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Abstract

This thesis explores a number of nonlinear PDEs that have peaked soliton solu-

tions, to apply reductions to such PDEs and solve the resultant equations.

Chapter 1 provides a brief history of peakon equations, where they come from

and the different viewpoints of various authors. The rest of the chapter is then

devoted to detailing the mathematical tools that will be used throughout the rest

of the thesis.

Chapter 2 concerns a coupling of two integrable peakon equations, namely

the Popowicz system, which itself is not integrable. The 2-peakon dynamics are

studied, and an explicit solution to the 2-peakon dynamics is given alongside some

features of the interaction.

In chapter 3 a reduction from two integrable peakon equations with quadratic

nonlinearity to the third Painlevé equation is given. Bäcklund transformations

and solutions for the Painlevé equations are expressed, and then used to find

solutions of the original PDEs. A general peakon family, the b-family, is also

explored, giving a more general result.

Chapter 4 examines two peakon equations with cubic nonlinearity, and their

reductions to Painlevé equations. A link is shown between these cubic nonlinear

peakon equations and the quadratic nonlinear equations in chapter 3.

Chapter 5 has conclusions and outlook in the area.
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Chapter 1

Introduction

This thesis forms a study of a group of partial differential equations which all

share a certain type of solution. These solutions are a type of soliton solution,

which are waves that keep their structure after interactions, and continue for

long time periods without changing shape or velocity. Solitons have a physical

manifestation, noted by the famous John Scott Russell [91]:

“I was observing the motion of a boat which was rapidly drawn

along a narrow channel by a pair of horses, when the boat suddenly

stopped - not so the mass of water in the channel which it had put

in motion; it accumulated round the prow of the vessel in a state

of violent agitation, then suddenly leaving it behind, rolled forward

with great velocity, assuming the form of a large solitary elevation,

a rounded, smooth and well-defined heap of water, which continued

its course along the channel apparently without change of form or

diminution of speed. I followed it on horseback, and overtook it still

rolling on at a rate of some eight or nine miles an hour, preserving its

original figure some thirty feet long and a foot to a foot and a half in

height. Its height gradually diminished, and after a chase of one or

two miles I lost it in the windings of the channel. Such, in the month

of August 1834, was my first chance interview with that singular and
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beautiful phenomenon which I have called the Wave of Translation. ”

This observation and subsequent experiments by Russell, led to the discovery by

Korteweg and de-Vries of the famous KdV equation [66]

ut + 6uux + uxxx = 0 (1)

which is a shallow water equation and has soliton solutions, consolidating what

Russell witnessed.

The paper of Camassa and Holm [16], where they derived the equation

ut + 2κux − uxxt + 3uux − 2uxuxx − uuxxx = 0 (2)

as a shallow water equation model, now known as the Camassa-Holm (CH) equa-

tion. Though the very first mention of this Partial Differential Equation (PDE)

was made instead by Fuchssteiner and Fokas [42, 37], who studied the recursion

operator, it took Camassa and Holm’s paper to really start the ongoing interest in

this area. In Camassa and Holm’s paper they showed the equation was integrable

and also discovering what they coined peaked soliton solutions or ‘peakons’, in

the dispersionless κ = 0 case.

In the original Fokas and Fuchssteiner paper there was a slight error with some

coefficients which meant that they could have written down a new hierarchy if it

had been correct, as noted in [43]. The equation was also derived by Dai [29] as

a model for nonlinear waves in hyperelastic rods, and Busuioc [15] when looking

at non-Newtonian fluids.

The CH equation has physical origins, as it can be derived from the incompress-

ible Euler equations as a new approximation to shallow water theory [25, 34, 35].

It emits smooth fluid-like solutions for κ > 0 [85, 84, 74, 55]. This thesis is inter-

ested in the special case of κ = 0, and when referring to CH this is the version

of (2) to which we refer. It must be noted that one must be careful to define in

what sense peakons are solutions - see subsection 1.2.5 below.
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Beals and Sattinger [11, 12] wrote down the explicit solution for an arbitrary

number of peakons, whereas CH [16] did only 1- and 2- peakon solutions. Other

works have covered orbital stability [26], peakon scattering [23], peakon solu-

tions [46, 89] and global solutions [24].

In Camassa and Holm’s paper the derivation was from a physical representa-

tion, designed to develop a new shallow water equation. However there is some

controversy regarding the physical derivation. A more thorough derivation was

conducted by Dullin, Gottwald and Holm [35] but Bhatt and Mikhailov [13] dis-

agree on the physical aspects. Actually the derivation produces a 1-parameter

family (b-family)

ut − uxxt + (b+ 1)uux = buxuxx + uuxxx (3)

originally introduced by Degasperis-Holm-Hone [31]. However, Constantin-Lannes

[25] have a different derivation of b-family, with a different interpretation: unlike

Dullin-Gottwald-Holm [34], u(x, t) does not represent the amplitude of the surface

wave (as in Korteweg de Vries), but rather one component of the fluid velocity at

a particular depth below the surface, with the depth determined by the parameter

b.

There exist integrable and also non-integrable PDEs that have these peakon

solutions, and they all possess a rich structure. However there is not a ‘one size

fits all’ definition of integrability, as noted in the books of Zakharov [100] and

Grammaticos [48]. This introduction will define what we mean by integrability

and the mathematical constructs we will use in the rest of the thesis.

1.1 Background

In this introduction we introduce several concepts that run through the entire

thesis, giving an overview of many of the tools available when studying integrable

systems. In doing so we also review the Camassa-Holm literature, using the

3



Camassa-Holm equation as a key example. One reason that the CH equation has

been so widely studied is partly its richness of mathematical features. It is com-

pletely integrable, having been found to have a Lax pair it is also bi-Hamiltonian

and has an infinite number of conserved quantities.

Before we define what we mean by integrable, we need to explain some of the

tools we shall be using. From the Poisson brackets we can define the Hamiltonian

formalism, and what that looks like for Camassa-Holm. From there we then

explain what a peakon is, and what is meant by a weak solution. Using Camassa-

Holm peakons as the running example, we show how they are solutions of the

PDE and also a travelling wave reduction.

1.2 Hamiltonian Systems

Here we define Hamiltonian systems, and describe various notions of integrability

that are applicable in different contexts. This section will set up the structure

behind the Hamiltonian systems of which the peakon PDEs are a part of. There

are several books that contain a thorough introduction to integrable systems;

see [8, 81, 9, 38].

1.2.1 Poisson Structure

Definition 1.2.1. Poisson Structure: A Poisson structure on a manifold M

is a bilinear bracket {, } on the space of functions C∞(M) × C∞(M) → C∞(M)

satisfying

1. Skew symmetry: {F,G} = −{G,F}

2. Leibniz rule: {F,GH} = {F,G}+ {F,H}

3. Jacobi identity: {{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} = 0

On a d-dimensional manifold M with coordinates x = (xi), the bracket of two

4



functions F,G is given in terms of the brackets between the coordinates by

{F,G } =
d

∑

i,j=1

∂F

∂xi

∂G

∂xj
{xi, xj } (4)

In these coordinates the Poisson tensor P is given by the matrix with entries

Pij = {xi, xj }. The formula for a canonical bracket on R
2n = (p, q) is a special

case where d = 2n and the coordinates are divided into positions q = (qi) and

momenta p = (pi) for i = 1, . . . , n, is given by

{F,G} =
∑

i

∂F

∂pi

∂G

∂qi
− ∂G

∂pi

∂F

∂qi
(5)

where {F,G} is a Poisson bracket, and

{qi, qj} = 0, {pi, pj} = 0, {pi, qj} = δij . (6)

1.2.2 Hamilton’s Equations

To define Hamilton’s equations we first define a Lagrangian system [8], with

Lagrange’s equations ṗ = ∂L
∂q
, where p = ∂L

∂q̇
, with a given lagrangian function

L : Rn × R
n × R→ R.

The HamiltonianH is a function that represents the legendre transform (trans-

forming functions on a vector space to functions on a dual space) of the Lagrangian

function. This can be written as

H(q, p, t) = pq̇ − L(q, q̇, t) (7)

Hamilton’s equations in terms of general coordinates (xi) are given by

ẋi = {xi, H} (8)

for i = 1, .., d.
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Definition 1.2.2. Phase space [8] The 2n-dimensional space with coordinates

p1, ..., pn, q1, ..., qn is called phase space.

Any function F (x) on phase space M satisfies

Ḟ = {F,H} (9)

and in the canonical case with d = 2n they take the form

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
(10)

for i = 1, . . . , n;

Definition 1.2.3. Integral of motion: A function K(x) ∈ C∞(M) that is

constant on trajectories of Hamilton’s equations is called an integral of motion.

Due to (9), it satisfies

{K,H} = 0, (11)

or in other wordsK is in involution (Poisson commutes) withH. ThereforeK(q, p)

commutes with H(q, p).

Definition 1.2.4. Casimir function: A function C ∈ C∞(M) on a Poisson

manifold M is called a Casimir function if {C,F} = 0 ∀ F ∈ C∞(M).

Casimirs can be fixed and used to reduce the order of a system of ODEs, we

do this in chapter 2. We define, as in [94]:

Definition 1.2.5. Complete integrability (Poisson case): Suppose that the

Poisson tensor (which maps 1-forms to vector fields) is of constant rank 2n on a

dense open subset of a Poisson manifold M of dimension d, and that the algebra

of Casimir functions is maximal, i.e. it contains d− 2n independent functions. A

Hamiltonian system on M is said to be completely integrable if it admits d − n
independent functions (including the Hamiltonian H) which are in involution.

In the canonical case d = 2n the rank is maximal and there are no Casimirs,

so only n conserved quantities in involution are needed.

6



Theorem 1.2.1. Liouville’s Theorem: The solution of the equations of motion

of a completely integrable system is obtained by quadratures.

This essentially means we only need to calculate a finite amount of integrals

and explicit solutions can be found, this theorem also applies when dealing with

Poisson manifolds as in Definition 5 defined above.

1.2.3 Infinite-dimensional Hamiltonian Systems

PDEs in 1+1 dimensions (space x + time t), like KdV and CH, can be formulated

as Hamiltonian systems in infinite dimensions. To do this for a PDE in terms of

u(x, t) requires a Poisson bracket on functionals of u (rather than functions). So

for two functionals F,G the bracket is given in terms of a skew-symmetric operator

B by

{F,G} =
〈

δF

δu
,B

δG

δu

〉

=

∫

δF

δu
utdx =

∫

δF

δu
B
δG

δu
dx (12)

with 〈, 〉 denoting the L2 pairing on R
d. If F is a local functional, given by

F =

∫

Fdx (13)

where F is a function of u and its derivatives, then the variational (Fréchet)

derivative of F can be rewritten in terms of the Euler operator acting on F :

δF

δu
=
∂F
∂u
− ∂

(

∂F
∂ux

)

+ .... (14)

The bracket {, } is automatically skew-symmetric whenever the operator B is,

but is also required to satisfy the Jacobi identity (but one doesn’t bother with the

Leibniz rule in infinite dimensions). The domain of integration in
∫

: this is the

whole real line in the case that u and its derivatives vanish at spatial infinity, or

e.g. −π to π in the case that u is periodic in x with period 2π.

Then given a functional H[u], Hamilton’s equations are

ut = B
δH

δu
. (15)

7



Writing CH in Hamiltonian form, with

B = −(m∂x + ∂xm), (16)

where m = u− uxx is the fluid momentum variable [16], that satisfies

mt = B
δH

δm
(17)

with

H =

∫

1

2
(u2x + u2)dx, (18)

as
δH

δm
= (1− ∂2x)−1 δH

δu
. (19)

The fluid momentum m was obtained via a Legendre transformation as the vari-

ational derivative of the Lagrangian L[u], with u being the fluid velocity.

1.2.4 Bi-Hamiltonian Systems

If we can write a system in terms of two distinct Hamiltonians and Hamiltonian

operators

ut = B0
δH

δu
= B1

δG

δu
(20)

and also the sum (or any linear combination) of B0 and B1 is a Hamiltonian

operator then we call the system bi-Hamiltonian. Now if

B0 +B1 (21)

is also Hamiltonian, then we can define a recursion operator

R = B1B
−1
0 (22)

that can generate an infinite hierarchy of flows. This means that by showing a

system is bi-Hamiltonian, with an infinite hierarchy of local flows that commute,

8



we can infer that the system is integrable.

Definition 1.2.6. Bi-Hamiltonian System [81] A pair of skew-adjoint q × q
matrix differential operators B0 and B1 is said to form a Hamiltonian pair if every

linear combination aB0 + bB1, a, b ∈ R, is a Hamiltonian operator. A system of

evolution equations is a bi-Hamiltonian system if it can be written in the form (20)

where B0, B1 form a Hamiltonian pair.

Writing CH in terms of the momentum variable m

mt + umx + 2uxm = 0, m = u− uxx (23)

we can write down

Example 1.2.1. Bi-Hamiltonian form of Camassa-Holm

mt = B0
δH1

δm
= B1

δH2

δm
, (24)

B0 = −m∂x − ∂xm, H1 =
1

2

∫

(u2 + u2x)dx, (25)

B1 = −∂x − ∂3x, H2 =
1

2

∫

(u3 + uu2x)dx. (26)

1.2.5 Weak Solutions

A weak solution for an ODE or PDE is a solution which may only satisfy the

equation under some very specific circumstances. The solutions may not exist for

all derivatives, however we can say that is a solution in this weak sense if the

cirucumstances are satisfied.

Peakons are weak solutions of the PDE’s that have them as solutions, by this

we mean that they are valid only for the weak formulation of the PDE as the

derivatives are discontinuous. The weak formulation for the whole b-family (3)

was studied in [58], given by

E ≡ (1− ∂2x)ut + (b+ 1− ∂2x)∂x
(

1

2
u2
)

+ ∂x

(

3− b
2

u2x

)

= 0 (27)

9



so for all time t
∫

Eψ dx = 0. (28)

ψ(x) is any smooth function on the real line with compact support, meaning that

it is enough to do the integration over any finite interval where ψ has support

(though an infinite interval would still be valid), and the derivatives in (27) are

to be interpreted as weak derivatives, in the sense to be explained below.

Here we write down the case for b = 2 the Camassa-Holm example, and how

to derive it. To verify the weak formulation, given by (27) with b = 2 and (28) for

all ψ, we multiply by some test function ,ψ(x, t), and move the derivatives onto

that rather than the equations dependent variable u(x, t).

∫

(ut − uxxt + ux(u− uxx) + (u(u− uxx))x)ψdx = 0 (29)

To get this into the weak form, we shall consider the terms seperately and integrate

by parts to move the derivatives greater than one. So we have

∫

(ut − uxxt)ψdx =

∫

(ψ − ψxx)utdx (30)

and
∫

ux(u− uxx)ψdx =

∫

(uuxψ +
1

2
u2xψx)dx (31)

and
∫

((u− uxx))uxψdx = −
∫

(u2 + u2x)ψx + uuxψxxdx (32)

So the weak formulation from (29) is:

∫

(−(uux − ut)ψxx − (u2 +
1

2
u2x)ψx + (uux + ut)ψ)dx = 0. (33)

The weak formulation is equivalent to requiring (33).

10



1.3 Peakons

As we briefly mentioned, peakons are like non-smooth solitons. Different peakon

equations can have different peakon solutions, for example CH and Novikov’s

equation, but here we shall use CH to introduce their main properties. Camassa-

Holm has peakons of the form

u(x, t) = ce−|x−ct|, (34)

where the wave speed c is proportional to its amplitude. The constant c can also

be negative and, if this is the case, we call the solutions ‘antipeakons’ and they

move from right to left unlike peakons which move from left to right. These are

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
u(x,t)

t

x

Figure 1: Single peakon, with c=1

known as weak solutions [70], as not all higher order derivatives of u that appear

in (2) exist everwhere. We can see from (34) and Figure 1 that the first derivative

of u is discontinuous at the peak x = ct.

To verify that the the single peakon solution (34) is a weak solution, we can

11



substitute into (27) to find

m = (1− ∂2x)u = 2cδ(x− ct) (35)

and then

(1− ∂2x)ut = −2c2δ′(x− ct) (36)

from taking the t derivative of the distribution (35). Noting that δ is the dirac

delta function

δ(x) =











+∞, x = 0

0, x 6= 0

(37)

and
∫ ∞

−∞
δ(x)dx = 1 (38)

so
∫

e−|x|(ψ − ψxx)dx = 2ψ(0) (39)

noting that 1
2
e−|x| is the Green’s function of the Helmholtz operator 1−∂2x, there-

fore

(1− ∂2x)e−|x| = 2δ(x) (40)

Then we also need

(1− 1

4
∂2x)u

2 = c2e−2|x−ct| = c2δ(x− ct) (41)

as δ(kx) = 1
|k|δ(x). So we have

E = −2c2δ′(x− ct) + (3− ∂2x)∂x(
1

2
c2e−2|x−ct|) + ∂x(

1

2
c2e−2|x−ct|), (42)

= −2c2δ′(x− ct) + 2∂x(1−
1

4
∂2x)u

2 = 0 (43)

using (41) and hence verifying that a single peakon solution is also a weak solution.

To check if single peakons are weak solution of the travelling wave reduction,

12



similar technique is employed as with the PDE, multiply by a suitable test function

and integrate by parts. A single peakon is given as follows

u(x, t) = ce−|x−ct|, (44)

Starting with the travelling wave ansatz [17]

u(x, t) = φ(x− ct) (45)

with c the wavespeed, take ζ = x− ct and substitute into (2) we find

−c(φ′ − φ′′′) + 3φφ′ = 2φ′φ′′ + φφ′′′ (46)

Integrating this once

−c(φ− φ′′) +
3

2
φ2 = φφ′′ +

1

2
φ′2 + a (47)

Multiply by 2φ′ and integrate again

(φ− c)(φ2 − φ′2) = aφ+ b (48)

with a ∈ R is a constant. Camassa and Holm guessed the form of the peakon

from looking at (48) and requiring a = b = 0 for solutions vanishing at infinity;

and the single peakon is a solution that satisfies (48) everywhere except at the

peak ζ = 0, where φ = c.

