture events, 10 first capture occasions in years 𝑇 = 1 . . . , 10, and 10
recapture occasions in years 𝑇 = 2 . . . , 11. We create four simulation sets, with either 100,
50, 10 or five individuals marked on each occasion, so that there are 1000, 500, 100 or 50
individuals in total. We examine the effect of adding categorical covariates with two levels
such as site or sex, and continuous covariates, such as presence, to the survival parameter 𝜙
and the capture parameter 𝑝.

The parameter values when kept constant are fixed at 0.80, 0.40 or 0.20, for both survival
and capture probabilities. The simulation study was motivated by the real data. Thus, in the
cases in which survival or capture probabilities have any dependency, we use the parameter
estimates obtained in Results section, 3.5. When we add categorical covariates, if the model
has one categorical covariate, we name the slope parameter 𝛽𝑠𝑖𝑡𝑒. If the model has two
categorical covariates we call the slopes 𝛽𝑠𝑖𝑡𝑒 and 𝛽𝑠𝑒𝑥 respectively. If we have continuous
covariates, we refer to the slope parameter as 𝛽𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒.

Table 3.9 shows the simulation results for a capture-recapture study with survival de-
pending on a categorical covariate with two levels, i.e.site, and constant capture probability
fixed at 0.40. Simulation results for different parameter values and different categorical and
continuous covariate combinations can be found in Appendix B.

In Table 3.9 we observe that the MSE increases as the sample size decreases. The estimate
of 𝛽𝑠𝑖𝑡𝑒 is biased when the sample size is five, but this also has a much larger average standard
error.

Further results in Appendix B show that in the cases in which the number of individuals
marked is equal to five or 10 per year of study, the bias in estimation can be large, particularly
when the survival or capture probabilities have more than one dependency, regardless of
the type. For this reason, if data are limited caution must be taken when interpreting the
results. Standard errors and evaluating standardised eigenvalues (see Section 1.2.4), can help
to validate the significance of our results.
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Table 3.9 Simulation study for 11-year of capture-recapture studies with survival as a function
of a categorical covariate with two levels and capture probability fixed at 0.40. The first
row specifies the model parameters and the values used to generate the simulated data. The
first column (size) specifies the number of individuals marked every year of the study. The
remaining columns contain the average parameter estimate (par est) and the average standard
error, given in parentheses, along with the mean square error (MSE).

𝜙 𝑝

𝛼 = 1.10 𝛽𝑠𝑖𝑡𝑒 = −1.35 𝑝 = 0.40

size par est MSE par est MSE par est MSE

100 1.11(0.09) 0.0090 -1.38(0.13) 0.0149 0.40(0.01) 0.0004
50 1.10(0.13) 0.0169 -1.37(0.18) 0.0308 0.40(0.03) 0.0011
10 1.07(0.29) 0.0833 -1.38(0.42) 0.1709 0.41(0.04) 0.0042
5 1.13(0.43) 0.1960 -1.83(42.68) 6.0043 0.40(0.06) 0.0080

3.4.2 Examining the Deterministic Imputation Method

In this simulation study we include continuous covariates in the survival parameter and
compare the results obtained with different levels of missing data. We provide two different
simulation studies, A and B. Simulation study A considers what happens when capture
histories are omitted due to no covariates being observed. In simulation study B we compare
the imputation method described in this chapter with an alternative imputation method.

We consider three capture-recapture studies with 𝑇 = 11 capture-recapture events, 10 first
capture occasions in years 𝑇 = 1 . . . , 10, and 10 recapture occasions in years 𝑇 = 2 . . . , 11. The
parameter estimates used are based on those obtained for the real data in Section 3.5.2. Thus,
survival is a function of the continuous covariate, with 𝛼 = 1.20 and 𝛽𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 = 0.25, and
capture probability is constant and fixed at 0.60.

We generate simulated covariate data so that it changes per individual and year of
study. To do so, for every individual 𝑖, we simulate the mean individual covariate value,
𝑚𝑖 ∼ 𝑁 (20,5). Using the individual covariate mean, we simulate a covariate value for each
individual for each year of study 𝑡, so 𝑥𝑖,𝑡 ∼ 𝑁 (𝑚𝑖, 1), where 𝑥𝑖,𝑡 is the yearly individual
continuous covariate value.

Simulation Study A

We create four simulation sets, with either 100, 50, or 10 individuals marked on each
occassion, so that there are 1000, 500, or 100 individuals in total. As in our female nest
data, the years in which covariate data were recorded are specified. Thus we do not simulate
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missing data at random. For each of these samples, we generate continuous covariate data
for five scenarios:

S1 covariate data were recorded in every year of the study for every individual even if the
individual was not captured;

S2 covariate data were recorded for each individual only if the individual was captured;
S3 covariate data were recorded only in 6 specific years of the capture-recapture study

(years 1, 2, 4, 6, 8 and 10) for those individuals that were captured;
S4 covariate data were recorded only in 4 specific years of the capture-recapture study

(years 2, 4, 6 and 8) for those individuals that were captured;
S5 covariate data were recorded only in 2 specific years or the capture-recapture study

(years 2 and 8) for those individuals that were captured.
We start by simulating data for the first scenario, when there is no missing covariate

information. For comparison with later results, we retain these data and remove data as
necessary to obtain scenarios S2-S5. In scenario S2 we remove the covariate data for years in
which an individual was not captured. However, no capture-recapture histories are removed,
as every individual has covariate data recorded for at least one year, the year in which they
were captured. To obtain scenarios S3-S5, when the covariate data are recorded only in
specific years and if the individuals are recaptured, we remove the presence data for the years
with no covariate data records from scenario S2. For example, to obtain S3, we take the
covariate data in S2, and remove all the covariate information for the years 3, 5, 7, and 9. In
scenarios S3-S5, the number of individuals considered differs from the initial total number
of individuals marked (given in S1 and S2). This is because if a particular individual was not
observed during at least one of the specified years in which the covariate data were recorded,
the capture-recapture history for this individual is removed, as no covariate data for this
individual were recorded. For the individuals for which covariate data were recorded in at
least one of the selected years, we use the same deterministic imputation method described
in Section 3.2.2, for the remaining years in which covariate data were missing.

Table 3.10 shows the simulation results for 11-year long capture-recapture studies, when
100 (rows 3-8), 50 (rows 9-13) or 10 (rows 14-18) were marked each year of the study, giving
a total sample size of 1000, 500 or 100 individuals, respectively. We do not use a sample size
of five individuals marked per year of capture-recapture study, as in the cases in which we
have many years of covariate data missing, we would run out of data.

Table 3.10 shows that as the amount of missing data increases, the parameter estimation
accuracy decreases. This is particularly true for the case in which the continuous covariate
was recorded only in two years. The MSE error increases as sample size decreases or as the
amount of missing data increases.
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With our imputation method the more missing covariate data we have, the more capture-
recapture histories we remove. Usually those individuals that are removed are those with less
captures. Thus removing these individuals would result in an increased survival probability.
In Table 3.10 we observe that as the number of individuals decreases for each of the three
sample sizes, the parameter estimates for survival, particularly the intercept, increase. For
scenarios S2-S5 there is bias in the estimation of the intercept.

Table 3.10 Simulation study A for 11-year long capture-recapture studies with survival as
a function of a continuous covariate and capture probability fixed at 0.60. The first row
specifies the model parameters and the values used to generate the simulated data. The first
column (Scenario) specifies the missing data scenario S1-S5. The second column specifies
the mean number of individuals marked throughout the study. The remaining columns
contain the average parameter estimate (par est) and the average standard error, given in
parentheses, along with the mean square error (MSE).

𝜙 𝑝

Scenario no. 𝛼 = 1.20 𝛽𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 = 0.25 𝑝 = 0.60

ind. par est MSE par est MSE par est MSE

S1 1000 1.20(0.05) 0.0027 0.25(0.05) 0.0022 0.60(0.01) 0.0002
S2 1000 1.20(0.05) 0.0027 0.25(0.05) 0.0022 0.60(0.01) 0.0002
S2 821 1.37(0.06) 0.0303 0.23(0.05) 0.0028 0.63(0.01) 0.0012
S4 621 1.38(0.06) 0.0367 0.23(0.06) 0.0034 0.64(0.01) 0.0016
S5 394 1.63(0.08) 0.1946 0.24(0.08) 0.0050 0.66(0.02) 0.0035

S1 500 1.19(0.07) 0.0043 0.25(0.07) 0.0060 0.60(0.02) 0.0003
S2 500 1.19(0.07) 0.0043 0.24(0.07) 0.0060 0.60(0.02) 0.0003
S3 412 1.35(0.08) 0.0278 0.23(0.08) 0.0064 0.63(0.02) 0.0014
S4 312 1.38(0.08) 0.0363 0.23(0.08) 0.0067 0.64(0.02) 0.0018
S5 198 1.64(0.11) 0.2019 0.26(0.11) 0.0103 0.65(0.02) 0.0035

S1 100 1.20(0.16) 0.0214 0.26(0.16) 0.0264 0.59(0.04) 0.0020
S2 100 1.20(0.16) 0.0214 0.26(0.16) 0.0263 0.59(0.04) 0.0021
S3 83 1.37(0.18) 0.0564 0.26(0.18) 0.0314 0.62(0.04) 0.0025
S4 62 1.38(0.19) 0.0603 0.24(0.19) 0.0301 0.64(0.05) 0.0032
S5 39 1.63(0.26) 0.2327 0.30(0.26) 0.0602 0.65(0.05) 0.0056

Simulation Study B

We create four simulation sets, with either 50, 10 or five individuals marked on each occasion,
so that there are 500, 100 or 50 individuals in total. For each of these samples, we generate
continuous covariate data for four scenarios:
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S1 covariate data were recorded in every year of the study for every individual even if the
individual was not captured;

S2 covariate data were recorded for each individual only if the individual was captured;
S3 15 % of the covariate data were not recorded and covariate data could only be recorded

if an individual was observed;
S4 30 % of the covariate data were not recorded and covariate data could only be recorded

if an individual was observed.
We compare two different imputation methods:

a For each individual missing covariates are imputed using the average of the covariate
data available for this individual.

b For each individual missing covariates are imputed using a normal distribution with
mean equal to the average of the covariate data available for the individual and variance
equal to 1. Note that for many individuals only one covariate value is available for the
capture history. If we were to use the standard deviation of the covariate data available
for each individual in these cases, the standard deviation would be equal to 0. For this
reason, we set the variance equal to 1, which turns out to be the same variance that
we used for the simulated data. The reader should note, that we choose a value of 1
because a higher value would just add more noise to the imputed data and as a result
the parameter estimates and the MSE would worsen.

Table 3.11 shows the simulation results for 11-year long capture-recapture studies with
survival as a function of a continuous covariate and capture probability fixed at 0.60. In
this simulation result we compare two imputation methods: method a, in which the missing
covariate data are imputed based on the mean individual covariate values available and method
b, in which each missing covariate value is imputed using a normal distribution. In Table
3.11 we can see that imputation method a (the one implemented for our data in this chapter)
performs similar in terms of bias to the imputation method b. However, imputation method
a results in lower MSEs for all three parameter estimates at all three sample sizes. This is
likely due to the extra variation introduced in method b. Moreover, unlike in simulation study
A, where capture histories were removed, we observe no systematic positive bias resulting
from the removal of those individuals with fewer captures.



3.4 Simulation Study 61

Table 3.11 Comparison between imputation methods: Simulation study B for 11-year long
capture-recapture studies with survival as a function of a continuous covariate and capture
probability fixed at 0.60. The first row specifies the model parameters and the values used to
generate the simulated data. The first column (Scenario) specifies the missing data scenario,
S1-S4, and the imputation method a or b. The second column specifies the mean number
of individuals marked throughout the study. The remaining columns contain the average
parameter estimate (par est) and the average standard error, given in parentheses, along with
the mean square error (MSE).

𝜙 𝑝

Scenario no. 𝛼 = 1.20 𝛽𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 = 0.25 𝑝 = 0.60

ind. par est MSE par est MSE par est MSE

S1 50 1.17(0.23) 0.0502 0.23(0.23) 0.0485 0.61(0.06) 0.0036

S2a 50 1.17(0.23) 0.0502 0.22(0.23) 0.0489 0.61(0.06) 0.0036
S2b 50 1.18(0.25) 0.0887 0.18(0.24) 0.1163 0.61(0.06) 0.0044
S3a 50 1.17(0.23) 0.0501 0.23(0.23) 0.0472 0.61(0.06) 0.0036
S3b 50 1.19(0.26) 0.0898 0.18(0.25) 0.0946 0.61(0.06) 0.0044
S4a 50 1.17(0.23) 0.0502 0.22(0.23) 0.0472 0.61(0.06) 0.0036
S4b 50 1.19(0.25) 0.2229 0.18(0.25) 0.7100 0.61(0.06) 0.0044
S1 100 1.20(0.16) 0.0331 0.24(0.16) 0.0304 0.60(0.04) 0.0013

S2a 100 1.19(0.16) 0.0331 0.24(0.16) 0.0295 0.60(0.04) 0.0013
S2b 100 1.24(0.18) 0.0609 0.20(0.12) 0.1123 0.60(0.04) 0.0018
S3a 100 1.19(0.16) 0.0331 0.25(0.16) 0.0296 0.60(0.04) 0.0013
S3b 100 1.25(0.18) 0.0579 0.19(0.12) 0.0932 0.60(0.04) 0.0018
S4a 100 1.19(0.18) 0.0331 0.24(0.17) 0.0297 0.60(0.04) 0.0013
S4b 100 1.24(0.17) 0.0587 0.19(0.12) 0.1004 0.60(0.04) 0.0018
S1 500 1.19(0.07) 0.0045 0.25(0.07) 0.0045 0.60(0.02) 0.0003

S2a 500 1.19(0.07) 0.0046 0.24(0.07) 0.0043 0.60(0.02) 0.0003
S2b 500 1.22(0.08) 0.0183 0.24(0.07) 0.0067 0.59(0.02) 0.0007
S3a 500 1.19(0.07) 0.0046 0.24(0.07) 0.0044 0.60(0.02) 0.0003
S3b 500 1.22(0.08) 0.0185 0.24(0.07) 0.0083 0.60(0.02) 0.0007
S4a 500 1.19(0.07) 0.0046 0.24(0.07) 0.0043 0.60(0.02) 0.0003
S4b 500 1.22(0.08) 0.0186 0.25(0.07) 0.098 0.60(0.02) 0.0007
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3.5 Results

In this section we present the results obtained from fitting the capture-recapture models
described above. In Section 3.5.1 we present the results obtained when fitting the CJS models
to all the individuals captured, we use covariates to study the effects of site and sex in survival.
In Section 3.5.2 we use the subsample of the data for which both capture-recapture and
presence information was registered for female birds.

3.5.1 Capture-Recapture Data

We analyse data for the 950 individuals that comprise the capture-recapture data. We fit all
possible models, which include all combinations in terms of site and sex covariates in the
survival parameter 𝜙 and the capture parameter 𝑝.

Table 3.12 shows a comparison of all the models fitted. The best models have a site
dependency in both parameters. Sex appears to be an important covariate as well for both the
survival and the capture probabilities.

Table 3.13 shows the parameter estimates for the three best models in terms of AIC.
For the best model, both survival and capture probabilities depend on the site covariate.
Additionally, for this model the capture probability depends on the sex covariate. The
corresponding survival probabilities are estimated as 0.74 (0.09) for Hornsund and 0.43
(0.11) for Magdalenefjorden. The capture probabilities are estimated as 0.30 (0.11) for
females in Hornsund and 0.36(0.11) for males in Hornsund; 0.65(0.27) for females in
Magdalenefjorden and 0.71 (0.27) for males in the same site. In the second best model, both
survival and capture probabilities depend on sex and site covariates. Survival probabilities are
estimated as 0.74 (0.09) for females in Hornsund and 0.75(0.09) for males in Hornsund; 0.42
(0.11) for females in Magdalenefjorden and 0.43(0.11) for males in the same site. Capture
probabilies are estimated as 0.30(0.11) and 0.36(0.11) for females and males in Hornsund
respectively; 0.66(0.27) for females in Magdalenefjorden and 0.71(0.27) in the same site. In
contrast, in the third best model both survival and capture probabilities only depend on the
site covariate. For this model the corresponding survival probabilities are estimated as 0.74
(0.09) in Hornsund and 0.43(0.11) in Magdalenefjorden. Capture probabilities are estimated
at 0.33(0.07) for Hornsund and 0.69(0.24) for Magdalenefjorden.

These results show that for the analysed data on the little auk the probability of survival
is much higher in Hornsund than in Magdalenefjorden, however the capture probability is
much lower in Hornsund. Additionally, capture probabilities are slightly higher for males
than females across both sites. These results are in line with the ecologist’s expectations.
The higher survival in Hornsund is justified by the overall better foraging conditions in this
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Table 3.12 Fitted models compared in terms of AIC for all data.

Model No. parameters Δ AIC

𝜙𝑠𝑖𝑡𝑒, 𝑝𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒 5 0.00
𝜙𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒, 𝑝𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒 6 1.70
𝜙𝑠𝑖𝑡𝑒, 𝑝𝑠𝑖𝑡𝑒 4 3.13
𝜙𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒, 𝑝𝑠𝑖𝑡𝑒 5 4.73
𝜙𝑠𝑖𝑡𝑒, 𝑝𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒, 𝑠𝑒𝑥∗𝑠𝑖𝑡𝑒 6 5.21
𝜙𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒, 𝑠𝑒𝑥∗𝑠𝑖𝑡𝑒, 𝑝𝑠𝑒𝑥,𝑠𝑖𝑡𝑒 7 6.24
𝜙𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒, 𝑠𝑒𝑥∗𝑠𝑖𝑡𝑒, 𝑝𝑠𝑖𝑡𝑒 6 6.58
𝜙𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒, 𝑠𝑒𝑥∗𝑠𝑖𝑡𝑒, 𝑝𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒, 𝑠𝑒𝑥,𝑠𝑖𝑡𝑒 8 6.99
𝜙𝑠𝑖𝑡𝑒, 𝑝𝑠𝑒𝑥 4 36.56
𝜙𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒, 𝑝𝑠𝑒𝑥 5 38.43
𝜙𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒, 𝑝 4 40.80
𝜙𝑠𝑖𝑡𝑒, 𝑝 3 40.99
𝜙𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒, 𝑠𝑒𝑥∗𝑠𝑖𝑡𝑒, 𝑝 5 41.17
𝜙𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒, 𝑠𝑒𝑥∗𝑠𝑖𝑡𝑒, 𝑝𝑠𝑒𝑥 6 42.31
𝜙𝑠𝑒𝑥,𝑠𝑖𝑡𝑒, 𝑝𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒, 𝑠𝑒𝑥∗𝑠𝑖𝑡𝑒 7 66.70
𝜙𝑠𝑒𝑥 , 𝑝𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒, 𝑠𝑒𝑥∗𝑠𝑖𝑡𝑒 6 88.50
𝜙, 𝑝𝑠𝑒𝑥 3 90.13
𝜙, 𝑝𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒 4 91.84
𝜙, 𝑝𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒, 𝑠𝑒𝑥∗𝑠𝑖𝑡𝑒 5 90.88
𝜙𝑠𝑒𝑥 , 𝑝𝑠𝑒𝑥 4 92.13
𝜙𝑠𝑒𝑥 , 𝑝𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒 5 93.84
𝜙, 𝑝 2 94.15
𝜙𝑠𝑒𝑥 , 𝑝 3 94.70
𝜙, 𝑝𝑠𝑖𝑡𝑒 3 95.74
𝜙𝑠𝑒𝑥 , 𝑝𝑠𝑖𝑡𝑒 4 96.32

site. Similarly, the interannual variation in the fieldwork efforts in Hornsund may result in
lower capture probabilities.
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Table 3.13 Parameter estimates with standard errors in parentheses obtained by the top three
models in terms of AIC value, as identified in Table 3.12.

𝜙𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒 𝑝𝑠𝑒𝑥, 𝑠𝑖𝑡𝑒

𝛼 𝛽𝑠𝑒𝑥 𝛽𝑠𝑖𝑡𝑒 𝛼 𝛽𝑠𝑒𝑥 𝛽𝑠𝑖𝑡𝑒

1.05(0.07) - -1.35(0.14) -0.86(0.10) 0.29(0.13) 1.49(0.17)
1.01(0.09) 0.07(0.12) -1.35(0.13) -0.84(0.11) 0.25(0.15) 1.49(0.27)
1.04(0.07) - -1.35(0.14) -0.70(0.08) - 1.52(0.27)

3.5.2 Female Nest Data

We fit all the possible combinations in which the survival probability depends on presence,
site or presence, and site covariates, and the capture probability depends on site or is constant.
We also fit the constant model, in which the survival and the capture probability do not have
any covariates.

Table 3.14 shows the best models in terms of AIC. Table 3.14 shows that all top models
include site as a covariate in the survival probability. Note that in Table 3.14 we have not
included any models that contained site dependencies for the capture probability, as these
models presented signs of near-parameter redundancy, having very large standard errors and
one or more zero standardised eigenvalue. The reason for this is that for Magdalenefjorden
the capture histories do not contain any zeroes occurring between the first capture and last
recapture, which means that the capture probability parameter cannot be estimated for this
site.

Table 3.15 shows the parameter estimates for the two top models in terms of AIC for the
female nest data of the capture-recapture data. For the first model the survival probability is
dependent on the site covariate and the capture probability is constant. The corresponding
survival probabilities are estimated as 0.92 (0.42) for female birds in Hornsund and 0.60 (0.25)
for females in Magdalenefjorden. The capture probability is estimated as 0.61 (0.05). These
results agree with those from fitting the largest capture-recapture data set with 950 individuals
in the fact that the survival probability is higher in Hornsund than in Magdalenefjorden.
However, the survival probabilities and the standard errors are much higher than those in
the capture-recapture model for the capture-recapture sample in which site is also used as a
covariate. Thus, caution should be taken if making ecological conclusions based on these
results. For the second best model survival probability is dependent on the site and fledge
covariates, and the capture probability is constant. The corresponding survival parameters
for this model can be seen in Figure 3.2.



3.5 Results 65

Table 3.14 Fitted models compared in terms of AIC for the female data. The subscripts refer
to site and presence covariates. The label fledge refers to the number of days that a chick
took to fledge; index refers to the index departure data; first0 to the first day the female was
not seen and last1 to the last day in which the female was recorded in the nest.

Model No. pars Δ AIC

𝜙𝑠𝑖𝑡𝑒, 𝑝 3 0.00
𝜙𝑠𝑖𝑡𝑒, 𝑓 𝑙𝑒𝑑𝑔𝑒, 𝑝 4 0.13
𝜙𝑠𝑖𝑡𝑒, 𝑖𝑛𝑑𝑒𝑥 , 𝑝 4 1.01
𝜙𝑠𝑖𝑡𝑒, 𝑓 𝑖𝑟𝑠𝑡0, 𝑝 4 1.13
𝜙𝑠𝑖𝑡𝑒, 𝑙𝑎𝑠𝑡1, 𝑝 4 1.23
𝜙, 𝑝 2 19.97
𝜙𝑖𝑛𝑑𝑒𝑥 , 𝑝 3 20.23
𝜙𝑙𝑎𝑠𝑡1, 𝑝 3 20.26
𝜙 𝑓 𝑙𝑒𝑑𝑔𝑒, 𝑝 3 20.49
𝜙 𝑓 𝑖𝑟𝑠𝑡0, 𝑝 3 20.63

Table 3.15 Parameter estimates with standard errors in parentheses obtained by the top two
models in terms of AIC value, as identified in Table 3.14.

𝛼 𝛽𝑠𝑖𝑡𝑒 𝛽 𝑓 𝑙𝑒𝑑𝑔𝑒 𝑝

2.39(0.43) -1.98(0.49) - 0.60(0.05)
2.40(0.44) -2.04 (0.50) 0.32(0.24) 0.60(0.05)
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Fig. 3.2 Estimated survival probability with fledged chick as a covariate for each site. The
dashed lines represent the 95 % confidence interval.

3.6 Discussion

In this chapter we have analysed capture-recapture data in the presence of categorical and
continuous covariates for the little auk. This species is known for the female parent leaving the
brood earlier than its male counterpart. The aim of this study was to examine if the survival
of the little auk was affected by its sex and/or by the site in which it breeds. Additionally we
were interested in understanding if the length of stay of the female birds in the nest during
breeding affects their survival.

To answer these questions we analysed two capture-recapture data sets for birds breeding
in two sites with different environmental conditions. The first capture-recapture data set,
which we refer to as the capture-recapture data set, contains 950 individuals for which
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information about their sex and the site in which they were breeding was available. This data
set was used to answer questions about the effects of sex and site on survival. The second
data set, which we refer to as the female nest data, contains 56 female birds for which, in
addition to site (and sex), information was available on the length of stay while breeding.

Extensions to the Cormack-Jolly-Seber model were used to analyse the capture-recapture
data by adding covariates through the use of logistic regression. We add two types of
covariates, categorical (sex, site), and continuous covariates (female presence data). For the
former model, adding covariates is straightforward as the covariates are constant throughout
all the years of study and are known regardless of encounter. For the latter, challenges
regarding the presence of missing values in the years in which the information was not
observed arise.

To validate our models we performed a simulation study, and we found that the models
perform better when used to analyse large data sets. Moreover, results also improve when
the survival and capture probabilities are higher. This is true, specially in the cases in which
several dependencies are added to either one or both parameters. Additionally, we perform
a simulation study to examine the accuracy of our deterministic imputation method. We
find that as sample size decreases, the MSE increases, and that survival parameters get
overestimated in the presence of abundant missing data. This bias is particularly noticeable
in the last two rows of Table 3.10, in which the number of individuals are 62 and 39.

From analysing the capture-recapture data we find that, as expected by the field experts,
survival is higher in Hornsund than in Magdalenefjorden, and that the capture probabilities
are higher in Magdalenefjorden than in Hornsund. The difference in survival amongst
sites might be justified by the difference in environmental conditions between the two sites
(Jakubas et al., 2011). Birds breeding in Magdalenefjorden are exposed to less favourable
environmental conditions than those breeding in Hornsund, and this could be one of the
reasons impacting their survival.

Moreover, no differences in the survival probabilities arise between sexes. Previous
studies have shown that the female little auk’s body conditions during the chick rearing
period are similar to those of males (Wojczulanis-Jakubas et al., 2012, 2014, 2015). This
could explain the similarities in survival between both sexes. If the female little auk does
not deteriorate from breeding more than its male counterpart does, similar survival for both
parents appears to be a reasonable result.

The results from analysing the female nest data set also show differences in survival
between sites. Moreover, the models show that survival increases as the length of stay of the
mother in the brood increases. However the standard errors for these parameters are large, so
caution should be taken when interpreting these results.
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Inferences about survival in terms of the sex and site can be made from the capture-
recapture data set. In terms of the female length of stay, ecologists are suggesting that a
longer stay could be explained by the female’s good body conditions. Thus, the better body
conditions, the longer they would stay in the brood, and their survival would be higher in the
following year. However, to make strong conclusions about female survival and her length of
stay in the brood, larger data sets would be needed.

There are now many methods for fitting capture-recapture and more generally mark-
recapture-recovery data in the presence of continuous covariates. There are several alter-
natives which range from imputing data (see for example Little and Rubin, 2002), to data
augmentation methods. We refer the reader to Bonner et al. (2010), Langrock and King
(2013), and Worthington et al. (2015) where comparisons of existing methods can be found.

Bonner et al. (2010) examine three methods to incorporate time varying, individual
covariates of the survival probabilities into the analysis of data from mark-recapture-recovery
experiments. These methods are: deterministic imputation by linear interpolation between
an individual’s first and last capture and by last observation carried forward after the last
recapture; the Bayesian imputation approach described in Bonner and Schwarz (2006), and
King et al. (2008a); and the trinomial model described in Catchpole et al. (2008).

The simplest method for analysing data with missing covariates is deterministic imputa-
tion. This consists of generating and imputing values for the missing covariates based on
some deterministic algorithm, and analysing the data as if these values were observed. For
several strategies on imputing missing values in longitudinal data we refer the reader to Little
and Rubin (2002).

Bonner and Schwarz (2006) and King et al. (2008a) propose a Bayesian approach in
which missing values are treated as auxiliary variables. These methods perform well, even if
survival and capture probabilities are low, but only if a reasonable model for the covariate is
available.

Using a conditional likelihood approach for those covariates observed, the trinomial
model results in a simple closed likelihood expression. This process is easy to implement,
and computationally fast. However, in this process individuals for which there are missing
covariate values are removed (Catchpole et al., 2008). Which means that, when simulation
studies have been performed the number of individuals marked in each year of the study was
much bigger than the number of individuals marked yearly in our data. For example, in the
simulation study of Catchpole et al. (2008) 100 animals were marked in each year of study.
Moreover, this model is not recommended when capture probabilities are low (Bonner et al.,
2010).
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Langrock and King (2013) provide a novel HMM-based approach based on a fine
discretisation of the space of covariate values as an alternative method for dealing with
missing covariates and through a simulation study they compare results to the trinomial model
developed by Catchpole et al. (2008). The simulation study shows that if the modelling of
the covariate process is done adequately, and even if there is some degree of misspecification,
this approach leads to more precise results than the trinomial method.

Worthington et al. (2015) propose a two-step multiple imputation approach to obtain esti-
mates of the demographic parameters in mark-recapture-recovery studies. In their simulation
study they show that this two-step approach performs well when covariate values are always
observed (or at least observed once for each individual). However, they warn that if a signifi-
cant proportion of individuals are observed with no recorded covariate values, demographic
estimates could be biased. In their simulation study they generate large capture-recapture
samples, with 10 capture-recapture events and 100 individuals marked during each capture
occasion, which results in a sample of 900 individuals.

All the methods described in these papers consider missing covariate data at random, and
in general the sample sizes used in the simulation studies are large.

To address the problem of missing data in specific years of the capture-recapture study
for the female nest data set, we used a deterministic imputing approach. We used a more
simplistic approach as the existing data were very limited and the covariate data were not
missing at random. However, we believe that for larger data sets with lower proportions of
missing data, and if these data were missing at random, the analysis could benefit from using
the aforementioned methodologies.
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Chapter 4

State-Space Models for Population
Census Data

4.1 Introduction

In this chapter we review and implement different model fitting methodologies for discrete
state-space models (SSMs). The motivation behind this work is closely related to the
development of the spatially-explicit integrated population (SE-IPMs) presented in Chapter
5.

SSMs have been widely used to obtain vital rates, such as survival and productivity, from
census data. A popular approach for fitting state-space models for bird census data is the use
of Poisson, or binomial-Poisson non-stationary processes, or appropriate approximations to
normal processes, (see for example, Besbeas et al., 2002, King et al., 2008b, and Abadi et al.,
2010).

Rather than one single nation-wide time-series of counts, spatial census data consist
of multiple time-series associated to specific locations. These data can be particularly
challenging to model because of the very small counts at some locations. We find that if
these discrete non-stationary time processes are used to model census data that include small
counts, the Poisson parameter is systematically negatively biased. To show this, we use a
single-state state-space model which describes the population dynamics of starlings (Sturnus
vulgaris), the illustrative species that we use in Chapter 5. The model is described in Section
4.2.

We consider using the Kalman filter (KF) and hidden Markov models (HMMs) to fit the
state-space models. The KF is an algorithm allowing exact inference in a linear dynamical
system. In the KF, the state space of the latent variables is continuous and all latent and
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observed variables have a Gaussian distribution—usually a multivariate Gaussian distribution
(Faragher, 2012). The KF has been successfully used to fit the state-space model of integrated
population models (IPMs) that contained time-series data with large counts. However, due
to the normality assumption required for the implementation of the KF, in the presence of
time-series with small counts alternative methods that do not require normal approximations
are needed. The KF is described in Section 4.3.

HMMs can be used as an alternative method to the KF to fit the state-space model. HMMs
are a type of dependent mixture model that can be used to infer unobservable states (see for
example Zucchini et al., 2016). Besbeas and Morgan (2019) show how HMMs can be used
to fit state-space models. The HMM method is described in Section 4.4.

As explained in Section 1.2.2, the SSM is parameter redundant. In Section 1.2.2 we
described that to solve this issue, Besbeas et al. (2002) combined the SSM with a ring-
recovery model into an IPM. Thus, to examine the suitability of the two methods proposed
here to fit the SMM, we use an IPM that combines ring-recovery and census data. We
describe the two joint likelihoods—one that uses the KF and one that uses HMMs to fit the
SSM in Section 4.5.

