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ABSTRACT

Blowout Preventer (BOP) has maintained its functisra safety barrier and the last line
of defence against oil and gas spills since iteetiggmentin the early 1900s. However,
as drilling and exploration activities move furtheffshore, challenges pertaining to
reliable operation of the subsea BOP systems ammtio be a source of concern for
stakeholders in the industry. In spite of recentamdements in reliability analysis of
safety instrumented systems (SISs), the researcéliability assessment of BOP is still
lacking in some regards. There are gaps in theafilee with respect to the
incorporation of preventive maintenance (PM) styege as well as dynamic operating
conditions into BOP reliability analysis. To addsdhese gaps, this paper develops an
advanced analysis method using stochastic Peti(8€tN) to estimate the reliability of
subsea BOP systems subject to condition-based enaimte (CBM) with different
failure modes. The BOP system is divided into Budsystems which are connected in
series with each other and categorised into deggaaiid binary units. The performance
of the BOP system in terms of availability, religpiand mean-time-between failures
(MTBF) is obtained and analysed. A sensitivity gse is also performed to evaluate
the effect of fault coverage factor and redundathesign on system performance. The
results show that both the fault coverage factar r@aundancy have significant impact
on the BOP’s reliability, availability and MTBF.
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1 Introduction

A large number of safety instrumented systems (SA8sin use within the oil and gas
industry for drilling, production, processing arntrage purposes (Liu, 2014; Liu and
Rausand, 2016). The complexities associated wilsethsystems are amplified when
taking into account the myriad of challenges wittive@ offshore environment. The
blowout preventer (BOP) is one of the most impdrtalss in the subsea oil and gas
sector which is employed in the event of the failaf the primary well control process.
The main function of a BOP is to seal the well he event of a blowout (i.e. an
uncontrolled flow of liquid and gases during thélitig process) (Holand and Rausand,
1987). BOPs are one of the most critical SISs amadhdrilling equipment and, as a
result, the downtime associated with removal of BI@P stack is known as one of the
costliest activities in offshore drilling operat®on(Zou et al., 2016). The main
components of a subsea BOP system are: one ormmdaa preventers (which work to
seal around tubulars in the well and around an dyé@); three to six ram preventers
(which can seal several pipes within the well apdl san empty hole depending on
dressing); the wellhead connector and the loweimaarser package connector (which
link the entire BOP to the wellhead and to therrideectly hooked to the drilling
platform); and a number of choke and kill valves éines (which work to manipulate
pressurized fluid pumped in and taken out of th#)W8hafieeet al., 2019b). Figure 1

shows typical configurations for a conventional antodern BOP.

** Figure 1 **

Figure 1. Conventional (left) and modern (right) BOP configions (Liuet al., 2015b).

Based on operators’ choice, BOP subsystems caer diff humber, size and
capacity, especially when exploration into deepatens is seemingly the most likely
way forward (Huet al., 2013). Aside from its main function of monitorirgnd
maintaining well integrity, the BOP system has satieer functions such ag Eealing



off well fluids (i) providing an avenue for the controlled additiord aextraction of
fluid into and out of the well; andii() sealing the wellhead.

Since its development in the early 1900s, the BOR&N purpose has been to
function as a safety barrier during drilling operas. Its nature and complex assembly
have ensured that only minor modifications havenb®ade since its adoption as last
line of defense for any drilling or workover opeoat However, the shift of exploration
to reserves in deeper waters and harsher envirdsrhes ensured that the setbacks to
reliable operation of the subsea BOP and its sidsys remains a focal point for
stakeholders within the oil and gas industry. TH@PBfailures usually result in injury,
loss of life, economic losses or environmental dgena prime example of which is the
Macondo incident on the Deepwater Horizon oil righe Gulf of Mexico (Animah and
Shafiee, 2020).