1.3.1 Multi-peakons

Multi-peakons have been studied extensively, and have proven to be an interesting

area of research which we touched upon at the start of this chapter. They were

initially discovered in Camassa and Holm’s original paper [16] and are a linear

13



superposition of N singlepeakons [12, 52]

u(x, t) =
N
∑

j=1

pj(t)e
−|x−qj(t)| (49)

with time dependent amplitudes pj and speeds qj. The derivatives of which are

ux = −
N
∑

j=1

pj sgn(x− qj)e−|x−qj |, (50)

uxx =
N
∑

j=1

pj(e
−|x−qj | − 2δ(x− qj)) (51)

This is a completely integrable system, Camassa and Holm found a complete set

of conserved quantities using a Lax pair and Beals et al [12]. described them in

more detail. The weak formulation (27) and (28) leads to the equations

q̇i =
N
∑

j=1

pie
−|qi−qj |, (52)

ṗi =
N
∑

j=1

pipj sgn(qi − qj)e−|qi−qj | (53)

by integrating against test functions ψ with support at x = qi. Both (52) and (53)

take the canonical form (10) which has the Hamiltonian function

H =
1

2

N
∑

i,j=1

pipje
−|qi−qj | (54)

1.3.2 2-peakon

Writing the CH 2-peakon example here as a canonical Hamiltonian system,

and a special case of (49)

u(x, t) =
2

∑

i=1

pi(t)e
−|x−qi(t)|. (55)

14



for N = 2 (52) and (53) leads to

ṗ1 = p1p2 sgn(q1 − q2)e−|q1−q2|, (56)

ṗ2 = p1p2 sgn(q2 − q1)e−|q1−q2|, (57)

q̇1 = p1 + p2e
−|q1−q2|, (58)

q̇2 = p1e
|q2−q1| + p2. (59)

and also substituting for the Hamiltonian (54)

H =
1

2
(p21 + p22) + p1p2e

−|q1−q2| (60)

Using the 2-peakon evolution equations with the following change of variables:

P = p1 + p2 Q = q1 + q2, (61)

p = p1 − p2 q = q1 − q2 (62)

The exact solution of 2-peakon equations found by Camassa and Holm (also with

Hyman in more detail [17]) is given by

q1(t) = c1t+
1

2
log[4γ(c1 − c2)2]− log[γc(c1−c2)t + 4c21], (63)

q2(t) = c2t−
1

2
log[4γ(c1 − c2)2] + log[γc(c1−c2)t + 4c22] (64)

where γ is an arbitrary integration constant. As is convention we set the leftmost

peak with position, q1, in this case it has asymptotic velocity c1, and the rightmost

peak q2 with asymptotic velocity c2. There is also freedom to shift q1, q2 by

another constant x0, which has been set to zero. More precisely, the phase shift is

the difference between the phases of the peakons at → −∞ and t → +∞ before

and after interaction. This is a characteristic feature of solitons e.g. it is known

for KdV solitons. The fast soliton is given by

∆qt ≡ q2(+∞)− q1(−∞) (65)
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and ends up to the right of the slower one

∆qs ≡ q1(+∞)− q2(−∞) (66)

so the shifts are given by

∆qt = log

[

c21
(c1 − c2)2

]

, ∆qs = log

[

(c1 − c2)2
c22

]

(67)

Asymptotically this corresponds to

q ≡ ∓(c1 − c2)t+ const as t→ ±∞ (68)

Plotting the peaks of two interacting peakons with initial data

c1 = 0.2, c2 = 0.3, (69)

and

p1(0) = 2, p2(0) = 3, q1(0) = 0, q2(0) = −30, (70)

as in Figure 2 we can see the shift of trajectories after interaction.

1.4 Lax Pairs

A Lax pair [9] is made up of two matrices L, M that can be used to write the

Hamiltonian evolution equations (10) as

dL

dt
≡ L̇ = [M,L] (71)

where [M,L] =ML− LM is the commutator of the matrices M and L.

Simply finding a Lax pair [68] is a very good sign of integrability. Lax looked

at linear operators which gave a compatible equation (Lax equation) with the
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Figure 2: A spacetime plot of two interacting peakons with a shift with initial
data (69),(70)

Schrödinger operator

L = ∂2x + u (72)

written

Lt = [P,L] = (PL− LP ) (73)

for some pair of operators or matrices L, P . We can write Lax pairs in a matrix

form such as

Ψt = AΨ, Ψx = BΨ (74)

with A,B matrices, and Ψ =
(

ψ1

ψ2

)

if the matrices are 2 × 2. They must satisfy

what’s known as the zero curvature condition

At − Bx + [A,B] = 0 (75)

which is the compatibility condition of the linear system, and is essential to the

notion of a Lax pair.
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Lax pairs can also be written in scalar form; the scalar form of Camassa-Holm

Lax pair is

ψxx =

(

1

4
+ λ(m+ κ)

)

ψ, (76)

ψt =

(

1

2λ
− u

)

ψx +
ux
2
ψ. (77)

and the matrix form of the Lax pair:

A =





0 1

1
4
+ λ(κ+m) 0





B =





1
2
ux

1
2λ
− u

1
2
(κ+ 1

4λ
+ 1

2
u)− λu(κ+m) −1

2
ux





the matrices A,B, must satisfy (75).

1.5 Painlevé Equations

Paul Painlevé and co-workers derived a classification of second order ODEs of the

form
d2w

dz2
= F

(

dw

dz
, w, z

)

(78)

where F is rational in dW
dZ

and W , and analytic in Z, such that they are free of

movable critical points. Painlevé and others obtained a list of (approximately)

fifty different types of equations, all but six of which could be reduced to equations

for previously known functions, i.e. linear special functions or elliptic functions.

The remaining six equations, known as Painlevé I−V I, and commonly denoted
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PI-PV I , are given as follows:

w′′ = 6w2 + z, PI

w′′ = 2w3 + zw + α, PII

w′′ =
(w′)2

w
− w′

z
+
αw2 + β

z
+ γw3 +

δ

w
, PIII

w′′ =
(w′)2

2w
+

3

2
w3 + 4zw2 + 2(z2 − α)w +

β

w
, PIV

w′′ =

(

1

2w
+

1

w − 1

)

(w′)2 − w′

z
+

(w − 1)2

z2

(

αw +
β

w

)

+
γw

z
+
δw(w + 1)

w − 1
, PV

w′′ =
1

2

(

1

w
+

1

w − 1
+

1

w − z

)

(w′)2−
(

1

z
+

1

z − 1
+

1

w − z

)

w′

+
w(w − 1)(w − z)

z2(z − 1)2

(

α +
βz

w2
+
γ(z − 1)

(w − 1)2
+
δz(z − 1)

(w − z)2
)

, PV I

where ′ denotes differentiation with respect to z, and α, β, γ, δ are constant

parameters.

A connection between Painlevé equations and integrable PDEs was initially

made by Ablowitz and Segur [6] who applied a scaling similarity reduction of

mKdV which resulted in a PII equation, see subsection 1.7.1 for details. According

to Ablowitz, Ramani and Segur’s famous conjecture [1, 5, 2],

Conjecture 1.6. ARS Conjecture Every ODE which arises as a reduction of

a completely integrable PDE is of Painlevé type (perhaps after a transformation

of variables.

By finding such relationships between PDEs and ODEs via reduction, we are

able to obtain new solutions of the PDEs. Also discovering that we can pass from

integrable PDEs to Painlevé in two different ways such as

Integrable PDE
Sim. Red−−−−−→ 3rd Order Equation





y
Rec.Trans





y

Hodograph

Hierarchy
Sim. Red−−−−−→ Painlevé

- see chapters 3 and 4 below.
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The field of Painlevé equations has been widely studied, the main references

that are used in this thesis for Bäcklund transformations are Milne [77] and Gro-

mak [49]. However it would be amiss to not acknowledge Okamoto’s work [80] who

contributed greatly to the area and also Forrester and Witte [41] who extended

the work of Okamoto.

1.7 Symmetry Reductions and Transformations

To solve nonlinear partial differential equations we are able to use a geometric

approach to exploit symmetry properties that allow us to garner multiple solu-

tions [82]. To clarify, when discussing symmetries of an equation we mean that if

we have an initial solution we are able to find further solutions by applying said

symmetry. An algorithmic approach was developed by Lie [8] to find continuous

symmetries of differential equations, this technique does not capture all the sym-

metries but in most cases will provide most. Another method of finding these

symmetries is simply by inspection and this will likely find the most important

symmetries of the differential equation.

Earlier we used a travelling wave reduction to derive the Camassa Holm peakon

equation, this is a type of translation symmetry. There are a number of different

symmetry reductions, but the ones we shall discuss here are similarity reductions

which are scaling symmetries. Similarity reductions can reduce a system by 1

independent variable, e.g. the Camassa-Holm PDE with u(x, t) reduces to an

ODE of type U(z). Reciprocal transformations do not reduce the order, they do

however transform conservation laws into conservation laws.

Definition 1.7.1. Conservation law If we are able to write an equation in the

following form:

∂tA(u) + ∂xB(u) = 0 (79)

we call it a conservation law.
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1.7.1 Similarity Reductions

The main motivation to employ these techniques is to utilise the work by

Hone [55] on the associated Camassa-Holm (aCH) equation

pt = p2fx, f =
p

4
(log p)xt −

p2

2
, (80)

where the author used scaling similarity reductions to transform the aCH equation

to one of the Painlevé equations. Also (80) is also equivalent to (238) in chapter

3.

Similarity reductions [87] are primarily used to simplify a PDE, if said PDE is

linear then there are lots of techniques available. Applying a similarity reduction

to a PDE reduces the equations independent variables by 1, so if the PDE has

n independent variables our new PDE will have n − 1. To illustrate a scaling

similarity reduction [21] we give an example below. For a known example, KdV (1)

has the following scaling similarity reduction

u(x, t) =
U(z)

(3t)
2

3

, z = x(3t)−
1

3 . (81)

The one-parameter Lie group of scaling symmetries:

x→ λt, t→ λ3t, u→ λ2u(λx, λ3t) (82)

under which the given form of solution is invariant. Substituting (81) into (1) we

find that U satisfies

U ′′′ + 6U ′U − zU ′ − 2U = 0 (83)

Shift U = V + 1
2

V ′′′ + 6V V ′ + V + 2zV ′ = 0, (84)
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integrate with respect to z

V ′′ − V ′2

2V
+ 2V 2 + zV − α

V
= 0, (85)

which is P34 as given by Ince [62].

Definition 1.7.2. Miura map The Miura map transforms solutions from KdV

to mKdV

u = vx − v2 (86)

with u the KdV variable and v the mKdV variable.

Applying a Miura map, V = w′ − w2 we find the second Painlevé equation,

referred to as PII

w′′ = 2w2 + zw + α +
1

2
. (87)

KdV also has a reduction to the first Painlevé equation, known as PI .

1.7.2 Reciprocal Transformations

Definition 1.7.3. Hodograph A Hodograph transformation essentially inter-

changes the roles of the dependent and independent variables of an equation.

Reciprocal transformations can be viewed as a particular type of hodograph trans-

formation, but hodographs are defined for ODEs as well as PDEs.

Proposition 1.7.1. Reciprocal transformations transform conservation laws into

conservation laws [90].

Integrating (79) with respect to x provided u→ 0 when x→ ±∞

∫

Adx (88)

New independent variables are introduced, and interestingly these reciprocal trans-

formations seem to form a natural link between the peakon equations and soliton
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emitting hierarchies.

dX = Adx+Bdt dT = Cdx+Ddt (89)

Then we have

d2X = 0⇒ At = Bx , (90)

d2T = 0⇒ Ct = Dx (91)

Conversely given any pair of conservation laws (90) and (91) you can define a

reciprocal transformation. These transformations are used in chapter 3 and 4.

For KdV, we can re-write as

ut = (uxx + 3u2)x (92)

the reciprocal transformation of which is

dX = udx+ (uxx + 3u2)dt, dT = dt (93)

so the transformed derivatives are

dX

dt
= uxx + 3u2,

dX

dx
= u,

dT

dt
= 1,

dT

dx
= 0. (94)

Writing the derivatives of (92) in terms of X and T we are able to write it down

as

(u−1)T = −(u−1(uXXu
2 + u2X + 3u2))X (95)

which is in the same form as (79) and hence another conservation law thereby

statisfying proposition 1.7.1.
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1.7.3 Bäcklund Transformations

Bäcklund transformations are an incredibly useful mathematical tool that allows

us to find a list of new solutions from a known solution. Using these transfor-

mations we are able to use a solution of a PDE to find a sequence of solutions

for another PDE, which may or may not be the same. They are key features

of soliton equations, like KdV, and are also applicable to the peakon equations

here. Originally developed as a tool in differential geometry, it was Bianchi [14]

who developed the idea constructing surfaces going from one to another. A re-

ciprocal transformation and a Miura transformation are examples of Bäcklund

transformations.

A classical transformation is one from Miura [78]. The well known example

gives a transformation which maps KdV to mKdV, substituting

u = vx − v2 (96)

into (1), where u is a solution to KdV, we find

(2v +
∂

∂x
)(vt − 6v2vx + vxxx) = 0 (97)

therefore if v satisfies the mKdV equation

vt = −vxxx + 6v2vx (98)

then v also gives a solution to (97). However given a solution of KdV does not

necessarily mean that the Miura transformation will give an equation of mKdV.

There are also auto-Bäcklund transformations, which unlike Bäcklund trans-

formations, produce a set of solutions to the original equation. The auto-Bäcklund

transformation for KdV was discovered by Wahlquist and Estabrook [97].
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1.8 Integrable Hierarchies

In this thesis we shall frequently be referring to the fact that a number of these

peakon PDEs are related to various hierarchies. For example Camassa-Holm is

related to the negative flow of the KdV hierarchy [55]. An integrable hierarchy

such as this is a system of commuting flows, coming from integrals of motion

which are involution (i.e. for any pairs of flows the Poisson bracket vanishes).

These flows are obtained recursively, and for the examples given below we give

the recursion operator R.

1.8.1 KdV Hierarchy

The KdV hierarchy was first constructed by Lax [69] who discovered it via a

recursive approach. It was then further developed by Gelfand and Dikii [44].

Using the KdV hierarchy as an example, we can think of this particular hier-

archy as an infinite sequence of PDEs that starts with KdV. We are able to use

the operator

Rn = −∂3x − 4u∂x − 2ux (99)

to produce an infinite number of PDEs by applying

utn = Rnux (100)

recursively. The operator, R = B1B
−1
0 , is constructed from the two Hamiltonian

operators

B0 = ∂x, B1 = ∂3x + 4u∂x + 2ux. (101)

Fokas and Fuchssteiner found all the flows (100) for n = 0, 1, 2, .. commute with

each other. The positive hierarchy consisting of the equations (100) for n ≥ 0 is

well-known, but the negative hierarchy, corresponding to n < 0, is not. The first

interest in the negative hierarchy was due to Verosky [96] who wrote down the
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following

vt = wx, wxxx + 4vwx + 2vxw = 0. (102)

Interestingly, Fuchssteiner found a relationship between this negative flow (102)

and Camassa-Holm (2), which we will make use of in chapter 3.

1.8.2 Other Hierarchies

We make use of other hierarchies in subsequent chapters, and shall refer back to

here when making the connections.

The fifth-order Kaup-Kuperschmidt [65, 67] equation

ut − 10uxxxu− 25uxxux − 20u2ux − uxxxxx = 0 (103)

is the first equation in the Kaup-Kuperschmidt hierarchy with Lax operator [40]

L = ∂3x + 2u∂x + ux (104)

The fifth-order Sawada-Kotera equation [93] is given by

ut + 45u2ux + 15(uxuxx + uuxxx) + uxxxxx = 0 (105)

is the first equation in the Sawada-Kotera hierarchy with the Lax operator [40]

L = ∂3x + u∂x (106)

up to a suitable scaling for u. Sawada-Kotera and Kaup-Kuperschmidt are both

are related to each other [39], Gordoa discusses in depth the Sawada-Kotera hier-

archy in [47].
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1.9 Summary

Here we have given an overview of the main concepts we need for the thesis, this

however only just touches the large body of work that makes up integrable systems.

The peakon equations we have studied are interesting not only for their integrable

properties, but also have gained much interest for their physical representation

and how they can help further knowledge of solitary waves. Understanding other

properties of these equations will only add to their appeal to other aspects of the

mathematical community.

Camassa-Holm is part of a wider group of equations which emit these peakon

solutions, we shall call this the b-family, though only one other member of this

family is known to be integrable. This one-parameter family of partial differential

equations (PDEs), given by (3) can also be written in terms of m

mt + umx + buxm = 0, m = u− uxx (107)

with our variable b. When b = 2 the equation is equivalent to CH, when b = 3

it gives this other integrable equation called the Degasperis-Procesi (DP) equa-

tion [32].

In the second chapter we study a coupled PDE first presented by Popowicz [86],

which is a coupling between

mt + umx + 2uxm = 0, Camassa-Holm (108)

and

mt + umx + 3uxm = 0, Degasperis-Procesi (109)

with m = u− uxx in both cases. Popowicz gave the coupled system

mt +mx(2u+ v) + 3m(2ux + vx) = 0, m = u− uxx, (110)

nt + nx(2u+ v) + 2n(2ux + vx) = 0, n = v − vxx. (111)
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Initially we study the 2-peakon interaction, solving for the phase shift numerically

and analytically. Over the last few years, there have been many authors looking

for these kind of coupled peakon equations, starting with Falqui [36] who studied

a generalization of the Camassa-Holm equation it has lead to a number of other

studies, including [18, 95, 98, 59].

In the third chapter we review a known reduction of Camassa-Holm to PIII ,

providing further details and solutions. Additionally we use an alternative method

to achieve the same result, and then use both methods to find reductions of

Degasperis-Procesi and the b-family.

Chapter 4 continues in a similar vein to chapter 3, but discussing peakon

equations with cubic nonlinearity. We also derive reductions of these cubically

nonlinear PDEs to Painlevé equations, and discuss and make use of connections

with the peakon equations with quadratic nonlinearity.

In the last chapter we conclude by briefly discussing the outlook of the thesis,

with some possible directions for future work.

Overall we find interesting properties of interacting peakons from the Popow-

icz system, and chapter 3 and 4 provide a near algorithmic approach to finding

Painlevé equations for some quadratic and cubic peakon equations. For the inte-

grable peakon equations, the latter result satisfying conjecture 1.6 (ARS conjec-

ture).
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Chapter 2

The Popowicz System

In this chapter we consider a coupled Hamiltonian system of partial differen-

tial equations (PDEs) derived by Popowicz, which has reductions to both the

Camassa-Holm and the Degasperis-Procesi equations. It was shown by Hone and

Irle [61] that the Popowicz system admits N -peakon solutions, whose dynamics is

described by a 3N dimensional Hamiltonian system, which is Liouville integrable

when N = 1 and N = 2, but they also gave arguments to suggest that the full

system of PDEs is not integrable. The main aim of this chapter is to perform

an explicit integration of the equations of motion for N = 2, thereby describing

the interaction of two peakons. We comment on possible implications for the case

N > 2. The main results of this chapter have been published [10].

