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Abstract

The purpose of this thesis is to investigate modular representations and invariants of the extra-

special group of order p3 and exponent p denoted by H.

The material is organized in four chapters. In Chapter 1 we introduce basic definitions and

results from commutative algebra, representation theory and invariant theory that will be used

throughout this document and we fix our notation. In Chapter 2 we classify modular represen-

tations of H based on their socle-type. In particular, for a field extension Fp ⊂ F we prove the

existence of a suitable generating set for the group of representing matrices when V is a three-

and four-dimensional FH-module.

Using the classification results, when V is three-dimensional we construct a suitable set of

invariants where we apply the SAGBI/divide-by-x algorithm. During the subduction various

constraints show up, hence we split this chapter in two cases; generic and non-generic. Regardless

the case, SAGBI/divide-by-x algorithm returns a generating set for F[V ]H and proves that is a

complete-intersection ring.

In Chapter 4 representations assumed to be four-dimensional. This time the classification is

more complicated and the only possible socle-types are (1, 1, 1, 1), (1, 1, 2), (1, 2, 1) and (2, 1, 1).

For each one of them we compute F(V )H and we use the invariant field generators to investigate

the structure of F[V ]H .

For type-(1, 1, 1, 1) invariants we prove that the group of representing matrices is not generated

by bireflections, hence F[V ]H fails to be Cohen-Macaulay. Also for p = 5 we show the existence

of a partial hsop which is not a regular sequence. For type-(1, 1, 2) although the representing

matrices form a bireflection group, we construct a partial hsop that we conjecture is not regular

sequence for any prime. The classification of type-(1, 2, 1) representations yields two classes with

distinct socle-tabloids. For the first class we collect evidence on MAGMA that for p = 3, 5 and

7, {x1, x2,NH(x3)} is not acting regularly on F[V ]H , hence that F[V ]H is not Cohen-Macaulay.

For the second we apply SAGBI/divide-by-x on the set of invariant field generators, however due

to the high complexity in computations generic computations are forbidden. So we present com-

putational evidence that F[V ]H is complete intersection with embedding dimension six. For the

remaining case of type-(2, 1, 1) representations, F[V ]H is Cohen-Macaulay. However, evidence

collected for p = 3, 5 and 7 using MAGMA, indicates that F[V ]H is not a complete intersection

ring. To prove this we count the number of algebraic relations and use a characterization of

complete intersection rings in terms of Koszul homology.
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Chapter 1

Introduction

1.1 Overview

Invariant theory is the study of objects that preserve a certain symmetry. Usually

this symmetry comes from the action of a group G on a commutative ring R. To

comprehend this mathematically we use representation theory. So invariant and

representation theory are closely related from this point of view. The contemporary

approach of representation theory dictates the usage of modern techniques like

derived categories, sheaves and various cohomology theories. However, invariant

theorists use commutative theoretic machinery and sometimes develop their own

tools when deeper questions come up.

Like representation theory we split invariant theory in modular and non-modular

case. Many questions known to be true in the non-modular case, fail dramatically

in the modular case. The reason is mainly that modular invariant theory contains

classes of groups with wild representation theory and their complexity is reflected

to invariant theory too.

In this thesis we study the modular invariant theory of a particular p-group over

field extensions Fp ⊂ F. A p-group G is called extraspecial if the center Z(G)

is cyclic and the quotient G/Z(G) is non-trivial elementary abelian, while the

8



CHAPTER 1. INTRODUCTION 9

exponent of a finite group is the least common multiple of the orders of all elements.

The group of our interest is the extraspecial group of order p3 and exponent p

denoted by H. To study H we use the following presentation

H = 〈g1, g2 | gp1 = gp2 = e, [g1, [g1, g2]] = e, [g2, [g1, g2]] = e, [g1, g2]p = e〉,

while for a more intuitive approach we look at the archetypal representation of

extraspecial groups, the finite Heisenberg group

H ∼= UT3(Fp) =




1 c1,2 c1,3

0 1 c2,3

0 0 1


∣∣∣∣∣∣∣∣ ci,j ∈ Fp

 .

1.2 Preliminaries.

1.2.1 Basic Definitions & Notation.

This chapter is intended to introduce basic definitions and set up the notation that

will be used throughout this thesis. We first introduce the main object of study.

Suppose G ⊂ GL(V ) is a finite group and let V ∗ := Hom(V,F) denote the dual

vector space of V . Then V ∗ becomes a right FG-module with g ∈ G acting on a

linear functional x ∈ V ∗: (x · g)(u) = x(g · u).

Given an FG-module V , the symmetric algebra of the dual Sym(V ∗) = T (V ∗)/〈u⊗
w − w ⊗ u |u,w ∈ V 〉, up to graded isomorphism is identified with F[V ] =

F[x1, . . . , xn], the polynomial ring on n-variables. Therefore, the action of G on

V ∗ can extend to an action by degree preserving algebra automorphisms on F[V ].

Definition 1.2.1.1. Let F be a field and V an n-dimensional F-vector space.

Assume G ⊂ GL(V ) denotes a finite group. The set of polynomials in F[V ] which

are invariant under the G-action form a subalgebra called the invariant ring and

is denoted by F[V ]G,

F[V ]G = { f ∈ F[V ] | f · g = f, ∀g ∈ G }.
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Given an element f ∈ F[V ] it is useful to know how to turn f into an invariant.

This can be achieved in two ways.

Definition 1.2.1.2. Let f ∈ F[V ] and G ≤ GL(V ), we define the stabilizer of

f under G by Gf := { g ∈ G | f · g = f }. Given a subgroup H ≤ G, we define the

relative norm and relative transfer of f by the formulas

NG
H(f) :=

∏
g∈G/H

f · g , TrGH(f) :=
∑

σ∈G/H

f · g.

Here g ∈ G/H represents a coset representative. When H = Gf , we call the

invariants

NG(f) := NG
Gf

(f) =
∏

g∈G/Gf

f · g , Tr(f) :=
∑

σ∈G/Gf

f · g,

the norm and transfer of f respectively.

Notice that since the action ofG on F[V ] is always assumed to be degree-preserving,

the transfer Tr(f) has the same degree with f , whereas the norm N(f) greater.

Nevertheless, turns out that the norms are quite interesting and useful family of

invariants.

A monomial in F[V ] is a term of the form xα = xα1
1 . . . xαn

n , for a vector α =

(α1, . . . , αn) ∈ Nn. A monomial order on F[V ] is a total ordering on the set of

monomials M := {xα | α ∈ Nn } ⊂ F[V ]. This means given xα,xβ ∈M, exactly

one of the following three relations must hold

xα < xβ, xα = xβ or xα > xβ.

Given a polynomial f ∈ F[V ] we define the lead monomial, LM≺(f), to be the

largest term appearing in f with respect to that order. The coefficient of this term

in f is called lead coefficient and is denoted by LC≺(f). Finally, the product of

these two is called the lead term of f and is denoted by LT≺(f) = LC≺(f)LM≺(f).

Throughout this thesis we fix a specific term order, the graded reverse lexicographi-

cal order (grevlex) with x1 < x2 < · · · < xn. Thus, xα < xβ if deg(xα) < deg(xβ),
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or if deg(xα) = deg(xβ) but the first nonzero element from the left in α − β is

positive. When that term order is considered, we denote LT(f) = LC(f)LM(f)

without explicitly referring to the term order ≺.

1.3 Commutative Algebra.

Invariant theory is the study of structure of a specific class of commutative rings.

Since F[V ]G is a subring of F[V ], one naturally asks what nice properties of F[V ]

are inherited to F[V ]G. When G is finite, a celebrated theorem of Emmy Noether

(1915) (see, [8, Theorem 3.1.2]) shows that F[V ]G is finitely generated. Thus the

ring of invariants F[V ]G is always Noetherian. However, these are not the only

nice properties that F[V ]G inherits, since forms an example of a graded connective

algebra too.

Definition 1.3.0.1. We call a ring R (positively) graded, if we can find additive

subgroups Ri ≤ R, for i ∈ N such that R = ⊕i∈NRi and RiRj ⊂ Ri+j. Furthermore,

we call r ∈ R homogeneous, if r ∈ Ri for some i ∈ N. A graded algebra R is

called connective, if it is a graded ring such that R0 = F.

Definition 1.3.0.2. Assume R is a graded algebra and let I / R denote an ideal.

We call I homogeneous if it can be generated by homogeneous elements.

Moreover, for connective algebras there is a unique maximal homogeneous ideal

R+ / R generated by all elements of positive degree. The class of graded local

Noetherian rings is an interesting class for us. Many important theorems of the

theory of local rings can be proven to be true in these context too, hence applied

to the case R = F[V ]G.

Definition 1.3.0.3. Let R denote a Noetherian commutative ring and p / R a

prime ideal. We call height of p and we denoted by hg(p), the length of a maximal

chain of prime ideals, p0 ⊂ p1 ⊂ · · · ⊂ pi = p.

We call the maximum height of proper prime ideals the Krull dimension of R

and we denote it by dim(R).
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Let R ⊂ S be an extension of rings. Choose an element a ∈ S. We call this element

integral over R if there is a monic polynomial f ∈ R[x], such that f(a) = 0. If

every element in S is integral over R we say that S is an integral extension of

R. If S is a finitely generated F -algebra, then S is integral over R if and only if S

is a finite R-module. The set of all elements in S integral over R form a subring,

denoted by R. This subring is known as the integral closure of R in S. If R = R,

then R is said to be integrally closed in S.

In the following theorem, we prove that F[V ]G ⊂ F[V ] is integral.

Theorem 1.3.0.4. [8, 3.0.4] Let G ⊂ GL(V ) be a finite group, then the extension

F[V ]G ⊂ F[V ] is integral.

Proof. Pick an h ∈ F[V ] and assume |G| = n; it is not difficult to observe, that

the monic polynomial

F (t) =
∏
g∈G

(t− h · g) = t|G| + fn−1t
n−1 · · ·+ f0,

has h as a root, i.e., F (h) = 0. Now the action of G on F[V ] can be extended to

F[V ][t] by setting t · g = t,∀g ∈ G. Under this action, we get F (t) ∈ F[V ][t]G.

Therefore, fi · g = fi, ∀g ∈ G,∀i ∈ {1, . . . , n}. In other words, F (t) ∈ F[V ]G[t]. So

it follows that the extension F[V ]G ⊂ F[V ] is integral.

An important property of integral extensions is that when R ⊂ S is integral

dim(R) = dim(S). Therefore, using the theorem implies dim(F[V ]G) = dim(F[V ]) =

dimF(V ).

Next we introduce a notion that will be used extensively in the entire thesis.

Definition 1.3.0.5. Let R denote a commutative F-algebra with dim(R) = n.

Assume that S = {f1, . . . , fn} ⊂ R is a set of homogeneous elements and let A =

F[f1, . . . , fn] denote the algebra generated by S. We call S a homogeneous system

of parameters (hsop), if R is a finitely generated A-module, i.e., ∃ g1, . . . , gk ∈ R
such that R =

∑k
i=1 Agi.
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We call A a Noether Normalization of R. Since any two Noether Normalizations

are isomorphic up to isomorphism we can talk for the Noether Normalization of

R.

When the case R = F[V ]G is considered, any hsop is referred as the primary

invariants while the corresponding module generators gi as the secondary in-

variants.

Two questions arising immediately; given an F-algebra R, when such an hsop

exists? If we know about its existence, how do we distinguish whether a given

subset {f1, . . . , fn} ⊂ R of homogeneous elements is an hsop? Fortunately, in good

cases we have an answer for both questions. The first comes from a famous and

powerful theorem of Emmy Noether (1926) [17] (originally proved by D. Hilbert)

with interesting applications both in algebra and geometry, the so-called Noether

Normalization lemma.

Theorem 1.3.0.6 (Noether Normalization Lemma). [8, Theorem 2.6.1] Assume

that R is a finitely generated connected F-algebra. Then R has an hsop.

The second question when R = F[V ]G, can be answered by giving a geometric

criterion in the algebraic closure of F.

Lemma 1.3.0.7. [8, 2.6.3] Let V be an n-dimensional F-vector space and F the

algebraic closure of F. Assume that f1, . . . fn ∈ F[V ]G are homogeneous invari-

ants and that V = V ⊗F F. Then {f1, . . . , fn} forms an hsop if and only of

VV (f1, . . . , fn) = {0}. Here the latter denotes the zero-locus of f1, . . . , fn in the

closure of V , that is,

VV (f1, . . . , fn) = { v ∈ V | f1(v) = · · · = fn(v) = 0 }.

An interesting aspect of integral extensions is the transitivity property. If R ⊂
L ⊂ S are ring extensions with L integral over R and S integral over L, then S

is integral over R as well. So if A = F[f1, . . . , fn] is a Noether normalization of

F[V ]G, follows that A ⊂ F[V ] is integral and A is a Noether normalization of F[V ]

too. Based on this fact we obtain the following theorem.
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Theorem 1.3.0.8. [5, Theorem 5, pg.112] If A = F[f1, . . . , fn] is a Noether

normalisation (for some group), then F[V ] is a free graded A-module of rank∏n
i=1 deg(fi) and top degree

∑n
i=1(deg(fi)− 1).

1.3.1 Cohen-Macaulay ring.

An important question for a graded commutative ring R in commutative algebra is

whether it has the Cohen-Macaulay property. The standard textbook for Cohen-

Macaulay rings is [4].

Definition 1.3.1.1. Let R denote a commutative ring and M a left R-module.

We say that x ∈ R is M-regular, if x ·m = 0 for m ∈M implies m = 0, that is,

if x is not a zero-divisor for M .

A sequence x = (x1, . . . , xn) of elements in R is called an M-regular sequence if

the following two conditions are satisfied:

(1) ∀i ∈ {1, . . . , n}, xi is an M/(x1, . . . , xi−1)M-regular element,

(2) M/xM is not the zero module.

We call a regular sequence x maximal, if it cannot be extended to a longer regular

sequence.

Assume that R is additionally Noetherian and let I / R be an ideal. If M is an

R-module such that IM 6= M , then all the maximal M -sequences in I have the

same length. We call this common length the depth of M and we denote it by

depthI(M). In particular, if R is graded local Noetherian with irrelevant ideal

R+ / R, then length of any maximal M -sequence is called the depth of M and is

denoted by depthR+
(M). Since the underlying ring will always be clear from the

context, we omit R+ from the notation and simply write depth(M).

For the special case R = M we have always depth(R) ≤ dim(R).
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Definition 1.3.1.2. A commutative graded ring R considered as an R-module is

called Cohen-Macaulay if depth(R) = dim(R).

Since F[V ]G is a graded Noetherian finitely generated F-algebra all the above

definitions can be applied. In particular, for such algebra we have a very useful

criterion to decide whether is Cohen-Macaulay.

Theorem 1.3.1.3. [8, Theorem 2.8.1] Let A be a finitely generated connected

graded F-algebra which is Cohen-Macaulay. Then every hsop for A is a regular

sequence for A.

Equivalently, we can define Cohen-Macaulay rings as free modules over a Noether

normalisation.

Theorem 1.3.1.4. [3, 4.3.5] Let R be a graded connected Noetherian F-algebra.

The following are equivalent:

(1) R is Cohen-Macaulay with dimR = n,

(2) for {f1, . . . , fn} ⊂ R an hsop, R is a free F[f1, . . . , fn]-module,

(3) for any hsop {f1, . . . , fn} ⊂ R, R is a free F[f1, . . . , fn]-module.

If A = F[f1, . . . , fn] ⊂ F[V ]G for {f1, . . . , fn} a set of primary invariants, then there

is a minimal set of secondary invariants g1, . . . , gm ∈ F[V ]G such that F[V ]G =∑m
i=1 Agi. The following theorem implies that the prior knowledge of m suffices to

decide whether F[V ]G is Cohen-Macaulay.

Theorem 1.3.1.5. [9, 3.7.1] Assume that the action of G on V is faithful and

let f1, . . . , fn ∈ F[V ]G be primary invariants of degrees d1, . . . , dn. Furthermore,

assume that g1, . . . , gm is a minimal system of secondary invariants. Then

m ≥ d1 · · · dn
|G|

,

with equality if and only if F[V ]G is Cohen-Macaulay.
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Another useful criterion for the Cohen-Macaulay property related with the number

of secondary invariants is given in terms of the Hilbert Series.

For a graded F-vector space M = ⊕∞i=0Mi, the Hilbert Series of M is the formal

power series

H(M, t) :=
∞∑
i=0

dimF(Mi)t
i.

Example 1.3.1.6. A polynomial ring in one variable F[x] = ⊕∞i=0F[x]i is a graded

vector space. Assume deg(x) = d, then the above formula implies

H(F[x], t) = 1 + td + t2d + · · · = 1

1− td
.

Since one can prove that for graded vector spaces M,N , H(M ⊗N, t) = H(M, t) ·
H(N, t), for a given Noether normalisation A ⊂ F[V ]G with deg(fi) = di,

H(A, t) =
n∏
i=1

1

1− tdi
.

Turns out that the prior knowledge of Hilbert series for F[V ]G, contains very useful

information for the primary and secondary invariants.

Theorem 1.3.1.7. [5, Theorem 7, pg.113] Suppose A = F[f1, . . . , fn] is a Noether

normalisation of F[V ]G with deg(fi) = di. Then

H(F[V ]G, t) =
f(t)∏n

i=1(1− tdi)
,

for some polynomial f(t) with integer coefficients. If F[V ]G is Cohen-Macaulay

then the coefficients of f(t) are non-negative and F[V ]G is generated, as a A-

module, by r := (
∏n

i=1 di)/|G| homogeneous invariants.

Given a subspace of an n-dimensional vector space H ≤ V , the codimension of

H is defined by codim(H) = n−dimF(H). If G is acting on V , then we define the

fixed point subspace V G = { v ∈ V | g · v = v }.

Theorem 1.3.1.8. [8, Theorem 3.9.2] Let G ≤ GL(V ) denote an arbitrary sub-

group over a field F and dimF(V ) = n. Then
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(1) if dimF(V G) = n− 1, then F[V ]H is a polynomial algebra.

(2) if dimF(V G) = n− 2, then F[V ]H is Cohen-Macaulay.

We close this section by introducing a homological characterization for regular

sequences. For this we follow the notation of [13].

For R a commutative ring and x1, . . . , xn ∈ R a sequence of arbitrary elements,

we define the complex K• := {Kr, dr}, K0 = R, and Kr = 0 if r is not in the range

0 ≤ r ≤ n. For 1 ≤ r ≤ n, we set Kr = ⊕Rei1..ir to be the free R-module of rank(
n
r

)
, with basis {ei1...ip | 1 ≤ i1 < · · · < ip ≤ n}. It can be proven that this module

is isomorphic with the r-th exterior power of R,
∧r R. Furthermore, we define the

boundary operators dr : Kr → Kr−1 on the basis elements by setting

dr(ei1···r) :=
n∑
j=0

(−1)j−1xijei1...îj···r ,

and extend this R-linearly on the entire Kr. Someone can verify that d ◦ d = 0.

Definition 1.3.1.9. We call the resulting chain complex the Koszul complex

associated to x := (x1, . . . , xn) and is denoted by K•(x) := K•(x1, . . . , xn). For

an R-module M , we set K•(x,M) := K•(x) ⊗R M for the complex obtained after

applying −⊗RM on the Koszul complex K•(x).

Notice that up to isomorphism of complexes the Koszul complex is independent

of the choice of a minimal generating set. Let (R,R+) be a graded local ring

and {x1, . . . , xn} a minimal generating set of R+. We call the number of elements

occurring is such a minimal set the embedding dimension of R and we denote it

by emb.dim(R). If y1, . . . , yn ∈ R+ is another minimal generating set, then there

is a an n × n invertible matrix over R, (αij) ∈ GLn(R), such that: yi =
∑
αijxj.

We can exploit this matrix and define an invertible morphism of complexes f :

KR(y1, . . . , yn)
∼=−→ KR(x1, . . . , xn), defined by the rule f1(e′i) =

∑
αijej, and then

extended it R-linearly on the basis of the exterior algebras
∧r R, {ei1∧· · ·∧eip | 1 ≤

i1 < · · · < ip ≤ n} for each r = 1, . . . , n. This morphism commutes with the

boundary operators d, hence consists a well-defined isomorphism of complexes.
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We can measure how far a Koszul complex is from being exact by taking homology

at each position. The resulting homology groups of K•(x,M) are denoted by

Hr(K•(x,M)), or just Hr(x,M). We call Hr(x,M) the r-th Koszul homology of

M associated to x. From the definition of K•(x,M), we see that:

H0(x,M) ∼= M/xM, Hn(x,M) ∼= M/xM ∼= {m ∈M | x1 ·m = · · · = xn ·m = 0 }.

Applying an inductive argument we can prove the following theorem which relates

regular sequences with Koszul complexes.

Theorem 1.3.1.10. [13, Theorem 16.5, i] Let R be a ring, M an R-module and

x1, . . . , xn ∈ R an M-sequence; then

Hr(x,M) = 0, for r > 0, and H0(x,M) = M/xM.

So zero Koszul homology implies that the sequence is regular.

1.3.2 Complete Intersections

Following up the previous section, we introduce another class of commutative rings

we are interested. The complete intersections rings. It can be proven that this

class of rings is contained in the class of Cohen-Macaulay rings introduced before.

So complete intersections can be thought as Cohen-Macaulay rings with some

additional structure.

Definition 1.3.2.1. Let R be a finitely generated F-algebra with Krull dimension

dim(R) = n. Then R is called complete intersection ring if there is a presenta-

tion p : F[X1, . . . , Xk] � R, such that for I := ker(p) we can find a homogeneous

generating set r1, . . . , rs which forms a regular sequence and additionally we have

k = n+ s.

If R = F[f1, . . . , fk], then it is a complete intersection if the ideal of relations

consists of k − dim(R) homogeneous elements which form a regular sequence.

From the definition it is clear that being complete intersection is independent
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of the choice of presentation. When we have a unique syzygy we give to R a

special name.

Definition 1.3.2.2. A complete intersection R such that k−dim(R) = 1 is called

hypersurface.

There are Cohen-Macaulay rings which are not complete intersections. In [11], an

example of a group G ≤ GL4(F) with this feature is given. However, it is an open

question what class of groups gives Cohen-Macaulay invariant rings F[V ]G but not

complete intersections.

Also in [23], Richard Stanley proves that F[V ]G has a minimal free resolution in a

simple explicit form exactly when F[V ]G is a complete intersection. Generalizing

this to arbitrary graded F-algebras yields the following.

Proposition 1.3.2.3. [23, Proposition 9.1] A graded F-algebra R is a complete

intersection if and only if the Koszul complex is a minimal free resolution.

Finally, when R is an integral domain we obtain a simple counting argument to

decide whether it is a complete intersection by looking at the dimension of the

first Koszul homology as an F-vector space. Before we prove this, we recall a

well-known result that is one of the key ingredients of this proof.

Proposition 1.3.2.4 (Graded Nakayama Lemma). [8, Proposition 2.10.1] Let R

be a finitely generated graded connected F-algebra and M a finitely generated non-

negatively graded R-module. Then the homogenous elements f1, . . . , fr generate

M as an R-module if and only if their corresponding images span M/R+M as an

F-vector space. Furthermore, they minimally generate M if and only if they form

an F-vector space basis of M/R+M .

Proposition 1.3.2.5. Suppose that S is an integral domain minimally generated

by k homogeneous generators. Then S is a complete intersection if and only if

dimF(H1(S)) = k − dim(S).
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Proof. Choose a presentation p : F[X1, . . . , Xk] := R � S. Since S is integral

domain a := ker(p) is prime. Denote by µ(a) a minimal generating set for a.

Let X := (X1, . . . , Xk) denote a regular sequence of R and f := (f1, . . . , fk) denote

their corresponding image in S. The Koszul complex of R associated to X is by

definition

0→
k∧
R→ · · · →

1∧
R→ R→ 0.

Since X is a regular sequence, the complex

0→
k∧
R→ · · · →

1∧
R→ R→ R/R+ = F→ 0,

is exact. Therefore KR(X) is a free resolution of F as R-module. Tensoring out

with −⊗R S gives a chain complex

0→ (
k∧
R)⊗R S → · · · → (

1∧
R)⊗R S → R⊗R S ∼= S → 0.

Looking closer the modules of this complex, we observe that

(
k∧
R)⊗R S ∼= (

k∧
R)⊗R R/a ∼=

k∧
R/a ∼=

k∧
S.

Thus, we obtain an isomorphism of complexes KR(X)⊗RS ∼= KS(f). Furthermore,

the short exact sequence 0→ a→ R→ S → 0 gives a long exact sequence ending

in

· · · → TorR1 (F, a)→ TorR1 (F, R)→ TorR1 (F, S)→ F⊗Ra→ F⊗RR→ F⊗RS → 0.

Notice that H1(R) = TorR1 (F, R) = 0 since X is a regular sequence, while F⊗RR ∼=
F and F⊗RS ∼= R/R+⊗RS ∼= S/R+S ∼= F. Also, F⊗R a = R/R+⊗R a = a/R+a.

So the last sequence eventually becomes

· · · → TorR1 (F, a)→ 0→ TorR1 (F, S)→ a/R+a→ F
∼=−→ F→ 0.

Therefore, we obtain an isomorphism H1(S) = TorR1 (F, S) ∼= a/R+a. From the

Graded Nakayama Lemma above we obtain dimF(H1(S)) = dimF(a/R+a) = µ(a).

Clearly now our assertion follows.
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1.4 Invariant Theory

1.4.1 Structure of F[V ]G.

As mentioned at the beginning there are huge differences in the structure of F[V ]G

between the modular and non-modular case. For the non-modular case Maschke’s

Theorem implies that the category of FG-modules is semisimple. Therefore any

representation can be split in more handy pieces. For invariant theory, when |G|
is invertible in F we can define the Reynolds Operator

R : F[V ]H → F[V ]G,

f 7→ R(f) :=
1

[G : H]
TrGH(f),

for any subgroup H ≤ G, which serves as a natural projection. In particular,

setting H = {eG} yields an epimorphism from F[V ] onto F[V ]G which yields a nice

split: F[V ] = F[V ]G ⊕ ker(TrG). On the other hand, when |G| is not invertible in

F all the above fall apart, hence we are obliged to use different tools.

Definition 1.4.1.1. Let V be an FG-module for some group G. We denote the

fixed vectors of V by G

V G = { v ∈ G | g · v = v, ∀g ∈ G },

while for σ ∈ G
V σ = { v ∈ G | σ · v = v }.

An element σ ∈ G is called reflection if dimF(V σ) = dimF(V ) − 1. We call σ

bireflection if dimF(V σ) ≥ dimF(V )− 2.

In the non-modular case many questions regarding the structure of F[V ]G have

been answered. The following consists one of the most celebrated results.

Theorem 1.4.1.2 (Chevalley, Shepard, Todd). If |G| is invertible in F∗, then

F[V ]G is polynomial if and only if G is generated by reflections.
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Although in the modular case the above theorem fails, J.P. Serre (see, [8, Corollary

12.2.5]) proves that one direction is still true.

Theorem 1.4.1.3 (J.P. Serre). Let G be a finite group. If F[V ]G is a polynomial

ring, then the action of G on V is generated by reflections.

An important result in non-modular invariant theory due to Hochster and Eagon,

see [10], answers the question when F[V ]G is Cohen-Macaulay. Although the orig-

inal version talks about a wider class of groups (linearly reductive) we restrict

ourselves to the case of finite groups only.

Theorem 1.4.1.4 (Hochster-Eagon). If G is a finite group with |G| ∈ F∗, then

F[V ]G is Cohen-Macaulay.

For the modular case the above fails. However, G. Kemper (see, [12, Corollary

2.7]) proves that one direction is still true when we restrict to the class of p-groups.

Theorem 1.4.1.5 (G. Kemper). Let G ≤ GL(V ) denote a p-group and suppose

that F[V ]G is a Cohen-Macaulay ring. Then G is generated by bi-reflections

Kemper’s theorem provides an easy criterion to decide whether F[V ]G is not

Cohen-Macaulay.

1.4.2 The invariant field F(V )G.

Since F[V ]G is always an integral domain we can define the field of fraction

Quot(F[V ]G). It is not difficult to see that generally Quot(F[V ]G) ⊂ F(V )G.

However, when G is finite we have an equality Quot(F[V ]G) = F(V )G. To see this,

observe that

f

h
=
f
∏
{h · g | g ∈ G− {1}}
{h · g | g ∈ G}

.

Then the denominator is the G-orbit of h, thus belongs to F[V ]G. The latter

implies that f
∏
{h · g | g ∈ G − {1}} ∈ F[V ]G as well. Therefore the equality
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of fields follows Quot(F[V ]G) = F(V )G. Let F(V ) denote the field of fractions of

F[V ]. Based on the last observation we obtain the following lemma.

Lemma 1.4.2.1. [8, Lemma 3.0.1] For any finite group G,we have Quot(F[V ]G) =

F(V )G. Consequently, the extension F(V )G ⊂ F(V ) is Galois, with group G and

so F(V ) has dimension |G| as a F(V )G vector space.

We call F(V )G the invariant field.

Theorem 1.4.2.2. [5, Theorem 8, pg.114] Suppose A is a graded subalgebra of

F[V ]G such that A contains an hsop and a generating set for F(V )G. If A is

integrally closed in its field of fractions, then A = F[V ]G.

Proof. Obviously we obtain Quot(A) = F(V )G. Furthermore, since A contains an

hsop of F[V ]G, the latter becomes a finite A-module. If A is integrally closed in

its field of fractions we have A = F[V ]G.

Another reason that makes hsop useful is that sometimes suffice to generate F[V ]G.

Using the last theorem gives the following.

Theorem 1.4.2.3. [5, Theorem 9, 4] If V is a faithful representation, {f1, . . . , fn}
is an hsop for F[V ]G, and

∏n
i=1 deg(fi) = |G|, then F[V ]G = F[f1, . . . , fn].

Proof. Since F[V ] is a free A-module of rank |G|, follows that the field extension

Quot(A) ⊂ F[V ] has degree |G| . However, the field extension F(V )G ⊂ F(V ) is

Galois and therefore has degree |G| too. Finally, since every polynomial ring is

UFD, A is integrally closed in its field of fraction, hence from the previous theorem

we obtain A = F[V ]G .

Assume that H ≤ G is an arbitrary subgroup. Then obviously F[V ]G ⊂ F[V ]H .

Since F[V ] is integral over F[V ]G and F[V ]H , implies that F[V ]G ⊂ F[V ]H is

integral too. Therefore an hsop for F[V ]G is also an hsop for F[V ]H . Since G ⊂
GL(V ), the above comments imply that an hsop of F[V ]GL(V ) is always an hsop

of F[V ]G too. The following example constructs using the last two theorems a

famous generating set for F[V ]GL(V ), the so-called Dickson invariants.
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Example 1.4.2.4. Assume that Fq is a finite field of order q = ps and let V be

an n-dimensional vector space over Fq. The group of invertible transformation of

V , GL(V ), is finite and in particular has cardinality |GL(V )| =
∏n

i=1(qn − qi−1).

We define the following polynomials

Fn(t) :=
∏
φ∈V ∗

(t− φ) =
n∑
i=0

(−1)n−idi,nt
qn−i

,

where V ∗ denotes the dual space of V . Since V is finite dimensional we have

V ∼= Fn
q . Therefore |V | = qn and so |V ∗| = qn too. From the definition of FV (t)

we observe that the coefficients di,n must have deg(di,n) = qn−qn−i. So the product

over all i yields
∏n

i=1 deg(di,n) = |GL(V )|. These di,n are known in the literature

as the Dickson invariants. Although not obvious, they form an hsop of F[V ]GL(V )

and by the last theorem we know they form a generating set too. So we have

F[V ]GL(V ) = F[d1,n, . . . , dn,n] and for any G ⊂ GL(V ), {d1,n, . . . , dn,n} forms an

hsop for F[V ]G.

A special subgroup of GL(V ) is the group of upper-triangular matrices UT(V )

with 1’s along the diagonals. We call this the group of unitriangular matrices.