In spite of recent advancements in reliability gsel of SISs, the research on
reliability assessment of BOP is still lacking ionge regards. There are gaps in the
literature with respect to the incorporation ofyaetive maintenance (PM) strategies as
well as dynamic operating conditions into BOP tglity analysis. To address these
gaps, this paper develops a stochastic Petri &85l model to estimate the reliability
of subsea BOP systems subject to condition-basedtenance (CBM) with different
failure modes. The BOP system is divided into Budsystems which are connected in
series with each other and categorised into deggadnd binary units. The annular
preventers, ram preventers, hydraulic connectonsl ehoke and kill system are
considered as degrading units; whereas the MUXrabsystem is considered as a
binary unit. Four different condition states — ngma&ormal, degraded, critical and
failed — are considered for each failure mode. dtheanced reliability analysis metrics
such as failure criticality index and reliabilitynportance are obtained, in addition to
standard metrics such as the reliability, availgbiand mean-time between failures
(MTBF). This study, to the best of the author’'s Wexdge, is the first attempt to
improve the robustness of the state-of-the-araibdlty analysis methods by modelling
the operation of the subsea BOP system with maltigigradation states.

The rest of this paper is organised as followstiBe@ reviews the literature on
BOP reliability and provides an overview on Petish modelling. In section 3,

stochastic Petri-net models are developed for rdiffe BOP subsystems. Section 4
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presents the results of the analysis, and secticongludes the study and proposes

directions for future research.

2 Literaturereview

2.1 Reliability analysis of subsea BOP

The reliability analysis of BOP systems has conte prominence in response to recent
incidents that have happened in the oil and gassing (Liu et al., 2015a). The
reliability assessment techniques for subsea BGResys have evolved considerably
since the first study by Holand and Rausand (198@¢y employed fault tree analysis
(FTA) to estimate the probability of a blowout eversing the real data from drilling
documents, BOP tests and well equipment failurentspSome years later, Fowler and
Roche (1993) also used FTA in addition to failurede and effects analysis (FMEA) to
analyse the reliability of a subsea BOP and a hydraontrol system. Zoset al. (2016)
applied the reliability block diagram (RBD) techue to analyse the reliability of
subsea BOPs. The results were then compared agkesigin requirements. Recently,
Shafieeet al. (2019c) proposed an integrated FTA and FMEA maddehnalyse the
reliability of subsea BOPs. They weighted the mualircut sets derived from the fault
trees based on Birnbaum’s measure of importancelerused the weights to update
Risk Priority Numbers (RPNs) obtained from the as&raditional FMEA.

There are significant drawbacks to using conveamfioreliability assessment
techniques (Animah and Shafiee, 2018). AccordinBaband Bai (2010), complex and
dynamic systems are difficult to model using corieral techniques; thus, the
numerical analysis of the system'’s reliability daextremely arduous. Both the FTA
and FMEA techniques only work well for non-repaleabystems, and do not possess a
time element which is vital a characteristic whealgsing complex subsea systems like
the BOP. Furthermore, differentiating between sevilures caused by compound
faults and common-cause failures is impossiblegugie FMEA (Liuet al., 2015a).

Attempts have been made to overcome some of thvebdiks of the conventional
reliability assessment techniques (Shafiee al., 2019a). Advanced reliability
technigues such as Bayesian Network (BN), Markaalyeins, Monte-Carlo simulation



(MCS), Petri Net (PN), and their different variatsohave been developed and applied
to assess the reliability of subsea BOPs étia., 2017).

BN has recently gained prominence as a robustftmahe reliability analysis of
BOP systems (sddu et al., 2015b). This is mainly as a result of its abilibyperform
fault diagnosis as well as predictive analyticsi(&aal., 2012). Markovian models,
such as homogeneous Markov chains or hidden Markadels, have also been used to
evaluate the reliability of complex systems suclsalssea BOPs. Markov models are
very flexible in representing the dynamic behaviafirengineering systems (Boyd,
1998). MCS is also a widely used technique to yeh& BOP reliability analysis results
obtained with different analytical methods recomdezhin IEC 61508 (2010). MCS
provides to incorporate all practical aspects afteayn operation (such as failure and
repair information) into reliability assessment (Wual., 2018). The PN technique,
which is used in this study, is a numerical andphreal tool used to model
asynchronous, simultaneous, distributed and parsjilstems (Sadou and Demmou,
2009). One of its variations, Stochastic Petri K&PN) explicitly introduces a time
parameter (Cadt al., 2013), making it very suitable for reliability @gsis of SISs such
as subsea BOPs. In the next subsection, the PNodse#re briefly reviewed.