2.1 The Popowicz System and its Reductions

Popowicz [86] introduced the following coupled system of PDEs:

mt +mx(2u+ v) + 3m(2ux + vx) = 0, m = u− uxx (112)

nt + nx(2u+ v) + 2n(2ux + vx) = 0, n = v − vxx

derived from a Hamiltonian operator with three fields by use of a Dirac reduction,

Popowicz showed that the above system can be written in Hamiltonian form, that
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is




mt

nt



 = Z





δH0

δm

δH
δn





with Hamiltonian

H0 =

∫

(m+ n)dx, (113)

and the non-local operator

Z = −





9m
2

3∂xm
1

3L−1m
1

3∂xm
2

3 6m
2

3∂xm
1

3L−1n
1

2∂xn
1

2

6n
1

2∂xn
1

2L−1m
1

3∂xm
2

3 4n
1

2∂xn
1

2L−1n
1

2∂xn
1

2





where L = ∂x(1−∂2x). The system given by (112) can be regarded as a coupling be-

tween the Camassa-Holm and Degasperis-Procesi equations since by setting u = 0

(and thereforem = 0) it reduces to the Camassa-Holm equation (108), and setting

v = 0 (and therefore n = 0) it reduces to the Degasperis-Procesi equation (109).

The original paper of Popowicz states three independent conserved quantities and

suggests that because of this the system is quite possibly integrable. In addition

to H0 there is also the following Hamiltonian operators

H1 =

∫

(nm− 2

3 )λm
1

3dx, (114)

H2 =

∫

(−9n2
xn

−2m− 1

3 + 12nxmxn
−1m− 4

3 − 4m2
xm

− 7

3 )(nm− 2

3 )λdx (115)

with λ an arbitrary constant. However he did not find a Lax pair for the system nor

a recursion operator from a bi-Hamiltonian formulation to back this up. Further

work on this system by Hone and Irle [61], provides further evidence for this

system to be non-integrable through Painlevé analysis. Hone and Irle also showed

that the Popowicz system admits weak solutions given by a superposition of N
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peaks (peakons), given by

u(x, t) =
N
∑

j=1

aj(t)e
−|x−qj(t)|, (116)

v(x, t) =
N
∑

j=1

bj(t)e
−|x−qj(t)|. (117)

We now will describe further the N -peakon solutions and give details of some

of the dynamics of these Popowicz peakons, which behave differently to those of

Camassa-Holm and Degasperis-Procesi.

2.2 N-peakon Solutions

The ODEs for peakons in the Popowicz system as derived by Hone and Irle [57]

were stated without proof as

Theorem 2.2.1. With the formulation, the Popowicz system admits N -peakon

solutions of the form (116), where the amplitudes aj, bj and positions qj satisfy

the dynamical system

ȧj = 2aj

N
∑

k=1

(2ak + bk) sgn(qj − qk)e−|qj−qk|, (118)

ḃj = bj

N
∑

k=1

(2ak + bk) sgn(qj − qk)e−|qj−qk|, (119)

q̇j =
N
∑

k=1

(2ak + bk)e
−|qj−qk|. (120)

for j = 1, .., n. These ODE’s are in Hamiltonian form,

ȧj = {aj, H}, ḃj = {bj, H}, q̇j = {qj, H}, (121)
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with the non-canonical Poisson bracket

{aj, ak} = 2ajak sgn(qj − qk)e−|qj−qk|, (122)

{bj , bk} =
1

2
bjbk sgn(qj − qk)e−|qj−qk|, (123)

{qj, qk} =
1

2
sgn(qj − qk)(1− e−|qj−qk|), (124)

{qj, ak} = ake
−|qj−qk|, (125)

{qj, bk} =
1

2
bke

−|qj−qk|, (126)

{aj, bk} = ajbk sgn(qj − qk)e−|qj−qk|. (127)

where the Hamiltonian is

H = 2
N
∑

k=1

(ak + bk) = 2
N
∑

k=1

(ckb
2
k + bk) (128)

with the Casimirs

cj =
aj
b2j
, for bj 6= 0, (129)

for j = 1..N which are N conserved quantities. There is also an additional

quantity, J , for the case N = 2

Lemma 2.3. [10] In addition to the Hamiltonian, H, and the Casimirs, cj, with

j = 1, ..N , the ODEs (118) for the peakons in the Popowicz system admit the

first integral

J =

( N
∏

j=1

bj

)N−1
∏

k=1

(1− e−|qk−qk+1|). (130)

Proof. Taking the logarithm of (130) and differentiating gives

d

dt
log J =

N
∑

j=1

d

dt
log bj +

N−1
∑

k=1

(q̇k − q̇k+1) sgn(qk − qk+1)Ek,k+1

1− Ek,k+1

, (131)

where we have introduced the convenient notation

Ej,k = Ek,j = e−|qj−qk|. (132)
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Substituting for the time derivatives from (118) yields

d

dt
log J =

N
∑

j,k=1

(2ak + bk) sgn(qj − qk)Ejk+ (133)

N−1
∑

k=1

N
∑

l=1

(2al + bl) sgn(qk − qk+1)
(Ek,l − Ek+1,l)Ek,k+1

1− Ek,k+1

, (134)

=
N
∑

k=1

(2ak + bk)Sk, (135)

where, upon taking the ordering q1 < q2 < ... < qN without loss of generality,

Sk = −
k−1
∑

j=1

Ejk +
N
∑

j=k+1

Ejk −
N−1
∑

l=1

(El,k − El+1,k)El,l+1

1− El,l+1

(136)

Then the properties of the exponential, together with the assumed ordering of the

peakons, produce the identity

(El,k − El+1,k)El,l+1

1− El,l+1

=











−El,k, for1 ≤ l ≤ k;

El+1,k, fork ≤ l ≤ N − 1

(137)

Thus Sk = 0 for all k, and the result follows.

A trivial example for N = 1, the single peakon case, is represented by the

ODE system

u(x, t) = a1e
−|x−kt−x0|, v(x, t) = b1e

−|x−kt−x0|, (138)

with k = 2a + b and a1, b1 are arbitrary constants. Using (118) to solve for the

amplitudes a, b and position q

ȧ1 = 0, ḃ1 = 0, q̇1 = 2a1 + b1 (139)

therefore we have a1 = a and b1 = b, with both a and b constants. Also q1 =

(2a + b)(t − t0) with t0 arbitary. The signs of a and b correspond to u and v
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becoming peakons (positive amplitude) or anti-peakons (negative amplitude). If

either u or v vanishes, then we are left with a single peakon for Camassa-Holm or

Degasperis-Procesi.

Apart from this trivial example, it is interesting to study the dynamics of N-

peakon solutions. Numerical studies of the b-family [54, 53] and other peakon

equations show that even non-integrable PDE’s can yield some stable multi-

peakon solutions. Currently it is not known as to why this can happen.

2.4 Integrating the 2-peakon Equations

For N = 2 we find ourselves with six equations to solve for the 2-peakon case,

the Hamiltonian system has two Casimirs (c1 and c2) and two further conserved

quantities (H and J) in involution;

Corollary 2.4.1. The Hamiltonian system (118) is Liouville integrable

Therefore by Liouville’s theorem it can be integrated by quadratures. We

reduce the number of equations needed to carry out the integration by fixing the

Casimir (129) to be constant and eliminating the aj’s.

ḃj = bj

2
∑

k=1

(2ckb
2
k + bk) sgn(qj − qk)e−|qj−qk| (140)

q̇j =
2

∑

k=1

(2ckb
2
k + bk)e

−|qj−qk| (141)

Having fixed the Casimirs c1, c2 to be constant as in (140) above, the 2-peakon

dynamics can be found by solving the following four equations

ḃ1 = b1(2c2b
2
2 + b2) sgn(q1 − q2)e−|q1−q2|, (142)

ḃ2 = b2(2c1b
2
1 + b1) sgn(q2 − q1)e−|q1−q2|, (143)

q̇1 = (2c1b
2
1 + b1) + (2c2b

2
2 + b2)e

−|q1−q2|, (144)

q̇2 = (2c1b
2
1 + b1)e

−|q1−q2| + (2c2b
2
2 + b2), (145)
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Figure 3: 2-peakon case, with x the horizontal axis

and then the amplitudes ai are related by ai = kib
2
i . Solving the system of ODEs

numerically using Matlab’s inbuilt ode45, Runge Kutta integrator we can clearly

see two peakons in Figure 3. They behave in the same way as Camass-Holm

peakons, the larger, faster peakon can overtake a shorter, slower peakon without

loss of shape after interacting. By fixing the Hamiltonian H, H can now be

interpreted as an ellipse in the b1, b2 plane, which we write as

H = 2b1(2c1b1 + 1) + 2b2(2c2b2 + 1) = constant. (146)

This means that we can specify it parametrically in terms of an angle θ ∈ (−π, π]
and b1 and b2 are given by

b1 =
λ√
c1

sin θ − 1

2c1
, b2 =

λ√
c2

cos θ − 1

2c2
. (147)

where

λ2 =
1

2

(

H +
1

2c1
+

1

2c2

)

. (148)

Here we are only concerned with peakons (rather than anti-peakons), therefore aj

and bj must be positive for j = 1, 2, which also implies that H > 0 and c1, c2 > 0.

Certain ratios of ḃ1 and ḃ2 are multiples of θ̇. Setting cj = k2j for j = 1, 2, and
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q = q1 − q2 we find

ḃ1 =
λ

k1
θ̇ cos θ = −b1b2(2k22b2 + 1)e−|q| (149)

ḃ2 = −
λ

k2
θ̇ sin θ = b1b2(2k

2
1b1 + 1)e−|q| (150)

More easily seen
ḃ1

2k22b2 + 1
=

ḃ2
2k21b1 + 1

= b1b2e
−|q| (151)

Using the formula for an additional conserved quantity, J ,

J = b1b2(1− e−|q|) (152)

as well as the assumption that q < 0, we find

θ̇ = −2k1k2b1b2eq = 2k1k2(J − b1b2). (153)

Now we have reduced our 2-peakon system to quadratures (as is guaranteed by Li-

ouville’s theorem [8]) and can now calculate θ. Writing the bi’s in their parametric

forms in terms of θ leads to an autonomous equation for θ alone, namely

θ̇ = 2

(

Jk1k2 −
1

4k1k2
+

λ

2k1
cos θ +

λ

2k2
sin θ − λ2 sin θ cos θ

)

≡ f(θ). (154)

We can show this by performing the quadrature

∫

dθ

f(θ)
=

∫

dt = t+ const (155)

and then b1 and b2 are now specified in functions of t by (149) and (150). Hence

q(t) can be found from the quantity J (152)

q = log

(

1− J

b1b2

)

(156)

(noting that b1, b2 > J must hold by the initial assumption on sgn(q)). Following

36



the work of Camassa, Holm and Hyman [16, 17], and presented in section 1.3.2,

we set

Q = q1 + q2. (157)

Then equations (149) and (150) become

q̇ = (2(c1b
2
1 − c2b22) + b1 − b2)(1− e−|q|), (158)

Q̇ = (2(c1b
2
1 + c2b

2
2) + b1 + b2)(1 + e−|q|) (159)

Now that the right hand side of (159) is specified as functions of t, an additional

quadrature with respect to t yields Q = Q(t).

To complete the integration explicitly it is convenient to make use of the

standard T-substitution, which shall convert the trigonometric expressions such

as those in (154) into rational functions of the variable

T = tan
θ

2
(160)

via

sin θ =
2T

1 + T 2
, cos θ =

1− T 2

1 + T 2
, dθ =

2

1 + T 2
dT. (161)

For bi’s in terms of T we have:

b1 =
2λT

k1(1 + T 2)
− 1

2k21
, b2 =

λ(1− T 2)

k2(1 + T 2)
− 1

2k22
. (162)

and using our relation for T above

dT

dt
=

P (T )

1 + T 2
= F (T ) (163)

37



with the quartic polynomial

P (T ) =

(

Jk1k2 −
1

4k1k2

)

(1 + T 2)2 +
λ

2k1
(1− T 4) +

λT

k2
(1 + T 2)− 2λ2T (1− T 2).

(164)

In order to compute the equations of motion we need to employ partial fraction

decomposition. We recall that for a rational function R(T )
S(T )

with degR < degS = m

has a partial fraction decomposition of the form

R(T )

S(T )
=

m
∑

k=1

rk
T − Tk

(165)

where Tk are the roots of S(T ) in the denominator (assumed simple) and rk is

the residue at the poles of the rational function at T = Tk. This is an example of

a Mittag-Leffler expansion in complex analysis [4]. Applying this result to (163),

we find
1

F (T )
=
T 2 + 1

P (T )
= K−1

∑

j=1

(T 2
j + 1)ej

T − Tj
(166)

We can factorize P (T ) in the following way

P (T ) = K

4
∏

j=1

(T − Tj), K = Jk1k2 −
1

4k1k2
− λ

2k1
(167)

and

ej =
∏

1≤k≤4,k 6=j
(Tj − Tk)−1 (168)

The general solution of (163) is given implicitily by

K−1

4
∑

j=1

(1 + T 2
j ) log(T − Tj) = t+ const (169)

The solution above is valid for complex values of T (and t), the constant of inte-

gration should also be allowed to be complex. We, however, are only interested

in real values for T = tan( θ
2
) for real t, in the case where the coefficients of P (T )

are all real. The different combination of real and complex roots may require the
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solution to be specified in different forms. For example, if the four roots of Tj are

all real, then for real T the solution can be written as

K−1

4
∑

j=1

(T 2
j + 1)ej log|T − Tj| = t− t0 (170)

with real constant of integration t0. If P (T ) has two real roots and a complex

conjugate pair, then for real T two of the logarithms in (169) can be combined

into an arctangent.

For the second quadrature to find Q(T ) from (159), it is convenient to write

Q̇ =
dQ

dT
Ṫ (171)

Replace the right hand side of (159) by the corresponding equations in terms of

T we can then obtain Q(T ) by integrating in terms of T instead of t:

dQ

dT
= 2λR(T )

(

1

P (T )
− 1

P̂ (T )

)

(172)

Given as two additional polynomials, one quadratic and the other quartic, namely

R(T ) = λ(T 2 + 1)− T

k1
+
T 2 − 1

2k2
(173)

and

P̂ (T ) = Jk1k2(T
2 + 1)2 − P (T ). (174)

Then writing

P̂ (T ) = K̂
4
∏

j=1

(T − T̂j) (175)

the general solution of (159) can be written in terms of T = T (t) as

Q = 2λ

(

K−1

6
∑

j=1

R(Tj)e
∗
j log(T − Tj)− K̂−1

6
∑

j=1

R(T̂j)ê
∗
j log(T − T̂j)

)

+ const,

(176)
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with

e∗j =
∏

1≤k≤4,k 6=j
(Tj − Tk)−1, (177)

In the next section we will use these explicit formulae to describe the asymptotic

behaviour of the two peakons as t→ ±∞.

2.5 Asymptotics

Analysing the asymptotics of the 2-peakon problem, we find that the behavior

of the peakons in this system of Popowicz is qualitatively similar to those in the

Camassa-Holm and Degasperis-Procesi case in that at extreme times, either rela-

tively large or small, they behave as we expect, the two peaks are well separated

and travel with constant velocity and amplitude. However, at the point of inter-

action, Popowicz peakons exchange varying amounts of velocity and amplitude

during the interaction. This results in the pair of peakon velocities being differ-

ent before and after interaction. In contrast the peakons in the Camassa-Holm

and Degasperis-Procesi equations switch velocities and amplitudes asymptotically.

This results in a phase shift of the peakons, the Camassa-Holm shift is explicitily

given in [17] and is here in section 1.3.2.

To observe the behavior of the peaks over long time scales, we use (163), as the

asymptotic form is controlled by this ODE for T . This equation has fixed points

at the roots of F (T ), these are found at the roots of the quartic, P (T ). Near to

a fixed point, the local behaviour is

T ∼ Tk + Ake
F ′(Tk)t, (178)

where Ak is a constant, and we have

F ′(Tk) =
K

(T 2
k + 1)ek

(179)

compared with the coefficients in (169). Taking some initial data at t = 0 for b1,
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b2, k1 and k2 we are able to find an initial point on the ellipse H from (146) in

the (b1, b2) plane. Therefore we can also find an initial angle θ(0) and also T (0) =

tan

(

θ(0)
2

)

from the standard T-substitution. T (0) lies between two adjacent real

roots, T+ and T−,

T+ < T (0) < T− (180)

with the asymptotic behavior given by

T ∼ T± ± eF
′(T±)t+δ± (181)

as t→ ±∞ and δ± depends on the terms in (170) that are regular at T = T±, as

well as the integration constant. So if there are four real roots, then δ± depends

on the constant t0 in (170). The roots T± are both fixed points of (163), with T+

stable and T− unstable so

F ′(T+) < 0 < F ′(T−) (182)

We can find the asymptotic forms for the bi’s from (162)

b1→ 2λT±
k1(1 + T 2

±)
− 1

2k21
, b2 →

λ(1− T 2
±)

k2(1 + T 2
±)
− 1

2k22
, as t→ ±∞ (183)

when the two peakons are in the field v(x, t). To find the corresponding amplitudes

for the field u(x, t) we use the Casimir that was fixed at the start,

aj = cjb
2
j = k2j b

2
j . (184)

The asymptotic behavior for the positions q1 and q2 are however more complicated.

We have two equations for the difference q = q1 − q2, (158) and (156), therefore

q = log(−T )− log(k1k2b1b2(1 + T 2)), (185)
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as t→ ±∞, and using (181)

q ∼ F ′(T±)t+ δ± + log(∓F ′(T±)− log(k1k2J(1 + T 2
±)), (186)

and the fact that b1b2 → J as |t| → ∞. So for Q = q1 + q2 we find from (176)

that near the roots T = T±, Q is

Q ∼ 2λe±R(T±)F
′(T±)

K
t+ const (187)

and substituting in for F ′(T±)

Q ∼ 2λR(T±)

1 + T 2
±
t+ const as t→∞ (188)

where the constant depends on δ±, as well as the other terms and the arbitrary

constant of integration in (176).

2.6 Numerical Results

We will apply three choices of initial conditions to the system (142) and explore

what has been discussed in the chapter. The first example is possibly not the

best to demonstrate the peakon dynamics, however it is a good choice of initial

conditions in the sense that the solutions do not numerically ‘blow up’. This does

happen when we shift any of these initial conditions slightly, this is not unexpected

given the numerical challenges with other peakon equations [19].

Unlike Example 1, the latter two examples are able to demonstrate more

definitively 2-peakon dynamics such as asymptotic switching and also some new

behaviour not observed with other integrable peakon equations.

42



2.6.1 Example 1

Take the initial values

q1(0) = −30, q2(0) = 0, b1(0) = 3, b2(0) = 2, (189)

and Casimirs

c1 = 0.3, c2 = 0.2 (190)

which fixes

H = 16.999999999999375, J = 5.999999999999439, λ = 3.253203549323808

(191)

this example makes it quite difficult to differentiate J from b1(0)b2(0). However we

found this to be a stable choice of initial conditions, the problem was surprisingly

unstable and was extremely sensitive to small changes in values.