In Section 4.6.1 we perform a simulation study where we compare the suitability of KF
and HMMs to fit SSMs containing census data under different circumstances. We first use
IPMs, and find that if the counts in the time-series census data are small, the productivity
parameter, 𝜌, is systematically negatively biased. We review the literature and we find that
this systematic underestimation was also shown in Abadi et al. (2010), although this was not
reported as larger data sets were used and the bias was small. Moreover, we highlight that
Brooks et al. (2004) already pointed out that although the normal approximation of the KF
was robust, in the presence of observations below 10, this started to break down.

To understand the reason for this bias, in Section 4.6.2 we perform a second simulation
study in which we use a non-stationary Poisson process to fit time-series count data. We find
that due to the skewness of the distribution, and to the Markov property, in the presence of
small valued time-series data a negative bias appears in the estimation of the Poisson mean.

Additionally, in Section 4.6.4 we provide a third simulation study in which we examine
the effect of jointly analysing several census data sets that vary in average count size. We
find that the bias issue in the estimation of the productivity parameter 𝜌 is mitigated with the
addition of multiple time-series data sets.
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4.2 Single-state State-Space Model for Census Data

In this section we describe the single-state SSM used to model starling populations. We
assume that breeding starts at age 1, that only breeding birds are censused, that there is no
sex information, and that there is no migration.

Suppose 𝑁𝑡 is the number of individuals in the population at time 𝑡. The number of
observed individuals in year 𝑡 is 𝑦𝑡 , the time-invariant, i.e. constant survival probabilities are
𝜙𝑎 and 𝜙1 for adult and first-year birds respectively. The parameter 𝜌 represents the mean
number of young per individual recruited into the adult population. The state process is given
by

𝑁𝑡+1 |𝑁𝑡 ∼ Bin(𝑁𝑡 , 𝜙𝑎) +Pois(𝑁𝑡𝜙1𝜌𝑡). (4.1)

We define the observation process to follow a Poisson distribution, with

𝑦𝑡 |𝑁𝑡 ∼ Pois(𝑁𝑡). (4.2)

The SSM presented in equations 4.1 and 4.2 is graphically reproduced in Figure 4.1. This
SSM has a single-state as starlings are able to breed from their first year of life. Thus, in
the underlying population process, the age differences are only accounted for in the survival
parameters, 𝜙1 and 𝜙𝑎.

𝑦𝑡−1 𝑦𝑡 𝑦𝑡+1

𝑁𝑡−1 𝑁𝑡 𝑁𝑡+1

𝜙𝑎

𝜙1𝜌

𝜙𝑎

𝜙1𝜌

Fig. 4.1 Diagram of the single-state SSM representing the life cycle of the population, and
the relationship between the underlying population size 𝑁𝑡 and the number of individuals
observed at time 𝑦, 𝑦𝑡 .

4.3 Kalman Filter

The Kalman filter is a recursive algorithm developed by Kalman (1960), permitting the exact
inference of the hidden or latent state of a linear dynamic system affected by Gaussian white
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noise. To do so, it uses measurements (observations) that are linear functions of the system
state but corrupted by additive Gaussian white noise (Grewal and Andrews, 2001).

The KF is widely applied in complex dynamical systems as it provides a means for
inferring the missing information from indirect and noisy measurements. In this section, we
refer to the original KF formulation (Kalman, 1960) where the measurements occur and the
state is estimated at discrete points in time.

4.3.1 General Setting—The Discrete Kalman Filter

We first introduce the KF in a general setting, following Bishop and Welch (2001).
The KF model assumes that the state of a system at a time 𝑡 + 1 evolved from the prior

state at time 𝑡 according to the state process,

N𝑡+1 |N𝑡 = G𝑡N𝑡 +B𝑡u𝑡 + 𝝐 𝑡 , (4.3)

where N𝑡 is the state vector containing the terms of interest for the system (e.g. the underlying
population size) at time 𝑡, G𝑡 is the state transition matrix (matrix containing the demographic
parameters, e.g. survival, reproduction rates), B𝑡 is the control input matrix which applies
the effect of each control parameter on the optional control input vector u𝑡 . The vector 𝝐 𝑡
contains the process noise terms for each parameter in the state vector. The process noise
is assumed to be drawn from a zero mean multivariate normal distribution with covariance
matrix Q𝑡 . The control terms are optional, and we do not use them when applying the KF to
our models, for this reason, we simplify equation (4.3) to

N𝑡+1 |N𝑡 = G𝑡N𝑡 + 𝝐 𝑡 . (4.4)

Let us assume that the signal N𝑡 is not directly measured, but instead we have some
measurements given by the linear observation equation,

y𝑡 = Z𝑡N𝑡 +𝜼𝑡 , (4.5)

where y𝑡 is a vector containing measurements at time 𝑡, Z𝑡 is the transformation matrix
that maps the state vector parameters into the measurement domain, and 𝜼𝑡 is the vector
containing the measurement noise terms for each parameter in the measurement vector. The
measurement noise is assumed to be drawn from a zero mean multivariate normal distribution
with covariance matrix H𝑡 .
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The initial state vector, at time 𝑡 = 0, has a normal distribution with mean 𝑵̂0 = 𝐸 (𝑵0)
and covariance 𝑷0 = cov(𝑵0). The two error terms, 𝝐 𝑡 and 𝜼𝑡 are assumed to be mutually
independent from each other and mutually independent of 𝑵0.

We can think of the KF as a two step feedback process: 1. the filter estimates the
process state at some time; 2. feedback is obtained in the form of (noisy) measurements.
Thus, the equations needed to build the KF algorithm can be categorised in two groups:
time update equations, or prediction equations, and measurement update equations, or
correction equations. The former take the current state and its error covariance and project
them forward in time so that a priori estimates for the next time step can be obtained. The
latter provides feedback, in the form of noisy measurements, to these "a priori estimates" so
that improved a posteriori estimates can be obtained. This two step process is then iterated.

Time Update Equations

The time update equations are
𝑵̂

−
𝑡+1 = G𝑡 𝑵̂𝑡 , (4.6)

𝑷̂
−
𝑡+1 = G𝑡𝑷𝑡G′

𝑡 +Q𝑡 , (4.7)

where, 𝑵̂𝑡 is the posterior state estimate at time 𝑡, 𝑵̂
−
𝑡+1 is the prior estimate, i.e. the estimate

before the measurement update correction at time 𝑡 + 1, and 𝑷̂
−
𝑡+1 is the prior error covariance

at time 𝑡 + 1. We use these prior values in the measurement update equations.

Measurement Update Equations

The measurement update equations are

𝑲𝑡 = 𝑷−
𝑡 Z′

𝑡 (Z𝑡𝑷−
𝑡 Z′

𝑡 +𝑯𝑡)−1, (4.8)

where 𝑲𝑡 is the KF gain at time 𝑡.

𝑵̂𝑡 = 𝑵̂
−
𝑡 +𝑲𝑡 (y𝑡 −Z𝑡 𝑵̂

−
𝑡 ) (4.9)

𝑷𝑡 = (𝑰−𝑲𝑡Z𝑡)𝑷−
𝑡 , (4.10)

In the measurement update, the first step is to compute the KF gain, 𝑲𝑡 , equation (4.8).
The next step is to measure y𝑡 so that we can obtain an a posteriori state estimate, 𝑵̂𝑡 ,
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equation (4.9). Finally, in the last step we obtain an a posteriori error covariance estimate,
equation (4.10).

Figure 4.2 shows a graphical representation of the steps of the KF algorithm.

Time Update
("Prediction")

1.Project the state
𝑵̂

−
𝑡+1 = G𝑡 𝑵̂𝑡

2. Project the error covariance
𝑷̂
−
𝑡+1 = G𝑡𝑷𝑡G′

𝑡 +Q𝑡

Measurement Update
("Correction")

1. Compute the Kalman Gain
𝑲𝑡 = 𝑷−

𝑡 Z′
𝑡 (Z𝑡𝑷−

𝑡 Z′
𝑡 +𝑯𝑡)−1

2. Update the estimate with measurements
𝑵̂𝑡 = 𝑵̂

−
𝑡 +𝑲𝑡 (y𝑡 −Z𝑡 𝑵̂

−
𝑡 )

3. Update the error covariance
𝑷𝑡 = (𝑰−𝑲𝑡Z𝑡)𝑷−

𝑡

𝑵̂0 and 𝑷0

Initial estimates

Fig. 4.2 Graphical representation of the KF algorithm.

The log-likelihood function for the state-space model can be written as

log{𝐿𝐾𝐹 (Ψ)} = 𝐶 − 1

2

𝑇∑
𝑡=1

[log | (Z𝑡𝑷−
𝑡 Z′

𝑡) | + (y𝑡 −Z𝑡 𝑵̂
−
𝑡 )𝑇 (Z𝑡𝑷−

𝑡 Z′
𝑡)−1(y𝑡 −Z𝑡 𝑵̂

−
𝑡 )], (4.11)

where 𝐶 is a constant and Ψ represents the unknown parameters (see for example Besbeas
and Morgan, 2012).

For more details on the computational and probabilistic origins of the filter, as well as for
information on how to apply the KF to non-linear systems, we refer the reader to Chapter 4
of Bishop and Welch (2001).

4.3.2 Application of the Kalman Filter to the Census Data

We follow Besbeas and Morgan (2012) and provide the normal approximations required to
apply the KF to the SSM presented in Section 4.2. The expectation and the variance of 𝑁𝑡 is
just the sum of the expectations and the variances respectively of the binomial and Poisson
distributions. The state process is given by the normal approximation,

𝑁𝑡+1 |𝑁𝑡 = (𝜙𝑎 +𝜙1𝜌)𝑁𝑡 + 𝜖𝑡 , (4.12)
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where 𝜖𝑡 ∼ N(0,𝜎2𝜖𝑡 ), and 𝜎2𝜖𝑡 = [𝜙𝑎 (1−𝜙𝑎) +𝜙1𝜌]𝑁𝑡−1, the sum of the respective variances
of the binomial and Poisson distributions.

The observation equation is given by

𝑦𝑡 |𝑁𝑡 = 𝑁𝑡 +𝜂𝑡 , (4.13)

where 𝜂𝑡 ∼ N(0,𝜎2𝜂 ) for all 𝑡.
The reader should note that the observation equation (4.13) is not the strict analogue of

equation 4.2. If it were, then the mean and the variance of the normal distribution would be
the same, as in equation 4.2 the observation process follows a Poisson distribution. Besbeas
and Morgan (2019) described the form of the observation equation for the KF that would
equate to that in equation 4.2. In this 𝑦𝑡 |𝑁𝑡 ≈ N(𝑁̂𝑡 , 𝑁̂−

𝑡 ), where 𝑁̂−
𝑡 is the one-step-ahead

prediction from the KF. However, traditionally in many studies 𝜎2𝜂 has been estimated. Using
simulation, for a stable population we compare both approaches for three different population
sizes in Section C.1. We find no differences in the parameter estimate results obtained when
using either approach. In this thesis we estimate 𝜎2𝜂 .

There are several methods for initialising the KF, such as the approximate diffuse initiali-
sation (AD). For this particular method, arbitrary decisions on the starting parameters that
determine the starting variance-covariance matrix, or subjective criteria on the number of
initial terms in the time series to initialise the KF are needed. The stable age initialisation
(SA) method proposed in Besbeas and Morgan (2012) and Besbeas et al. (2009) incorporates
information from the transition Leslie matrix. Then initialisation of the KF algorithm is based
on the asymptotic growth rate of the population. We implement this initialisation method in
our analyses.

We refer to the KF’s likelihood as

𝐿𝐾𝐹 (𝜙1, 𝜙𝑎, 𝜌,𝜎𝜂),

and the log-likelihood can be maximised following equation (4.11).

4.4 Hidden Markov Models

HMMs are probabilistic models in which it is assumed that the distribution that generates
an observation depends on the state of a latent underlying and unobserved Markov process
(Zucchini et al., 2016).

In a typical Markov model, the system can be directly observed, thus the only parameters
in the model are the transition probabilities between states. However, in a hidden Markov
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model, the states are not directly observed—instead some variables that are influenced by the
states are observed.

In this section we provide a general setting to fitting one dimensional state-space models
for discrete time-series data using HMMs.

4.4.1 General Setting—The Discrete Hidden Markov Model

We first introduce HMMs in a general setting in which the observed values are discrete,
following Zucchini et al. (2016).

A HMM consists of two parts: an unobserved parameter process {𝐶𝑡 : 𝑡 = 1, 2, . . . }, and
a state-dependent process {𝑌𝑡 : 𝑡 = 1, 2, . . . }. The unobserved (latent) process satisfies the
Markov property, given in equation (4.14), and the state-dependent process, given in equation
(4.15), is conditional on the current state of 𝐶𝑡 . Thus, the observation 𝑌𝑡 does not depend on
previous observations 𝑌𝑡−1. A HMM is a particular dependent mixture with the following
form,

Pr(𝐶𝑡 |C(𝑡−1)) = Pr(𝐶𝑡 |𝐶𝑡−1), 𝑡 = 2,3 . . . (4.14)

Pr(𝑌𝑡 |Y(𝑡−1) ,C(𝑡)) = Pr(𝑌𝑡 |𝐶𝑡), 𝑡 ∈ N, (4.15)

where C(𝑡) , represents the underlying latent process, and Y(𝑡) represents the observation from
time 1 to time 𝑡.

If the Markov chain is in state 𝑖 at time 𝑡, the probability mass function of 𝑌𝑡 conditional
on state 𝑖 is

𝑝𝑖 (𝑦) = Pr(𝑌𝑡 = 𝑦 |𝐶𝑡 = 𝑖),

for 𝑖 = 1, 2 . . . ,𝑚, where 𝑚 is the number of states of the Markov chain.
The unconditional probability mass function of 𝑌𝑡 is

Pr(𝑌𝑡 = 𝑦) =
𝑚∑
𝑖=1

Pr(𝐶𝑡 = 𝑖)Pr(𝑌𝑡 = 𝑦 |𝐶𝑡 = 𝑖) =
𝑚∑
𝑖=1

𝑢𝑖 (𝑡)𝑝𝑖 (𝑦), (4.16)

where, 𝑢𝑖 (𝑡) = Pr(𝐶𝑡 = 𝑖) for 𝑖 = 1, . . . ,𝑇 .
We can rewrite this probability in matrix form
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Pr (𝑌𝑡 = 𝑦) = (𝑢1(𝑡), . . . , 𝑢𝑚 (𝑡))
©­­­«
𝑝1(𝑦) 0

. . .

0 𝑝𝑚 (𝑦)

ª®®®¬
©­­­«
1
...

1

ª®®®¬ = u(𝑡)P(𝑦)1⊤,

where P is the diagonal matrix with 𝑖th diagonal element 𝑝𝑖 (𝑥), 𝑥⊤ represents the transpose
of 𝑥, and where 1 is a vector of ones.

The transition between states is represented by the square matrix Γ, which has row sums
equal to 1. The transition probabilities are denoted by

𝛾𝑖, 𝑗 (𝑡) = Pr(𝐶𝑡+1 = 𝑗 |𝐶𝑡 = 𝑖),

and thus,

Γ =

©­­­«
𝛾11 · · · 𝛾1𝑚
...

. . .
...

𝛾𝑚1 · · · 𝛾𝑚𝑚

ª®®®¬ .
Zucchini et al. (2016) provide the general likelihood expression for an observation

sequence 𝑦1, 𝑦2, . . . , 𝑦𝑇 generated by a HMM,

𝐿𝐻𝑀𝑀𝑇 = 𝜹P(𝑦1)𝚪P(𝑦2) . . .𝚪P(𝑦𝑇 )1⊤

= 𝜹P(𝑦1)
𝑛∏
𝑖=2

𝚪P(𝑦𝑖)1⊤.
(4.17)

where 𝜹 is a vector of size m that represents the initial distribution (that for 𝐶1) for the Markov
chain.

We could calculate the likelihood recursively, starting at

𝜶1 = 𝜹P(𝑦1),

then continuing with
𝜶𝑡 = 𝜶𝑡−1𝚪P(𝑦𝑡), for 𝑖 = 2,3, . . . ,𝑇 .

Then
𝐿𝐻𝑀𝑀 = 𝜶𝑻1

⊤.

However, 𝜶𝑡 becomes progressively smaller as 𝑡 increases, since 𝜶𝑡 is the product of
discrete probabilities. As a result, the likelihood approaches 0 exponentially fast with
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probability 1. We refer to this event as underflow. Zucchini et al. (2016) provide a scaling
mechanism to solve the underflow issue. We give an overview of the solution below, further
details can be found in Chapter 3 of Zucchini et al. (2016). Let 𝑺𝑡 be the scaling vector for
𝑡 = 0, 1, . . . ,𝑇 ,

𝑺𝑡 = 𝜶𝑡/𝑤𝑡 ,

with
𝑤𝑡 =

∑
𝑖

𝛼𝑡 (𝑖) = 𝜶𝑡1
⊤.

Thus, if 𝑤0 = 𝜶01
⊤ = 𝜹1⊤ = 1, and 𝑺0 = 𝜹,

𝑤𝑡𝑺𝑡 = 𝑤𝑡−1𝑺𝑡−1ΓP(𝑦𝑡)
𝐿𝐻𝑀𝑀 = 𝜶𝑇 1

⊤ = 𝑤𝑇
(
𝑺𝑇 1

⊤)
= 𝑤𝑇 .

(4.18)

Thus, 𝐿𝐻𝑀𝑀 =𝑤𝑇 =
∏𝑇
𝑡=1 (𝑤𝑡/𝑤𝑡−1), and 𝑤𝑡 =𝑤𝑡−1 (𝑺𝑡−1ΓP(𝑦𝑡)1⊤) follows from equation

(4.18). Following this, the log-likelihood is given by,

log{𝐿𝐻𝑀𝑀 (Ψ)} =
𝑇∑
𝑡=1

log (𝑤𝑡/𝑤𝑡−1) =
𝑇∑
𝑡=1

log
(
𝑺𝑡−1ΓP(𝑦𝑡)1⊤

)
, (4.19)

where Ψ is the vector of unknown parameters that we wish to estimate.

4.4.2 Application of the Hidden Markov Model to the Census Data

In Section 1.2.3 we described that Besbeas and Morgan (2019) developed the methodology
to use HMMs to fit discrete SSMs within the IPM context. We apply the methods described
in 1.2.3 to implement the HMMs describe in 4.4.1.

The hidden Markov model for the state-space model described in Section 4.2, has a state
process given by

𝑁𝑡+1 |𝑁𝑡 ∼ Bin(𝑁𝑡 , 𝜙𝑎) +Pois(𝜙1𝜌𝑁𝑡),

and an observation process given by,

𝑌𝑡 ∼ Pois(𝑁𝑡).

The random variable 𝑁𝑡+1 is given by a binomial-Poisson convolution.

𝑋1 ∼ Bin(𝑁𝑡 , 𝜙𝑎), 𝑁𝑡 ⩾ 0, 0 < 𝜙𝑎 < 1,
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independently of 𝑁𝑡 ,
𝑋2 ∼ Pois(𝜙1𝜌𝑁𝑡), 𝜙1𝜌 ⩾ 0.

The probability mass function of 𝑁𝑡+1 |𝑁𝑡 is given by

Pr(𝑁𝑡+1 = 𝑧 |𝑁𝑡) =
𝑚𝑖𝑛(𝑁𝑡 ,𝑧)∑
𝑘=0

Pr(𝑋1 = 𝑘) ×Pr(𝑋2 = 𝑧− 𝑘) = (4.20)

=

𝑚𝑖𝑛(𝑁𝑡 ,𝑧)∑
𝑘=0

(
𝑁𝑡

𝑘

)
𝜙𝑘𝑎 (1−𝜙𝑎) (𝑁𝑡−𝑘) ×

𝑒−𝜙1𝜌𝑁𝑡 (𝜙1𝜌𝑁𝑡) (𝑧−𝑘)
(𝑧− 𝑘)! . (4.21)

Let 𝑁 be a vector of length 𝑚 + 1 describing the possible values of the transition equa-
tion, i.e., 𝑁 = (0, 1, . . . ,𝑚) represents the possible underlying number of individuals in the
population. We consider every single individual in the population, from 0 individuals to
a previously set upper bound 𝑚 = 𝑁𝑚𝑎𝑥 , where 𝑁𝑚𝑎𝑥 is the highest considered number of
individuals in the population (for computational reasons—in the theoretical model we do
not require an upper bound). We specify 𝑁𝑚𝑎𝑥 = 𝑌𝑚𝑎𝑥 + (𝑌𝑚𝑎𝑥 −𝑌𝑚𝑖𝑛), where 𝑌𝑚𝑎𝑥 and 𝑌𝑚𝑖𝑛
are the highest and lowest number of individuals observed respectively in the observation
vector. For modelling purposes we shall assume that 𝑁𝑡 ≤ 𝑁𝑚𝑎𝑥 for every 𝑡. In such a way,
we consider every "underlying" possible number of individuals to be a state of the HHM.

Let Γ be the (𝑚 + 1) × (𝑚 + 1) transition matrix which represents the probabilities of the
state process of the SSM, with Γ𝑖, 𝑗 = 𝑃(𝑁 𝑗 |𝑁𝑖) and each entry is the result of the binomial-
Poisson convolution given in equation (4.20). Similarly, the matrix form of the transition
matrix is given by,

Γ =

©­­­«
𝑃(𝑁0 |𝑁0) · · · 𝑃(𝑁𝑚𝑎𝑥 |𝑁0)

...
. . .

...

𝑃(𝑁0 |𝑁𝑚𝑎𝑥) · · · 𝑃(𝑁𝑚𝑎𝑥 |𝑁𝑚𝑎𝑥)

ª®®®¬ .
The observation matrix Pr (𝑌𝑡 = 𝑦) is the (𝑚 + 1) diagonal matrix with entry (𝑖, 𝑖) given by
𝑃(𝑌𝑡 |𝑁𝑖) ∼ Pois(𝑁𝑖), with matrix form given by,

Pr (𝑌𝑡 = 𝑦) =
©­­­«
𝑃(𝑌𝑡 |𝑁0) 0

. . .

0 𝑃(𝑌𝑡 |𝑁𝑚𝑎𝑥)

ª®®®¬
Finally, 𝛿 is a vector of length (𝑚 + 1) representing the initial distribution of the SSM with
𝛿𝑖 = 𝑃(𝑌 = 𝑁𝑖) ∼ Pois(𝜇), where 𝜇 is a parameter to be estimated which represents the mean
of the initial state.
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We refer to the HMM’s likelihood as

𝐿𝐻𝑀𝑀 (𝜙1, 𝜙𝑎, 𝜌, 𝜇),

and the log-likelihood can be maximised following equation (4.19).

4.5 Integrated Population Model

As mentioned in Section 1.2.2, the SSM on its own is parameter redundant (see for example
Cole and McCrea, 2016). Besbeas et al. (2002), approached this issue by fitting this model
jointly with a ring-recovery model. In order to compare the suitability of the two different
algorithms considered in this thesis—the KF, and HMMs, we will examine the parameter
estimates obtained from an IPM in which we combine census and ring-recovery data. We
consider two different joint likelihood functions for the IPM: one that uses a KF to fit the
census data and one that uses a HMM to fit the state-space model. We refer to them as:

𝐿 𝐼𝑃𝑀,𝐾𝐹 = 𝐿𝑅𝑅 (𝜙1, 𝜙𝑎,𝜆) × 𝐿𝐾𝐹 (𝜌, 𝜙1, 𝜙𝑎,𝜎𝜂),

𝐿 𝐼𝑃𝑀,𝐻𝑀𝑀 = 𝐿𝑅𝑅 (𝜙1, 𝜙𝑎,𝜆) × 𝐿𝐻𝑀𝑀 (𝜌, 𝜙1, 𝜙𝑎, 𝜇),

where 𝐿𝑅𝑅 is the likelihood function for the ring-recovery model described in equation 2.1,
𝐿𝐾𝐹 is the likelihood function for the SSM using the KF algorithm described in Section
4.3.2, and 𝐿𝐻𝑀𝑀 is the likelihood function for the SSM using the HMM algorithm described
in Section 4.4.2.

In Section 4.6 we perform a simulation study for the two different IPMs separately and
we compare the results.

4.6 Simulation Study

In this section we discuss the suitability of the SSM described in this chapter and implemented
in Chapter 5 to model census data sets of different sizes. To do this, in Section 4.6.1 we
use the IPMs described in Section 4.5, which fit the SSM using the KF and HMMs and we
compare the results. We find that in the presence of small data sets, the estimation of the
productivity parameter, 𝜌, is systematically negatively biased. We explain the source of this
bias through the use of a Poisson non-stationary process in Section 4.6.2. In Section 4.6.4 we
assess if combining the likelihood functions of several census data sets aids the bias issue.
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4.6.1 Performance of the IPM under Different Scenarios

We conduct a simulation study for the IPMs, in which we generate 150 data sets in each
simulation. To do so, for the SSM we simulate time-series data from the HMM described
in Section 4.4.2 and for the ring-recovery model we simulate data from the standard model
described in Section 1.2.1. In each simulation of the ring-recovery model, 1000 birds are
ringed in each year of study and for each age category: first-year and adult. We keep all the
parameters constant and focus particularly on the estimations of the productivity parameter 𝜌,
as the survival and recovery parameters can be estimated without bias from the ring-recovery
data alone. We use the census and ring-recovery data sets simulated to fit two IPMs that
differ in the modelling methodology used for the SSM, with one using the KF and the other
a HMM.

We investigate the performance of both model fitting methodologies under different
scenarios: 1. different population trajectories; 2. different population sizes; 3. different
parameter values; 4. different lengths of study. These scenarios are closely related to
each other. A stable population is one which does not fluctuate with time, i.e. every year,
the number of individuals gained in the population is (on average) equal to the number
of individuals lost. In an increasing, or decreasing population, the number of individuals
increases or decreases respectively with time. The trajectory of the population is defined as:
stable, increasing, or decreasing. To describe the different population sizes, we use the value
of 𝑁0, the starting population size, as an indication. Thus, if we have a stable population, in
theory the expected value of 𝑁𝑡 over time does not change. However, if we had a decreasing
or increasing population we would expect to gain or lose individuals every year of study. The
parameter values chosen to affect the trajectory of the population might have an impact in the
performance of our model, as might the number of years of study, especially when sample
sizes are small. Small sample sizes are of particular interest in this thesis as these models are
intended for spatial data, which at higher resolutions have smaller counts, as we shall see in
Chapter 5.

The trajectory of the population is given by the demographic parameters, 𝜙1, 𝜙𝑎, and
𝜌, contained in the transition matrix of the state process in the SSM. For our model, as we
have only one single-state, the trajectory of the population is given by 𝜃 = (𝜙𝑎 +𝜙1𝜌). Thus
a stable population will have 𝜃 = 1, an increasing (decreasing) population will have 𝜃 > 1
(𝜃 < 1).

Figures 4.3, 4.4, and Table 4.1 show the simulation results in terms of bias for a stable
population, where 𝜙1 = 0.30, 𝜙𝑎 = 0.70 and 𝜌 = 1 for a 10 years simulation study. Figures
4.3, 4.4 and Table 4.1 compare the results obtained for the KF on the left, and the HMM on
the right, for several population sizes.
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Table 4.1 Median relative bias for an stable population, with 𝜙1 = 0.30, 𝜙𝑎 = 0.70 and 𝜌 = 1,
for different population sizes, for 10 years of census and ring-recovery study.

𝜙1 = 0.30 𝜙𝑎 = 0.70 𝜌 = 1.00

𝑁0 KF HMM KF HMM KF HMM

5 - 0.0003 - 0.0022 - -0.1664
10 -0.0042 -0.0042 0.0006 0.0010 -0.1030 -0.0838
20 0.0011 0.0022 0.0026 0.0014 -0.0839 -0.0591
40 0.0020 0.0022 0.0011 0.0013 -0.0407 -0.0290

Figures 4.3 and 4.4 contain boxplots with simulation results for the productivity parameter,
𝜌, for a stable population. The first row shows a population with 𝑁0 = 5, then the following
rows show results for simulations in which the starting value of the populations are 10, 20
and 40.

Figure 4.3 shows that the estimate of 𝜌 is systematically negatively biased for both the
KF and the HMM when 𝑁0 ≤ 40. If the population size is on average smaller than 10, the
KF fails to work for some of the results generated. For this reason we do not present here
a boxplot for the KF when 𝑁0 = 5. If the number of counts per year is 40 or bigger, both
methods return similar results for all the shared parameters (𝜌, 𝜙1, 𝜙𝑎). Table 4.1 shows that
the bias in estimating 𝜌 is slightly bigger when fitting the SSM using the KF rather than a
HMM.

Figure 4.4 shows the results for the same simulation study as in Figure 4.3 and Table 4.1.
However, in Figure 4.4 we plot each estimate of 𝜌 obtained against the sum of the counts
of each time-series generated. For example, here, as the population is stable if the starting
value of our time-series is 20, i.e. 𝑁0 = 20, the sum of the counts after 10 years is expected
to be 200. Figure 4.4 shows that if we have a larger initial population size, for example that
with 𝑁0 = 40, the data simulations are approximately symmetric, in the sense that roughly
the same number of time series with the sum of the counts below 400 are generated as with
the sum of the total number of counts above 400. As the population size becomes smaller
many more data sets are generated below the expected sum of the time series.

Additional results for different parameter values, for populations with different trajectories
and for a longer period of study can be found in Appendix C. These results are in line with
the results shown here for a 10 year simulation study for a stable population with parameters
𝜙1 = 0.30, 𝜙𝑎 = 0.70 and 𝜌 = 1. Moreover, in Appendix C, we find that in the case in which
we consider the population to be decreasing, with 𝜙1 = 0.30, 𝜙𝑎 = 0.70, and 𝜌 = 0.90 the KF
stops working when 𝑁0 = 10 as well as when 𝑁0 = 5 (see Table C.3). This is a reasonable
result—if a decreasing population starts initially at size 10, then there is a good chance that it
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Fig. 4.3 Boxplots containing the simulation results for the productivity parameter, 𝜌, for
10 years of study for a stable population, with 𝜙1 = 0.30, 𝜙𝑎 = 0.70 and 𝜌 = 1, for different
population sizes. The thick middle black line represents the median estimated value, and the
red star the real value of 𝜌.
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dies completely after a few years. Additionally, in Appendix C we also show results for a 20
years of simulation study for a stable population with parameter: 𝜙1 = 0.30, 𝜙𝑎 = 0.70, and
𝜌 = 1. Table C.4 shows these results, and here we can see that although the bias decreases
slightly in comparison with the 10 years study for the larger data sets, for 𝑁0 = 5 both the
KF and the HMM stop working, and for 𝑁0 = 10 only the KF stops working. If we generate
data for a stable population with an average size of five for a period of 20 years, we are more
likely to produce smaller values that might lead to zeroes in the time series than when we
generate the same process for a 10 year period.

Given this realisation, we examine other simulation studies in the literature, and we find
similar patterns in Abadi et al. (2010) and Brooks et al. (2004). Both of these papers use
a Bayesian approach to fit IPMs similar to the ones considered in this thesis. The main
difference is that the SSMs fitted in these papers have two states (see the state-space model
in Section 1.2.2).

Abadi et al. (2010) performed a simulation study (the results can be found in Appendix B
of their paper) using an IPM containing census, capture-recapture and reproductive success
data, in which the state-process of the SSM did not depend on normal approximations. The
results showed, that the productivity parameter, 𝜌, was always systematically underestimated,
at every sample size and regardless of the level of dependence between data sets. Moreover,
one can observe that the negative bias persisted in the results of this paper, even when an
additional data set containing reproductive success information was incorporated. Further,
the bias decreased as the sample size increased and also decreased with the addition of the
reproductive success data set. These patterns agree with our findings, however the bias issue
in the productivity parameter was not reported in the paper. This is because the bias was
small, as larger data sets were used, still, it is important to highlight that 𝜌 was systematically
negatively biased.

Brooks et al. (2004) used a Bayesian approach to compare the results from fitting
binomial-Poisson distributions directly to those from normal approximations. They found,
as we do, that the normal approximations are incredibly robust, however in the presence of
many observations below 10 in a 26-year the time-series, the normal approximations started
to break down. Hence, they already stated that the ability of fitting the binomial-Poisson
model would be crucial if data at local levels (small counts) were modelled.