2.2 Petri Nets

A Petri Net (PN) is a graphical modelling tool deyged by Carl Petri as part of his
PhD dissertation (Petri, 1962) to determine thetrappropriate method for a defined
theory of communication. It is used to model andlgse complex systems which are
defined as distributed, stochastic, simultaneowalsrem-deterministic (Murata, 1989).

A typical PN model comprises of four essential ¢regl features, namely: places,
transitions, arcs and tokens. Places, which reptdke state of a system, subsystem or
component, are denoted by a hollow circle (Leigth Bannett, 2016). Transitions allow
the system to change states, making it possibladdel the dynamic behaviour of a
system and is denoted by a rectangle. Tokens tie diolid circles always located
within places and represent the current state efsystem. Arcs connect places to
transitions and vice-versa and are representealiy @rows (Le and Andrews, 2016).
The state of the system being modelled changes wheror more tokens are fired. A
token being fired signifies that it has been trarrefd from one place to another. This



event occurs as a result of a transition becommadpled (Liuet al., 2015a). A transition
becomes enabled only when pre-defined requirenzgatmet.

In reliability and safety engineering, the PN tague has been applied towards
different subject areas, including: remaining ukéfa (RUL) prediction (Elmelianiet
al., 2013), reliability evaluation (Liet al., 2017), safety analysis (Leveson and Stolzy,
1987), and maintenance modelling (Roo#tdil., 1999).

The conventional PN, which does not take changdsma into consideration, is
defined as a 5-tuple or a finite sequence of filements (Liuet al., 2013). Those
elements are represented as follows:

PN = (P,T,F,W,M,), (1)
where:

P = (P, P, P, .., B,) represents a finite set of places;

T = (T, Ty, Ts, ..., T,) represents a finite set of transitions;

Fc (P xT) U (T x P) represents a set of arcs;

W : F - N — {0} represents a weight function; and

M, : P — N represents the initial marking, withnT = @,P UT # Q.

Stochastic Petri net (SPN) is a variation of thevemtional PN model which was
developed to take the concept of time into accedrn performing reliability analysis
(Kleyner and Volovoi, 2010). The SPN which forme thasis of our model in this study
takes the concept of time into account and helpsnedyse the dynamic behaviour of
systems. The transitions for SPNs have delay timé this delay can either be
deterministic or follow a probability distributiodn SPN is a 6-tuple given by (Liet
al., 2017):

SPN = (P,T,F,W,M,, 2) , (2

whereP,T,F,W and M,, are defined as above, aad= {1, 1,, 13, ..., A;} represents the

set of transition firing rates.

3 The proposed SPN model

A SPN model is developed in this section to anatheedegradation performance and
reliability of subsea BOPs. Due to the complexitythe system, it is broken into five

subsystems. These subsystems include: the rammnpeeseannular preventers, choke
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and Kkill system, hydraulic connectors and the Nbldtx Electro-Hydraulic (MUX)
control system. The first four of the aforementidfige subsystems can be described as
degrading units, meaning that a measurable amdumhe passes from when a fault is
detected to when functional failure actually occUHsis time interval is represented by
a curve called P-F. The P-F curve is a graph thatvs the health of a system over time
to identify the interval between potential faillaed functional failure (Elusakie al.,
2019). The fifth subsystem, i.e., the MUX contrgstem, is described as a binary unit
since a fault in the system immediately causestiomal failure. The BOP subsystems
are connected in series with each other, meanatgftbne of these subsystems fails the
entire system will stop functioning. Redundancias occur on some of the subsystems
such as the annular and ram preventers as wdlleaBltyX control system. The effect
of redundancy design on the BOP system performaiitbe discussed in section 4.2.
The SPN technique is employed in this study to mtdedegradation of different
BOP subsystems after which the RBD technique isl igeecombine results obtained
from each individual subsystem and assess thebildlyjaof the whole system. The
software tool used to develop the SPN model is NEE Version 4 (for more see:
https://timenet.tu-ilmenau.de/). TimeNET was depelb at the Technische Universitat
of Berlin to model SPNs. The ReliaSoft BlockSim ddiftware tool was also used to
build an RBD model for the entire BOP system andqgpe the overall reliability
analysis (for more see: https://www.reliasoft.cormducts/reliability-
analysis/blocksim). Each component is modelled reéply given that they are subject
to different failure modes with different causewihg different effects on the overall