The roots of P (T ) in this case are

T+ = 0.3142320479, T− = 0.4854161155, 11.27226037, −0.7888302327.
(192)

As the peakons have been taken so far apart, the value of T (0) ≈ 0.4854161 is

nearly indistinguishable from T−. Now we calculate

P ′(T±)

(T 2
± + 1)

(193)

and
2λR(T±)

1 + T 2
±

(194)

which we use to can calculate q (186) and Q (188)

q ∼ −4.746989214..t, Q ∼ 11.80243976..t, t→ +∞ (195)
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and

q ∼ 4.799999018..t, Q ∼ 11.99999999..t, t→ −∞ (196)

As the seperation of the peaks was significant at the start, it doesn’t really

show the interaction very well. What we find is the interaction looks like a phase

shift as in Figure 4, however it has not shifted. For switching to occur, we would

require

2λR(T+)

1 + T 2
+

=
2λR(T−)

1 + T 2
−

(197)

and
P ′(T+)

T 2
+ + 1

= −P
′(T−)

T 2
− + 1

(198)

which means the aymptotic values of Q would have to be the same, and the asymp-

totic values of q would require a change of sign between ±∞. For comparison in

the Camassa-Holm case, the asymptotic velocity of Q is c1+c2 at both ±∞, while

the asymptotic velocity of q switches between ±(c1− c2), as they differ in the first

decimal place they have not switched.

The asymptotic positions of the peakons are

q1 =
(Q+ q)

2
, q2 =

(Q− q)
2

(199)

which for this example are

q1 = 3.516273810, q2 = 8.286165950, t→∞ (200)

and

q1 = 8.400000, q2 = 3.600000, t→ −∞ (201)
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Figure 4: Two interacting peakons, using initial conditions in Example 1

2.6.2 Example 2

Apart from the example already in the chapter, here are some more numerical

choices which have been chosen to illustrate the solution. By choosing 3 roots of

the quartic, the fourth root is fixed, and all the coefficients are also fixed up to

rescaling. Note that scaling k1, k2 by the same amount is equivalent to scaling bj

and t; so we can always fix k1 = 1 if necessary. The roots being

T = −111/152, 3/10, 1/2, 8. (202)

Fixing k1 = 1 = c1, this corresponds to

k2 =
496

593
, (203)

so c2 =

(

496
593

)2

, and the other parameters appearing in P (T ) are

λ =
35425

22816
, J =

298710111

1008604096
, (204)

with the value of (half) the Hamiltonian being

H

2
=

58672865

32535616
. (205)
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The corresponding initial data is

b1(0) =
94417

165416
, b2(0) =

103298821

164092672
, (206)

and

q1(0) = log

(

2890857125

16447158149

)

q2(0) = 0. (207)

Then we can consider a solution which corresponds to starting with
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Figure 5: Two interacting peakons, using initial conditions in Example 2

3

10
< T (0) <

1

2
, (208)

which will move between the asymptotic values

(b1, b2) =

(

4233

5704
,
70567

176824

)

(209)

as t→ −∞ and

(b1, b2) =

(

2023

5704
,
147657

176824

)

(210)

as t→ +∞, using (162). The asymptotic velocities of the two peakons are

c1 =
9862125

16267808
, c2 =

7364175

4066952
, t→ +∞ (211)
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and

c2 =
29990805

16267808
, c2 =

2529345

4066952
, t→ −∞. (212)

The peakons therefore only approximately exchange asymptotic velocities.

2.6.3 Example 3

Take k1 = 1, k2 =
357080
117173

, so c1 = 1 and c2 = (357080
117173

)2. We wish to fix initial values

so that
H

2
=

131169407947

11475551376
(213)

and

J =
12691383169465

68294831422368
, (214)

which gives

λ =
7330681

2142480
(215)

and

Jk1k2 −
1

4k1k2
=

18524630887

38251837920
(216)

(which is the coefficient in front of the (T 2 + 1)2 in (164)). This means that the

quartic polynomial P (T ) has roots at

T = −1909

1920
,

1

10
,

9

10
, 20. (217)

Suppose we wish to take a solution which moves between the unstable fixed point

of the ODE for T at T = T− = 1
10

and the stable fixed point at T = T+ = −1909
1920

.

We choose initial values for b1, b2 to be the same at t = 0, so

b1(0) = b2(0) = B. (218)

The definition of H at t = 0 gives

H

2
= (k21 + k22)B

2 + 2B, (219)
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and solving this quadratic gives B = −1.155790328029969, 0.9613703913703853;
we need to take the negative root to give T (0) = −0.09672794535064579, which
lies between T+ and T−. The definition of J at t = 0 gives

J = B2(1− e−|q(0)|) (220)

hence

|q(0)| = 0.1497902737164921 (221)

is the initial separation. Taking the convention q(0) < 0, we can choose

q1(0) = −0.1497902737164921, q2(0) = 0. (222)

The exact asymptotic values of bj as t→ +∞ are

b+1 = −70015

17854
, b+2 = − 181266631

3825183792
, (223)

and as t→ −∞ they are

b−1 =
19019

107124
, b−2 =

667300235

637530632
. (224)

However, note that while this is corresponds to an exact solution of the ODE

system, the amplitudes b1 and b2 must both change sign in order to go from (-,-)

to the (+,+) quadrant in the (b1, b2) plane. Thus such a solution is not realistic,

as once either b1 or b2 reaches zero, it should stay there; in other words a 2-peakon

solution can collapse into a single peakon in a finite amount of time. This is a

new phenomenon compared with integrable peakon equations like Camassa-Holm

and Degasperis-Procesi.
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2.7 Summary

In this chapter we have explored the 2-peakon interaction, writing down the ex-

plicit solution and also exploring some of the dynamics such as 2-peakon col-

lapse. The peakon interactions are particularly interesting, in future studying the

peakon/anti-peakon interactions could yield some other results. To do this we

may have to relax some of the rules on the signs of the roots.

Investigating the Popowicz PDE system numerically poses well known chal-

lenges for standard integration schemes [19], but such a study may yield some

interesting peakon solutions. Another question is to look at N > 2 peakon ODEs

and explore the numerics further. Here we give a short introduction to what we

expect with the 3-peakon dynamics, given the ODE system

ḃ1 = b1((2c2b
2
2 + b2) sgn(q1 − q2)e−|q1−q2| + (2c3b

2
3 + b3) sgn(q1 − q3)e−|q1−q3|),

ḃ2 = b2((2c1b
2
1 + b1) sgn(q2 − q1)e−|q2−q1| + (2c3b

2
3 + b3) sgn(q2 − q3)e−|q2−q3|),

ḃ3 = b3((2c1b
2
1 + b1) sgn(q3 − q1)e−|q3−q1| + (2c2b

2
2 + b2) sgn(q3 − q2)e−|q3−q2|),

q̇1 = (2c1b
2
1 + b1) + (2c2b

2
2 + b2)e

−|q1−q2| + (2c3b
2
3 + b3)e

−|q1−q3|,

q̇2 = (2c1b
2
1 + b1)e

−|q2−q1| + (2c2b
2
2 + b2) + (2c3b

2
3 + b3)e

−|q2−q3|,

q̇3 = (2c1b
2
1 + b1)e

−|q3−q1| + (2c2b
2
2 + b2)e

−|q3−q2| + (2c3b
2
3 + b3),

the ODE’s were solved using the in built integrator RKF45 in Matlab using the

same initial conditions as in Example 1 for the first two peakons. The third peakon

is described initially by

c3 = 0.4, b3(0) = 4, q3(0) = −40. (225)

which we can then plot as in Figure 6 and can see that they behave in a simi-

lar manner to the 2-peakon case, or at least superficially. Further investigation of

these 3-peakons could be similar to the work of Parker [85] who looked at the three
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Figure 6: Three interacting peakons

soliton solution from the associated Camassa-Holm equation using Matsuno’s bi-

linear method [73]

f(y, t) = 1 +
3

∑

i=1

eθi +
3

∑

i<j

Aije
θi+θj + A12A13A23e

θ1+θ2+θ3 (226)

with θi = piy+ωit+σiτ + ηi and i = 1, 2, 3 are the usual phase variables. Setting

i < j means we get three pairs (1, 2), (1, 3) and (2, 3). It may be possible to apply

a similar technique to these Popowicz peakons and essentially study the three

peakon problem by looking at pairs of peakons.
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Chapter 3

From peakon equations to

Painlevé equations

In this chapter we reduce two integrable PDEs, Camassa-Holm and Degasperis-

Procesi to particular instances of the third Painlevé equation (PIII), that is

d2W

dZ2
=

1

W

(

dW

dZ

)2

− 1

Z

dW

dZ
+

1

Z
(αW 2 + β) + γW 3 +

δ

W
. (227)

We then derive explicit solutions of these Painlevé equations both algebraic and

special function solutions. We also show how applying similar reduction techniques

give us particular solutions of the more general b-family. It is known that Camassa-

Holm, after a reciprocal transformation, is related to the first negative flow of the

Korteweg-de-Vries hierarchy. In [55] it was also found that from the reciprocally

transformed equation a scaling similarity reduction could be applied resulting in

a form of PIII but the details were not given. Solutions of the resulting PIII

equation were briefly discussed in [56], we explore to a greater depth our solutions

and give in terms of the original coordinates. We also go further by applying a

similarity reduction first and then a hodograph transformation which results in

the same version of PIII and find solutions.

Similarly the reciprocal transformation for Degasperis-Procesi is known [31],

but in this case the reduction to PIII was not. Again we apply a similarity
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reduction followed by a hodograph transformation, and show that this results in

the same PIII equation as is obtained by applying the similarity reduction to the

reciprocally transformed equation.

Interestingly the two forms of PIII related to Camassa-Holm and Degasperis-

Procesi are different, and when we look at solutions of these Painlevé equations

we find they are of different ‘types’ according to Gromak [49]. We also consider a

one-parameter family of PDEs labelled by a parameter b, which although we don’t

find an exact Painlevé reduction for the general b, it does reduce to the respective

PIII ’s for Camassa-Holm and Degasperis-Procesi.

3.1 Reductions of Camassa-Holm

This diagram helps set the structure of this section, noting that the corresponding

subsections are represented by the various arrows. It is like a commutative dia-

gram, so by following the arrows from Camassa-Holm in two different ways leads

to the same result. The work shown in 3.1.1 is well known, and 3.1.2 was stated

Camassa-Holm
Sim. Red−−−−−→

3.1.3
3rd Order Equation

3.1.1





y
Rec.Trans 3.1.4





y

Hodograph

negative KdV
Sim. Red−−−−−→

3.1.2
2nd Order Equation, PIII

Figure 7: Camassa-Holm reductions

in [55] but exact details were not given. However, sections 3.1.3 and 3.1.4 are new

contributions to the area thereby giving the following result

Theorem 3.1.1. The Camassa-Holm equation can be written as a form of the

third Painlevé equation, via two seperate reduction schemes.
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3.1.1 From Camassa-Holm to the First Negative Flow of

KdV

Here we address the vertical arrows on the left of the diagram in Figure 7 above,

to show the following:

Proposition 3.1.1. [60, 75] The Camassa-Holm equation, via a reciprocal trans-

formation, can be written as the first negative flow of KdV.

From now onwards, we use what is sometimes known as them form of Camassa-

Holm given by

mt = −2mux − umx, m = u− uxx. (228)

Proof. Making a change to a new dependent variable p, given by

p2 = u− uxx, (229)

and substituting into (228) gives

pt = −(up)x, (230)

which is a conservation law, and can be used to define a reciprocal transformation

as in (89). Therefore a reciprocal transformation for Camassa-Holm can be defined

by

dX = pdx− updt, dT = dt (231)

we can then extract the following information for the derivatives

∂X

∂t
= −up, ∂X

∂x
= p,

∂T

∂t
= 1,

∂T

∂x
= 0. (232)

Using this information we can substitute into the components of the conservation
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law

∂p

∂t
= −up ∂p

∂X
+
∂p

∂T
, −∂(up)

∂x
= −p∂(up)

∂X
. (233)

Therefore we have

(p−1)T = uX (234)

so the reciprocal transformation (231) maps the conservation law (230) to the

conservation law (234). However this is incomplete as it doesn’t describe the

relationship between u(X,T ) and p(X,T ): (228) is a system of two equations,

the second of which gives

p2 = u− uxx = u− p ∂

∂X

(

p
∂

∂X
u

)

(235)

since ∂
∂x

= p ∂
∂X

by the chain rule (this is the general rule for transforming x to

X derivatives, of which (231) is a special case). Then replacing ∂
∂X
u by (p−1)T

in (235) we get the following:

∂2u

∂x2
=

∂

∂x

(

− 1

p

∂p

∂T

)

=
∂

∂X

∂X

∂x

(

− 1

p

∂p

∂T

)

= −pXT +
pXpT
p

. (236)

Thus using the fact that u = p2 + uxx, we get the relation

u = p2 − pXT +
pXpT
p

. (237)

Rewriting the conservation law (234) in terms of p alone gives

(p−1)T = (p2 − p(log p)XT )X (238)

These two equations (237)and (238) are equivalent to the first negative flow of the

KdV hierarchy (see section 1.8 for details on the KdV hierarchy), showing that

Proposition 3.1.1 is true.
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The positive hierarchy can be written

Vtn = Rn−1VX , R = ∂2X + 4V + 2VX∂
−1
X , n = 1, 2, 3, ... (239)

which is why (238) can be though of as a negative flow. If we have

VT = −2pX (240)

then it is equivalent to (238) when

V = −pXX
2p

+
p2X
4p2
− 1

4p2
, (241)

Then as a consequence we have

RVT = (∂2X + 2V + VX∂
−1
X )VT = 0. (242)

3.1.2 Reduction of First Negative Flow of KdV to PIII

Following on from Proposition 3.1.1, we now explore the bottom arrow in

figure 7 and propose the following:

Proposition 3.1.2. A similarity reduction of the first negative flow of KdV (237)

and (238) results in the third Painlevé equation.

Proof. To reduce the reciprocally transformed system, (237) and (238), to that of

PIII , we take the following similarity variables to make the reduction:

p = T− 1

2P (Z), u = T−1U(Z), Z = XT 1/2. (243)

The scaling reduction of the third order equation (238) implies that if p =

T− 1

2P (Z) with Z as given then u must be of the form T−1U(Z), by (237). This
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is a scaling similarity reduction Therefore (243) with (237) implies

U = P 2 − 1

2
ZP ′′ − 1

2
P ′ +

ZP ′2

2P
(244)

Although (238) reduces to a 3rd order ODE for P (Z), we will not write this out,

as can integrate once to get a second order ODE. The easiest way to integrate is

to use the conservation law (234), which implies that

1

2

d

dZ
(ZP−1) =

dU

dZ
(245)

holds for the similarity reduction. We can now integrate (245) to obtain

U =
1

2

Z

P
− a. (246)

with a an integration constant. We can now compare our two expressions for U ,

provided by (244) and (246) to get the following case of PIII [62]:

d2P

dZ2
=

1

P

(

dP

dZ

)2

− 1

Z

dP

dZ
+

1

Z
(2P 2 + 2a)− 1

P
. (247)

This has the following parameter values compared with the general PIII in (227):

α = 2, β = 2a, γ = 0, δ = −1. (248)

This shows that Proposition 3.1.2 is true, which agrees with the work of Hone

in [55].

3.1.3 From Camassa-Holm to 3rd Order ODE

Proposition 3.1.3. Applying a similarity reduction to Camassa-Holm reduces

the PDE to a 3rd order ODE

Proof. Using the Camassa-Holm conservation law (230) and (229) we now make

a direct application of a scaling similarity reduction. We will be making an abuse
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of notation here, using P and U to refer to functions of two different variables: Z

which we had before, and a new similarity variable z given by

z = x+ c log t. (249)

which is introduced to replace the variables x and t. Specifically, it is invariant to

the following choice of scaling similarity transformation:

p = tµP (z), u = tνU(z). (250)

For the case specific to Camassa-Holm we can use the ansatz (250) to find µ and

ν, by substituting into the right side of (228)

p2 = u− uxx ⇒ t2µP 2 = tν(U − Ü) (251)

where ˙= d
dz
. This implies

ν = 2µ, (252)

and therefore

P 2 = U − Ü (253)

and substituting (250) into (230)

(tµP )t + (t3µUP )x = 0 (254)

Equations (250) to (254) can also be obtained from the Lie symmetry approach

which is described in 1.7. To find µ, need to lose x and t derivatives and find an

equation depending only on z:

µtµ−1P + ctµ−1Ṗ + t3µ ˙(UP ) = 0 ⇒ µ− 1 = 3µ, (255)

57



To remove the t dependence we solve (252) and (255)

µ = −1

2
, ν = −1. (256)

Substituting (256) into (255) and rearranging we find

d

dz
[(U + c)P ] =

1

2
P. (257)

Then the 3rd order system for U , P just consists of (253) with (257), and then

by differentiating (253) and substituting in for P 2 and PṖ we get a third order

ODE for U(z), that is

(

U̇ − 1

2

)

(U − Ü)− 1

2
(c+ U)(U̇ −

...
U ) = 0. (258)

3.1.4 From the 3rd Order ODE to PIII

This subsection shall describe a hodograph transformation that shall show the

following:

Proposition 3.1.4. The 3rd order ODE (258) that arises from a scaling similarity

reduction of Camassa-Holm can be transformed to the third Painlevé equation.

Proof. Starting with (257) and then using

dZ = Pdz (259)

gives
d

dZ
((U + c)P ) =

1

2
, (260)

which integrates to

(U + c)P =
1

2
Z, (261)
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where we have ignored an integration constant (absorbed into Z). Then obtaining

PIII is as shown in subsection 3.1.2. From 3.1.2 we get

dZ = T
1

2dX +
1

2
ZT−1dT, (262)

= T
1

2 (T− 1

2Pdx− T− 3

2PUdt) +
1

2
Zd log t, (263)

where we used (231). Then

dZ = Pdx− (PU − 1

2
Z)d log t, (264)

= P (dx+ c d log t), (265)

where we used (261), hence (259). We have an arbitary constant c from the

similarity variable (249) which we can identify as the integration constant a found

in the previous reduction.

From P 2 = U − Ü , with U̇ = dU
dz

U = P 2+

(

P
d

dZ

)2

U (266)

Rearranging (261) for U and substituting into above

U = P 2 + P
d

dZ

(

1

2
− ZP ′

2P

)

(267)

noting that this is the same as (244). Now we have two equations for U , and

equating the expressions from (261) and (267) gives

d2P

dZ2
=

1

P

(

dP

dZ

)2

− 1

Z

dP

dZ
+

1

Z
(2P 2 + 2c)− 1

P
(268)

which is the same case of PIII as before, namely (247) if we identify c = a.
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3.1.5 Bäcklund Transformation and Solutions

The general solution of PIII is transcendental, and cannot be written in terms of

more elementary transcendental functions (solutions of linear equations or elliptic

functions) [3]. However, for some special parameter values, Painlevé equations

(apart from PI) do have some particular solutions which are rational, algebraic

or given by some classical special functions (like Airy, Hermite, Bessel). Painlevé

equations (apart from PI) also admit Bäcklund transformations (BTs), which map

one solutions to another solution with different parameter values. We are going

to use BTs for PIII to obtain a sequence of rational solutions.