As these different model fitting methodologies—the KF, the HMM, and the Bayesian
approaches in Abadi et al. (2010) and Brooks et al. (2004)—show a systematic negative
bias in the estimation of the productivity parameter 𝜌, one might question the suitability of
discrete non-stationary distributions (or in the case of the KF its approximations to a normal
distribution) in the presence of small counts.
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In the next section we investigate the effect of the sample size when fitting non-stationary
Poisson processes to time-series count data.
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Fig. 4.4 Simulation results for the productivity parameter, 𝜌, against the time series count
sum for different population sizes for 10 years of study for a stable population, with 𝜙1 = 0.30,
𝜙𝑎 = 0.70 and 𝜌 = 1, for different population sizes. The horizontal red lines in each plot
represent the true value of 𝜌, and the vertical red lines represent the expected sum of the
counts of the time-series observed in the 10 years of study.
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4.6.2 The Non-Stationary Poisson Process for Time-Series SSMs.

The aim of this study is to investigate if a systematic negative bias is also present when fitting
a non-stationary Poisson process outside the state-space model framework. We conduct a
simulation study for a Poisson non-stationary process, in which we generate 150 data sets
in each simulation. The Poisson process replicates the state process described above by the
binomial and Poisson convolution for a stable population. For this reason, we keep the mean
parameter of the Poisson distribution, 𝜃 = 1.

In Appendix C.2.1 we show the shape of the binomial-Poisson convolution and we
compare this to binomial and Poisson distributions alone. Using a stable population, we
compare the shape of these distributions in the case when the mean population value is 10, i.e.
𝑁0 = 10 and 𝑁0 = 100. We find that these distributions are heavily skewed when the sample
size is small and small values are chosen.

Figure 4.5 and Table 4.2 show the simulation results in terms of relative bias for the mean
parameter of a Poisson non-stationary process with mean, 𝜃 = 1, at different sample sizes for
a 10 years study.

Table 4.2 and the left hand side of Figure 4.5 show that for the Poisson non-stationary
process there is also a systematic negative bias, which decreases as sample size increases.
Additionally, on the right side of Figure 4.5 we can observe the estimate of 𝜃 obtained against
the sum of the counts of each time-series generated. The findings are again similar to those
obtained when fitting the IPMs: for smaller data sets, more data are being generated below
the average sample size when the value of 𝑁0 is small. Further, the bias for the Poisson
non-stationary process is smaller than that obtained from fitting the IPMs. However, in the
IPMs’ state-space model several discrete non-stationary processes are used: the combination
of two discrete non-stationary distributions (the binomial-Poisson convolution) in the state
process, and an additional Poisson non-stationary process in the observation process. This
may explain the larger negative bias.

Table 4.2 Median relative bias for a non-stationary Poisson distribution with mean, 𝜃 = 1 for
a time series of 10 years.

𝑁0 𝜃 = 1.00

5 -0.0733
10 -0.0394
20 -0.0251
40 -0.0129



4.6 Simulation Study 89

●●

●

●

0.
0

0.
4

0.
8

1.
2

θ 
fo

r 
N

0=
5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

0 100 200 300 400 500 600

0.
0

0.
4

0.
8

1.
2

θ 
fo

r 
N

0=
5

●

●
●

●

●
●

●

●

0.
0

0.
4

0.
8

1.
2

θ 
fo

r 
N

0=
10

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●
●
●

●

●

●

●
●●

●
●

●

●

●
●●

●

●

●
●

●

●
●

●

● ●●

●

●

●
●

●

●
●●

●●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●
●

●

● ●

●

●●●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●●

●

●
●

●

●
●

●

● ●
●
●

●
●●

●

●
●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

0 100 200 300 400 500 600

0.
0

0.
4

0.
8

1.
2

θ 
fo

r 
N

0=
10

●●

●

●

0.
0

0.
4

0.
8

1.
2

θ 
fo

r 
N

0=
20 ●

●●
●

●●
●

●
●● ●

●

●

●
● ●

●

●●

●
●

●

●

●

●

●

●
●

●
●● ●

●

● ●●

●●

●

●●● ●

●
●

●

●
● ●

●● ●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●●

●

● ●
● ●

●

●

●

●
●

●
●

● ●●
● ●

●

●
●●

●

●

● ●
●●

●
●

●

●
●●

●
●

●
●

●
●

●

●●

●

●

●● ●

● ●

●

●
●● ●

●●

●

●

●● ●
●

●● ●
●●

●

● ●
●

●
●

●
●

●

●

0 100 200 300 400 500 600

0.
0

0.
4

0.
8

1.
2

θ 
fo

r 
N

0=
20

0.
0

0.
4

0.
8

1.
2

θ 
fo

r 
N

0=
40

●

●
● ●

●
● ●

●
●●
●●

●
●

●
●

●●
●

●

●●
●●●

●

●
●

●
●

●●

●

●

●
●

●

●
●

●
●●

●

●
●● ●

●
●

●
●

●

● ●
●

●
●●

●●
●

●

●
●

●●
●●●

●●●
●

● ●
●

● ●

●

● ●
●●●

●
●

●
●

●

●

●●

● ●
●

●
●

●
●

●
●

●
●● ●●

●

●

●

●

●

●●

●

●●
● ●

●●
●

●
●

●
●

●

●
●

●

●● ●●
●

●●

●

●
● ●

●
●

●● ●
●

●●
●

0 100 200 300 400 500 600

0.
0

0.
4

0.
8

1.
2

θ 
fo

r 
N

0=
40

Fig. 4.5 Simulation results for a non-stationary Poisson process with 10 years of data. On
the left we present the boxplots containing the simulation results for the mean parameter, 𝜃.
The thick middle black line represents the median estimated value, and the red star the real
value of 𝜃. On the right we can observe the results for the mean parameter, 𝜃, against the
time series count sum for different population sizes for 10 years of study. The horizontal
red lines in each plot represent the true value of 𝜃, and the vertical red lines represent the
expected sum of the counts of the time-series observed in the 10 years of study.
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Additional results for a 20 years simulation study can be found in Appendix C. These
results are similar to those described here. We find that there is also a systematic negative
bias, which is actually bigger than that obtained for a 10 years period, especially for smaller
data sets. This can be explained as for a period of 20 years, for smaller data sets, we are more
likely to produce smaller values that might lead to zeroes in the time series than when we
generate the same process for a 10 years period.

The skewness of the distribution and the dependence on previous values in the time-series
appears to be the cause of the bias, rather than the set up of the SSM or the method used to
implement it.

Usually for many species different demographic data are available, and it is often the
case that these data are collected for small populations. Thus, the combination of data from
different sources adds extra information and helps to estimate the parameters in the model.
Whilst IPMs are particularly valuable for small populations (Schaub and Abadi, 2011), when
non-stationary discrete distributions are used to model population counts, the use of "small"
data sets has to be carefully considered, as a systematic bias might be introduced. In the next
section we consider whether combining big and small count data sets will correct this bias.

4.6.3 Computational Time

In this section we compare the computational times for the KF and the HMM. For this we
conduct a simulation study in which we generate 100 data sets in each simulation. To do so,
we simulate time-series data from the HMM described in Section 4.4.2 for a stable population
with parameter values: 𝜙1 = 0.30, 𝜙𝑎 = 0.70 and 𝜌 = 1.00. Then we fit the KF and HMM
algorithms to the data and record the time the likelihood function takes to compute in seconds.
We do this for three population sizes of 𝑁0 = 20, 40 and 60.

Table 4.3 shows the computational times for the KF and the HMM for three population
sizes. Here, we observe that the computational time of the KF does not change regardless of
the population size. Additionally, the KF timings are always considerably smaller than the
HMM’s ones. The HMM timings increase considerably as the population size increases.
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Table 4.3 Median computational time (in seconds) to calculate the likelihood function of
the SSM using the KF and HMM. We perform 100 simulations for a stable population with
parameter values: 𝜙1 = 0.30, 𝜙𝑎 = 0.70 and 𝜌 = 1.00, for 10 years of census study. The first
column specifies the sample size, the second the SSM algorithm used and the third the time
in seconds they took to compute, with the standard deviation in parentheses.

𝑁0 Method Time

20 KF 0.02(0.01)
20 HMM 58.10(121.64)
40 KF 0.02(0.01)
40 HMM 258.75(382.07)
60 KF 0.02(0.01)
60 HMM 499.24(549.27)

4.6.4 Combining Multiple Time-Series Data Sets—Effect on Bias

In Chapter 5 we will construct a spatially-explicit IPM which will contain spatially-explicit
ring-recovery data and spatially-explicit count time-series data of different sizes. We will
illustrate this model using starling data. For the starling time-series data there are five data
sets that contain large counts, and 10 data sets that contain small counts. The detailed number
of counts per year for these data sets are shown in Table 5.5. Thus, we are interested in
assessing the bias in the productivity parameter when several time-series data sets of different
sizes are combined. We generate 100 data sets in each simulation—for this we consider a
10 year period in which 1000 birds were ringed in the adult age class in each year of study,
and 1000 birds were ringed in the first-year age class in each year of study. We combine the
ring-recovery data with several time-series data sets which are fitted using HMMs, the KF, or
both methodologies. Although the HMM generally provides estimates with smaller bias than
the KF, the HMM is considerably computationally more expensive than the KF. We found
that for 𝑁0 ≥ 40 the KF and the HMM provide similar unbiased estimates. For this reason,
for time-series with 𝑁0 ≥ 40 we fit the SSM using the KF and for those with 𝑁0 < 40 we
use HMMs. We simulate 40 time-series data sets from which 20 data sets start at 𝑁0 = 40
and are fitted using the KF, and 20 data sets start at 𝑁0 = 10 and are fitted using HMMs. We
use IPMs containing the ring-recovery data and the time-series data sets fitted using both
the KF models and HMMs, the ring-recovery data and the time-series data sets fitted using
only the KF, and the ring-recovery models and the time-series data sets fitted using only
HMMs. We also change the number of time-series data sets used for each methodology in
each combination. The parameter values are similar to those used for the simulation study in
Table 4.1 where we considered a stable population with 𝜙1 = 0.30, 𝜙𝑎 = 0.70, and 𝜌 = 1.
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Table 4.4 shows the simulation results for 𝜌. We first show the effect on the bias, if we
only use one time-series data set with small counts (row 3), one with large counts (row 4), or
one with small counts and another with big counts in combination (row 5). In the following
rows we compare the results of combining: five data sets with small counts with 0, 5, 10 or
20 data sets with big counts (rows 6-9 respectively); 10 data sets with small counts with 0, 5,
10 or 20 data sets with big counts (rows 10-13 respectively); and 20 small data sets with 0,
5, 10 or 20 data sets with big counts (rows 14-17 respectively). Finally in rows 18-20 we
compare the results of combining 5,10 and 20 data sets with big counts with no data sets
with small counts. Overall, in Table 4.4 we can see that in the presence of data sets with
small counts, the bias reduces as the number of data sets with big counts incorporated in the
IPM increases. This is also true for the data sets with big counts, the bias also reduces if we
increase the number of them in the IPM. Additionally in Appendix C we provide more results
for a simulation study in which we compare combining data sets of size 𝑁0 = 60 and 𝑁0 = 10.
The results are similar to those described here, and the decrease in the bias is slightly higher
with the incorporation of the larger data sets, as there are more data.

From Table 4.4 we conclude that the negative systematic bias from 𝜌 decreases as the
number of time-series data sets used increases. We observe that bias decreases as time-series
data sets containing larger counts are used. Thus, in this case, using the KF provides better
results in terms of bias not because this method works better than HMMs, but because the
counts in these data sets are larger. If we compare the results obtained when combining
multiple data sets in Table 4.4 with those obtained when fitting only 1 time-series data set in
Table 4.1 we observe that the estimation of the productivity parameter 𝜌 naturally improves
with the addition of multiple time-series data sets. Additionally, it is worth noting that the bias
of many small (rows with 0/10 0/20) is less pronounced than few small (5/0). So arguably, if
there was limited effort/resources, combining time-series data sets with small counts would
also improve the results. The simulation study results are key to the development of the
spatially-explicit IPM in Chapter 5 in which ring-recovery data is combined with several
time-series containing both small and large counts.
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Table 4.4 Median relative bias for a stable population in the productivity parameter, 𝜌 for
IPMs that combine ring-recovery data with several time-series data sets which contain large
and small counts. The time-series with large counts have 𝑁0 = 40 and are fitted using the
KF. The time-series with small counts have 𝑁0 = 10 and are fitted using HMMs. Column 1
indicates the number of large data sets used and column 2 the number of small data sets used,
and column 3 the bias for 𝜌. The first row indicates the data used and the combinations fitted.

large small RR+large+small
KF HMM RR+KF+HMM

0 1 -0.1403
1 0 -0.0782
1 1 -0.0802
0 5 -0.0630
5 5 -0.0343

10 5 -0.0375
20 5 -0.0277
0 10 -0.0562
5 10 -0.0476

10 10 -0.0327
20 10 -0.0164
0 20 -0.0364

10 20 -0.0143
20 20 -0.0100
5 0 -0.0618

10 0 -0.0265
20 0 -0.0212

4.7 Discussion

In this chapter we have studied different methodologies for fitting discrete SSMs. Particularly
we have reviewed and described how to implement the KF and HMMs for time-series count
data which are modelled with Poisson or binomial-Poisson non-stationary processes, or
appropriate normal approximations.

The motivation for this work lays in the development of SE-IPMs, which will be the
subject of Chapter 5, for which the combination of several count time-series of different sizes
will be combined. For this reason we evaluate the performance of the KF and the HMMs
when the counts in the time-series have different sizes, and are particularly small. To do this,
we first introduce the general characteristics of the state-space model in Section 4.2, and we
describe the model fitting methodologies using the KF in Section 4.3 and using HMMs in
Section 4.4. Moreover, as the SSM is parameter redundant, in Section 4.5 we introduce a
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general form of the IPM needed to solve the identifiability issues. We then, in Section 4.6,
perform a simulation study to show how these methods work in practice.

In the simulation study in Section 4.6.1 we find that in the presence of small data sets,
within the IPM context, the estimation of the productivity parameter, 𝜌, is systematically
negatively biased. This bias appears regardless of whether we employ the KF or HMMs,
although for the latter the bias is slightly smaller. Moreover, although we do not fit these
models using a Bayesian approach, we find that in the simulation study of Abadi et al. (2010),
a systematic negative bias also occurs for similar models.

We examine the shape of the discrete non-stationary distributions, and we find that these
are heavily skewed when time-series that contain small values are fitted. Thus, in Section
4.6.2 we investigate if there is bias when a single non-stationary Poisson process is fitted to a
time-series. The results are very similar to those obtained when fitting the IPM, although
now the bias is slightly smaller as there is only one non-stationary process in contrast with
the IPM, where there were three.

Finally, as we would be combining different size time-series data sets for the spatially-
explicit IPM in Chapter 6, we investigate if combining several time-series data sets help to
aid the issue of the bias in Section 4.6.4. We conclude that the estimation of the productivity
parameter 𝜌 improves with the addition of multiple time-series data sets.

Overall from our simulation results we found that for time-series with counts on average
greater than 40, i.e. 𝑁0 ≥ 40 the KF and HMMs provide similar results—the estimate for the
productivity parameter is not biased. We recommend that, within the frequentist approach,
the KF should be used when 𝑁0 ≥ 40, as HMMs are computationally more expensive to
fit. One could argue that this is an arbitrary value, however it would be difficult to provide
a precise cut off value, for example 38, or 39 instead of 40, as this value would slightly
vary depending on the specific data. Nevertheless, at 𝑁0 ≥ 40 we are confident that using
the KF is not going to bias the results. Moreover, for some data sets the KF could perform
similarly well at slightly smaller values like 38 or 39, however using a HMM instead of a KF
in those cases will not change the results. Instead, it would only make the algorithm slower.
In Section 4.6.3 we saw that using HMMs increase computational times, this is particularly
noticeable with large data sets, i.e. those with 𝑁0 ≥ 40. We also recommend that time-series
with counts on average equal or smaller than five should not be used, as the bias when fitting
these is large. Moreover, for time-series of 20 years, such as that presented in Figure C.1,
and Table C.4 we showed that the KF and HMMs stop working when 𝑁0 = 5. Additionally,
we recommend that if time-series data sets with small counts are analysed, i.e. if the counts
are on average smaller than 40, 𝑁0 < 40, these should be combined with larger data sets
so the bias issue is mitigated. If this is not possible, because additional larger data sets are
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not available, caution should be taken in the interpretation of the productivity parameter.
Moreover, it should be clearly stated that these estimates could be negatively biased.
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Chapter 5

Spatially-Explicit Integrated Population
Modelling

5.1 Introduction

In order to monitor population dynamics, the British Trust for Ornithology (BTO) has
developed an Integrated Population Monitoring programme to monitor the numbers, breeding
performance and survival rates of a wide range of bird species breeding in the UK, by
combining data from different monitoring schemes (Baillie, 1990; Werham et al., 1998).
Many wildlife species are currently in decline, an example of this, is the Starling (Sturnus
vulgaris) a species on the UK Red List – of highest conservation priority. Such declines can
be explained by changes in vital rates, such as annual survival probability and productivity,
which are in turn related to environmental factors. Integrated population models (IPMs)
combine different types of data into one analysis and provide reliable means for estimating
these vital rates for a species across a population. However, traditionally, for the analysis of
census, ring-recovery data, or the combination of both into an IPM, spatial information has
only been considered at large population scales; for example Freeman et al. (2007b) used
IPMs to study demographics of starlings at national and regional levels. Robinson et al. (2012)
used IPMs to study the demographic processes driving the populations of blackbirds Turdus
merula in the east, the west, and the whole of Britain. Morrison et al. (2016) constructed a
regional IPM for Afro-Palaearctic migratory bird species that are declining in the southeast
of Britain but increasing in the northwest. They showed that the differences in regional
trajectories were a consequence of differences in productivity. Besbeas et al. (2005) showed
demographic differences for the northern lapwings Vanellus vanellus in arable and pastoral
regions of Britain.
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Recently, the joint analysis of spatial capture-recapture and census data in an IPM has
been considered (Chandler and Clark, 2014; Chandler et al., 2018). Moreover, Sun et al.
(2019) introduced a spatially-explicit integrated model that combines presence-absence data,
commonly collected in citizen science efforts, with systematically collected spatial capture-
recapture data. Yet, spatially-explicit IPMs still appear to be a relatively novel idea. In this
chapter we present a spatially-explicit integrated population model (SE-IPM) by combining
ring-recovery and census data and adding spatial information in the form of geographical
coordinates and/or land cover type to the parameters of the ring-recovery and state-space
models (SSMs).

Spatial ecological data present many challenges, such as the differences in the scales at
which the data are recorded, the existence of small or missing values, or spatio-temporal
variation for the spatial information collected, which require careful examination and the
implementation of appropriate methods that can accommodate data heterogeneity and sparse-
ness. Integrating different models for separate data sets for the same population into one
single analysis can help to compensate for data sparseness, as well as strengthen the results
(Besbeas et al., 2005, 2002).

Our models are able to reconcile spatial data at different resolutions. While for ring-
recovery data approximate geographical points in terms of latitude and longitude are available,
for census data the finest observations are geographically registered in terms of 1 km by
1km squares. Unlike most conventional IPMs, the spatially-explicit ring-recovery models
presented here are parameterised entirely in terms of individuals.

Generally, bird count data are typically modelled at large scales using SSMs. In classical
analysis, the time-series likelihood component has traditionally been approximated using
Kalman filter (KF) methodology, which is computationally efficient but relies on the assump-
tion of Gaussian data. However, in the case of spatially-explicit census data, which consist of
multiple time-series associated to specific locations, it is common to find areas in which the
numbers of observed birds are low. In Chapter 4 we addressed the challenge of modelling
time-series containing very small counts. In this chapter, to model the time-series count data,
we combine the KF and hidden Markov models (HMMs) in a flexible algorithm which adapts
to the varying sample sizes at different locations, being able to accommodate varied data sets
for many bird species.

Through the use of IPMs incorporating detailed spatial information, we can cover wider
areas of the country, and obtain robust spatial results that can explain demographic changes
in populations across the UK.

In this chapter we examine the characteristics of the data collected by the BTO, we
describe the independent spatially-explicit ring-recovery and census models implemented,



5.1 Introduction 98

we present an SE-IPM (SE-IPM), and use starling data to illustrate how the model works
in practice. We start with an introduction to the types of spatial data used for our analysis
in Sections 5.1.1 and 5.1.2. We continue by introducing the starling data in Section 5.2,
describing the characteristics of the ring-recovery and census data in Sections 5.2.1 and 5.2.2.
In Section 5.3 we introduce the spatially-explicit models developed and combine them into
an SE-IPM. In Section 5.4 we present the results obtained when fitting such models to the
starling data provided by the BTO. We conclude this chapter in Section 5.5 with a discussion
on the work developed and the possible future extensions for these models.

5.1.1 Geographic Coordinate and Grid Reference Systems

The BTO data include information on location and time. The two coordinate systems used to
map data by the BTO are: the World Geodetic System (WGS-84) and the Ordnance Survey
National Grid reference system (OSGB36).

The World Geodetic System (WGS-84) is the standard international method used in
cartography, geodesy, and satellite navigation. This system uses two coordinates, latitude
and longitude, to locate any point on the surface of the Earth. Both latitude and longitude
are angles. Latitude ranges from 0° at the Equator to ±90° at the Poles (North or South).
Longitude defines how far east or west a point is from the Prime Meridian at Greenwich,
London, this is the position of 0° longitude. Longitude ranges from 0° to ±180°. Latitude and
longitude can be easily transformed into the decimal system. Thus, latitude and longitude can
be expressed in degrees-minutes-seconds or decimal degrees. In this chapter, and throughout
this thesis when we refer to the WGS-84 system, we always express the coordinates in
decimal degrees. Decimal degrees can be positive or negative, with negative values used for
positions West of the Greenwich Meridian or South of the Equator (Evans, 1998).

The Ordnance Survey National Grid reference system (OSGB36) or British National
Grid (BNG) is an extensively used geographical reference system for registering survey
data in Great Britain at all scales. The OSGB36 is designed to cover the whole of Great
Britain and extends 700 km to the east and 1300 km to the north of the false origin (Ordnance
Survey Guide, 2016). The OSGB36 consists of a series of 25, 500×500 km squares, each
labelled with a letter of the alphabet from A-Z (excluding I). These 500 km squares can be
then subdivided into a series of 25, 100×100km squares, and these are each labelled with a
letter of the alphabet A-Z (excluding I). As a result, a series of 100 km squares are obtained
with references such as TQ. These 100 km squares can be subdivided further into 100, 10
km×10 km squares. These are each labelled with a number from 00 to 99. Finally, these 10
km squares can be subdivided into one of two ways: either into 5 km by 5 km squares or
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Fig. 5.1 Illustration of the Ordnance Survey National Grid coordinate system (OSGB36),
with Trafalgar Square as an example, from Wikipedia contributors (2019).

into 1 km by 1 km squares. These squares can be easily transformed into various coordinate
systems, such as WGS-84, using latitude and longitude (Ordnance-Survey, 2011).

Transformations between both systems are possible and the calculations required for this
can be found at the Ordnance Survey Guide (2016) website. Moreover, the Grid Reference
Finder (2019) and Where’s the Path (2019) websites can be used to obtain these conversions.

Figure 5.1 shows graphically an example of the different grid dimensions of the OSGB36.
It uses as an example Trafalgar Square, in London, with grid reference TQ299 804. The cor-
responding WGS-84 coordinates for this location correspond to latitude 51.51 and longitude
-0.13, or (51.51,-0.13). Note that throughout the thesis we give the coordinates to 2 decimal
places, however when included in our calculations we use a precision of 6 decimal places.
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5.1.2 Land Cover Data

As the data for starlings that we will analyse is for the time period of 1990 to 1999, we use
the National-Scale Land Cover Map of Great Britain (1990), LCM1990. This is a digital data
set which provides classification of land cover into 25 classes available at different spatial
resolutions. The data were derived using a supervised maximum likelihood classification
of data collected by the satellite Landsat 5 Thematic Mapper, which combined winter and
summer data (Fuller et al., 1994a,b).

The Land Cover Map of Great Britain is available as a standard digital product: as either
the full set of 25 “target” cover-types, or as an aggregation of these into 17 “key” cover-types.
We use the 25-class data set at a 1km resolution. For this data set there are 25 layers, one for
each “target” class. The values for each 1 km grid cell represent the percentage of that cell
that has been designated as being of a particular “target” cover-type.

We group the full set of the 25 “target” cover-types into six categories: farm, grass, urban,
water, wood and unclassified. We choose these six land-cover categories, to describe the
preferred habitats of various British birds at a large scale (cf. Gregory and Baillie, 1998).
Table 5.1 shows the grouping of the “target” data into six categories. Among these six
categories, we have the unclassified category, which represents the land cover data that
did not belong to any of the 25 “target” cover-types, usually due to the presence of clouds
on every occasion that the satellite recorded data (which happens often at sea). For our
illustrative example we need to use the land cover data at a 100 km square resolution. At
this resolution, some squares contain a high proportion of unclassified land cover data (see
Table 5.6), however these squares also contain a larger proportion of sea water than land.
For example, in Table 5.6 we can observe that the TR and TM squares which have a high
percentage of unclassified land, mostly contain sea. In contrast, the inland squares SO, SP,
SU, TL (which are later used for our analysis) have quite a low proportion of unclassified
land (% < 5). Thus, removing the unclassified category from our analysis is unlikely to
substantially bias the proportional coverage of the other land cover types. Additionally, for
other species, or other time periods, the census data are less sparse and thus, it is possible to
use data at a higher resolution (i.e. 10 km or 1 km squares). This means that we would be
less likely to have large amounts of unclassified land for the squares in which sampling took
place, as these squares would be inland and not in the sea. Therefore we use the remaining
land cover five categories for our analysis. The description of the “target” variables can be
found in the documentation of the Land Cover Map of Great Britain (1990), LCM1990.
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Table 5.1 Land cover “target” cover-types grouping into six land cover categories.

Land cover type “targets”
Farm tilled land
Grass grass heath, pasture, meadows SNG, rough/marsh grass, bracken,

dwarf shrub and grass, dense shrub heath, dense shrub moor, mountain
grass, lowland heath, weeds, dwarf shrub grass heath, inland bare ground

Urban suburban, urban development
Water sea/estuary, inland water, beach and coastal bare,

saltmarsh, upland bog, lowland bog
Wood scrub/orchard, deciduous woodland,

coniferous woodland, felled forest
Unclassified Unclassified

5.2 Data

The starling (Sturnus vulgaris), or common starling is an endemic bird of Europe and Western
Asia (Robinson et al., 2006). Due to its continuous decline in the last four decades it has been
categorised as a species of highest conservation concern in Britain (Gregory et al., 2002).

There are two main populations of starlings in the UK: the native and the migrant starling
populations. The native starlings breed in the country and are considered sedentary birds—
with an estimated mean natal dispersal of 9.5 km, and a breeding dispersal of 3.4 km (Paradis
et al., 1998). The migrant starlings arrive during the months of October and November and
leave in March to breed mainly in Sweden and the Baltic States (Wernham et al., 2002).

The British Trust for Ornithology has monitored the breeding population of starlings
since 1962. Robinson et al. (2002) estimated that the population size of starlings during the
breeding season was 8,860,000 (averaged during the years 1994-2000). The densities of
starlings change significantly with location. Most starlings occur in Southern Britain, with
36% of the population found in the south of England and 21% in Scotland. The differences in
abundances are mostly due to land cover changes, with 73% of starlings occurring in gardens
and areas of unimproved grass. Particularly, densities of starlings are greatest in suburban
habitats, followed by farmland areas. Nevertheless, starling populations in suburban areas
and the wider countryside have declined by over 50% (Robinson et al., 2002). For further
information on starling habitat preferences see Gregory and Baillie (1998).

Figure 5.2, from Robinson et al. (2002), shows the population decline of starling in
Britain between 1962 and 2000. The starling population is represented in terms of an index
calculated from the Common Birds Census Data (CBC). For further information on how the
CBC index is derived, we refer the reader to Marchant (1983).
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Fig. 5.2 Population index of starlings in Britain 1962-2000 from Robinson et al. (2012). The
Solid line represents a smoothed GAM trend, and the dashed lines the 95% confidence limits.
The filled circles show the annual indices without any smoothing, and the empty circles
represent significant turning points in the GAM trend.

Starlings have experienced a decline of 68% since 1962, though this decline is more
abrupt in woodland areas (92% since 1965) (Robinson et al., 2006). In addition, a rapid
population decline between the years 1966 to 1980 can be observed in Figure 5.2. In this
chapter, to illustrate our methods, we consider the ring-recovery and census data for years
1990-1999 and analyse them using an SE-IPM. We chose this period of time for several
reasons: 1. these data contained both small and large counts, 2. Additional data from the
BBS are available for these years in case we want to incorporate these in future work, and 3.
In terms of spatial information, we can use the Land Cover map of Great Britain (1990) for
this decade, if we assume that the types of land remain unchanged during this decade, which
according to our BTO collaborators is a sensible assumption. In Section 5.2.1 we describe
the spatial ring-recovery data and in 5.2.2 we describe the spatial census data for starlings.

5.2.1 Spatial Ring-Recovery Data

Starlings are ringed at different age categories throughout Great Britain. We consider two
age categories: birds in their first year of life, which we refer to as first-year birds, and older
birds (≥ 1 year old), which we refer to as adult birds. For the years 1990-1999 there were a
total of 60,815 starlings ringed. Out of these, 45,181 birds were ringed as first-year birds
and 15,634 as adults. Starlings were ringed between April and September, and recoveries
happened throughout the year. The number of birds recovered dead during this time period
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was relatively small, with only 601 of the birds ringed in their first year of life recovered, and
217 of the birds ringed in the adult category recovered.

The data provided contain detailed information on each individual ringed, including
spatial information. For those individuals recovered there is also corresponding spatial
information available. Table 5.2 shows an extract of these data. These data can be read as
follows: for example taking the first row, in 1990 an adult bird was ringed and identified with
the number CJ17509, at latitude 52.20 and longitude 0.08, but this individual was never found
dead. Also in 1990 (row 2), another adult bird, with the identification number CP58083 was
ringed but at latitude 51.35 and longitude -0.333. This bird was recovered dead in 1992 at
the same latitude and longitude where it was ringed. Additionally, ring-recovery m-arrays
for starlings ringed as first-year birds and as adults are provided in Appendix D, in Tables
D.1 and D.2.

Table 5.2 Extract of starling ring-recovery data with available geographical coordinates for
the years 1990-1999. The first column contains the identification number for each individual.
The second column specifies the age at ringing. The next three columns contain the year and
the geographical location, in terms of latitude and longitude expressed in decimal degrees, at
which each individual was ringed. The last three columns provide information on recoveries,
that is, if a ringed individual was found dead and reported, the year and the coordinates at
which this particular bird was found dead.

Ring Age Year Lat Long Year Lat Long
number ringing ringed ringing ringing recovered recovered recovered

CJ17509 Adult 1990 52.20 0.08 - - -
CP58083 Adult 1990 51.35 -0.33 1992 51.35 -0.33
RR54191 Adult 1995 55.00 -1.58 - - -
XJ32066 1-year 1998 50.91 0.95 - - -
RE44087 1-year 1990 53.33 -2.80 1990 53.35 -2.76
RP73583 1-year 1998 52.77 -2.37 - - -

Figure 5.3 shows the distribution of ringed, map (a), and recovered birds, map (b),
throughout Great Britain during the years 1990-1999. These maps show the contrast between
ringing and recoveries. While ringings are abundant and spread out through the country,
recoveries represent a small percentage of the sample. Recovery reporting rates are likely to
be lower in areas with lower human population densities. Furthermore, a larger proportion of
ringings occur in the south-east, as a result, proportionally, there are fewer recoveries in the
north of Britain, as we can see in Figure 5.3 (b). This figure presents an overall summary for
these 10 years of ringing.

For both age categories more birds were ringed in the South East of England than in
any other region. Also, from the data we can observe that, while a significant number of
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50 500 5000

(a) Ringed birds (b) Recovered birds

Fig. 5.3 Ringed and recovered starlings, 1990-1999. The size of circle represents the number
of birds ringed (or recovered) at a single site. The legend above shows circles for counts of
size 50, 500, and 5000.
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Table 5.3 Relative distance in km between ringing and recovery for birds ringed as first-year.
The first column specifies the age of the birds at ringing. Columns 2-6 contain the frequency
(with corresponding proportion shown in brackets) of birds recovered within 25 km of the
place of ringing, 26 to 50, 51 to 75, 76 to 100 km of ringing and recovered more than 101
km away from the place of ringing.