This group is known to have polynomial ring of invariants [15]. Using ideas similar

to the previous example we can construct a special generating set for F[V ]UT(V )

too. We follow [8] for that.

Example 1.4.2.5. Let again Fq denote a finite field of order q = ps and V an

n-dimensional Fq-vector space. Choose a basis V ∗ = SpanFq
{x1, . . . , xn}. Note

that by the definition of the action of UT(V ) on each xi, the orbit polynomials

defined by the formula

hi =
∏

u∈Vi−1

(xi + u), ∀i = {1, . . . , n},

are homogeneous of degree qi−1. In particular, it is true that hi = Fi−1(xi) (the

latter is defined in the previous example) and {h1, . . . , hn} is an hsop of Fq[V ]UT(V )

with
∏n

i=1 hi = |UT(V )|. Therefore, Fq[V ]UT(V ) = Fq[h1, . . . , hn].
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So far we have been dealing with arbitrary finite groups. Assume that P ≤ GL(V )

is a p-group. Then it is a well-known fact that the invariant field of P is purely tran-

scendental (see, [14]). Since F[V ]P is integral domain we can find a transcendence

basis for its field of fractions, i.e., algebraically independent invariants f1, . . . , fn ∈
F(V )P , such that F(V )P = F(f1, . . . , fn), where dim(R) = tr.degF(F(V )P )(= car-

dinality of a transcendence basis of F(V )P ). It is always useful and sometimes

simpler to construct a transcendence basis for F(V )P , rather than a generating set

for F[V ]G. The following theorem consists a constructive approach of this observa-

tion and it is a result that will be used repeatedly. For further reading we suggest

to see [6].

Theorem 1.4.2.6. Let P ≤ UT(V ) be an upper-triangular p-group represen-

tation. Choose homogeneous invariants φ1, . . . , φn ∈ F[V ]P such that for each

i = 1, . . . , n, φi ∈ F[x1, . . . , xi]
P has minimal positive xi-degree. Then we have

F(V )P = F(φ1, . . . , φn). Furtermore, if LCxi(φi) denotes the leading coefficient of

φi as polynomial in F[x1, . . . , xi−1][xi], we have

F[x1, . . . , xi−1]P [φi,LCxi(φi)
−1] = F[x1, . . . , xi]

P [LCxi(φi)
−1].

The above theorem will be used as follows; typically, we shall be able to construct

for each variable xi the corresponding minimum degree invariant φi and we will

know beforehand F[x1, . . . , xn−1]P . Then LCxn(φn) = xα1 , would imply from the

above theorem that F[V ]P [x−1
1 ] = F[x1, . . . , xn−1]P [φn, x

−1
1 ], therefore we will have

an equality of localized rings F[V ]P [x−1
1 ] = F[x1, . . . , xn−1]P [x−1

1 ]. Most of the

times computing φi’s though is a tough ad hoc procedure which involves numerous

complex computations.

1.4.3 SAGBI basis and SAGBI/divide-by-x algorithm.

In this section we introduce one of our main tools, SAGBI bases, and present the

SAGBI/divide-by-x algorithm. This algorithm terminates with a SAGBI basis

when the F-algebra is finitely generated, hence when applied on F[V ]H allows us
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to construct an explicit generating set.

We remind you that given an ideal I / R, a Gröbner basis G := {f1, . . . , fn} ⊂ I

is a special generating set of I, such that for any h ∈ I the lead monomial of h is

divisibe by LM(fi) for some i = 1, . . . , n.

The word SAGBI stands as an acronym of Subalgebra Analogue of Grobner Basis

for Ideals, hence from the name only it is obvious that forms a special generating

set. The difference is that in theory of SAGBI basis we deal with F-subalgebras

instead of ideals. For what follows let F[x1, . . . , xn] denote a polynomial algebra,

F ⊂ F[x1, . . . , xn] an arbitrary subset and R an F-subalgebra of F[x1, . . . , xn].

Definition 1.4.3.1. The lead term algebra of R is the F-vector space spanned

by the set 〈LT(f) | f ∈ R〉, with respect to a fixed term order ≺. In other words

the lead term algebra is

LT≺(R) = 〈LT(f) | f ∈ R 〉F.

Since R is an F-subalgebra, LT≺(R) is an F-algebra too. The reason we are

interested in the lead term algebra is that contains useful information for the

subalgebra itself. For example, the Hilbert series of R and LT≺(R) coincide.

Lemma 1.4.3.2. [8, Lemma 5.1.1] H(R, t) = H(LT≺(R), t).

Definition 1.4.3.3. A subset F ⊂ F[x1, . . . , xn] is called SAGBI basis of R, if

the set LT≺(F ) = {LT(f) | f ∈ F} forms a generating set of LT≺(R) as an

F-subalgebra. In other words, if we have

LT≺(R) = F[LT≺(F )] .

Although the idea of SAGBI basis is similar to that of Gröbner basis, they have

some important differences. While a Gröbner basis always exists and is finite

(under mild assumptions on the underlying ring), the same is not true for a SAGBI

basis. Indeed, if our subalgebra R is not finitely generated a SAGBI basis is never

finite. Surprisingly though, the latter is not true in the finitely generated case

either.
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Example 1.4.3.4. Assume that we have the subalgebra of F[x, y], generated by the

set {x+ y, xy, xy2}. Then F[x+ y, xy, xy2] has no finite SAGBI basis with respect

any term order. Indeed, we can create from the leading terms of elements of this

subalgebra the set {xy, xy2, . . . , xyn, . . . }. Therefore the lead term algebra should

contain all this set inside its generating set since no term can be written in terms

of others in LT≺(F[x + y, xy, xy2]). Thus in that case the SAGBI basis is never

finite.

Example 1.4.3.5. [24, Chapter 11, Example 1.12]. Another not so obvious ex-

ample of algebra where the SAGBI basis is not finite with respect some term order

is given by the ring of invariants for the three-dimensional permutation represen-

tation of the alternating group in three letters A3 = 〈idΣ3 , f, f
2〉, R = F[x, y, z]A3.

This is the algebra consisting of invariant polynomials, remaining stable after the

action of

ϕ : A3 −→ GL3(F)

f 7−→


0 0 1

1 0 0

0 0 1

 .

It is well-known that the ring of invariants induced by the above representation is

the following algebra in four generators,

R = F[x+ y + z, xy + yz + xz, xyz, (x− y) (x− z) (y − z)] ,

and if we let � be the lexicographic term order with x � y � z, then R has

an infinite SAGBI basis. Assume that LT(R) is finitely generated algebra and

let {xa1zb1 , . . . , xaszbs} be a subset of generators which do not contain y. Notice

this subset is not empty since for f ∈ R and LT(f) = xi1yi2zi3 we must have

i1 ≥ i2 ≥ i3 or i1 > i3 ≥ i2. Think of the planar convex cone spanned by the

vectors {(a1, b1), . . . , (as, bs)} and choose γ > 1 such that ∀i = 1, . . . , s, ai ≥ C · bi.
Then every vector contained in the cone must fulfill this inequality too. Set h :=

xd+1zd + xdyd+1 + ydzd+1, for some integer d > 1/(1− γ) such that d + 1 < γ · d.
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Observe that h ∈ R and that due to the lead term (d + 1, d) must lie in the cone

spanned by the above vectors. However, we derive a contradiction since d has been

chosen such that d+ 1 < γ · d. Thus R has a SAGBI basis with infinite generating

set.

Example 1.4.3.6. On the other hand, a classical example of ring with a well-

behaved SAGBI basis is the invariant ring of the permutation representation of Σn.

This invariant ring is the algebra generated by the elementary symmetric polyno-

mials, that is F[x1, . . . , xn]Σn = F[x1+· · ·+xn, x1x2+· · ·+xn−1xn, . . . , x1x2 . . . xn].

It can be proven that with respect any term order the set of elementary symmetric

polynomials forms a SAGBI basis for F[x1, . . . , xn]Σn.

By the above example we understand that SAGBI bases are more complicated than

Gröbner bases. Many questions around criteria which determine if a SAGBI basis

exists or not are still open. However, the following proposition gives necessary and

sufficient conditions for a subset to be a SAGBI basis.

Proposition 1.4.3.7. Let R be a subalgebra of F[x1, . . . , xn]. The following state-

ments are equivalent:

(1) LT≺(R) is Noetherian.

(2) LT≺(R) is finitely generated algebra over F.

(3) The multiplicative monoid of lead terms of R is finitely generated.

(4) R has a finite SAGBI bases.

(5) Every SAGBI basis of R has a finite subset which is also a SAGBI basis for

R.

Before we proceed to the next definition we establish some more notation; for an

arbitrary finite set F = {f1, . . . , fl} ⊂ F[x1, . . . , xn] we denote by f I the product∏l
j=1 f

ij , where by I = (i1, i2, . . . , il) we mean a sequence of non-negative integers.
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The reduction of an S-polynomial is of fundamental importance in the theory of

Gröbner bases. The analogous calculation in the theory of SAGBI bases is the

subduction of a tête-à-tête .

Definition 1.4.3.8. Given a finite set F = {f1, f2, . . . , fl} ⊂ F[x1, . . . , xn], denote

f I = f i11 . . . f inn for I = (i1, . . . , in) a sequence of non-negative integers. A pair

(f I , fJ) is called tête-à-tête if LM(f I) = LM(fJ), for various sequences I, J .

We call a tête-à-tête non-trivial if the sequences I, J have disjoint support, i.e.,

if f I and fJ share no common factors in F .

Now we have all that we need to give the subduction algorithm.

Algorithm 1 The subduction algorithm for a SAGBI bases

Input: A SAGBI bases F for a subalgebra R ⊂ F[x1, . . . , xn]. A polynomial

f ∈ F[x1, . . . , xn].

Output: An expression of f as a polynomial in the elements of F , provided

f ∈ R and non-constant. While f is not a constant in F do

(1) Find f1, f2, . . . , fn ∈ R, exponents i1, i2, . . . , in ∈ N and c ∈ F∗ such that

LT≺(f) = c LT≺(f1)i1LT≺(f2)i2 . . .LT≺(fn)in . (∗)

(2) If no representation (*) exists, then output ”f does not lie in R” and STOP.

(3) Otherwise, output p = c · f1
i1f2

i2 . . . fn
in , and replace f by f − p.

Output the constant f .

Given a subset F ⊂ F[x1, x2, . . . , xn], by adjoining every time the subducted non-

trivial tête-à-têtes on F creates a nested sequence of generating sets F = F0 ⊂
F1 ⊂ F2 ⊂ . . . for the subalgebra F[F ]. In fact the subduction algorithm works

when the subset F is infinite, though the resulting generating set F∞ =
⋃
j∈J Fj

is not finite, hence not really convenient to work out with. For B ⊂ R any subset

and f ∈ R arbitrary, we denote by subd(f,B) the subduction of f against this set

B.
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We fix as term order the graded reverse lexicographic order with yn � yn−1 �
· · · � x, for a polynomial algebra F[x, y1, . . . , yn]. Throughout this thesis we make

extensive use of a different algorithm known as SAGBI/divide-by-x algorithm.

This algorithm is an extension of the previous in the following sense: if a non-zero

subduction f has lead monomial xmyI , where yI = y1
i1y2

i2 . . . yn
in for a sequence

of non-negative integers I = (i1, i2, . . . , in), then fx−m is adjoined rather than f .

This procedure in contrast with the previous creates a sequence of generating sets

F = F0 ⊂ F1 ⊂ F2 ⊂ . . . again, but this time in addition we have a sequence

of F-algebras R = R0 ⊂ R1 ⊂ R2 ⊂ . . . , each one generated by the corresponding

Fi.

The SAGBI/divide-by-x algorithm, in principle, can be used to compute the ring

of invariants for any modular representation of a p-group.

Theorem 1.4.3.9. [8, Theorem 5.2.3] If the action of G ≤ GL(V ) on F[V ] is

triangular, then F[V ]G has a finite SAGBI basis.

Theorem 1.4.3.10. [7, Theorem 2.1] Assume V is an F[P ]-module of dimension

n and B := {x, f1, . . . , fk} a SAGBI basis of A ⊂ F[V ]P , where P denotes some

p-group. Furthermore, suppose A[x−1] = F[V ]P [x−1] and that F[V ]P is an integral

extension of A. Then A = F[V ]P and B is a SAGBI basis for F[V ]P .

Proof. The proof of the theorem is a consequence of [13, Theorem 20.2]. Mod-

ular invariant rings of finite p-groups are known to be UFD [8, Theorem 3.8.1].

Therefore A[x−1] = F[V ]P [x−1] is a UFD too. To prove the equality A = F[V ]P

suffices to show that A is integrally closed in its field of fraction, i.e., a normal do-

main. From [13, Theorem 20.2] suffices to prove that xA is prime; assume f, g ∈ A
such that fg ∈ xA. Then xA ⊂ xF[V ] and the last is prime. So we can assume

f ∈ xF[V ] without loss of generality. Due to the term order we use (grevlex with

x small), every term of f is divisible by x and subd(f,B) = 0 since B is SAGBI

basis of A. This implies f ∈ xA and xA is a prime, since at every step of the

subduction there is a factor of x.
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Theorem 1.4.3.11. [7, Theorem 2.2] Suppose that B is a generating set for

A ⊂ F[V ]P such that x ∈ B and there exist homogeneous h1, . . . , hn−1 ∈ B with

LT(hi) = yaii . If A[x−1] = F[V ]P [x−1], then the SAGBI/divide-by-x algorithm

applied to B terminates with a SAGBI basis for F[V ]P .

Proof. F[V ] is a finite module over the lead term algebra of F[x, h1, . . . , hn−1],

say L. So it is a Noetherian L-module. Thus the ascending sequence of algebras

A0 ⊂ A1 ⊂ A2 ⊂ . . . generated by the lead terms of elements of Bi in F[V ]

terminates. Assume that it terminates at Aj and let Bj denote the corresponding

SAGBI basis. By assumption the set {x, h1, . . . , hn−1} forms an hsop for F[V ]P

(follows from Lemma 1.12) and Aj[x
−1] = F[V ]P [x−1]. Follows from the previous

theorem now Bj is a SAGBI basis for F[V ]G too.

Finally, assume F := {f1, . . . , fn} ⊂ F[t] = F[t1, . . . , tn] forms a SAGBI basis for

the subalgebraR := F[F ] with respect some term order≺. LetA = {a1, . . . , an} ⊂
Nn, denote the set of vectors such that LT≺(fi) = tai . Consider the F-algebra

epimorphism ti 7→ fi from F[t] onto R with kernel I. Similarly, consider the map

from F[t] onto the lead term algebra LT≺(R), ti 7→ LT≺(fi). The kernel of this

map is the toric ideal IA.

From the definition of SAGBI basis, there is no guarantee that F[F ] is minimally

generated by F . The reason is that the subduction algorithm does not understand

whether a tête-à-tête subduction attached on F can be written in terms of the

other elements when the algorithm has terminated (with a SAGBI basis). Although

this is a downside of the algorithm from algebraic point of view, can be proven

that the subduction of the non-trivial tête-à-têtes minimally generate the ideal of

algebraic relations of R.

Lemma 1.4.3.12. Using the above notation, the non-trivial tête-à-tête subductions

of F minimally generate the ideal of algebraic relations of R.

Proof. Pick an element p(t) =
∑

u∈U cut
u
1 . . . t

u
n ∈ I; then p(f1, . . . , fn) = 0. When

expanding this sum the terms of highest ≺-order must cancel out. If u1, u2 ∈ U
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such that LT(cu1f
u11
1 . . . f

un1
n ) = LT(cu2f

u12
1 . . . f

un2
n ) for distinct terms in p(f1, . . . , fn),

then (fu1 , fu2) forms a non-trivial tête-à-tête of F . Thus, must exist an element in

I which lifts this tête-à-tête subduction. Carry on this procedure for p(f1, . . . , fn),

implies that any time the highest ≺-order is pruned, the corresponding term in

p(t) can be written in terms of the corresponding lifting of the subduction of some

non-trivial tête-à-tête of F . This yields an expression of p(t) in terms of basis

element projecting to tête-à-tête subductions. Hence any member of I can be

written in this form and our claim follows.

1.4.4 Nakajima groups

In this subsection we assume that P ≤ GLn(F) denotes a p-group and F a field

of positive characteristic char(F) = p. It is a well-known fact that the fixed-point

space V P is non-zero if V 6= 0. Modding out by this subspace V/V P , we see

that (V/V P )P is not trivial again. Thus we can construct in this fashion a basis

B = {v1, . . . , vn} of V and B∗ = {x1, . . . , xn} of V ∗, such that the representing

matrices are in a unitriangular form.

Let N(x) := NP
Px

(x) denote the norm of some x ∈ V ∗. We recall that by norm,

we always mean the product over the stabilizer Px = { g ∈ G | x · g = x }, i.e.,

N(x) =
∏

y∈xP y. Set Pi := ∩j 6=iPxj . Then Pi ≤ P , and in particular has a very

special form. It is an one row-subgroup generated by the matrix

1 0 0 0 0 . . . 0 . . . 0

0 1 0 0 0 . . . 0 . . . 0
...

0 0 . . . 1 0 0 . . . 0 0

0 0 . . . 0 1 ∗ ∗ . . . ∗
...

0 0 0 0 . . . 0 0 0 1


Definition 1.4.4.1. The group P is called Nakajima with respect to B if P =

PnPn−1 . . . P1.
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When P is known to be Nakajima the ring of invariants F[V ]P has a very nice

description.

Theorem 1.4.4.2. P is Nakajima with respect to some basis B if and only if

F[V ]P = F[NP (x1), . . . ,NP (xn)].

Proof. For a proof, see [8, Theorem 8.0.7].

1.5 Extra-special groups

1.5.1 Extra-special groups of order p3.

In this last section we explore the structure of the group for which the correspond-

ing invariant theory we will attempt to understand.

Extra-special groups form an interesting class of p-groups whose character the-

ory and classification is well-understood. Before we proceed to the definition we

introduce a little terminology from group theory.

Definition 1.5.1.1. Assume that G is a finite group. A series of subgroups

1 = A0 / A1 / . . . / An = G, (∗)

is called normal if ∀i = 1, . . . , n, Ai is a normal subgroup of Ai+1. Furthermore,

if each Ai is a maximal strict normal subgroup of Ai+1 we call (∗) composition

series. Equivalently, a composition series is a normal series such that each factor

Ai+1/Ai is simple.

We call a finite group nilpotent, if there is a normal series which is also cen-

tral, i.e., Ai+1/Ai / Z(G/Ai),∀i. Finally, if the successive quotients Ai+1/Ai are

abelian then the group is called solvable, while if they are cyclic supersolvable.

Clearly every supersolvable group is solvable and every solvable group is nilpotent.

Also it can be proven that any finite group has a composition series. In particular,

in case of finite p-groups we have something more, they are supersolvable.
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Definition 1.5.1.2. Suppose G is a finite group. The exponent of G is defined

as the least commmon multiple of the orders of all elements of the group.

A p-group G is called extra-special if its center Z(G) is cyclic of order p and the

quotient G/Z(G) an elementary abelian group.

We recall the following construction from group theory which can be found in [19].

Definition 1.5.1.3. A group G is said to be the (internal) central product of

its normal subgroups G1, . . . , Gn / G, if G = G1 . . . Gn, [Gi, Gj] = 1 for i 6= j, and

Gi ∩
∏

i 6=j Gj = Z(G) for all i.

Follows from this definition that since Z(Gi) ≤ Z(G) we have Z(Gi) = Z(G).

Every extra-special group has order p1+2n for some positive integer n. Conversely

for each such number there are two extra-special groups up to isomorphism. Of

major importance are the two extra-special groups when n = 1. Define

G := 〈g1, g2 | gp1 = gp2 = [g1, g2], [g1, [g1, g2]] = e, [g2, [g1, g2]] = e, [g1, g2]p = e〉,

H := 〈g1, g2 | gp1 = gp2 = e, [g1, [g1, g2]] = e, [g2, [g1, g2]] = e, [g1, g2]p = e〉.

These are the only (up to isomorphism) extra-special groups of order p3. The first

has exponent p2 whereas the second p. The importance of these two groups is

depicted in the following theorem.

Theorem 1.5.1.4. An extra-special p-group P is a central product of n nonabelian

subgroups of order p3 and has order p2n+1. Conversely a finite central product of

nonabelian groups of order p3 is an extra-special p-group.

In particular, we have the following cases:

(1) if p := 2, then P is a central product of D8’s or is a central product of D8’s

and a single Q8.

(2) if p > 2, then either P has exponent p, or otherwise it is a central product of

nonabelian groups of order p3 and exponent p and a single non-abelian group

of order p3 and exponent p2.
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The above theorem implies that for p > 2, any extra-special group is either the

central product of n-copies of H, or the central product of (n−1)-copies of H with

a copy of G.

1.5.2 Group Structure of H

To understand the group structure of H we look at the prototype example of

extra-special groups, the unitriangular matrices over a finite field Fp. This is the

non-abelian group of matrices

UT3(Fp) =




1 c1,2 c1,3

0 1 c2,3

0 0 1


∣∣∣∣∣∣∣∣ ci,j ∈ Fp

 .

For the rest of this section we denote UT3(Fp) by U .

A natural generating set for U is

x =


1 1 0

0 1 0

0 0 1

 , y =


1 0 0

0 1 1

0 0 1

 ,
with commutator element

[x, y] =


1 0 1

0 1 0

0 0 1

 .
Every matrix 

1 α β

0 1 γ

0 0 1

 ∈ U,
can be written in the following form

1 α β

0 1 γ

0 0 1

 = yγ xα [x, y]β.
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Suppose that the following two matrices is a pair of non-commuting matrices of U

A =


1 α1,2 α1,3

0 1 α2,3

0 0 1

 , B =


1 β1,2 β1,3

0 1 β2,3

0 0 1

 .

We can prove that {A,B} forms a generating set. A straightforward computation

reveals that A and B commute if and only if a12β23 = a23β12. Also the commutator

[A,B] = ABA−1B−1 lies always in the center; using the formula
a b c

0 d e

0 0 f


−1

=


1/a −b/(ad) (be− cd)/(afd)

0 1/d −e/(fd)

0 0 1/f


for inverses of upper-triangular matrices we see that [A,B] ∈ Z(U). Since the

center is cyclic, we have Z(U) = 〈[A,B]〉. Due to the isomorphism U ∼= H, the

presentation of the first implies that non-commuting pairs in H form a generating

set with their commutator generating the center Z(H).

1.5.3 Structure of Aut(H).

We want to exploit the isomorphism U ∼= H to understand Aut(H). Fix a non-

commuting pair A,B ∈ U and f ∈ End(U) such that

f : U → U, x 7→ A, y 7→ B .

Since our group is finite and every epimorphism in End(U) is an automorphism, by

definition f is an automorphism. Notice that there is an one-to-one correspondence

between non-commuting pairs in U and automorphisms.

Because U is a non-abelian group of order p3 we know that all the maximal sub-

groups are abelian. In particular, these subgroups are obtained by joining a non-

central subgroup of prime order in U and the center. So every maximal abelian

subgroup of U is isomorphic to the 2-elementary abelian p-group, Zp × Zp. Fur-

thermore since every automorphism τ ∈ Aut(U) keeps the center itself stable, that
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is τ(Z(U)) = Z(U), by fixing a maximal subgroup and an element of U which does

not commute with the non-central generator of the elementary abelian subgroup,

then we get a generating set for U . To actually see this assertions, think of the

isomorphism from U to the semidirect product (Zp × Zp) o Zp,

U → (Zp × Zp) o Zp, x 7→ ((1, 0), 0), y 7→ ((0, 0), 1).

Since any maximal subgroup of (Zp × Zp) o Zp is isomorphic to Zp × Zp, the

assertion for U follows too. Regarding the automorphism group Aut(U) we think

the corresponding Aut((Zp×Zp)oZp). A simple counting gives (p3− p) elements

which are not in the center and every such an element is commuting only with the

elements of the maximal abelian subgroup generated by the join of the cyclic group

it generates and the center. Therefore for such an element we have p3−p2 distinct

choices of non-commuting elements. Together the above observations imply that

these are the only choices of automorphisms. Therefore, |Aut(U)| = (p3−p2) (p3−
p).



Chapter 2

Classification of modular

representations

2.1 Introduction

In this chapter we classify modular representations of H. Before we proceed to the

main part we first introduce some of the tools that we will need.

Assume F is a field of characteristic p > 0, G is a p-group and V an n-dimensional

FG-module. We define the socle of V to be the sum of all simple submodules

and we denote it by soc(V ). It is well known result that the fixed-point space

V G is non-trivial (see, [8, Lemma 4.0.1]) and the only simple submodule is the

trivial one-dimensional module (see, [2, Theorem 1.3.2]). Therefore, follows that

soc(V ) = V G.

Define soc1(V ) := V G and for i > 1, soci(V ) so that

soci(V )
/

soci−1(V ) = soc(V
/

soci−1(V )).

Then we obtain an ascending sequence of submodules

0 ⊂ soc1(V ) ⊂ soc2(V ) ⊂ . . . ⊂ sock(V ) = V.

We call this sequence the socle series and k the socle-length of V correspondingly.

38
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Definition 2.1.0.1. Define the positive integers

m1 = dimF(soc1(V )),mi = dimF(soci(V )
/

soci−1(V )), ∀i = 2, . . . , k.

Then we say that V has socle-type (m1, . . . ,mk), or simply that is of type-(m1, . . . ,mk).

Since H is a p-group, we can apply the above definitions to finite-dimensional

FH-modules. If V denotes such a module, we always fix a basis B consistent with

the socle series, i.e., we extend the basis of V G = SpanF{u1, . . . , um1}, to a basis

of soc2(V ) = SpanF{u1, . . . , um1 , um1+1, . . . , um1+m2} and iteratively we set

soci(V ) = SpanF{u1, . . . , um1 , . . . , um1+...+mi
},

for all i ∈ {1, . . . , k}. Thus if ρB : H → GLn(F) denotes the corresponding

linear representation of V , with respect to that basis the representing matrices are

upper-triangular unipotent, i.e., ρB(H) ⊂ UTn(F). Furthermore, if another choice

of basis consistent with the socle series has been made, then the two bases differ

by a change of coordinates which stabilises the solce series of V .

2.2 Type-(1, 1, ..., 1) Representations

In this section we investigate n-dimensional faithful FH-modules of type-(1, 1, ..., 1).

We prove the existence of a suitable generating set for the group of representing

matrices and explicitly describe these representations when n = 3, 4.

Below by Jn we denote the maximal Jordan normal form.

Jn =



1 1 0 · · · 0 0

0 1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 1

0 0 0 · · · 0 1


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Theorem 2.2.0.1. Suppose V is an n-dimensional faithful FH-module of type-

(1, 1, ..., 1) with n ≤ p. Then there is an ordered basis B for V such that ρB(H) =

〈Jn, B〉 ≤ UTn(F).

Proof. We fix a basis B′ of V so that all the representing matrices of ρB′ : H →
GLn(F) are in an upper-triangular form. First we prove that there is a matrix

A ∈ ρB′(H) equivalent to Jn. To this end it is enough to show that there is

a matrix L = (li,j) ∈ ρB′(H) with all the superdiagonal entries non-zero, i.e.,

li,i+1 6= 0, i = 1, ..., n − 1. Assume that ρB′(H) = 〈M,N〉. If either M or N

has all superdiagonal entries non-zero then we are done. Thus we assume that at

least one is zero. Observe that M,N can’t have same superdiagonal entries zero

at the same time. Otherwise, if i ∈ {1, ..., n − 1} such that mi,i+1 = ni,i+1 = 0

exists, then the action of H on the quotient V
/

soci−1(V ) would define a fixed point

subspace with dimension at least two. Therefore, the equality soc(V
/

soci−1(V )) =

(V
/

soci−1(V ))H , would imply mi = dimF(soc(V
/

soci−1(V ))) ≥ 2, contradicting

our assumption that the representation is of type-(1, 1, ..., 1).

The superdiagonal of the matrices MNk, k < p, has n− 2 expressions of the form

mi,i+1 + kni,i+1. Each of these expressions can be eliminated by at most one k.

Since by assumption n − 2 < p − 1, we can choose k < p so that all of these

expressions are non-zero. Hence for the right choice of k, the matrix MNk is

equivalent to the maximal n-dimensional Jordan block.

For suitable choice of k < p assume that ρB′(H) = 〈A,B′〉 with {A,B′} =

{MNk, N} and A ∼ Jn. If B′ = {v1, ..., vn}, set B = {(A − In)n−1vn, (A −
In)n−2vn, ..., (A− In)vn, vn}. Then B is the seeking choice of basis, since it forms

an ordered basis of V such that ρB(H) = 〈Jn, B〉 ≤ UTn(F). Now our claim

follows.

From now on we fix a basis B as described in the previous theorem. Denote

by C(M) = {N ∈ GLn(F) |NM = MN} the centralizer of an invertible ma-

trix M ∈ GLn(F). The presentation of ρB(H) imposes the relations [Jn, B]Jn =

Jn[Jn, B], [Jn, B]B = B[Jn, B], where [Jn, B] = JnBJ
−1
n B−1 denotes the commu-
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tator element. Thus, [Jn, B] ∈ C(Jn)∩C(B). The next lemma gives a description

of the elements in C(Jn).

Lemma 2.2.0.2. A centralizing matrix T ∈ C(Jn) has the following form

T =



t1,1 t1,2 · · · t1,n−1 t1,n

0 t1,1 · · · t1,n−2 t1,n−1

...
...

. . .
...

...

0 0 · · · t1,1 t1,2

0 0 · · · 0 t1,1


,

for various ti,j ∈ F, t1,1 ∈ F∗.

Proof. Let T ∈ GLn(F) denote an invertible matrix. Then the (i, j)−entry of

the product TJn equals (TJn)[i, j] =
∑n

k=1 ti,kJn[k, j]. Thus, (TJn)[i, 1] = ti,1

while if j > 1 we have (TJn)[i, j] = ti,j + ti,j−1. Similarly, for i < n we obtain

(JnT )[i, j] = ti,j + ti+1,j and (JnT )[n, j] = tn,j. Now the equality TJn = JnT forces

T to have the claimed form.

In ρB(H) the derived subgroup coincides with the center. The inclusion Z(ρB(H)) ⊂
C(Jn) ∩ C(B) implies Z(ρB(H)) = 〈T 〉 ∼= Cp for the right choice of T ∈ C(Jn) ∩
C(B). Below we describe T for n = 3, 4.

Lemma 2.2.0.3. For n = 3, 4, every matrix T ∈ Z(ρB(H)) has the following form

T =



1 0 · · · 0 t1,n

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 1


, for t1,n ∈ F.

Proof. We present explicitly the equality BT = TB for the cases n = 3, 4. Com-

putations on MAGMA yield
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n = 3 : 
t1,1 t1,1b1,2 + t1,2 t1,1b1,3 + t1,2b1,2 + t1,3

0 t1,1 t1,1b2,3 + t1,2

0 0 t1,1


=

t1,1 t1,1b1,2 + t1,2 t1,1b1,3 + t1,2b2,3 + t1,3

0 t1,1 t1,1b2,3 + t1,2

0 0 t1,1


n = 4 :

t1,1 t1,1b1,2 + t1,2 t1,1b1,3 + t1,2b1,2 + t1,3 t1,1b1,4 + t1,3b1,2 + t1,2b1,3 + t1,4

0 t1,1 t1,1b2,3 + t1,2 t1,1b2,4 + t1,2b2,3 + t1,3

0 0 t1,1 t1,1b3,4 + t1,2

0 0 0 t1,1


=

t1,1 t1,1b1,2 + t1,2 t1,1b1,3 + t1,2b2,3 + t1,3 t1,1b1,4 + t1,3b3,4 + t1,2b2,4 + t1,4

0 t1,1 t1,1b2,3 + t1,2 t1,1b2,4 + t1,2b3,4 + t1,3

0 0 t1,1 t1,1b3,4 + t1,2

0 0 0 t1,1


The equality T = [Jn, B] yields t1,1 = 1 in both cases. For n = 3, the commutator

C = [A,B] becomes

C =


1 0 b2,3 − b1,2

0 1 0

0 0 1

 .
The condition C 6= I3 implies b2,3− b1,2 6= 0, thus we obtain t1,2 = 0 and our claim

follows. The case n = 4 yields the following three equations:

t1,2(b1,2− b2,3) = 0, t1,2(b2,3− b3,4) = 0, t1,2(b1,3− b2,4)+ t1,3(b1,2− b3,4) = 0 (1)

and the commutator of ρB(H) equals

[J4, B] = J4BJ
−1
4 B−1 =


1 0 b2,3 − b1,2 (1 + b3,4)(b1,2 − b2,3)− b1,3 + b2,4

0 1 0 b3,4 − b2,3

0 0 1 0

0 0 0 1

 .
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Thus, the condition T = [J4, B] yields t1,2 = 0, as well as the equalities t1,3 =

b3,4 − b2,3, t1,3 = b2,3 − b1,2. Adding the last two equations gives 2t1,3 = b3,4 − b1,2.