Now we find some solutions of the Painlevé equation (247), which falls into

the γ = 0 and αβ 6= 0 parameter category, using the methods in [77, 49]. To use

the same notation as the literature, we set P = w so (247) becomes

w′′ =
(w′)2

w
− w′

Z
+

1

Z
(2w2 + 2c)− 1

w
(269)

We consider a pair of first order differential equations of the form

w′ = a0(Z) + a1(Z)w + a2(Z)w
2 + a3(Z)w

2v, (270)

v′ = b0(Z) + b1(Z)w + b2(Z)v + b3(Z)wv + b4(Z)wv
2, (271)

where w has to satisfy PIII and v is an auxiliary function. For that, the following

conditions need to be imposed

a20 = 1, a′1 = −
1

Z
a1, (272)

a′2 + a1a2 + b0a3 =
1

Z
(2− a2), a′3 + a1a3 + b2a3 = −

1

Z
a3, (273)

a′0 − a0a1 =
1

Z
(2c− a0), a22 + b1a3 = 0, (274)

b3 + 2a2 = 0, b4 = −a3 (275)

As δ 6= 0 without loss of generality we may assume a2 = 0 and a3 = 1, solving the
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above we have the following system of first order differential equations

Zw′ = ǫZ + (1− 2cǫ)w + Zw2v, (276)

Zv′ = 2− (2− 2cǫ)v − Zwv2 (277)

with ǫ = ±1 from the relation with a0. Rearranging the second equation for w

w =
v′

v2
+

2

Zv2
− (2− 2cǫ)

Zv
(278)

and substituting into second equation (277) for w

v′′ =
v′2

v
− v′

z
− ǫv2 + 4(1− cǫ)

Z2
− 4

Z2v
(279)

Define the following function by making the substitution v = 2w̃
Z

w̃(Z, β̃) =
1

2
w−2(Z − ǫZw′ + (ǫ− 2c)w) (280)

with β̃ = β − 2ǫ, and we now have a BT for PIII .

Starting with a simple seed solution with c = 0, given by P = w = (1
2
Z)

1

3 ,

and then applying to the BT (280) this will always produce solutions rational in

Z
1

3 [20]. As the solutions have to be rational in Z
1

3 we make the substitution

Z = τ 3 into (269).

w′′ =
w′2

w
− w′

τ
+ 9τ

(

2w2 + 2c− τ 3

w

)

(281)

where w′ = dw
dτ
. The choice c = iǫ gives a sequence of algebraic solutions wi,

satisfying

wi+1 =
1

2w2
i

(

τ 3 − 1

3
ǫτ
dwi
dτ

+ (ǫ− 2c)wi

)

, (282)
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and then the asymptotic behavior for large τ is

1

2
λ−2τ−2(τ 3 +O(τ)), (283)

=
τ

2λ2
+O(τ−1) = λτ (284)

for all i, wi(τ) ∼ λτ as τ → ∞. The seed solution is w0 = λτ with λ3 = 1
2

by applying the BT recursively, we find a sequence of algebraic solutions, wi, for

i = 1, 2, 3... and c = −iǫ

c = −ǫ, w1 =
2ǫλ+ 3τ 2

6λ2τ
(285)

c = −2ǫ, w2 =
(9λτ 5 + 10τ + 24λ2τ 3ǫ)

(2λǫ+ 3τ 2)2
(286)

c = −3ǫ, w3 =
(243τ 10 + 1782λǫτ 8 + 5400λ2τ 6 + 3960ǫτ 4 + 2520λτ 2 + 560λ2ǫ)

6τ(24λ2ǫτ 2 + 9λτ 4 + 10)2

(287)

Plotting these with respect to Z with ǫ = 1 as in Figure 8. Conversley at ǫ = −1
as in Figure 9 we can see two asymptotes, one vertical and the other horizontal.

With Camassa-Holm being quite difficult to solve numerically, it is interesting to

note that we are able to use these Painlevé solutions to find solutions in terms of

Camassa-Holm’s original coordinates u(x, t). We are able to do this by working

back though the calculations, applying the same transformations. However for

most of the solutions we are only able to write them down implicitly, in these case

we are able to plot the solutions parametrically.

The seed solution for c = 0 gives

P (Z) = λZ
1

3 , U(Z) =
Z

2

3

2λ
(288)

which satisfy (227) and (246), so

p(X,T ) = λX
1

3T− 1

3 u(X,T ) =
X

2

3

2λT
2

3

(289)
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(a) P1 (b) P2

(c) P3 (d) P4

Figure 8: First four algebraic solutions plotted against Z, where Pi(Z) = wi(Z
1

3 )

are corresponding solutions of (237) and (238). To find the solution in terms of

the original coordinates (x, t) we apply the hodograph transformation (259)

∫

1

P (Z)
dZ =

∫

dz Z = (2−
2

3

2

3
z)

3

2 (290)

Substituting Z into (288)

p(x, t) =
1√
3

(

x

t

) 1

2

, u(x, t) =
x

3t
(291)

so

p2 =
1

3

(

x

t

)

= u− uxx (292)

This is a nice example, but unusual in the fact we are able to explicitly write z as

a function of Z. We can also write the solution of w1 in terms of Z to get various
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(a) P1 (b) P2

Figure 9: First two algebraic solutions plotted against Z, where Pi(Z) = wi(Z
1

3 )

equations in X and T . For example the solution (286) gives

p(X,T ) =
(2ǫλ+ 3X

2

3T
1

3 )

6λ2X
1

3T
2

3

(293)

u(X,T ) =
(6λX

2

3 ǫT
2

3 + 4λ2T
1

3 + 3TX
4

3 )

2T
4

3λ(2ǫλ+ 3X
2

3T
1

3 )
(294)

To find the corresponding solutions of Camassa-Holm, we write them down im-

plicitly. So for w2

z =

∫

1

w2(Z)
dZ =

∫

3τ 2

P (τ 3)
dτ (295)

Below we have a table of results for both w2 and w3 and write down z explicitly.

wi c z

w2 1 3λ2Z
2

3 + 2λ3 ln(−3Z 2

3 + 2λ),

−1 3λ2Z
2

3 − 2λ3 ln(3Z
2

3 + 2λ),

w3 1 −2λ2Z 2

3 + 3
4
λZ

4

3 + 5
3
ln(2λ− 3Z

2

3 )− 10
3
ln(2λ− 3Z

2

3 )λ3 + 10
3

λ

2λ−3Z
2
3

− 4λ4

2λ−3Z
2
3

−1 2λ2Z
2

3 + 3
4
λZ

4

3 + 5
3
ln(2λ− 3Z

2

3 )− 10
3
ln(2λ− 3Z

2

3 )λ3 + 10
3

λ

2λ−3Z
2
3

− 4λ4

2λ−3Z
2
3

Here we plot some solutions of P (z(Z))
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(a) P2(z(Z)) with c = 1 (b) P2(z(Z)) with c = −1

Figure 10: Two parametric plots of P2

3.2 Reduction of the Degasperis-Procesi Equa-

tion

In the previous section we were able to transform, via reductions, the Camassa-

Holm equation to the third Painlevé equation. Here we do something similar for

the Degasperis-Procesi equation [32, 31]

ut − uxxt + 4uux − 3uxuxx − uuxxx = 0 (296)

to reduce it to a particular case of PIII , but different from the case found above.

The Lax pair for Degasperis-Procesi was discovered by [31]

Ψxxx = Ψx + λmΨ, (297)

Ψt = λ−1Ψxx − uΨx + uxΨ, (298)

and is important when looking at the relationship between the PDE and Kaup-

Kuperschmidt hierarchy.

Theorem 3.2.1. The Degasperis-Procesi equation can be transformed to the

third Painlevé equation via two different reduction schemes.
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Introducing the diagram for the section as before, we shall follow the arrows

in the same order as in the Camassa-Holm case.

Degasperis-Procesi
3.2.3−−−−−→

Sim. Red
3rd Order Equation

3.2.1





y
Rec.Trans 3.2.4





y

Hodograph

Negative flow KK
3.2.2−−−−→

Sim.Red
2nd Order Equation, PIII

Figure 11: Degasperis-Procesi reductions

3.2.1 Degasperis-Procesi to Negative Kaup-Kuperschmidt

Proposition 3.2.1. Degasperis-Procesi, via a reciprocal transformation, can be

written as the negative flow of the Kaup-Kuperschmidt hierarchy.

The connection between the Degasperis-Procesi equation (296) and the nega-

tive flow of the Kaup-Kuperschmidt hierarchy via a reciprocal transformation has

been known since [31]. We now show how they are related here.

Proof. Introducing a momentum variable m in the same way as for Camassa-

Holm, we may write (296) as the system

mt + umx + 3mux = 0, m = u− uxx. (299)

Then making a change of variable

p3 = u− uxx (300)

and substituting (300) into (299) gives

pt = −(up)x. (301)
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This is a conservation law which we can use to define a reciprocal transformation.

Therefore a reciprocal transformation for Degasperis-Procesi is given by

dX = pdx− updt, dT = dt, (302)

and we note that it is in the same form as the Camassa-Holm reciprocal transfor-

mation (231). Using this we write the conservation law (301) in terms of X and

T , to find

(p−1)T = uX (303)

and as in the Camassa-Holm case, the reciprocal transformation (302) maps the

conservation law (301) to the conservation law (303). A relationship between p

and u is found from the second equation of (299), giving

p3 = u− uxx = u− p ∂

∂X

(

p
∂

∂X
u

)

(304)

Replacing uX by (p−1)T in the above produces

u = p3 − pXT +
pXpT
p

(305)

Then eliminating u to rewrite (303) in terms of p alone gives

(p−1)T = −(p3 + p(log p)XT )X . (306)

If we have

VT =
3

4
(p2)X (307)

then it is equivalent to (306) when

V =
p2X − 2ppXX − 1

4p2
(308)

The Lax pair for this system is the reciprocally transformed Lax pair (297), spatial
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component given by

ΨXXX + 4VΨX + (2VX − λ)Ψ = 0 (309)

applying the transformation to the time component (298) results in

ΨT + λ−1(p2ΨXX − ppXΨX − (ppXX − p2X +
2

3
)Ψ) = 0 (310)

showing that (309) and (310) is equivalent to the first negative flow of Kaup-

Kuperschmidt. Differentiating (308) by X we have

pXXX + 2VXp+ 4V pX = 0 (311)

which is equivalent to (309) and also is the Lax operator for Kaup-Kuperschmidt.

3.2.2 Reduction of Kaup-Kuperschmidt to PIII

Here we focus on the bottom arrow of the diagram, implementing the same

technique as for Camassa-Holm.

Proposition 3.2.2. By an appropriate similarity reduction, the first negative

flow of Kaup-Kuperschmidt can be transformed to the third Painlevé equation.

Proof. To reduce the reciprocally transformed system to PIII we take the following

variables to make the reduction:

p = T− 1

3P (Z), u = T−1U(Z), Z = XT
1

3 (312)

This is another scaling similarity reduction, which from (305) produces

U = P 3 − 1

3
ZP ′′ − 1

3
P ′ +

ZP ′2

3P
. (313)
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Similarly as before for Camassa-Holm, (306) reduces to a third order ODE for

P (Z), which we can integrate once to get a second order ODE. The conservation

law (303) reduces to
1

3

d

dZ
(ZP−1) =

dU

dZ
, (314)

and integrating gives

U =
1

3

Z

P
− c (315)

with c an integration constant. Now unlike for Camassa-Holm, we do not arrive

at the standard form of PIII straight away. Comparing the two formulae (313)

and (315) for U we get

P ′′ =
P ′2

P
− P ′

Z
+

3P 3

Z
− 1

P
+

3c

Z
. (316)

To write as the normal form of PIII we apply a change of variables

Z = ζm, P (Z) = ζnπ(ζ) (317)

Substituting into (316)

1

m2

d

dζ
ζ

(

d

dζ
log π

)

= 3ζ2n+m−1π2 +
ζ2m−2n−1

π2
− 3cζm−n−1

π
(318)

We require that the above equation (318) should take the form

d

dζ
ζ

(

d

dζ
log π

)

= απ +
β

π
+ ζ

(

γπ2 +
δ

π2

)

. (319)

Then we find

2m− 2n− 1 = 1, m− n− 1 = 0, 2n+m− 1 = 0 (320)

so m = 4
3
and n = 1

3
. Therefore the change of variables we need to apply are the

following

Z = ζ
4

3 , P (Z) = ζ
1

3π(ζ). (321)
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Substituting m and n into (318) reveals the following 2nd order ODE

πζζ =
π2
ζ

π
− πζ

ζ
+

16c

3ζ
+

16π3

3
− 16

9π
(322)

related to the standard form of PIII (227), by

α = 0, β =
16c

3
, γ =

16

3
, δ = −16

9
(323)

showing Proposition 3.2.2 to be true.

3.2.3 Degasperis-Procesi to 3rd order ODE

Having shown one method of transforming Degasperis-Procesi to PIII , we now

apply similar techniques but in reverse order as in the diagram for the section.

Proposition 3.2.3. Applying a similarity reduction to Degasperis-Procesi re-

duces the PDE to a 3rd order ODE

Proof. Applying a similarity reduction to the Degasperis-Procesi conservation

law (301) with (300), again misusing notation with the similarity variable

z = x+ c log t (324)

and scaling similarity reduction

p = t−
1

3P (z), u = t−1U(z), (325)

from (300) we obtain

P 3 = U − Ü (326)

where dot represents d
dz
. Substituting the reduction (325) into the conservation

law (301) gives
d

dz
[(U + c)P ] =

1

3
P (327)
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Using P 3 = U − Ü to eliminate P 3 and P 2Ṗ gives a third order equation in U(z).

(

U̇ − 1

3

)

(U − Ü) + 1

3
(c+ U)(U̇ −

...
U ) = 0 (328)

3.2.4 3rd Order ODE to PIII

Similarly to the case of Camassa-Holm, we find equations for U from (326)

and (327).

Proposition 3.2.4. The 3rd order ODE (328) that arises as a reduction of

Degasperis-Procesi can be written as a third Painlevé equation by means of a

hodograph transformation.

Proof. Using the hodograph transformation

dZ = Pdz (329)

we note

Ü =

(

P
d

dZ

)2

U, P 3 = U−
(

P
d

dZ

)2

U, (330)

Rearranging for U gives

U = P 3+

(

P
d

dZ

)2

U, (331)

So now (327) gives

U =
Z

3P
− c, (332)

and comparing with (331) we find

Z

3P
− c = P 3 − 1

3
P
d

dZ

(

Z
d

dZ
logP

)

. (333)
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This gives us
d

dZ

(

Z
d

dZ
logP

)

= − Z

P 2
+

3c

P
+ 3P 2, (334)

which is equivalent to (316). Applying the same change of variables as above we

get PIII .

3.2.5 Bäcklund Transformations and Solutions

The category of solutions for this version of PIII has a fixed value of α = 0

with a free parameter β. Using the work of Gromak [49] and Milne [77]. The

general solution we will be applying comes from Milne [77], and is given here

π̃ = π

(

1 +
(2 + β(−δ)− 1

2 + αγ−
1

2 )π

ζπζ + γ
1

2 ζπ2 + (−δ) 1

2 ζ − (1 + β(−δ)− 1

2 )π

)

(335)

Incrementing (α, β, γ, δ) in the following manner

α̃ = −(2 + β(−δ)− 1

2 )γ
1

2 , β̃ = −(2 + αγ−
1

2 )(−δ) 1

2 , (336)

γ̃
1

2 = γ
1

2 , (−δ̃) 1

2 = (−δ) 1

2 (337)

For the Degasperis-Procesi PIII , due to the square root terms in γ and δ, the
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transformation (335) results in the following four transformations:

T1 : π̃1 =
π(12ζπζ + 16

√
3ζπ2 + 16ζ + 12π + 3

√
3απ)

12ζπζ + 16
√
3ζπ2 + 16ζ − 12π − 9πβ

, (338)

α̃1 = −
1√
3
(8 + 3β), β̃1 = −

1

3
(8 +

√
3α) (339)

T2 : π̃2 =
π(−12ζπζ + 16

√
3ζπ2 − 16ζ − 12π + 3

√
3απ)

−12ζπζ + 16
√
3ζπ2 − 16ζ + 12π + 9πβ

, (340)

α̃2 =
1√
3
(8 + 3β), β̃2 =

1

3
(−8 +

√
3α) (341)

T3 : π̃3 =
π(12ζπζ + 16

√
3ζπ2 − 16ζ + 12π + 3

√
3απ)

12ζπζ + 16
√
3ζπ2 − 16ζ − 12π + 9πβ

, (342)

α̃3 =
1√
3
(−8 + 3β), β̃3 =

1

3
(8 +

√
3α) (343)

T4 : π̃4 =
π(−12ζπζ + 16

√
3ζπ2 + 16ζ − 12π + 3

√
3απ)

−12ζπζ + 16
√
3ζπ2 + 16ζ + 12π − 9πβ

, (344)

α̃4 =
1√
3
(8− 3β), β̃4 =

1

3
(8−

√
3α). (345)

We are interested in fixing α, as for the Degasperis-Procesi Painlevé equation

α = 0 and β is a free variable. To do this, we must apply, in the correct order,

a sequence of transformations. To achieve this, under the sequence T3T4T1T2, we

find α and β are transformed in the following manner:

(α, β)→
(

1√
3
(8 + 3β),

1

3
(−8 +

√
3α)

)

→
(

− α,−1

3
(16 + 3β)

)

(346)

→
(

1√
3
(24 + 3β),

1

3
(8 +

√
3α)

)

→
(

α, β +
32

3

)

(347)

These transformations are particularly messy, however Gromak wrote down a

scaling transformation T5 which meant for any PIII equation where φ is a solution,

then

T5(σ1, σ2) :φ 7→ φ̃(Z, ασ1σ2, βσ
−1
1 σ2, γσ

2
1σ

2
2, δσ

−2
1 σ2

2, (348)

:= σ−1φ(σ2Z, α, β, γ, δ) (349)
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with

σ1 =
1

σ2
√
γ
, σ2 =

(

− 1

γδ

) 1

4

(350)

is also a solution. We are able to use transformation T5 to find additional solutions

based upon an initial application of the transformation sequence to a seed solution.

3.2.6 Rational Solutions

To use the above transformations to find a sequence of solutions, we must first

find a seed solution. For this we set c = 0 which implies β = 0, and we find

π0 =

(

1

3

) 1

4

(351)

which satisfies (322) for (α, β, γ, δ) = (0, 0, 16
3
,−16

9
).