Age 0-25 26-50 51-75 76-100 101+
First-year 598(86.8%) 45(6.5%) 16(2.3%) 4(0.6%) 26(3.8%)

Adult 236(94.8%) 4(1.6%) 2(0.8%) 3(1.2%) 4(1.6%)

birds were ringed in Orkney and Shetland, the two northernmost islands in Scotland, the
South of Scotland, the North and West of England, and Wales have few ringings. Besides the
spatial difference in the number of birds ringed across Great Britain, Figure 5.4 shows that
the proportion of birds recovered is reasonably spatially homogeneous.

For those birds that were recovered dead, we know the exact coordinates at ringing and
at recovery. In order to understand how starlings behave spatially we measure the distance
between the locations where a bird was ringed and recovered. To do so, we use the Haversine
formula, which determines the great-circle distance between two points on a sphere given
their longitudes and latitudes (Van Brummelen, 2012). This can be easily implemented in R,
using the package ‘fossil’ (Vavrek, 2011). Table 5.3 shows this distance for those birds that
were recovered dead. We observe from Table 5.3 that most starlings recovered dead were
found within 25 km from the place where they were ringed.

The land cover data are matched to the geographical coordinates of the location in which
a bird is ringed. The land cover are available at a 100×100 km squares scale. Every 100×100
km squared is formed of different types of land that are expressed as a percentage. Table
5.4 shows an extract of the spatial land cover data for starlings for the years 1990-1999 at a
100x100 km resolution.
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50 500 5000

Fig. 5.4 Proportion of ringed and recovered starlings at a 100 km square resolution, 1990-
1999. The proportion is given by the colour of the circle. The size of the circle represents the
number of starlings ringed. The legend above shows circles for counts of size 50, 500, and
5000.
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Table 5.4 Extract of starling ring-recovery data with available spatial location in terms of
geographical coordinates and land cover for the years 1990-1999. The first column contains
the identification number for each individual. The second column specifies the 100 km square
in which the individual was ringed. The third and fourth columns contain a more precise
location in which each individual was ringed, giving the approximate geographic coordinates.
The remaining six columns contain the percentage of the specified type of land contained in
the 100 km square.

Ring Grid ref Lat Long Farm Grass Urban Water Wood Unclassified
CJ17509 TL 52.20 0.08 61.9481 22.7809 9.5649 0.4632 4.6118 0.6311
CP58083 TQ 51.35 51.35 18.0957 41.7325 19.4911 1.5373 9.8263 9.3171
RR54191 NZ 55.00 -1.58 18.3133 22.1068 6.9576 0.7213 2.3753 49.5257
XJ32066 TR 50.91 0.95 6.0528 5.1078 1.2055 0.4045 0.9185 86.3109
RE44087 SJ 53.33 -2.76 17.7371 54.0629 11.4581 0.8519 7.5941 8.2959
RP73583 SJ 52.7 7 -2.37 17.7371 54.0629 11.4581 0.8519 7.5941 8.2959
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5.2.2 Spatial Census Data

Terrestrial bird monitoring was operated mainly by the CBC scheme until the introduction of
the BBS in 1994 (Marchant et al., 1990). Census data were collected on farmland, woodland,
or ‘special’ (the latter consisting of areas dominated by wetlands, lakes, coastal habitat etc.)
plots, with a much higher coverage in the first two types of land (Robinson et al., 2002).
The data were collected by volunteers with survey sites not chosen at random, as plots were
selected by the observers. The average cover of farmland plots was around 70 hectares (0.7
square km) in extent, whilst woodland plots covered just over 20 hectares (0.2 square km).
A territory-mapping approach was used to estimate the number and positions of territories
of each species present on a each survey plot during the breeding season (Marchant, 1983).
The detailed survey design is described in (Marchant et al., 1990). The CBC was broadly
representative of agricultural practices (Fuller et al., 1985). In addition, the number of
volunteers was higher in the south and east of the UK, thus more information was collected
in these areas (Gregory et al., 2000).

Observations of birds were made either by sight or sound, and they were registered as an
estimated count of birds seen in a specific location, for which a 1×1 km grid reference was
given. From 1962 to 2000 starlings were recorded during the breeding season on 146 plots,
however, not all the survey plots were visited every year (Robinson et al., 2002). Moreover,
the number of counts of starlings per 1 km square tended to be small, and excluded many
areas of the country. We group the 1 km grid squares into 100 km squares, by merging
smaller squares together so we can make use of data that would otherwise be too sparse to be
modelled. However, even then, many areas of the country are not represented, and some of
the areas visited vary through the years.

Figure 5.5 shows the 100 km by 100 km squares in which counts were registered for
starlings between 1962 and 2000. The red dots represent those squares in which at least one
bird was seen and registered between 1962 and 2000. The blue dots represent those squares
with at least one count between 1990 and 1999. Finally, the yellow squares represent those
squares with an average count of at least 40 birds for the years 1990 to 1999, and the green
squares represent those squares with an average count of more than five birds but fewer than
40 for the same period. In our analysis, we use the yellow and green squares; none of these
contain a value of 0 for any of the years in the time series. Table 5.5, provides the specific
count of birds for the yellow and green squares in Figure 5.5. Additionally, in Table 5.6 we
show the percentage of each type land contained in each 100 km square. In Chapter 4 we
considered and compared two different methods, namely the KF and HMMs, that could be
used to fit time-series data depending on the size of the counts.
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Fig. 5.5 Squares containing at least one count for the CBC starling data from 1962-1999.
The red dots represent those squares in which at least one bird was seen between 1962 and
2000. The blue dots represent those squares with at least one count between 1990 and 1999.
Finally, the yellow squares represent those squares with at least 40 counts on average for
each year between 1990 and 1999 and the green squares represent those squares with more
than five birds but fewer than 40 on average for each year from 1990 to 1999.
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Table 5.6 Percentage of each land cover type per 100 km square.

Square /land Unclassified Water Grass Wood Farm Urban

NT 22.7945 1.3919 43.8950 6.6763 22.9810 2.2613
NX 51.4347 2.1074 35.0696 9.3083 1.7696 0.3104
NY 5.1149 2.1437 77.1602 8.4553 5.7731 1.3528
NZ 49.5257 0.7213 22.1068 2.3753 18.3133 6.9576
SE 1.7335 0.7830 39.4151 5.9919 42.2678 9.8087
SJ 8.2959 0.8519 54.0629 7.5941 17.7371 11.4581
SO 3.9441 0.3801 54.1667 12.1185 21.8844 7.5062
ST 13.4033 0.7643 52.5053 7.5818 19.2613 6.4840
TM 64.8435 0.7117 9.4289 0.9989 21.4129 2.6041
TR 86.3109 0.4045 5.1078 0.9185 6.0528 1.2055
SD 28.8674 1.8312 51.2835 3.9791 7.8963 6.1425
SU 2.7645 0.5357 39.6705 14.6676 31.7188 10.6429
SP 0.7463 0.1908 33.8646 4.5394 46.2877 14.3712
TL 0.6311 0.4632 22.7809 4.6118 61.9481 9.5649
TQ 9.3171 1.5373 41.7325 9.8263 18.0957 19.4911
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5.3 Spatially-Explicit Integrated Population Model

5.3.1 Spatially-Explicit Ring-Recovery Model

Standard ring-recovery models (see Section 1.2.1) provide information on an overall popu-
lation, but do not account for spatial differences in survival or recovery probabilities. We
propose adding spatial information in the form of geographical coordinates and/or land cover
type as covariates. The covariates are latitude and longitude in decimal degrees and/or type
of land cover as the percentage of a specific type of land type within each 100 km square.

In general the survival and recovery rates of birds can be greatly affected by location.
However, Table 5.3 in Section 5.2.1 showed that in general, the distance between ringing and
recovery is very small for starlings. There is no evidence that starlings travel more than just a
few kilometres from their ringing location. Additionally, Figure 5.4 showed that while the
proportion of recoveries is very small, it does not change substantially with space. Thus, in
our model, for simplicity, we only use the ringing location.

The spatial covariates are contained in the design matrix 𝑋 and we use the standard
logistic regression form to express how we model survival. For example in Equation 5.1 we
express the probability of survival for the 𝑖th bird in the age class ℎ, ℎ = {1, 𝑎}, as

𝜙ℎ,𝑖 =
1

1+ 𝑒−(𝛼ℎ+𝛽𝑙𝑎𝑡 ,ℎ𝑥1,𝑖+𝛽𝑙𝑜𝑛𝑔,ℎ𝑥2,𝑖+𝛽𝑙𝑎𝑛𝑑,ℎ𝑥3,𝑖)
, (5.1)

where 𝑥1,𝑖 is the latitude, 𝑥2,𝑖 is the longitude, 𝑥3,𝑖 is the percentage of a specific type of land
cover in the 100 km square in which the individual was ringed. The regression parameters
are 𝛼ℎ, 𝛽𝑙𝑎𝑡,ℎ, 𝛽𝑙𝑜𝑛𝑔,ℎ, and 𝛽𝑙𝑎𝑛𝑑,ℎ.

Thus, we allow the probability of survival for adults and first-year birds to vary continu-
ously with geographical coordinates, and type of land, but we consider the effect of these
covariates does not change over the years.

This model can be extended by adding covariates with different polynomial terms. For
example, the probability of survival for the 𝑖th bird in the age class ℎ using quadratic terms,
can be equally expressed as

𝜙ℎ,𝑖 =
1

1+ 𝑒−(𝛼ℎ+𝛽𝑙𝑎𝑡 ,ℎ𝑥1,𝑖+𝛽𝑙𝑜𝑛𝑔,ℎ𝑥2, 𝑗+𝛽𝑙𝑎𝑡2,ℎ𝑥
2
1,𝑖
+𝛽

𝑙𝑜𝑛𝑔2,ℎ
𝑥2
2, 𝑗

)
.

5.3.2 Spatially-Explicit Census Model

To model census data we extend the single-state SSM presented in Section 4.2 to include
spatial information at a 100 km square resolution.
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Traditionally, as explained in Section 1.2.3, the population counts were transformed into
an index, 𝑦𝑡 , derived from a Poisson generalised linear model that took into account site and
year effects (Ter Braak et al., 1994). Instead of using this index, and in order to be able to add
spatial information on the same scale as the ring-recovery model, we use the count of birds
for each 100 km square. For starlings, we actually know the counts for each 1 km square,
but for most of these squares, the counts are too low and include many zeros across the time
series. Therefore we aggregate them into 100 km squares. The number of birds observed in
the 100 km square 𝑠, in the year 𝑡, is given by

𝑦𝑠, 𝑡 =

100∑
𝑖=1

𝐺𝑖, 𝑠, 𝑡 , (5.2)

where 𝐺𝑖, 𝑠, 𝑡 represents each 1 km square 𝑖, within a 100 km square 𝑠 for the year 𝑡.
For other species, where data are less sparse aggregation may be possible at a higher

resolution (i.e. 10 km squares). Moreover note that for our data, the average collection plot
sizes were of 70 hectares (0.7 square km) and 20 hectares (0.2 square km) for farmland and
woodland respectively, which makes the use of a 1 km resolution appropriate if there were
enough count data.

We use the centre of each of the 100 km by 100 km square 𝑠, to obtain a geographical
location, in terms of latitude and longitude. We can also include the percentage of a specific
type of land cover in each 100 km square as another covariate. The spatial covariates are
contained in the design matrix 𝑋 and we use the standard logistic regression form to express
how we model survival, for each each class ℎ, ℎ = {1, 𝑎}. For example in Equation 5.3 we
express the probability of survival for those birds in the square 𝑠,

𝜙ℎ,𝑠 =
1

1+ 𝑒−(𝛼ℎ+𝛽𝑙𝑎𝑡 , ℎ𝑥1, 𝑠+𝛽𝑙𝑜𝑛𝑔, ℎ𝑥2, 𝑠+𝛽𝑙𝑎𝑛𝑑, ℎ𝑥3, 𝑠)
, (5.3)

where 𝑥1, 𝑠 is the latitude at the centre of the 100 km square 𝑠, 𝑥2, 𝑠 is the longitude at the centre
of the square 𝑠, 𝑥3, 𝑠 is the percentage of a specific type of land cover in the 100 km square
𝑠, and 𝛼ℎ, 𝛽𝑙𝑎𝑡, ℎ, 𝛽𝑙𝑜𝑛𝑔, ℎ, and 𝛽𝑙𝑎𝑛𝑑, ℎ are the regression parameters. Thus, the probability of
survival for the census model, for adults and first-year birds varies discretely within 100 km
squares.

Similarly to the ring-recovery spatial model, the spatial census model can be extended by
adding covariates with different polynomial terms.

Traditionally, an index derived on bird counts has been considered at large scales and,
when using classical statistics, the KF has been used to fit the SSM. The KF is an algorithm
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that relies on Gaussian approximations, but the Gaussian approximation may not be valid for
smaller counts.

The simulation study in Section 4.6.4 showed that the KF can be used for squares that
have on average more than 40 birds recorded each year (the yellow squares in Figure 5.5).
Additionally, in Section 4.6.4 we discussed that HMMs should be used to fit time-series data
which contain counts that are on average smaller than 40. Thus, we use HMMs to fit those
squares with small counts, between five and 39 birds per year, (the green squares in Figure
5.5).

The joint likelihood for the census model consists of the following components:

The Kalman Filter

For large counts the contribution to the likelihood involves using the KF (Meinhold and
Singpurwalla, 1983) for each of the chosen 100 by 100 km squares for our analysis. The
joint likelihood for the census data in this case is given by,

𝐿𝐽,𝐾𝐹 (𝜙1, 𝑠, 𝜙𝑎, 𝑠, 𝜌,𝜎𝜂) =
∏
𝑠𝐾 ∈𝑆𝐾

𝐿𝑠𝐾 (𝜙1, 𝑠, 𝜙𝑎, 𝑠, 𝜌,𝜎𝜂) , (5.4)

where 𝐿𝑠𝐾 is the likelihood of each of the squares contained in the set of all the 100×100
km squares, 𝑆𝐾 with an average count of at least 40. For the starling data set that is the five
yellow squares in Figure 5.5.

Hidden Markov Model

For small counts the contribution to the likelihood involves using HMMs for each of the
chosen 100 km squares for our analysis. The joint likelihood for the census data in this case
is given by,

𝐿𝐽,𝐻 (𝜙1, 𝑠, 𝜙𝑎, 𝑠, 𝜌, 𝜇) =
∏
𝑠𝐻 ∈𝑆𝐻

𝐿𝑠𝐻 (𝜙1, 𝑠, 𝜙𝑎, 𝑠, 𝜌, 𝜇) , (5.5)

where 𝐿𝑠𝐻 is the likelihood of each of the squares contained in the set of all the 100×100 km
squares, 𝑆𝐻 with an average count between five and 39. For the starling data set that is the 10
green squares in Figure 5.5.

5.3.3 Spatially-Explicit Integrated Population Model

The likelihood of an IPM is formed as the product of all components. In Section 1.2.3
we showed the expression for a traditional IPM consisting of a ring-recovery and a SSM.



5.4 Results 115

Similarly, for the SE-IPM, the joint likelihood is then given by the product of the likelihoods
of the ring-recovery and the SSMs,

𝐿𝑆𝐸𝐼𝑃𝑀 (𝜙1, 𝑠, 𝜙𝑎, 𝑠,𝜆, 𝜌,𝜎𝜂) = 𝐿𝑅𝑅𝑆𝑀 (𝜙1, 𝑖, 𝜙𝑎, 𝑖,𝜆) × 𝐿𝐽,𝐾𝐹 (𝜙1, 𝑠, 𝜙𝑎, 𝑠𝜌,𝜎𝜂),×𝐿𝐽,𝐻𝑀𝑀 (𝜙1, 𝑠, 𝜙𝑎, 𝑠𝜌, 𝜇)

where 𝑆𝐸𝐼𝑃𝑀 stands for spatially-explicit integrated population model, and 𝑅𝑅𝑆𝑀 stands
for ring-recovery spatial model.

5.4 Results

In this section we fit the SE-IPM described in Section 5.3.3 to the starling data for the years
1990-1999. For the SE-IPMs we add geographical coordinates and/or the percentage of type
of land as a covariate to the adult and first-year survival probabilities.

When using spatial data, we need to consider spatial autocorrelation, which occurs when
the values of variables sampled at nearby locations are not independent from each other
(Dormann et al., 2007). Several methods have been developed to correct the effects of spatial
autocorrelation, however, before applying any of these correction methods, it is reasonable to
check if our data is affected by this phenomenon. To do so, we can check if the assumption
of independence in the spatial data is violated by looking at the distribution of the residuals
(Dormann et al., 2007). In the context of the SE-IPM described here, it is not straight
forward to check for spatial autocorrelation. In Section 5.2 we discussed that the starling
mean dispersal is on average below 10 km (Paradis et al., 1998). Moreover, in Section 5.2.1
we showed that within our ring-recovery data most starlings recovered dead were found
within 25 km from where they were ringed. Based on this, for starlings we should not
expect to encounter spatial autocorrelation. Thus in this section, rather than an in-depth
examination, we briefly explore some indicators of spatial autocorrelation, however due to
the complexity of the data and the models, we do not provide any formal means for the
analysis or the correction of spatial autocorrelation. For the ring-recovery component, we
examine the residuals of the ring-recovery model by binning the spatial ring-recovery data
into 100 km squares. In Figure D.13 of Appendix D we present a map of residuals for the
starling ring-recovery data, which does not present any obvious pattern. For the state-space
component, it is more challenging to obtain residuals or estimate results per square as the
model is parameter redundant, and for many of the squares we have very small counts. As a
result, we do not present here any results or residuals for the SSM. The ring-recovery data
dominates the data in the IPM, thus based on the preliminary observation of the ring-recovery
estimates and residuals, we are going to make the assumption that the starling data are not
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spatially correlated. However, future work should focus on providing methods for analysing
and correcting (if needed) spatial autocorrelation in SE-IPMs.

There are many possible combinations of covariates that can be fitted. We start by fitting
the constant model, and then we add covariates in a "forward selection" fashion, starting with
the adult survival probability 𝜙𝑎. Here we include five "forward selection" steps, in each step
the best model is highlighted in bold. In step 1, we add one spatial covariate, either in terms
of coordinates or type of land, to the adult survival probability and we keep the first-year
survival constant. We choose the model with the lowest AIC and we use this as the starting
model for step 2. In step 2, we add one spatial covariate to the first-year survival probability
and for the adult survival probability we use the best model in terms of AIC selected in step
1. In step 3, we use the best model selected in step 2 and we add an additional covariate to
the adult survival probability. We proceed similarly in steps 4 and 5. We stop in step 5, as the
best model in this step is not better than the best model in step 4. Moreover by adding more
covariates than those in step 5 the model becomes overparameterised and starts showing
signs of near-parameter redundancy caused by the lack of data.

Table 5.7 shows the model comparison for the models fitted following the "forward
selection" approach starting with the adult survival probability 𝜙𝑎. Additional fitted models
to those resulting from the "forward selection" procedure with additional covariates can be
found in Appendix D TableD.8.

Table 5.7 shows five "forward selection" steps starting with 𝜙𝑎. In Table 5.7 we find that
the best model in terms of AIC is that which depends quadratically on the latitude for adult
survival, and on urban and farm covariates for the first-year survival. Followed by the second
and third best models in terms of AIC which are similar to the best model, but in the second
best, first-year survival on urban and latitude and in the third best,first-year survival only
depends on urban information.

Table 5.7 Model comparison for the constant and SE-IPMs fitted for the starling data for the
years 1990-1999. We start with a constant model, and then add covariates, starting with the
adult survival probability 𝜙𝑎 in a forward selection fashion.

Model No. pars AIC Δ AIC
𝜙𝑎, 𝜙1 6 11,918.44 65.57
𝜙𝑎, (𝑙𝑎𝑡) , 𝜙1 7 11,891.83 38.96
𝜙𝑎, (𝑙𝑜𝑛𝑔) , 𝜙1 7 11,907.28 54.41
𝜙𝑎, ( 𝑓 𝑎𝑟𝑚) , 𝜙1 7 11,910.23 57.36
𝜙𝑎, (𝑔𝑟𝑎𝑠𝑠) , 𝜙1 7 11,918.19 65.32
𝜙𝑎, (𝑢𝑟𝑏𝑎𝑛) , 𝜙1 7 11,909.99 57.12
𝜙𝑎, (𝑤𝑎𝑡𝑒𝑟) , 𝜙1 7 11,913.66 60.79
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Table 5.7 – continued from previous page
Model No. pars AIC Δ AIC
𝜙𝑎, (𝑤𝑜𝑜𝑑) , 𝜙1 7 11,917.48 64.61
𝜙𝑎, (𝑙𝑎𝑡) , 𝜙1, (𝑙𝑎𝑡) 8 11,883.78 30.91
𝜙𝑎, (𝑙𝑎𝑡) , 𝜙1, (𝑙𝑜𝑛𝑔) 8 11,895.05 42.18
𝜙𝑎, (𝑙𝑎𝑡) , 𝜙1, ( 𝑓 𝑎𝑟𝑚) 8 11,886.05 33.18
𝜙𝑎, (𝑙𝑎𝑡) , 𝜙1, (𝑔𝑟𝑎𝑠𝑠) 8 11,890.01 37.14
𝜙𝑎, (𝑙𝑎𝑡) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛) 8 11,864.56 11.69
𝜙𝑎, (𝑙𝑎𝑡) , 𝜙1, (𝑤𝑜𝑜𝑑) 8 11,891.29 38.42
𝜙𝑎, (𝑙𝑎𝑡) , 𝜙1,(𝑤𝑎𝑡𝑒𝑟) 8 11,897.54 44.67
𝜙𝑎, (𝑙𝑎𝑡+𝑙𝑜𝑛𝑔) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛) 9 11,866.17 13.30
𝜙𝑎, (𝑙𝑎𝑡+𝑙𝑎𝑡2) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛) 9 11,856.94 4.07(3)
𝜙𝑎, (𝑙𝑎𝑡+ 𝑓 𝑎𝑟𝑚) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛) 9 11,865.20 12.33
𝜙𝑎, (𝑙𝑎𝑡+𝑔𝑟𝑎𝑠𝑠) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛) 9 11,866.36 13.49
𝜙𝑎, (𝑙𝑎𝑡+𝑢𝑟𝑏𝑎𝑛) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛) 9 11,866.46 13.59
𝜙𝑎, (𝑙𝑎𝑡+𝑤𝑎𝑡𝑒𝑟) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛) 9 11,866.28 13.41
𝜙𝑎, (𝑙𝑎𝑡+𝑤𝑜𝑜𝑑) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛) 9 11,864.78 11.91
𝜙𝑎, (𝑙𝑎𝑡+𝑙𝑎𝑡2) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛+𝑙𝑎𝑡) 10 11,854.98 2.11(2)
𝜙𝑎, (𝑙𝑎𝑡+𝑙𝑎𝑡2) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛+𝑙𝑜𝑛𝑔) 10 11,858.73 5.86(4)
𝜙𝑎, (𝑙𝑎𝑡+𝑙𝑎𝑡2) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛+ 𝑓 𝑎𝑟𝑚) 10 11,852.87 0.00 (1)
𝜙𝑎, (𝑙𝑎𝑡+𝑙𝑎𝑡2) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛+𝑔𝑟𝑎𝑠𝑠) 10 11,858.74 5.87(5)
𝜙𝑎, (𝑙𝑎𝑡+𝑙𝑎𝑡2) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛+𝑤𝑎𝑡𝑒𝑟) 10 11,859.24 6.37
𝜙𝑎, (𝑙𝑎𝑡+𝑙𝑎𝑡2+𝑙𝑜𝑛𝑔) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛+ 𝑓 𝑎𝑟𝑚) 11 11,899.04 46.17
𝜙𝑎, (𝑙𝑎𝑡+𝑙𝑎𝑡2+ 𝑓 𝑎𝑟𝑚) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛+ 𝑓 𝑎𝑟𝑚) 11 11,898.62 45.75
𝜙𝑎, (𝑙𝑎𝑡+𝑙𝑎𝑡2+𝑔𝑟𝑎𝑠𝑠) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛+ 𝑓 𝑎𝑟𝑚) 11 11,899.66 46.79
𝜙𝑎, (𝑙𝑎𝑡+𝑙𝑎𝑡2+𝑢𝑟𝑏𝑎𝑛) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛+ 𝑓 𝑎𝑟𝑚) 11 11,898.84 45.97
𝜙𝑎, (𝑙𝑎𝑡+𝑙𝑎𝑡2+𝑤𝑎𝑡𝑒𝑟) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛+ 𝑓 𝑎𝑟𝑚) 11 11,889.20 36.33
𝜙𝑎, (𝑙𝑎𝑡+𝑙𝑎𝑡2+𝑤𝑜𝑜𝑑) , 𝜙1, (𝑢𝑟𝑏𝑎𝑛+ 𝑓 𝑎𝑟𝑚) 11 11,899.97 47.10

The parameter estimates for the constant model and the best model in term of AIC
are shown in Table 5.8. The spatially-explicit survival probabilities for the best model are
presented in Figures 5.6 - 5.8. Moreover, Figures D.1-D.6 show the spatially-explicit survival
probabilities for the second and third models in terms of AIC. These figures are heat maps
obtained from extending by region the point estimates from our models. The heat maps were
created by calculating the minimal distance between the estimated points and each of the
geographical points of the polygons that define each region. We present the heat maps to
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highlight the spatial patterns. However, the specific spatial point estimates obtained from
the models can be found in Figures D.7-D.12. For all the models the survival probabilities
and the confidence intervals are between 0.3 and 0.9, so in order to compare the survival
probabilities between models and the two age categories we provide this scale in our figures.
However, for the adult survival probability providing this scale means that no spatial pattern
can be appreciated, as adult survival changes with space between 0.69 and 0.75. For this
reason, we provide additional close up maps for the adult survival probabilities.

Our results confirm that starlings are affected by location. The three best models have
the same covariates for the adult survival probability, in Figure D.6 we can appreciate that
the adult survival probabilities for starlings change with latitude, increasing as we approach
North. For the first-year starlings, our results do not change much between models. For
these, survival is lower in the south east and centre of Great Britain, particularly for first-year
starlings, where there are more urban areas.

Additionally, in Appendix D.2 we provide a comparison between the IPMs and the
separate models (i.e. SSMs and ring-recovery models). To do this we compare the results
obtained from the best models in terms of AIC presented in Table 5.7 for each step of
the “forward selection” procedure with the results obtained from fitting ring-recovery and
state-space models with similar parameterisations. We find that for our data, for the constant
models there is little improvement from fitting an IPM instead of a ring-recovery model. Still,
the IPM is able to estimate productivity parameters, which we cannot obtain from any of
the other models, as the SSM is parameter redundant. Moreover, for the spatially-explicit
data the standard errors decrease when using SE-IPMs to fit the data instead of ring-recovery
models. Using a SE-IPM is an improvement over separate models, because it allows the
estimation of the productivity parameter, as well as improving precision of other parameters.

Table 5.8 Parameter estimates, with standard errors given in parentheses, for the constant
IPM, and the best SE-IPM in terms of AIC.

Pars Constant Model Best Model
𝜙𝑎 𝛼1 0.660(0.101) 0.669(0.101)

𝛽𝑙𝑎𝑡1 - 0.160(0.083)
𝛽𝑙𝑎𝑡2

1
- 0.170(0.048)

𝜙1 𝛼1 0.546(0.021) 1.041(0.151)
𝛽𝑢𝑟𝑏𝑎𝑛 - -0.057(0.011)
𝛽 𝑓 𝑎𝑟𝑚 - - 0.011(0.004)

𝜌 0.550(0.050) 0.535(0.050)
𝜎𝜂 15.523(1.55) 16.520(2.037)
𝜇 17.838(2.263) 14.941(1.517)
𝜆 0.016(0.001) 0.017(0.001)
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(a) First-year survival

(b) Lower interval (c) Upper interval

Fig. 5.6 Heat maps for best model in terms of AIC: Survival probability and 95% confidence
intervals for first-year starlings for the years 1990-1999.
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(a) Adult survival

(b) Lower interval (c) Upper interval

Fig. 5.7 Heat maps for best model in terms of AIC: Survival probability and 95% confidence
intervals for adult starlings for the years 1990-1999.
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(a) Adult survival
(b) Standard errors

Fig. 5.8 Adult survival probability and standard errors for the best model in terms of AIC for
starlings for the years 1990-1999.
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5.5 Discussion

In this chapter we have assembled a spatially-explicit integrated population model which
jointly analyses spatial ring-recovery and census data. The SE-IPM proposed here allows for
the combination of spatial data at different spatial resolutions, enabling us to cover wider
areas of the country than in using either type of data on their own. The models developed
here include spatial data in the form of geographical coordinates and land cover covariates.

We illustrated our models using starling data. The best model in terms of AIC depended
quadratically on latitude for adult survival, and additionally on latitude and urban information
for the first-year survival. Urban areas may offer more limited invertebrate food for young
starlings which may explain reduced survival there. The latitude relationships are likely
linked to damper, cooler conditions with more grassland in northern and western areas,
leading to higher abundance of soil invertebrates on which starlings feed (Dunnet, 1955).
Additionally, we compared the results obtained from our data from fitting IPMs and separate
models. We found that when spatial information is available the SE-IPMS provide more
precise results which can be appreciated by a decrease in the standard errors.

The models presented here can be easily extended through the addition of other types
of spatial/geographical information such as altitude, or weather. Brown (2010) describes
how to add weather covariates for animal survival modelling. Moreover, these models can
be also extended through the incorporation of other demographic data, such as nest data,
which would help our understanding regarding productivity estimates, and would enable
the addition of spatial components, not just to the survival probabilities, but also to the
productivity rates.

Additionally, spatial information could be added to the productivity parameter, 𝜌, in
the same way that it was added for the survival parameters. We built models in which we
added the spatial information to the productivity parameter and we tried to fit the starling
data. However, given the limited information, i.e. for the census spatial data, which provides
information on productivity, we only consider 15 squares, and with 10 of these squares
containing small counts, when fitting these models, the likelihood could not be optimised. It
would be interesting to run similar models for other species for which more spatial census
data are available. Nonetheless, if this extension of the model is considered, the bias issue in
the estimation of the productivity parameter, 𝜌, should be investigated further.

An important aspect of this model is that it allows the use of spatially-explicit small
valued time-series census data sets in combination with other census data sets which contain
larger values, and spatially-explicit ring-recory data sets. Additionally, the SE-IPMs could
be enhanced by adding temporal components, such as temporal trends. Along this line, we
could also look at the analysis of longer time periods, which would allow us to understand the
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population dynamics of different species. For more recent periods, it would be advantageous
to incorporate BBS data, which is a more recent version of the CBC data collected by the
BTO, for which small changes in the observation process of the SSM would be needed. Joint
trends based on CBC and BBS data are now widely reported by the BTO. Robinson et al.
(2014) used joint CBC/BBS trends for a range of species within IPMs.

Although for starlings, we assume that there is no spatial autocorrelation, future work
in this area should prioritise the development of methods to analyse and correct spatial
autocorrelation which might be present in the data of many species. By doing so, the SE-IPM
should be transferable to species characterised for their small dispersal. Additionally, by
incorporating parameters that account for bird migration in this model, we would allow the
use of the SE-IPM to model the spatial survival within a country for a wider range of species.

Furthermore if the data are available, it is possible to add land cover data for both the
ring-recovery and the census data at smaller spatial resolutions, such as 10 by 10 km squares.
This can be computationally expensive, and as such avenues for optimising the computational
times shall be explored. If this is done, not only the precision of the model would increase
but also more specific land cover categories could be added.

We note that for the census data we made the assumption that all squares have the same
initial state distribution. We did this, in order to limit the number of parameters in the model.
However, extensions to this work can be considered where for example a distribution for 𝜇
can be assumed, so the flexibility of the modelling framework increases.

The spatially-explicit IPMs presented here allow for individual heterogeneity in the
survival probabilities, however this heterogeneity is only considered in terms of location.
Other sources of variations such as sex or additional age classes for the individuals can be
easily added.

Some of the extensions discussed here consist of the introduction of covariates and/or
parameter dependencies. As a result the number of possible models to fit increases substan-
tially. Thus, it would be advantageous to develop additional model selection and goodness
of fit methods. Besbeas and Morgan (2014) and Besbeas et al. (in prep.) developed model
selection and goodness of fit methodology for IPMs. These could be extended to incorporate
spatial information.

We have fitted the SE-IPMs using a frequentist approach, however this model could be
adapted to a Bayesian approach and it would be interesting to compare the benefits of using
each method.
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Chapter 6

Discussion

In this thesis we have examined and further developed a number of statistical methods to
address different ecological data challenges. As a result, this thesis consists of three main
projects that combine different types of data together. The data sets that motivated the work
in this thesis, or that were used to illustrate our methods, were characterised by the presence
of missing, sparse and/or spatial information.