Applying the last equality to the third condition of (1) gives t1,3 = 0. Therefore,

for n = 4 our claim follows too.

Remark 2.2.0.4. The above observation cannot generalize directly to higher di-

mensions. For n = 5, the relation T = [J5, B] yields again t1,1 = 1, t1,2 = 0,

however the equality BT = TB implies that the commutator can have the follow-

ing form

T =



1 0 0 t1,4 t1,5

0 1 0 0 t1,4

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


with t1,4 ∈ F not necessarily zero and [T, J5] = 0.

The equality T = J4BJ
−1
4 B−1 implies J4B − TBJ4 = O4. After the matrix

multiplication we obtain
0 0 b2,3 − b1,2 b2,4 − b1,3 − d
0 0 0 b3,4 − b2,3

0 0 0 0

0 0 0 0

 = O4 =⇒ b1,2 = b2,3 = b3,4, b2,4 − b1,3 6= 0.

The same computation for n = 3 gives b2,3 − b1,2 6= 0.

For n = 4, we are able with a consistent change of basis that preserves J4 to

bring B in a more handy form. Since b2,4 − b1,3 6= 0, set b = b1,4/(b2,4 − b1,3).

If B = {e1, e2, e3, e4} denotes the basis of V from Theorem 2.2.0.1, then B1 =

{e1 + be2, e2 + be3, e3 + be4, e4}, forms a new basis such that the transition matrix
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T ′ annihilates the (1, 4)-entry of B:

T ′−1BT ′ =


1 b1,2 b1,3 0

0 1 b1,2 b2,4

0 0 1 b1,2

0 0 0 1

 .
When n = 3, follows from a routine calculation that C(J3) = C(B). Hence any

consistent with the socle series change of basis preserves both generators of ρB(H).

So B cannot transform in that case.

Theorem 2.2.0.5. Suppose F is a field of characteristic p ≥ 5 and V a faithful

four-dimensional FH-module. Then there is a choice of basis B consistent with

the socles series such that ρB(H) = 〈J4, B〉 with

B =


1 b1,2 b1,3 0

0 1 b1,2 b2,4

0 0 1 b1,2

0 0 0 1

 .
Furthermore, these representations are parameterised by the set {(b1,2, b1,3, b2,4) ∈
F3 | b1,3 6= b2,4}. Similarly, for n = 3 we have ρB(H) = 〈J3, B

′〉 with

B′ =


1 b1,2 0

0 1 b2,3

0 0 1

 ,
and type-(1, 1, 1) representations are parameterised by {(b1,2, b2,3) ∈ F2 | b1,2 6=
b2,3}.

Finally for arbitrary n ≥ 5, from Theorem 2.2.0.1 we obtain the following propo-

sition.

Proposition 2.2.0.6. Suppose F is a field of characteristic p ≥ 5 and V a faithful

n-dimensional FH−module of type-(1, 1, ..., 1) such that n ≤ p. Then there is

a choice of basis B consistent with the socle series such that ρB(V ) = 〈Jn, B〉.
Hence, these representations are parameterised by points (b1,2, ..., bn−1,n) ∈ F

n(n−1)
2 ,

subject to the relations [Jn, [Jn, B]] = 0, [B, [Jn, B]] = 0.
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2.3 Type-(2, 1, ..., 1) Representations

We start this section by describing the matrices with Jordan normal form J1,n−1.

Let M ∈ GLn(F) denote an invertible matrix, λM ∈ F an eigenvalue and dk =

dimF(ker(A− λMIn)k−1). We recall by construction of Jordan normal forms that

the number of of Jordan blocks of dimension at least k corresponding to λM equals

dk − dk−1.

Lemma 2.3.0.1. Let A ∈ UTn(F), then

A ∼ J1,n−1 ⇐⇒ (A− In)n−2 6= 0 and rank(A− In) = n− 2.

Proof. The two conditions (A− In)n−2 6= 0 and rank(A− In) = n− 2 imply that

(A− In)n−1 = 0. Otherwise, (A− In)n−1 6= 0 yields non-zero superdiagonal entries

and rank(A− In) = n−1. Also the condition rank(A− In) = n−2 implies d1 = 2,

so we have two Jordan blocks. Since dn−1 = n the first assumption (A−In)n−2 6= 0

gives dn−1 − dn−2 6= 0, hence there is a Jordan block of dimension n − 1. Thus,

follows A ∼ Jn−1,1.

Next we prove that if V is an n-dimensional FH-module of type-(2, 1, ..., 1) then

under a mild assumption on the dimension there is always a representing matrix

equivalent to J1,n−1.

Lemma 2.3.0.2. Suppose V is an n-dimensional faithful FH-module of type-

(2, 1, ..., 1) with n ≤ p + 1. Then there is an ordered basis B consistent with

the socle series such that ρB(H) = 〈J1,n−1, B〉 ≤ UTn(F).

Proof. Fix a basis B′ = {v1, ..., vn} consistent with the socle series so that the

matrices in ρB′(H) are upper-triangular unipotent. Suffices to prove that there is

always an A ∈ ρB′(H) such that αi,i+1 6= 0, ∀i = 1, ..., n − 2. For such matrix
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follows immediately that rank(A− In) = n− 2 and a routine calculation yields

(A− In)n−2 =


0 0 ... 0 α1,3α3,4...αn−1,n

0 0 ... 0 α2,3α3,4....αn−1,n

...
...

...
...

0 0 ... 0 0

 6= On.

Therefore our claim will be an application of the previous lemma. To prove this

we follow the same strategy as in type-(1, 1, ..., 1) representations. If ρB′(H) =

〈M,N〉, then mi,i+1, ni,i+1 cannot be zero simultaneously for any i = 2, ..., n − 1,

since contradicts our initial claim; the action of H on V
/

soci−1(V ) fixes a subspace

of dimension at least two, hence mi = dimF(soci(V )
/

soci−1(V )) ≥ 2. If no entry

other than (1, 2) is zero for either M or N then we are done. Otherwise, the

superdiagonal entry of the matrices MNk, k < p, contains n − 3 expressions of

the form mi,i+1 + kni,i+1. Each of these expressions is eliminated by at most one

k, hence n ≤ p+ 1 implies the existence of k ∈ F∗ such that these expressions are

non-zero.

Let A ∈ ρB′(H) denote a representing matrix such that A ∼ J1,n−1. The action of

(A−In)k on the basis vector vn−1 for k = 1, ..., n−2 along with vn yields a chain of n

linearly independent vectors B := {(A−In)n−2vn−1, ..., (A−In)vn−1, vn−1, vn} that

is socle-preserving. With respect to that basis we obtain ρB(H) = 〈J1,n−1, B〉 ≤
UTn(F).

In the next lemma we give a description of the elements in the centralizer C(J1,n−1).

Lemma 2.3.0.3. A centralizing matrix T ∈ C(J1,n−1) has the following form

T =



t1,1 0 · · · 0 t1,n

t2,1 t2,2 · · · t2,n−1 t2,n
...

...
. . .

...
...

0 0 · · · t2,2 t2,3

0 0 · · · 0 t2,2


,

for various ti,j ∈ F, t1,1, t2,2 ∈ F∗.
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Proof. Follows from a routine calculation similar to Lemma 2.2.0.2.

Remark 2.3.0.4. Notice that when n = 3, representations of type-(2, 1) are not

faithful since the representing matrices form an abelian subgroup. Thus three-

dimensional representations of this type are not considered.

Before we proceed to the next lemma, we compute that for n = 4 the derived

subgroup of ρB(H) is generated by

[J1,3, B] =


1 0 0 −b1,3

0 1 0 b3,4 − b2,3

0 0 1 0

0 0 0 1

 .

Lemma 2.3.0.5. For n = 4, every matrix T ∈ Z(ρB(H)) has the following form

T =


1 0 0 t1,4

0 1 0 t2,4

0 0 1 0

0 0 0 1

 ,

for ti,j ∈ F.

Proof. Assume T ∈ C(J1,3), B ∈ UT4(F). The condition T = [J1,3, B], gives

t1,1 = t2,2 = 1, and t1,2 = t2,1 = t2,3 = t3,4 = 0. For the resulting T , a routine

computation gives BT = TB. Hence our claim follows.

Substituting T from the last lemma in the equality J1,3B − TBJ1,3 = O4, gives

t1,3 = b3,4 − b2,3, t1,4 = −b1,3. Thus, the representation is faithful if and only if

b1,3 6= 0 or b3,4 − b2,3 6= 0. Since we would like to transform the second generator

in a more handy form, we distinguish between the two cases.

Let B = {e1, e2, e3, e4} denote the basis of Lemma 2.3.0.2. Assume b1,3 6= 0

and consider the new basis B1 = {b1,3e1 − b1,4e2, e2, e3, b2,3e3 + b1,3e4}. Then the
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transition matrix T1 := TB1←B is a change of basis consistent with the socle series

that fixes J1,n−1 and transforms B to

T−1
1 BT1 =


1 0 1 0

0 1 0 b2,4

0 0 1 b3,4

0 0 0 1

 .
If b1,3 = 0 (hence, b2,3 − b3,4 6= 0), b1,4 6= 0, we can transform B to B2 = {t2,2e1 +

t2,3e2, t2,2e2 + t2,3e3, t2,2e3, e4 + e3}, with t2,2 =
1

b1,4

, t2,3 = t2,2 ·
b1,4 − b2,4

b2,3 − b3,4

. The

resulting transition matrix T2 := TB2←B transforms B to

T−1
2 BT2 =


1 0 0 1

0 1 b2,4 0

0 0 1 b3,4

0 0 0 1

 .
If b1,4 = 0, then B can be transformed to B3 = {e1 + b3,4e2, e2 + b2,3e3, e3, e4} with

the transition matrix T3 giving

T−1
3 BT3 =


1 0 0 0

0 1 b2,4 0

0 0 1 b3,4

0 0 0 1

 .
All the above summarize to the following theorem.

Theorem 2.3.0.6. Suppose F is a field of characteristic p ≥ 3 and V is a faithful

representation of H over F of type-(2, 1, 1). Then there is a change of basis B

consistent with the socle series such that ρB(H) = 〈J1,3, B〉. Furthermore, we have

the following cases:

(1) If b1,3 6= 0, then the basis can be chosen so that

B =


1 0 1 0

0 1 0 b2,4

0 0 1 b2,3

0 0 0 1

 .
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(2) If b1,3 = 0 and V faithful indecomposable, then the basis can be chosen so

that

B =


1 0 0 ζ

0 1 b2,3 0

0 0 1 b3,4

0 0 0 1

 ,
while if V is decomposable, so that

B =


1 0 0 0

0 1 b2,3 0

0 0 1 b3,4

0 0 0 1

 .

Finally for arbitrary n ≥ 5, we obtain the next proposition.

Proposition 2.3.0.7. Suppose F is a field of characteristic p and V is a faithful

representation of H over F of type-(2, 1, ..., 1) and dimension n ≤ p + 1. Then

there is a choice of basis B for V , such that ρB(H) = 〈J1,n−1, B〉. Therefore, these

representations are parameterised by points (b1,3, ..., bn−1,n) ∈ F
n2−n+2

2 , subject to

the relations [J1,n−1, [J1,n−1, B]] = [B, [J1,n−1, B]] = 0.

2.4 Type-(1, 1, ..., 2) Representations

Let V denote an n-dimensional left FH-module and B′ = {v1, ..., vn} a fixed basis

such that the representing matrices are upper-triangular unipotent. We define a

right FH-module structure on the dual V ∗ by setting (v∗i ·h)(u) := v∗i (h ·u) on the

dual basis and extending linearly. Set ρ∗B′ : H → GL(V ∗) for the induced linear

representation of this action. If A ∈ GLn(F) represents ρB′(h) : V → V for some

h ∈ H, then the transpose A> represents the dual homomorphism ρ∗B′(h) : V ∗ →
V ∗. Since A and A> are similar, up to permutation of Jordan blocks they have

the same Jordan form.
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Generally V and V ∗ need not have the same socle type neither to obey any rule.

However, if V is of type-(1, 1, ..., 2) and B′ consistent with the socle series, then

the image of ρB′(H) consists of matrices

1 c1,2 c1,3 ... c1,n

0 1 c2,3 ... c2,n

...
...

. . .
...

...

0 0 ... 1 0

0 0 ... 0 1


,

whose transpose induce a representation of type-(2, 1, ..., 1). Therefore, the dual

module V ∗ defines a type-(2, 1, ..., 1) representation. From the previous section we

know that in ρ∗B′(H) a matrix equivalent to J1,n−1 exists. Thus, up to permutation

of Jordan blocks we can assume that among the representing matrices of a type-

(1, 1, ..., 2) representation there is always one equivalent to Jn−1,1. So we conclude

to the following.

Lemma 2.4.0.1. Suppose F is a field of characteristic p and V is a faithful rep-

resentation of H over F of type-(1, 1, ..., 2) and dimension n ≤ p + 1. Then there

is a choice of basis for V such that ρB(H) = 〈Jn−1,1, B〉.

In the next lemma we give a description of the elements in the centralizer C(Jn−1,1).

Lemma 2.4.0.2. A matrix T ∈ C(Jn−1,1) has always the following form

T =



t1,1 t1,2 · · · t1,n−1 t1,n

0 t1,1 · · · t1,n−2 0
...

...
. . .

...
...

0 0 · · · t1,1 0

0 0 · · · tn,n−1 tn,n


,

for various ti,j ∈ F, t1,1, tn,n ∈ F∗.

Proof. Follows from a routine calculation similar to Lemma 2.2.0.2.
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Remark 2.4.0.3. Notice that for n = 3 representations of type-(1, 2) are not

faithful, since the representing matrices form an abelian subgroup. Thus three-

dimensional representations of this type are not considered.

Before we proceed to the next lemma, we compute the commutator of ρB(H) when

n = 4,

[J3,1, B] =


1 0 b2,3 − b1,2 b2,4

0 1 0 0

0 0 1 0

0 0 0 1

 .

Lemma 2.4.0.4. For n = 4, every matrix T ∈ Z(ρB(H)) has the following form

T =


1 0 t1,3 t1,4

0 1 0 0

0 0 1 0

0 0 0 1

 ,

for ti,j ∈ F.

Proof. Assume T ∈ C(J3,1), B ∈ UT4(F). The condition T = [J3,1, B] gives

t1,1 = t4,4 = 1, t1,2 = t4,3 = 0. Thus our assertion follows immediately.

Substituting the resulting T in the condition J3,1B − TBJ3,1 = O4, gives t1,3 =

b2,3− b1,2, t1,4 = b2,4. If b2,4 = 0, then in ρB(H) every element has zero (2, 4)-entry.

The latter implies that dimF(soc2(V )) = 2 which is a contradiction. Hence we can

assume that b2,4 6= 0 always.

If B = {e1, e2, e3, e4} denotes the basis of Lemma 2.4.0.6, we consider the following

basis B1 = {e1,−b2,3e1 + b2,4e2 + b1,4e3, b2,4e3 + b1,4e4, b2,4e4}. Then the transition

matrix T := TB1←B is a change of basis consistent with the socle series that fixes
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J3,1 and transforms B to the following matrix

T−1BT =


1 b1,2 b1,3 +

(b1,2 − b2,3)b1,4

b2,4

0

0 1 0 1

0 0 1 0

0 0 0 1

 .

Finally, assume that ρ1
B1

= 〈J3,1, B1〉, ρ2
B2

= 〈J3,1, B2〉 are two representations

and B1,B2 bases as constructed above. Then ρ1
B1
∼ ρ2

B2
, if an invertible matrix

P ∈ GL4(F) that stabilises the socle series exists, such that P ∈ C(J3,1) and

P−1B1P = B2. A routine computation shows that the two conditions imply

P =


p1,1 0 p1,3 p1,4

0 p1,1 0 0

0 0 p1,1 0

0 0 0 p1,1

 ,
and that different pairs (b1,2, b1,3) ∈ F2 define inequivalent representations of these

type. All the above summarize to the following theorem.

Theorem 2.4.0.5. Suppose F is a field of characteristic p ≥ 3 and V a four-

dimensional faithful representation of H over F of type-(1, 1, 2). Then there is a

choice of basis B consistent with the socle series such that ρB(H) = 〈J3,1, B〉 with

B =


1 b1,2 b1,3 0

0 1 0 1

0 0 1 0

0 0 0 1

 .
Furthermore, these representations are parameterised by points in F2.

Finally for arbitrary n ≥ 5, we obtain the next proposition.

Proposition 2.4.0.6. Suppose F is a field of characteristic p ≥ 3 and V a faithful

representation of H over F of type-(1, 1, ..., 2) and dimension n ≤ p + 1. Then

there is a choice of basis B for V , such that ρB(H) = 〈Jn−1,1, B〉. Therefore, these

representations are parameterised by points (b1,2, ..., bn−2,n) ∈ F
n2−n−2

2 , subject to

the relations [Jn−1,1, [Jn−1,1, B]] = [B, [Jn−1,1, B]] = 0.
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2.5 Type-(1, 2, 1) Representations

Let V denote a left four-dimensional FH-module of type-(1, 2, 1). We fix a basis B

such that ρB(H) ≤ UT4(F). Then ρB(H) consists of matrices with the following

form 
1 c1,2 c1,3 c1,4

0 1 0 c2,4

0 0 1 c3,4

0 0 0 1

 , ci,j ∈ F.

We start off by investigating the Jordan normal form of matrices in ρB(H). To this

end we use an idea introduced in [18], the socle-tabloid associated to V . Before

we proceed we point out an important property of V . In [18, Theorem 2.2.2], it

is proven the existence of a basis that is both socle-preserving for V and up to

permutation of the dual basis elements, socle-preserving for V ∗.

For the rest of this section every basis of V is assumed to have the above property.

Definition 2.5.0.1. [18, Definition 2.2.3] Let V denote an n-dimensional left FP -

module for some p-group P and fix a basis B. We define the socle-tabloid of V

to be the tabloid tV , where the boxes of the tabloid are in bijective correspondence

with the elements of v ∈ B filled with the following rule:

v ∈ soci(V ) \ soci−1(V ), v∗ ∈ socj(V
∗) \ socj−1(V ∗)

corresponds to j in i-th row.

Suppose V is a left FH-module of socle-length k. Then the quotient module

V/sock−i(V ) has socle-length i and corresponds to a submodule of the dual V ∗ with

the same socle-length. Therefore, given an element in this submodule it cannot sit

in the socle series of V ∗ further than soci(V
∗). This idea can be translated in the

following lemma.

Lemma 2.5.0.2. [18, Lemma 2.2.7] Let V denote an FP -module with socle-tabloid

tV . Then the i-th row from the bottom of tV contains at least one i and no entries

which exceed i.
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The last lemma implies that if V is four-dimensional FH-module of type-(1, 2, 1),

then we can have only the following two socle-tabloids

3
2 2
1

3
2 1
1 .

The frequency of appearances of each number in a socle-tabloid gives the dual-

type. Thus, the left tabloid corresponds to type-(1, 2, 1) for V ∗, whereas the right

to type-(2, 1, 1). For the last case we have proven that a matrix with Jordan normal

form J3,1 always exists. Therefore, representations with socle-tabloid
3
2 1
1

contain

a matrix with Jordan normal form J3,1. The last is not true for these with socle-

tabloid
3
2 2
1

. Finally, throughout this section we fix a basis B′ that preserves the

socle-type of V , and up to permutation, the socle-type of V ∗. The proof of the

existence of such a basis can be found in [18, Theorem 2.2.2].

Representations with socle-tabloid
3
2 1
1

Suppose V is a four-dimensional FH-module with socle-tabloid

3
2 1
1 . Let B′

denote a basis such that the representing matrices are upper-triangular unipotent

and is socle-preserving both for V and V ∗. Then ρB′(H) consists of matrices of

the following form 
1 c1,2 c1,3 c1,4

0 1 0 c2,3

0 0 1 0

0 0 0 1

 .
Recall from type-(2, 1, ..., 1) representations that a matrix with Jordan normal form

J1,3 always exists. Since the dual of a representation with socle-tabloid
3
2 1
1

are of

type-(2, 1, 1), follows that up to permutation of Jordan blocks we can always find

a matrix with Jordan normal form J3,1.

Lemma 2.5.0.3. Suppose V is a four-dimensional FH-module with socle-tabloid
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3
2 1
1

. Then there is a choice of basis B consistent with the socle series, such that

ρB(H) is generated by

A =


1 1 0 0

0 1 0 1

0 0 1 0

0 0 0 1

 , B =


1 b1,2 1 b1,4

0 1 0 b2,4

0 0 1 0

0 0 0 1

 .

Proof. Assume that ρB′(H) = 〈M,N〉 with M ∼ J3,1. Pick any element e1 ∈
V \ soc2(V ). Then for e3 = (M − I4)(e1), e4 = (M − I4)2(e1) and a choice of

e2 ∈ V M \ V H , M transforms to the following matrix

A =


1 1 0 0

0 1 0 1

0 0 1 0

0 0 0 1

 .

From the definition of M follows that the change of basis P is consistent with

the socle series, hence conjugation is well defined, i.e., B := P−1NP is consistent

with the socle series. Furthermore, since b1,3 = 0 would imply soc(V ) = 2, we can

assume b1,3 6= 0. Thus, for the right choice of e2 we acquire b1,3 = 1.

We wish to describe the centraliser of A and investigate how it acts on B.

Lemma 2.5.0.4. The centralizer C(A) consists of matrices of the following form

T =


t1,1 t1,2 t1,3 t1,4

0 t1,1 0 t1,2

0 0 t2,2 t3,4

0 0 0 t1,1

 .

Proof. Follows from a routine computation on TA− AT = O4.
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Next we investigate how elements of C(A) act on B. Assume T ∈ C(A), then the

equation TB −BT = O4 yields explicitly
0 0 t1,1 − t2,2 (b2,4 − b1,2)t1,2 − t3,4
0 0 0 0

0 0 0 0

0 0 0 0

 = O4.

Thus, T commutes with B if and only if t1,1 = t2,2, (b2,4−b1,2)t1,2−t3,4 = 0. Further-

more, for the right choice of T ∈ C(A)∩C(B) we can assume that Z(ρB(H)) = 〈T 〉,
since Z(ρB(H)) ⊂ C(A)∩C(B). The relation AB − TBA = O4 induced from the

presentation of ρB(H)
0 −t1,2 −t1,3 b2,4 − b1,2 − t1,2 − t1,4
0 0 0 −t1,2
0 0 0 −t1,3
0 0 0 0

 = O4,

implies t1,2 = t1,3 = t3,4 = 0, t1,4 6= 0 and b2,4 − b1,2 = t1,4. Thus for B we must

have b1,2 6= b2,4. Summarizing all the above yields the following theorem.

Theorem 2.5.0.5. Suppose V is a faithful four-dimensional FH-module with

socle-tabloid
3
2 1
1

. Then there is a choice of basis B consistent with the socle

series, such that ρB(H) is generated by

A =


1 1 0 0

0 1 0 1

0 0 1 0

0 0 0 1

 , B =


1 b1,2 1 b1,4

0 1 0 b2,4

0 0 1 0

0 0 0 1

 ,

subject to the constraint b1,2 6= b2,4. Therefore, these representations are parame-

terised by the set {(b1,2, b1,4, b2,4) ∈ F3 | b1,2 6= b2,4}.

Representations with socle-tabloid
3
2 2
1
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This time there is no guarantee that a matrix with Jordan normal form J3,1 exists.

However, with the right choice of basis we obtain a suitable set of generators.

Lemma 2.5.0.6. Suppose V is a four-dimensional FH-module with socle-tabloid
3
2 2
1

. Then there is a choice of basis B consistent with the socle series, such that

ρB(H) is generated by the following matrices

A =


1 a1,2 a1,3 0

0 1 0 0

0 0 1 1

0 0 0 1

 , B =


1 b1,2 b1,3 0

0 1 0 1

0 0 1 0

0 0 0 1

 .

Proof. Assume that ρB′(H) = 〈M,N〉. We construct the seeking basis as follows;

choose any e1 ∈ V \ soc2(V ) and set e2 = (M − I4)(e1), e3 = (N − I4)(e1), e4 =[
1 0 0 0

]T
. Then the resulting set of vectors B := {e1, e2, e3, e4} forms a basis

for V . Calculating the generating matrices M and N on this new basis yields our

claim.

The commutator C = [A,B] = ABA−1B−1 in that case becomes

C =


1 0 0 a1,2 − b1,3

0 1 0 0

0 0 1 1

0 0 0 1

 .

Thus the condition C 6= I4 gives a1,2 − b1,3 6= 0. We wish to classify equivalent

classes of representations of this form. From the last lemma it is obvious that

(a1,2, b1,2) 6= (0, 0), (a1,3, b1,3) 6= (0, 0), since otherwise the fixed point space is

two-dimensional. Two such representations are equivalent if an invertible matrix

that stabilises the socle series exists. If P denotes such matrix, the conditions
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P−1AP, P−1BP force P to have the following form

P =


p1,1 0 0 p1,4

0 p2,2 0 0

0 0 p2,2 0

0 0 0 p2,2

 .

Explicit calculations on the above two conditions imply the following theorem.

Theorem 2.5.0.7. Suppose V is a faithful four-dimensional FH-module with

socle-tabloid
3
2 2
1

. Then there is a choice of basis B consistent with the socle

series, such that ρB(H) is generated by

A =


1 a1,2 a1,3 0

0 1 0 0

0 0 1 1

0 0 0 1

 , B =


1 b1,2 b1,3 0

0 1 0 1

0 0 1 0

0 0 0 1

 .

Furthermore, these representations are parameterised by points in the projective

space {[a1,2 : a1,3 : b1,2 : b1,3] ∈ P3
F | (a1,2, b1,2) 6= (0, 0), (a1,3, b1,3) 6= (0, 0), a1,2 6=

b1,3}.



Chapter 3

Three-dimensional case

3.1 Introduction

Let F denote a field of positive characteristic char(F) = p > 0. Assume that H

is the extraspecial group of order p3 and exponent p endowed with the following

presentation

H = 〈g1, g2 | gp1 = gp2 = e, [g1, [g1, g2]] = e, [g2, [g1, g2]] = e, [g1, g2]p = e〉.

We wish to study three-dimensional invariants of H over F.

Suppose V is a three-dimensional left FH-module. From Theorem 2.2.0.5 we know

the existence of a basis B′ consistent with the socle series, such that the group of

representing matrices ρB′(H) is generated by

J3 =


1 1 0

0 1 1

0 0 1

 , B =


1 b1,2 0

0 1 b2,3

0 0 1

 .
To make our computations easier we change the generators with something equiv-

alent. If B′ = {e1, e2, e3}, then B = {2e1, e2 + b1,2/(b1,2− b2,3) ·e1, e3 + b2,3/2(b1,2−
b2,3) · e2 + b1,2b2,3/2(b1,2 − b2,3)2 · e1} forms a basis consistent with the socle series

59
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that transforms {J3, B} to the following matrices

g1 =


1 2 1

0 1 1

0 0 1

 , g2 =


1 2c1 0

0 1 c2

0 0 1

 , c1, c2 ∈ F

with the commutator h = [g1, g2] = g−1
1 g−1

2 g1g2 given by

h =


1 0 c

0 1 0

0 0 1

 , c = 2(c2 − c1).

It is not difficult to see that {g1, g2} forms a generating set for H. We denote the

group of representing matrices with respect to the new basis by ρB(H). Finally

since we consider faithful representations, throughout we always assume c 6= 0.

3.2 Generic Case

In this section we show that for any faithful generic three-dimensional FH-module

V , the ring of invariants F[V ]H is a complete intersection. In Lemma 3.2.0.2 we

compute F(V )H and we apply SAGBI/divide-by-x algorithm on the invariant field

generators to construct a generating set for F[V ]H . To this end we make use of

the following result which forms the base of our technique.

Theorem 3.2.0.1. [7, Theorem 4.3] Let V3 denote the representation of (F,+)

dual to the symmetric square V ∗2 and (W,+) ≤ (F,+) a finite subgroup. Then

F[V3]W is the hypersurface generated by {x, δ,NW (y),NW (z)}, where δ = y2− xz.

Furthermore, this generating set is a SAGBI basis with respect to the graded reverse

lexicographic order with z > y > x.

We consider the above theorem when W ∼= Cp to construct the invariant field

generators.

Think of the composition series {e} / H1 / H2 / H, where H1 = 〈g1〉, H2 =

〈g1, h〉. We wish to describe the invariant rings for the successive quotients of
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the composition series and apply the identity (F[V ]N)G/N = F[V ]G. However this

cannot happen directly. The methods we have in our disposal are for group actions

on polynomial algebras, hence whenever F[V ]N fails to be such an algebra the

quotient group G/N is not acting nicely for our convention. To resolve this issue

we pass to a localized level whereby we can apply the group action on polynomial

algebras.

We first consider the case H1
∼= Cp. Then Theorem 3.2.0.1 implies F[V ]H1 =

F[x, δ,Ng1(y),Ng1(z)], hence the H2/H1-action is not on a polynomial algebra.

Localizing at x yields

F[V ]H1 [x−1] = F[x, δ,Ng1(y)][x−1]. (3.2.1)

Now the right hand side algebra is polynomial and since H2/H1
∼= 〈h〉 we obtain

F[V ]H2 [x−1] = (F[V ]H1)H2/H1 [x−1] = F[x, δ,Ng1(y)]〈h〉[x−1]. (3.2.2)

The 〈h〉-action on F[x, δ,Ng1(y)] induces an F〈h〉-module structure. Let V1 denote

the F-vector space spanned by the algebra generators {x, δ,Ng1(y)} shifted to

degree one, i.e., V1 = SpanF{x, y1 = Ng1(y)/xp−1, y2 = δ/x}. In terms of this new

basis we compute

y1 · h = y1, y2 · h = y2 − cx.

Thus 〈h〉 acts as a Nakajima group and [8, Theorem 8.0.7] implies F[V1]〈h〉 =

F[x, y1,Nh(y2)]. Substituting in (3.2.2) and clearing out the denominators mini-

mally returns

F[V ]H2 [x−1] = F[x,Ng1(y),Nh(δ)][x
−1], (3.2.3)

where Nh(δ) = δp − cp−1x2(p−1)δ.

Now applying the H/H2
∼= 〈g2〉-action on (3.2.3) gives

F[V ]H [x−1] = F[x,Ng1(y),Nh(δ)]
〈g2〉[x−1]. (3.2.4)

Set z2 := Nh(δ) and ∆2 := g2 − 1 ∈ F〈g2〉 for the twisted derivation induced by

g2. Then z2 generates a triangular basis of H2-invariants

{z0 = ∆2
2(z2), z1 = ∆2(z2), z2 = Nh(δ)}.
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Note that as F〈g2〉-module, the vector space spanned by this basis is isomorphic

to V3, the three dimensional indecomposable representation of 〈g2〉. A routine

computation gives

z2 = Nh(δ), z1 = γp0x
pNg1(y) + (c2p

2 − c2
2c
p−1)x2p, z0 = cp(cp2 − c2)x2p,

thus F[z0, z1, z2] = F[x2p, xpNg1(y),Nh(δ)] and

F[x2p, xpNg1(y),Nh(δ)][x
−1] = F[x,Ng1(y),Nh(δ)][x

−1].