π1

(

8√
3
,−8

3

)

= −1

3
3

3

4 , (352)

π2

(

0,−16

3

)

= −3
3

4 (−8ζ + 3
7

4 )

3(−8ζ + 3
3

4 )
, (353)

π3

(

24√
3
,
8

3

)

= −(72ζ
√
3ζ + 512ζ3 − 192ζ23

3

4 + 27(3
1

4 ))(−8ζ + 3(3
3

4 )3
3

4

3(−8ζ + 3
3

4 )(648ζ
√
3 + 512ζ3 − 576ζ2(3

3

4 )− 135(3
1

4 ))
, (354)

Plotting the solutions at π2 and π4 in Figure 12 Plotting the solutions at π6(0,−16)
and π8(0,

64
3
) in Figure 14. We also have a set of solutions for γ = 1 and δ = −1

which are directly related to the solutions above by using the scaling transforma-

tion (348). Assume π0 = 1 at (α, β) = (0, 0) , applying the transformations as

above we get the following solutions

π1(ζ; 2,−2, 1,−1) = −1, (355)

π2(ζ; 0,−4, 1,−1) = −
2ζ − 3

2x− 1
, (356)

π3(ζ; 6, 2, 1,−1) = −
−48ζ3 + 48ζ2 + 16ζ4 − 12ζ − 9

(2ζ − 1)(−36ζ2 + 54ζ + 8ζ3 − 15)
, (357)

π4(ζ; 0, 8, 1,−1) =
16ζ4 − 144ζ3 + 480ζ2 − 660ζ + 315

(2ζ − 5)(−36ζ2 + 54ζ + 8ζ3 − 15)
(358)

74



(a) π2 (b) π4

Figure 12: Two rational solutions of π

Solution at π8 = (0, 16)
AB

CD
(359)

with

A =(1024x10 − 46080x9 + 933120x8 − 11128320x7 + 86002560x6 − 447068160x5

(360)

+ 1571724000x4 − 3657376800x3 + 5327021700x2 − 4305401100x+ 1404728325)

(361)

B =(64x6 − 1344x5 + 11760x4 − 53760x3 + 132300x2 − 162540x+ 72765)

(362)

C =(64x6 − 1728x5 + 19440x4 − 115200x3 + 374220x2 − 632700x+ 405405)

(363)

D =(1024x10 − 35840x9 + 564480x8 − 5214720x7 + 30952320x6 − 121927680x5

(364)

+ 318578400x4 − 535096800x3 + 537005700x2 − 275051700x+ 42567525)

(365)
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(a) π6 (b) π8

Figure 13: Two rational solutions of π

Plotting the solutions at π4 and π8 All these figures seem to show vertical and

(a) π4 (b) π8

Figure 14: Two rational solutions of π

horizontal asymptotes.
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3.2.7 Special Function Solutions

So unlike the Camassa-Holm PIII we also have special function solutions for

Degasperis-Procesi PIII , due to (322) satisfying the one-parameter family con-

dition,

2 + αγ−
1

2 + β(−δ)− 1

2 = 0. (366)

This is only satisfied when β = ∓8
3
, we are then able to write PIII as the following

Riccati equation

πζ = −γ
1

2π2 − (αγ−
1

2 + 1)
π

ζ
− (−δ) 1

2 , (367)

which for (322) is

πζ = ∓
(

4√
3

)

π2 − π

ζ
∓
(

4

3

)

. (368)

It is well known that the riccati equation (367) can be linearised via

π = γ−
1

2

φζ(ζ)

φ(ζ)
= ±
√
3φζ(ζ)

4φ(ζ)
(369)

which gives

φζζ +
φζ
ζ
+

(

± 4√
3

)(

± 4

3

)

φ = 0 (370)

With the choice of signs for γ and δ we have the choice of four seed solutions,

π0 = γ−
1

2

φζ
φ

(371)

as we also have a choice of sign for β. The first seed solution is

π1
0 =

√
3φζ
4φ

, (372)

which satisfies PIII at (0,±8
3
, 16

3
,−16

9
) and the second

π2
0 = −

√
3φζ
4φ

, (373)
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which also satisfies PIII at (0,±8
3
, 16

3
,−16

9
). Taking (372), and writing in terms of

Bessel functions we find

π1
0 = − AJ1(ψ) + BY1(ψ)

3
1

4 (AJ0(ψ) + BY0(ψ))
(374)

where ψ = 4

3
3
4

ζ. J and Y represent Bessel functions of the first and second kind

respectively [33]. Unlike the rational solutions we will not be following the same

order of transformations, if we apply T2 to (374) we simply recover the same seed

solution once again. First we apply T3 in the same manner as before, and find

π1
1 =

2ζ(J1(ψ) + Y1(ψ))

3
1

4 (−2J0(ψ)ζ − 2Y0(ψ)ζ + 3
3

4Y1(ψ) + 3
3

4J1(ψ))
(375)

which satisfies PIII for (α, β, γ, δ) = (− 16√
3
, 8
3
, 16

3
, 16

9
). To find another solution to

(322) we apply transformation T4 to recover the case α = 0

π2
1 =

A

B
(376)

with

A =(6
√
3J1Y1 − 8ζ2(J0Y0 + J1Y1)− 4ζ2(J0 + Y 2

1 + Y 2
0 + J1) + 3

√
3(J2

1 + Y 2
1 ))(J1 + Y1)

B =(−2ζ(J0 + Y0) + 3
3

4 (Y1 + J1))(−4ζ(J0Y0 + J1Y1) + 3
3

4 (J1Y0 + Y0Y1 + J0J1 + J0Y1)

− 2ζ(J2
0 + Y 2

0 + Y 2
1 + J2

1 ))

which is a solution to (322) with (α, β, γ, δ) = (0, 8, 16
3
, 16

9
). Plotting both π1

1 and

π2
1

3.2.8 Original Coordinates

Having found solutions for the Painlevé equation, we now wish to find solutions

to the original Degasperis-Procesi. This is achieved by applying the inverse of the

transformations that were required to find PIII . Starting with the rational seed
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(a) π1

1
(b) π2

1

Figure 15: Two special function solutions of π that satisfy Degasperis-Procesi PIII

solution (3.2.6)

P0(ζ) = ζ
1

3

(

1

3

) 1

4

, (377)

using the change of variable

P0(Z) = Z
1

4

(

1

3

) 1

4

, U0(Z) =
1

3
Z

3

43
1

4 (378)

and then from
∫

Z− 1

4

(

1

3

)− 1

4

dZ =

∫

dz (379)

we know

Z =
4

2

3

16
(3

3

4 z)
4

3 (380)

which leaves us with

u(x, t) =
x

4t
(381)

as a solution to the original Degasperis-Procesi PDE. Applying the same method

to the second valid solution π2, we cannot write down an explicit solution but we
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can write down an implicit relation. The solution in terms of P (Z) is

P (Z) = Z
1

4

(

− 3
3

4 (−8Z 3

4 + 3
7

4 )

3(−8Z 3

4 + 3
3

4 )

)

(382)

integrating

− 4

3
Z

3

43
1

4 − ln(−8Z 3

4 + 3
7

3 ) = z − c (383)

where the constant c = −1, as

β = −16

3
=

16c

3
. (384)

we can use (383) to write down implicit solutions to the PDE.

3.3 The b-family of Equations

b-family equation in (x,t)
3.3.3−−−−→

Sim.Red
3rd order eqn in z

3.3.1





y
Rec.Trans 3.3.4





y

Hodograph

Equation in (X,T)
3.3.2−−−−→

Sim.Red
2nd order equation in Z

Figure 16: b-family reductions

In [31] what is known as the b-family was introduced

ut − uxxt + (b+ 1)uux = buxuxx + uuxxx (385)

where b = 2 is equivalent to Camassa-Holm and b = 3 equivalent to Degasperis-

Procesi. These are the only integrable members of this family as shown in [76, 31].

Numerical solutions of the b-family have been studied in [54] for a variety of b

values, which itself behaves as a bifurcation parameter. The bifurcation behavior

was studied in Holm and Staley [53], exploring the changes in stability of its

travelling wave solutions. They found that when b > 1 the peakons and their

interactions were stable and exhibited all the usual soliton behaviours. When 0 ≤
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b < 1 they found ramp/cliff solutions, like those found in Burgers equation. Lastly

when b < −1 they discovered the b-family exhibited leftward moving structures.

Studies into the blow-up phenomena have also been studied by Zhou [101].

As the whole family is not integrable it is unlikely we will find an exact PIII

equation like in the previous sections. However we are able to find an ‘almost’

PIII equation, which as a second order ODE we are able to solve numerically in a

far easier manner than the b-family itself.

We can rewrite (385) in the form

mt + umx + buxm = 0, m = u− uxx, (386)

similar to the Camassa-Holm and Degasperis-Procesi cases before. We can also

write this in conservation form as

(m
1

b )t = −(um
1

b )x (387)

and taking a new variable p given by

p = m
1

b (388)

we can construct a reciprocal transformation [43] for the b-family.

3.3.1 From the b-family to a PDE in (X, T )

Substituting the new variable p into (387) we find

pt = −(up)x, (389)

therefore we can take the reciprocal transformation

dX = p dx− up dt, dT = dt. (390)
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Using the transformation (390) we substitute into the second part of (386) to find

u = pb − pXT +
pXpT
p

(391)

and from the conservation law (389)

(p−1)T = uX . (392)

We then combine both (391) and (392) to find

(p−1)T = bpb−1pX − (p(log p)XT )X . (393)

By substituting in b = 2 we find (238) for Camassa-Holm and with b = 3 we

have (306) for Degasperis-Procesi.

3.3.2 From a PDE in (X, T ) to a 2nd Order ODE

We now apply a similarity reduction to take the reciprocally transformed equa-

tion (393) to an equation that is ‘nearly’ PIII .

u = T−1U(Z), p = T− 1

bP (Z), Z = XT
1

b (394)

Using (392) and the similarity reduction (394) we calculate for U the equation

1

b

d

dZ
(ZP−1) = U ′ (395)

Integrating (395) once we have

U =
1

b
ZP−1 − a (396)
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with a an integration constant. Applying the reduction to (391) gives

P b = U−
(

P
∂

∂Z

)2

U (397)

Then rearranging (397) for U , we compare with (396) to find a second order

equation in terms of P , that is

d2P

dZ2
=

1

P

(

dP

dZ

)2

− 1

Z

dP

dZ
+

1

Z
(bP b + ab)− 1

P
. (398)

Comparing to the third Painlevé equation (227) we note it is very similar, and also

aligns with the PIII equations found in the Camassa-Holm case and Degasperis-

Procesi cases. However, if the power of P inside the bracket in (398) is not 2 or

3 then it cannot be transformed to PIII . Indeed according to the classification in

Ince [62] it fails the Painlevé test unless b = 2, 3.

3.3.3 b-family to 3rd Order ODE

The similarity reduction for the general b-family is as follows:

p = t−
1

bP (z), u = t−1U(z), z = x+ c log t (399)

Applying these to (386) we find

P b = U − Ü , d

dz
[(U + c)P ] =

1

b
P (400)

where dot = d
dz
, both of which can be used to find a 3rd order ODE

(U̇ − 1

b
)(U − Ü) + 1

b
(c+ U)(U̇ −

...
U ) = 0 (401)

We plot some solutions in Figure 17 for U(z) for some of the b values when the

b-family equation is non-integrable, which otherwise would be difficult to recover.
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We use Maples in-built Runge-Kutta 45 ODE integrator for the numerics. We

(a) b = 4 and c = 1 (b) b = 4 and c = 4

(c) b = −1 and c = 1 (d) b = −1 and c = 4

Figure 17: Solving the general equation (401) numerically for non-integrable b
values, [U(0), U ′(0), U ′′(0)] = [1, 2, 2]

also can plot for the integrable cases, b = 2, 3 and compare. For the two cases

plotted in Figure 18 they are all have quadratic curves, like the b = 4 case. The

case of b = −1 interestingly is cubic in shape.

3.3.4 3rd Order ODE to 2nd Order ODE

Similarly to both Camassa-Holm and Degasperis-Procesi we take

dZ = Pdz (402)
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(a) b = 2 and c = 1 (b) b = 2 and c = 4

(c) b = 3 and c = 1 (d) b = 3 and c = 4

Figure 18: Solving the general equation (401) numerically for integrable b values,
[U(0), U ′(0), U ′′(0)] = [1, 2, 2]

and applying to the first part of (400)

U = P b + P
d

dZ

(

1

b
− ZṖ

bP

)

(403)

simililarly the second part results in

d

dZ
((U + c)P ) =

1

b
(404)

integrating (404) gives a second equation in terms of U . Equating this and (403)

U =
Z

bP
− c = P b − 1

b
P
d

dZ
(Z

d

dZ
logP ) (405)
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and rearranging in terms of P we arrive at (398). Using the same b values which

we plotted in Figure 17 and Figure 18 we shall now plot for the second oder

ODE (398).

3.3.5 Solutions

Even though (398) is not in Painlevé form for all b, it does have a particular

analytic solution which is valid for any b, namely

P = λZ
1

b+1 (406)

which leads to the solution

u(x, t) =
x

(b+ 1)t
(407)

of the b-family. This is the Burgers “ramp” part of the “ramp-cliff” solutions

found in Holm and Staley [54].

3.4 Summary

In this chapter we have explored the reductions of Camassa-Holm and Degasperis-

Procesi to the third Painlevé equation, PIII . Using the extensive literature on

PIII we have written down algebraic and special function solutions. We’ve also

reduced the b-family to a ‘nearly’ Painlevé form that is valid for the integrable case

of Camassa-Holm and Degasperis-Procesi. Having found the Painlevé equations,

both Camassa-Holm and Degasperis-Procesi satisfy the ARS conjecture. But more

interestingly is the fact we have found an almost algorithmic method in reducing

integrable peakon equations to their Painlevé equivalents.

There are many works on the peakon solutions of both Camassa-Holm and

Degasperis-Procesi, and many on the difficult problems of numerically integrating

these peakon equations [52, 53, 99, 22]. This chapter has explored solutions of

the PIII ODEs which provide solutions of the original PDEs. The reciprocal

transformations that relate these PDEs to other integrable hierarchies are known,
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however the step to reduce these transformed PDEs to PIII were not, other than in

the case of Camassa-Holm. Additionally, applying the similarity reduction to the

peakon PDE and then a hodograph transformation to find the same PIII equation

is new.

Though these peakon equations are notoriously difficult to integrate numeri-

cally, here we have been able to take the well studied solutions of PIII to derive

implicit exact solutions of the PDEs in their original coordinates, which could be

used to test the accuracy of numerical schemes.
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Chapter 4

Reductions of peakon equations

with cubic nonlinearity

4.1 Introduction

In this chapter we will be applying similar reductions to those in chapter 3, but

for the modified Camassa-Holm (mCH) and Novikov equations. Unlike Camassa-

Holm and Degasperis-Procesi they are cubic nonlinear, and require more changes

of variables to get into the Painlevé form we are after.

Modified Camassa-Holm has been discovered separately by Fokas [37],

Fuchssteiner [43], Olver and Rosenau [83] and Qiao [88]. So in the literature

you can find the same equation being referred to as FORQ and Qiao’s equation,

although they were derived in different ways by different authors. So, for exam-

ple, Qiao used the two-dimensional Euler equations with the aim of finding a new

equation for fluids, whereas the other authors used the method of tri-Hamiltonian

duality with modified KdV to try and find new integrable nonlinear differential

equations from the hierarchy.

We are also interested in finding the links between Camassa-Holm and mCH,

as well as between Degasperis-Procesi and Novikov. This hypothesis comes from

the knowledge that Camassa-Holm is related to the negative flow of KdV, and

mCH is related to the negative flow of modified KdV and both hierarchies are
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connected by a Miura transformation.

CH ←−−→ negative KdV
x



y
Miura transformation

mCH ←−−→ negative mKdV

Same is true for Degasperis-Procesi which is related to the negative flow of Kaup-

Kupershmidt and Novikov’s equation which is related to negative flow of Sawada-

Kotera, and again both hierarchies have an explicit connection.

DP ←−−→ negative KK
x



y

Miura transformation via a fifth order equation

Nov ←−−→ negative SK

The relationship of these two sets of hierarchies [30] indicates that the PDEs have

a map between each other as well.

4.2 Reductions of modified Camassa-Holm

As before we introduce a diagram that represents the reductions and transfor-

mations in this section. We are interested in the mCH equation [88, 37, 50, 72]

mCH
4.2.3−−−−−→

Sim. Red
3rd Order Equation

4.2.1





y
Rec.Trans 4.2.4





y

Hodograph

Negative flow mKdV
4.2.2−−−−→

Sim.Red
2nd Order Equation

Figure 19: Qiao reductions

as it is integrable and has peakon solutions, and we wish to investigate both the

reduction to Painlevé type and also its Lax pair. It was given as a completely new

integrable water wave equation [88] by Qiao,but we investigate whether it can be

transformed to any of the more well known systems. In fact it is stated that this

new equation can be reduced from the two-dimensional Euler equation [88]. The
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equation itself is given as:

ut − uxxt + 3u2ux − u3x = (4u− 2uxx)uxuxx + (u2 − u2x)uxxx, (408)

which can be written more simply in a similar manner to Camassa-Holm:

mt +mx(u
2 − u2x) + 2m2ux = 0, m = u− uxx. (409)

Qiao found that the equation has so called ‘W-shaped’ peakons which are unlike

other solutions that are found in peakon equations. In [88] Qiao has the following

solution for u:

u(ζ) = A

(

5

3
− (3z + 2)

(

z −
√

z2 − 4

9

))

, (410)

z = cosh(
|ζ|
2
− ln(2))− 1

3
, (411)

ζ = x− 11

3
A2t. (412)

This solution has the shape shown in Figure 20

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

−0.5

0

0.5

1

1.5

Figure 20: W-Shaped Peakon

Before we study the reductions, it will be useful to show how the Lax pair of

mCH can help see the connection between the PDE and the KdV hierarchy. The
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Lax pair for mCH is as follows

Ψx = UΨ, Ψt = VΨ, (413)

with

U =





−1
2

1
2
λm

−1
2
λm 1

2





V =





λ−2 + 1
2
(u2 − u2x) −λ−1(u− ux)− 1

2
mλ(u2 − u2x)

λ−1(u+ ux) +
1
2
mλ(u2 − u2x) −λ−2 − 1

2
(u2 − u2x)





which is needed for the proof in the following subsection.

4.2.1 From mCH to Negative mKdV

Addressing the vertical left arrows in Figure 19 we show the following result:

Proposition 4.2.1. [60] The modified Camassa-Holm equation can be trans-

formed via a reciprocal transformation to the negative flow of modified KdV.

This is achieved by performing similar calculations found in Chapter 3, but as

we see in this section requires an additional variable to get to the mKDV hierarchy.