system.
3.1 SPN model for degrading subsystems

The models developed for the four degrading subsyst(i.e., the ram preventers,
annular preventers, choke and kill system, and duldr connectors) are different but
they have a common basis. Each component possesfeent failure modes
associated with its operation. These failure modesw different ways that the
subsystem may fail. Therefore, they occur withedght frequencies and their repair
times are also different. Four different states emasidered to present the health
condition of subsystems. These include: normal,rated, critical and failed. A



transition between two states represents the evbatstake place for degradation to
progress from one state to another. In this sttity,transitions signify the continued
operation of the system as well as the repair @2c€his means that the condition of
each subsystem degrades from the normal state etjraded state, then to the critical
state, and eventually to the functional failuretestahe times/delays associated with
each transition represent how long it takes forgihlesystem to further degrade. In the
case of repair, it represents the duration of refde movement of the token signifies
the change in the asset condition; therefore, tien being situated within the
degraded place signifies that the asset is in the degratid.s

The SPN models developed for the four degradingsygibms of the annular
preventer, choke and kill system, hydraulic conmextand the ram preventers are
presented in Figure 2Figure 3, Figure 4 and Figunespectively. As can be seen, the
models for degrading subsystems begin with a talesiding in the normal state,
signifying that the subsystem is operating as imadly should. The transition right

after the normal state in the prevalent failure enmdenabled and the token is fired.
** Figure2 **

Figure 2. Petri net model for the annular preventer system.

** Figure 3 **

Figure 3. Petri net model for the choke and kill system.
** Figure4 **
Figure 4. Petri net model for the hydraulic connectors.
** Figure5**
Figure5. Petri net model for the ram preventers.

The failure transition parameters follow Weibullswibution as it most aptly
represents condition deterioration in failure-pr@ystems. The two-parameter Weibull
probability distribution function is given by (Ns&n, 2011):



ftly.B) = ¥ /gt Vexp{- (é)y} fory > 0,andg > 0, 3)

wherey is the shape parameter gfids the scale parameter. Failure data was sourced
from the literature, and the maximum likelihood imsitor (MLE) technique was
applied to estimate the corresponding shape and peaameters for each subsystem.
On the other hand, the repair transitions are asdumfollow exponential distribution.

The model input parameters for the four degraduizsgstems are given in Table 1.
** Table1 **

Table 1. Life data for degrading BOP subsystems.

The repair action begins before a failure occuis @fter it is determined that the
component is in the degraded state; thereforejrrgpshs are created for each failure
mode. This is represented by the token travelllgfthe degraded state back through
the repair transition to the normal state. It isyan the event that the repair action does
not take place, that the token continues its mowveérfrem the degraded state to the
critical state and then to the failed state, signd functional failure.

3.2 SPN model for binary systems

The SPN model for binary systems (i.e., the MUXtoamnsubsystem) begins with the
token residing in the normal state, indicating ih& operating normally. Since this is a
binary system, only two states are involved: norraatl failed. The SPN model
developed for the MUX control subsystem is presgmd=igure 6.

** Figure 6 **

Figure 6. Petri net model for the MUX control subsystem.

There are also six exponential transitions betwash states, with each transition
representing a different mode by which the cordystem may fail. Upon failure, which
is signified by the token being in the failed stdtee repair transition is activated and
the token is fired, taking the control system battk the normal state. The transitions
for the MUX control subsystem are exponential ti@mss as there is no requirement to
model degradation. The model input parameters HerMUX control subsystem are

obtained from Holand and Awan (2012), and are ginehable 2.