Therefore, from (3.2.4) follows that

F[V ]H [x−1] = F[x,Ng1(y),Nh(δ)]
〈g2〉[x−1] = F[z0, z1, z2]〈g2〉[x−1]. (3.2.5)

Denote δ̂ = z2
1 − 2z0z2 − z0z1. Using Theorem 3.2.0.1 gives F[z0, z1, z2]〈g2〉 =

F[z0, δ̂,Ng2(z1),Ng2(z2)] and (3.2.5) implies

F[V ]H [x−1] = F[z0, δ̂,Ng2(z1)][x−1]. (3.2.6)

Let D denote the image of δ̂ in F[V ] and NH(y) the H-norm of y

NH(y) = Np
g1

(y)− (c2
p − c2)p−1xp(p−1)Ng1(y). (3.2.7)

Using (3.2.6) this time, gives

F[V ]H [x−1] = F[x,NH(y), D][x−1].

Expanding the definition of D yields

D = ∆2
2(Nh(δ))− 2Nh(δ)∆

2
2(Nh(δ))−∆2(Nh(δ))∆

2
2(Nh(δ))

= c2px2pN2
g1

(y) + (2cp(c2p
2 − c2

2c
p−1)− c2p(c2

p − c2))x3pNg1(y)

− 2cp(cp2 − c2)x2pNh(δ) + ((c2p
2 − c

p
2c
p−1)

2 − cp(cp2 − c2)(c2p
2 − c2

2c
p−1))x4p.

To make the above expression simpler, we divide through by 2cpx2p and get rid of

the last summand. Set for simpilcity γ0 = c2 − c1, γ1 := cp1 − c1 and γ2 := cp2 − c2.

Then the resulting polynomial

D = γp0 N2
g1

(y)︸ ︷︷ ︸
α

+(c2p
2 − c2

2γ
p−1
0 − γp0γ2)xpNg1(y)− γ2Nh(δ)︸ ︷︷ ︸

β

, (3.2.8)

is an H-invariant. The following lemma shows that is a generator of F(V )H too.
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Lemma 3.2.0.2. F(V )H = F(x,NH(y),D).

Proof. Note that LT(NH(y)) = yp
2
. Since on the first two variables H is acting

as a two elementary abelian p-group, [9, Theorem 3.7.5] implies that {x,NH(y)}
form minimum degree invariants in x and y respectively. Also, equality (3.2.2)

implies F(V )H2 = F(x,Ng1(y),NH(δ)) and the field inclusion F(V )H ⊂ F(V )H2

that the minimum z-degree H-invariant has z-degree at least p. From equation

(3.2.8) follows that degz(D) = p. Hence D is of minimum z-degree. Now the claim

is a consequence of Theorem 1.4.2.6.

For γ3 := γ0 − γ1 = c2 − cp1, expanding the new D we observe that the lead term

comes from the sum of the lead terms of α and β, LT(D) = γ3 y
2p , while the second

term from α and equals −2γp0x
p−1yp+1. So working modulo the ideal 〈xp〉 / F[V ]

gives

D ≡〈xp〉 γ3 y
2p − 2γp0x

p−1yp+1. (3.2.9)

For reasons that will become obvious later on we investigate and present the third

and fourth term in order. Expanding and reducing modulo 〈xp+1〉 / F[V ] gives

D ≡〈xp+1〉 γ3 y
2p − 2γp0x

p−1yp+1 + (c2p
2 − c2

2γ
p−1
0 − γp0γ2)xpyp + γ2x

pzp.

Set B = {x,NH(y),D,NH(z)} where NH(z) denotes the z-norm. We wish to

extend B to a SAGBI basis by applying the SAGBI/divide-by-x algorithm. In

what follows we always assume that γi 6= 0, for i = 0, . . . , 3. Moreover for simplicity

we set γ4 := γp1 +γ1−γ0 = cp
2

1 −c2. Observe that in B there is only one non-trivial

tête-à-tête: (Dp,N2
H(y)).

Lemma 3.2.0.3. Subducting the tête-à-tête (Dp,N2
H(y)), defines an invariant with

lead term: − 2γp1γ2/γ3 · xp
2−1yp

2+1

Proof. We work modulo the ideal in 〈xp2−1〉 / F[x, y, z]. For Dp follows from

(4.1.2) that in the quotient ring we have

Dp ≡〈xp2−1〉 γ
p
3 y

2p2 − 2 γp
2

0 xp(p−1)yp(p+1).
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On the other hand, expanding N2
H(y) and reducing modulo xp

2−1 gives

N2
H(y) ≡〈xp2−1〉 y

2p2 − 2(1 + γp−1
2 )xp(p−1)yp(p+1).

Summing up the two parts yields

Dp − γp3N2
H(y) ≡〈xp2−1〉 −2 γp−1

2 γ4 x
p(p−1)yp(p+1).

We work modulo the principal ideal 〈xp2〉 / F[x, y, z]. Set

f̃1 := Dp − γp3N2
H(y) + 2γp−1

2 γ4/γ
p+1
2

3 ·D
(p+1)

2 xp(p−1). (3.2.10)

We analyze each part of f̃1. The binomial theorem for D ≡〈xp〉 γ3y
2p−2γp0x

p−1yp+1

gives

D
p+1
2 ≡〈xp〉 (γ3y

2p − 2γp0x
p−1yp+1)

p+1
2

≡〈xp〉 γ
p+1
2

3 yp(p+1) − γp0γ
p−1
2

3 yp(p−1)xp−1yp+1.

Thus multiplying by xp(p−1) both sides yields

D
p+1
2 xp(p−1) ≡〈xp2 〉 γ

p+1
2

3 yp(p+1)xp(p−1) − γp0γ
p−1
2

3 xp
2−1yp

2+1.

Regarding the tête-à-tête difference, expanding the definition gives

Dp − γp3N2
H(y) = γp

2

0 N2p
g1

(y) + ((c2
2p2 − c2

2pγ
p(p−1)
0 )− γp2)xp

2

Np
g1

(y)− γp2Np
h(δ)

− γp3(N2p
g1

(y)− 2γp−1
2 Np+1

g1
(y)xp(p−1) + γ

2(p−1)
2 x2p(p−1)N2

g1
(y)).

while reducing modulo xp
2

Dp − γp3N2
H(y) ≡〈xp2 〉 −2γp−1

2 γ4y
p(p+1)xp(p−1) − 2γp3γ

p−1
2 x(p+1)(p−1)yp

2+1.

Summing up the two parts now proves our claim

f̃1 ≡〈xp2 〉 −2γp1γ2/γ3 · xp
2−1yp

2+1.
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Throughout, along with the previous assumptions (i.e., γi 6= 0,∀i = 0, . . . , 3),

we assume that γ4 6= 0 too. Notice that f̃1 cannot subduct further. Due to the

SAGBI/divide-by-x algorithm we divide through by x−(p2−1) and we attach this

new invariant to B. Set f1 := f̃1 x
−(p2−1) and B1 := B ∪ {f1}. Observe that in

B1 there is a unique non-trivial tête-à-tête: (fp1 ,D
p2+1

2 ).

Lemma 3.2.0.4. Subducting the tête-à-tête (fp1 ,D
p2+1

2 ), defines an invariant with

lead term: −γp
2

2 γ
p
3 · xpzp

3
.

Proof. To find the lead term of that tête-à-tête difference we work modulo 〈xp−1〉 / F[V ]H .

From previous calculation, (3.2.9), we obtain

D
p2+1

2 ≡〈xp〉 (γ3y
2p − 2γp0x

p−1yp+1)
p2+1

2

≡〈xp〉 (γ3y
2p − 2γp0x

p−1yp+1)
p2−1

2 .(γ3y
2p − 2 γp0y

p+1xp−1)

≡〈xp〉 γ
p2−1

2
3 yp

3+p − 2 γp0 γ
p2−1

2
3 xp−1yp

3+1.

Regarding f1, expanding its definition we see that every term except the leading

has a power of x. Therefore, fp1 does not contribute in the quotient ring for the

tête-à-tête difference.

Summing up yields

γp3f
p
1 − µD

p2+1
2 ≡〈xp〉 −2 γp0 γ

p2−1
2

3 µxp−1yp
3+1.

Set µ = −2γp
2

2 γ
p2

1 /γ
p2−1

2
3 and

f̃2 := γp3f
p
1 − µD

p2+1
2 − γp0

γ
p2+1

2
3

γp2 γ
p
1

µ xp−1Np−1
H (y)f1.

To prove our claim we work in the polynomial algebra F[x, y, z] modulo the ideal

J := 〈xp+1, yxp〉. Using the definition of NH(y), (3.2.7), and reducing modulo xp+1

we obtain Np−1
H (y) ≡J yp

3−p2 . So that

xp−1Np−1
H (y)f1 ≡J − 2

γp1γ2

γ3

xp−1yp
3+1.

Expanding D in the quotient ring gives

D ≡J γ3y
2p − 2γp0x

p−1yp+1 + 2γ2x
pzp,
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hence

D
p2+1

2 ≡J γ
p2+1

2
3 yp

3+p − 2γ
p2−1

2
3 γp0x

p−1yp
3+1.

Furthermore, reducing fp1 modulo J yields: fp1 ≡J −γ
p2

2 x
pzp

3
. All together implies

γp3f
p
1 − µD

p2+1
2 − γp0

γ
p2+1

2
3

γp1γ2

µxp−1Np−1
H f1

≡J

− γp
2

2 γp3 x
pzp

3
.

So the leading term of the subduction must be

LT(f̃2) = − γp
2

2 γp3 x
pzp

3

.

Set f2 := x−pf̃2 and B2 := B1 ∪ {f2}. Since f2 is homogeneous of degree p3 such

that LT(f2) = zp
3

we can replace NH(z) by f2. Now every non-trivial tête-à-tête

in B2 subducts to zero.

Proposition 3.2.0.5. Let V denote a three-dimensional FH-module, satisfying

γi 6= 0, i = 0, . . . , 4. Then B2 = {x,NH(y),D, f1, f2}, is a SAGBI basis hence

a generating set for F[V ]H . Furthermore, F[V ]H is a complete intersection with

generating relations constructed during the tête-à-tête subduction of (fp1 ,D
p2+1

2 )

and (Dp,N2
G(y)).

Proof. We have proven already that B2 is a SAGBI basis. Let A = F[B2]

denote the algebra it generates. Since LM(D) = y2p,LM(f2) = zp
3
, from [1,

Lemma 2.2.7], [7, Lemma 2.6.3] follows that (x,D, f2)F[V ]H is a zero-dimensional

ideal and {x,D, f2} a homogeneous system of parameters. Hence A ⊂ F[V ]H

is integral. Furthermore, the invariant field F(V )H = F(x,NH(y),D) implies

F[V ]H [x−1] = A[x−1]. So the equality F[V ]H = A follows from an application of

Theorem 1.4.3.10.

Corollary 3.2.0.6. The lead term algebra of F[V ]H is the F-algebra generated by

the set LT(B2) = {x, y2p, yp
2
, yp

2+1, zp
3}.
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In order to terminate the subduction procedure above we swapped f2 with NH(z).

Since in our consideration norm elements appear more natural, it is clear that

makes no difference to swap again these two elements.

Theorem 3.2.0.7. For V a three-dimensional left FH-module, such that γi 6=
0, i = 0, . . . , 4, the set {x,D,NH(y), f1,NH(z)}, forms a SAGBI basis for F[V ]H .

Furthermore, F[V ]H is a complete intersection with two relations constructed dur-

ing the tête-à-tête subductions of (fp1 ,D
p2+1

2 ) and (Dp,N2
G(y)).

A note on the assumption γ4 6= 0 we imposed earlier may be useful. Although

assuming γ4 = 0 affects the generating set of F[V ]H , the structural properties

remain untouched. Since none of the invariant field generators is affected under this

assumption, the equality of fields F(V )H = F(x,NH(y),D) still holds. Moreover,

γ4 = 0 implies that the first tête-à-tête subduction (Dp,N2
H(y)) in Lemma 3.2.0.3

becomes

Dp − γp3N2
H(y) ≡〈xp2 〉 −2γp3γ

p−1
2 xp

2−1yp
2+1.

Against {x,D,NH(y),NH(z)}, this tête-à-tête cannot subduct more (we always

work for p > 2) and returns the same lead monomial we had before. Thus for s1 :=

(Dp − γp3N2
H(y))/(−2γp3γ

p−1
2 )xp

2−1, the second tête-à-tête subduction (sp1,D
p2+1

2 )

returns an invariant with lead monomial xpzp
3
, but with different lead coefficient.

Therefore we can attach to our generating set this invariant after dividing by xp

to obtain a SAGBI basis. All the above summarize to the following theorem.

Theorem 3.2.0.8. Let V denote a three-dimensional FH-module such that γi 6= 0,

i = 1, 2, 3. Then F[V ]H is a complete intersection with embedding dimension five

and lead term algebra LT(F[V ]H) = F[x, y2p, yp
2
, yp

2+1, zp
3
].

3.3 Non-generic cases

The description of the invariant ring F[V ]H given above works when the coefficients

γi 6= 0,∀i = 1, 2, 3. However, in order to fully understand the three-dimensional



CHAPTER 3. THREE-DIMENSIONAL CASE 68

invariants we need to investigate each case separately. So we distinguish between

the following cases.

3.3.1 Case c1, c2 ∈ Fp

This is the easiest case we have. The homomorphism ρ : H ↪→ GL3(Fp), is an

isomorphism onto UT3(Fp). Notice, that γ1 = γ2 = 0 implies γ3, γ4 6= 0, since the

representation is always assumed to be faithful (i.e. γ0 6= 0).

Observe that the orbit of each variable in that case is [H : Hx] = 1, [H : Hy] = p,

[H : Hz] = p2, hence the product of the group H coincides with the product of

their norms.

Corollary 3.3.1.1. For V a three-dimensional FH-module such that c1, c2 ∈ Fp

F[V ]H = F[x,NH(y),NH(z)].

3.3.2 Case c1 ∈ Fp, c2 ∈ F/Fp

Throughout this section we assume c1 ∈ Fp, c2 ∈ F/Fp. The condition c1 ∈
Fp implies γ1 = 0, γ0 = γ3 = −γ4. Recall from Lemma 3.2.0.3 that γ1 oc-

curred in the leading coefficient of the first tête-à-tête subduction, (Dp,N2
H(y)).

Hence the leading term of this subduction varies. We also recall that we set

B = {x,D,NH(y),NH(z)}.

Lemma 3.3.2.1. Subducting the tête-à-tête (Dp,N2
H(y)) defines an invariant f̃1

with lead term: γp2x
p2zp

2
.

Proof. We work modulo the principal ideal 〈xp2+1〉 / F[V ].

Set

f̃1 := Dp − γp3 N2
H(y) + 2

γp−1
2 γ4

γ
p+1
2

3

· xp(p−1)D.
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Expanding and reducing modulo 〈xp2+1〉 the tête-à-tête difference yields

Dp − γp3 N2
H(y) ≡ 〈xp2+1〉 − 2 γp−1

2 γ4 x
p(p−1)yp(p+1) − 2 γp3 γ

p−1
2 xp

2−1yp
2+1

+ (c2p
2 − c2

2γ
p−1
0 − γp0γ2)p xp

2

yp
2

+ γp2x
p2zp

2

.

Regarding xp(p−1)D, earlier we calculated

D ≡〈xp+1〉 γ3 y
2p − 2γp0x

p−1yp+1 + (c2p
2 − c2

2γ
p−1
0 − γp0γ2)xpyp + γ2x

pzp,

hence multiplying by 2γp−1
2 γ4/γ

p+1
2

3 · xp(p−1) yields

2
γp−1

2 γ4

γ
p+1
2

3

· xp(p−1)D ≡〈xp2+1〉 xp(p−1)yp
2+p − 2

γp0
γ3

xp
2−1yp

2+1

+ (c2p
2 − c2

2γ
p−1
0 − γp0γ2)pxp

2

yp
2

+ 2 γ2 x
p2yp(p−1)zp.

Merging up the two parts yields

f̃1 ≡〈xp2+1〉 γp2x
p2zp

2

+ γp−1
2 γ4 x

p2yp(p−1)zp

+ (c2p
2 − c2

2γ
p−1
0 − γp0γ2)p(1 + γp−1

2 γ4)xp
2

yp
2

.

Thus LT(f̃1) = γp2x
p2zp

2
.

Define f1 = x−p
2
f̃1. We claim that the procedure is over. The condition c1 ∈ Fp

implies LT(NH(z)) = zp
2
, hence the norm NH(z) can be substituted by f1. Now

in the resulting set B1 := {x,D,NH(y), f1} every non-trivial tête-à-tête subducts

to zero. Thus B1 forms a SAGBI basis.

Lemma 3.3.2.2. For V a three-dimensional left FH-module such that c1 ∈ Fp, c2 ∈
F/Fp, the set B1 = {x,D,NH(y), f1} forms a SAGBI basis for F[V ]H . Further-

more, F[V ]H is a complete intersection with the generating relation coming from

the tête-à-tête subduction (Dp,N2
H(y)).

Proof. Let A denote the algebra generated by B1. Since LM(D) = y2p,LM(f1) =

zp
2
, from [8, Lemma 2.8.1] and [1, Lemma 2.2.7] follows that (x,D, f1)F[V ]H is

zero-dimensional ideal and {x,D, f1} a homogeneous system of parameters. Hence
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the extension A ⊂ F[V ]H is integral. Furthermore, observe that the field of fraction

has not been affected throughout since the minimum degree invariants remain the

same, F(V )H = F(x,D,NH(y)). Thus F[V ]H [x−1] = F[x,NH(y),D, f1][x−1]. So

an application of Theorem 1.4.3.10 gives F[V ]H = A.

Corollary 3.3.2.3. The lead term algebra of F[V ]H is the F-algebra generated by

the set LT(B1) = {x, y2p, yp
2
, zp

2}.

Again, since the norm elements appear more natural in our consideration, we

replace f1 with NH(z) to obtain the following equivalent description.

Proposition 3.3.2.4. Assume V is a three-dimensional left FH-module such that

c1 ∈ Fp, c2 ∈ F/Fp. Then F[V ]H = F[x,D,NH(y),NH(z)] is a hypersurface with

lead term algebra LT(F[V ]H) = F[x, y2p, yp
2
, zp

2
].

3.3.3 Case c1 ∈ F/Fp, c2 ∈ Fp

In that case γ2 = 0. However, γ3, γ4 6= 0, since otherwise γ0 = 0. This assumption

changes the whole setup. For example D is no longer the same as

D = cpN2
g1

(y) + (c2
2p − c2

2γp−1
0 )xpNg1(y),

while the H1-norm of y becomes an H-invariant, NH(y) = yp − xp−1y. Recall

from equation (3.2.4) the equality F[V ]H [x−1] = F[x,Ng1(y),Nh(δ)]
〈g2〉[x−1]. By

shifting the right-hand side generators to degree one y1 = Ng1(y)/xp−1, y2 =

Nh(δ)/x
2p−1, we obtain a new three-dimensional representation of H and an equal-

ity F[V ]H [x−1] = F[x, y1, y2]〈g2〉[x−1]. On this new basis {x, y1, y2} we compute

x · g2 = x, y1 · g2 = y1, y2 · g2 = y2 + 2γp0y1 + (c2p
2 − c2

2γ
p−1
0 )x.

So the new representation of 〈g2〉 has the following form

ρ̂ : 〈g2〉 →, g2 7→


1 2γp0 c2p

2 − c2
2γ

p−1
0

0 1 0

0 0 1

 ,
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and the action is Nakajima. Therefore

F[x, y1, y2]〈g2〉 = F[x, y1,Ng2(y2)],

with Ng2(y2) = 1

2 γp
2

0

(yp2 − y2∆2(y2)p−1). Set for simplicity N̂g2(y2) := 2γp
2

0 Ng2(y2)

and notice that the equality F[x, y1, y2]〈g2〉 = F[x, y1, N̂g2(y2)] yields after clearing

out the denominators minimally

F[V ]H [x−1] = F[x,NH(y),NH(δ) = Np
h(δ)−Nh(δ)∆2(Nh(δ))

p−1][x−1]. (3.3.1)

Notice that by construction {x,NH(y),NH(δ)} is a set of minimum degree H-

invariants. Concerning the new minimum z-degree invariant NH(δ), expanding

the definition shows that degz(NH(δ)) = p2, LT(NH(δ)) = y2p2 and the second

term in order is −γp−1
3 xp

2−pyp
2+p. Also a routine computation returns

∆2(NH(δ)) = 2γ3x
pyp − 2c2γ

p−1
0 x2p−1y + 2c1γ

p−1
0 x2(p−1)yz + c2

2(1− γp−1
0 )x2p.

Finally, we attach the norm NH(z) and denote B := {x,NH(y),NH(δ),NH(z)}.
In B there is a unique non-trivial tête-à-tête: (NH(δ),N2p

H (y)).

Lemma 3.3.3.1. Subducting the tête-à-tête (NH(δ),N2p
H (y)) defines an invariant

with lead term: 2yp
2+1xp

2−1.

Proof. We work modulo the ideal 〈xp2−p+1〉 / F[V ].

Follows easily that N2p
H (y) ≡〈xp2−p+1〉 y

2p2−2xp
2−pyp

2+p. Moreover, reducing NH(δ)

modulo 〈xp2−p+1〉 gives: NH(δ) ≡〈xp2−p+1〉 y
2p2 − γp−1

3 xp
2−pyp

2+p. Summing up the

two parts yields

NH(δ)−N2p
H (y) ≡〈xp2−p+1〉 (2− γp−1

3 )xp
2−pyp

2+1.

Set

h̃1 := NH(δ)−N2p
H (y)− (2− γp−1

3 )Np+1
H (y)xp

2−p.

We work modulo the ideal in F[V ] generated by xp
2+1 and yxp

2
. We investigate

each part separately.
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Expanding the definition of NH(δ) and N2p
H (y), gives after reducing modulo 〈xp2+1, yxp

2〉,

NH(δ) ≡〈xp2+1,yxp2 〉 y2p2 − γp−1
3 xp

2−pyp
2+p + c2γ

p−1
0 γp−2

3 xp
2−1yp

2+1 − xp2zp2

N2p
H (y) ≡〈xp2+1,yxp2 〉 y2p2 − 2xp(p−1)yp

2+p.

Concerning Np+1
H (y)xp

2−p, after expanding the definition and reducing modulo

〈xp2+1, yxp
2〉:

Np+1
H (y)xp

2−p ≡〈xp2+1,yxp2 〉 x
p2−pyp

2+p − xp2−1yp
2+1.

Merging up the two parts yields

h̃1 ≡〈xp2+1,yxp2 〉 (c2γ
p−1
0 γp−2

3 − γp−1
3 + 2)yp

2+1xp
2−1 − xp2zp2 .

Set h1 := 1/(c2γ
p−1
0 γp−2

3 − γp−1
3 + 2) · x−(p2−1)h̃1 and B1 := B ∪ {h1}. In B1 there

is a unique non-trivial tête-à-tête : (hp1,N
p2+1
H (y)).

Lemma 3.3.3.2. Subducting the tête-à-tête (hp1,N
p2+1
H (y)), defines an invariant

with lead monomial: xpzp
3

Proof. First off we find the lead term of the tête-à-tête difference. We work modulo

〈xp〉 / F[V ]. For Np2+1
H (y) expanding and reducing modulo 〈xp〉 gives

Np2+1
H (y) ≡〈xp〉 yp

3+p − xp−1yp
3+1.

Regarding hp1, from the previous lemma LT(h̃1) = (c2γ
p−1
0 γp−2

3 −γp−1
3 +2)·xp2−1yp

2+1

and we divided through by xp
2−1 to obtain h1. So in h1 every term but the leading

contain an x-power. Thus hp1 ≡〈xp〉 yp
3+p and all together gives

hp1 −Np2+1
H (y) ≡〈xp〉 xp−1yp

3+1.

Set for the next step of the subduction

h̃2 := hp1 −Np2+1
H (y)− xp−1 h1 Np2−p

H (y).
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Now we work modulo 〈xp+1〉 / F[V ]. For hp1, expanding and reducing modulo

〈xp+1〉 gives: hp1 ≡〈xp+1〉 y
p3+p − 1/(cp2γ

p(p−1)
0 γ

p(p−2)
3 − γ

p(p−1)
3 + 2) · xpzp3 . Also

follows easily that NH(y) ≡〈xp+1〉 y
p3+p − xp−1yp

3+1.

For xp−1 h1 N
p(p−1)
H (y), we know that in h1 every term but the leading contain an

x-power. In the product xp−1N
p(p−1)
H (y) it is not difficult to see that no other term

except the leading remains in the quotient ring. Thus all together

xp−1h1N
p(p−1)
H (y) ≡〈xp+1〉 x

p−1yp
3+1.

Adding up every the two parts gives

h̃2 ≡〈xp+1〉 x
pzp

3

/(cp2γ
p(p−1)
0 γ

p(p−2)
3 − γp(p−1)

3 + 2).

Denote h2 := x−ph̃2 and B2 := B1 ∪ {h2}. Since the resulting subduction has the

same lead term with NH(z), as previously suffices to swap NH(z) with h2. Now

in the resulting set every non-trivial tête-à-tête subducts to zero.

Lemma 3.3.3.3. Let V denote a three-dimensional FH-module such that c1 ∈
F/Fp, c2 ∈ Fp. Then the set {x,NH(y), h1, h2} forms a SAGBI basis for F[V ]H .

Furthermore, F[V ]H is a hypersurface with the unique relation coming from the

subduction of (hp1,N
p+1
H (y)).

Proof. We have proven already that B2 is a SAGBI basis. Let A denote the algebra

it generates. Since LM(NH(y)) and LM(h2) = zp
3
, follows that (x,NH(y), h2)F[V ]H

is a zero-dimensional ideal and {x,NH(y), h2} a homogeneous system of parame-

ters. Hence A ⊂ F[V ]H is integral. The invariant field F(V )H = F(x,NH(y), h1)

implies F[V ]H [x−1] = A[x−1]. So the equality F[V ]H = A follows from an applica-

tion of Theorem 1.4.3.10.

Corollary 3.3.3.4. The lead term algebra of F[V ]H is the F-algebra generated by

the set LT(B2) = {x, yp, yp2+1, zp
3}.

As previously we swap again f2 and NH(z).
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Proposition 3.3.3.5. Assume V is a three-dimensional FH-module such that

c1 ∈ F/Fp, c2 ∈ Fp. Then F[V ]H = F[x,NH(y), h1,NH(z)] is a hypersurface with

lead term algebra LT(F[V ]H) = F[x, yp, yp
2+1, zp

3
].

3.3.4 Case c1 ∈ F/Fp, c2 ∈ F/Fp

In this case γ1, γ2 6= 0. Also γ3 and γ4 cannot be zero simultaneously since implies

c1 ∈ Fp. Furthermore, we have seen that the assumption γ4 = 0 is not essential

and yields invariant ring similar to the generic case. So we have to examine only

the case γ3 = 0.

We check how much this assumption affects our setup. Observe that the lead

term of D changes. Expanding this time gives: LT(D) = −2γp0x
p−1yp+1. Denote

D̂ := x−(p−1)D for this invariant after we divided by the superfluous x-power.

Remark 3.3.4.1. Since on the first two variables the action is Nakajima, {x,NH(y)}
is a set of minimum degree invariants. The constraint γ3 = 0 does not affect the in-

variant field F(V )H2 = F(x,Ng1(y),Nh(δ)), hence the inclusion F(V )H ⊂ F(V )H2

implies that the minimum z-degree invariant of F[V ]H has z-degree at least p.

Since degz(D̂) = p, follows that F(V )H = F(x, D̂,NH(y)).

Define B := {x, D̂,NH(y),NH(z)}. Then there is a unique non-trivial tête-à-

tête: (D̂p2 ,Np+1
H (y)). Before we proceed we make a note that will be used below.

Expanding the definition of Np+1
H (y) and reducing modulo xp

2
gives

Np+1
H (y) = Np2+p

g1
(y)− γp−1

2 xp(p−1)Np2+1
g1

(y)− γp(p−1)
2 xp

2(p−1)N2p
g1

(y) + γp
2−1

2 x(p2+p)(p−1)Np+1
g1

(y)

≡〈xp2 〉 − 2(γp
3

0 + γp
3+p2−p

0 )xp(p−1)yp
3+p + γp−1

2 xp
2−1yp

3+1.

We shall use this computation in the following lemma.

Lemma 3.3.4.2. Subducting the tête-à-tête (D̂p2 ,Np+1
H (y)), defines an invariant

with lead monomial: γp
3

0 x
p2zp

3
.

Proof. We work modulo 〈xp2−1〉 / F[V ]. Clearly D̂p2 ≡〈xp2−1〉 − 2 γp
3

0 y
p2(p+1), since

every term but the leading in D̂ contains a positive x-power.
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Concerning Np+1
H (y), expanding and reducing modulo xp

2−1 gives

Np+1
H (y) ≡〈xp2−1〉 y

p2(p+1) − (1 + γp−1
2 )xp(p−1)yp

3+p. (3.3.2)

Adding up the two parts yields

D̂p2 + 2 γp
3

0 Np+1
H (y) ≡〈xp2−1〉 − 2(γp

3

0 + γp
3+p2−p

0 )xp(p−1)yp
3+p.

Set

t̃1 := D̂p2 + 2 γp
3

0 Np+1
H (y)− (γp

3

0 + γp
3+p2−p

0 )

γp
2

0

xp(p−1) D̂p Np−1
H (y).

We work modulo 〈xp2〉 / F[V ]. Expanding D̂p and reducing modulo 〈xp2〉 yields

D̂p ≡〈xp2 〉 − 2 γp
2

0 y
p(p+1) + γp

2

0 x
p(p−1)y2p + ((c2

2p − c2
2γp−1

0 )p − γ2p2

0 )pxpyp
2

− γp
2

0 x
pzp

2 − γ2p2−p
0 xp(p−1)y2p .

For xp(p−1) Np−1
H (y), the binomial theorem acquires

xp(p−1)Np−1
H (y) = xp(p−1)

p−1∑
i=0

(
p− 1

i

)
(Np

g1
(y))p−1−i(−γp−1

2 xp(p−1))iNi
g1

(y)

=

p−1∑
i=0

(−1)i
(
p− 1

i

)
γ
i(p−1)
2 Ng1(y)(p−1)(p−i)xp(p−1)(i+1).

Thus, xp(p−1) Np−1
H (y) ≡〈xp2 〉 xp(p−1)yp

2(p−1). For the tête-à-tête (D̂p2 ,Np+1
H (y)), the

comments above give

D̂p2 + 2γp
3

0 Np+1
H (y) ≡〈xp2 〉 − 2(γp

3

0 + γp
3+p2−p

0 )xp(p−1)yp
3+p + 2γp

3

0 γ
p−1
2 xp

2−1yp
3+1.

All together gives

t̃1 ≡〈xp2 〉 2γp
3

0 γ
p−1
2 xp

2−1yp
3+1.

However we are not finished yet. Notice that t̃1 can be subducted further against

B. Set

t1 := t̃1 + γp
3−p

0 γp−1
2 xp

2−1D̂p2−p+1.

This time we work modulo 〈xp2+1〉 / F[V ]. In Dp2−p+1 every term but the leading

contains an x-power strictly greater than two, so

xp
2−1Dp2−p+1 ≡〈xp2+1〉 −2γp−1

2 xp
2−1yp

3+1.
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From the above analysis after expanding t̃1 and reducing modulo xp
2+1 yields

t̃1 ≡〈xp2+1〉 2γp
3

0 γ
p−1
2 xp

2−1yp
3+1 + γp

3

0 x
p2zp

3

+ (c2p
2 − c2

2γ
p−1
0 − γ2p

0 )p
2

xp
2

yp
3

.