Proof. Writing the mCH equation (409) in conservation form gives the following

mt + ((u2 − u2x)m)x = 0. (414)

Simplifying (414) further by introducing an additional variable, f ,

mt = −(mf)x, (415)

with

f = u2 − u2x, (416)
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and its derivative

fx = 2mux (417)

we can note that (415) is comparible to the conservation laws found in both the

Camassa-Holm (230) and Degasperis-Procesi cases (301). From (415) we are able

to read off the reciprocal transformation

dX =
m

2
dx− 1

2
mfdt, dT = dt. (418)

Using (418) we find

∂X

∂x
=
m

2
,

∂X

∂t
= −1

2
mf,

∂T

∂x
= 0,

∂T

∂t
= 1 (419)

which allows us to transform the variables x, t toX,T . Substituting (419) into (415)

mT +
1

2
m2fX = 0 =⇒ (m−1)T =

1

2
fX , (420)

which can be considered as the ‘basic’ conservation law. We also have fx (417)

which is transformed via the reciprocal transformation as:

fX = 2muX . (421)

Using the identity (420) and (421) we find

(m−2)T = 2uX . (422)

which is also a conservation law. By transforming all the x derivatives to X

derivatives, the equation from the second half of (409) becomes

m = u− m

2

∂

∂X

(

m

2
uX

)

= u− 1

8
mfXX (423)

Then the reciprocal transformation of (409) as given by Hone and Wang [60] is
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the system made of (423) and (422), although in the paper of Hone and Wang

there is a typo with a minus sign appearing in equation (422).

Using the reciprocal transformation to find the derivatives for u together

with (422) gives

∂u

∂x
=
m

2
uX = − mT

2m2
,

∂2u

∂x2
=
mXmT

2m2
− mTX

4m
(424)

Using m = u− uxx we have

m = u− mXmT

2m2
+
mXT

4m
. (425)

We are now able to substitute into the original system (409) in terms of the

new independent variables (X,T ). Rearranging for u and substitute into our

conservation law (422)

mT = −m3

(

mX +
3mXTmX

4m2
+
mTmXX

2m2
− mTm

2
X

m3
− mXXT

4m

)

(426)

and also for the additional identity for f

f = u2 − 1

4
m2u2X (427)

which we require for the following section. The reciprocally transformed Lax

equation obtained from (413) is

Ψ1XX−
(

mX

m2
+

1

m2

)

Ψ1 = −λ2Ψ1. (428)

Then introducing v = m−1 as in [60] gives

ΨXX + (vX − v2)Ψ = −λ2Ψ, (429)

noting that vX − v2 is the formula for the Miura transformation from modified
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KdV to KdV. The T part of the Lax pair is

ΨT = − 1

λ2

(

aΨX −
1

2
aXΨ

)

, a = u− 1

4
fX . (430)

If we have

VT = 4pX , (431)

which is a rescaled version of negative KdV (240), then it is equivalent to (426)

when

V = −pXX
2p

+
p2X
4p2
− 1

4p2
, (432)

If p satisfies the negative KdV equation (431)therefore

m = p−1 (433)

satisfies (426) with

v = −1

2

(

pX
p

+
1

p

)

(434)

4.2.2 Negative mKdV to 2nd Order ODE

We have shown in 4.2.1 that mCH is indeed related to the first negative flow of

mKdV via a reciprocal transformation. We now apply a similarity reduction to the

identities described earlier, the conservation law (420) and f (427) more precisely.

This enables us to write mCH as a 2nd order ODE which, unlike Camassa-Holm,

is not automatically of Painlevé type.

Using a scaling similarity reduction to get an equation in Z

m = T− 1

2M(Z), u = T− 1

2U(Z), f = T−1F (Z), Z = XT
1

2 (435)
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Applying the reduction to the conservation law (420) gives

(T
1

2M−1)T =
1

2

(

T−1F

)

X

(436)

and we can write (436) in terms of Z

F ′ = −M−1 − ZM ′

M2
=

d

dZ

(

Z

M

)

(437)

Integrating (437) with respect to Z

F =
Z

M
− a (438)

where a is an integration constant. This is again very similar to what we found in

the previous chapter, and applying the RT to (421) we have an additional variable

F ′ = 2MU ′. (439)

Writing f = u2 − u2x in terms of F , U and M , using the relation (439)

F = U2 − 1

4
M2U ′2 = U2 − 1

16
F ′2 (440)

we can use this and the following relation to eliminate U to find an equation

dependent on M and F only. Substituting the scaling similarity reduction into

the latter part of (423)

U =M +
1

8
MF ′′ =M(1 +

1

8
F ′′) (441)

Combining both (441) and (440) we find a 2nd order 2nd degree equation [27]

(

M +
1

8
MF ′′

)2

=
1

16
F ′2 + F. (442)
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In terms of the KdV variable

V =M−1 (443)

(442) can be written as

F ′′2 + 16F ′′ − 4V 2(F ′2 + 16F ) + 64 = 0 (444)

which is a 2nd order 2nd degree ODE.

4.2.3 mCH to 3rd Order ODE

Using the modified Camassa-Holm conservation law (415) and (416) we now

make a direct application of a scaling similarity reduction. As before making an

abuse of the notation, introducing the similarity variable z given by

z = x+ c log t. (445)

To find the scaling similarity reduction we make the following ansatz

m = tµM(z), u = tξU(z) f = tνF (z), (446)

substituting into (415) to obtain

µtµ−1M + tµ−1cṀ + tµ+ν(ṀF +MḞ ) (447)

where ˙= d
dz
. Equating powers of t to find values of µ and ν that eliminate t, we

require a three equations in total. From (447) we have the first relation

µ− 1 = µ+ ν. (448)
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Then (416), in terms of the scaling similarity reduction is

tνF ′ = t2ξ(U2 − U̇2) (449)

with

ν = 2ξ (450)

the second relation. Lastly, from (417) we find

tνḞ = 2tµ+ξMU̇ (451)

after applying the similarity reduction and hence the third and final relation we

require

ν = µ+ ξ. (452)

Therefore we have µ = −1
2
and ν = −1. So the conservation law (415) becomes

d

dz
((c+ F )M) =

1

2
M. (453)

and also

F = U2 − U̇2 (454)

the derivative of which is equivalent to

Ḟ = 2MU̇. (455)

Also

M = U − Ü (456)

Then the third order system for U is given by (453) and (456)

2U̇(U − Ü)(U − Ü) + (c+ U − U̇2)(U̇ − ...
U )− 1

2
(U − Ü) = 0 (457)
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which we can plot for particular values of c. As we would expect there are singu-

larities, but as you can see in Figure 21 for c = 1 and c = 5 with the given initial

conditions we have avoided them.

(a) c = 1 (b) c = 5

Figure 21: Solving the general equation (457) numerically with initial conditions
[U(0), U ′(0), U ′′(0)] = [1, 2, 2]

4.2.4 From the 3rd Order ODE to 2nd Order ODE

We apply a transformation to reduce the order of the 3rd order ODE (457) by

one, as Painlevé equations are 2nd order.

Proposition 4.2.2. Applying a hodograph transformation to the third order

ODE results in the same 2nd order ODE (444) as is obtained from applying a re-

ciprocal transformation and then a similarity reduction to the modified Camassa-

Holm equation.

Proof. The hodograph transformation we use is the following

dZ =
M

2
dz, (458)
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the calculation of which is nearly identical to that in (262). Applying the hodo-

graph (458) to the transformed conservation law (453) results in

d

dZ
((c+ F )M) = 1, (459)

and integrating with respect to Z

c+ F =
Z

M
. (460)

We note that (455) with derivatives in terms of Z becomes

F ′ = 2MU ′ (461)

and using this and the relation for F (454) we find

F = U2−
(

M

2
U ′

)2

= U2 − 1

16
F ′2 (462)

Finally the relation for M = U − U ′′ becomes

U =M +
1

8
MF ′′, (463)

which gives an equation in terms of U to substitute into (462) and we find the

2nd order equation (444) as before, verifying proposition 4.2.2.

4.2.5 Connection with Camassa-Holm PIII Reduction

We have found the same second order ODE for modified Camassa-Holm twice, as

we know of the link between the modified KdV hierarchy and the KdV hierarchy

we propose the following:

Proposition 4.2.3. The 2nd order ODE (444) that arises from reductions of

modified Camassa-Holm can be transformed via a Miura transformation to the

Camassa-Holm PIII (247).
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Proof. We will now write (444) in terms of negative KdV variable P . Writing (438)

in terms of V we calculate the derivatives of F as functions of Z and V :

F = ZV − a, F ′ = V + ZV ′, F ′′ = 2V ′ + ZV ′′. (464)

We know V from the Miura transformation (434) in terms of Z, that is

V = −1

2
(Λ′ + P−1), (465)

with

Λ′ =
P ′

P
, (466)

being the logarithmic derivative. Form of PIII for the negative KdV reduction as

in chapter 3 written in terms of the second logarithmic derivative

Λ′′ =
1

Z

(

− P ′

P
+ αP +

β

P
+
δZ

P 2

)

(467)

To write F and its derivatives in terms of p we need to write the derivatives of V

in terms of p

V ′ =
−αP 3 + Λ′P 2 + (Λ′Z − β)P − δZ

2ZP
(468)

and

V ′′ = −Λ′2

2P
+

Λ′

2Z

(

−αP+ β

P
+
2Zδ

P 2
− 1

P
− 2

Z

)

+
α

Z

(

1

2
+
P

Z

)

+
β

ZP

(

1

2P
+
1

Z

)

+
δ

2P 2

(

1

P
+
1

Z

)

.

(469)

Substituting for V ′ (468) and V ′′ (469) for the derivatives of F (464)

F = −Λ′Z

2
− Z

2P
− a, (470)

F ′ = −αP
2

+
Λ′Z

2P
− β

2P
− δZ

2P 2
− 1

2P
, (471)

F ′′ = −Λ′2Z

2P
+

(

− αP

2
+

β

2P
+
δZ

P 2
+

1

2P

)

Λ′ +
α

2

β

2P 2
+

δZ

2P 3
− δ

2P 2
. (472)
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Expanding (444) in powers of the log derivative of P

AΛ′3 + BΛ′2 + CΛ′ +D = 0 (473)

with

A = (8 + α)Z − Z2

2P 3
(1 + δ), (474)

and removing the leading order terms by fixing α = −8 and δ = −1 we find

8(β + 2a+ 1)Λ′2 +
16

P
(β + 2a+ 1)Λ′ +

8

P 2
(β + 2a+ 1) = 0 (475)

then to satisfy the CH PIII we choose,

β = −2a− 1. (476)

Substitute in the values for α, β, δ into (467)

d2P

dZ2
=

1

P

(

dP

dZ

)2

− 1

Z

dP

dZ
+

1

Z
(−8P 2 − (2a− 1))− 1

P
(477)

which is the same form of PIII as in the Camassa-Holm case with

α = −8, β = −2a− 1, γ = 0, δ = −1 (478)

By applying the miura transformation to the second order ODE of mCH (444), the

same form of PIII for Camassa-Holm has been found verifying proposition 4.2.3.

We can simplify (477) in a similar manner to the Degasperis-Procesi case in

section 3.2.5 where we used a scaling transformation to simplify the resulting

equations. We use the same transformation as before

T5(σ1, σ2) :φ 7→ φ̃(Z, ασ1σ2, βσ
−1
1 σ2, γσ

2
1σ

2
2, δσ

−2
1 σ2

2, (479)

:= σ−1φ(σ2Z, α, β, γ, δ) (480)
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but with a different σ1 and σ2

σ1 =
1

σ2α
, σ2 =

(

− 1

α2δ

) 1

4

. (481)

Using this transformation with (477) and we get

d2P

dZ2
=

1

P

(

dP

dZ

)2

− 1

Z

dP

dZ
+

1

Z
(P 2 + (2a+ 1))− 1

P
(482)

with

α = 1, β = 2a+ 1, γ = 0, δ = −1. (483)

Applying the same transformation to the Camassa-Holm PIII (247)

d2P

dZ2
=

1

P

(

dP

dZ

)2

− 1

Z

dP

dZ
+

1

Z
(P 2 + 2a)− 1

P
(484)

with

α = 1, β = 2a, γ = 0, δ = −1. (485)

Therefore by shifting the β in the modified Camassa-Holm case we will find the

same solutions as for Camassa-Holm.

4.3 Reductions of Novikov’s Equation

Novikov’s equation [79]

ut − uxxt + 4u2ux = 3uuxuxx + u2uxxx (486)

was discovered when looking at a classification of PDEs with infinitely many sym-

metries. It has cubic nonlinearity and interestingly unlike the quadratic nonlinear

peakon equations we’ve discussed, the peakons and anti-peakons both travel to the
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right [64], which is also true for mCH. A relationship between Novikov’s equation

and Degasperis-Procesi was studied in [63] using the Lax pair to examine the link

between the Sawada-Kotera and Kaup-Kuperschmidt hierarchies. This Resulted

in an implicit relationship between Novikov and Degasperis-Procesi. We show

that there is also a link between the Painlevé reductions of Degasperis-Procesi

and Novikov’s equation.

Here we demonstrate how PV

w′′ =

(

1

2w
+

1

w − 1

)

(w′)2− w
′

z
+
(w − 1)2

z2

(

αw+
β

w

)

+
γw

z
+
δw(w + 1)

w − 1
, (487)

can be found from the Novikov PDE. As with mCH we shall briefly describe

the Lax equations for Novikov which helps understand where the relationship to

Sawada-Kotera appears. The Lax pair is

Ψx = UΨ, Ψt = VΨ (488)

with U and V given by

U =











0 λm 1

0 0 λm

1 0 0











V =











1
3
λ−2 − uux λ−1ux − λu2m u2x

λ−1u −2
3
λ−2 −λ−1ux − λu2m

−u2 λ−1u 1
3
λ−2 + uux











Using the x-part of the matrix Lax pair to find the scalar equation

ψxxx −
2ψxxmx

m
+

2ψxm
2
x

m2
− ψxmxx

m
= m2λ2ψ + ψx, (489)

and the corresponding t-part is

ψt =
uψxx
λm

− uxψx
λm

− umxψx
λm2

− u2ψx (490)
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The scalar Lax pair can demonstrate the relationship between Novikov’s equation

and the Sawada-Kotera hierarchy [61]. This is explicitly given in the following

subsection, after reciprocally transforming the Lax pair.

The following diagram shows the two ways in which the PDE can be trans-

formed to the fifth Painlevé equation.

Novikov
Sim. Red−−−−−→

4.3.3
3rd Order Equation

4.3.1





y
Rec.Trans 4.3.4





y

Hodograph

negative Sawada-Kotera
Sim.Red−−−−→
4.3.2

2nd Order Equation, PV

Figure 22: Novikov reductions

Theorem 4.3.1. Novikov’s equation can be written as the fifth Painlevé equation

after transformations.

4.3.1 Novikov to Negative Sawada-Kotera

The left vertical arrow in Figure 22 implies a relationship between Novikov’s

equation and the Sawada-Kotera hierarchy, as noted by Hone and Wang:

Proposition 4.3.1. [60] The Novikov equation, via a reciprocal transformation,

can be written as a negative flow of Sawada-Kotera

Proof. Re-writing the Novikov equation in terms of a “momentum” variable m

simplifies the form of the PDE:

mt +mxu
2 + 3muux = 0, m = u− uxx (491)

upon making the substitution p
3

2 = m in (491) we can rewrite it in conservation

form as

pt + (pu2)x = 0. (492)
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This now allows us to define the reciprocal transformation which we will use to

find a new conservation law in terms of the new independent variables (X,T ).

dX = pdx− pu2dt, dT = dt (493)

Substituting for the derivatives in (492) produces

(

1

p

)

T

= (u2)X . (494)

We need to use the second part of (491) to find an additional relationship between

u(X,T ) and p(X,T ) which in its reciprocally transformed state is the following:

u = p
3

2 + p(pXuX + puXX). (495)

To understand that (495) and (494) really are part of the Sawada-Kotera hierarchy

we look back at the Lax pair and give the following proof for proposition 4.3.1:

Proof. Taking the spatial (489) scalar equation, we can apply the reciprocal trans-

formation (493) which gives us

ΨXXX +GΨX = λ2Ψ = λ2Ψ, G = −pXX
2p

+
p2X
4p2
− 1

p2
. (496)

As noted in [60] the first equation in (496) the third order operator ∂XXX +G∂X

is the standard operator for the Sawada-Kotera hierarchy.

The same equation is found if we make a change of variable to (495). So setting

v = up
1

3 (497)

we have

vXX−
(

pXX
2p
− p2X

4p2
+

1

p2

)

v + 1 = 0 (498)
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and the T part is

ΨT =
1

λ2
(vΨXX − vXΨX)−

2

3λ2
Ψ (499)

4.3.2 Negative Flow of Sawada Kotera to PV

Proposition 4.3.2. The negative flow of Sawada-Kotera that arises as a reduc-

tion from Novikov’s equation can be further reduced to the fifth Painlevé equation.

Proof. To reduce the equation to being dependent on only one independent vari-

able, we introduce a scaling similarity reduction

u = T− 1

2U(Z), p = T− 1

3P (Z), Z = XT
1

3 (500)

Applying the reduction to (494)

d

dZ

(

Z

3P

)

= 2UU ′ (501)

To deal with the fractional power of p we introduce two new variables Q and V

inspired by the change of variable needed to find the relationship to the Sawada-

Kotera hierarchy

P = Q2, V = UQ. (502)

Applying the gauge transformation and our new variables to (495)

P
3

2 = U − (P
d

dZ
)2U, (503)

becomes

Q4 = V −Q3(QV ′′ − V Q′′) (504)
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with (502), where ′ = d
dZ
. Integrating (501)

1

3
(ZP−1) = U2 + a, (505)

gives

Q2 =
1

a
(
1

3
Z − V 2) (506)

Eliminating Q2, (Q2)′, (Q2)′′ in terms of V and rearranging for V gives the second

order equation

(3V 2 −Z)V ′′ = 3V V ′2 − 3V 2

Z
V ′ − 1

Z

(

− 9V 4 + 6ZV 2 − V

4
+ 9V a2 −Z2

)

(507)

we require yet another change of variables to shift the poles at

V = ±
√

Z

3
(508)

using

V = ζ

(

1 + w

1− w

)

, z = 3ζ2, dζ = ± 1

6ζ
dZ (509)

in terms of wζζ

wζζ =

(

1

2w
+

1

w − 1

)

w2
ζ −

wζ
ζ

+
9a2

2z2
(w − 1)2

(

w − 1

w

)

− 72ζw (510)

In a similar vein to DP, to get in the correct PV form we apply another transfor-

mation

ζ = η
1

3 , dζ =
1

3
η−

2

3 (511)

which gives the following form of PV :

wηη =

(

1

2w
+

1

w − 1

)

w2
η −

wη
η

+
(w − 1)2

η2
a2

2

(

w − 1

w

)

− 8w

η
, (512)
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corresponding to (487) with parameter values

α =
a2

2
, β = −a

2

2
, γ = −8, δ = 0, (513)

hence satisfying proposition 4.3.2.

4.3.3 From Novikov to 3rd Order ODE

The latter two subsections detailed one way to reduce Novikov’s equation to

PV , these next two will apply similar reductions in reverse to show an alternative

method in achieving the same result. This is detailed in Figure 22 given at the

start of this section, the reduction here to a 3rd order ODE is the top arrow on

that diagram.