** Table2 **

Table 2. Model input parameters for the MUX control subsygste

The reliability data obtained from the SPN simwatiof each BOP subsystem is
then used as an input data for reliability modgllof the entire BOP system using the
RBD technique.

4 Resultsand analysis
4.1 Reliability

The reliability of a system is defined as the pholiy that it will perform its intended
function(s) for a specified period of time undee 8pecified conditions (Zengketial.,
2013). The subsystems of the BOP system are atleaded in series. Therefore, the
failure of one subsystem will invariably lead teetfailure of the entire BOP system.

Therefore, the BOP system’s reliability is calcathby:
R(®) = iz Ri(®) (4)

wheren represents the number of subsystemsRiit) represents the reliability of the
subsysteni in the system.

The transient reliability plots for the five BOPbsystems are depicted in Figure 7.
As can be seen, the reliability of the MUX contsolbsystem decreases more sharply
than the reliability of other subsystems, meanig it is the least reliable subsystem of
the BOP. The reliability plots of the annular araanr preventer systems follow very
similar trajectories, gradually decreasing untéythreach zero after about 50 years. The
hydraulic connector subsystem is seen to have tilighgher reliability over time;
however, its reliability reaches zero at the same &as the annular and ram preventers.
Lastly, the choke and kill system is shown to htneshighest reliability over time by a

significantly margin.
** Figure 7 **

Figure 7. Reliability of five main BOP subsystems.
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The reliability of the entire BOP system is plottedFigure 8. The graph shows
that the BOP reliability decreases rapidly durihg early years of operation and then
reduces gradually until it reaches zero. This mehasthe probability that the system

will successfully perform its required functionseentually drops to zero.
** Figure 8 **

Figure 8. Reliability of the entire BOP system.

The availability of the BOP system over the fiisefyears is also shown in Figure
9. It is seen that the availability of the systermps significantly during the first year of
operation. Availability values are reliant on fadurates as well as repair times of the
BOP subsystems.

** Figure 9 **

Figure 9. Transient availability of the entire BOP system.

In order to determine the effects of the reliapitif each examined subsystem on
the overall BOP system reliability, the reliabilityportance (RI) of each subsystem is
plotted over time. Rl is used as a means of detengithe relative reliability
significance of each subsystem with respect to dierall system reliability. The
formula to obtain reliability importance is giveg:b

ORs(t)
Ix(t) = m , (5)

whereR,(t) andR;(t) denote the overall system reliability and the gatesm reliability

at a given time, respectively.
** Figure 10 **

Figure 2. Reliability importance of five main BOP subsystems.

Since the BOP is considered as a series systentedbereliable component will
have the highest impact on the reliability of tiggtem and hence the highest reliability
importance. From Figure 2, the MUX control systeam de seen to have the highest
reliability importance. This is in agreement withetstudy performed by Holand and

Awan (2012), showing the control subsystem to lertfost critical subsystem within
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the BOP system. This also indicates that the cbeyrgtem requires the most attention
with regards to inspection and maintenance.

The failure criticality index (FCI), which identds the contribution of each
subsystem to the overall BOP system failure, ie distermined. FCI can be calculated

by the following equation:

Number of failures caused by subsystem i in (0,t)

FCl, =

: (6)

Number of BOP systsem failures in (0,t)

The FCI plot in Figure 11 shows that the MUX cohsigstem has the highest FCI
by a considerable margin with a value of 49.7%lofeéd by the annular preventer at
15.5%, ram preventer at 14.3%, hydraulic conneadrs2.1% and the choke and Kkill
system at 8.4%. This therefore means the MUX cbsirstem is responsible for nearly
half of the BOP failures.

** Figure 11 **

Figure 3. Failure criticality index for five main BOP subsgsts.

