
Heling, L. W. H. J., Geeves, M. A. and Kad, N. M. (2020) MyBP-C: one protein 
to govern them all.  Journal of Muscle Research and Cell Motility, 41 . pp. 
91-101. ISSN 0142-4319. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/79662/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1007/s10974-019-09567-1

This document version
Publisher pdf

DOI for this version

Licence for this version
CC BY (Attribution)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/79662/
https://doi.org/10.1007/s10974-019-09567-1
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


Vol.:(0123456789)1 3

Journal of Muscle Research and Cell Motility 
https://doi.org/10.1007/s10974-019-09567-1

MyBP‑C: one protein to govern them all

L. W. H. J. Heling1 · M. A. Geeves1 · N. M. Kad1 

Received: 22 October 2019 / Accepted: 29 November 2019 
© The Author(s) 2020

Abstract
The heart is an extraordinarily versatile pump, finely tuned to respond to a multitude of demands. Given the heart pumps 
without rest for decades its efficiency is particularly relevant. Although many proteins in the heart are essential for viabil-
ity, the non-essential components can attract numerous mutations which can cause disease, possibly through alterations in 
pumping efficiency. Of these, myosin binding protein C is strongly over-represented with ~ 40% of all known mutations in 
hypertrophic cardiomyopathy. Therefore, a complete understanding of its molecular function in the cardiac sarcomere is war-
ranted. In this review, we revisit contemporary and classical literature to clarify both the current standing of this fast-moving 
field and frame future unresolved questions. To date, much effort has been directed at understanding MyBP-C function on 
either thick or thin filaments. Here we aim to focus questions on how MyBP-C functions at a molecular level in the context 
of both the thick and thin filaments together. A concept that emerges is MyBP-C acts to govern interactions on two levels; 
controlling myosin access to the thin filament by sequestration on the thick filament, and controlling the activation state and 
access of myosin to its binding sites on the thin filament. Such affects are achieved through directed interactions mediated 
by phosphorylation (of MyBP-C and other sarcomeric components) and calcium.
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Introduction

Muscle contraction and relaxation on the molecular level is 
achieved by the sliding movement of interdigitating thick 
filaments containing myosin and thin filaments contain-
ing actin in the sarcomere. Fundamentally, this process is 
driven by the cyclic interaction between myosin heads and 
actin filaments coupled with ATP hydrolysis and confor-
mational changes of the myosin head (Geeves and Holmes 
1999). Aside from actin and myosin the sarcomere contains 
an array of additional proteins that aid in the assembly or 
integrity of the sarcomere, and regulate the force, rate and 
timing of contraction.

Structure/localisation

Myosin binding protein C (MyBP-C) is a sarcomeric acces-
sory protein that was first identified as a contaminant of 
crude skeletal muscle preparation (Starr and Offer 1971). 
The protein is approximately 40 nm in length, 3 nm in width, 
and has a molecular weight of ~ 140 kDa (Hartzell and Sale 
1985). There are three paralogs, encoded by three differ-
ent genes on different chromosomes (Fig. 1). Slow skeletal 
(ss)MyBP-C is encoded by MYBPC1 on chromosome 12, 
fast skeletal (fs)MyBP-C by MYBPC2 on chromosome 19 
and cardiac (c)MyBP-C by MYBPC3 on chromosome 11. 
cMyBP-C was discovered after ssMyBP-C and fsMyBP-C 
(Hartzell and Titus 1982; Yamamoto and Moos 1983), and 
as the name suggests is exclusive to cardiac muscle.

The three paralogs have likely arisen through gene dupli-
cation and have similar primary structures; cardiac shares 
54.4% sequence identity with fast skeletal, and for slow 
skeletal the identity to cardiac is 52.4% (Weber et al. 1993; 
Yasuda et al. 1995). The proteins are primarily formed of 
a series of globular domains of the immunoglobulin (Ig) 
or fibronectin-III (Fn3) families named C1–C10 from the 
N-terminus with an additional motif or M-domain linking 
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C1 and C2 and a proline alanine rich region (P/A) at the 
N-terminus (Fig. 1). cMyBP-C has an additional Ig domain 
C0 at the N-terminus and has 4 serine residues that can be 
phosphorylated in the M-domain (Yasuda et al. 1995) as 
well as an additional 28 amino acid loop in the C5 domain 
(Flashman et al. 2004).