The Novikov equation has the conservation law

(m
2

3 )t + (m
2

3u2)x = 0, m = u− uxx. (514)

Setting m = p
3

2 simplifies the powers, we then look for a scaling similarity reduc-

tion of the form

p = tµP (z), u = tνU(z), z = x+ c log t. (515)

To find µ and ν we substitute (515) into the first part of the conservation law (514)

which produces

µtµ−1P + tµ−1cṖ + t4µ(ṖU + 2PUU̇) = 0, (516)

and balancing powers of t gives

µ− 1 = 4µ. (517)
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Solving (517) for µ results in µ = −1
3
. We require an additional equation to find

ν, so we use the equation for m from (514) and again use the substitutions (515)

to find

t
3

2
µP

3

2 = tν(U − Ü). (518)

Balancing the powers of t we get

ν =
3

2
µ, (519)

which means ν = −1
2
. Using the results for µ and ν, we substitute for the

conservation law (514) and rearrange to find

d

dz
[(U2 + c)P ] =

1

3
P. (520)

To find an equation dependent on U only, we substitute P
3

2 = U − Ü into (520)

and differentiate with resepect to z to get the 3rd order ODE

(

2UU̇ − 1

2

)

(U − Ü)− 2

3
(U2 + c)

...
U = 0. (521)

Using Maple’s inbuilt ODE integrator we are able to plot solutions of (521) for

different values of c

(a) c = 1 (b) c = 5

Figure 23: Solving the general equation (521) numerically with initial conditions
[U(0), U ′(0), U ′′(0)] = [1, 2, 2]
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4.3.4 3rd Order ODE to PV

Proposition 4.3.3. The 3rd order ODE that arises from a scaling similarity

reduction of Novikov can be written as a version of PV . The Painlevé equation

found is the same found when applying a reciprocal transformation and then a

similarity reduction to Novikov’s equation.

Proof. Taking (520) we apply the hodograph

dZ = Pdz, (522)

to find
d

dZ
[(U2 + c)P ] =

1

3
. (523)

Integrating (523) with respect to Z results in

U2 + c =
Z

3P
, (524)

which we note is the same as (505). To find another equation in terms of U2, we

use the relation

P
3

2 = U − Ü , (525)

with U̇ = dU
dz

gives

P 3 = U−
(

P
d

dZ

)2

U, (526)

and hence we are in a position to apply the same substitutions as our previous

example which gets us back to PV and satisfying proposition 4.3.3.

4.3.5 Solutions

Here we find some solutions to PV in the form (512), additionally we use the

solutions from the Degasperis-Procesi PIII case to find solutions of (512). There

is not a general relationship between PIII and PV , however for a special case where
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γ 6= 0 and δ = 0 this is possible [49]. To simplify the solutions we use the scaled

solutions from DP, that is the ones that satisfy (α, β,−1, 1).
Writing (512) in the same form as Gromak

wζζ =
3w − 1

2w(w − 1)
w2
ζ −

wζ
ζ

+
(w − 1)2

ζ2
(aw +

b

w
) +

c

ζ
w, (527)

with

a =
A2

2
, b = −A

2

2
, c = −8 (528)

with a = constant. As in Gromak we can take c2 = 1 without loss of generality

and make the substitution ζ2 = 2τ

u′′ =
3u− 1

2u(u− 1)
u′2 − u′

z
+

4(u− 1)2

z2
(au+

b

u
) + 2cu (529)

Rational solutions exist if either of the following are satisfied

a =
(2n− 1)2

8
n ∈ N (530)

or

a 6= 0, b = −(2n− 1)2

8
, n ∈ N (531)

Taking (530) by rearranging as a quadratic for n and solving we find

n =
1

2
± A (532)

which is satisfied. We can find rational solutions of (529) using our free variable

A to satisfy relationships between the variables a, b, c.

a b c d α

1
8
−1

8
−1 1± 2z α = ±

9
8
−9

8
−1 8z3+36z2+54z+15

3(4z2+12z+5)
5

−1 8z3−36z2+54z−15
−3(4z2−12z+5)

−1

111



Plotting some of these solutions

(a) u1 (b) u2

Figure 24: First two algebraic solutions

4.4 Summary

This chapter has shown how modified Camassa-Holm and Novikov can be related

to Painlevé equations. Not only this but we have found a relationship between

Degasperis-Procesi and Novikov. A Miura type map has been found between

both these equations previously, but no direct solution comparisons were found

and neither was the Painlevé reduction. As with chapter 3, this only goes to

bolster the ARS conjecture that integrable PDE’s have a reduction to Painlevé

equations.

We have employed similar techniques to find Painlevé equations from peakon

PDEs with cubic nonlinearity as we did with those that have quadratic nonlinear-

ity. For the equations studied, it has been a sound algorithmic approach which

gives an indication that a similar method could be applied to other related peakon

equations.
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Chapter 5

Conclusions and future work

This thesis has explored several different peakon equations, both integrable and

non-integrable. In chapter 2 we study the Popowicz system, presenting the solu-

tion for the 2-peakon dynamics and exploring some of the features of the inter-

action. In chapter 3 we transform via reductions Camassa-Holm and Degasperis-

Procesi to PIII , and then give explicit solutions for the PDEs. Chapter 4 we

apply similar reductions to modified Camassa-Holm and Novikov’s equation, and

explore links from these cubic nonlinear PDEs to the quadratic nonlinear PDEs

of the previous section.

Peakon equations have existed for more than 20 years, and not only have

they been of interest to the integrable systems community, but they have also

encouraged novel numerical schemes due to the difficulty of solving these PDEs

numerically. Most recently there has seen a huge surge in papers developing new

families of equations [92, 51, 7, 28], much like the b-family, but encapsulating more

of the integrable equations in a single family. Also there is an increased interest

in multi-component systems [98], such as the Popowicz system, that lend itself to

studying the dynamics of multi-peakons and stability problems. An example is
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the Geng-Xue equation [45]

mt + 3uxvm+ uvmx = 0, m = u− uxx (533)

nt + 3vxun+ uvnx = 0, n = v − vxx (534)

which has interesting dynamics of peakons and shock-peakons [71]. Here we dis-

cuss some future work that relates some new families of equations to some of the

results discussed earlier in this thesis.

5.1 ab-family

The ab-family [51] is the cubic equivalent of the b-family, with a, b any real num-

bers, being given by

ut−utxx+(b+1)u2ux−3au3x− (6a+ b)uuxuxx+6auxu
2
xx−u2uxxx+3au2xuxxx = 0.

(535)

We can write it in terms of m = u− uxx as

mt + (u2 − 3au2x)mx + ux((b− 6a)u+m)m = 0. (536)

Setting b = 2 can put (536) into a conserved form

mt + ((u2 − 3au2x)m)x = 0 (537)

by setting a = 1
3
we get the conservation law for mCH. For Novikov, a = 0

and b = 3. Under these specific parameters, this local form of the ab equation

conserves the H1 norm, as noted by Himonas et.al [51]. They also derived peakon

travelling wave solutions for the whole ab family.
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5.2 abc-family

Previously we have discussed the b-family which we know exhibits quadratic non-

linearity, we have also seen the Novikov equation which has cubic nonlinearity.

Anco et.al [7] have discovered a family which encapsulates these quadratic and

cubic nonlinear equations found in the previous chapters of this thesis. This 4

parameter family, which we shall call the abc-family is the following,

ut − utxx + aupux − bup−1uxuxx − cupuxxx = 0. (538)

So for example the (p, a, b, c) constants for the various equations are

(p, a, b, c) Equation

(1, 3, 2, 1) Camassa-Holm

(1, 4, 3, 1) Degasperis-Procesi

(2, 4, 3, 1) Novikov

where p determines the nonlinearity in these cases. As we have done previously,

we write (538)

mt + buxu
p−1m+ cupmx = 0, m = u− uxx, (539)

which loses the dependence on a but we shall look at that below. Using (539) as

a starting point we can now write down this in conservation form

(m
p

b )t + (upm
p

b )x = 0. (540)

This is a simpler case, but sets the scene for further exploits as studied in chapters

3 and 4. We are able to find another conservation law from (538) but instead keeps

the variable a in play. We give it here as

(mα)t + (uγmα)x = 0, (541)
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which fixes the relationship between p, a, b and c as the following

p = γ, a =
γ

α
+ 1, b = a− 1, c = 1. (542)

Setting g = mα, this conservation law leads to a reciprocal transformation, namely

dX = gdx− upgdt, dT = dt (543)

Another example is the abc− k family, which not only contains the integrable

equations found in the previous abc family, but also modified Camassa-Holm

(though it is called the Fokas-Olver-Rosenau-Qiao equation in the reference) [51].

ut − uxxt + (b+ 1)ukux + (3k − 9a− b− 2c)uk−2u3x + (2c− 3k)uk−1uxuxx (544)

+ 6auk−2uxu
2
xx − ukuxxx + 3auk−2u2xuxxx = 0 (545)

These other families of equations admit peakon solutions and conservation

laws, and are amenable to the same techniques as in chapters 3 and 4, namely

reciprocal transformations and similarity reductions.
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Appendix A

Relationship between

Degasperis-Procesi and Novikov

Solutions

There exists a well known relationship between the solutions of the third and

fifth Painleve equations [49]. Given αδ 6= 0 we can assume γ = 1 and δ = −1.
So if we let w = w(z;α, β, γ, δ) be a solution of PIII , and v = dw

dz
− ǫw2 +

( (1−ǫα)w
z

). Then w̃(ζ, α̃, β̃, γ̃, δ̃) = v−1
v+1

and z =
√
2ζ satisfies PV with (α̃, β̃, γ̃, δ̃) =

( (β−ǫα+2)2

32
, (β+ǫα−2)2

32
,−ǫ, 0).

We have δ = 0 for Novikov’s PV (512), we can then write it as a special case

of PIII . For clarity we rename the variables for PV (α, β, γ, δ) = (ã, b̃, c̃, d̃).

To write PV solutions in terms of PIII (α, β, γ, δ) we take

ã =
1

32
(β − αǫ+ 2)2, b̃ = − 1

32
(β + αǫ− 2)2, c̃ = −ǫ, d̃ = 0, (546)

and

R1 = π′ − ǫπ2 − (αǫ− 1)
π

ζ
+ 1 6= 0, (547)

with

ζ2 = 2ρ. (548)
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Noting u(ρ) a solution of PV

u(ρi) = 1− 2

R1(
√
2ρ)

, (549)

with i = 1, 2. This gives two solutions of PV from one solution of PIII . To find

two more solutions, we introduce

R2 = π′ − ǫπ2 +
π

ζ
− 1 6= 0, (550)

with

ã =
1

32
(β + αǫ− 2)2, b̃ = − 1

32
(β − αǫ+ 2)2, c̃ = −ǫ, d̃ = 0. (551)

So the other two solutions come from

u(ρj) = 1 +
2

R2(
√
2ρ)

(552)

with j = 3, 4.

A.0.1 From seed solution

Taking a seed solution for Degasperis-Procesi PIII , π0(0, 0, 1,−1), we can find a

solution for Novikov’s PV , and u(
1
8
,−1

8
,−1, 0)

u1(ρ1) = 1− 2
√

2ρ. (553)

Using the different signs for ǫ we also have u(1
8
,−1

8
, 1, 0)

u1(ρ2) =

√
2

4
√
ρ+
√
2
. (554)
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Can apply R2

u1(ρ3)(
1

8
,−1

8
,−1, 0) =

√
2√

2− 4
√
ρ
, (555)

u1(ρ4)(
1

8
,−1

8
, 1, 0) = 1 + 2

√

2ρ (556)

(a) u1(ρ1) (b) u1(ρ2)

(c) u1(ρ3) (d) u1(ρ4)

Figure 25: Four solutions from w2 PIII solutions of Degasperis-Procesi, now solu-
tions to Novikov’s PV

A.0.2 2nd PIII solution

Here we use the 2nd rational PIII solution from Degasperis-Procesi (322)

π4(ζ; 0, 8, 1,−1) =
16ζ4 − 144ζ3 + 480ζ2 − 660ζ + 315

(2ζ − 5)(−36ζ2 + 54ζ + 8ζ3 − 15)
(557)
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to solutions that satisfy Novikov’s PV (512), by finding (549) and (552).

u2(ρ1)(
25

8
,−9

8
,−1, 0) = (558)

3(−512ρ3 + 2304
√
2ρ

5

2 − 7872ρ2 + 5952
√
2ρ

3

2 − 3960ρ+ 180
√
2ρ

1

2 + 315)

1024
√
2ρ

7

2 − 10752ρ3 + 24192
√
2ρ

5

2 − 56640ρ2 + 33840
√
2ρ

3

2 − 18360ρ+ 990
√
2ρ

1

2 + 945
,

(559)

u2(ρ2)(
25

8
,−9

8
, 1, 0) =

−120ρ+ 150
√
2ρ

1

2 − 105 + 16
√
2ρ

3

2

5(−8ρ+ 20
√
2ρ

1

2 − 21
, (560)

u2(ρ3)(
9

8
,−25

8
,−1, 0) = (561)

1024
√
2ρ

7

2 − 10752ρ3 + 24192
√
2ρ

5

2 − 56640ρ2 + 33840
√
2ρ

3

2 − 18360ρ+ 990
√
2ρ

1

2 + 945

3(−512ρ3 + 2304
√
2ρ

5

2 − 7872ρ2 + 5952
√
2ρ

3

2 − 3960ρ+ 180
√
2ρ

1

2 + 315)
,

(562)

u2(ρ4)(
9

8
,−25

8
, 1, 0) =

5(−8ρ+ 20
√
2ρ

1

2 − 21

−120ρ+ 150
√
2ρ

1

2 − 105 + 16
√
2ρ

3

2

, (563)

(a) u2(ρ3) (b) u2(ρ4)

Figure 26: Two solutions from w3 PIII solutions of Degasperis-Procesi, now solu-
tions to Novikov’s PV
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[20] P. A. Clarkson. The third Painlevé equation and associated special polyno-

mials. Journal of Physics A: Mathematical and General, 36(36):9507, 2003.

[21] P. A. Clarkson and M. D. Kruskal. New similarity reductions of the Boussi-

nesq equation. Journal of Mathematical Physics, 30(10):2201–2213, 1989.

[22] D. Cohen, B. Owren, and X. Raynaud. Multi-symplectic integration of the

Camassa–Holm equation. Journal of Computational Physics, 227(11):5492–

5512, 2008.

[23] A. Constantin. On the scattering problem for the Camassa-Holm equation.

In Proceedings of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences, volume 457, pages 953–970. The Royal Society,

2001.

[24] A. Constantin and J. Escher. Global existance and blow-up for a shallow

water equation. Ann.Scuola Norm. Sup. Pisa Cl. Sci, XXVI:308–328, 1998.

[25] A. Constantin and D. Lannes. The hydrodynamical relevance of the

Camassa–Holm and Degasperis–Procesi equations. Archive for Rational Me-

chanics and Analysis, 192(1):165, 2009.

[26] A. Constantin and W. A. Strauss. Stability of peakons. Communications

on Pure and Applied Mathematics, 53(5):603–610, 2000.

[27] C. M. Cosgrove and G. Scoufis. Painlevé classification of a class of differ-
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[57] A. N. W. Hone. Painlevé tests, singularity structure and integrability. In

Integrability, pages 245–277. Springer, 2009.

[58] A. N. W. Hone, H. Lundmark, and J. Szmigielski. Explicit multipeakon

solutions of Novikov’s cubically nonlinear integrable Camassa-Holm type

equation. arXiv preprint arXiv:0903.3663, 2009.

[59] A. N. W. Hone, V. Novikov, and J. P. Wang. Two-component generalizations

of the Camassa–Holm equation. Nonlinearity, 30(2):622, 2017.

[60] A. N. W. Hone and J. P. Wang. Prolongation algebras and Hamiltonian

operators for peakon equations. IOP, 19:129–145, 2003.

126



[61] A. N. W. Hone and J. P. Wang. Integrable peakon equations with cu-

bic nonlinearity. Journal of Physics A: Mathematical and Theoretical,

41(37):372002, 2008.

[62] E. L. Ince. Ordinary Differential Equations. Dover Publications, 1926.

[63] J. Kang, X. Liu, P. J. Olver, and C. Qu. Liouville correspondences between

integrable hierarchies. arXiv preprint arXiv:1702.01227, 2017.

[64] M. Kardell and H. Lundmark. Peakon-antipeakon solutions of the Novikov

equation. 2014.

[65] D. Kaup. On the inverse scattering problem for cubic eigenvalue prob-

lems of the class ψxxx+ 6qψx+ 6rψ= λψ. Studies in Applied Mathematics,

62(3):189–216, 1980.

[66] D. J. Korteweg and G. De Vries. XLI. on the change of form of long waves

advancing in a rectangular canal, and on a new type of long stationary

waves. The London, Edinburgh, and Dublin Philosophical Magazine and

Journal of Science, 39(240):422–443, 1895.

[67] B. A. Kupershmidt and G. Wilson. Modifying Lax equations and the second

Hamiltonian structure. Inventiones mathematicae, 62(3):403–436, 1980.

[68] P. D. Lax. Integrals of nonlinear equations of evolution and solitary waves.

Communications on pure and applied mathematics, 21(5):467–490, 1968.

[69] P. D. Lax. Periodic solutions of the KdV equation. Communications on

pure and applied mathematics, 28(1):141–188, 1975.

[70] Y. Li and P. Olver. Convergence of solitary-wave solutions in a perturbed bi-

Hamiltonian dynamical system break I. Compactons and peakons II. Com-

plex analytic behavior III. Convergence to non-analytic solutions. 1996.

127



[71] H. Lundmark and J. Szmigielski. Dynamics of interlacing peakons (and

shockpeakons) in the Geng–Xue equation. Journal of Integrable Systems,

2(1), 2017.

[72] V. Marinakis. Comment on “A new integrable equation with cuspons and

W/M-shape-peaks solitons”. Journal of mathematical physics, 50, 2009.

[73] Y. Matsuno. Bilinear transformation method. Elsevier, 1984.

[74] Y. Matsuno. Parametric representation for the multisoliton solution of

the Camassa–Holm equation. Journal of the Physical Society of Japan,

74(7):1983–1987, 2005.

[75] H. P. McKean. The Liouville correspondence between the Korteweg–de Vries

and the Camassa–Holm hierarchies. Communications on Pure and Applied

Mathematics: A Journal Issued by the Courant Institute of Mathematical

Sciences, 56(7):998–1015, 2003.

[76] A. V. Mikhailov and V. S. Novikov. Perturbative symmetry approach. Jour-

nal of Physics A: Mathematical and General, 35(22):4775, 2002.

[77] A. E. Milne, P. A. Clarkson, and A. P. Bassom. Bäcklund transformations
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