Furthermore, xp(p−1) D̂p Np−1
H (y) ≡〈xp2+1〉 − 2 γp

2

0 xp(p−1)yp
3+p and

D̂p2+2 γp
3

0 Np+1
H (y) ≡〈xp2+1〉 −2(γp

3

0 +γp
3+p2−p

0 )xp(p−1)yp
3+p+γp

3

0 x
p2zp

3

+(c2p
2 −c2

2γ
p−1
0 −γ2p

0 )p
2

xp
2

yp
3

.

All together gives

t1 := D̂p2 + 2 γp
3

0 Np+1
H (y)− (γp

3

0 + γp
3+p2−p

0 )

γp
2

0

xp(p−1) D̂p Np−1
H (y) + γp

3−p
0 γp−1

2 xp
2−1D̂p2−p+1

≡〈xp2+1〉

γp
3

0 x
p2zp

3

+ (c2p
2 − c2

2γ
p−1
0 − γ2p

0 )p
2

xp
2

yp
3

,

so we have LT(t1) = γp
3

0 x
p2zp

3
as asserted.

Denote w1 := x−p
2
t1, B1 := B ∪ {w1}. Now in B1 every non-trivial tête-à-tête

subducts to zero.

Lemma 3.3.4.3. For V a three-dimensional FH-module such that c1, c2 ∈ F/Fp,

γ3 = 0, B1 forms a SAGBI basis for F[V ]H . Furthermore, there is a single relation

constructed during the tête-à-tête subduction of (D̂p2 ,Np+1
H (y)).

Proof. Let A denote the algebra generated by B1. We have already proven that

B1 forms a SAGBI basis for A. Furthermore, from [8, Lemma 2.6.3] and [1,

Lemma 2.2.7] follows that (x, D̂, w1)F[V ]H is zero-dimensional and {x, D̂, w1} a

homogeneous system of parameters. Hence the extension A ⊂ F[V ]H is inte-

gral. Remark 3.3.4.1 implies that the field of fraction has not been affected, thus

F[V ]H [x−1] = A[x−1]. Therefore, the equality A = F[V ]H follows from an applica-

tion of Theorem 1.4.3.10.

Corollary 3.3.4.4. The lead term algebra of F[V ]H is the F-algebra generated by

the set LT(B2) = {x, yp+1, yp
2
, zp

3}.

As always we prefer the norm elements to generate our invariant ring when this is

feasible.
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Proposition 3.3.4.5. Assume V is a three-dimensional FH-module such that

c1, c2 ∈ F/Fp, γ3 = 0. Then F[V ]H = F[x, D̂,NH(y),NH(z)] is a hypersurface

with lead term algebra LT(F[V ]H) = F[x, yp+1, yp
2
, zp

3
].



Chapter 4

Four-dimensional case

4.1 Invariants of type-(1,1,1,1) representations.

4.1.1 Setup

Let V denote a four-dimensional left FH-module of socle type-(1, 1, 1, 1). In what

follows we investigate the structure of the invariant ring F[V ]H and compute the

invariant field F(V )H . We prove that F[V ]H is not Cohen-Macaulay and for p = 5

the existence of a partial hsop which fails to be regular sequence.

Recall from Theorem 2.2.0.5 the existence of a basis B consistent with the socle

series, such that the group of representing matrices is generated by

g1 =


1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1

 , g2 =


1 c1,2 c1,3 0

0 1 c1,2 c2,4

0 0 1 c1,2

0 0 0 1



78
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subject to the constraint c2,4 − c1,3 6= 0, with commutator

c = [g1, g2] =


1 0 0 c2,4 − c1,3

0 1 0 0

0 0 1 0

0 0 0 1

 .

We denote this group by ρB(H).

Lemma 4.1.1.1. The group ρB(H) is not a bireflection group.

Proof. The superdiagonal entries of a matrix gm1 g
n
2 coincide and they are all equal

to mc1,2 + n. Pick M = gm1
1 gn1

2 ...gmk
1 gnk

2 ∈ ρB(H) an arbitrary element. Then

the superdiagonal entries of M coincide too, and equal the sum of the superdiag-

onal entries of each pair g
mj

1 g
nj

2 . So it follows that if another generating set for

ρB(H) consisting of bireflections was chosen, then the generators must all have

zero superdiagonal entries. The last is a contradiction since the fixed point space

is two-dimensional and we drop into a different representation type.

From [12] we know that when an invariant ring is Cohen-Macaulay, then the group

of representing matrices is a generated by bireflections. Therefore, as a consequence

of the lemma we see that F[V ]H fails to be Cohen-Macaulay.

Remark 4.1.1.2. In what follows we always work with p > 3. Observe, that if

p = 3 then Jp4 6= I4 and J4 has order nine.

Before we investigate the structure of F[V ]H we compute the invariant field F(V )H .

4.1.2 The invariant field F(V )H

Think of the following series

{e} / H1 / H2 / H,
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where H1 = 〈g1〉 ∼= Cp, H2 = 〈g1, c〉 ∼= Cp × Cp. From Theorem 1.4.2.6 we know

that in order to compute F(V )H we need to find the invariants of minimum degree

at each variable.

We start by computing F(V )H1 . Let V4 denote the four-dimensional indecompos-

able representation of H1. Since g1 acts as the maximal four-dimensional Jordan

normal form, as FH1-module V = V4. Therefore, F(V )H1 = F(V4)Cp . Using

[22, Theorem 4.1] gives a SAGBI basis for F[V4]Cp and the minimum degree xi-

invariants of that basis is a generating set for F(V )H1 . To describe these invariants,

first we need to recall a notion defined in [22].

Definition 4.1.2.1. Let β ∈ F[x1, ..., xk] denote an arbitrary monomial. We call

β admissible if it is the lead monomial of a Cp-invariant in some polynomial

algebra F[x1, ..., xn]. We denote the corresponding Cp-invariant by inv(β).

For convenience we set always inv(xi1) = xi1. The following theorem implies that

every monomial can be used to construct an admissible monomial for sufficiently

large n.

Theorem 4.1.2.2. Assume that β is a monomial in F[x1, ..., xm−1]. Then for a

positive integer i ≥ 2, the monomial βxim ∈ F[x1, ..., xm−1][xm] is the lead mono-

mial of a Cp-invariant in some polynomial algebra F[x1, ..., xn] for sufficiently large

n.

Proof. For a proof, see, [22, Theorem 2.3].

We use this theorem to present two examples of invariants arising from admissible

monomials that we will need in this section. We follow the same notation.

Example 4.1.2.3. Assume that β = 1, i = 2,m = 2 and Cp = 〈g〉. Then from the

previous theorem we know that for sufficiently large n > 0 the monomial x2
2 is the

lead term of a Cp-invariant. Think of the polynomial f1 = x2
2−2x1x3. Applying the

twisted derivation ∆ = g − 1 ∈ FCp on f1 yields ∆(f1) = x2
1. Since g(x2x1) = x2

1,

define f2 = f1 − x1 x2 = x2
2 − 2x1x3 − x1x2. Applying ∆ this time returns zero,
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∆(f2) = 0. Therefore f2 is a Cp-invariant and inv(x2
2) = f2. Notice that this is

the integral invariant from the three-dimensional case.

Example 4.1.2.4. Similarly someone can think the case β = 1, i = 3,m = 2

and construct inv(x3
2). Following the same idea yields the Cp-invariant inv(x3

2) =

x3
2 + x2

1(3x4 − x2)− 3x1x2x3.

Now we are able to describe the generating set of the invariant field F(V )H1 .

Proposition 4.1.2.5. Let V4 denote the four-dimensional indecomposable repre-

sentation of Cp = 〈g1〉. Then F(V4)Cp = F(x1,Ng1(x2), inv(x2
2), inv(x3

2)). Further-

more, we obtain an equality of localized rings

F[V4]Cp [x−1
1 ] = F[x1,Ng1(x2), inv(x2

2), inv(x3
2)][x−1

1 ].

Proof. Let {x1,Ng1(x2), inv(x2
2), inv(x3

2)} be a subset of the SAGBI basis elements

of F[V4]Cp as described in [22, Theorem 4.1]. From the previous examples we have

inv(x2
2) = x2

2 − 2x1x3 − x1x2, inv(x3
2) = x3

2 + x2
1(3x4 − x2)− 3x1x2x3,

so they are of degree one in x3 and x4 respectively. Also x1 and Ng1(x2) are of mini-

mum degree, since Cp acts on the first two variables as Nakajima group. Therefore,

F(V4)Cp = F(x1,Ng1(x2), inv(x2
2), inv(x3

2)). Finally, since LCx4(inv(x3
2)) = x2

1 the

equality of localized rings follows from Theorem 1.4.2.6.

Using the equality F[V ]H1 [x−1
1 ] = F[x1,Ng1(x2), inv(x2

2), inv(x3
2)][x−1

1 ] and applying

the H2/H1
∼= 〈c〉-action yields

F[V ]H2 [x−1
1 ] = F[x1,Ng1(x2), inv(x2

2), inv(x3
2)]〈c〉[x−1

1 ].

Thus we need to describe F[x1,Ng1(x2), inv(x2
2), inv(x3

2)]〈c〉. To this end, we shift

the generators of the last algebra to degree one:

F[V ]H2 [x−1
1 ] = F[x1,Ng1(x2), inv(x2

2), inv(x3
2)]〈c〉[x−1

1 ]

= F[x1,
Ng1(x2)

xp−1
1

,
inv(x2

2)

x1

,
inv(x3

2)

x2
1

]〈c〉[x−1
1 ]

= F[x1, y1, y2, y3]〈c〉[x−1
1 ],



CHAPTER 4. FOUR-DIMENSIONAL CASE 82

where y1 := Ng1(x2)/xp−1
1 , y2 := inv(x2

2)/x1 and y3 := inv(x3
2)/x2

1.

Since we changed the basis, we have created a new representation for 〈c〉. Denote

this representation by ρc. Then ρc is fully determined by the action of c on this

new basis {x1, y1, y2, y3}. Follows easily that

x1 · c = x1, y1 · c = y1,

y2 · c = y2, y3 · c = y3 + 3(c2,4 − c1,3)x1,

therefore,

c 7→ ρc(c) =


1 0 0 3(c2,4 − c1,3)

0 1 0 0

0 0 1 0

0 0 0 1

 .
The last implies that 〈c〉 acts on the new basis as Nakajima group, hence the

invariant ring F[x1, y1, y2, y3]〈c〉 has a well-known description

F[x1, y1, y2, y3]〈c〉 = F[x1, y1, y2,Nc(y3)],

with Nc(y3) = yp3−(c2,4−c1,3)p−1xp−1
1 y3. After clearing the denominators minimally

we obtain

F[V ]H2 [x−1
1 ] = F[x1,Ng1(x2), inv(x2

2),Nc(inv(x3
2))][x−1

1 ], (4.1.1)

where Nc(inv(x3
2)) = inv(x3

2)p − (c2,4 − c1,3)p−1 x
3(p−1)
1 inv(x3

2), is of minimum x4-

degree.

Now applying H/H2
∼= 〈g2〉 on (4.1.1) gives

F[V ]H [x−1
1 ] = (F[V ]H2 [x−1

1 ])H/H2 = F[x1,Ng1(x2), inv(x2
2),Nc(inv(x3

2))]〈g2〉[x−1
1 ],

so this time we need to describe F[x1,Ng1(x2), inv(x2
2),Nc(inv(x3

2))]〈g2〉. Shift-

ing the generators to degree one again yields the following basis: {x1, z1 :=

Ng1(x2)/xp−1
1 , z2 := inv(x2

2)/x1, z3 := Nc(inv(x3
2))/x3p−1

1 }. Thus

F[V ]H [x−1
1 ] = F[x1, z1, z2, z3]〈g2〉[x−1

1 ].
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This time we have to understand how g2 acts on the basis elements. After explicit

computations we find

x1 · g2 = x1, z1 · g2 = z1 + (cp1,2 − c1,2)x1,

z2 · g2 = z2 + (c1,2(c1,2 − 1)− 2c2,4)x1,

z3 · g2 = z3 + 3(c1,3 − c2,4)pz1 + (κp − κ(c2,4 − c1,3)p−1)x1,

where κ = c3
1,2− c1,2 + 3 c1,4− 3 c1,2c1,4. Therefore, the induced representation this

time is

g2 7→ ρg2(g2) =


1 cp1,2 − c1,2 c1,2(c1,2 − 1)− c2,4 κp − κ(c1,3 − c2,4)p−1

0 1 0 3(c1,3 − c2,4)p

0 0 1 0

0 0 0 1

 .
Previously the action of c on the new basis was Nakajima, so we were able to apply

basic techniques to compute the ring of invariants. Here this is not the case and

F[x1, z1, z2, z3]〈g2〉 is not directly computable, so we follow a different approach.

The quotient group H/Z(H) acts on the first three-variables {x1, x2, x3}. Since

dimF(V H) = 1, the quotient V/V H defines a three-dimensional FH/Z(H)-module

and the canonical projection π : V → V/V H induces an inclusion of algebras

F[V/V H ]H/Z(H) ↪→ F[V ]H . Since H/Z(H) is a two elementary abelian p-group,

using [7] gives a description of F[V/V H ]H/Z(H). The generating set of the last

invariant ring contains the minimum degree invariants of F[V ]H in the first three

variables and the following theorem describes their lead monomials.

Theorem 4.1.2.6. ([2, Theorem 6.2]) Assume that G ∼= Cp × Cp = 〈e1, e2〉 is an

elementary abelian group of rank two and that

ρ : G→ GL3(k),

is a generic rank two representation over k := F(x11, x1,2, x21, x22). Then there

is a SAGBI basis of F[V3]G, B := {x1, f1, f2,NG(x3)}, consisting of homogeneous

polynomials with lead monomials

x1,LM(f1) = xp2,LM(f2) = xp+2
2 ,LM(NG(x3)) = xp

2

3 .
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We want to construct H-invariants with lead monomials as given in the last theo-

rem. Regarding x1 there is nothing to say. The stabilizer of x3 in F[V ]H has car-

dinality p, thus the lead term of the orbit product NH(x3) is LT(NH(x3)) = xp
2

3 .

So we need to construct f1, f2.

Lemma 4.1.2.7. Assume c2
1,2 − c1,2 − 2c2,4 6= 0. There exists an invariant f1 ∈

F[V ]H in the first three variables such that LT(f1) = xp2, given by the formula

f1 = Ng1(x2)− αxp−2
1 inv(x2

2),

where α =
cp1,2−c1,2

c21,2−c1,2−2c2,4
∈ F.

Proof. The commutator c leaves fixed the first three variables, so Ng1(x2) and

inv(x2
2) are H2-invariant. To verify that f1 ∈ F[V ]H we have only to check that

g2(f1) = f1. A routine computation proves our claim.

Because the denominator of α will occur in our analysis frequently, we set γ :=

c2
1,2 − c1,2 − 2 c2,4 and we assume γ 6= 0 from now on. Finding f2 is expected to be

a bit more difficult since one additional variable is required. However, we would

like to think f2 for convenience as an extension of f1. Setting f̃ := inv(x2
2)p − f 2

1

gives: inv(x2
2) · g2 = inv(x2

2) + γx2
1,Ng1(x2) · g2 = Ng1(x2) + (cp1,2 − c1,2)xp1, thus

f̃ · g2 = f̃ + γx2p
1 . Although f̃ is not an H-invariant, can be turned into one by

adding some extra terms.

Lemma 4.1.2.8. Assume c1,2 /∈ Fp and define

f2 = (inv(x2
2)p − f 2

1 − κxp1 Ng1(x2))/(2αxp−2
1 ),

where κ := γp

cp1,2−c1,2
. Then f2 ∈ F[V ]H and LT(f2) = xp+2

2 .

Proof. We observe that the second term in order in f 2
1 is −2αxp+2

2 xp−2
1 . Since

LT(inv(x2
2)p) = LT(f 2

1 ) and every term in xp1Ng1(x2) has at least a power of xp1, the

lead term must be 2αxp+2
2 xp−2

1 . Thus in f2 we obtain LT(f2) = xp+2
2 . Regarding

the first assertion, from the comments in the paragraph right before the lemma

we see that g2 fixes inv(x2
2)p− κxp1 Ng1(x2) and since f1 is an H-invariant, follows

that f2 ∈ F[V ]H .
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Now the only thing left to compute F(V )H is to construct the minimum x4-degree

invariant. Equation (4.1.1) gives F(V )H2 = F(x1,Ng1(x2), inv(x2
2),Nc(inv(x3

2))),

with Nc(inv(x3
2)) of minimum x4-degree, degx4(Nc(inv(x3

2))) = p. Due to the

inclusion of fields F(V )H ⊂ F(V )H2 we know that the minimum x4-degree H-

invariant must have degree at least p too. So if we were able to construct an H-

invariant with exactly that x4-degree, then it would be automatically a generator

of F(V )H .

Lemma 4.1.2.9. The polynomial defined by the formula

f3 := Nc(inv(x3
2))− b1x

p
1 N2

g1
(x2)− b2 x

2p
1 Ng1(x2) ∈ F[V ]H ,

where

b1 :=
3(c1,3 − c2,4)p

2(cp1,2 − c1,2)
, b2 :=

w

(cp1,2 − c1,2)
− 3(c1,3 − c2,4)p

2
∈ F

w = c3p
1,2 + 2cp1,2c

p
2,4− c

p
1,2− (c2,4− c1,3)p−1(c3

1,2 + 2c1,2c2,4− c1,2) and c1,2 /∈ Fp, forms

an H-invariant of minimum x4-degree. Moreover LT(f3) = x3p
2 .

Proof. As a reminder, we have inv(x3
2) = x3

2 + x2
1(3x4 − x2) − 3x1x2x3. From

the description of the orbit product Nc(y3) = yp3 − (c2,4 − c1,3)p−1xp−1
1 y3, where

y3 = inv(x2
3)/x2

1, we obtain

Nc(inv(x3
2))

x2p
1

=
inv(x3

2)

x2p
1

− (c2,4 − c1,3)p−1 xp−1
1

inv(x3
2)

x2
1

,

hence

Nc(inv(x3
2)) = inv(x3

2)p − (c2,4 − c1,3)p−1 x
3(p−1)
1 inv(x3

2)

follows that is has x4-degree p from the definition of inv(x3
2). A routine computation

gives

Nc(inv(x3
2)) · g2 := Nc(inv(x3

2)) + 3 (c1,3 − c2,4)p x2p
1 Ng1(x2) + w x3p

1 ,

for w = c3p
1,2 + 2cp1,2c

p
2,4 − c

p
1,2 − (c2,4 − c1,3)p−1(c3

1,2 + 2c1,2c2,4 − c1,2) ∈ F. Thus for

b1 :=
3(c1,3 − c2,4)p

2(cp1,2 − c1,2)
, b2 :=

w

(cp1,2 − c1,2)
− 3(c1,3 − c2,4)p

2
∈ F,

the resulting polynomial becomes an invariant, f3 ∈ F[V ]H .
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Lemma 4.1.2.10. F(V )H = F(x1, f1, f2, f3). In particular, localizing at x1 yields

F[V ]H [x−1
1 ] = F[x1, f1, f2, f3][x−1

1 ].

Proof. From the above discussion it is obvious that F(V/V H)H = F(x1, f1, f2) ⊂
F(V )H . Thus attaching the minimum x4-degree invariant on F(V/V H)H yields

the seeking equality F(V )H = F(x1, f1, f2, f3). The equality of localized rings now

follows from Theorem 1.4.2.6 since LCx4(f3) = x2p
1 .

4.1.3 The invariant ring F[V ]H

Set B′ := {x1, f1, f2, f3,NH(x3),NH(x4)}. We wish to apply SAGBI/divide-by-x

algorithm on B′. In B′ there are two non-trivial tête-à-têtes : (fp+2
1 , fp2 ), (f 3

1 , f3).

Lemma 4.1.3.1. Subducting the tête-à-tête (f 3
1 , f3) defines an invariant with lead

term: −2α2x
2(p−2)
1 xp+4

2 .

Proof. Let 〈xp−1
1 〉 / F[V ] denote the ideal generated by xp−1

1 . For f 3
1 , expanding

and reducing modulo 〈xp−1
1 〉 yields

f 3
1 ≡〈xp−1

1 〉 x
3p
2 − 3αxp−2

1 x
2(p+1)
2 .

Concerning f3 things are straightforward, since all the other terms but the leading

contain a power of xp−1
1 . Thus

f3 ≡〈xp−1
1 〉 x

3p
2 .

All together gives

f 3
1 − f3 ≡〈xp−1

1 〉 −3αxp−2
1 x

2(p+1)
2 .

So the tête-à-tête (f 3
1 , f3) has lead term: −3αxp−2

1 x
2(p+1)
2 . Define now

h̃1 := f 3
1 − f3 + 3αxp−2

1 f1f2.

We work modulo the ideal 〈xp+1
1 〉 / F[V ] and analyze each part of the last expres-

sion. Every term in f1 has x1-degree less than (p+ 1). So expanding and reducing
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modulo xp+1
1 gives

f 3
1 ≡〈xp+1

1 〉 N3
g1

(x2)−3αxp−2
1 x2p

2 inv(x2
2) ≡〈xp+1

1 〉 x
3p
2 −3xp−1

1 x2p+1
2 −3αxp−2

1 x2p
2 inv(x2

2).

For f3 we find

f3 ≡〈xp+1
1 〉 inv(x3

2)p − b1 x
p
1x

2p
2 .

The expression of f2 modulo 〈x3
1〉 is equivalent to reducing xp−2

1 f2 modulo 〈xp+1
1 〉.

Thus

f2 ≡〈x31〉 xp+2
2 − 2x3x

p
2x1 − (α + 1)/α · xp+1

2 x1 − 1/α · xp3x2
1 − κ/2α · x

p
2x

2
1,

implies

xp−2
1 f2 ≡〈xp+1

1 〉 x
p−2
1 xp+2

2 −2x3x
p
2x

p−1
1 −(α+1)/α ·xp+1

2 xp−1
1 −1/α ·xp3x

p
1−κ/2α ·x

p
2x

p
1.

(4.1.2)

Summarizing all the above yields

LT(h̃1) = (b1 −
3

2
(1 + κ))xp1x

2p
2 =

3

2

cp1,3 + cp2,4 − c
2p
1,2 + c1,2

cp1,2 − c1,2

xp1x
2p
2 .

Set

h1 = h̃1 −
3

2

cp1,3 + cp2,4 − c
2p
1,2 + c1,2

cp1,2 − c1,2

xp1f
2
1 .

This time we work modulo 〈x2p−3
1 〉. For xp1f

2
1 follows easily that: xp1f

2
1 ≡〈x2p−3

1 〉

xp1x
2p
2 . Thus no term of xp1f

2
1 exists in the quotient ring.

Expanding f 3
1 and reducing modulo 〈x2p−3

1 〉 gives

f 3
1 ≡〈x2p−3

1 〉 α
2 x

2(p−2)
1 xp+4

2 .

Similarly for f3 we obtain

f3 ≡〈x2p−3
1 〉 x

3p
2 − 3xp1x

p
2x

p
3.

However, these two terms of f3 both vanish in the quotient ring. The lead term

of f 3
1 cancels x3p

2 , while the forth term of (4.1.2) multiplied by 3αf1 in h̃1 cancels

−3xp1x
p
2x

p
3.
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Furthermore, in 3αxp−2
1 f1f2 the lead term of xp−2

1 f2 multiplied with the correspond-

ing of xp−2inv(x2
2) in f1 yields: −3α2x

2(p−2)
1 xp+4

2 . Thus, with the corresponding in

f 3
1 gives a copy of −2α2x

2(p−2)
1 xp+4

2 in h1 modulo 〈x2p−3
1 〉. From all the above

discussion we conclude that this can be the only term. Thus

LT(h1) = −2α2x
2(p−2)
1 xp+4

2 .

Lemma 4.1.3.2. The tête-à-tête (fp+2
1 , fp2 ) subducts to zero.

Proof. Remember from previous remark that H acts on the first three variables

as an elementary abelian p-group. Therefore, from [7, Theorem 6.2] we know

that {x1, f1, f2,NH(x3)} forms a SAGBI basis for F[x1, x2, x3]H ⊂ F[V ]. Thus

(fp+2
1 , fp2 ) subducts to zero necessarily.

We set s1 = x
−2(p−2)
1 h1 and B := {x1, f1, f2, s1,NH(x3)} with LT(B) = {x1, x

p
2, x

p+2
2 , xp+4

2 , xp
2

3 }.
Note that when s1 is attached, f3 is not needed anymore. Following Lemma 4.1.2.10

now we obtain the following theorem.

Theorem 4.1.3.3. F[V ]H [x−1
1 ] = F[x1, f1, f2, s1][x−1

1 ]. The corresponding lead

terms are: LT(f1) = xp2,LT(f2) = xp+2
2 ,LT(s1) = xp+4

2 .

In B we obtain three non-trivial tête-à-têtes : (fp+4
1 , sp1), (fp+4

2 , sp+2
1 ), (f 2

2 , f1s1).

Computations made on MAGMA for primes p = 5, 7 and 11 suggest that the

above tête-à-tête subductions lead to invariants with lead term some power of

x2. At the second stage the number of subductions increases significantly making

the computation of F[V ]H infeasible. From our experience this phenomenon is

explained from the fact that ρB(H) is not a bireflection group, hence F[V ]H not

Cohen-Macaulay.

4.1.4 Non Cohen-Macaulyness of F[V ]H

In this section we construct for p = 5 an hsop which is not a regular sequence. In

the introduction we proved that ρB(H) is not bireflection group, hence F[V ]H not



CHAPTER 4. FOUR-DIMENSIONAL CASE 89

Cohen-Macaulay. From Chapter 1 also we know that the ring of invariants F[V ]H

is always a graded finitely generated connected F-algebra. Thus we can exploit

the following theorem for this prime to prove that F[V ]H is not Cohen-Macaulay

by presenting an intrinsic argument.

Theorem 4.1.4.1. [8, Theorem, 2.8.1] Let R be a finitely generated connected

graded F-algebra which is Cohen-Macaulay. Then every homogeneous system of

parameters for R is a regular sequence for R.

The last theorem implies that if we were able to construct an hsop for F[V ]H which

is not a regular sequence, then we have proven our claim. We pick a partial hsop

that works for any prime number {x1,NH(x2),NH(x3)} and claim that when p = 5

cannot extend to a regular sequence. To prove this claim we need two things:

(1) there exist invariants f, h ∈ F[V ]H , such that

f NH(x3) + hNH(x2) ∈ (x1)F[V ]H ,

(2) f /∈ (x1,NH(x2))F[V ]H .

The computations that follow have been made on MAGMA over the finite field

F〈t〉 :=GF(pr) for r := 4, with ci,j := Random(F ) random over the Galois field

GF(p4).

The main idea of the following technique comes from [24, Corollary, 11.5]. First

we recall a construction from commutative algebra that will be used for the rest

of this section, toric ideals. Assume that we have a vector configuration, A =

{a1, ..., an} ⊂ Zd − {0}, i.e., the induced matrix has rank d. Then we can define a

map between commutative monoids as follows

π : Nn → Zd,

u = (u1, ..., un) 7→ Au,
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where A = [a1 · · · an] ∈ Zd×n. This induces an F-algebra homomorphism

π̂ : F[x1, ..., xn]→ F[t±1
1 , ..., t±1

d ],

xj 7→ taj := t
a1j
1 · · · t

adj
d .

Definition 4.1.4.2. The toric ideal associated to A , IA ⊂ F[x1, ..., xn], is the

kernel of the map π̂.

With respect any term order we can use generators of the toric ideal induced from

vectors of lead terms of a subset B ⊂ F[V ]H , to subduct tête-à-têtes . Think of a

polynomial algebra in n variables F[X1, ..., Xn] and the diagram

F[B]

F[X1, ..., Xn]

LT≺(F[B]),

φ

ψ

under the identifications Xi 7→ fi for φ and Xi 7→ LT≺(fi) for ψ. In princi-

ple this iterated process of subductions and attachments creates a chain of sets

B ⊂ B1 ⊂ ... ⊂ Bk and we obtain a SAGBI basis for F[V ]H precisely when

LT≺(F[Bk]) = LT≺(F[V ]H). Below we use lexicographic order with X1 < ... < Xn

for F[X1, ..., Xn].

Also we use the notation subd(t,A) to denote the subduction of a tête-à-tête t

against a list of invariants A, after is has been divided by the superfluous x1-power

and the leading coefficient. According to that notation for instance

s1 = subd
(
f 3

1 − f3, [x1, f1, f2, f3,NA(x3)H(x3)]).

Below follows a series of subductions and Gröbner basis calculations which con-

struct the invariants that prove our claim. We also remind you that B = {x1, f1, f2, s1,NH(x3)}.

Step 1: The Gröbner basis of the toric ideal IB for any p, is the set of binomials

{X4X2 − X2
3 , X

2
4X3 − X5

2 , X
3
4 − X3X

4
2 , X4X

3
3 − X6

2 , X
5
3 − X7

2}. Furthermore, the
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binomial X4X2 −X2
3 forms a generic choice and Subducting t2 := f 2

2 − s1f1 gives

an invariant s2 := subd(t2,B) with

LT(s2) = x2p+1
2 .

For p = 5, the other invariants obtained by the subdcutions s3 := subd(s1f
3
2 −

f 6
1 ,B), s4 := subd(f 5

1 − s2
1f2,B), s5 := subd(s3

1 − f2f
4
1 ,B), have lead terms

LT(s3) = x10
3 x

16
2 , LT(s4) = x10

3 x
11
2 , LT(s5) = x10

3 x
13
2 .

The last tête-à-tête subduction subd(f 7
1 − f 5

2 ,B), subducts to a polynomial with

lead term x25
3 .

Let B1 := B ∪ {s2, s3, s4, s5} denote the new list after the above elements have

been attached.

Step 2: Among Gröbner basis elements of IB1 there is a binomial X3X5 −X2X6.

Define s6 := subd(f2s1 − f1s2,B1), then

LT(s6) := x10
3 x

5
2.

Step 3: There exists an invariant s7 := subd(s2
1 − s2f2,B1) ∈ F[V ]H , with

LT(s7) = x10
3 x

7
2,

obtained by Subducting the reduced Gröbner basis element of IB1 , X
2
5 − X6X3.

Furthermore, for B2 := B1 ∪ {s6, s7}, the Gröbner basis element X4
2 − X5X6 of

IB2 subducts to an invariant s8 := subd(f 4
1 − s1s2,B2), with LT(s8) = x10

3 x
9
2.

Step 4: For B3 := B2 ∪ {s8}, we have a tête-à-tête subduction s9 := subd(s2
2 −

f 3
1 f2,B3), obtained by the binomial generator X7 −X2X8, of IB3 , with LT(s9) =

x20
3 . Additionally there are three more invariats, obtained from the subduction of

the Gröbner basis elements of IB3 , X
2
6 −X3

2X3, X7 −X5X4, X7 −X2
1X3. Denote

s10 := subd(s3 − f1s4,B3),

s11 := subd(s3 − s1s7,B3),

s1,2 := subd(s3 − f2s8,B3).
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the corresponding subductions. These invariants have lead term: x20
3 x

2
2. We can

confirm that including them in B3 along with s9, gives all the SAGBI elements up

to degree 27. Set B4 := B3 ∪ {s9, s10, s11, s1,2}.

Step 5: The Gröbner basis of IB4 , contains a binomial X3X16−X5X1,3 such that

the corresponding tête-à-tête subducts to s1,3 := subd(s1s9−f2s1,2,B4), with lead

term

LT(s1,3) = x25
3 x

2
2.

Furthermore, if the invariant subd(s1s9 − f2s1,2,B4) is included, then we have all

the SAGBI basis elements up to degree 29.