Two studies in 1995 linked mutations on MYBPC3 to 
familial hypertrophic cardiomyopathy (HCM) (Bonne 
et al. 1995; Watkins et al. 1995), a disease that affects 1 in 
200 people and the most common cause of sudden death 
in young people (Harvey and Leinwand 2011; Maron and 
Maron 2013; Semsarian et al. 2015). Currently, 40% of the 
sarcomeric mutations known to be linked to HCM have 
been found in cMyBP-C (Carrier et al. 2015). The grad-
ual emergence of the link between cMyBP-C and HCM 
has shifted focus towards understanding the structure and 
function of cMyBP-C in disease and normal physiology. 
This protein is not essential for viability, confirmed in 
mouse knockout studies, however, significant deficits in 
contraction were observed, indicating a modulatory role 
in contraction (Harris et al. 2002). We outline some of the 
ways this could be achieved below. MyBP-C’s other poten-
tial roles range from physiological to structural. Several 

reports have described MyBP-C binding partners in the 
sarcomere that may offer a contribution to their formation, 
maintenance and general function. Calmodulin has been 
reported to interact with cMyBP-C. This interaction may 
regulate the binding and unbinding of cMyBP-C to myosin 
proximal subfragment-2 by initiating rapid phosphoryla-
tion of Ca2+/calmodulin dependent kinase II (CaMKII) 
targets on MyBP-C or inducing phosphorylation of the 
RLC by myosin light chain kinase (Lu et al. 2012). The 
presence of a Ca2+/calmodulin binding site in the N-ter-
minal region of cMyBP-C raises questions about the role 
of this Ca2+-signalling pathway in each contraction cycle. 
Does Ca2+ induce a response in cMyBP-C beat to beat, or 
is there a longer-term integration of the calcium signal by 
down-stream phosphorylation events?

Another binding partner to MyBP-C is Four and a Half 
LIM protein 1 (FHL1 or SLIM1), a highly expressed pro-
tein in skeletal and cardiac muscle. MyBP-C seems inte-
gral for the incorporation of FHL1 into the thick filament 
(McGrath et al. 2006). While the exact function of FHL1 
is unknown, overexpression and knockout results in poor 
sarcomere assembly. Mutations in muscle LIM protein have 
been linked to dilated cardiomyopathy (DCM) (Knoll et al. 

Fig. 1   Schematic diagram of full length slow skeletal (ss), fast skel-
etal (fs) and cardiac (c) MyBPC paralogs. Each isoform comprises 
three Fn3 domains and seven or eight Ig domains. The known bind-
ing partners and positions are indicated by the horizontal stripes 

below. Note the phosphorylation sites in the P/A and M domain of 
the ssMyBP-C and cMyBP-C paralogs are indicated by small black 
ellipses. The cMyBP-C has an additional 28 amino acid loop in the 
C5 domain
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2002). Mutations in MyBP-C can therefore have effects 
downstream through its interactions with these auxiliary 
proteins.

More recently cardiac formin Fhod3 has been reported 
to have strong binding interactions (Kd: 0.8 μM) with the 
cMyBP-C (Matsuyama et al. 2018). Like MyBP-C, Fhod3 
is localised to the C-zones of the A-band, and MyBP-C is 
necessary for this localisation. Fhod3 contributes to actin 
polymerization, nucleation and recruitment of profilin actin 
dimers (Blanchoin et al. 2014). It also has an important role 
in regulating actin assembly in the sarcomere and maintain-
ing cardiac function in perinatal and adult hearts (Ushijima 
et al. 2018). This further supports the notion that cMyBP-C 
has multiple roles ranging from structural organisation to the 
Ca2+ response, and explains why mutations in MyBP-C can 
have downstream effects in general sarcomere maintenance. 
For the physiological and structural role of MyBP-C in sar-
comere maintenance we direct readers to more specialized 
reviews of (Flashman et al. 2004; Harris et al. 2011; Moss 
et al. 2015).