In Chapter 1 we introduced the reader to the statistical and ecological topics that are
covered and extended throughout the thesis. In this chapter, we defined the general forms of
marking, and census data, as well as, statistical models for marking data, discrete state-space
models (SSMs), and integrated population models. Additionally, we defined parameter
redundancy and provided details for the model fitting and model comparison methods
implemented throughout the thesis.

In Chapter 2 we presented our work on analysing historical age-aggregated ring-recovery
data sets to estimate age-dependent survival (Jiménez-Muñoz et al., 2019). Here, we de-
scribed a new model to estimate age-dependent survival probabilities from historical data
when information on age at ringing is missing. Using simulation and a data set where the
ringing numbers are known by age category, we demonstrated that the historical data model
gave almost identical parameter estimates as the standard ring-recovery model. In this chapter
we estimated probabilities for two age categories: first year and adult birds. However, with
the addition of an age-mixture model (McCrea et al., 2013) the historical model could be
extended to incorporate other age dependencies that accommodate for differences in breeding
age between species. Data from the British Trust for Ornithology (BTO) on sandwich terns
and blackbirds were used to illustrate these methods. Although this work was motivated
based on data from the BTO, many national ringing schemes, in Europe and North America
(Tautin, 2008), face a similar challenge. Thus, rather than fully computerising historical data,
by implementing these models, many organisations could save on human and time resources.
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In Chapter 3 we used capture-recapture models to examine the timing of female brood
desertion and the survival of the little auk Alle alle. To that effect, we considered extensions
to the Cormack-Jolly-Seber capture-recapture models through the addition of categorical (sex,
site) and continuous covariates (the time at which the female deserted the brood, i.e. presence
data). The categorical covariates were easily included in the model, as they were constant
throughout all the years of study and were known regardless of encounter. To validate the
models we performed a simulation study, and we found that the models performed better
when used to analyse large data sets. Moreover, results also improved when the survival
and capture probabilities were fixed higher. This was true particularly in the cases in which
several dependencies were added. The continuous covariates for the little auk data were
very sparse, with missing values in the years in which individuals were not observed. Thus,
although several methods for fitting capture-recapture and more generally mark-recapture-
recovery data in the presence of continuous covariates were available (see for example,
Bonner et al., 2010; Langrock and King, 2013; Worthington et al., 2015) a deterministic
imputation method was used. We performed a simulation study to examine the accuracy
of our deterministic imputation method. We found that when the sample size decreased,
the MSE increased, and that the survival parameters were overestimated when the data sets
contained abundant missing data.

From analysing the little auk data in Chapter 3, we found that the survival probability was
lower in the site with more extreme weather conditions. However, the survival probability
did not appear to be affected by the sex of the individuals analysed. This could mean that
the female little auk does not deteriorate more when breeding than its male counterpart.
Additionally, our results also showed that the survival of female little auks increased as
the length of stay of the mother in the brood increased. However the standard errors for
these parameters were large, meaning that these results were not really conclusive. We
recommended that further data should be collected in order to make conclusions regarding
the effect of the length of stay of the female in the brood on survival probability.

Chapters 4 and 5 were closely related and focused on the development of a spatially-
explicit integrated population (SE-IPM) model for spatial ring-recovery and spatial census
data. The complementary schemes through which the British Trust for Ornithology collect
data motivated this work.

Chapter 4 described and implemented the methodology needed to fit discrete SSMs for
population census data of different sizes. We directly compared two model fitting methodolo-
gies for discrete SSMs—the Kalman filter (KF) and hidden Markov models (HMMs). These
were implemented within a frequentist framework. Additionally we investigated the results
of King et al. (2008b), and Abadi et al. (2010), who used a Bayesian approach to fit similar
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SSMs. All the methods were revised in the context of an integrated population model (IPM),
as the SSMs model when fitted alone is parameter redundant. We compared our methods
using simulations for different sample sizes and found that if time-series containing small
counts are used, a systematic negative bias appears in the estimation of the productivity
parameter, 𝜌. Moreover, we found that this bias also appeared in the results of Abadi et al.
(2010), albeit to a lesser degree due to the larger data sizes considered in that case. We used
a non-stationary Poisson process to investigate the reason for this bias. We found that the
dependence on previous values in the time-series when small counts were used resulted in
the skewness of the distribution to the left. We concluded that this was the cause of the bias,
rather than the set up of the SSMs or the methods used to implement it. Additionally, the
bias was more pronounced when the KF was used to fit time-series data sets. The KF is
computationally faster than using HMMs. As the bias reduced when we increased the sample
size, we recommended to use the KF to fit time-series data when the average count size is
at least 40, and HMMs otherwise. However we warned that caution should be taken when
dealing with really small counts.

In the future, it would be advantageous to compare our results directly to those obtained
from fitting the same models using a Bayesian approach. Additionally, the effect on the
bias of adding additional data, such as nest data, should be further investigated. Finally,
theoretical methods that would allow to identify potential bias from time-series data sets
could be developed.

The SE-IPM presented in Chapter 5 combined several time-series data sets, of different
sizes. Thus, in Chapter 4 we also performed a simulation study to examine the effect on the
bias if several time-series data sets were combined, and these contained counts of different
sizes. We recommended that if time-series data sets with small counts are analysed, i.e. if
the counts are on average smaller than 40, these should be combined with larger data sets so
the bias issue is mitigated. The development of methods that can improve the bias issue is a
topic of future work.

In Chapter 5 we assembled an SE-IPM, which was formed from the combination of
spatially explicit ring-recovery and census data. To do this, we added spatial information in
the form of geographical coordinates and/or land cover data to the survival parameters of the
ring-recovery and the SSMs. To make the model more efficient and accurate, we combined
both HMMs and the KF to fit the several time-series data sets available for the spatial data.
We were able to do this following the recommendations of Chapter 4. To show how our
methods performed in practice we used data for starlings.

SE-IPMs are a relatively novel idea. The work of Chapter 5 focused on accommodating
spatially-explicit ring-recovery and census data at different spatial resolutions and for extreme
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cases when the time-series data were very sparse. Thus, we built the foundations for these
models, and several extensions are possible. In Chapter 5 we introduced the spatially-explicit
information in IPMs through the survival probabilities. Hence, one natural extension would
be to investigate the effect of adding spatial information to different parameters such as
productivity. Moreover for the census data we assumed that for each of the squares that were
fitted using HMMs, the initial distribution followed a Poisson distribution with mean 𝜇. To
avoid overparameterisation the estimate of 𝜇 was shared for all the squares. In the future,
alternatives to this limitation should be studies. For example, a distribution for 𝜇 could be
assumed, so the flexibility of the modelling framework increases.

For the SE-IPMs presented in Chapter 5 we included spatial information in the form of
geographical coordinates and land cover types. Further work should consider the addition
of alternative spatial/geographical information such as altitude or weather. Additionally,
besides ring-recovery and census data other demographic data, such as nest data, could be
incorporated to the models. This would not only improve our understanding of productivity
estimates, but also would enable the addition of spatial information to productivity rates.

SE-IPMs would really benefit from the addition of temporal components. These would
allow to identify time-trends in demographic parameters and would help us understand better
the demographic processes affecting animal populations. However, an in depth investigation
on the effects of using spatio-temporal components to analyse these types of data would
be needed. If the data are insufficient it might not be possible to describe both spatial and
temporal effects. Moreover, spatio-temporal correlation issues would need to be investigated
and dealt with.

These models are applicable to many bird species. Thus, it would be beneficial to develop
open access computer software which would make the implementation of SE-IPMs easier.
These models could impact conservation policies by helping experts better identify the
particular areas of a country where specific species are declining.
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Appendix A

Supporting Information for Chapter 2

This appendix provides data, and additional results to support the findings in Chapter 2.

A.1 Blackbird Data

Ring-recovery m-arrays for the blackbird data taken from Robinson et al. (2012). These data
are part of the BTO Ringing Scheme, which is funded by a partnership of the British Trust
for Ornithology, the Joint Nature Conservation Committee (on behalf of: Natural England,
Natural Resources Wales and Scottish Natural Heritage and the Department of Agriculture,
Environment and Rural Affairs (Northern Ireland)), The National Parks and Wildlife Service
(Ireland) and the ringers themselves. Table A.1 contains the ringing and recovery totals for
the birds ringed as pulli. Table A.2 contains the ringing and recovery totals for birds ringed
as juveniles and adults respectively.
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Table A.1 Ring-recovery data for pulli blackbirds for the years 1964-1983.

Year of Year of recovery Total
ringing 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ringed

Ringed as pulli

1964 52 15 10 2 8 5 3 1 0 1 0 0 0 0 0 0 0 0 0 0 2488
1965 74 30 14 18 7 12 2 1 3 1 1 0 0 0 0 0 0 0 0 3583
1966 78 29 20 11 4 4 2 0 2 1 0 1 0 0 0 0 0 0 4518
1967 67 22 12 4 7 4 2 2 1 4 1 2 0 0 0 0 0 4315
1968 101 30 10 8 8 6 3 6 1 1 1 0 0 0 0 0 4347
1969 81 27 10 11 10 4 1 3 1 3 1 0 0 1 0 4517
1970 58 15 8 5 4 4 3 2 0 0 1 1 0 0 3448
1971 55 19 11 10 6 6 5 3 0 1 1 0 0 3461
1972 67 21 14 6 7 6 1 0 2 2 0 1 3745
1973 54 26 6 8 2 4 2 1 0 1 1 3139
1974 42 17 5 9 3 1 1 3 0 0 2811
1975 57 12 8 4 2 5 0 0 1 3166
1976 58 15 10 5 8 2 3 2 3141
1977 64 13 7 7 4 3 1 3535
1978 60 21 8 10 9 1 3646
1979 62 15 11 4 9 3918
1980 54 15 8 9 3403
1981 57 18 8 3510
1982 41 14 2927
1983 70 4150
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Table A.2 Ring-recovery data for fledged blackbirds for the years 1964-1983.

Year of Year of recovery Total
ringing 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ringed

Ringed as juveniles

1964 114 39 17 12 10 12 8 5 3 3 0 0 0 0 0 0 0 0 0 0 4408
1965 93 26 31 19 16 6 7 3 6 1 1 0 0 0 1 0 0 0 0 4621
1966 70 32 19 20 8 5 4 4 2 1 1 1 0 0 0 0 0 0 4121
1967 85 34 21 25 13 11 4 2 4 3 0 2 0 0 0 0 0 5069
1968 75 30 34 18 16 8 11 5 6 2 1 0 0 0 0 0 5438
1969 76 30 28 25 20 9 7 5 5 2 2 0 0 0 0 5127
1970 61 27 23 21 13 6 7 4 3 2 0 0 0 0 4281
1971 53 34 15 14 11 10 4 8 1 1 0 0 0 3866
1972 74 21 17 14 11 8 9 6 3 1 1 0 4108
1973 81 28 25 19 14 13 9 6 5 2 2 4275
1974 67 16 11 11 11 10 2 1 0 0 3429
1975 71 33 17 15 7 6 1 5 0 4175
1976 68 28 17 11 13 5 8 4 4652
1977 82 34 23 13 9 7 3 5202
1978 74 30 13 15 8 7 4762
1979 75 29 17 17 13 5148
1980 61 35 24 13 5669
1981 62 31 22 5532
1982 59 36 5566
1983 99 6942

Ringed as adults

1964 39 18 19 8 9 3 0 2 5 0 0 0 0 0 0 0 0 0 0 0 1994
1965 44 23 16 15 16 4 6 1 1 0 0 1 0 0 0 0 0 0 0 2471
1966 32 27 10 11 10 6 3 4 1 1 0 0 0 0 0 0 0 0 2459
1967 42 29 24 12 10 6 4 4 4 3 0 0 0 0 0 0 0 3131
1968 38 31 15 14 11 4 6 5 1 0 0 0 0 0 0 0 2991
1969 62 29 18 20 15 12 8 4 2 2 0 0 0 0 0 3069
1970 47 25 21 20 18 7 3 3 0 2 0 0 0 0 3202
1971 32 39 20 15 11 13 3 2 4 0 0 0 0 3450
1972 38 28 25 20 14 9 3 3 0 0 1 0 3784
1973 42 33 24 17 10 7 5 1 1 0 0 3903
1974 35 28 26 16 11 3 6 2 0 0 3795
1975 37 25 15 10 9 10 4 4 0 5045
1976 36 31 19 12 8 6 1 2 4432
1977 41 23 17 15 11 2 2 4181
1978 38 16 18 13 10 8 4156
1979 41 31 28 7 9 4052
1980 50 38 23 16 4632
1981 48 26 30 4924
1982 25 21 4126
1983 41 4670
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A.2 Sandwich Tern Data

In this section we provide the ring-recovery m-arrays for sandwich tern data. These data
are part of the BTO Ringing Scheme, which is funded by a partnership of the British Trust
for Ornithology, the Joint Nature Conservation Committee (on behalf of: Natural England,
Natural Resources Wales and Scottish Natural Heritage and the Department of Agriculture,
Environment and Rural Affairs (Northern Ireland)), The National Parks and Wildlife Service
(Ireland) and the ringers themselves. Table A.3 contains the ringing and recovery totals for
birds ringed as pulli. Table A.4 contains the recovery totals for birds ringed as juveniles and
adults respectively. The total number of birds ringed in each age category are not known,
and are represented with a dash (-). Table A.5 contains the total number of birds ringed as
fledged birds (juveniles and adults).

Table A.3 Ring-recovery data for pulli sandwich terns for the years 1970-1990.

Year of Year of recovery Total
ringing 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ringed

Ringed as pulli

1970 23 17 1 1 4 7 1 1 2 1 2 3 1 1 1 2 2 2 4021
1971 17 7 7 5 6 4 3 1 2 2 4 1 0 0 0 1 1 2 3 4 3780
1972 24 10 4 1 2 1 0 0 1 0 2 2 0 1 0 1 0 1 2 3583
1973 18 15 1 4 4 2 3 4 4 1 2 0 1 3 0 0 2 1 3903
1974 17 6 2 1 3 4 3 4 3 0 2 1 0 0 2 2 5 3561
1975 24 10 5 3 4 0 3 2 1 0 2 2 2 2 1 4 3532
1976 15 10 2 4 2 0 1 0 1 1 0 1 1 0 0 2378
1977 18 3 7 1 1 0 1 1 0 0 0 0 0 1 2286
1978 10 12 4 4 2 5 2 2 0 2 2 1 4 3239
1979 14 2 0 1 1 0 1 1 1 1 0 2 2429
1980 18 6 4 7 6 5 3 2 0 3 6 4550
1981 17 13 4 3 3 2 3 0 2 2 4083
1982 17 7 6 2 1 2 1 3 2 4464
1983 19 10 2 2 3 2 1 4 3723
1984 8 7 3 5 2 3 6 3378
1985 4 6 4 1 1 6 2373
1986 6 7 3 3 6 3378
1987 5 5 4 4 1799
1988 7 4 3 1848
1989 4 5 2542
1990 12 2158
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Table A.4 Number of fledged sandwich terns recovered dead from 1970-1990. The number
of birds ringed for each category is not known. The total amount of birds ringed for the
fledged birds is given in Table A.5.

Year of Year of recovery Total
ringing 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ringed

Ringed as juveniles

1970 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1971 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1972 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1973 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1974 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1975 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1976 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1977 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1978 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1979 0 0 0 0 0 1 0 0 0 0 0 0 -
1980 0 0 0 0 0 0 0 0 0 0 0 -
1981 0 0 0 0 0 0 0 0 0 0 -
1982 0 0 0 0 0 0 0 0 1 -
1983 0 0 0 0 0 0 0 0 -
1984 0 2 0 0 0 0 0 -
1985 0 0 0 0 0 0 -
1986 2 2 0 0 1 -
1987 0 1 0 0 -
1988 0 0 0 -
1989 0 0 -
1990 1 -

Ringed as adults

1970 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1971 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1972 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1973 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1974 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1975 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1976 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1977 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1978 0 0 0 0 0 0 0 0 0 0 0 0 0 -
1979 0 0 1 0 0 0 0 0 0 0 0 0 -
1980 0 0 0 1 0 0 1 0 0 0 0 -
1981 1 0 0 0 0 0 0 1 0 0 -
1982 0 0 0 0 1 0 2 0 0 -
1983 0 1 0 1 0 0 0 0 -
1984 1 0 0 0 0 0 0 -
1985 0 0 0 0 0 0 -
1986 8 1 0 0 1 -
1987 0 2 0 0 -
1988 0 0 0 -
1989 0 0 -
1990 1 -
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A.3 Simulation Study for Populations with Homogeneous
Survival Probabilities

Simulation results for five, and 20 years of ring-recovery study for an homogeneous popu-
lation. Results for 10 years of simulation study are presented in the results section of the
main thesis. We also explain in this section how the length of the study affects the estimation
of the parameters for each of the models. In each simulation 100 data sets with constant
probabilities 𝜙1, 𝜙𝑎, and 𝜆 are simulated from the standard combined model with a total of
1000 birds ringed, with a constant proportion 𝜋 of these birds ringed as young and (1− 𝜋) of
the birds ringed as adults. We fit a model with separate constant survival probabilities for
first year and adult birds, 𝜙1, and 𝜙𝑎 respectively, and a constant reporting probability, 𝜆.

Table A.6 Simulation study for 20 years of ring-recovery study. The first column specifies
the type of model fitted, with Stand. Comb. short for standard combined, and Hist. short for
historical. In this first column, the last two rows contain information for the models in which
the proportion parameter was fixed and the values used. The remaining columns contain the
average parameter estimate (par est) and the average standard error, given in parentheses,
along with the mean squared error (MSE).

𝜙1 𝜙𝑎 𝜆 𝜋

par est MSE par est MSE par est MSE par est MSE
True Value 0.50 - 0.60 - 0.05 - 0.40 -

Stand. Comb. 0.50(0.03) 0.0006 0.60(0.01) 0.0002 0.05(0.002) 0.0000 - -
Hist. 0.50(0.03) 0.0006 0.60(0.01) 0.0002 0.05(0.002) 0.0000 0.40(0.02) 0.0002

Hist. 𝜋 = 0.40 0.50(0.03) 0.0006 0.60(0.01) 0.0002 0.05(0.002) 0.0000 - -
Hist. 𝜋 = 0.20 0.48(0.04) 0.0008 0.61(0.02) 0.0002 0.05(0.003) 0.0000 - -

Table A.7 Simulation study for five years of ring-recovery study. The first column specifies
the type of model fitted, with Stand. Comb. short for standard combined, and Hist. short for
historical. In this first column, the last two rows contain information for the models in which
the proportion parameter was fixed and the values used. The remaining columns contain the
average parameter estimate (par est) and the average standard error, given in parentheses,
along with the mean squared error (MSE).

𝜙1 𝜙𝑎 𝜆 𝜋

par est MSE par est MSE par est MSE par est MSE
True Value 0.50 - 0.60 - 0.05 - 0.40 -

Stand. Comb. 0.50(0.06) 0.0041 0.60(0.05) 0.0029 0.05(0.001) 0.0000 - -
Hist. 0.50(0.06) 0.0039 0.60(0.05) 0.0030 0.05(0.005) 0.0000 0.40(0.02) 0.0006

Hist. 𝜋 = 0.40 0.50(0.06) 0.0041 0.60(0.06) 0.0030 0.05(0.005) 0.0000 - -
Hist. 𝜋 = 0.20 0.63(0.11) 0.0541 0.81(0.07) 0.0673 0.05(0.200) 0.1432 - -
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A.4 Simulation Study for Populations with Heterogeneous
Adult Survival Probability

Simulation results for five, 10, and 20 years of ring-recovery study for heterogeneous
populations in terms of adult survival. For these studies, we fit a model with separate constant
survival probabilities for first year and adult birds, 𝜙1, and 𝜙𝑎 respectively, and a constant
reporting probability, 𝜆.

We provide two different types of heterogeneous populations, first we look at a population
in which adult survival 𝜙𝑎, 𝑖, varies individually, where 𝑖 denotes a logit-normal individual ran-
dom effect. We also simulate data for a population formed by two different sub-populations
with two different adult survival probabilities 𝜙𝑎, 𝐴, and 𝜙𝑎, 𝐵.

A.4.1 Simulation Study with Individual Variation in the Adult Sur-
vival Probability

In each simulation 100 data sets are simulated from the standard combined model with 1000
birds ringed, with a constant proportion 𝜋 of these birds ringed as young and (1− 𝜋) of the
birds ringed as adults. To simulate these data, we keep the first year survival probability, 𝜙1,
and the reporting probability, 𝜆 constant. The adult survival probability, 𝜙𝑎, 𝑖, varies according
to a logit-normal individual random effect 𝑖; logit(𝜙𝑎, 𝑖) = 𝛼 + 𝜖𝑖, with 𝜖𝑖 ∼ 𝑁 (0,𝜎2). The
true value of alpha is set to 0.405, and the mean value of 𝜙𝑎, 𝑖 is 0.60. We also set 𝜎2 to two
different values. In Tables (A.8, A.10, A.12) we show the results of using a logit-normal
individual random effect with 𝜎2 = 0.50, and in Tables (A.9, A.11, A.13) we show the results
of setting 𝜎2 to 1.

Table A.8 Simulation study for 20 years of ring-recovery study for a population with het-
erogeneous adult survival, where the adult survival probability, 𝜙𝑎, 𝑖 changes per individual
and 𝜎2 = 0.50. The first column specifies the type of model fitted, with Stand. Comb. short
for standard combined, and Hist. short for historical. In this first column, the last two rows
contain information for the models in which the proportion parameter was fixed and the
values used. The remaining columns contain the average parameter estimate (par est) and the
average standard error, given in parentheses, along with the mean squared error (MSE).

𝜙1 𝜙𝑎, 𝑖 𝜆 𝜋

par est MSE par est MSE par est MSE par est MSE
True Value 0.50 - 0.60 - 0.05 - 0.40 -

Stand. Comb. 0.50(0.06) 0.0006 0.60(0.01) 0.0002 0.05(0.002) 0.0000 - -
Hist. 0.50(0.06) 0.0006 0.60(0.01) 0.0002 0.05(0.002) 0.0000 0.40(0.02) 0.0002

Hist. 𝜋 = 0.40 0.50(0.06) 0.0006 0.60(0.01) 0.0002 0.05(0.002) 0.0000 - -
Hist. 𝜋 = 0.20 0.48(0.09) 0.0010 0.61(0.01) 0.0003 0.05(0.002) 0.0000 - -
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Table A.9 Simulation study for 20 years of ring-recovery study for a population with het-
erogeneous adult survival, where the adult survival probability, 𝜙𝑎, 𝑖 changes per individual
and 𝜎2 = 1. The first column specifies the type of model fitted, with Stand. Comb. short
for standard combined, and Hist. short for historical. In this first column, the last two rows
contain information for the models in which the proportion parameter was fixed and the
values used. The remaining columns contain the average parameter estimate (par est) and the
average standard error, given in parentheses, along with the mean squared error (MSE).

𝜙1 𝜙𝑎, 𝑖 𝜆 𝜋

par est MSE par est MSE par est MSE par est MSE
True Value 0.50 - 0.60 - 0.05 - 0.40 -

Stand. Comb. 0.49(0.03) 0.0009 0.62(0.01) 0.0008 0.05(0.002) 0.0000 - -
Hist. 0.49(0.03) 0.0009 0.62(0.01) 0.0008 0.05(0.002) 0.0000 0.40(0.02) 0.0003

Hist. 𝜋 = 0.40 0.49(0.03) 0.0009 0.62(0.01) 0.0008 0.05(0.002) 0.0000 - -
Hist. 𝜋 = 0.20 0.48(0.03) 0.0014 0.63(0.01) 0.0011 0.05(0.002) 0.0000 - -

Table A.10 Simulation study for 10 years of ring-recovery study for a population with
heterogeneous adult survival, where the adult survival probability, 𝜙𝑎, 𝑖 changes per individual
and 𝜎2 = 0.50. The first column specifies the type of model fitted, with Stand. Comb. short
for standard combined, and Hist. short for historical. In this first column, the last two rows
contain information for the models in which the proportion parameter was fixed and the
values used. The remaining columns contain the average parameter estimate (par est) and the
average standard error, given in parentheses, along with the mean squared error (MSE).

𝜙1 𝜙𝑎, 𝑖 𝜆 𝜋

par est MSE par est MSE par est MSE par est MSE
True Value 0.50 - 0.60 - 0.05 - 0.40 -

Stand. Comb. 0.49(0.04) 0.0015 0.60(0.02) 0.0004 0.05(0.002) 0.0000 - -
Hist. 0.49(0.04) 0.0015 0.60(0.02) 0.0004 0.05(0.002) 0.0000 0.40(0.02) 0.0006

Hist. 𝜋 = 0.40 0.49(0.04) 0.0016 0.60(0.02) 0.0004 0.05(0.002) 0.0000 - -
Hist. 𝜋 = 0.20 0.46(0.04) 0.0032 0.62(0.03) 0.0011 0.05(0.003) 0.0000 - -
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Table A.11 Simulation study for 10 years of ring-recovery study for a population with
heterogeneous adult survival, where the adult survival probability, 𝜙𝑎, 𝑖 changes per individual
and 𝜎2 = 1. The first column specifies the type of model fitted, with Stand. Comb. short
for standard combined, and Hist. short for historical. In this first column, the last two rows
contain information for the models in which the proportion parameter was fixed and the
values used. The remaining columns contain the average parameter estimate (par est) and the
average standard error, given in parentheses, along with the mean squared error (MSE).

𝜙1 𝜙𝑎, 𝑖 𝜆 𝜋

par est MSE par est MSE par est MSE par est MSE
True Value 0.50 - 0.60 - 0.05 - 0.40 -

Stand. Comb. 0.48(0.04) 0.0024 0.58(0.03) 0.0011 0.05(0.002) 0.0000 - -
Hist. 0.48(0.04) 0.0023 0.58(0.03) 0.0011 0.05(0.002) 0.0000 0.40(0.02) 0.0006

Hist. 𝜋 = 0.40 0.48(0.04) 0.0024 0.58(0.03) 0.0011 0.05(0.002) 0.0000 - -
Hist. 𝜋 = 0.20 0.45(0.04) 0.0048 0.61(0.03) 0.0009 0.05(0.002) 0.0000 - -

Table A.12 Simulation study for five years of ring-recovery study for a population with
heterogeneous adult survival, where the adult survival probability, 𝜙𝑎, 𝑖 changes per individual
and 𝜎2 = 0.50. The first column specifies the type of model fitted, with Stand. Comb. short
for standard combined, and Hist. short for historical. In this first column, the last two rows
contain information for the models in which the proportion parameter was fixed and the
values used. The remaining columns contain the average parameter estimate (par est) and the
average standard error, given in parentheses, along with the mean squared error (MSE).

𝜙1 𝜙𝑎, 𝑖 𝜆 𝜋

par est MSE par est MSE par est MSE par est MSE
True Value 0.50 - 0.60 - 0.05 - 0.40 -

Stand. Comb. 0.48(0.06) 0.0040 0.58(0.06) 0.0038 0.05(0.005) 0.0000 - -
Hist. 0.48(0.06) 0.0041 0.58(0.06) 0.0037 0.05(0.005) 0.0000 0.40(0.04) 0.0012

Hist. 𝜋 = 0.40 0.49(0.06) 0.0040 0.58(0.06) 0.0037 0.05(0.005) 0.0000 - -
Hist. 𝜋 = 0.20 0.55(0.10) 0.0319 0.75(0.07) 0.0468 0.16(0.089) 0.0780 - -

Table A.13 Simulation study for five years of ring-recovery study for a population with
heterogeneous adult survival, where the adult survival probability, 𝜙𝑎, 𝑖 changes per individual
and 𝜎2 = 1. The first column specifies the type of model fitted, with Stand. Comb. short
for standard combined, and Hist. short for historical. In this first column, the last two rows
contain information for the models in which the proportion parameter was fixed and the
values used. The remaining columns contain the average parameter estimate (par est) and the
average standard error, given in parentheses, along with the mean squared error (MSE).

𝜙1 𝜙𝑎, 𝑖 𝜆 𝜋

par est MSE par est MSE par est MSE par est MSE
True Value 0.50 - 0.60 - 0.05 - 0.40 -

Stand. Comb. 0.46(0.06) 0.0046 0.53(0.05) 0.0086 0.05(0.004) 0.0000 - -
Hist. 0.46(0.06) 0.0048 0.53(0.05) 0.0090 0.05(0.004) 0.0000 0.41(0.04) 0.0018

Hist. 𝜋 = 0.40 0.46(0.06) 0.0046 0.53(0.05) 0.0086 0.05(0.004) 0.0000 - -
Hist. 𝜋 = 0.20 0.51(0.09) 0.0328 0.68(0.07) 0.0388 0.05(0.099) 0.0068 - -
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A.4.2 Simulation Study for two Populations with Different Constant
Adult Survival Probabilities

For each study we generate data for two sub-populations that have the same constant first year
probability 𝜙1, and reporting probability 𝜆, but a different constant adult survival probability.
Then we merge these data together into a data set of 2000 ringed birds with heterogeneous
adult survival. We simulate two sets of 100 data sets from the standard combined model with
1000 birds ringed in each set, with a similar constant proportion 𝜋 of these birds ringed as
young and (1− 𝜋) of the birds ringed as adults. Each of these two sets of 100 data sets, have
the same constant first year survival probability, and the same reporting probability, but each
of them have a different constant adult survival probability 𝜙𝑎.

We provide results for five, 10 and 20 years of ring-recovery studies, and three case
scenarios in which the two sub-populations have different adult survival probabilities. The
first population is formed by two sub-populations with adult survival probabilities of 0.4 and
0.7 respectively, the second has two adult survival probabilities of 0.4 and 0.8, and finally
the last heterogeneous population has adult survival probabilities of 0.3 and 0.8 for each
sub-population.

Table A.14 Simulation study for 20 years of ring-recovery study for a population with
heterogeneous adult survival, where there are two different adult survival probabilities,
𝜙𝑎, 𝐴 = 0.40 and 𝜙𝑎, 𝐵 = 0.70. The first column specifies the type of model fitted, The first
column specifies the type of model, with Stand. Comb. short for standard combined, and
Hist. short for historical. In this first column, the last two rows contain information for the
models in which the proportion parameter was fixed and the values used. The remaining
columns contain the average parameter estimate (par est) and the average standard error,
given in parentheses, along with the mean squared error (MSE).

𝜙1 𝜙𝑎, 𝐴, 𝜙𝑎, 𝐵 𝜆 𝜋

par est MSE par est par est MSE par est MSE
True Value 0.50 - 0.40, 0.70 0.05 - 0.40 -

Stand. Comb. 0.50(0.02) 0.0003 0.58(0.01) 0.05(0.001) 0.0000 - -
Hist. 0.50(0.02) 0.0003 0.58(0.01) 0.05(0.001) 0.0000 0.40(0.01) 0.0001

Hist. 𝜋 = 0.40 0.50(0.02) 0.0004 0.58(0.01) 0.05(0.001) 0.0000 - -
Hist. 𝜋 = 0.20 0.49(0.02) 0.0006 0.59(0.01) 0.05(0.001) 0.0000 - -
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Table A.15 Simulation study for 20 years of ring-recovery study for a population with
heterogeneous adult survival, where there are two different adult survival probabilities,
𝜙𝑎, 𝐴 = 0.40 and 𝜙𝑎, 𝐵 = 0.80. The first column specifies the type of model fitted, with Stand.
Comb. short for standard combined, and Hist. short for historical. In this first column, the
last two rows contain information for the models in which the proportion parameter was
fixed and the values used. The remaining columns contain the average parameter estimate
(par est) and the average standard error, given in parentheses, along with the mean squared
error (MSE).

𝜙1 𝜙𝑎, 𝐴, 𝜙𝑎, 𝐵 𝜆 𝜋

par est MSE par est par est MSE par est MSE
True Value 0.50 - 0.40, 0.80 0.05 - 0.40 -

Stand. Comb. 0.49(0.02) 0.0004 0.66(0.01) 0.05(0.001) 0.0000 - -
Hist. 0.49(0.02) 0.0004 0.66(0.01) 0.05(0.001) 0.0000 0.40(0.01) 0.0001

Hist. 𝜋 = 0.40 0.49(0.02) 0.0004 0.66(0.01) 0.05(0.001) 0.0000 - -
Hist. 𝜋 = 0.20 0.47(0.02) 0.0010 0.66(0.01) 0.05(0.001) 0.0000 - -

Table A.16 Simulation study for 20 years of ring-recovery study for a population with
heterogeneous adult survival, where there are two different adult survival probabilities,
𝜙𝑎, 𝐴 = 0.30 and 𝜙𝑎, 𝐵 = 0.80. The first column specifies the type of model fitted, with Stand.
Comb. short for standard combined, and Hist. short for historical. In this first column, the
last two rows contain information for the models in which the proportion parameter was
fixed and the values used. The remaining columns contain the average parameter estimate
(par est) and the average standard error, given in parentheses, along with the mean squared
error (MSE).