A synopsis of the above tête-à-tête subductions is given in the following table where

in the first row we have the subductions and in the second their corresponding lead

terms as depicted above:

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

x9
2 x11

2 x10
3 x

16
2 x10

3 x
11
2 x10

3 x
13
2 x10

3 x
5
2 x10

3 x
7
2 x10

3 x
9
2 x20

3 x20
3 x

2
2 x20

3 x
2
2 x20

3 x
2
2 x25

3 x
2
2

Table 4.1: Table of lead terms for p = 5.

Now we return to our initial assertion.

Proposition 4.1.4.3. For p = 5, the partial hsop {x1,NH(x2),NH(x3)} is not a

regular sequence.

Proof. Firstly, we notice that the set {x1,NH(x2)} is a regular sequence for F[V ]H .

So to prove our assertion, we need only to prove the following two arguments

(1) there exist invariants f, h ∈ F[V ]H , such that

f NH(x3) + hNH(x2) ∈ (x1)F[V ]H ,

(2) f /∈ (x1,NH(x2))F[V ]H .
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Then we have proven that NH(x3) is a zero divisor in F[V ]H/(x1,NH(x2))F[V ]H ,

hence {x1,NH(x2),NH(x3)} is not a regular sequence. We shall denote by LCi ∈ F

the coefficients during the MAGMA computations.

Set f := f 4
1 f2. Can be easily verified that LT(f NH(x3)) = x25

3 x
27
2 . From

Step 5 we know that (f 4
1 f2NH(x3), s1,3NH(x2)) is a tête-à-tête with lead term

LT(f 4
1 f2NH(x3)− s1,3NH(x2)) = LC1 x

20
3 x

32
2 , while by Step 4 we observe that the

polynomial s9 f1 NH(x2) has the same lead term, hence (f 4
1 f2NH(x3)−s1,3NH(x2),LC1 s9f1NH(x2))

is a tête-à-tête too. The lead term of the last tête-à-tête according to MAGMA is:

LT(f 4
1 f2NH(x3)−s1,3NH(x2)−LC1 s9f1NH(x2)) = LC2 x

10
3 x

42
2 , for some LC2 ∈ F.

Due to Step 3 we know that an invariant with lead term x10
3 x

7
2 exists. Thus along

with f 2
1 gives LT(s7f

2
1 NH(x2)) = x10

3 x
42
2 . So the tête-à-tête difference (f 4

1 f2NH(x3)−
s13NH(x2)− LC1 s9f1NH(x2),LC2 s7f

2
1 NH(x2)), yields a new invariant, with

LT(f NH(x3)− s1,3NH(x2)− LC1 s9f1NH(x2)− LC2 s7f
2
1 NH(x2)) = LC3 x

52
2 .

The last monomial though is the lead term of s3
1NH(x2). Their difference on

MAGMA returns an invariant with lead term of the form LC4x
20
3 x

31
2 x1. Therefore

f NH(x3)−s13NH(x2)−LC1 s9f1NH(x2)−LC2 s7f
2
1 NH(x2)−LC3 s

3
1NH(x2) ∈ (x1)F[V ]H .

So we can set h = s13+LC1 s9f1+LC2 s7f
2
1 +LC3 s

3
1 to obtain the first requirement.

For the second one, that is f /∈ (x1,NH(x2))F[V ]H , assume the contrary. Then

f = g1x1 + g2NH(x2), for g1, g2 ∈ F[V ]H . However, LT(f) = x27
2 , so the lead term

necessarily comes from the multiplication of g2NH(x2). This implies though, that

g2 has lead monomial x2
2 which is a contradiction since we have proved earlier that

the invariants in F[V ]H with the minimum x2-degree have degree at least five. So

such an invariant can’t exist.
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4.2 Invariants of type-(1,1,2) representations.

4.2.1 The invariant field F(V )H

Let V denote a four-dimensional left FH-module of type-(1, 1, 2). Then the group

of representing matrices consists of
1 c1,2 c1,3 c1,4

0 1 c2,3 c2,4

0 0 1 0

0 0 0 1

 , ci,j ∈ F.

We recall from Theorem 2.4.0.5 the existence of a basis B′ consistent with the

socle series, such that {J3,1, B̃} forms a generating set for ρB′(H) with

B̃ :=


1 b̃1,2 b̃1,3 0

0 1 0 1

0 0 1 0

0 0 0 1

 , b̃1,2, b̃1,3 ∈ F.

For computational reasons we change the generating set of H with something

equivalent. Instead of J3,1 we choose to work with

A =


1 1 0 0

0 1 0 1

0 0 1 0

0 0 0 1

 .

Notice that A ∼ J3,1, i.e., ∃P ∈ GL4(F) such that P−1AP = J3,1. A routine

computation gives
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P =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ,
and conjugating the second generator

P−1B̃P =


1 b1,2 0 b1,4

0 1 1 0

0 0 1 0

0 0 0 1

 .

Denote B := P−1B̃P and B for the resulting basis. Then ρB(H) = 〈A,B〉. Before

we start the invariant field F(V )H computation we observe the following.

Lemma 4.2.1.1. The group ρB(H) is a bireflection group.

Proof. To prove our assertion suffices to show that the fixed point space of each

generator is at least two-dimensional. For A follows immediately that V A =

SpanF{e1, e3}, while for B it is not difficult to see that V B = SpanF{e1, b1,4e2 −
b1,2e4}. Now our claim follows.

Consider the composition series 〈A〉 / 〈A,C〉 / 〈A,B〉 = H, where C := [A,B]

denotes the commutator element

C = ABA−1B−1 =


1 0 1 −b1,2

0 1 0 0

0 0 1 0

0 0 0 1

 .

The first step is to compute F[V ]〈A〉. Since 〈A〉 ∼= Cp we can apply [6, Theorem

3.2]. Notice that 〈A〉 acts on the first three-variables as Nakajima group, hence
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{x1, x2,NA(x3)} is a set of minimum xi-degree 〈A〉-invariants, i = 1, 2, 3. Further-

more, follows easily that f1 = x2
3−2x4x1−x1x3 ∈ F[V ]〈A〉 is of minimum x4-degree.

So the following lemma is a consequence of Theorem 1.4.2.6.

Lemma 4.2.1.2. F(V )〈A〉 = F(x1, x2,NA(x3), f1). Furthermore, we have an

equality of localized rings: F[V ]〈A〉[x−1
1 ] = F[B][x−1

1 ].

Define B := {x1, x2, f1,NA(x3)}. In B there is a unique non-trivial tête-à-tête:

(fp1 ,N
2
A(x3)).

Lemma 4.2.1.3. Subducting the tête-à-tête (fp1 ,N
2
A(x3)), yields an invariant with

lead term: −2xp4x
p
1.

Proof. Expanding the definition of the tête-à-tête difference yields: LT(fp1−N2
A(x3)) =

−xp+1
3 xp−1

1 .

Set h2 := fp1 −N2
A(x3)− 2xp−1

1 f
p+1
2

1 . We work modulo 〈xp+1
1 〉 / F[V ] to prove our

claim. Expanding fp1 −N2
A(x3) and reducing modulo 〈xp+1

1 〉 yields

fp1 −N2
A(x3) ≡〈xp+1

1 〉 2xp+1
3 xp−1

2 − 2xp4x
p
1 − x

p
3x

p
1.

Regarding xp−1
1 f

p+1
2

1 , reducing modulo 〈x2
1〉 the invariant f

p+1
2

1 , is equivalent to

reducing xp−1
1 f

p+1
2

1 modulo 〈xp+1
1 〉. Thus, since

f
p+1
2

1 ≡〈x21〉 x
p+1
3 + x4x

p−1
3 x1 + xp3x1,

we obtain

−2xp−1
1 f

p+1
2

1 ≡〈xp+1
1 〉 −2xp+1

3 xp−1
1 − 2x4x

p−1
3 xp1 − 2xp3x

p
1.

Adding up the two parts proves our claim: LT(h2) = −2xp4x
p
1.

Set f2 := h2 · (−x−p1 /2) and B′ := B ∪ {f2}. Then B′ is a SAGBI basis for

the algebra it generates since every tête-à-tête subducts to zero. Furthermore,

since LT(f2) = LT(NA(x4)) we can replace f2 with NA(x4) to obtain the following

result.
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Lemma 4.2.1.4. F[V ]〈A〉 = F[x1, x2, f1,NA(x3),NA(x4)].

Proof. From Lemma 4.2.1.2, follows that F[V ]〈A〉[x−1
1 ] = F[B′][x−1

1 ] since we just

added a new invariant. Also [8, Lemma 2.6.3] implies that the extension F[B′] ⊂
F[V ]〈A〉 is integral. Since B′ is a SAGBI basis the result is an application of

Theorem 1.4.3.10.

Applying the 〈A,C〉/〈C〉 ∼= 〈C〉-action on the equality of localized rings in Lemma

4.2.1.2 gives

F[V ]〈A,C〉[x−1
1 ] = (F[V ]〈A〉)〈A,C〉/〈A〉[x−1

1 ] = F[B]〈C〉[x−1
1 ].

To understand F[B]〈C〉[x−1
1 ] we shift the generators of F[B] to degree one y1 :=

x1, y2 := x2, y3 := NA(x3)/xp−1
1 , y4 := f1/x1 and set W = SpanF{y1, y2, y3, y4} for

the vector space they span. Then W is a right F〈C〉-module with C acting

y1 · C = y1, y2 · C = y2, y3 · C = y3, y4 · C = y4 + y2 − b1,2y1.

Now the 〈C〉-action on W is Nakajima, hence the next lemma is a consequence of

[8, Theorem 8.0.7].

Lemma 4.2.1.5. F[W ]〈C〉 = F[y1, y2, y3,NC(y4)].

As a result of the last lemma we obtain F[V ]〈A,C〉[x−1
1 ] = F[y1, y2, y3,NC(y4)][x−1

1 ].

Substituting and clearing out the denominators minimally gives

F[V ]〈A,C〉[x−1
1 ] = F[x1, x2,NA(x3)/xp−1

1 ,NC(f1/x1)][x−1
1 ] = F[x1, x2,NA(x3),NC(f1)][x−1

1 ].

Furthermore, the generators of the right hand side algebra in the last equality are

of minimum xi-degree for i = 1, 2, 3, 4. Regarding the only unknown invariant

NC(f1) = f1.(f1 + x2x1 − b1,2x
2
1)...(f1 + (p− 1)x2x1 − (p− 1)b1,2x

2
1)

we note that forms an invariant of degree 2p and x4-degree p.

Remark 4.2.1.6. It is worth mentioning that although NC(f1) consists a natural

choice of an 〈A,C〉-invariant of minimum x4-degree, it is not the invariant of

minimum degree with respect to that property.
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We would like to fix that since it is more convenient for our computations to

work with invariants of minimum degree with respect a given property. Since

LT(NC(f1)) = x2p
3 , LT(NA(x3)) = xp3, there is a non-trivial tête-à-tête (NC(f1),N2

A(x3)).

Subducting this tête-à-tête gives the seeking invariant.

Lemma 4.2.1.7. Subducting (NC(f1),N2
A(x3)) gives an invariant with lead term

2xp+1
3 xp−1

1 . Furthermore, it is of minimum x4-degree and after dividing by the

superfluous x1 power the resulting invariant is the minimum degree invariant with

respect to that property.

Proof. Set g̃1 := NC(f1) −N2
A(x3) and assume that there is another invariant f

of minimum degree. Then necessarily LT(f) = cxp4, for some c ∈ F. Let C =

{x1, x2,NA(x3), f} and think of the inclusion F[C ] ⊂ F[V ]〈A,C〉 ⊂ F[V ]〈A〉. Since

NA(x4) and f have the same lead term we have F[V ]〈A〉 = F[x1, x2,NA(x3), f1, f ].

The latter implies F[C ][f1] = F[V ]〈A〉, thus F[V ]〈A,C〉[f1] = F[V ]〈A〉. However from

Galois theory we know [F(V )〈A〉 : Quot(F[C ])] = |〈A,C〉|/|〈A〉| = p and this is a

contradiction. A basis for the field F(V )〈A〉 as a Quot(F[C ])-vector space is given

by the set of secondary invariants, which in our case is just the singleton {f1}. So

such an invariant f cannot exist.

To prove the first part of our claim, we work modulo 〈xp1〉 / F[V ]. Follows imme-

diately that NA(x3)2 ≡〈xp1〉 x
2p
3 −2xp+1

3 xp−1
1 . Regarding NC(f1), observe that every

term but the leading contain a copy of xp−1
1 . Among them there is a unique with

xp−1
1 in its expression, namely x2

3x
p−1
2 xp−1

1 . Thus NC(f1) ≡〈xp1〉 x
2p
3 + x2

3x
p−1
2 xp−1

1 .

So our claim follows: LT(g̃1) = 2xp−1
1 xp+1

3 .

Set g1 := g̃1/2x
p−1
1 . We shall use g1 to construct the minimum x4-degree H-

invariant.

From [8, Corollary 3.1.6] follows that the 〈C〉-action on F[V ] yields: F[V ]〈C〉 =

F[x1, x2, x3,NC(x4)]. Using the inclusion F[V ]H ⊂ F[V ]〈C〉, shows that the min-

imum x4-degree H-invariant has x4-degree p. Therefore, an H-invariant with x4-

degree exactly p is a generator of F(V )H .
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Lemma 4.2.1.8. The polynomial

f := ((p− 1)/2 · bp1,2x1 + (p+ 1)/2 · x2)N2
A(x3)− (xp2 − x

p−1
1 x2)g1

+ (((p+ 1)/2 · bp1,2 + (p− 1)/2 · b1,2)x1x
p
2 + (bp−1

1,2 b1,4 − bp14)xp+1
1 )NA(x3)

+

{
p−2∑
j=0

((p− 1)/2 · bp−j1,2 + (p+ 1)/2 · bp−1−j
1,2 + bp−2−j

1,2 b1,4)xp−j1 xj+1
2

}
NA(x3),

forms an H-invariant of minimum x4-degree with lead term LT(f) := (p + 1)/2 ·
x2p

3 x2.

Proof. Reducing g1 modulo 〈x1〉 / F[V ]H gives: g1 ≡〈x1〉 x
p+1
3 + (p− 1)/2 · x2

3x
p−1
2 .

Now it is easy to see that

f ≡〈x1〉 x2N
2
A(x3)− xp2 g1 ≡〈x1〉 (p+ 1)/2 · x2p

3 x2 − xp+1
3 xp2 − (p− 1)/2 · x2

3x
2p−1
2 ,

and our claim follows, LT(f) = (p+ 1)/2 · x2p
3 x2.

Clearly f is an A-invariant. Applying the twisted derivation ∆B = B − 1 ∈ FH

gives ∆B(NA(x3)) = NA(x3) + xp2 − x
p−1
1 x2 and

∆B(g1) = (bp−1
1,2 b1,4 − bp14)xp+1

1 + ((p+ 1)/2 · bp−1
1,2 + bp−2

1,2 b1,4)xp1x2 + (p− 1)/2 · xp−1
1 x2

2

+ (p− 1)/2 · b1,2x1x
p
2 + (p+ 1)/2 · xp+1

2 − bp1,2x1NA(x3) + x2NA(x3)

+

p−2∑
j=1

((p− 1)/2 · bp−j1,2 + (p+ 1)/2 · bp−1−j
1,2 + bp−2−j

1,2 b1,4)xp−j1 xj+1
2 .

Plugging into ∆B(f) these expressions returns zero. Thus f ∈ F[V ]H .

Set f := 2f . It is not difficult to see that for f ∈ F[x1, x2, x3][x4], the leading

coefficient is: LC(f) = 2(x1x
p
2 − xp1x2). Furthermore, since the H-action on the

first three variables is Nakajima, {x1, x2,NH(x3)} forms a set of minimum degree

invariants in the first three variables. Now we obtain the following theorem.

Theorem 4.2.1.9. F(V )H = F(x1, x2,NH(x3), f). Furthermore, we have an

equality of rings F[V ]H [l−1] = F[x1, x2,NH(x3), f ][l−1], where l = xp2x1 − x2x
p
1

and LT(NH(x3)) = xp
2

3 ,LT(f) = x2p
3 x2.
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Proof. Both equalities follow as an application of Theorem 1.4.2.6.

Remark 4.2.1.10. The invariant l showing up above is a rather interesting and

well-known example of invariant. We have Fp[x1, x2]SL2(Fp) = Fp[l, d1,2], where

d1,2 =
x1x

p2

2 −x
p2

1 x2
x1x

p
2−x

p
1x2

, denotes the Dickson invariant.

4.2.2 Non Cohen-Macaulyness of F[V ]H

Our next step is to investigate the structure of F[V ]H . Using MAGMA for small

primes reveals high computational complexity with the number of tête-à-tête sub-

ductions increasing significantly at each step. From our experience this implies that

F[V ]H is not Cohen-Macaulay. In this section we present computational evidence

that for p = 3, 5 and 7 this claim is true.

In particular, when p = 3 we are able to compute explicitly a generating set of

F[V ]H and with a simple counting argument prove that is not Cohen-Macaulay.

For p = 5, 7, although MAGMA does not return a generating set we prove the

existence of a partial hsop which fails to be a regular sequence.

More analytically, set H := {x1, x2,NB(g1)} where the last element denotes the

B-norm of g1. Since LT(NB(g1)) = x
p(p+1)
3 , from [8, Lemma 2.6.3] follows that H

is a partial hsop. We shall prove that exist invariants u1, u2 ∈ F[V ]H , such that

u1 NB(g1) + u2 x2 ∈ (x1)F[V ]H (4.2.1)

for every prime p and that for p = 5, 7 we have u1 /∈ (x1, x2)F[V ]H . This will show

that H does not act regularly on F[V ]H for these primes.

Observe that there is a tête-à-tête: (NB(g1)fp−1/2,N2
H(x3)x

p−1/2
2 ). We claim that

subducting this tête-à-tête constructs (4.2.1).

Lemma 4.2.2.1. Subducting (NB(g1)fp−1/2,N2
H(x3)x

p−1/2
2 ) yields invariants u1, u2 ∈

F[V ]H such that u1 NB(g1) + u2 x2 ∈ (x1)F[V ]H .

Proof. Set s := NB(g1)fp−1/2 − xp−1/2
2 N2

H(x3). To find out the lead term of s we

work modulo 〈x1〉 / F[V ].
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Follows easily that: N2
H(x3)x

p−1/2
2 ≡〈x1〉 x

2p2

3 x
p−1/2
2 −2xp

2+p
3 x

(2p2−p−1)/2
2 +x2p

3 x
(4p2−3p−1)/2
2 .

Recall from Lemma 4.2.1.8, g1 ≡〈x1〉 x
p+1
3 + (p − 1)/2 · x2

3x
p−1
2 , and from the

explicit description of ∆B(g1) that we have: g1 · B ≡〈x1〉 x
p+1
3 + xp3x2 + (p −

1)/2 · x2
3x

p−1
2 + (p + 1)/2 · xp+1

2 . More generally, we compute that: g1 · Bi ≡〈x1〉
xp+1

3 + ixp3x2 + (p − 1)/2 · x2
3x

p−1
2 + cix

p+1
2 , where c0 := (p − 1)/2, c1 = (p + 1)/2,

ci = ci−1 + i+ (p− 1)/2, i ≥ 2, or alternatively ci =
∑i

j=1 j+ i · c0, i ≥ 1. We claim

that
∏p−1

i=1 ci = 1. Since each ci can be written as a multiple of c0, ci = −i2c0,

∀i ≥ 1, follows that
∏p−1

i=1 −i2c0 = (
∏p−1

i=1 i
2
)
cp−1

0 = 1.

Using this observation we obtain a description of the norm

NB(g1) ≡〈x1〉 x
p(p+1)
3 − xp

2+1
3 xp−1

2 + λ1 · x2p
3 x

p(p−1)
2 + λ2 · xp+1

3 xp
2−1

2

+ (p− 1)/2 · x2
3x

(p+2)(p−1)
2 ,

where

λ1 :=
p− 1

2
+

∑
1≤i1<...<i(p−1)/2≤p−1

(
p− 1

2

)(p−1)/2

ci1ci2 ...ci(p−1)/2

+

p−1∑
j=1

∑
Sj

(
p− 1

2

)(p−1)/2

ci1ci2 ...ci(p−1)/2

 ,

λ2 := 1 +
∑

1≤i1<...<i(p−1)/2≤p−1

(
p− 1

2

)(p+1)/2

ci1ci2 ...ci(p−1)/2
,

with Sj = {1 ≤ i1 < ... < i(p−1)/2 ≤ p− 1 | i1, ..., i(p−1)/2 6= j}. We claim that λ1, λ2

can be simplified significantly. First off, |Sj| := |S|/2 where |S| =
(p−1

p−1
2

)
. Thus

(p − 1) · |S| = (p − 1)/2 · |S|. In fact, in the second sum of λ1, each summand

appears precisely (p− 1)/2 times. Therefore,

p−1∑
j=1

∑
Sj

c
(p−1)/2
0 ci1ci2 ...ci(p−1)/2

 =
p− 1

2
·

∑
1≤i1<...<i(p−1)/2≤p−1

c
(p−1)/2
0 ci1ci2 ...ci(p−1)/2

.

That is,

λ1 :=
p− 1

2
+
p+ 1

2
·

∑
1≤i1<...<i(p−1)/2≤p−1

c
(p−1)/2
0 ci1ci2 ...ci(p−1)/2

,

λ2 := 1 +
p− 1

2
·

∑
1≤i1<...<i(p−1)/2≤p−1

c
(p−1)/2
0 ci1ci2 ...ci(p−1)/2

.



CHAPTER 4. FOUR-DIMENSIONAL CASE 102

Our goal is to determine λ1, λ2. Let ∆B denote the twisted derivation corre-

sponding to B. Then we calculate ∆3
B(g1) = 0. Therefore, for X = ∆2

B(g1), Y =

∆B(g1), Z = g1, the set {X, Y, Z} defines a basis for a three-dimensional left FZ/p-

module. From [20][Lemma 6.1], we know that in such case an explicit description of

NB(g1) = A0+A1X+...+Ap−2X
p−2, with Ai ∈ F[Y, Z] can be given. Furthermore,

we know that each Ai has the following combinatorial description

Ai =


∑i+1

k=1 ξi,kZ
kY p−i−k, for 1 ≤ i ≤ (p− 1)/2∑p−i

k=1 ξi,kZ
kY p−i−k, for (p+ 1)/2 ≤ i ≤ p− 2,

where

A0 = Zp − ZY p−1, ξi,k =
(−1)i

2i(p− k)

(
p− 2k + 1

i− k + 1

)(
p− k
k − 1

)
.

We shall exploit the above description and the coefficients ξi,k to compute λ1. First

off, we compute that modulo 〈x1〉 we have: Y ≡〈x1〉 x
p
3x2 + (p+ 1)/2 ·xp+1

2 , X ≡〈x1〉
xp+1

2 , whereas earlier we computed also: Z ≡〈x1〉 x
p+1
3 + (p − 1)/2 · x2

3x
p−1
2 . We

claim that for i > 0 there is only one term in the expansion of NB(g1) above,

which contains x2p
3 x

p(p−1)
2 . Pick an arbitrary summand: ZkY p−i−kX i. To track

down where x2p
3 x

p(p−1)
2 lies, suffices to understand what k, i construct such term.

Explicitly we have

Zk ≡〈x1〉
k∑
j=0

(
k

j

)(
p− 1

2

)j
· x(p+1)(k−j)

3 x
(p−1)j
2 ,

Y p−i−k ≡〈x1〉
p−i−k∑
ω=0

(
p− i− k

ω

)(
p+ 1

2

)ω
· xp(p−i−k−ω)

3 x
(p+1)ω+(p−i−k)−ω
2 .

To obtain x2p
3 x

p(p−1)
2 , we must have p2− (ω+ j+ i)p+ (k+ j) = 2p (∗), for suitable

choices of ω, j ∈ Z+, k ≥ 1. Observe that always ω + j + i ≤ p− i− k + j + i ≤ p,

therefore ω + j + i = p − λ, for 0 ≤ λ ≤ p − 1. Let 1 ≤ i ≤ (p − 1)/2; since

k ≤ i+1 = (p+1)/2, follows that k+ j ≤ p+1 and if (∗) holds, we must have ω+

j+ i = p−1, k+j = p. The last equality implies: k = (p+1)/2, j = (p−1)/2. The

latter along with the initial assumption 1 ≤ i ≤ (p− 1)/2, gives i = (p− 1)/2. So

the only summand which contains the above term is ξ(p−1)/2,(p+1)/2Z
(p+1)/2X(p−1)/2.

Let now (p + 1)/2 ≤ i ≤ p − 2; then k ≤ (p − 1)/2, hence k + j ≤ p − 1. From
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the last now, it is straightforward that for such i, (∗) can never hold. Finally, for

i = 0 we observe that in A0, Zp contains x2p
3 x

p(p−1)
2 as well. Thus to determine

λ1 suffices to sum up the coefficients of the corresponding terms. We compute

ξ(p−1)/2,(p+1)/2 = (−1)(p+1)/2/2(p−3)/2, while for k = (p + 1)/2, j = (p − 1)/2, the

coefficient of x2p
3 x

p(p−1)
2 in Z(p+1)/2X(p−1)/2 is ((p−1)/2)(p−1)/2(p+1)/2. Therefore,

λ1 = ξ(p−1)/2,(p+1)/2 ·
(
p− 1

2

)(p−1)/2

· p+ 1

2
+
p− 1

2
.

All together yields λ1 = (p− 3)/2.

The last implies ∑
1≤i1<...<i(p−1)/2≤p−1

c
(p−1)/2
0 ci1ci2 ...ci(p−1)/2

= −2.

Therefore, substituting that to λ2 yields: λ2 = 2.

Now we return back to our initial claim. From the previous lemma again follows

that: f ≡〈x1〉 x
2p
3 x2−2xp+1

3 xp2 +x2
3x

2p−1
2 . Expanding fp−1/2, we obtain modulo 〈x1〉:

fp−1/2 ≡〈x1〉
p−1∑
j=0

x
p(p−1)−j(p−1)
3 x

p−1/2+j(p−1)
2 .

Working out the terms of the product NB(g1)fp−1/2 we observe that

NB(g1)fp−1/2 ≡〈x1〉 x2p2

3 x
p−1/2
2 + (λ1 − 1) · xp(p+1)

3 x
2p2−p−1/2
2

+ (λ1 + λ2) · xp
2+1

3 x
2p2+p−3/2
2 + (λ2 + (p− 1)/2) · x2p

3 x
4p2−3p−1
2

+ (p− 1)/2 · xp+1
3 x

4p2−p−3/2
2 .

Summarizing all the above gives: LT(s) = (λ1 + 1) · xp
2+p

3 x
(p−1)(2p+1)/2
2 .

Set s1 := s − (λ1 + 1) · x(p−1)(2p+1)/2
2 NB(g1). As previously we work modulo

〈x1〉 / F[V ]. Observe that the third term of NB(g1)fp−1/2 vanishes with the sec-

ond of NB(g1)x
(p−1)(2p+1)/2
2 since 2λ1 +λ2 +1 = 0. Therefore LT(s1) = ((p−1)/2−

λ1(λ1 + 1) + 1) · x2p
3 x

4p2−3p−1/2
2 = (2− (p− 3)2/4) · x2p

3 x
4p2−3p−1/2
2 .

Finally, we set s2 := s1 − (2 − (p − 3)2/4) · x(4p2−3p−3)/2
2 f . We claim that every

term in s2 contains an x1-power. From previous steps we know that the only
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remaining terms modulo 〈x1〉 must be xp+1
3 x

4p2−p−3/2
2 and x2

3x
(p+2)(p−1)
2 . For the

last monomial, observe that in s2 the coefficient is (λ1 + 1/2 − (2 − (p − 3)2/4)

and equals zero. Regarding the former, adding up all the corresponding terms in

s2 yields: (p− 1/2− (λ1 + 1)λ2 + 2(2− (p− 3)2/4)). Working out this coefficient

gives zero too. Therefore s2 ≡〈x1〉 0. Now our claim follows.

Define u1 := fp−1/2, u2 := −xp−3/2
2 N2

H(x3) + 1/2 · x
2p2−p−3

2
2 N2

B(g1) + 1/4 · x
4p2−3p−5

2
2 f

to be the invariants of equation (4.2.1).

In the beginning of the section we said that for p = 3 on MAGMA we can make

explicit computations. Using FundamentalInvariants() command and randomly

assigned variables we can compute a generating set for F[V ]H . Therefore with

this setup we will see that F[V ]H is not Cohen-Macaulay by a simple counting

argument. Regarding the claim u1 /∈ (x1, x2)F[V ]H when p = 5, 7, we exploit the

linear algebra method on MAGMA (see, [9, 3.1.1]) which computes an F-vector

space basis of F[V ]Hd , ∀d > 0. To prove that u1 /∈ (x1, x2)F[V ]H for these primes

our strategy is the following. Assuming the contrary implies that u1 = x1h1 +x2h2,

for h1, h2 ∈ F[V ]H with h2 homogeneous of degree deg(h2) = (2p2 − p− 3)/2 and

LT(h2) = x
p(p−1)
3 x

p−3/2
2 . Thus, to prove our assertion suffices for these primes to

show that h2 /∈ F[V ]Hd for d := (2p2 − p− 3)/2.

For the computations below we worked over the field F〈t〉:=GF(pr), for r :=

2 with c1,2,c2,4 := Random(F) being random over F and the polynomial ring

S<x4,x3,x2,x1>:=PolynomialRing(F,4,"grevlex"). Furthermore, we use the

command InvariantsOfDegree() to compute an F-basis of F[V ]Hd .

Case p = 5: Here we have d = 21, LT(h2) = x20
3 x2. InvariantsOfDegree()

returns a list of 33 basis element for F[V ]H21 with the following lead terms:

{x10
3 x

11−i
2 xi1 | i = 0, . . . , 10}, {x21−i

2 xi1 | i = 0, . . . , 21}.

Since any homogeneous invariant in F[V ]H21 is a linear combination of these basis el-

ements, assuming h2 ∈ F[V ]H21 implies that among them there is one with the same

lead term. However, x20
3 x2 is not in the above sets. Therefore, u1 /∈ (x1, x2)F[V ]H .
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Case p = 7: This time d = 44, LT(h2) = x42
3 x

2
2 and InvariantsOfDegree()

returns a list of 90 generators for F[V ]H44 with lead terms:

{x28
3 x

16−i
2 xi1 | i = 0, . . . , 14}, {x14

3 x
30−i
2 xi1 | i = 0, . . . , 29}, {x44−i

2 xi1 | i = 0, . . . , 44}.

Likewise, assuming h2 ∈ F[V ]H44 implies that a basis element with lead term x42
3 x

2
2

exists. However this is clearly a contradiction again, therefore u1 /∈ (x1, x2)F[V ]H .

So for p = 5 and 7 there is evidence that {x1, x2,NB(g1)} is an hsop which is

not a regular sequence, hence [8, Theorem 2.8.1] implies that F[V ]H is not Cohen-

Macaulay with this setup.

Finally we examine the case p = 3. Using the same MAGMA setup, the command

FundamentalInvariants() returns a set of eleven invariants {t1, t2, ..., t11} with

lead terms

LT(t1) = x1, LT(t2) = x2, LT(t3) = x6
3x2, LT(t4) = x9

3,

LT(t5) = x10
3 x2, LT(t6) = x12

3 , LT(t7) = x16
3 , LT(t8) = x20

3 ,

LT(t9) = x22
3 , LT(t10) = x26

3 , LT(t11) = x27
4 ,

such that F[V ]H = F[t1, ..., t11]. Since {x1, x2,NH(x3),NH(x4)} is always an hsop

we compute the secondary invariants over F[x1, x2,NH(x3),NH(x4)]. Using the

command SecondaryInvariants() gives back again eleven-invariants with lead

terms

LT(g1) = 1, LT(g2) = x6
3x2, LT(g3) = x10

3 x2, LT(g4) = x12
3 ,

LT(g5) = x16
3 , LT(g6) = x20

3 , LT(g7) = x22
3 , LT(g8) = x24

3 ,

LT(g9) = x26
3 , LT(g10) = x28

3 , LT(g11) = x32
3 .

such that

F[V ]H =
11∑
i=1

F[x1, x2,N(x3),N(x4)]gi.