The mean time between failure (MTBF) for the ensiystem is also obtained. The
MTBF is an important reliability metric which islcalated by dividing the total amount
of time the system should be in operation by thealmer of times maintenance actions
occurred. Therefore,

T

MTBF = — 7)

The MTBF of the BOP system is calculated as 1.5tse
4.2 Sensitivity analysis

A sensitivity analysis is performed to evaluate #ftect of key decisions (such as
changing the fault coverage factor and adding rddoay) on the BOP system
performance. The fault coverage factor is a keyrimet assessing the effectiveness of
condition monitoring (CM) solutions. This factorfees to the percentage of faults that
can be detected during the monitoring of any ereged system. The fault coverage can
range from 0% to 95-100%, depending on the chosdnteéchnique for every given
fault.
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The effects of the fault coverage factor on thetesysavailability, failure criticality
index and MTBF are analysed. Figure 4 shows thecefbf different fault coverage

factors on BOP availability.

** Figure 12 **

Figure 4. Effect of fault coverage factor on BOP system alality.

As can be seen, the availability of the BOP systiecreases as the fault coverage
factor drops. The lower the coverage factor, tlss likely it is for failure to be detected
and the lower the system availability.

Figure 13 shows the effects of different fault aaxege factors at 80%, 60%, 40%
and 20% on the system failure criticality index (FC

** Figure 13 **

Figure 13. The effects ofd) 80% p) 60% €) 40% @) 20% fault coverage factor on BOP

system failure criticality index (FCI).

As can be seen, a decrease in fault coverage faesults in corresponding
decrease in FCI for the MUX control system. Thdtfaaverage factor, however, does
not seem to affect the order of subsystems in thegfots as there is no discernible
pattern in subsystem order as the fault coveragjerfdecreases.

The effect of variation in fault coverage factor tne MTBF is also investigated.

The results of this analysis are given in Table 3.

** Table 3 **

Table 3. The effect of fault coverage factor on MTBF.

The MTBF of the BOP system is seen to decrease whencoverage factor
reduces. This therefore means that the amountnoé that the system remains in
operation reduces as fault detection becomes fiesgiee.

A new redundant BOP configuration by adding a sddgiX control system to
the conventional BOP is introduced. The MUX consgstem is chosen because it is
the most critical subsystem. The effect of reducgaon BOP system availability is
investigated and the results show that the BOResysivailability increased by 0.03%

13



from 0.9922 to 0.9925. The effect of redundancytteen MTBF of the BOP system is
also investigated with the results showing an iaseeof 4.4% in MTBF from 1.14 years
to 1.19 years. The increases in both MTBF and abiity reflect the benefit of

redundancy to subsea BOP systems.

5 Conclusion and futureworks

This paper presented an advanced reliability arsatgshnique using stochastic petri
nets (SPN) and reliability-block diagram (RBD) fembsea blowout preventer (BOP)
systems while incorporating the degradation and ditimm monitoring (CM)
information. The subsea BOP was divided into fiwdsystems (including annular
preventers, ram preventers, hydraulic connectdieke and kill system, and MUX
control system) which are connected in series vadth other. The reliability,
availability and mean time between failures (MTBF}he BOP system were estimated.
The control system was concluded as being the leliable subsystem and this was
confirmed by the control system having the highestability importance by a
significant margin as well as being responsible riearly half of the total system
failures. The MTBF of the entire BOP system wasedrined to be 1.14 years. A
sensitivity analysis was also performed to evaludwte effect of improving fault
coverage as well as adding redundancy (in the fofran additional MUX control
system) on the BOP system performance. The restbitsved that both the fault
coverage and redundancy had significant impacthernsystem availability and MTBF
but little discernible effect on the failure craigdy index (FCI). As coverage factor
decreased, so did the system availability and MHEBkphasising the importance of
accurate detection of faults in subsea BOP operafdlding a second MUX control
system also led to increase in system availalaingy MTBF.

There is a lot of potential for future researchthe area of reliability analysis of
subsea safety instrumented systems. For this mgeae only studied the reliability of
the subsea BOP system when taking into account @G system degradation. A
promising avenue for future research can be thptatlan of the methodology applied
in this research study for other subsea assetsthAngromising avenue for further
research can be on the performance of reliabihiglysis of subsea safety instrumented

systems based on different forms of degradatiose&eh on the use of coloured Petri
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nets (CPNSs) for reliability analysis of complex saa systems is another opportunity
which can be explored in the future (see NooriAfahg (2019)).
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Table 1. Life datafor degrading BOP subsystems.