𝜙1 𝜙𝑎, 𝐴, 𝜙𝑎, 𝐵 𝜆 𝜋

par est MSE par est par est MSE par est MSE
True Value 0.50 - 0.30, 0.80 0.05 - 0.40 -

Stand. Comb. 0.49(0.02) 0.0004 0.64(0.01) 0.05(0.001) 0.0000 - -
Hist. 0.49(0.02) 0.0004 0.64(0.01) 0.05(0.001) 0.0000 0.40(0.01) 0.0001

Hist. 𝜋 = 0.40 0.49(0.02) 0.0004 0.64(0.01) 0.05(0.001) 0.0000 - -
Hist. 𝜋 = 0.20 0.48(0.02) 0.0008 0.64(0.01) 0.05(0.001) 0.0000 - -
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Table A.17 Simulation study for 10 years of ring-recovery study study for a population
with heterogeneous adult survival, where there are two different adult survival probabilities,
𝜙𝑎, 𝐴 = 0.40 and 𝜙𝑎, 𝐵 = 0.70. The first column specifies the type of model fitted, with Stand.
Comb. short for standard combined, and Hist. short for historical. In this first column, the
last two rows contain information for the models in which the proportion parameter was
fixed and the values used. The remaining columns contain the average parameter estimate
(par est) and the average standard error, given in parentheses, along with the mean squared
error (MSE).

𝜙1 𝜙𝑎, 𝐴, 𝜙𝑎, 𝐵 𝜆 𝜋

par est MSE par est par est MSE par est MSE
True Value 0.50 - 0.40,0.70 0.05 - 0.40 -

Stand. Comb. 0.50(0.03) 0.0008 0.56(0.02) 0.05(0.002) 0.0000 - -
Hist. 0.50(0.03) 0.0008 0.56(0.02) 0.05(0.002) 0.0000 0.40(0.02) 0.0004

Hist. 𝜋 = 0.40 0.50(0.03) 0.0007 0.56(0.02) 0.05(0.002) 0.0000 - -
Hist. 𝜋 = 0.20 0.47(0.03) 0.0007 0.58(0.02) 0.05(0.002) 0.0000 - -

Table A.18 Simulation study for 10 years of ring-recovery study for a population with
heterogeneous adult survival, where there are two different adult survival probabilities,
𝜙𝑎, 𝐴 = 0.40 and 𝜙𝑎, 𝐵 = 0.80. The first column specifies the type of model fitted, with Stand.
Comb. short for standard combined, and Hist. short for historical. In this first column, the
last two rows contain information for the models in which the proportion parameter was
fixed and the values used. The remaining columns contain the average parameter estimate
(par est) and the average standard error, given in parentheses, along with the mean squared
error (MSE).

𝜙1 𝜙𝑎, 𝐴, 𝜙𝑎, 𝐵 𝜆 𝜋

par est MSE par est par est MSE par est MSE
True Value 0.50 - 0.40,0.80 0.05 - 0.40 -

Stand. Comb. 0.48(0.03) 0.0010 0.60(0.02) 0.05(0.002) 0.0000 - -
Hist. 0.48(0.03) 0.0010 0.60(0.02) 0.05(0.002) 0.0000 0.41(0.02) 0.0005

Hist. 𝜋 = 0.40 0.48(0.03) 0.0010 0.61(0.02) 0.05(0.002) 0.0000 - -
Hist. 𝜋 = 0.20 0.45(0.03) 0.0033 0.63(0.02) 0.05(0.002) 0.0000 - -



A.4 Simulation Study for Populations with Heterogeneous Adult Survival Probability 151

Table A.19 Simulation study for 10 years of ring-recovery study for a population with
heterogeneous adult survival, where there are two different adult survival probabilities,
𝜙𝑎, 𝐴 = 0.30 and 𝜙𝑎, 𝐵 = 0.80. The first column specifies the type of model fitted, with Stand.
Comb. short for standard combined, and Hist. short for historical. In this first column, the
last two rows contain information for the models in which the proportion parameter was
fixed and the values used. The remaining columns contain the average parameter estimate
(par est) and the average standard error, given in parentheses, along with the mean squared
error (MSE).

𝜙1 𝜙𝑎, 𝐴, 𝜙𝑎, 𝐵 𝜆 𝜋

par est MSE par est par est MSE par est MSE
True Value 0.50 - 0.30,0.80 0.05 - 0.40 -

Stand. Comb. 0.48(0.03) 0.0013 0.57(0.02) 0.05(0.002) 0.0000 - -
Hist. 0.48(0.03) 0.0013 0.57(0.02) 0.05(0.002) 0.0000 0.41(0.02) 0.0004

Hist. 𝜋 = 0.40 0.48(0.03) 0.0014 0.57(0.02) 0.05(0.002) 0.0000 - -
Hist. 𝜋 = 0.20 0.44(0.03) 0.0039 0.58(0.02) 0.05(0.002) 0.0000 - -

Table A.20 Simulation study for five years of ring-recovery study for a population with
heterogeneous adult survival, where there are two different adult survival probabilities,
𝜙𝑎, 𝐴 = 0.40 and 𝜙𝑎, 𝐵 = 0.70. The first column specifies the type of model fitted, with Stand.
Comb. short for standard combined, and Hist. short for historical. In this first column, the
last two rows contain information for the models in which the proportion parameter was
fixed and the values used. The remaining columns contain the average parameter estimate
(par est) and the average standard error, given in parentheses, along with the mean squared
error (MSE).

𝜙1 𝜙𝑎, 𝐴, 𝜙𝑎, 𝐵 𝜆 𝜋

par est MSE par est par est MSE par est MSE
True Value 0.50 - 0.40,0.70 0.05 - 0.40 -

Stand. Comb. 0.48(0.04) 0.0021 0.53(0.04) 0.05(0.003) 0.0000 - -
Hist. 0.48(0.04) 0.0021 0.53(0.04) 0.05(0.003) 0.0000 0.40(0.02) 0.0008

Hist. 𝜋 = 0.40 0.48(0.04) 0.0021 0.53(0.04) 0.05(0.003) 0.0000 - -
Hist. 𝜋 = 0.20 0.45(0.05) 0.0077 0.63(0.05) 0.06(0.017) 0.0031 - -
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Table A.21 Simulation study for five years of ring-recovery study study for a population
with heterogeneous adult survival, where there are two different adult survival probabilities,
𝜙𝑎, 𝐴 and 𝜙𝑎, 𝐵. The first column specifies the type of model fitted, with Stand. Comb. short
for standard combined, and Hist. short for historical. In this first column, the last two rows
contain information for the models in which the proportion parameter was fixed and the
values used. The remaining columns contain the average parameter estimate (par est) and the
average standard error, given in parentheses, along with the mean squared error (MSE).

𝜙1 𝜙𝑎, 𝐴, 𝜙𝑎, 𝐵 𝜆 𝜋

par est MSE par est par est MSE par est MSE
True Value 0.50 - 0.40,0.80 0.05 - 0.40 -

Stand. Comb. 0.46(0.04) 0.0031 0.55(0.04) 0.05(0.003) 0.0000 - -
Hist. 0.47(0.04) 0.0028 0.54(0.04) 0.05(0.003) 0.0000 0.42(0.03) 0.0011

Hist. 𝜋 = 0.40 0.46(0.04) 0.0030 0.55(0.04) 0.05(0.003) 0.0000 - -
Hist. 𝜋 = 0.20 0.50(0.08) 0.0237 0.70(0.07) 0.11(0.06) 0.0385 - -

Table A.22 Simulation study for five years of ring-recovery study for a population with
heterogeneous adult survival, where there are two different adult survival probabilities, 𝜙𝑎, 𝐴
and 𝜙𝑎, 𝐵. The first column specifies the type of model fitted, with Stand. Comb. short for
standard combined, and Hist. short for historical. In this first column, the last two rows
contain information for the models in which the proportion parameter was fixed and the
values used. The remaining columns contain the average parameter estimate (par est) and the
average standard error, given in parentheses, along with the mean squared error (MSE).

𝜙1 𝜙𝑎, 𝐴, 𝜙𝑎, 𝐵 𝜆 𝜋

par est MSE par est par est MSE par est MSE
True Value 0.50 - 0.30,0.80 0.05 - 0.40 -

Stand. Comb. 0.45(0.04) 0.0046 0.49(0.04) 0.04(0.003) 0.0000 - -
Hist. 0.46(0.04) 0.0042 0.49(0.04) 0.04(0.003) 0.0000 0.42(0.03) 0.0010

Hist. 𝜋 = 0.40 0.45(0.04) 0.0046 0.49(0.05) 0.04(0.003) 0.0000 - -
Hist. 𝜋 = 0.20 0.42(0.05) 0.0139 0.58(0.05) 0.06(0.017) 0.0120 - -
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A.5 Blackbird Results

Here, we provide the parameter estimates results for the models selected in Tables 2.5 and
2.6 where the historical and the historical combined models were compared (in terms of the
ranking obtaining when model selection was performed) to their equivalent standard models.

A.5.1 Results from Table 2.5

Tables A.23-A.25 present the results for the standard combined models, and Tables A.26-A.31
present the results for the historical models for the blackbird data.

The results in Table A.23 compare to those in Tables A.26 and A.28. In these, both
survival parameters are kept constant, and the reporting probability has a time dependency.
The results provided by the standard combined and the historical models are identical in this
case.

The results in Table A.24 compare to those in Tables A.27 and A.29. In these, first-
year survival is kept constant, and both the adult survival and the reporting probabilities
have time dependencies. The results provided by the standard combined and the historical
models are fairly similar. However, in the case of the historical model 𝜙𝑎,1 gets slightly
underestimated when the proportion parameter is time dependent. This is happening as 𝜋1 is
being overestimated in this case, with its real value fixed at 0.72.

The results in Table A.25 compare to those in Tables A.30 and A.31. In these, adult
survival is kept constant, and both the first-year survival and the reporting probabilities
have time dependencies. Here the results for the historical models show some evidence of
near-parameter redundancy which can be noticed by the large standard errors obtained for
𝜙1,1 in both Tables A.30 and A.31, and the large standard error obtained for 𝜋1 in Table A.31.
Moreover, in Table A.31, the parameter 𝜋1 is underestimated compared to its real value of
0.72.

The bias in the estimation of the survival parameters and the large standard errors are not
surprising since the blackbird data contains a lot of 𝑅𝑖,𝑡 = 0. In Section 1.2.4, we described
that having several 𝑅𝑖,𝑡 = 0 can cause near-redundancy issues.
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Standard Combined Model

Table A.23 Estimates of survival and reporting probabilities for the blackbird data for the
standard combined model with juvenile and adult data for the model with parameters: 𝜙1, 𝜙𝑎,
𝜆𝑡 . Standard errors are provided in parentheses.

year 𝜙1 𝜙𝑎 𝜆𝑡

1 0.6055(0.0087) 0.7043(0.0051) 0.0656(0.0054)
2 0.0517(0.0037)
3 0.0412(0.0030)
4 0.0442(0.0028)
5 0.0393(0.0025)
6 0.0460(0.0026)
7 0.0410(0.0024)
8 0.0379(0.0023)
9 0.0458(0.0025)

10 0.0422(0.0023)
11 0.0422(0.0024)
12 0.0381(0.0022)
13 0.0377(0.0021)
14 0.0350(0.0020)
15 0.0347(0.0020)
16 0.0324(0.0019)
17 0.0305(0.0018)
18 0.0312(0.0018)
19 0.0269(0.0017)
20 0.0316(0.0017)
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Table A.24 Estimates of survival and reporting probabilities for the blackbird data for the
standard combined model with juvenile and adult data for the model with parameters: 𝜙1,
𝜙𝑎,𝑡 , 𝜆𝑡 . Standard errors are provided in parentheses.

year 𝜙1 𝜙𝑎,𝑡 𝜆𝑡

1 0.6073(0.0092) 0.7059(0.0468) 0.0659(0.0060)
2 0.7094(0.0330) 0.0522(0.0048)
3 0.7352(0.0307) 0.0440(0.0046)
4 0.7058(0.0291) 0.0437(0.0041)
5 0.6671(0.0300) 0.0359(0.0033)
6 0.6766(0.0267) 0.0439(0.0038)
7 0.7153(0.0262) 0.0434(0.0041)
8 0.7202(0.0274) 0.0401(0.0041)
9 0.7152(0.0270) 0.047(0.0046)

10 0.7444(0.0267) 0.0467(0.0047)
11 0.7803(0.0246) 0.0515(0.0055)
12 0.7149(0.0344) 0.0361(0.0043)
13 0.6271(0.0372) 0.0293(0.0033)
14 0.6891(0.0343) 0.0343(0.0038)
15 0.6641(0.0370) 0.0322(0.0037)
16 0.7064(0.0330) 0.0342(0.0038)
17 0.6715(0.0334) 0.029(0.0031)
18 0.6827(0.0346) 0.0309(0.0033)
19 0.6828(0.0437) 0.0268(0.0033)
20 0.7408(0.0358) 0.0363(0.0037)
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Table A.25 Estimates of survival and reporting probabilities for the blackbird data for the
standard combined model with juvenile and adult data for the model with parameters: 𝜙1,𝑡 ,
𝜙𝑎, 𝜆𝑡 . Standard errors are provided in parentheses.

year 𝜙1,𝑡 𝜙𝑎 𝜆𝑡

1 0.6102(0.0719) 0.7046(0.0052) 0.0662(0.0106)
2 0.6056(0.0425) 0.0517(0.0042)
3 0.5442(0.0690) 0.0402(0.0030)
4 0.6165(0.0367) 0.0444(0.0029)
5 0.6367(0.0365) 0.0397(0.0025)
6 0.6307(0.0352) 0.0462(0.0026)
7 0.6395(0.0366) 0.0410(0.0024)
8 0.6323(0.0391) 0.0379(0.0023)
9 0.6107(0.0350) 0.0458(0.0025)

10 0.5608(0.0364) 0.0422(0.0023)
11 0.5427(0.0391) 0.0425(0.0024)
12 0.5705(0.0387) 0.0380(0.0022)
13 0.6400(0.0356) 0.0378(0.0021)
14 0.5815(0.0365) 0.0349(0.0020)
15 0.6191(0.0350) 0.0347(0.0020)
16 0.6008(0.0363) 0.0324(0.0019)
17 0.6299(0.0388) 0.0306(0.0018)
18 0.6147(0.0390) 0.0312(0.0018)
19 0.6503(0.0370) 0.0270(0.0017)
20 0.5665(0.0346) 0.0314(0.0017)
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Historical Model

Table A.26 Estimates of survival and reporting probabilities for the blackbird data for the
historical model with data for fledged birds for the model with parameters: 𝜙1, 𝜙𝑎, 𝜆𝑡 , 𝜋𝑡 .
Standard errors are provided in parentheses.

year 𝜙1 𝜙𝑎 𝜆𝑡 𝜋𝑡

1 0.6107(0.0087) 0.7022(0.0052) 0.0661(0.0054) 0.6909(0.0400)
2 0.0516(0.0037) 0.6519(0.0351)
3 0.0411(0.0030) 0.5890(0.0362)
4 0.0441(0.0028) 0.6180(0.0308)
5 0.0394(0.0025) 0.5987(0.0307)
6 0.0460(0.0026) 0.5377(0.0278)
7 0.0406(0.0024) 0.5935(0.0289)
8 0.0376(0.0023) 0.5792(0.0301)
9 0.0454(0.0025) 0.5704(0.0270)
10 0.0420(0.0023) 0.5678(0.0277)
11 0.0419(0.0024) 0.5251(0.0282)
12 0.0377(0.0022) 0.5212(0.0286)
13 0.0377(0.0021) 0.5460(0.0280)
14 0.0351(0.0020) 0.5725(0.0283)
15 0.0347(0.0020) 0.6211(0.0278)
16 0.0325(0.0019) 0.6114(0.0287)
17 0.0306(0.0018) 0.5105(0.0296)
18 0.0312(0.0018) 0.4973(0.0288)
19 0.0270(0.0017) 0.6205(0.0300)
20 0.0317(0.0017) 0.6026(0.0271)
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Table A.27 Estimates of survival and reporting probabilities for the blackbird data for the
historical model with data for fledged birds for the model with parameters: 𝜙1, 𝜙𝑎,𝑡 , 𝜆𝑡 , 𝜋𝑡 .
Standard errors are provided in parentheses.

year 𝜙1 𝜙𝑎,𝑡 𝜆𝑡 𝜋𝑡

1 0.6146(0.0093) 0.5385(0.0760) 0.0594(0.0053) 0.7778(0.0431)
2 0.6989(0.0421) 0.0533(0.0059) 0.6331(0.0449)
3 0.7663(0.0357) 0.0496(0.0065) 0.5425(0.0449)
4 0.6960(0.0345) 0.0427(0.0044) 0.6204(0.0344)
5 0.6413(0.0354) 0.0342(0.0035) 0.6183(0.0324)
6 0.7010(0.0308) 0.0476(0.0049) 0.5306(0.0309)
7 0.7102(0.0289) 0.0425(0.0043) 0.5856(0.0313)
8 0.7153(0.0291) 0.0393(0.0042) 0.5720(0.0324)
9 0.7066(0.0289) 0.0459(0.0046) 0.5683(0.0292)
10 0.7378(0.0294) 0.0460(0.0050) 0.5546(0.0308)
11 0.7877(0.0259) 0.0530(0.0061) 0.4942(0.0318)
12 0.7208(0.0335) 0.0366(0.0042) 0.5244(0.0316)
13 0.6369(0.0369) 0.0301(0.0033) 0.5725(0.0294)
14 0.7016(0.0366) 0.0352(0.0042) 0.5719(0.0315)
15 0.6324(0.0380) 0.0297(0.0033) 0.6385(0.0290)
16 0.6803(0.0366) 0.0326(0.0037) 0.6110(0.0312)
17 0.6953(0.0362) 0.0317(0.0037) 0.5059(0.0328)
18 0.7220(0.0358) 0.0343(0.0041) 0.4844(0.0324)
19 0.6666(0.0482) 0.0251(0.0032) 0.6288(0.0323)
20 0.7618(0.0387) 0.0386(0.0046) 0.5729(0.0328)
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Table A.28 Estimates of survival and reporting probabilities for the blackbird data for the
historical model with data for fledged birds for the model with parameters: 𝜙1, 𝜙𝑎, 𝜆𝑡 , 𝜋.
Standard errors are provided in parentheses.

year 𝜙1 𝜙𝑎 𝜆𝑡 𝜋

1 0.6066(0.0086) 0.7040(0.0051) 0.0678(0.0055) 0.5750(0.0067)
2 0.0521(0.0038)
3 0.0412(0.0030)
4 0.0443(0.0028)
5 0.0395(0.0025)
6 0.0460(0.0026)
7 0.0407(0.0024)
8 0.0376(0.0023)
9 0.0455(0.0025)
10 0.0420(0.0023)
11 0.0419(0.0024)
12 0.0377(0.0021)
13 0.0377(0.0021)
14 0.0351(0.0020)
15 0.0347(0.0020)
16 0.0325(0.0019)
17 0.0305(0.0018)
18 0.0312(0.0018)
19 0.0270(0.0017)
20 0.0317(0.0017)
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Table A.29 Estimates of survival and reporting probabilities for the blackbird data for the
historical model with data for fledged birds for the model with parameters: 𝜙1, 𝜙𝑎,𝑡 , 𝜆𝑡 , 𝜋.
Standard errors are provided in parentheses.

year 𝜙1 𝜙𝑎,𝑡 𝜆𝑡 𝜋

1 0.6103(0.0092) 0.7580(0.0451) 0.0729(0.0074) 0.5733(0.0068)
2 0.7209(0.0356) 0.0534(0.0055)
3 0.7366(0.0311) 0.0439(0.0049)
4 0.7083(0.0330) 0.0436(0.0043)
5 0.6615(0.0281) 0.0352(0.0036)
6 0.6810(0.0263) 0.0443(0.0041)
7 0.7167(0.0263) 0.0433(0.0042)
8 0.7197(0.0265) 0.0396(0.0040)
9 0.7133(0.0257) 0.0464(0.0043)
10 0.7415(0.0254) 0.0460(0.0044)
11 0.7643(0.0236) 0.0481(0.0047)
12 0.7017(0.0294) 0.0351(0.0035)
13 0.6386(0.0332) 0.0309(0.0031)
14 0.6909(0.0329) 0.0347(0.0037)
15 0.6628(0.0351) 0.0322(0.0035)
16 0.7069(0.0324) 0.0344(0.0037)
17 0.6716(0.0327) 0.0291(0.0030)
18 0.6755(0.0337) 0.0304(0.0031)
19 0.6879(0.0428) 0.0273(0.0033)
20 0.7562(0.0339) 0.0382(0.0039)
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Table A.30 Estimates of survival and reporting probabilities for the blackbird data for the
historical model with data for fledged birds for the model with parameters: 𝜙1,𝑡 , 𝜙𝑎, 𝜆𝑡 , 𝜋.
Standard errors are provided in parentheses.

year 𝜙1,𝑡 𝜙𝑎 𝜆𝑡 𝜋

1 0.3474(0.1231) 0.7027(0.0052) 0.0477(0.0077) 0.5716(0.0068)
2 0.5732(0.0443) 0.0507(0.0040)
3 0.5388(0.0472) 0.0400(0.0030)
4 0.6125(0.0371) 0.0443(0.0029)
5 0.6215(0.0373) 0.0395(0.0025)
6 0.6278(0.0354) 0.0461(0.0026)
7 0.6619(0.0356) 0.0408(0.0024)
8 0.6674(0.0374) 0.0376(0.0023)
9 0.6399(0.0340) 0.0456(0.0025)
10 0.5821(0.0361) 0.0419(0.0023)
11 0.5786(0.0386) 0.0419(0.0024)
12 0.6153(0.0373) 0.0377(0.0022)
13 0.6401(0.0357) 0.0378(0.0021)
14 0.5635(0.0370) 0.0350(0.0020)
15 0.6149(0.0352) 0.0347(0.0020)
16 0.5874(0.0368) 0.0325(0.0019)
17 0.6246(0.0391) 0.0306(0.0018)
18 0.6217(0.0388) 0.0312(0.0018)
19 0.6372(0.0377) 0.0270(0.0017)
20 0.5465(0.0350) 0.0315(0.0017)
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Table A.31 Estimates of survival and reporting probabilities for the blackbird data for the
historical model with data for fledged birds for the model with parameters: 𝜙1,𝑡 , 𝜙𝑎, 𝜆𝑡 , 𝜋𝑡 .
Standard errors are provided in parentheses.

year 𝜙1,𝑡 𝜙𝑎 𝜆𝑡 𝜋𝑡

1 0.3724(3.1190) 0.7023(0.0052) 0.0488(0.1408) 0.5810(1.2104)
2 0.6085(0.0454) 0.0516(0.0042) 0.6512(0.0375)
3 0.5404(0.0481) 0.0400(0.0030) 0.5778(0.0373)
4 0.6230(0.0372) 0.0443(0.0029) 0.6199(0.0313)
5 0.6258(0.0374) 0.0395(0.0025) 0.6003(0.0309)
6 0.6245(0.0357) 0.0461(0.0026) 0.5386(0.0279)
7 0.6625(0.0356) 0.0407(0.0024) 0.5944(0.0289)
8 0.6672(0.0374) 0.0376(0.0023) 0.5796(0.0301)
9 0.6400(0.0340) 0.0456(0.0025) 0.5712(0.0270)
10 0.5821(0.0361) 0.0419(0.0023) 0.5671(0.0277)
11 0.5795(0.0386) 0.0419(0.0024) 0.5255(0.0281)
12 0.6105(0.0376) 0.0377(0.0022) 0.5211(0.0286)
13 0.6389(0.0357) 0.0378(0.0021) 0.5469(0.0279)
14 0.5635(0.0371) 0.0350(0.0020) 0.5711(0.0283)
15 0.6157(0.0352) 0.0347(0.0020) 0.6211(0.0278)
16 0.5883(0.0367) 0.0325(0.0019) 0.6111(0.0287)
17 0.6203(0.0393) 0.0306(0.0018) 0.5109(0.0296)
18 0.6175(0.0390) 0.0312(0.0018) 0.4975(0.0288)
19 0.6373(0.0377) 0.0270(0.0017) 0.6206(0.0300)
20 0.5487(0.0350) 0.0315(0.0017) 0.5998(0.0272)
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A.5.2 Results from Table 2.6

Tables A.32-A.35 present the results for the standard combined models, and Tables A.37-A.41
present the results for the historical combined models for the blackbird data.

The results in Table A.32 compare to those in Tables A.37 and A.39. In these, both
survival parameters are kept constant, and the reporting probability has a time and and age
dependency. The results provided by the standard combined and the historical models are
similar in this case. However, the parameter estimate for 𝜙1,1 is lower in both historical
combined models. For the model in Table A.39, where the proportion parameter is time-
dependent, the standard error for 𝜆𝑎,1 is very high. Moreover 𝜙1 is also overestimated. This is
caused by the sparse blackbird data.

The results in Table A.33 compare to those in Table A.36. In these, adult survival is
kept constant, and the first-year survival and reporting probabilities have time dependencies.
Again, for the historical model the survival parameter 𝜙1,1 is underestimated and it has a large
standard error.

The results in Table A.34 compare to those in A.38 and A.40. In these, both survival
parameters are kept constant, and the reporting probability has a time dependency. The
results provided by the standard combined and the historical combined models are identical
in this case. These models do not show any sign of near-redundancy and that is probably
because there are less parameters in these models compared to those described above.

The results in Table A.35 compare to those in Table A.41. In these, first-year survival
is kept constant, and the adult survival and reporting probabilities have time dependencies.
The results provided by the standard combined and the historical combined models are fairly
similar. However, in the case of the historical combined model 𝜙𝑎,1 gets underestimated. This
is happening as 𝜋1 is being slightly overestimated, with its real value fixed at 0.72.
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Standard Combined Model

Table A.32 Estimates of survival and reporting probabilities for the blackbird data for the
standard combined model with data for pulli, juvenille and adult birds for the model with
parameters: 𝜙1, 𝜙𝑎, 𝜆1,𝑡 , 𝜆𝑎,𝑡 . Standard errors are provided in parentheses.

year 𝜙1 𝜙𝑎 𝜆1,𝑡 𝜆𝑎,𝑡

1 0.5335(0.0150) 0.7013(0.0047)) 0.0515(0.0043) 0.0655(0.0104)
2 0.0437(0.0036) 0.0515(0.0049)
3 0.0366(0.0032) 0.0434(0.0036)
4 0.0346(0.0030) 0.0439(0.0031)
5 0.0385(0.0031) 0.0433(0.0028)
6 0.0349(0.0030) 0.0476(0.0028)
7 0.033(0.0032) 0.0408(0.0025)
8 0.0316(0.0032) 0.0364(0.0023)
9 0.0385(0.0034) 0.0429(0.0025)

10 0.0392(0.0036) 0.0395(0.0024)
11 0.0374(0.0037) 0.0409(0.0024)
12 0.0373(0.0035) 0.0361(0.0022)
13 0.0347(0.0033) 0.0372(0.0022)
14 0.0358(0.0032) 0.0339(0.0021)
15 0.0342(0.0031) 0.0329(0.0020)
16 0.0324(0.0029) 0.0302(0.0019)
17 0.0272(0.0027) 0.0315(0.0020)
18 0.0282(0.0027) 0.0320(0.0019)
19 0.0253(0.0026) 0.0277(0.0018)
20 0.0327(0.0027) 0.0305(0.0019)
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Table A.33 Estimates of survival and reporting probabilities for the blackbird data for the
standard combined model with data for pulli, juvenille and adult birds for the model with
parameters: 𝜙1,𝑡 , 𝜙𝑎, 𝜆𝑡 . Standard errors are provided in parentheses.

year 𝜙1,𝑡 𝜙𝑎 𝜆𝑡

1 0.6321(0.0650) 0.6998(0.0047) 0.0653(0.0104)
2 0.5721(0.0361) 0.0484(0.0034)
3 0.5646(0.0330) 0.0405(0.0025)
4 0.5880(0.0292) 0.0404(0.0022)
5 0.5614(0.0272) 0.0415(0.0020)
6 0.5797(0.0270) 0.0428(0.0020)
7 0.5759(0.0290) 0.0380(0.0019)
8 0.5574(0.0310) 0.0348(0.0018)
9 0.5506(0.0279) 0.0414(0.0019)

10 0.5289(0.0289) 0.0394(0.0019)
11 0.5468(0.0304) 0.0398(0.0019)
12 0.5236(0.0304) 0.0364(0.0018)
13 0.5672(0.0293) 0.0364(0.0018)
14 0.5366(0.0290) 0.0345(0.0017)
15 0.5583(0.0288) 0.0333(0.0016)
16 0.5365(0.0297) 0.0309(0.0016)
17 0.5624(0.0311) 0.0301(0.0015)
18 0.5518(0.0308) 0.0308(0.0015)
19 0.5944(0.0311) 0.0269(0.0014)
20 0.5257(0.0279) 0.0312(0.0015)
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Table A.34 Estimates of survival and reporting probabilities for the blackbird data for the
standard combined model with data for pulli, juvenille and adult birds for the model with
parameters: 𝜙1, 𝜙𝑎, 𝜆𝑡 . Standard errors are provided in parentheses.

year 𝜙1 𝜙𝑎 𝜆𝑡

1 0.5566(0.0069) 0.6982(0.0046) 0.0560(0.0039)
2 0.0476(0.0028)
3 0.0403(0.0023)
4 0.0398(0.0021)
5 0.0414(0.0020)
6 0.0425(0.0020)
7 0.0380(0.0019)
8 0.0348(0.0018)
9 0.0414(0.0019)

10 0.0393(0.0019)
11 0.0398(0.0019)
12 0.0364(0.0018)
13 0.0364(0.0018)
14 0.0346(0.0017)
15 0.0333(0.0016)
16 0.0310(0.0016)
17 0.0301(0.0015)
18 0.0308(0.0015)
19 0.0269(0.0014)
20 0.0314(0.0015)
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Table A.35 Estimates of survival and reporting probabilities for the blackbird data for the
standard combined model with data for pulli, juvenille and adult birds for the model with
parameters: 𝜙1, 𝜙𝑎,𝑡 , 𝜆𝑡 . Standard errors are provided in parentheses.

year 𝜙1 𝜙𝑎,𝑡 𝜆𝑡

1 0.5568(0.0073) 0.6763(0.0472) 0.0553(0.0041)
2 0.7002(0.0285) 0.0478(0.0033)
3 0.7214(0.0239) 0.0419(0.0030)
4 0.6882(0.0236) 0.0387(0.0026)
5 0.6891(0.0231) 0.0406(0.0027)
6 0.6699(0.0219) 0.0404(0.0026)
7 0.7056(0.0217) 0.0394(0.0029)
8 0.7129(0.0225) 0.0363(0.0028)
9 0.7110(0.0216) 0.0425(0.0031)

10 0.7274(0.0220) 0.0417(0.0032)
11 0.7331(0.0220) 0.0422(0.0034)
12 0.7127(0.0256) 0.0362(0.0030)
13 0.6469(0.0289) 0.0312(0.0026)
14 0.6877(0.0268) 0.0341(0.0028)
15 0.6624(0.0292) 0.0312(0.0027)
16 0.7054(0.0262) 0.0325(0.0027)
17 0.6743(0.0278) 0.0291(0.0024)
18 0.6842(0.0288) 0.0307(0.0025)
19 0.6754(0.0368) 0.0263(0.0025)
20 0.7245(0.0314) 0.0344(0.0027)
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Historical Model

Table A.36 Estimates of survival and reporting probabilities for the blackbird data for the
historical combined model with data for pulli and fledged birds for the model with parameters:
𝜙1,𝑡 , 𝜙𝑎, 𝜆𝑡 , 𝜋. Standard errors are provided in parentheses.