The fact that F[V ]H is not Cohen-Macaulay has been reflected already. Be-

ing Cohen-Macaulay over a finitely generated algebra R = F[h1, ..., hn], where
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deg(hi) = di, is equivalent to

|{minimal generating set of F[V ]H as R-module}| =
n∏
i=1

di

/
|H|.

In our case the left-hand side is eleven, while the right-hand side 9 · 27/27 = 9. So

follows by a simple counting argument that F[V ]H is not Cohen-Macaulay.

Summarizing all the above we conjecture the following.

Conjecture 4.2.2.2. Let p be an odd prime. Then the ring of invariants F[V ]H is

not Cohen-Macaulay with the partial homogeneous system of parameters {x1, x2,NB(g1)}
acting non-regularly for p > 3.

4.3 Invariants of type-(1,2,1) representations.

4.3.1 Introduction

In this section we investigate invariants of type-(1, 2, 1) representations. We remind

that for this type we can only have representations with one of the following socle-

tabloids.
3
2 1
1

3
2 2
1

For simplicity we will refer to the left tabloid by (3, 21, 1) and the right by (3, 22, 1).

In each case we show that the group of representing matrices is generated by

bireflections and we compute the invariant field F(V )H . Furthermore, for rep-

resentations with socle-tabloid (3, 21, 1) we present computational evidence that

the invariants are not Cohen-Macaulay, while for those with socle-tabloid (3, 22, 1)

evidence that F[V ]H is a complete intersection.
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4.3.2 Invariants of type-(1, 2, 1) with socle-tabloid: (3, 21, 1)

Suppose V is a four-dimensional FH-module of type-(1, 2, 1) with socle-tabloid

(3, 21, 1). From Theorem 2.5.0.5 there is a choice of basis B, such that the group

of representing matrices ρB(H) is generated by the following matrices

A =


1 1 0 0

0 1 0 1

0 0 1 0

0 0 0 1

 , B =


1 b1,2 1 b1,4

0 1 0 b2,4

0 0 1 0

0 0 0 1

 ,

subject to the condition b1,2 − b2,4 6= 0, with commutator

C = [A,B] = ABA−1B−1 =


1 0 0 b2,4 − b1,2

0 1 0 0

0 0 1 0

0 0 0 1

 .

Before we proceed to explicit computations we observe the following.

Lemma 4.3.2.1. The group ρB(H) is a bireflection group.

Proof. Suppose B := {e1, e2, e3, e4}. To prove our assertion suffices to show that

the null space of the nilpotent part of each generator is at least two-dimensional.

For A follows immediately that dimF(ker(A− I)) = SpanF{e1, e3}, while for B it

is not difficult to see that dimF(ker(B − I)) = SpanF{e1, e2 − b1,2e3}. Hence our

assertion follows.

Now we investigate the structure of F[V ]H . In Lemma 4.3.2.3 we describe the

invariant field F(V )H and we use the invariant field generators to present evidence

that F[V ]H is not Cohen-Macaulay.

Recall from type-(1, 1, 2) case that F[V ]〈A〉 = F[x1, x2,NA(x3), f1, f2], where

f1 = x2
3 − 2x4x1 − x1x3, f2 = subd(fp1 −NA(x3), [x1, x2, f1,NA(x3)]).
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Localizing at x1 gives F[V ]〈A〉[x−1
1 ] = F[x1, x2,NA(x3), f1][x−1

1 ]. Hence shifting the

generators to degree one y1 = NA(x3)/xp−1
1 , y2 = f1/x1 and applying the quotient

group 〈A,C〉/〈A〉 ∼= 〈C〉 yields

F[V ]〈A,C〉[x−1
1 ] = F[x1, x2, y1, y2]〈C〉[x−1

1 ]. (4.3.1)

The action of C now is on a polynomial algebra and on this new basis we have

x1.C = x1, x2.C = x2,

y1.C = y1, y2.C = y2 − 2(b2,4 − b1,2)x1.

Using [8, Corollary 3.1.6] we obtain F[x1, x2, y1, y2]〈C〉 = F[x1, x2, y1,NC(y2) =

yp2 − (b2,4 − b1,2)p−1xp−1
1 y2]. Substituting in equation (4.3.1) and clearing the de-

nominators minimally gives

F[V ]〈A,C〉[x−1
1 ] = F[x1, x2,NA(x3), w1 := fp1 − (b2,4 − b1,2)p−1x

2(p−1)
1 f1][x−1

1 ].

In the resulting set of invariants {x1, x2,NA(x3), w1}, there is only one non-trivial

tête-à-tête : (N2
A(x3), w1).

Lemma 4.3.2.2. Subducting the tête-à-tête (w1,N
2
A(x3)) gives an invariant with

lead term: 2xp+1
3 xp−1

1 .

Proof. The lead term of the tête-à-tête difference is LT(w1−N2
A(x3)) = 2xp+1

3 xp−1
1 .

Since it cannot subduct more against {x1, x2,NA(x3), w1} our claim follows.

Define u1 := (w1 −N2
A(x3))/2xp−1

1 . Expanding the definition of u1 gives

u1 = xp+1
3 − xp4x1 + (p− 1)/2 · xp3x1 + ((b2,4 − b1,2)p−1 + 1)(p− 1)/2 · xp−1

1 x2
3

+ (b2,4 − b1,2)p−1x4x
p
1 + (b2,4 − b1,2)p−1(p+ 1)/2 · x3x

p
1.

We shall use u1 to describe the minimum x4-degree H-invariant. From [8, Corollary

3.1.6] again, the 〈C〉-action on F[V ] gives F[V ]〈C〉 = F[x1, x2, x3,NC(x4) = xp4 −
(b1,2 − b2,4) · xp−1

1 x4]. So the inclusion F[V ]H ⊂ F[V ]〈C〉 implies that the minimum

x4-degree H-invariant has degree at least p. Thus suffices to construct an H-

invariant with x4-degree exactly p. For the remaining generators of F(V )H observe
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thatH acts on the first three variables as a Nakajima group, hence {x1, x2,NH(x3)}
form minimum degree invariants on the first three variables.

Theorem 4.3.2.3. Assume b2,4 ∈ F \ Fp. Then the H-invariant

h1 = γ1 · xp1NA(x3) + γ2 · xp−1
1 x2NA(x3) + γ3 · xp2NA(x3) + γ4 ·N2

A(x3)− xp−1
1 u1

with

γ1 =
{ p−2∑

i=0

(−bp−1−i
1,2 b1,4b

i
2,4 + 1/2 · bp−1−i

1,2 b2+i
2,4 − 1/2 · bp−1−i

1,2 bi+1
2,4 )
}

+ bp1,4 − b1,4b
p−1
2,4

− 1/2 · bp1,2(bp2,4 − b2,4)/(bp2,4 − b2,4),

γ2 = (b1,2 − b2,4)p−1/(bp2,4 − b2,4), γ3 = −1/(bp2,4 − b2,4), γ4 = (bp1,2 − b2,4)/2(bp2,4 − b2,4),

is of minimum x4-degree with LCx4(h1) = xp1. Therefore, F(V )H = F(x1, x2,NH(x3), h1)

and we have an equality of rings: F[V ]H [x−1
1 ] = F[x1, x2,NH(x3), h1][x−1

1 ].

Proof. Obviously h1 ∈ F[V ]〈A〉. Applying the twistedB-derivation yields ∆B(h1) =

0, hence h1 ∈ F[V ]H . The equality of fields F(V )H = F(x1, x2,NH(x3), h1) now

follows from Theorem 1.4.2.6 since degx4(h1) = p. Finally, notice that the lead

term of h1 as a polynomial in x4 is xp1, thus F[V ]H [x−1
1 ] = F[x1, x2,NH(x3), h1][x−1

1 ]

as an application of Theorem 1.4.2.6 too.

Expanding the definition of h1 gives LT(h1) = −(bp1,2 − b2,4)/2(bp2,4 − b2,4) · x2p
3 .

Set B := {x1, x2,NH(x3), h1}. In B there is a unique non-trivial tête-à-tête :

(hp1,N
2
H(x3)). Explicit computations for p = 3, 5 and 7 on MAGMA, imply that

subducts to an invariant with lead monomial xp3x
p2

2 . However, the number of tête-

à-têtes for each of these primes increases significantly at each step. Due to the

high computational complexity explicit calculations are infeasible. However, from

our experience the latter implies that F[V ]H is not Cohen-Macaulay. Below we

collect evidence for the existence of a partial hsop which does not act regularly for

the above primes.

Lemma 4.3.2.4. Subducting the tête-à-tête (hp1,N
2
H(x3)), yields an invariant with

lead term: −2(bp
2

2,4 − b
p
2,4)/(b2p2

1,2 − 2bp
2

1,2b
p
2,4 + b2p

2,4) · xp3x
p2

2 x
p2−p
1 .
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Proof. Expanding the tête-à-tête difference gives LT(hp1 − N2
H(x3)) = 1/2(bp

2

1,2 −
bp2,4) · xp

2

3 x
p2

2 . Suppose ũ1 := hp1 − N2
H(x3) − 1/2(bp

2

1,2 − bp2,4) · xp
2

2 NH(x3). Set

c0 :=
∑p

i=0 b
p2−p−i(p−1)
2,4 for the coefficient of the second term of N2

H(x3) and c1 :=

(bp
2

1,2−b
p2

2,4)/2(bp
2

1,2−b
p
2,4) for the third of hp1. Define c := c1−c0. Expanding u1 gives

LT(u1) = c · xp(p+1)
3 x

p(p−1)
2 . Thus for the next step of the subduction we subtract

off c · xp
2−p

1 h
p+1
2

1 . This time LT(u1 − c · xp
2−p

1 h
p+1
2

1 ) = c′ · xp
2

3 x
p
2x

p2−p
1 , where c′ is the

difference between the coefficients of the second terms of u1 and xp
2−p

1 h
p+1
2

1 . Carry

on that procedure yields the following invariant

s̃1 := u1 − c · xp
2−p

1 h
p+1
2

1 + c′ · xp
2−p

1 xp2NH(x3) +

(p−1)/2∑
i=0

cix
p2−p
1 x

2(i+1)p
2 h

p−1
2
−i

1 ,

where ci is defined similarly to c′ for all i ∈ {0, ..., (p− 1)/2}. Using the definition

of each invariant and reducing modulo the ideal 〈xp
2−p+1

1 〉 / F[V ] gives

s̃1 ≡〈xp2−p+1
1 〉 −2(bp

2

2,4 − b
p
2,4)/(b2p2

1,2 − 2bp
2

1,2b
p
2,4 + b2p

2,4) · xp3x
p2

2 x
p2−p
1 .

Now our assertion follows.

Define s1 := −(b2p2

1,2 − 2bp
2

1,2b
p
2,4 + b2p

2,4)/2(bp
2

2,4 − b
p
2,4) · s̃1 and B′ := {x1, x2,NH(x3)}.

Then B′ is a partial hsop from [8, Lemma 2.6.3]. We are going to use s1 to provide

evidence that for certain primes B′ is not a regular sequence, hence F[V ]H not

Cohen-Macaulay.

Proposition 4.3.2.5. There exist invariants g1, g2 ∈ F[V ]H such that g1NH(x3)+

g2x2 ∈ (x1)F[V ]H .

Proof. Assume bp1,2−b2,4 6= 0. We assert that for ci := 1/(2(b2p
1,2−2bp1,2b2,4+b2

2,4)i+1),

s1NH(x3) − xp
2

2 h
p+1
2

1 + 1/(bp1,2 − b2,4) · xp(p+1)
2 NH(x3)

−
(p−3)/2∑
i=0

ci · xp(p+2)+2ip
2 h

p−1
2
−i

1 + 1/(bp
2

1,2 − b
p
2,4) · xp

2

2 s1 ∈ (x1)F[V ]H .

Set v1 := s1NH(x3) − xp
2

2 h
p+1
2

1 + 1/(bp1,2 − b2,4) · xp(p+1)
2 NH(x3). Expanding the

definition of v1 gives LT(v1) = c0 · xp
2−p

3 xp
2+p

2 . So we subtract off c0 · xp
2+2p

2 h
p−1/2
1
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which is the first summand. Inductively we find

LT(v1−
j∑
i=0

ci·xp(p+2)+2ip
2 h

p−1
2
−i

1 ) = cj+1x
p(p+1)

2
−p(j+1)

3 x
p(p+2)+2(j+1)p
2 , ∀j ∈ {0, ..., (p−5)/2}.

Finally for j = (p− 3)/2 we compute

LT(v1 −

(p−3)
2∑
i=0

ci · xp(p+2)+2ip
2 h

p−1
2
−i

1 ) = −1/(bp
2

1,2 − b
p
2,4) · xp3x

2p2

2 .

For the final step we subtract 1/(bp
2

1,2−b
p
2,4)·x2p2

2 s1 and we work modulo 〈xp1〉 / F[V ].

Expanding and reducing h1 modulo 〈xp1〉 gives

h1 ≡〈xp1〉 x
2p
3 + 2/(bp1,2 − b2,4) · xp3x

p
2 − 2(bp1,2 − b

p
2,4)/(bp1,2 − b2,4) · xp+1

3 xp−1
1 .

Analyzing the terms involved in v1 yields

s1NH(x3) ≡〈xp1〉 x
p(p+1)
3 xp

2

2 +

( p−1∑
i=0

(b
2p2−(i+1)p
1,2 − bp

2−ip
1,2 )bi2,4

)
· x2p2+1

3 xp−1
1 ,

xp
2

2 h
p+1
2

1 ≡〈xp1〉 x
p(p+1)
3 xp

2

2 + 1/(bp1,2 − b2,4) · xp
2

3 x
p2+p
2 +

(p−3)/2∑
i=0

ci · xp(p−1)−ip
3 x

p(p+2)+ip
2 .

x
p(p+1)
2 NH(x3) ≡〈xp1〉 xp

2

3 x
p(p+1)
2 .

Therefore all together implies

v1 ≡〈xp1〉
(p−3)/2∑
i=0

cix
p(p−1)−ip
3 x

p(p+2)+ip
2 +

(
p−1∑
i=0

(b
2p2−(i+1)p
1,2 − bp

2−ip
1,2 )bi2,4

)
· x2p2+1

3 xp−1
1 .

For the second part of the expression expanding the definition and reducing gives

−
(p−3)/2∑
i=0

ci · xp(p+2)+2ip
2 h

p−1
2
−i

1 + 1/(bp
2

1,2 − b
p
2,4) · xp

2

2 s1 ≡〈xp1〉 −
(p−3)/2∑
i=0

cix
p(p−1)−ip
3 x

p(p+2)+ip
2 .

Adding up the two parts returns

v1 −
(p−3)/2∑
i=0

ci · xp(p+2)+2ip
2 h

p−1
2
−i

1 + 1/(bp
2

1,2 − b
p
2,4) · xp

2

2 s1

≡〈xp1〉

(
p−1∑
i=0

(b
2p2−(i+1)p
1,2 − bp

2−ip
1,2 )bi2,4

)
· x2p2+1

3 xp−1
1 ∈ (x1)F[V ]H .
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Finally, if we define g1 = s1 and

g2 = xp
2−1

2 h
p+1
2

1 + 1/(bp1,2 − b2,4) · xp(p+1)−1
2 NH(x3)

−
(p−3)/2∑
i=0

ci · xp(p+2)+2ip−1
2 h

p−1
2
−i

1 + 1/(bp
2

1,2 − b
p
2,4) · xp

2−1
2 s1,

gives g1NH(x3) + g2x2 ∈ (x1)F[V ]H . Thus our assertion follows.

As a consequence of the proposition, if we were able to prove that s1 /∈ (x1, x2)F[V ]H

then B′ would be a partial hsop which is not a regular sequence, hence [8, The-

orem 2.8.1] would imply that F[V ]H is not Cohen-Macaulay. Albeit proving this

assertion for any prime p is a very difficult question in general, we are able to make

explicit computation for certain primes.

We use the MAGMA command InvariantsOfDegree over the field F〈t〉 :=GF(pr)

for r := 3 with bi,j := Random(F ) random and polynomial ring S<x4,x3,x2,x1> :=

PolynomialRing(F,4,"grevlex"). Assuming the contrary, s1 ∈ (x1, x2)F[V ]H

implies s1 = v1x1 + v2x2 for suitable v1, v2 ∈ F[V ]H . In particular, we must have

LT(v2) = xp3x
p2−1
2 and v2 ∈ F[V ]Hp2+p−1. So in order to have s1 /∈ (x1, x2)F[V ]H it

is enough to show that in InvariantsOfDegree(H,S,p2 + p− 1) no basis element

has lead monomial equal LM(v2). Below we present the lead monomials of basis

elements in InvariantsOfDegree(H,S,p2 + p− 1) for p = 3, 5 and 7:

(1) p = 3

{x11−i
1 xi2 | i = 0, ..., 11}, {x9

3x
2−i
1 xi2 | i = 0, 1, 2}, {x6

3x
5−i
1 xi2 | i = 0, ..., 5}

(2) p = 5

{x29−i
1 xi2 | i = 0, ..., 29}, {x25

3 x
4−i
1 xi2 | i = 0, ..., 4}, {x10

3 x
19−i
1 xi2 | i = 0, ..., 19},

{x20
3 x

9−i
1 xi2 | i = 0, ..., 9}

(3) p = 7

{x55−i
1 xi2 | i = 0, ..., 55}, {x49

3 x
6−i
1 xi2 | i = 0, ..., 6}, {x14

3 x
41−i
1 xi2 | i = 0, ..., 41},

{x28
3 x

27−i
1 xi2 | i = 0, ..., 27}, {x42

3 x
13−i
1 xi2 | i = 0, ..., 13}.
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Observe now that for p = 3, 5 and 7 there is no monomial x3
3x

8
2, x5

3x
24
2 or x7

3x
48
2

correspondingly. Thus, s1 /∈ F[V ]Hp2+p−1 with this setup. Hence for these primes

we have evidence that F[V ]H is not Cohen-Macaulay.

Conjecture 4.3.2.6. Assume V is a four-dimensional FH-module of type-(1, 2, 1)

with socle-tabloid
3
2 1
1

. Then F[V ]H is not Cohen-Macaulay for any prime p > 2.

4.3.3 Invariants of type-(1, 2, 1) with socle-tabloid: (3, 22, 1)

Suppose V is a four-dimensional FH-module of type-(1, 2, 1) with socle-tabloid

(3, 22, 1). From Theorem 2.5.0.7 there is a choice of basis B such that the group

of representing matrices ρB(H) is generated by the following matrices

A =


1 a1,2 a1,3 0

0 1 0 0

0 0 1 1

0 0 0 1

 , B =


1 b1,2 b1,3 0

0 1 0 1

0 0 1 0

0 0 0 1

 ,

with commutator

C = [A,B] = ABA−1B−1 =


1 0 0 a1,2 − b1,3

0 1 0 0

0 0 1 0

0 0 0 1

 .

We first compute F(V )H . It is clear that x1,NH(x2) = xp2 − xp−1
1 x2,NH(x3) =

xp3 − xp−1
1 x3 are minimum degree invariants since the action on the first three

variables is Nakajima. For the last one we find a lower bound. Since the 〈C〉-action

on F[V ] is Nakajima F[V ]〈C〉 = F[x1, x2, x3,NC(x4) = xp4 − (a1,2 − b1,3) · xp−1
1 x4].

Hence the inclusion F[V ]H ⊂ F[V ]〈C〉 implies that the minimum x4-degree H-

invariant has x4-degree at least p as well.
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Theorem 4.3.3.1. The H-invariant

g̃1 = bp1,2x
p+1
3 + ap1,2x

p
3x2 + bp1,3x3x

p
2 + ap1,3x

p+1
2 − xp4x1 − (

p−1∑
i=0

ap−1−i
1,2 b1,2b

i
1,3 + bp1,2)/2 · x2

3x
p−1
1

−
p∑
i=0

ap−i1,2 b
i
1,3 · x3x2x

p−1
1 − (

p−1∑
i=0

ap−1−i
1,2 a1,3b

i
1,3 + ap1,3)/2 · x2

2x
p−1
1 +

p−1∑
i=0

ap−i1,2 b
i
1,3 · x4x

p
1

+ (

p−1∑
i=0

ap−1−i
1,2 b1,2b

i
1,3 − b

p
1,2)/2 · x3x

p
1 + (

p−1∑
i=0

ap−1−i
1,2 a1,3b

i
1,3 − a

p
1,3)/2 · x2x

p
1

is of minimum x4-degree LCx4(g̃1) = −x1. Therefore, F(V )H = F(x1,NH(x2),NH(x3), g̃1)

and we have an equality of rings: F[V ]H [x−1
1 ] = F[x1,NH(x2),NH(x3), g̃1][x−1

1 ].

Proof. Applying the twisted derivations ∆A,∆B yields zero in both cases. Since

degx4(g̃1) = p follows from the last paragraph that must be of minimum x4-

degree, hence the field equality is an application of Theorem 1.4.2.6. Finally,

notice that the lead term of g̃1 as a polynomial in x4 is −x1, thus F[V ]H [x−1
1 ] =

F[x1,NH(x2),NH(x3), g̃1][x−1
1 ] as a consequence of Theorem 1.4.2.6 too.

Define g1 := g̃1/b
p
1,2 so that LT(g1) = xp+1

3 and set B := {x1,NH(x2),NH(x3), g1}.
We wish to apply SAGBI/divide-by-x algorithm on B. In B there is only one

non-trivial tête-à-tête : (Np+1
H (x3), gp1).

Lemma 4.3.3.2. Subducting the tête-à-tête (Np+1
H (x3), gp1), yields an invariant

with lead term: (ap1,2b
p2−p
1,2 − ap

2

1,2)/bp
2

1,2 · x
p2

3 x2x
p−1
1 .

Proof. Set

s̃1 := Np+1
H (x3)− gp1 + ap

2

1,2/b
p2

1,2 ·NH(x2)Np
H(x3)

+ bp
2

1,3/b
p2

1,2 ·N
p
H(x2)NH(x3) + ap

2

1,3/b
p2

1,2 ·N
p+1
H (x2) + xp−1

1 Np−1
H (x3)g1.

Follows by construction that s̃1 ∈ F[V ]H . Expanding and analyzing the definition

gives: LT(s̃1) := (ap1,2b
p2−p
1,2 − ap

2

1,2)/bp
2

1,2 · x
p2

3 x2x
p−1
1 . Since the resulting lead term

cannot be subducted more s̃1 must be the seeking subduction.
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Let s1 := bp
2

1,2/(a
p
1,2b

p2−p
1,2 − ap

2

1,2) · s̃1x
−(p−1)
1 and B1 := {x1,NH(x2),NH(x3), g1, s1}.

Note that degx4(s1) = p2 with monomial term: xp
2

4 x1. This time we have two

non-trivial tête-à-têtes : (sp1,N
p2

H (x3)NH(x2)), (s
p(p+1)
1 , gp

3

1 Np+1
H (x2)).

Lemma 4.3.3.3. Subducting the tête-à-tête (sp1,N
p2

H (x3)NH(x2)) yields an invari-

ant with lead term: 1/(ap
2

1,2b
p3−p2
1,2 − ap

3

1,2) · xp
3

4 x
p
1.

Proof. Expanding the definition of the tête-à-tête difference gives:

LT(sp1 −Np2

H (x3)NH(x2)) = −bp
3−p2

1,2 bp
2

1,3/(a
p3

1,2 − a
p2

1,2b
p3−p2
1,2 ) · xp

2−p+1
3 xp

2

2 .

After explicit calculations we obtain the following expression for the first steps of

the subduction

u1 := sp1 −Np2

H (x3)NH(x2) + bp
3−p2

1,2 bp
2

1,3/(a
p3

1,2 − a
p2

1,2b
p3−p2
1,2 ) ·Np

H(x2)Np2−p+1
H (x3)

+ ap
2

1,3b
p3−p2
1,2 /(ap

3

1,2 − a
p2

1,2b
p3−p2
1,2 ) ·Np+1

H (x2)Np2−p
H (x3)

− bp
3

1,3/(a
p3

1,2 − a
p2

1,2b
p3−p2
1,2 ) ·Np2

H (x2)NH(x3)

− ap
3

1,3/(a
p3

1,2 − a
p2

1,2b
p3−p2
1,2 ) ·Np2+1

H (x2)− xp−1
1 Np2−p

H (x3)s1,

with LT(u1) = bp
2−p

1,2 bp1,3/(a
p2

1,2 − a
p
1,2b

p2−p
1,2 ) · xp

3−p+1
3 xp2x

p−1
1 . Consider the following

invariant

u2 := u1 − xp−1
1 ·

{ p2−p∑
i=1

Ni
H(x2)(ci,1 ·Np2−1−i

H (x3)g1 + ci,2 ·Np2−p−i
H (x3)s1)

}
+ xp−1

1 ·
{ p−1∑

i=1

ci,3 ·Np2−p+i
H (x2)Np−1−i

H (x3)g1

}
,

and set

vj := u1−xp−1
1 ·
{ j∑

i=1

Nj
H(x2)(cj,1·Np2−1−j

H (x3)g1+cj,2·Np2−p−j
H (x3)s1)

}
, ∀j ∈ {1, ..., p2−p}.

Now define cj,1 = LC(vj−1), cj,2 = LC(vj−1 − cj,1 · xp−1
1 Nj

H(x2)Np2−1−j
H (x2)g1). An-

alyzing vj yields LT(vj) = cj+1,1 · xp
3−p(j+1)+1

3 x
p(j+1)
2 xp−1

1 , for all j ∈ {1, ..., p2 − p}.
By definition, the coefficients ensure that the lead term LT(vj) is canceled by

LT(cj+1,1 · xp−1
1 Nj+1

H (x2)Np2−j−2
H (x3)g1) at each stage and similarly that LT(vj −
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cj+1,1·xp−1
1 Nj+1

H (x2)Np2−j
H (x3)g1) is canceled by LT(cj+1,2·xp−1

1 Nj+1
H (x2)Np2−p+j

H (x3)s1).

Finally, we have LM(up2−p) = xp
2−p+1

3 xp
3−p2

2 xp−1
1 . Hence can be subducted by the

last summand in u2: cp−1,3 ·Np2−p+1
H (x2)Np−2

H (x3)g1, for cp−1,3 = LC(vp2−p). So we

set cj,3 = LC(vp2−p −
∑p−1

k=j ck,3 ·N
p2−p+i
H (x2)Np−1−i

H (x3)g1). The last ensures that

in the resulting u2 every term has a copy of xp1. Since we are using grevlex order

with x1 < x2 < x3 < x4, the term 1/(ap
2

1,2b
p3−p2
1,2 − ap

3

1,2) · xp
3

4 x
p
1 in sp1 must be the

lead term of u2 and the claim follows.

Define s2 := (ap
2

1,2b
p3−p2
1,2 − ap

3

1,2) · u2/x
p
1 and B1 := {x1,NH(x2),NH(x3), g1, s1, s2}.

Explicit computations on MAGMA over F〈t〉 :=GF(pr) for r := 4 with ai,j, bi,j :=

Random(F ), reveal that against B1 the tête-à-tête (s
p(p+1)
1 , gp

3

1 Np+1
H (x2)) subducts

to zero when p = 3, 5 and 7. Therefore, for these primes we collect evidence

that B1 is a SAGBI basis. Furthermore, since F[B1] ⊂ F[V ]H is integral with

F[B1][x−1
1 ] = F[V ]H [x−1

1 ] follows that F[V ]H = F[B1] from Theorem 1.4.3.10.

Hence F[V ]H is a complete intersection with embedding dimension six. However,

even for small primes the complexity of computations is forbidding for an explicit

description. When p = 5, MAGMA returns 1500 steps during the tête-à-tête

subduction and this number increases significantly when one attempts the case

p = 7. Therefore, we conjecture the following.

Conjecture 4.3.3.4. Assume that V is a four-dimensional FH-module of type-

(1, 2, 1) and socle-tabloid
3
2 2
1

. Then F[V ]H is a complete intersection with embed-

ding dimension six and two relations constructed during the tête-à-tête subductions.

4.4 Invariants of type-(2,1,1) representations.

4.4.1 Introduction

In this section we investigate the structure of the invariant rings of type-(2, 1, 1)

representations. We remind you that the image of these representations consists
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of elements of the form 
1 0 c1,3 c1,4

0 1 c2,3 c2,4

0 0 1 c3,4

0 0 0 1

 , ci,j ∈ F.

Recall from Theorem 2.3.0.6 the existence of a basis B′ so that ρB′(H) is generated

by

J1,3 :=


1 0 0 0

0 1 1 0

0 0 1 1

0 0 0 1

 , B̃ :=


1 0 b1,3 b1,4

0 1 b2,3 b2,4

0 0 1 b3,4

0 0 0 1


for bi,j ∈ F. From [8, Theorem 3.9.2], we know that F[V ]H is Cohen-Macaulay

since dimF(V H) = 2. However we have to distinguish between two cases, b1,3 6= 0

and b1,3 = 0.

4.4.2 Case b1,3 6= 0

We start by considering the case b1,3 6= 0. From Theorem 2.3.0.6 -(1), we fix a

basis B such that the group of representing matrices ρB(H) is generated by

A :=


1 0 0 0

0 1 1 0

0 0 1 1

0 0 0 1

 , B :=


1 0 1 0

0 1 0 a

0 0 1 b

0 0 0 1


for a, b ∈ F.

In this section we compute the invariant field F(V )H . To this end, assume a, b 6= 0

and think of the composition series 〈A〉 / 〈A,C〉 / 〈A,B〉 = H, where

C = [A,B] =


1 0 0 −1

0 1 0 b

0 0 1 0

0 0 0 1

 .
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Notice that F[V ]〈A〉 = F[V3 ⊕ V1]〈A〉. Therefore,

F[V ]〈A〉 = F[V3]〈A〉 ⊗ F[V1] = F[x1, δ,NA(x2),NA(x3), x4]. (4.4.1)

The latter follows from the three-dimensional case in [7, Theorem 4.3], plus a

generator in degree one induced from the trivial representation. As a reminder,

we have set δ = x2
2 − 2x3x1 − x2x1.

For simplicity let H2 = 〈A,C〉. On localization level

F[V ]〈A〉[x−1
1 ] = F[x1, δ,NA(x2), x4][x−1

1 ].

Therefore applying the 〈C〉-action yields: F[V ]H2 [x−1
1 ] = F[x1, δ,NA(x2), x4]〈C〉[x−1

1 ].

As it is customary to do, we shift to degree one the algebra generators y1 :=

δ/x1, y2 := NA(x2)/xp−1
1 , and think of the new F〈C〉-module spanned by these

elements. On this new basis we compute

x1 · C := x1 , y1 · C := y1 − 2bx1,

y2 · C := y2 , x4 · C := x4 − x1.

The 〈C〉-action is Nakajima, hence F[x1, y1, y2, x4]〈C〉 = F[x1, x4−1/2b·y1, y2,NC(x4)].

Thus, F[V ]H2 [x−1
1 ] = F[x1,NA(x2), δ − 2bx1x4,NC(x4)][x−1

1 ] after clearing the de-

nominators minimally. Set B := {x1, g1 := δ − 2bx1x4,NA(x2),NC(x4)}. In B

there is a unique non-trivial tête-à-tête: (N2
H2

(x2), gp1).

Lemma 4.4.2.1. Subducting (N2
H2

(x2), gp1) yields an invariant with lead term:

2bpxp3x
p
1.

Proof. Observe that LT(N2
H2

(x2) − gp1) = −2xp+1
2 xp−1

1 . Therefore we set t1 :=

N2
H2

(x2) − gp1 + 2g
(p+1)/2
1 xp−1

1 . The second term in order inside g
(p+1)/2
1 xp−1

1 is

4bx4x
p−1
2 xp1. Since the corresponding term in N2

H2
(x2) − gp1 is 2bxp4x

p
1, follows

LT(t1) := 2bxp4x
p
1. Finally, let t2 := t1 − 2b xp1 NC(x4). Expanding the definition of

t2 is easy to see that 2bpxp3x
p
1.