Degraded Critical  Functional Fl\j'(l)léree SuRbsyzti?m
Subsystem Failure Mode Condition  Condition Failure Repair time t?&e
(vear) (vear) (vear) (years) (years)
Annular . y=1.0 y=1.0 y=1.0
preventer Failureto close =061 =061 f=061 0.0306 0.0112
Failureto fully y = 0.53 y=053 y=0.53
open B =135 =135 =135 0.0012
Internal control y =1.48 y=148 y =148 0.0038
fluid |eakage B=236 p=236 p=236 '
Internal leakage
=0.48 y=048 y =048
through a closed |4 _ _ _ 0.0020
annular B = 0.60 B =060 B =0.60
y =1.0 y =10 y =1.0
Other B=061 [=061 f=061 0007
y = 1.47
Ram y = 1.47 y =147
preventer External leakage B =1255 B B =1255 0.0411 0.0088
=12.55
. y=1.0 y =10 y=1.0
Failureto close g =161 F=161 f=161 0.0007
Failureto fully y =1.0 y=1.0 y=1.0
open =161 p=161 L=161 0.0027
y =043 y = 0.43 y =043
Internal leakage B =046 B =046 [ =046 0.0072
. y=1.0 y =10 y=1.0
Unknown failure g =161 F=161 f=161 0.0009
Choke and External leakage of y =0.74 y=074 y=074
kill system BOP attached line B =1.83 =183 [=183 0.0209 0.0134
. y=1.0 y=10 y=10
Unknown failure =033 =033 f=033 0.0027
External leakage on y=1.0 y=1.0 y=1.0 0.0027
jumper hoseline B =0.33 =033 =033 '
External leakage on y = 0.47 y =047 y =047 0.0126
riser attached line B =0.35 p =035 =035 ’
Hydraulic y = 0.94 y = 0.94 y = 0.94
connectors External leakage B =419 p=419 B =419 0.0096 0.0091
. y=1.0 y =10 y=1.0
Failureto lock B =065 B=065 =065 0.0192
. y=1.0 y=1.0 y=1.0
Failure to unlock B =065 B=065 =065 0.0109
. y=1.0 y =10 y=1.0
Spurious unlock B =065 B =065 =065 0.0027
. y = 1.46 y = 1.46 y =146
Unknown failure g =257 p=257 B=257 0.0056




Table 2. Mode input parameters for the MUX control subsystem.

Failure Mode Subsystem Repair

Subsystem Failure Mode MTTF (years) Repair time Time (years)
(years)
Loss of all
MUX Cortrol functions both ~ 9.85 x 1073 2.05 x 1076 0.0074
System
pods
Loss of al
functions: one 8.21x 1074 1.6 x 107°
pod
Loss of one
function: both 248 x 1073 1.71x 107
pods
Loss of severd
functions: one 9.85x 1073 0.61x 107
pod
Other 5.22x 107* 1.15 x 1075
Unknown failure  1.23 x 1073 3.42x 107
Table 3. The effect of fault coverage factor on MTBF.
Coverage Factor (%) Mean Time Between Failures (Y ears)
100 1.14
80 1.06
60 1.00
40 0.99

20 0.98
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Figure 2. Petri net model for the annular preventer system.
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Figure 4. Petri net model for the hydraulic connectors.
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Figure5. Petri net model for the ram preventers.

T
™ T2 T3 T4 T5 T6

Normal

Figure 6. Petri net model for the MUX control subsystem.
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Figure 4. Effect of fault coverage factor on BOP system availability.
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RESEARCH HIGHLIGHTS

An advanced reliability analysis method using stochastic Petri-net (SPN) and
reliability block diagram (RBD) for subsea BOP systems;

To incorporate system degradation and condition monitoring (CM) information in
the BOP reliability analysis;

To assess the performance of five BOP subsystems in terms of availability,
reliability and mean-time-between failures (MTBF);

To quantify the effect of fault coverage factor and redundancy design on the BOP
system performance.
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