year 𝜙1,𝑡 𝜙𝑎 𝜆𝑡 𝜋

1 0.4312(0.1021) 0.6982(0.0047) 0.0473(0.0076) 0.5716(0.0067)
2 0.5519(0.0368) 0.0477(0.0033)
3 0.5622(0.0331) 0.0404(0.0025)
4 0.5855(0.0293) 0.0403(0.0022)
5 0.5526(0.0273) 0.0415(0.0020)
6 0.5781(0.0271) 0.0427(0.0020)
7 0.5891(0.0288) 0.0378(0.0019)
8 0.578(0.0307) 0.0345(0.0018)
9 0.5675(0.0278) 0.0411(0.0019)
10 0.5415(0.0288) 0.0391(0.0019)
11 0.5674(0.0302) 0.0394(0.0019)
12 0.5505(0.0302) 0.0361(0.0018)
13 0.5671(0.0293) 0.0364(0.0018)
14 0.5254(0.0291) 0.0347(0.0017)
15 0.5556(0.0288) 0.0334(0.0016)
16 0.5281(0.0298) 0.0310(0.0016)
17 0.5589(0.0312) 0.0301(0.0015)
18 0.5561(0.0308) 0.0308(0.0015)
19 0.5853(0.0312) 0.0270(0.0014)
20 0.5129(0.0281) 0.0314(0.0015)
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Table A.38 Estimates of survival and reporting probabilities for the blackbird data for the
historical combined model with data for pulli and fledged birds for the model with parameters:
𝜙1, 𝜙𝑎, 𝜆𝑡 , 𝜋𝑡 . Standard errors are provided in parentheses.

year 𝜙1 𝜙𝑎 𝜆𝑡 𝜋𝑡

1 0.5590(0.0069) 0.6968(0.0046) 0.0563(0.0040) 0.6739(0.0408)
2 0.0476(0.0028) 0.6406(0.0355)
3 0.0402(0.0023) 0.5820(0.0364)
4 0.0397(0.0021) 0.6130(0.0309)
5 0.0415(0.0020) 0.5931(0.0308)
6 0.0425(0.0020) 0.5358(0.0278)
7 0.0377(0.0019) 0.5930(0.0289)
8 0.0345(0.0018) 0.5791(0.0301)
9 0.0411(0.0019) 0.5696(0.0270)
10 0.0391(0.0019) 0.5670(0.0277)
11 0.0394(0.0019) 0.5256(0.0282)
12 0.0361(0.0018) 0.5190(0.0286)
13 0.0364(0.0018) 0.5446(0.0280)
14 0.0347(0.0017) 0.5712(0.0283)
15 0.0334(0.0016) 0.6208(0.0278)
16 0.0311(0.0016) 0.6109(0.0287)
17 0.0302(0.0015) 0.5089(0.0296)
18 0.0308(0.0015) 0.4959(0.0288)
19 0.0270(0.0014) 0.6204(0.0300)
20 0.0315(0.0015) 0.6005(0.0271)
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Table A.40 Estimates of survival and reporting probabilities for the blackbird data for the
historical combined model with data for pulli and fledged birds for the model with parameters:
𝜙1, 𝜙𝑎, 𝜆𝑡 , 𝜋. Standard errors are provided in parentheses.

year 𝜙1 𝜙𝑎 𝜆𝑡 𝜋

1 0.5573(0.0069) 0.6979(0.0046) 0.0577(0.0040) 0.5728(0.0067)
2 0.0480(0.0029)
3 0.0403(0.0023)
4 0.0398(0.0021)
5 0.0415(0.0020)
6 0.0425(0.0020)
7 0.0378(0.0019)
8 0.0345(0.0018)
9 0.0411(0.0019)
10 0.0391(0.0019)
11 0.0395(0.0019)
12 0.0361(0.0018)
13 0.0364(0.0018)
14 0.0347(0.0017)
15 0.0334(0.0016)
16 0.0311(0.0016)
17 0.0301(0.0015)
18 0.0308(0.0015)
19 0.0270(0.0014)
20 0.0316(0.0015)
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Table A.41 Estimates of survival and reporting probabilities for the blackbird data for the
historical combined model with data for pulli and fledged birds for the model with parameters:
𝜙1, 𝜙𝑎,𝑡 , 𝜆𝑡 , 𝜋𝑡 . Standard errors are provided in parentheses.

year 𝜙1 𝜙𝑎,𝑡 𝜆𝑡 𝜋𝑡

1 0.5604(0.0074) 0.5607(0.0708) 0.0525(0.0040) 0.7451(0.0461)
2 0.6931(0.0330) 0.0483(0.0037) 0.6257(0.0414)
3 0.7333(0.0257) 0.0435(0.0033) 0.5534(0.0401)
4 0.6777(0.0260) 0.0380(0.0027) 0.6193(0.0327)
5 0.6848(0.0262) 0.0407(0.0030) 0.5949(0.0333)
6 0.6825(0.0238) 0.0417(0.0030) 0.5375(0.0294)
7 0.7010(0.0232) 0.0387(0.0029) 0.5877(0.0305)
8 0.7089(0.0236) 0.0357(0.0029) 0.5728(0.0316)
9 0.7063(0.0226) 0.0419(0.0031) 0.5662(0.0285)
10 0.7230(0.0233) 0.0412(0.0032) 0.5581(0.0296)
11 0.7358(0.0225) 0.0425(0.0035) 0.5149(0.0299)
12 0.7183(0.0257) 0.0364(0.0031) 0.5167(0.0308)
13 0.6530(0.0293) 0.0317(0.0027) 0.5655(0.0294)
14 0.6956(0.0281) 0.0347(0.0029) 0.5712(0.0306)
15 0.6388(0.0303) 0.0297(0.0025) 0.6372(0.0288)
16 0.6882(0.0284) 0.0317(0.0027) 0.6074(0.0307)
17 0.6917(0.0293) 0.0308(0.0027) 0.5053(0.0320)
18 0.7120(0.0293) 0.0328(0.0029) 0.4855(0.0314)
19 0.6604(0.0401) 0.0251(0.0025) 0.6309(0.0319)
20 0.7346(0.0338) 0.0353(0.0030) 0.5797(0.0309)
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A.6 Sandwich Tern Results

Figures A.1 and A.2 show the time dependent parameters for two of the best historical
combined data models fitted to the sandwich tern data. Figure A.1 shows the time dependency

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Year

λ

1970 1975 1980 1985 1990

Fig. A.1 Estimated recovery probability, 𝜆𝑡 , for the historical combined data model with
parameters (𝜙1, 𝜙𝑎, 𝜆𝑡 , 𝜋) for sandwich tern data for the years 1970-1990. The continuous line
represent the estimated recovery probability, and the dotted lines represent 95 % confidence
interval.
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Fig. A.2 Estimated first-year survival probability, 𝜙1,𝑡 , for the historical combined data
model with parameters (𝜙1,𝑡 , 𝜙𝑎, 𝜆, 𝜋) for sandwich tern data for the years 1970-1990. The
continuous line represent the estimated survival probability, and the dotted lines represent 95
% confindece interval.
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Appendix B

Supporting Information for Chapter 3

This appendix provides additional simulation results to support the findings in Chapter 3. We
present simulation studies for capture-recapture models in the presence of categorical, and
continuous covariates.

B.1 Simulation Study in the Presence of Categorical Co-
variates

In this section we present simulation studies for most of the models fitted for the entire
sample, and some of the models fitted for the female subsample. To generate the categorical
covariates we simulate data from an uniform distribution with probability 0.50 and size 1.
The models explained in Section 3.3.1, with either one or two categorical covariates, are used
to fit each simulated dataset.

The parameter values chosen for the categorical covariates for our simulation study are
selected so they are close to those obtained for our data in the results Section 3.5. When the
parameters are kept constant, we choose from values that represent high survival or capture
probabilities i.e 0.80, to values that represent low survival or capture probability, i.e. 0.20.

Survival depends on one categorical covariate and recapture is constant

This section shows results for capture-recapture models with the survival probability de-
pending on a categorical covariate with two levels, i.e. site, and the capture probability kept
constant. We examine how the estimates change with sample size and for different values for
the capture parameter 𝑝. Tables B.1, 3.9, and B.2 show results for the capture probability
fixed at 0.80, and 0.20. For all the two simulation studies, we keep 𝛼 = 1.10 and 𝛽𝑠𝑖𝑡𝑒 = −1.35,
these values give survival probabilities of 0.44 when 𝑥1,𝑖 = 1, and 0.75 when 𝑥1,𝑖 = 0.
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Table B.1 Simulation study for 11-year of capture-recapture studies with survival as a function
of a categorical covariate with two levels and capture probability fixed at 0.80. The first
row specifies the model parameters and the values used to generate the simulated data. The
first column (size) specifies the number of individuals marked every year of the study. The
remaining columns contain the average parameter estimate (par est) and the average standard
error, given in parentheses, along with the mean square error (MSE).

𝜙 𝑝

𝛼 = 1.10 𝛽𝑠𝑖𝑡𝑒 = −1.35 𝑝 = 0.80

size par est MSE par est MSE par est MSE

100 1.10(0.07) 0.0053 -1.35(0.11) 0.0103 0.80(0.01) 0.0003
50 1.09(0.10) 0.0093 -1.34(0.15) 0.0206 0.80(0.02) 0.0004
10 1.09(0.22) 0.0517 -1.35(0.34) 0.1192 0.80(0.05) 0.0024
5 1.04(0.31) 0.1145 -1.38(0.48) 0.2973 0.82(0.07) 0.0049

Tables B.1 and B.2 show that MSE increases when the sample size (the number of
individuals marked each year) decreases. The best results are obtained when 100 individuals
are marked. Additionally, a higher capture probability improves the results, with lower MSE
when the capture probability is 0.80. Moreover, in Table B.2, the results for the sample size
of five show a small bias in the estimation of all parameter estimates as well as large standard
errors for the intercept and slope parameters. These results suggest that this model could be
suffering from parameter redundancy issues caused by the limited data. This is, for a sample
size of five, there is a probability of 0.03 that no individuals are simulated in one site.
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Table B.2 Simulation study for 11-year of capture-recapture studies with survival as a function
of a categorical covariate with two levels and capture probability fixed at 0.20. The first
row specifies the model parameters and the values used to generate the simulated data. The
first column (size) specifies the number of individuals marked every year of the study. The
remaining columns contain the average parameter estimate (par est) and the average standard
error, given in parentheses, along with the mean square error (MSE).

𝜙 𝑝

𝛼 = 1.10 𝛽𝑠𝑖𝑡𝑒 = −1.35 𝑝 = 0.20

size par est MSE par est MSE par est MSE

100 1.08(0.13) 0.0170 -1.33(0.16) 0.0257 0.20(0.02) 0.0003
50 1.12(0.20) 0.0336 -1.39(0.24) 0.0650 0.20(0.03) 0.0007
10 1.11(0.47) 0.2437 -1.45(0.57) 0.4570 0.21(0.06) 0.0035
5 1.25(7.78) 1.9522 -2.59(159.47) 21.9878 0.22(0.09) 0.0073

Survival is constant and recapture depends on one categorical covariate

This section shows results for capture-recapture models with the capture probability de-
pending on a categorical covariate, i.e. sex, and the survival probability kept constant. We
examine how the estimates change with sample size and for different values for the survival
parameter. Tables B.3, B.4, and B.5 show results for the survival probability fixed at 0.80,
0.40 and 0.20. For all the three simulation studies, we keep 𝛼 = 1.10 and 𝛽𝑠𝑖𝑡𝑒 = −1.35, these
values give capture probabilities of 0.44 when 𝑥1,𝑖 = 1, and 0.75 when 𝑥1,𝑖 = 0.

Tables B.3, B.4, and B.5 show that the MSE increases when the sample size (the number of
individuals marked each year) decreases. The best results are obtained when 100 individuals
are marked. Additionally, a higher capture probability improves the results, with lower MSE
when the survival probability is 0.80. Moreover, in Table B.4, the results for the sample size
of five show a large bias in the estimation of all parameter estimates as well as large standard
errors for the intercept and slope parameters. These results suggest that this model could be
suffering from parameter redundancy issues caused by the limited data. This is, for a sample
size of five, there is a probability of 0.03 that no individuals are simulated in one site.

Finally in this particular simulation we observe that when survival is set at 0.20 (Table
B.5), there is a large bias in the estimation of all the parameters related to the capture
probability. Note that, when the data sample is 10 or five individuals marked per year, we do
not show results, as in some simulations there were problems when optimising the likelihood
and simulations stopped.
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Table B.3 Simulation study for 11-year of capture-recapture studies with survival probability
fixed at 0.80 and capture probability as a function of a categorical covariate with two levels.
The first row specifies the model parameters and the values used to generate the simulated
data. The first column (size) specifies the number of individuals marked every year of the
study. The remaining columns contain the average parameter estimate (par est) and the
average standard error, given in parentheses, along with the mean square error (MSE).

𝜙 𝑝

𝜙 = 0.80 𝛼 = 1.10 𝛽𝑠𝑖𝑡𝑒 = −1.35
size par est MSE par est MSE par est MSE

100 0.80(0.01) 0.0001 1.10(0.09) 0.0074 -1.35(0.11) 0.0117
50 0.80(0.01) 0.0002 1.10(0.12) 0.0144 -1.36(0.16) 0.0226
10 0.80(0.03) 0.0007 1.10(0.27) 0.0640 -1.35(0.36) 0.1131
5 0.80(0.04) 0.0021 1.18(0.40) 0.2226 -1.45(0.53) 0.2804

Table B.4 Simulation study for 11-year of capture-recapture studies with survival probability
fixed at 0.40 and capture probability as a function of a categorical covariate with two levels.
The first row specifies the model parameters and the values used to generate the simulated
data. The first column (size) specifies the number of individuals marked every year of the
study. The remaining columns contain the average parameter estimate (par est) and the
average standard error, given in parentheses, along with the mean square error (MSE).

𝜙 𝑝

𝜙 = 0.40 𝛼 = 1.10 𝛽𝑠𝑖𝑡𝑒 = −1.35
size par est MSE par est MSE par est MSE

100 0.40(0.02) 0.0003 1.13(0.24) 0.0672 -1.39(0.28) 0.1015
50 0.40(0.03) 0.0006 1.13(0.34) 0.1004 -1.38(0.39) 0.1429
10 0.38(0.06) 0.0036 2.73(163.69) 23.0983 -2.67(170.34) 24.7866
5 0.40(0.08) 0.0084 5.68(853.73) 73.7301 -4.39(1012.39) 70.6918
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Table B.5 Simulation study for 11-year of capture-recapture studies with survival probability
fixed at 0.20 and capture probability as a function of a categorical covariate with two levels.
The first row specifies the model parameters and the values used to generate the simulated
data. The first column (size) specifies the number of individuals marked every year of the
study. The remaining columns contain the average parameter estimate (par est) and the
average standard error, given in parentheses, along with the mean square error (MSE).

𝜙 𝑝

𝜙 = 0.20 𝛼 = 1.10 𝛽𝑠𝑖𝑡𝑒 = −1.35
size par est MSE par est MSE par est MSE

100 0.20(0.02) 0.0005 1.67(14.02) 5.8808 -1.85(14.00) 5.5339
50 0.20(0.03) 0.0013 2.64(114.97) 22.0384 -2.77(114.95) 19.8712
10 - - - - - -
5 - - - - - -
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Both survival and recapture depend on one categorical covariate with two levels

This section shows results for capture-recapture models with both the survival and the capture
probability depending on one categorical covariate with two levels, i.e. sex. We examine how
the estimates change with sample size and for different values for the survival and capture
parameters in Tables B.6, B.7, B.8, and B.9. We now choose two different values for 𝛼 and
𝛽𝑠𝑖𝑡𝑒, and we use these two combinations to account for survival or for the capture probability.
We either set 𝛼 = 1.10 and 𝛽𝑠𝑖𝑡𝑒 = −1.35, these values give survival or capture probabilities
of 0.44 when 𝑥1,𝑖 = 1, and 0.75 when 𝑥1,𝑖 = 0. Alternatively we set 𝛼 = −0.70 and 𝛽𝑠𝑖𝑡𝑒 = 1.85
these values give survival or capture probabilities of 0.76 when 𝑥1,𝑖 = 1, and 0.33 when 𝑥1,𝑖 = 0.

Tables B.6, B.7, B.8, and B.9 show that MSE increases when the sample size (the number
of individuals marked each year) decreases. Moreover, in Tables B.7, B.8, and B.9 the
results for the sample sizes of five and 10 show a large bias in the estimation of all parameter
estimates as well as large standard errors for the intercept and slope parameters. These results
suggest that this model could be suffering from parameter redundancy issues caused by the
limited data. This is, for a sample size of five, there is a probability of 0.03 that no individuals
are simulated in one site.
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Survival depends on two categorical covariates with two levels and recapture is con-
stant

This section shows results for capture-recapture models with the survival probability depend-
ing on two categorical covariates with two levels, i.e. sex and site, and the capture probability
kept constant. We examine how the estimates change with sample size and for different
values for the capture parameter. Tables B.10, B.11, and B.12 show results for the capture
probability fixed at 0.80, 0.40 and 0.20. For all the three simulation studies, we keep 𝛼 = 1.10,
𝛽𝑠𝑒𝑥 = 0.05, and 𝛽𝑠𝑖𝑡𝑒 = −1.35. The intercept and the slope value corresponding to the site
covariate are kept at the same value than for the simulation in which we use one categorical
covariate only. These values give survival probabilities of 0.75 when 𝑥1,𝑖 = 0, and 𝑥2,𝑖 = 0,
0.76 when 𝑥1,𝑖 = 0, and 𝑥2,𝑖 = 1, 0.44 when 𝑥1,𝑖 = 1, and 𝑥2,𝑖 = 0 and 0.45 when when 𝑥1,𝑖 = 1,
and 𝑥2,𝑖 = 1.

If we compare these results to those obtained when survival only depends on one covariate
Tables, B.1, 3.9, and B.2, for the shared parameters the MSE increases slightly. Moreover,
the results presented for two categorical covariates also show that MSE increases when the
sample size (the number of individuals marked each year) decreases, with the best results
obtained when 100 individuals are marked. Additionally, in Table B.12, the results for the
sample size of five show a large bias in the estimation of all parameter estimates as well as
large standard errors for the intercept and slope parameters. These results suggest that this
model could be suffering from parameter redundancy issues caused by the limited data. This
is, for a sample size of five, there is a probability of 0.03 that no individuals are simulated in
one site.
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Survival is constant and recapture depends on two two categorical covariates with two
levels

This section shows results for capture-recapture models with the capture probability de-
pending on two categorical covariates with two levels, i.e. sex, and site, and the survival
probability kept constant. We examine how the estimates change with sample size and for
different values for the survival parameter. Tables B.13, B.14, and B.15 show results for the
survival probability fixed at 0.80, 0.40 and 0.20. For all the three simulation studies, we keep
𝛼 = 1.10, 𝛽𝑠𝑒𝑥 = 0.05, and 𝛽𝑠𝑖𝑡𝑒 = −1.35. The intercept and the slope value corresponding to
the site covariate are kept at the same value than for the simulation in which we use one
categorical covariate only. These values give capture probabilities of 0.75 when 𝑥1,𝑖 = 0, and
𝑥2,𝑖 = 0, 0.76 when 𝑥1,𝑖 = 0, and 𝑥2,𝑖 = 1, 0.44 when 𝑥1,𝑖 = 1, and 𝑥2,𝑖 = 0 and 0.45 when when
𝑥1,𝑖 = 1, and 𝑥2,𝑖 = 1.

If we compare these results to those obtained when recapture only depends on one
covariate Tables, (see B.3, B.4, and B.5), for the MSE increases slightly for the shared
parameters. Moreover, the results presented for two categorical covariates also show that the
MSE increases when the sample size (the number of individuals marked each year) decreases,
with the best results obtained when 100 individuals are marked. Moreover, in Table B.14, the
results for the sample sizes of five and 10 show a large bias in the estimation of all parameter
estimates as well as large standard errors for the intercept and slope parameters. These results
suggest that this model could be suffering from parameter redundancy issues caused by the
limited data. This is, for a sample size of five, there is a probability of 0.03 that no individuals
are simulated in one site.

Finally in this particular simulation we observe that when survival is set at 0.20 (Table
B.15), there is a large bias in the estimation of all the parameters related to the capture
probability. Note that, when the data sample is 10 or five individuals marked per year, we do
not show results, as in some simulations there were problems when optimising the likelihood
and simulations stopped.



B.1 Simulation Study in the Presence of Categorical Covariates 188
Ta

bl
e

B
.1

3
Si

m
ul

at
io

n
st

ud
y

fo
r

11
-y

ea
r

of
ca

pt
ur

e-
re

ca
pt

ur
e

st
ud

ie
s

w
ith

co
ns

ta
nt

su
rv

iv
al

pr
ob

ab
ili

ty
fix

ed
at

0.
80

an
d

ca
pt

ur
e

pr
ob

ab
ili

ty
as

a
fu

nc
tio

n
of

tw
o

ca
te

go
ri

ca
lc

ov
ar

ia
te

s
w

ith
tw

o
le

ve
ls

.T
he

fir
st

ro
w

sp
ec

ifi
es

th
e

m
od

el
pa

ra
m

et
er

s
an

d
th

e
va

lu
es

us
ed

to
ge

ne
ra

te
th

e
si

m
ul

at
ed

da
ta

.T
he

fir
st

co
lu

m
n

(s
iz

e)
sp

ec
ifi

es
th

e
nu

m
be

ro
fi

nd
iv

id
ua

ls
m

ar
ke

d
ev

er
y

ye
ar

of
th

e
st

ud
y.

T
he

re
m

ai
ni

ng
co

lu
m

ns
co

nt
ai

n
th

e
av

er
ag

e
pa

ra
m

et
er

es
tim

at
e

(p
ar

es
t)

an
d

th
e

av
er

ag
e

st
an

da
rd

er
ro

r,
gi

ve
n

in
pa

re
nt

he
se

s,
al

on
g

w
ith

th
e

m
ea

n
sq

ua
re

er
ro

r(
M

SE
).

𝜙
𝑝

𝜙
=
0
.8
0

𝛼
=
1.
10

𝛽
𝑠𝑒
𝑥
=
0
.0
5

𝛽
𝑠𝑖
𝑡𝑒
=
−1
.3
5

si
ze

pa
re

st
M

SE
pa

re
st

M
SE

pa
re

st
M

SE
pa

re
st

M
SE

10
0

0.
80

(0
.0

1)
0.

00
01

1.
11

(0
.1

0)
0.

01
08

0.
05

(0
.1

1)
0.

01
19

-1
.3

6(
0.

11
)

0.
01

45
50

0.
80

(0
.0

1)
0.

00
01

1.
06

(0
.1

5)
0.

02
25

0.
09

(0
.1

6)
0.

02
61

-1
.3

5(
0.

80
)

0.
02

87
10

0.
81

(0
.0

3)
0.

00
08

1.
09

(0
.3

6)
0.

12
29

0.
04

(0
.3

7)
0.

10
81

-1
.3

7(
0.

36
)

0.
14

09
5

0.
81

(0
.0

4)
0.

00
18

1.
29

(2
8.

10
)

2.
89

47
0.

08
(0

.5
2)

0.
31

58
-1

.6
7(

28
.1

5)
3.

02
04

Ta
bl

e
B

.1
4

Si
m

ul
at

io
n

st
ud

y
fo

r
11

-y
ea

r
of

ca
pt

ur
e-

re
ca

pt
ur

e
st

ud
ie

s
w

ith
co

ns
ta

nt
su

rv
iv

al
pr

ob
ab

ili
ty

fix
ed

at
0.

40
an

d
ca

pt
ur

e
pr

ob
ab

ili
ty

as
a

fu
nc

tio
n

of
tw

o
ca

te
go

ri
ca

lc
ov

ar
ia

te
s

w
ith

tw
o

le
ve

ls
.T

he
fir

st
ro

w
sp

ec
ifi

es
th

e
m

od
el

pa
ra

m
et

er
s

an
d

th
e

va
lu

es
us

ed
to

ge
ne

ra
te

th
e

si
m

ul
at

ed
da

ta
.T

he
fir

st
co

lu
m

n
(s

iz
e)

sp
ec

ifi
es

th
e

nu
m

be
ro

fi
nd

iv
id

ua
ls

m
ar

ke
d

ev
er

y
ye

ar
of

th
e

st
ud

y.
T

he
re

m
ai

ni
ng

co
lu

m
ns

co
nt

ai
n

th
e

av
er

ag
e

pa
ra

m
et

er
es

tim
at

e
(p

ar
es

t)
an

d
th

e
av

er
ag

e
st

an
da

rd
er

ro
r,

gi
ve

n
in

pa
re

nt
he

se
s,

al
on

g
w

ith
th

e
m

ea
n

sq
ua

re
er

ro
r(

M
SE

).

𝜙
𝑝

𝜙
=
0
.4
0

𝛼
=
1.
10

𝛽
𝑠𝑒
𝑥
=
0
.0
5

𝛽
𝑠𝑖
𝑡𝑒
=
−1
.3
5

si
ze

pa
re

st
M

SE
pa

re
st

M
SE

pa
re

st
M

SE
pa

re
st

M
SE

10
0

0.
40

(0
.0

2)
0.

00
04

1.
11

(0
.2

7)
0.

06
50

0.
06

(0
.2

6)
0.

07
35

-1
.3

8(
0.

27
)

0.
06

31
50

0.
39

(0
.0

3)
0.

00
07

1.
22

(0
.4

0)
0.

20
17

0.
02

(0
.3

9)
0.

14
82

-1
.4

5(
0.

40
)

0.
22

52
10

0.
40

(0
.0

6)
0.

00
36

3.
41

(3
21

.3
7)

38
.1

95
6

0.
29

(4
2.

86
)

10
.0

34
9

-3
.2

5(
31

0.
08

)
34

.0
44

5
5

0.
41

(0
.0

8)
0.

00
60

5.
53

(9
89

.1
9)

84
.7

46
1

0.
42

(6
44

.7
6)

55
.7

47
7

-4
.8

0(
11

78
.8

8)
11

0.
54

44



B.1 Simulation Study in the Presence of Categorical Covariates 189

Ta
bl

e
B

.1
5

Si
m

ul
at

io
n

st
ud

y
fo

r
11

-y
ea

r
of

ca
pt

ur
e-

re
ca

pt
ur

e
st

ud
ie

s
w

ith
co

ns
ta

nt
su

rv
iv

al
pr

ob
ab

ili
ty

fix
ed

at
0.

20
an

d
ca

pt
ur

e
pr

ob
ab

ili
ty

as
a

fu
nc

tio
n

tw
o

ca
te

go
ric

al
co

va
ria

te
s

w
ith

tw
o

le
ve

ls
.T

he
fir

st
ro

w
sp

ec
ifi

es
th

e
m

od
el

pa
ra

m
et

er
s

an
d

th
e

va
lu

es
us

ed
to

ge
ne

ra
te

th
e

si
m

ul
at

ed
da

ta
.T

he
fir

st
co

lu
m

n
(s

iz
e)

sp
ec

ifi
es

th
e

nu
m

be
ro

fi
nd

iv
id

ua
ls

m
ar

ke
d

ev
er

y
ye

ar
of

th
e

st
ud

y.
Th

e
re

m
ai

ni
ng

co
lu

m
ns

co
nt

ai
n

th
e

av
er

ag
e

pa
ra

m
et

er
es

tim
at

e
(p

ar
es

t)
an

d
th

e
av

er
ag

e
st

an
da

rd
er

ro
r,

gi
ve

n
in

pa
re

nt
he

se
s,

al
on

g
w

ith
th

e
m

ea
n

sq
ua

re
er

ro
r(

M
SE

).

𝜙
𝑝

𝜙
=
0
.2
0

𝛼
=
1.
10

𝛽
𝑠𝑒
𝑥
=
0
.0
5

𝛽
𝑠𝑖
𝑡𝑒
=
−1
.3
5

si
ze

pa
re

st
M

SE
pa

re
st

M
SE

pa
re

st
M

SE
pa

re
st

M
SE

10
0

0.
20

(0
.0

2)
0.

00
04

1.
39

(1
3.

48
)

3.
97

03
0.

16
(9

.6
6)

1.
71

58
-1

.6
4(

13
.4

2)
3.

80
40

50
0.

20
(0

.0
3)

0.
00

12
3.

19
(1

86
.8

7)
29

.7
22

6
0.

25
(8

.2
8)

3.
99

43
-3

.3
8(

18
60

4)
28

.4
98

5
10

-
-

-
-

-
-

-
-

5
-

-
-

-
-

-
-

-



B.1 Simulation Study in the Presence of Categorical Covariates 190

Survival Parameter with One Continuous Covariates

Simulation results for capture-recapture models with survival depending on a continuous
covariates. The capture probability is kept constant at 0.80, 0.40 and 0.20. For all the three
simulation studies, we keep 𝛼 = 1.20, and 𝛽𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 = 0.25. Tables B.16, B.17, B.18 show
that the MSE increases when the sample size (the number of individuals marked each year)
decreases, with the best results obtained when 100 individuals are marked.

Table B.16 Simulation study for 11-year of capture-recapture studies with survival as a
function of a continuous covariate and capture probability fixed at 0.80. The first row
specifies the model parameters and the values used to generate the simulated data. The
first column (size) specifies the number of individuals marked every year of the study. The
remaining columns contain the average parameter estimate (par est) and the average standard
error, given in parentheses, along with the mean square error (MSE).

𝜙 𝑝

𝛼 = 1.20 𝛽𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 = 0.25 𝑝 = 0.80

size par est MSE par est MSE par est MSE

100 1.20(0.05) 0.0023 0.25(0.05) 0.0024 0.80(0.01) 0.0001
50 1.20(0.07) 0.0051 0.25(0.07) 0.0043 0.80(0.02) 0.0002
10 1.21(0.16) 0.0260 0.26(0.16) 0.025 0.80(0.04) 0.0012
5 1.21(0.23) 0.0481 0.27(0.23) 0.0580 0.80(0.05) 0.0025

Table B.17 Simulation study for 11-year of capture-recapture studies with survival as a
function of a continuous covariate and capture probability fixed at 0.40. The first row
specifies the model parameters and the values used to generate the simulated data. The
first column (size) specifies the number of individuals marked every year of the study. The
remaining columns contain the average parameter estimate (par est) and the average standard
error, given in parentheses, along with the mean square error (MSE).

𝜙 𝑝

𝛼 = 1.20 𝛽𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 = 0.25 𝑝 = 0.40

size par est MSE par est MSE par est MSE

100 1.20(0.07) 0.0040 0.26(0.06) 0.0033 0.40(0.02) 0.0003
50 1.21(0.10) 0.0098 0.24(0.09) 0.0065 0.40(0.02) 0.0004
10 1.19(0.22) 0.0486 0.27(0.20) 0.0352 0.40(0.05) 0.0023
5 1.20(0.32) 0.1051 0.26(0.28) 0.0816 0.40(0.07) 0.0047
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Table B.18 Simulation study for 11-year of capture-recapture studies with survival as a
function of a continuous covariate and capture probability fixed at 0.20. The first row
specifies the model parameters and the values used to generate the simulated data. The
first column (size) specifies the number of individuals marked every year of the study. The
remaining columns contain the average parameter estimate (par est) and the average standard
error, given in parentheses, along with the mean square error (MSE).

𝜙 𝑝

𝛼 = 1.20 𝛽𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 = 0.25 𝑝 = 0.20

size par est MSE par est MSE par est MSE

100 1.21(0.10) 0.0117 0.25(0.08) 0.0063 0.20(0.01) 0.0002
50 1.18(0.15) 0.0222 0.27(0.11) 0.0162 0.20(0.02) 0.0004
10 1.19(0.34) 0.1110 0.33(0.31) 0.1366 0.21(0.04) 0.0018
5 1.23(0.56) 0.3443 0.41(0.51) 0.5212 0.22(0.06) 0.0046
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B.2 Simulation Study for Categorical and Continuous Co-
variates

Survival depends on one continuous covariate and recapture on one categorical covari-
ate

Simulation results for capture-recapture models with survival depending on a continuous
covariates, and recapture depending on a categorical covariate with two levels. For the
survival probability we keep 𝛼 = 1.20, and 𝛽𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 = 0.25, and for the capture probability
we keep 𝛼 = 1.10, and 𝛽𝑠𝑖𝑡𝑒 = −1.35. Table B.19 shows that the MSE increases when the
sample size (the number of individuals marked each year) decreases, with the best results
obtained when 100 individuals are marked.
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Survival depends on one continuous covariate and one categorical covariate and recap-
ture is constant

Simulation results for capture-recapture models with survival probability depending on a
categorical covariate with two levels and a continuous covariate. The capture probability is
fixed at 0.80, 0.40 and 0.20. For the survival probability we keep 𝛼 = 2.40, 𝛽𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 = 0.30,
and 𝛽𝑠𝑖𝑡𝑒 = −2.05. Tables B.20, B.21, B.22 show that the MSE increases when the sample
size (the number of individuals marked each year) decreases, with the best results obtained
when 100 individuals are marked, and when the capture probability decreases, with better
results when the capture probability is 0.80. Moreover, in Tables B.21, and B.22 the results
for the sample sizes of five and 10 show a large bias in the estimation of all parameter
estimates as well as large standard errors for the intercept and slope parameters. These results
suggest that this model could be suffering from parameter redundancy issues caused by the
limited data. This is, for a sample size of five, there is a probability of 0.03 that no individuals
are simulated in one site.
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Survival depends on one continuous covariate and one categorical covariate and recap-
ture depends on one categorical covariate

Simulation results for capture-recapture models with survival probability depending on a
categorical covariate with two levels and a continuous covariates, and capture probability
depending on a categorical covariate with two levels. For the survival probability we keep
𝛼 = 2.40, 𝛽𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 = 0.30, and 𝛽𝑠𝑖𝑡𝑒 = −2.05. For the capture probability we choose two
alternative scenarios, one when 𝛼 = 1.10, and 𝛽𝑠𝑖𝑡𝑒 = −1.35, and the other when 𝛼 = −0.70,
and 𝛽𝑠𝑖𝑡𝑒 = 1.85.