Set g2 := t2/2b
pxp1 and B1 := {x1, g1,NH2(x2), g2,NH2(x4)}. This time in B1 there

is no non-trivial tête-à-tête , hence forms a SAGBI basis of F[V ]H2 .
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Lemma 4.4.2.2. F[V ]H2 = F[x1, g1,NH2(x2), g2,NH2(x4)], where LT(g1) = x2
2,

LT(NH2(x2)) = xp2,LT(g2) = xp3,LT(NH2(x4)) = xp4. Furthermore, we have an

equality of fields F(V )H2 = F(x1,NH2(x2), g1, g2).

Proof. Follows by an application of Theorem 1.4.2.6 and 1.4.3.10.

Now we compute F(V )H . On the first two variables the action is Nakajima, hence

{x1,NH(x2)} form invariants of minimum degree with LT(NH(x2)) = xp
2

2 . Also a

routine computation shows that

κ1 := xp2 +
bp − b

2γ
x2

2x
p−2
1 − bp+1 − b2

γ
x4x

p−1
1 − bp − b

γ
x3x

p−1
1 − 2a+ bp − b2

2γ
x2x

p−1
1 ,

for γ := a+ (p− 1)/2 · b2 + (p+ 1)/2 · b, is a minimum x4-degree H-invariant. The

only thing left is the minimum x3-degree invariant. From Lemma 4.4.2.2 and the

field inclusion F(V )H ⊂ F(V )H2 , we know that has degree at least p.

Theorem 4.4.2.3. The polynomial

κ2 := x2p
2 − 2bp−1xp+1

2 xp−1
1 + 2(bp−1 − 1)xp3x

p
1 + (−2ap + 2abp−1 + bp − b)/b · xp2x

p
1

+ b2(p−1)x2
2x

2(p−1)
1 − 2bp−1(bp−1 − 1)x3x

2p−1
1 + (2ap − 2abp−1 − b2p−1 + bp)/b · x2x

2p−1
1 ,

forms an H-invariant of minimum x3-degree. Therefore, F(V )H = F(x1,NH(x2), κ1, κ2)

and since LCx4(κ1) = xp−1
1 we have an equality of localized rings: F[V ]H [x−1

1 ] =

F[x1,NH(x2), κ1, κ2][x−1
1 ].

Remark 4.4.2.4. For the above computations we assumed a, b ∈ F∗. When a =

b = 0, think the composition series H1 = 〈B〉 / H2 = 〈B,C〉 / H = 〈A,B〉.
Then [8, Corollary 3.1.6] implies F[V ]H1 = F[x1, x2, x3,NB(x4)] and applying the

H2/H1
∼= 〈C〉-action, F[V ]H2 = (F[V ]H1)H2/H1 = F[x1, x2, x3,NH2(x4)]. Since

the last algebra is polynomial, the H/H2
∼= 〈A〉-action on F[V ]H2 gives F[V ]H =

F[x1, x2, x3,NH2(x4)]〈A〉. Thus, an application of [7, Theorem 4.3] for W = Cp

yields F[V ]H = F[x1, δ,NH(x2),NH(x3),NH(x4)], where δ = x2
2 − 2x3x1 − x2x1.
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4.4.2.5 Complete intersection property of F[V ]H

Set B := {x1,NH(x2), κ1, κ2}. In principle, we can extend B to a SAGBI basis

for any p. However, computations on MAGMA reveal that F[V ]H depends on the

choice of p. As a result, F[V ]H does not have a closed form. Below we investigate

subductions of B that exist for all p ≥ 3 and explicitly present the tête-à-tête

subductions for small primes.

Set S := [x1, κ1, κ2,NH(x2),NH(x4)] for the list of minimum degree invariants and

H-norm of x4. Note that the x3-norm has not been included. From the definition

of H in that case, we have LT(NH(x3)) = xp
3

3 . However as we will see below

NH(x3) is not the right invariant. For p = 5, 7 during the tête-à-tête subduction

another one with lead term xp
2

3 is constructed.

We seek for non-trivial tête-à-têtes in S. The first tête-à-tête subduction is that of

(κ2, κ
2
1). Set h1 := subd(κ2−κ2

1, S) after normalization. Expanding the definition

of h1 shows that LT(h1) = xp+2
2 . When h1 is attached to S, κ2 is redundant. So

let S1 := [x1,NH(x3), κ1, h1,NH(x4)] denote this new list.

The second tête-à-tête subduction is subd(NH(x2) − κp1, S1). Likewise, let h2

denote this subduction after normalization. Expanding again the definition gives

LT(h2) = xp+1
2 . Now we can drop the norm NH(x2) from S1 and attach h2 instead.

Define S2 := [x1, κ1, h1, h2,NH(x3),NH(x4)] for the new list.

Finally, in S2 there is an additional generic non-trivial tête-à-tête , (h2
1, h2κ1). The

latter defines an invariant h3 := (h2
1−h2κ1)/(LC(h2

1−h2κ1)x1), LT(h3) = xp4x
p+1
2 .

The new list S3 := [x1,NH(x3), κ1, h1, h2, h3,NH(x4)] consists of H-invariants for

any prime p.

Below we investigate the cases p = 3, 5 and 7. For each of these primes we use

MAGMA to extend S3 to a SAGBI basis. Furthermore, we are able to count the

number of minimal algebraic relations and based on this evidence we conjecture

that F[V ]H is a Cohen-Macaulay ring which is not a complete intersection. In

what follows LCi denotes the leading coefficient of the i-th subduction. With that
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notation for example we have LC2 = LC(κ2 − κ2
1),LC3 = LC(h2

1 − h2κ1).

Computation p = 3:

We apply SAGBI/divide-by-x algorithm on S3. The invariants we obtain after the

tête-à-tête subductions on MAGMA are depicted as follows:

h4 := (κ
(p+3)/2
1 − h2h

(p−1)/2
1 )/LC4x1, LT(h4) = xp4x

p+2
2 ,

h5 := (h
(p+1)/2
1 − h2κ

(p+1)/2
1 )/LC5x1, LT(h5) = xp4x

2p
2 ,

h6 := (h3h1 − h5κ1 − LC(h3h1 − h5κ1)hp2)/LC6x1, LT(h6) = x2p
4 x

p+2
2 ,

h7 := (h5h2 − h3κ
2
1 − LC(h5h2 − h3κ

2
1)κ1h

2
1)/LC7x1, LT(h7) = x2p

4 x
2p
2 .

Let S7 denote the resulting list [x1, κ1, h1, h2, h3, h4, h5, h6, h7,NH(x4)]. To check

if S7 forms a SAGBI basis we use MAGMA again; over the finite field F := GF(p4),

we construct a polynomial ring on four-variables with respect the grevlex or-

der S<x4,x3,x2,x1>:=PolynomialRing(F,4,"grevlex"). Then, for randomly

assigned variables a := Random(F), b := Random(F), MAGMA returns immedi-

ately that in S7 every non-trivial tête-à-tête subducts to zero. From Theorem

4.4.2.3 follows also that F[S7][x−1
1 ] = F[V ]H [x−1

1 ] and F[S7] ⊂ F[V ]H is integral,

so F[S7] = F[V ]H and S7 is a SAGBI basis for F[V ]H . In particular, for p = 3 in

contrast with the other two cases below, MAGMA is able to return a minimal set of

fundamental invariants using the FundamentalInvariants() command. The lead

terms of these invariants coincide with those in S7, so it forms a minimal generat-

ing set. To count the algebraic relations of the elements in S7 we use the sagbi()

function described in the first chapter. From Lemma 1.4.3.12, we know that the

number of non-trivial tête-à-tête subductions in a SAGBI basis minimally generate

the ideal of relations. Here sagbi() returns 27 relations among the elements of

S7, hence the ideal of relation of F[V ]H is generated by 27 elements.

Computation p = 5:

We follow the same procedure as in the previous case. The generators and relations

of F[V ]H created throughout the SAGBI/divide-by-x algorithm are defined as
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follows:

h4 := (κ
(p+3)/2
1 − h2h

(p−1)/2
1 )/LC4 x1, LT(h4) = x5

4x
14
2 ,

h5 := (h1h2h3 − h4κ1)/LC5 x1, LT(h5) = x10
4 x

13
2 ,

h6 := (h
(p+1)/2
1 − h2κ

(p+1)/2
1 )/LC6 x1, LT(h6) = x5

4x
15
2 ,

h7 := (h6κ1 − h4h2)/LC7 x1, LT(h7) = x10
4 x

14
2 ,

h8 := (h6h2 − h3κ
3
1)/LC8 x1, LT(h8) = x10

4 x
15
2 ,

h9 := (κ2
1h2h3 − h1h6)/LC9 x1, LT(h9) = x10

4 x
16
2 ,

h10 := (h2h5 − κ1h7)/LC10 x1, LT(h10) = x15
4 x

13
2 ,

h11 := (κ1h8 − h2h7)/LC11 x1, LT(h11) = x15
4 x

14
2 ,

h12 := (h2h8 − κ1h9)/LC1,2 x1, LT(h1,2) = x15
4 x

15
2 ,

h13 := (h1h8 − h2h9)/LC1,3 x1, LT(h1,3) = x15
4 x

16
2 ,

h14 := (κ1h1,2 − h2h11 − LC(κ1h1,2 − h2h11)κp+2
1 )/LC14 x1, LT(h14) = x20

4 x
14
2 ,

h15 := (κ1h1,3 − h2h1,2 − LC(κ1h1,3 − h2h1,2)hp+1
2 )/LC15 x1, LT(h15) = x20

4 x
15
2 .

To complete the tête-à-tête subduction, there is one last left

N3 := subd(h2h
2
3−κ1h5, [x1, κ1, h1, h2, h3, h4, h5,NH(x4)])/LCx3

1, LT(N3) = xp
2

3 .

We can confirm on MAGMA that in the resulting list, say S15, every non-trivial

tête-à-tête subducts to zero. We work as previously over a finite field F := GF(p4),

with randomly assigned variables. Likewise, we have F[S15] = F[V ]H . Therefore,

S15 forms a SAGBI basis for F[V ]H . Using the function sagbi() on MAGMA

returns a list of 125 generators for the ideal of algebraic relations of F[V ]H . As we

said previously this list is minimal.

Computation p = 7:

The computations for p = 7 yield a SAGBI basis comprised of the following ele-

ments:

h4 := (κ
(p+3)/2
1 − h2h

(p−1)/2
1 )/LC4 x1, LT(h4) = x7

4x
27
2 ,

h5 := (h
(p+1)/2
1 − h2κ

(p+1)/2
1 )/LC5 x1, LT(h5) = x7

4x
28
2 ,
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h6 := (κ1h4 − h3h2h
1
2)/LC6 x1, LT(h6) = x14

4 x
26
2 ,

h7 := (h5κ1 − h4h2)/LC7 x1, LT(h7) = x14
4 x

27
2 ,

h8 := (h5h2 − h3κ
4
1)/LC8 x1, LT(h8) = x14

4 x
28
2 ,

h9 := (h5h1 − h2h3κ
3
1)/LC9 x1, LT(h9) = x14

4 x
29
2 ,

h10 := (κ1h6 − h2
3h2h1)/LC10 x1, LT(h10) = x21

4 x
25
2 ,

h11 := (h2h6 − κ1h7)/LC11 x1, LT(h11) = x21
4 x

26
2 ,

h1,2 := (h2h7 − κ1h8)/LC1,2 x1, LT(h1,2) = x21
4 x

27
2 ,

h1,3 := (h2h8 − κ1h9)/LC1,3 x1, LT(h1,3) = x21
4 x

28
2 ,

h14 := (h2h9 − h1h8)/LC14 x1, LT(h14) = x21
4 x

29
2 ,

h15 := (κ2
1h2h

2
3 − h1h9)/LC15 x1, LT(h15) = x21

4 x
30
2 ,

h16 := (h2h10 − κ1h11)/LC16 x1, LT(h16) = x28
4 x

25
2 ,

h17 := (h2h11 − κ1h1,2)/LC17 x1, LT(h17) = x28
4 x

26
2 ,

h18 := (h2h1,2 − κ1h1,3)/LC18 x1, LT(h18) = x28
4 x

27
2 ,

h19 := (h2h1,3 − κ1h14)/LC19 x1, LT(h19) = x28
4 x

28
2 ,

h20 := (h2h14 − κ1h15)/LC20 x1, LT(h20) = x28
4 x

29
2 ,

h21 := (h2h15 − h1h14)/LC21 x1, LT(h21) = x28
4 x

30
2 ,

h22 := (h2h17 − κ1h18)/LC22 x1, LT(h22) = x35
4 x226

2 ,

h2,3 := (h2h18 − κ1h19)/LC2,3 x1, LT(h2,3) = x35
4 x

27
2 ,

h2,4 := (h2h19 − κ1h20)/LC2,4 x1, LT(h2,4) = x35
4 x

28
2 ,

h25 := (h2h20 − κ1h21)/LC25 x1, LT(h25) = x35
4 x

29
2 ,

h26 := (h2h2,3 − κ1h2,4 − LC(h2h2,3 − κ1h2,4)κ10
1 )/LC26 x1, LT(h26) = x42

4 x
27
2 ,

h27 := (h2h2,4 − κ1h25 − LC(h2h2,4 − κ1h25)κ9
1h2)/LC27 x1, LT(h27) = x42

4 x
28
2 .

To complete the tête-à-tête subduction, there is one last left

N3 := subd(h2h
3
3−κ1h10, [x1, κ1, h1, h2, h3, h4, h5, h6, h7, h8, h9,NH(x4)])/LCx3

1, LT(N3) = xp
2

3 .

Using MAGMA as above in the resulting list, say S27, we can confirm that every
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non-trivial tête-à-tête subducts to zero. Therefore, S27 forms a SAGBI basis for

F[V ]H when p = 7. This time the sagbi() function after few hours returns a list

of 401 minimal relations for F[V ]H .

That the number of relations varies, implies that F[V ]H has not a closed form.

Furthermore, although F[V ]H is Cohen-Macaulay for every prime p, we can prove

that it is not a complete intersection by a simple counting argument. The rest of

this section is dedicated on this.

Let B denote a finitely generated commutative F-algebra graded over the non-

negative integers. Suppose also that S = {f1, ..., fn} is a minimal system of ho-

mogeneous generators for B and let dim(B) denote the Krull dimension of B. We

remind you that B is called a complete intersection, if for a given presentation

σ : F[X1, ..., Xn] → B, Xi 7→ σ(Xi) = fi, the kernel ker(σ) is generated by a

regular sequence.

For a given subset of elements of B, one can define the Koszul complex associated

to this set. In our case, choose this set to be S. Since the Koszul homology is

independent of the choice of the generating set (up to isomorphism of complexes)

[4, pg.75], we can denote the Koszul homology associated to f = (f1, ..., fn), KB(f),

just by H∗(B).

We remind you the following result from the introduction, where counting the

number of minimal algebraic relations for a graded local Cohen-Macaulay ring

suffices to decide whether it is a complete intersection or not.

Proposition 4.4.2.6. Suppose that B is an integral domain. Using the above

notation, B is a complete intersection if and only if dimF(H1(B)) = n− dim(B).

In our case B = F[V ]H and dim(F[V ]H) = 4. Since dimF(H1(B)) coincides

with the cardinality of a minimal generating set of ker(σ), to prove our claim

suffices to show that the above equality does not hold. For the case p = 3 we

calculated 27 relations, hence dimF(H1(F[V ]H)) = 27. Also the SAGBI basis we

computed is minimal since coincides with the output of FundamentalInvariants,

and the last returns always a minimal generating set. Hence for p = 3 we have
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n− dim(B) = 10− 4 = 6, so F[V ]H is not a complete intersection.

For p = 5, 7 unfortunately we have no guarantee that the SAGBI bases we com-

puted are minimal. However, the number of their elements sets an upper bound

for it. For p = 5, we have dim(H1(F[V ]H)) = 125 while a minimal generating set

contains at most 19 elements. Thus, again F[V ]H cannot be a complete intersec-

tion from the proposition above. Finally, for p = 7 the corresponding numbers

are dim(H1(F[V ]H)) = 401 and a minimal generating set consists of at most 27

elements, so it cannot be a complete intersection too.

Conjecture 4.4.2.7. Suppose V is a four-dimensional FH-module of type-(2, 1, 1)

as above. Then V is a complete intersection that is not Cohen-Macaulay.

4.4.3 Case b1,3 = 0

We recall from Theorem 2.3.0.6 that when b1,3 = 0 we have two distinct cases. If V

is decomposable, with the right choice of basis the group of representing matrices

is generated by

A :=


1 0 0 0

0 1 1 0

0 0 1 1

0 0 0 1

 , B :=


1 0 0 1

0 1 b2,3 0

0 0 1 b3,4

0 0 0 1

 ,
while if V is indecomposable by

A :=


1 0 0 0

0 1 1 0

0 0 1 1

0 0 0 1

 , B :=


1 0 0 0

0 1 b2,3 0

0 0 1 b3,4

0 0 0 1

 .
So we distinguish between the subcases where b1,4 = 0 and b1,4 6= 0.

Subcase b1,4 = 0 : Note that when b1,4 = 0, H fixes x4 and acts on the first three

variables like the three-dimensional generic case. Therefore, a generating set of

the invariant ring F[V ]H is given from Theorem 3.2.0.8 including x4.
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Subcase b1,4 6= 0 : Let 〈A〉 / 〈A,C〉 / 〈A,B〉 = H be a composition series where

C := [A,B] = ABA−1B−1 =


1 0 0 0

0 1 0 b3,4 − b2,3

0 0 1 0

0 0 0 1

 .

From equation (4.4.1) we have F[V ]〈A〉[x−1
1 ] = F[x1, δ,NA(x2), x4][x−1]. Set H2 :=

〈A,C〉. Then F[V ]H2 [x−1
1 ] = F[x1, δ,NA(x2), x4]〈C〉[x−1] and we shift to degree

one the generators y1 := δ/x1, y2 := NA(x2)/xp−1
1 to obtain a new F〈C〉-module

W := SpanF{x1, y1, y2, x4}. On this new basis {x1, y1, y2, x4} we have

x1 · C := x1 , y1 · C := y1 − 2(b3,4 − b2,3)x1

y2 · C := y2 , x4 · C := x4.

The last imply that the 〈C〉-action on W is Nakajima, hence we obtain after

clearing minimally the denominators F[V ]H2 [x−1
1 ] = F[x1,NC(δ),NA(x2), x4][x−1

1 ].

We shall extend the algebra generators of the right-hand side to a SAGBI basis

of F[V ]H2 . In the set {x1,NC(δ),NA(x2), x4}, there is a unique non-trivial tête-à-

tête: (NC(δ),N2
A(x2)).

Lemma 4.4.3.1. Subducting the tête-à-tête (NC(δ),N2
A(x2)), defines an invariant

with lead term: 2xp+1
2 xp−1

1

Proof. Set ĝ1 := NC(δ)−N2
A(x2). Expanding the definition of ĝ1 gives immediately

LT(ĝ1) = 2xp+1
2 xp−1

1 .

Let g1 := ĝ1/2x
p−1
1 and B := {x1,NA(x2), g1,NA(x3), x4}. We note that NC(δ) is

redundant after g1 has been attached. In B there is a unique non-trivial tête-à-tête

: (gp1,N
p+1
A (x2)).

Lemma 4.4.3.2. The tête-à-tête (gp1,N
p+1
A (x2)) subducts to zero.

Now in B every non-trivial tête-à-tête subducts to zero.
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Lemma 4.4.3.3. F[V ]H2 = F[x1,NA(x2), g1,NA(x3), x4].

Proof. In B every non-trivial tête-à-tête subducts to zero, hence it is a SAGBI

basis. Now our claim follows by an application of Theorem 1.4.3.10.

Moreover, the invariant g1 constructed above is of minimum x3-degree with degx3(g1) =

p, hence we have in addition an equality of fields.

Lemma 4.4.3.4. F(V )H2 = F(x1,NA(x2), g1, x4).

Proof. Follows by an application of Theorem 1.4.2.6.

Now because of the field inclusion F(V )H ⊂ F(V )H2 , we have obtained a lower

bound for the minimum degree invariants. Follows directly that {x1,NH(x2)} are

of minimum degree in the first two variables. Furthermore, follows easily that

the polynomial q1 := xp2 − (bp3,4 − b3,4)x4x
p−1
1 − x2x

p−1
1 , forms an H-invariant of

minimum x4-degree too. Regarding the minimum x3-degree invariant, from the

field inclusion we know that has x3-degree at least p. Therefore suffices to construct

an H-invariant with that virtue.

Lemma 4.4.3.5. The polynomial

q2 := N2
A(x2) + γ1 · xp−1

1 g1 − γ2 · xp1NA(x2),

where

γ1 :=
(p− 1)/2 · bp3,4 + (p+ 1)/2 · b3,4

(bp2,3 − b3,4)
,

γ2 :=
bp2,3(b2p

3,4 − 2bp+1
3,4 + b2

3,4) +
∑p−1

i=1 b
i
2,3(−b2p+1−i

3,4 + b2p−i
3,4 + bp+2−i

3,4 − bp+1−i
3,4 )

(bp2,3 − b3,4)(bp3,4 − b3,4)
,

is an H-invariant of minimum x3-degree. Therefore, F(V )H = F(x1,NH(x2), q1, q2).

Proof. That q2 ∈ F[V ]H follows from a routine calculation on ∆B(q2) = 0, ∆B :=

B − 1 ∈ FH. The field equality as an application of Theorem 1.4.2.6.
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Set B := {x1,NH(x2), q1, q2}, with LT(NH(x2)) = xp
2

2 ,LT(q1) = xp2,LT(q2) = x2p
2 .

We shall extend this set to a SAGBI basis of F[V ]H . The first tête-à-tête is:

(NH(x2), qp1).

Lemma 4.4.3.6. Subducting the tête-à-tête (NH(x2), qp1), defines an invariant with

lead term: (bp
2

3,4 − b
p
3,4)xp4x

p2−p
1 .

Proof. Set q̂3 := NH(x2)− qp1. Observe that the second in term order of the norm

NH(x2) has x1-degree p2 − p. Expanding the definition of q1 follows immediately

that LT(q̂3) = (bp
2

3,4 − b
p
3,4) · xp4x

p2−p
1 .

Let q3 := q̂3/(b
p2

3,4 − bp3,4)xp
2−p

1 and B1 := (B \ {NH(x2)}) ∪ {q3}. Thus, B1 =

{x1, q1, q2, q3} and (q2
1, q2) forms the unique non-trivial tête-à-tête in B1.

Lemma 4.4.3.7. Subducting the tête-à-tête (q2
1, q2), defines an invariant with lead

term: −2(bp3,4 − b3,4)x4x
p
2x

p−1
1 .

Proof. Set q̂4 := q2
1 − q2. Expanding the definition of each part and take the

difference gives immediately our claim: LT(q̂3) = −2(bp3,4 − b3,4)x4x
p
2x

p−1
1 .

Let q4 := q̂4/ − 2(bp3,4 − b3,4)xp−1
1 and B2 := (B1 \ {q2}) ∪ {q4}. Thus, B2 =

{x1, q1, q3, q4} and (qp4, q3q
p
1) forms a unique non-trivial tête-à-tête .

Lemma 4.4.3.8. Subducting the tête-à-tête (qp4, q3q
p
1), defines an invariant with

lead term: −(bp2,3−b3,4−δ2)/(bp2,3−b3,4)p+1·xp
2+1

2 xp−1
1 , where δ2 := (bp

2

2,3−b3,4)/(bp
2

2,3−
bp3,4).

Proof. Set s1 := qp4 − q3q
p
1. Then modulo 〈xp1〉 / F[V ]: qp4 ≡〈xp1〉 x

p
4x

p2

2 + 1/(bp
2

2,3 −
bp3,4) · xp

2+p
2 , q3q

p
1 ≡〈xp1〉 x

p
4x

p2

2 − 1/(bp3,4 − b3,4) · xp
2+p

2 . Therefore, LT(s1) = δ1 · xp
2+p

2 ,

where δ1 := (bp
2

2,3 − b3,4)/(bp
2

2,3 − b
p
3,4)(bp3,4 − b3,4).

For the next step we set: s2 := s1 − δ1q
p+1
1 . Modulo 〈xp1〉 / F[V ] each part yields:

s1 ≡〈xp1〉 δ1x
p2+p
2 −1/(bp3,4−b3,4)·xp

2+1
2 xp−1

1 , qp+1
1 ≡〈xp1〉 x

p2+p
2 −(bp3,4−b3,4)x4x

p2

2 x
p−1
1 −

xp
2+p

2 xp−1
1 . Thus, for this second step LT(s2) = δ2 · x4x

p2+1
2 xp−1

1 , δ2 := (bp
2

2,3 −
b3,4)/(bp

2

2,3 − b
p
3,4).
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Finally, let s3 := s2 − δ2x
p−1
1 qp−1

1 q4. Expanding the definition of each part and

reducing modulo 〈xp1〉: xp−1
1 qp−1

1 q4 ≡〈xp1〉 x4x
p2

2 x
p−1
1 + 1/(bp2,3 − b3,4) · xp

2+1
2 xp−1

4 .

Summarizing the aforementioned yields: LT(s3) = −(bp2,3−b3,4−δ2)/(bp2,3−b3,4)p+1 ·
xp

2+1
2 xp−1

1 .

We set q5 := s3/δ3x
p−1 and B3 := B2 ∪ {q5}. In this new set there is a unique

tête-à-tête: (qp5, q
p2+1
1 ).

Lemma 4.4.3.9. Subducting the tête-à-tête (qp5, q
p2+1
1 ), defines an invariant with

lead term: (bp
2

2,3 − b
p
3,4)/(bp

3

2,3 − b
p2

2,3) · xp
3

3 x
p2

1 .

Proof. Let t1 := qp5 − q
p2+1
1 denote the tête-à-tête difference. Expanding the defi-

nition of both invariants and reducing modulo 〈xp+1
1 〉 / F[V ]H : qp5 ≡〈xp+1

1 〉 x
p3+p
2 +

(bp
2

2,3 − b
p
3,4)/(bp

3

2,3 − b
p2

2,3) · xp
3

3 x
p
1 − (bp

3

2,3 − b
p
3,4)/(bp

3

2,3 − b
p2

2,3) · xp
2

3 x
p3−p2
2 xp1, q

p2+1
1 ≡〈xp+1

1 〉

xp
3+p

2 − (bp3,4 − b3,4)x4x
p3

2 x
p−1
1 − xp

3+1
2 xp−1

1 . Thus we have

t1 ≡〈xp+1
1 〉 (bp3,4 − b3,4)x4x

p3

2 x
p−1
1 + xp

3+1
2 xp−1

1 + (bp
2

2,3 − b
p
3,4)/(bp

3

2,3 − b
p2

2,3) · xp
3

3 x
p
1

− (bp
3

2,3 − b
p
3,4)/(bp

3

2,3 − b
p2

2,3) · xp
2

3 x
p3−p2
2 xp1

Let t2 := t1− (bp3,4− b3,4)xp−1
1 qp

2−1
1 q4. Reducing modulo 〈xp1〉 the second part of t2:

xp−1
1 qp

2−1
1 q4 ≡〈xp1〉 x4x

p3

2 x
p−1
1 + 1/(bp2,3 − b3,4) · xp

3+1
2 xp−1

1 . Forming the difference of

the two parts yields our assertion: LT(t2) = (bp
2

2,3 − b
p
3,4)/(bp

3

2,3 − b
p2

2,3) · xp
3

3 x
p
1.

Finally we set q6 = −(bp
3

2,3 − bp
2

3,4) · t4/xp
2

1 and B3 := {x1, q1, q3, q4, q5, q6}. Now

every tête-à-tête in B3 subducts to zero. Since LT(NH(x3)) = LT(q6), we swap

these two elements in B3 to obtain a more natural generating set. Therefore we

conclude to the following theorem.

Theorem 4.4.3.10. Let V denote a four-dimensional indecomposable left FH-

module of type-(2, 1, 1), such that b1,3 = 0. Then B3 as described above, forms a

SAGBI basis for F[V ]H . In particular, the ring of invariants F[V ]H in that case is

a complete intersection with generating relations constructed during the tête-à-tête

subductions. Finally, we have LT(F[V ]H) = F[x1, x
p
2, x

p2+1
2 , xp

3

3 , x4x
p
2, x

p
4].
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MAGMA functions

To understand the behaviour of invariant rings and verify our claims, many times

in this thesis we use the computational algebra system MAGMA. Many of the func-

tions we use are built-in, however there are also others which have been developed

independently for invariant-theoretic purposes.

For example, the SAGBI/divide-by-x algorithm starts with a finite subset and

subducts all the non-trivial tête-à-têtes . This procedure stops when all the non-

trivial tête-à-têtes have subducted and a SAGBI basis is returned. If the initial

set has been chosen carefully, then the resulting SAGBI basis is a generating set

of F[x1, . . . , xn]G too. MAGMA has no built-in functions to do all this. Among

many, R.J. Shank and David Wehlau have constructed MAGMA functions that

can do all the above.

Given a subset B := {f1, . . . , fn} ⊂ F[V ]G (for example the minimum degree homo-

geneous generators of F(V )G) and a tête-à-tête (f I , fJ), where f I = f i11 . . . f inn for

I := (i1, . . . , in), the subduction subd(f I−fJ ,B) can be a very painful (and many

times impossible) procedure to be done by hand. The subd() function presented

below can simplify the subduction idea and be used to carry out very complex

tête-à-tête subductions. Before that we present the factor() function which is

used in subd() to perform a monomial factoring:
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factor := function(mon,mseq,j)

if LeadingMonomial(mon) eq 1

then exp:=[0 : m in mseq];

return true, exp;

end if;

for i in [j..#mseq] do

if IsDivisibleBy(mon,mseq[i]) then

newmon:= mon div mseq[i];

Test,exp:=$$(newmon,mseq,i);

if Test then

exp[i]:=exp[i]+1;

return true, exp;

end if;

end if;

end for;

return false, [];

end function;

subd := function(poly,gen)

for i in [1..#gen] do

gen[i] := gen[i] div LeadingCoefficient(gen[i]);

end for;

ltgen:=[LeadingTerm(m) : m in gen];

RP:=poly;

while RP ne 0 do

RM:=LeadingMonomial(RP);

Test, exp := factor(RM,ltgen,1);

if Test eq false then return RP;

else

Adj:=&*[gen[i]^exp[i] : i in [1..#gen]];

RP:=RP-LeadingCoefficient(RP)*Adj;
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end if;

end while;

return RP;

end function;

So given poly = f I − fJ , gen := B, we are capable every time to subtract off the

leading term of the previous step based on the elements of B until no further sub-

traction can be made. Hence, the returned polynomial is the seeking subduction.

As an extension of the previous algorithm, R.J. Shank and David Wehlau con-

structed another useful function called sagbi(). This one uses the toric ideal

method in [24, pg.32-33] to track down the tête-à-têtes of B and the subd() func-

tion to subduct them. Every non-zero subduction is returned and appended on the

previous calculated set after normalization and the procedure starts again. When

the function returns the empty set we have a SAGBI basis.

sagbi:=function(gen)

for i in [1..#gen] do

gen[i] := gen[i] div LeadingCoefficient(gen[i]);

end for;

ltgen:=[LeadingTerm(m):m in gen];

S:=Parent(gen[1]);

T:=PolynomialRing(CoefficientRing(Parent(gen[1])),#ltgen,"grevlex");

F:=hom<T->S|ltgen>;

f:=hom<T->S|gen>;

time I:=PolyMapKernel(F);#Basis(I);

miss:=[]; tat := [];

for j in [1..#Basis(I)] do

test:=subd(f(Basis(I)[j]),gen);

if test ne 0

then Append(~miss,test div LeadingCoefficient(test));
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Append(~tat ,Basis(I)[j]);

end if;

end for;

return miss, tat, Basis(I);

end function;
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