Tables B.23 and B.24, show that the MSE increases when the sample size (the number of
individuals marked each year) decreases, with the best results obtained when 100 individuals
are marked, and when the capture probability decreases. Moreover, in Table B.24 the results
for the sample sizes of five and 10 show a large bias in the estimation of all parameter
estimates as well as large standard errors for the intercept and slope parameters. These results
suggest that this model could be suffering from parameter redundancy issues caused by the
limited data. This is, for a sample size of five, there is a probability of 0.03 that no individuals
are simulated in one site. Additionally, for the case in which the capture parameters 𝛼 = 1.10,
and 𝛽𝑠𝑖𝑡𝑒 = −1.35, when the data sample is of five individuals marked per year of study, we do
not show results, as in some simulations there were problems when optimising the likelihood
and simulations stopped.
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Appendix C

Simulation Study for Chapter 4

This appendix provides additional simulation results to support the findings in Chapter 4.

C.1 Comparison for Kalman Filter with Different Obser-
vation Errors

This section provides simulation results to compare the KF’s results for two approaches
which differ in the way the observation error was calculated. In the first one, the observation
error is estimated as a parameter of the model. In the second one, the observation error is
equal to the mean of the normal distribution. Further information about these two approaches
can be found in Section 4.3.2. We conduct a simulation study for the IPMs, in which we
generate 150 data sets in each simulation. To do so, for the SSM we simulate time-series data
from the HMM described in Section 4.4.2 and for the ring-recovery model we simulate data
from the standard model described in Section 1.2.1. In each simulation of the ring-recovery
model 1000 birds are ringed in each year of study and for each age category: first-year
and adult. Our simulations are for a stable population with parameter values: 𝜙1 = 0.30,
𝜙𝑎 = 0.70, 𝜌 = 1.00, and 𝜆 = 0.02. We do this for three population sizes of 𝑁0 = 20, 40 and
60.

Table C.1 shows the simulation results for this comparison. Here, we can observe that
the parameter estimate results and the MSE are the same for both approaches. Meaning that,
choosing one approach over the other does not seem to have an impact in the parameter
estimates that we obtain. This probably results from the KF estimating the value of 𝜎2𝜂 very
close to the value of 𝑁0. This is true for all the different population sizes that we compare.
The reader should note that as we are simulating the data for the observation process from a
Poisson distribution for a stable population, 𝑁̂𝑡 ≈ 𝑁0 for all 𝑡. Therefore, as in the Poisson
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distribution the mean and the variance are the same, when we estimate 𝜎2𝜂 its value is very
close to 𝑁0. In the future we suggest the study of non-stable populations.
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C.2 Performance of the IPM Under Different Scenarios

This section provides further simulation results to support the findings described in 4.6.1.
Table C.2 shows the simulation results for 10 years of simulation study for an increasing
population with 𝜙1 = 0.30, 𝜙𝑎 = 0.70 and 𝜌 = 1.10. In Table C.2 we observe that the bias in
estimating the productivity parameter 𝜌 progressively decreases as size increases. Simulation
results are not shown for the KF when 𝑁0 = 5 as the algorithm stops working early in the
simulation.

Table C.2 Median relative bias for an increasing population, with 𝜙1 = 0.30, 𝜙𝑎 = 0.70 and
𝜌 = 1.10, for different population sizes, for 10 years of census and ring-recovery study.

𝜙1 = 0.30 𝜙𝑎 = 0.70 𝜌 = 1.10

𝑁0 KF HMM KF HMM KF HMM

5 - 0.0008 - 0.0002 - -0.1505
10 0.0047 0.0051 -0.0006 0.0006 -0.1530 -0.1089
20 0.0001 0.0002 -0.0018 -0.0019 -0.0480 -0.0289
40 -0.0014 -0.0010 -0.0059 -0.0062 -0.0196 -0.0023

Table C.3 shows the simulation results for 10 years of simulation study for a decrease
population with 𝜙1 = 0.30, 𝜙𝑎 = 0.70 and 𝜌 = 0.90. In Table C.3 we observe that the bias in
estimating the productivity parameter 𝜌 progressively decreases as size increases. Simulation
results are not shown for the KF when 𝑁0 = 5, and 𝑁0 = 10 as the algorithm stops working
early in the simulation.

Table C.3 Median relative bias for a decreasing population, with 𝜙1 = 0.30, 𝜙𝑎 = 0.70 and
𝜌 = 0.90, for different population sizes, for 10 years of census and ring-recovery study.

𝜙1 = 0.30 𝜙𝑎 = 0.70 𝜌 = 0.90

𝑁0 KF HMM KF HMM KF HMM

5 - 0.0075 - 0.0002 - -0.2879
10 - -0.0015 - 0.0031 - -0.0730
20 0.0034 0.0037 -0.0021 -0.0018 -0.0836 -0.0443
40 -0.0008 -0.0005 0.0024 0.0023 -0.0680 -0.0515

Table C.4 shows the simulation results for 20 years of simulation study for stable popula-
tion with 𝜙1 = 0.30, 𝜙𝑎 = 0.70 and 𝜌 = 1. In Table C.4 we observe that the bias in estimating
the productivity parameter 𝜌 progressively decreases as size increases. Simulation results are
not shown for the KF or the HMM when 𝑁0 = 5, as the algorithms stop working early in the
simulation. Moreover simulation results are not shown for the KF when 𝑁0 = 10 for similar
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reasons. Additionally, Figures C.1 and C.2 show boxplots and data plots which reflect the
bias of the productivity parameter, 𝜌, presented in Table C.4.

Table C.4 Median relative bias for an stable population, with 𝜙1 = 0.30, 𝜙𝑎 = 0.70 and 𝜌 = 1,
for different population sizes, for 20 years of census and ring-recovery study.

𝜙1 = 0.30 𝜙𝑎 = 0.70 𝜌 = 1

𝑁0 KF HMM KF HMM KF HMM

5 - - - - - -
10 - 0.0003 - -0.0016 - -0.0748
20 0.0030 0.0030 0.0002 0.0003 -0.0406 -0.0259
40 -0.0006 -0.0006 0.0007 0.0007 -0.0030 0.0003

Table C.5 shows the simulation results for 10 years of simulation study for a stable
population with 𝜙1 = 0.40, 𝜙𝑎 = 0.60 and 𝜌 = 1. In Table C.5 we observe that the bias in
estimating the productivity parameter 𝜌 progressively decreases as size increases. Simulation
results are not shown for the KF when 𝑁0 = 5 as the algorithm stops working early in the
simulation.

Table C.5 Median relative bias for a stable population, with 𝜙1 = 0.40, 𝜙𝑎 = 0.60 and 𝜌 = 1,
for different population sizes for 10 years of census and ring-recovery study.

𝜙1 = 0.40 𝜙𝑎 = 0.60 𝜌 = 1

𝑁0 KF HMM KF HMM KF HMM

5 - -0.0055 - -0.0013 - -0.0543
10 -0.0073 -0.0071 -0.0063 -0.0058 -0.0979 -0.0688
20 -0.0005 -0.0007 -0.0050 -0.0049 -0.0813 -0.0611
40 0.0038 0.0037 0.0004 0.0002 -0.0398 -0.0242
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Fig. C.1 Boxplots containing the simulation results for the productivity parameter, 𝜌, for
20 years of study for a stable population, with 𝜙1 = 0.30, 𝜙𝑎 = 0.70 and 𝜌 = 1, for different
population sizes. The thick middle black line represents the median estimated value, and the
red star the real value of 𝜌.
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Fig. C.2 Simulation results for the productivity parameter, 𝜌, against the time series count
sum for different population sizes for 20 years of study. The horizontal red lines in each plot
represent the true value of 𝜌, and the vertical red lines represent the expected sum of the
counts of the time-series observed in the 20 years of study.
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C.2.1 Simulation of the Binomial-Poisson Non-Stationary Convolution

This section shows plots for the binomial, Poisson distributions and binomial-Poisson convo-
lution.
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Fig. C.3 Binomial-Poisson non-stationary convolution for a stable population with 𝑁0 = 10.
The results on the left show a stable population with 𝜙1 = 0.30, 𝜙𝑎 = 0.70 and 𝜌 = 1, on the
right we invert the survival probabilities so they are 𝜙1 = 0.70, 𝜙𝑎 = 0.30. The red line shows
the binomial-Poisson convolution. The green line represents the binomial distribution with
probability 𝑝 = 𝜙𝑎. The blue line shows the Poisson distribution where the mean 𝜃 = 𝜙1𝜌.
The first row shows the distributions when they are evaluated at the value 2, the second and
third rows show the distributions when they are evaluated at 6 and 8.
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Fig. C.4 Binomial-Poisson non-stationary convolution for a stable population with 𝑁0 = 100.
The results on the left show a stable population with 𝜙1 = 0.30, 𝜙𝑎 = 0.70 and 𝜌 = 1, on the
right we invert the survival probabilities so they are 𝜙1 = 0.30, 𝜙𝑎 = 0.70. The red line shows
the binomial-Poisson convolution. The green line represents the binomial distribution with
probability 𝑝 = 𝜙𝑎. The blue line shows the Poisson distribution where the mean 𝜃 = 𝜙1𝜌.
The first row shows the distributions when they are evaluated at the value 10, the second and
third rows show the distributions when they are evaluated at 50 and 90.
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C.2.2 The Non-stationaty Poisson Distribution for Time-Series SSMs.

This section provides further simulation results to support the findings described in 4.6.2.

Table C.6 Median relative bias for a non-stationary Poisson distribution with mean, 𝜃 = 1 for
a time series of size 20.

𝑁0 𝜃 = 1.00

5 -0.1177
10 -0.0806
20 -0.0299
40 -0.0106
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Fig. C.5 Simulation results for a non-stationary Poisson process with 10 years of data. On
the left we present the boxplots containing the simulation results for the mean parameter, 𝜃.
The thick middle black line represents the median estimated value, and the red star the real
value of 𝜃. On the right we can observe the results for the mean parameter, 𝜃, against the
time series count sum for different population sizes for 10 years of study. The horizontal
red lines in each plot represent the true value of 𝜃, and the vertical red lines represent the
expected sum of the counts of the time-series observed in the 10 years of study.
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C.3 Combining Multiple Time-Series Data Sets—Effect on
Bias

This section provides further simulation results to support the findings described in 4.6.4.
Table C.7 shows simulation results from combining several time-series data sets with

different sizes in an IPM. The time-series fitted using the KF have 𝑁0 = 60, and the time-
series fitted using the HMM 𝑁0 = 10. Table C.7 shows that overall having larger counts
decreases the bias. Moreover, increasing the number of data sets in the analysis also decreases
the bias.

Table C.7 Median relative bias for a stable population in the productivity parameter, 𝜌 for
IPMs that combine ring-recovery data with several time-series data sets which contain large
and small counts. The time-series with large counts have 𝑁0 = 60 and are fitted using the
KF. The time-series with small counts have 𝑁0 = 10 and are fitted using HMMs. Column 1
indicates the number of large data sets used and column 2 the number of small data sets used,
and column 3 the bias for 𝜌. The first row indicates the data used and the combinations fitted.

large small RR+large+small
KF HMM RR+KF+HMM

0 1 -0.3030
1 0 -0.0716
1 1 -0.0710
0 5 -0.0443
5 5 -0.0169

10 5 -0.0085
20 5 -0.0015
0 10 -0.0148
5 10 -0.0111

10 10 0.0062
20 10 0.0015
0 20 -0.0257
5 20 -0.0279

10 20 -0.0068
20 20 -0.0061
5 0 -0.0256

10 0 -0.0183
20 0 -0.0202
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Appendix D

Supporting Information for Chapter 5

This appendix provides data and additional results to support the findings in Chapter 5.

D.1 Starling Data

In this section we provide the ring-recovery m-arrays for starling data. These data are
part of the BTO Ringing Scheme, which is funded by a partnership of the British Trust
for Ornithology, the Joint Nature Conservation Committee (on behalf of: Natural England,
Natural Resources Wales and Scottish Natural Heritage and the Department of Agriculture,
Environment and Rural Affairs (Northern Ireland), The National Parks and Wildlife Service
(Ireland) and the ringers themselves. Table D.1 contains the ringing and recovery totals for
the birds ringed as first-year birds. Table D.2 contains the ringing and recovery totals for
birds ringed as adults respectively.
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Table D.1 Ring-recovery data for starlings ringed in their first year of life for the years
1990-1999.

Year of Year of recovery Total
ringing 1 2 3 4 5 6 7 8 9 10 ringed

Ringed as first-year birds

1990 48 26 5 7 4 5 1 1 0 0 4648
1991 47 18 6 2 4 2 0 1 3 5489
1192 27 13 9 5 0 3 2 2 3646
1993 37 21 11 4 3 2 1 4700
1994 23 13 10 6 1 1 4268
1995 44 13 11 4 3 5405
1996 35 17 4 1 4327
1997 22 16 4 4164
1998 24 14 4577
1999 15 3957

Table D.2 Ring-recovery data for starlings ringed as adults for the years 1990-1999.

Year of Year of recovery Total
ringing 1 2 3 4 5 6 7 8 9 10 ringed

Ringed as adults

1990 9 19 7 4 4 1 2 0 2 0 1698
1991 0 7 10 5 2 3 0 3 0 0 1659
1992 6 7 6 1 1 0 0 1 1235
1993 2 9 8 4 5 0 2 1846
1994 5 10 6 4 3 0 1578
1995 4 5 3 7 3 1984
1996 5 7 4 1 1986
1997 5 3 1272
1998 2 7 1315
1999 3 1061



D.2 Comparison between IPMs and Separate Models 213

D.2 Comparison between IPMs and Separate Models

In this section we present a comparison between the IPMs, SSMs and RR models for the
starling data. For this, we compare the best models in terms of AIC presented in Table 5.7
for each step of the “forward selection” procedure. In such a way, we start by comparing the
model in which all parameters are kept constant (step 1). Then we compare the models in
which one covariate (latitude) is added to 𝜙𝑎 (step 2). We continue by providing a comparison
for the best models in steps 3-5. The SSM is parameter redundant. Therefore, we have to
reparameterise it by introducing a new parameter, 𝛽 = 𝜙1𝜌 (Section 1.2.2). We provide a
comparison in all of the steps for the IPMs and the RR models. However, for the SSMs we
can only provide a comparison for steps 1 and 2, as in step 3 we add a covariate to 𝜙1.

Table D.3 shows a comparison for the models in which all the parameters are kept
constant. Here, there is a slight variation in the parameter estimate values obtained for the
IPM in comparison with the RR. In the IPM these values are slightly smaller. However, the
standard errors for both models are identical. Additionally, Table D.3 shows that the estimate
for 𝜙𝑎 is at the boundary, and has a very with a very large standard error. Moreover, here 𝛽 is
estimated at 0.957 which is significantly higher than the result that we would obtain from
the product between the values of 𝜙1 and 𝜌 from the IPM. This demonstrates that the SSM
alone provides poor estimates of the parameters, as well as not being able to estimate 𝜙1 and
𝜌 separately.

Tables D.4- D.7 show the results for the models in which spatial dependencies have been
added to the survival parameters 𝜙1 and 𝜙𝑎. Here, we observe that the estimates related to
these parameter change between the IPM and the RR models. Additionally, for these models,
the IPMs provide smaller standard errors than the RR models. This is true, in both cases,
when the IPMs estimates the parameters higher and lower than the RR models.

Table D.3 Comparison between the IPM, SSM and RR models with all parameters kept
constant. Parameter estimates, with standard errors given in parentheses. Here, 𝛽 = 𝜙1𝜌. This
reparameterisation is needed in the SSM as otherwise the model is parameter redundant.

Pars IPM SSM RR
𝜙𝑎 0.660(0.018) 0.001(0.118) 0.676(0.019)
𝜙1 0.546(0.021) - 0.551(0.021)
𝜌 0.550(0.050) - -
𝛽 - 0.957(0.119) -
𝜎𝜂 17.838(2.263) 16.454(2.205) -
𝜇 15.523(1.550) 15.342(1.584) -
𝜆 0.016(0.001) - 0.016(0.001)
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Table D.4 Comparison between the IPM, SSM and RR models. Parameter estimates, with
standard errors given in parentheses, for the models in which 𝜙𝑎 is dependent on latitude
and the remaining parameters are kept constant. Here, 𝛽 = 𝜙1× 𝜌. This reparameterisation is
needed in the SSM as otherwise the model is parameter redundant.

Pars IPM SSM RR
𝜙𝑎 𝛼1 0.781(0.087) -2.038(0.932) 0.838(0.094)

𝛽𝑙𝑎𝑡1 0.343(0.067) 1.003(0.655) 0.301(0.089)
𝜙1 0.562(0.021) - 0.565(0.021)
𝜌 0.521(0.049) - -
𝛽 - 0.854(0.083) -
𝜎𝜂 17.236(2.166) 15.867(2.132) -
𝜇 15.136(1.524) 14.966(1.562) -
𝜆 0.016(0.001) - 0.016(0.001)

Table D.5 Comparison between the IPM and RR models. Parameter estimates, with standard
errors given in parentheses, for the models in which 𝜙𝑎 is dependent on latitude, 𝜙1 is
dependent on the urban type of land cover and the remaining parameters are kept constant.
Note that it is not possible to fit the SSM alone, even with reparameterisation, due to
parameter redundancy.

Pars IPM RR
𝜙𝑎 𝛼1 0.861(0.092) 0.927(0.093)

𝛽𝑙𝑎𝑡1 0.362(0.068) 0.423(0.078)
𝜙1 𝛼2 0.807(0.135) 0.912(0.142)

𝛽𝑢𝑟𝑏𝑎𝑛 -0.060(0.011) -0.072(0.013)
𝜌 0.506(0.050) -
𝜎𝜂 16.777(2.088) -
𝜇 14.827(1.505) -
𝜆 0.017(0.001) 0.017(0.001)



D.2 Comparison between IPMs and Separate Models 215

Table D.6 Comparison between the IPM and RR models. Parameter estimates, with standard
errors given in parentheses, for the models in which 𝜙𝑎 is dependent on latitude with linear
and quadratic terms, 𝜙1 is dependent on the urban type of land cover and the remaining
parameters are kept constant. Note that it is not possible to fit the SSM alone, even with
reparameterisation, due to parameter redundancy.

Pars IPM RR
𝜙𝑎 𝛼1 0.707(0.100) 0.710(0.117)

𝛽𝑙𝑎𝑡1 0.213(0.081) 0.126(0.132)
𝛽𝑙𝑎𝑡2

1
0.137(0.046) 0.174(0.063)

𝜙1 𝛼2 0.856(0.131) 0.916(0.138)
𝛽𝑢𝑟𝑏𝑎𝑛 -0.065(0.011) -0.072(0.013)

𝜌 0.524(0.050) -
𝜎𝜂 16.664(2.042) -
𝜇 14.994(1.519) -
𝜆 0.017(0.001) 0.017(0.001)

Table D.7 Comparison between the IPM and RR models. Parameter estimates, with standard
errors given in parentheses, for the models in which 𝜙𝑎 is dependent on latitude with linear
and quadratic terms, 𝜙1 is dependent on the urban and farm types of land cover and the
remaining parameters are kept constant. Note that it is not possible to fit the SSM alone, even
with reparameterisation, due to parameter redundancy.

Pars IPM RR
𝜙𝑎 𝛼1 0.668(0.101) 0.708(0.117)

𝛽𝑙𝑎𝑡1 0.160(0.083) 0.127(0.132)
𝛽𝑙𝑎𝑡2

1
0.170(0.048) 0.180(0.063)

𝜙1 𝛼2 1.041(0.151) 1.055(0.162)
𝛽𝑢𝑟𝑏𝑎𝑛 -0.057(0.011) -0.064(0.013)
𝛽 𝑓 𝑎𝑟𝑚 -0.011(0.004) -0.009(0.005)

𝜌 0.535(0.050) -
𝜎𝜂 16.520(2.037) -
𝜇 14.941(1.517) -
𝜆 0.017(0.001) 0.017(0.001)
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D.3 Results for Starling Data

In this section we provide the results obtained from fitting the SE-IPM to additional models
to those presented in 5.4.

Table D.8 shows some additional models fitted. In Table D.8 we see that the AIC values
for all the models here are always higher than that obtained for the best model in terms of
AIC from the "forward selection" procedures.

Table D.8 Additional models and model comparison for spatially-explicit IPMs fitted for the
starling data for the years 1990-1999.

Model No. pars AIC
𝜙𝑎, 1( 𝑓 𝑎𝑟𝑚) 8 11,903.20
𝜙𝑎, 1(𝑔𝑟𝑎𝑠𝑠) 8 11,917.59
𝜙𝑎, 1(𝑢𝑟𝑏𝑎𝑛) 8 11,886.17
𝜙𝑎, 1(𝑤𝑎𝑡𝑒𝑟) 8 11,915.46
𝜙𝑎, 1(𝑤𝑜𝑜𝑑) 8 11,912.26
𝜙𝑎, 1(𝑙𝑜𝑛𝑔+𝑙𝑜𝑛𝑔2) 10 11,900.83
𝜙𝑎, 1(𝑙𝑎𝑡+𝑙𝑜𝑛𝑔) 10 11,883.80
𝜙𝑎, 1( 𝑓 𝑎𝑟𝑚+𝑢𝑟𝑏𝑎𝑛) 10 11,881.49
𝜙𝑎, 1( 𝑓 𝑎𝑟𝑚+𝑔𝑟𝑎𝑠𝑠) 10 11,902.53
𝜙𝑎, 1(𝑔𝑟𝑎𝑠𝑠+𝑢𝑟𝑏𝑎𝑛) 10 11,886.05
𝜙𝑎( 𝑓 𝑎𝑟𝑚+𝑙𝑎𝑡+𝑙𝑜𝑛𝑔) , 𝜙1( 𝑓 𝑎𝑟𝑚+𝑙𝑎𝑡) 11 11,880.87
𝜙𝑎(𝑔𝑟𝑎𝑠𝑠+𝑙𝑎𝑡+𝑙𝑜𝑛𝑔) , 𝜙1(𝑔𝑟𝑎𝑠𝑠+𝑙𝑎𝑡) 11 11,880.46
𝜙𝑎(𝑢𝑟𝑏𝑎𝑛+𝑙𝑎𝑡+𝑙𝑜𝑛𝑔) , 𝜙1(𝑢𝑟𝑏𝑎𝑛+𝑙𝑎𝑡) 11 11,868.27
𝜙𝑎(𝑤𝑎𝑡𝑒𝑟+𝑙𝑎𝑡+𝑙𝑜𝑛𝑔) , 𝜙1(𝑤𝑎𝑡𝑒𝑟+𝑙𝑎𝑡) 11 11,885.38
𝜙𝑎(𝑤𝑜𝑜𝑑+𝑙𝑎𝑡+𝑙𝑜𝑛𝑔) , 𝜙1(𝑤𝑜𝑜𝑑+𝑙𝑎𝑡) 11 11,882.50
𝜙𝑎,1(𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+ 𝑓 𝑎𝑟𝑚) 12 11,882.07
𝜙𝑎,1(𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+𝑔𝑟𝑎𝑠𝑠) 12 11,882.03
𝜙𝑎,1(𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+𝑢𝑟𝑏𝑎𝑛) 12 11,870.25
𝜙𝑎,1(𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+𝑤𝑎𝑡𝑒𝑟) 12 11,886.80
𝜙𝑎,1(𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+𝑤𝑜𝑜𝑑) 12 11,884.50
𝜙𝑎,1(𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+𝑙𝑎𝑡2+𝑙𝑜𝑛𝑔2) 12 11,863.88
𝜙𝑎( 𝑓 𝑎𝑟𝑚+𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+𝑙𝑎𝑡2+𝑙𝑜𝑛𝑔2) , 𝜙1( 𝑓 𝑎𝑟𝑚+𝑙𝑎𝑡+𝑙𝑎𝑡2) 14 11,866.34
𝜙𝑎(𝑔𝑟𝑎𝑠𝑠+𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+𝑙𝑎𝑡2+𝑙𝑜𝑛𝑔2) , 𝜙1(𝑔𝑟𝑎𝑠𝑠+𝑙𝑎𝑡+𝑙𝑎𝑡2) 14 11,872.19
𝜙𝑎(𝑢𝑟𝑏𝑎𝑛+𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+𝑙𝑎𝑡2+𝑙𝑜𝑛𝑔2) , 𝜙1(𝑢𝑟𝑏𝑎𝑛+𝑙𝑎𝑡+𝑙𝑎𝑡2) 14 11,858.68
𝜙𝑎(𝑤𝑎𝑡𝑒𝑟+𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+𝑙𝑎𝑡2+𝑙𝑜𝑛𝑔2) , 𝜙1(𝑤𝑎𝑡𝑒𝑟+𝑙𝑎𝑡+𝑙𝑎𝑡2) 14 11,872.17
𝜙𝑎, 1( 𝑓 𝑎𝑟𝑚+𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+𝑙𝑎𝑡2+𝑙𝑜𝑛𝑔2) 16 11,862.69
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Table D.8 – continued from previous page
Model No. pars AIC
𝜙𝑎, 1(𝑔𝑟𝑎𝑠𝑠+𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+𝑙𝑎𝑡2+𝑙𝑜𝑛𝑔2) 16 11,866.47
𝜙𝑎, 1(𝑢𝑟𝑏𝑎𝑛+𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+𝑙𝑎𝑡2+𝑙𝑜𝑛𝑔2) 16 11,860.55
𝜙𝑎, 1(𝑤𝑎𝑡𝑒𝑟+𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+𝑙𝑎𝑡2+𝑙𝑜𝑛𝑔2) 16 11,861.57
𝜙𝑎, 1(𝑤𝑜𝑜𝑑+𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+𝑙𝑎𝑡2+𝑙𝑜𝑛𝑔2) 16 11,866.24
𝜙𝑎, 1(𝑙𝑎𝑡+𝑙𝑜𝑛𝑔+𝑙𝑎𝑡2+𝑙𝑜𝑛𝑔2+𝑙𝑎𝑡3+𝑙𝑜𝑛𝑔3) 16 11,926.54

D.3.1 Heat Maps

In this section we provide probability heat maps for the survival parameters for the second to
the fifth best models in terms of AIC.
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(a) First-year survival

(b) Lower interval (c) Upper interval

Fig. D.1 Heat maps for the second best model in terms of AIC: Survival probability and 95%
confidence intervals for first-year starlings for the years 1990-1999.



D.3 Results for Starling Data 219

(a) Adult survival

(b) Lower interval (c) Upper interval

Fig. D.2 Heat maps for the second best model in terms of AIC: Survival probability and 95%
confidence interval for adult starlings for the years 1990-1999.
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(a) Adult survival
(b) Standard errors

Fig. D.3 Adult survival probability and standard errors for the second best model in terms of
AIC for starlings for the years 1990-1999.
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(a) First-year survival

(b) Lower interval (c) Upper interval

Fig. D.4 Heat maps for the third best model in terms of AIC: Survival probability and 95%
confidence intervals for first-year starlings for the years 1990-1999.
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(a) Adult survival

(b) Lower interval (c) Upper interval

Fig. D.5 Heat maps for the third best model in terms of AIC: Survival probability and 95%
confidence interval for adult starlings for the years 1990-1999.
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(a) Adult survival
(b) Standard errors

Fig. D.6 Adult survival probability and standard errors for the third best model in terms of
AIC for starlings for the years 1990-1999.
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D.3.2 Point Estimate Maps

In this section we provide the corresponding point maps to the heat maps provided in Sections
5.4 and D.3.1.
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(a) First-year survival

(b) Lower interval (c) Upper interval

Fig. D.7 Point estimate maps for best model in terms of AIC: Survival probability and 95%
confidence intervals for first-year starlings for the years 1990-1999.
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(a) Adult survival

(b) Lower interval (c) Upper interval

Fig. D.8 Point estimate maps for best model in terms of AIC: Survival probability and 95%
confidence intervals for adult starlings for the years 1990-1999.



D.3 Results for Starling Data 227

(a) First-year survival

(b) Lower interval (c) Upper interval

Fig. D.9 Point estimate maps for the second best model in terms of AIC: Survival probability
and 95% confidence intervals for first-year starlings for the years 1990-1999.
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(a) Adult survival

(b) Lower interval (c) Upper interval

Fig. D.10 Point estimate maps for the second best model in terms of AIC: Survival probability
and 95% confidence interval for adult starlings for the years 1990-1999.
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(a) Adult survival

(b) Lower interval (c) Upper interval

Fig. D.11 Point estimate maps for the third best model in terms of AIC: Survival probability
and 95% confidence interval for adult starlings for the years 1990-1999.
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(a) Adult survival

(b) Lower interval (c) Upper interval

Fig. D.12 Point estimate maps for the third best model in terms of AIC: Survival probability
and 95% confidence interval for adult starlings for the years 1990-1999.
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D.4 Autocorrelation Results for the Starling Ring-recovery
Data

In this section we provide additional autocorrelation results to those presented in Section
5.4. Dormann et al. (2007) describes different methods to recognise spatial autocorrelation,
amongst these, they suggest to check for patterns in the residuals. We use the residual formula
shown in Equation D.1 and adapt it to obtain the residuals for the ring-recovery data sets.

𝑒𝑖 = 𝑦𝑖 − 𝑦𝑖 . (D.1)

Let 𝑛1 be number of years of ringing, and 𝑛2 number of years of recovery. The total
number of birds ringed at the start of year 𝑖 is given by 𝑇𝑖, 𝑅𝑖, 𝑗 is the total number of birds
ringed at the start of year 𝑖 and recovered dead in year 𝑗 , and 𝑃𝑖, 𝑗 are the cell probabilities of
a multinomial distribution. Residuals formula adapted to the ring-recovery data per square,

𝑒𝑠 =

𝑛1∑
𝑖=1

𝑛2∑
𝑗=𝑖

𝑇𝑖𝑃𝑖, 𝑗 −𝑅𝑖, 𝑗 . (D.2)

Figure D.13 shows the distribution of the residuals for the ring-recovery model, this
shows that there is not apparent pattern.
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Fig. D.13 Distribution of residuals for the ring-recovery model for the starling data for the
years 1990-1999.
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Appendix E

List of Electronic Appendix

In this appendix we provide R code for the models developed in Chapters 2, 3, and 5. The R
code can be accessed online via the link https://tinylink.net/KhxdU. The link gives access to
the following folders:

E.1 Chapter 2

combined_model.r—Contains the code to fit the ring-recovery historical and historical
combined data models from Chapter 2. As an example the blackbird data are provided within
the code.

E.2 Chapter 3

Contains two folders with the R code for the capture-recapture models described in Chapter
3 for the entire sample and the female subsample.

E.2.1 Capture-Recapture Data

CaptureRecapture.r—Capture-recapture code for the capture-recapture sample; here mod-
els with time dependencies and categorical covariates such as sex and site can be added.

E.2.2 Female Nest Data

CaptureRecapture_femalenestdata.r—Capture-recapture code for the female nest capture-
recapture sample; here models with categorical covariates such as sex and site, and continuous
covariates, i.e. female presence data, can be added.

https://tinylink.net/KhxdU
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E.3 Chapter 5

SE_IPM_example.r—Contains the R code to fit the SE-IPM described in Chapter 5.
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