Here we will discuss the current knowledge in the field 
about MyBP-C and its interactions with other sarcomere pro-
teins. In particular, we will focus on the interplay between 

MyBP-C and myosin, MyBP-C and actin and consider the 
potential complexities that this brings. The inevitable ebb 
and flow of research activity has led to interest swinging 
between the MyBP-C interaction with the thick or thin fila-
ment. We emphasise here why it is important to bring these 
together to provide an informed opinion on how this impor-
tant cardiac regulator functions.

C‑terminal interactions of cMyBP‑C 
with myosin

MyBP-C’s location in the sarcomere is limited to the 
C-zones of the A band (Fig. 2), regularly patterned in 7–9 
transverse parallel stripes each containing 3 molecules and 
approximately 43 nm apart, which correspond with the axial 
repeat of myosins along the thick filament (Craig and Offer 
1976; Luther et al. 2011). This results in a ratio of MyBP-
C: myosin in the C-zone of 1:3. The two C-zones per thick 
filament cover a third to a half of the thick filament between 
the ends of the bare zone and the filament tips. This brings 
up the first unanswered questions about MyBP-C—what 

Fig. 2   Schematic diagram of half-sarcomere organisation. The 
A-band contains thick filaments and overlapping thin filaments, the 
C-zone is the region of the thick filament with MyBP-C present, and 
the D-zone has no MyBP-C. The I-band contains thin filaments and 
also titin, which leads from the Z-line into the thick filaments. These 

areas are shown with more detail below, highlighting the content of 
the thick filaments in zone C versus D. For clarity only every third 
myosin crown is shown, please refer to Fig. 3 for details on stoichi-
ometry
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structural features confine MyBP-C to this section of the 
thick filament, and if location is linked to its regulatory 
role(s), why just this section?

The first identified binding partner of MyBP-C was myo-
sin, as the name suggests. MyBP-C is anchored to the thick 
filament through strong binding interactions between the C7 
and C10 domains and the light meromyosin (LMM) and 
titin backbone (Tonino et al. 2019). This interaction between 
MyBP-C and titin could explain the restriction of MyBP-C 
to the C-zone of the thick filament. C10 (of MyBP-C) binds 
to a short region of LMM (residues 1554-1581 (Human 
numbering)) through positively charged amino acids (Flash-
man et al. 2007), but C7–C9 are necessary to maximise 
binding affinity to between 0.5 and 3.5 µM depending on 
the isoform (Miyamoto et al. 1999; Okagaki et al. 1993) 
and key for localisation of MyBP-C to the A-band in the 
sarcomere (Gilbert et al. 1999). Different paralogs of MyBP-
C have a higher affinity for the LMM and thick filament in 
the type of muscle where it is found, i.e. cardiac MyBP-C 
has higher affinity for cardiac LMM than for skeletal LMM 
(Alyonycheva et al. 1997).

The focus of the research on the binding properties for 
the N-terminal domains of MyBP-C have shifted several 
times over the decades. The C0–C7 domains are thought 
to extend from the thick filament and able to bind both the 
heavy meromyosin (HMM) region of the thick filament and 
the actin filament.

An important aspect of the way in which MyBP-C can 
regulate the thick filament (and the thin filament) is the 3-D 
geometrical packing of the proteins into the thick filament. 
There are 3 MyBP-C for each 9 myosins in the C-zone. Thus, 

the arrangement is important for how MyBP-C may directly 
or indirectly interact with each pair of myosin heads (see 
Fig. 3). As stated above, the repeat pattern of myosins in the 
thick filament is 43 nm. Within each 43 nm are 9 myosins 
and 3 MyBP-C. The myosins are arranged in 3 sets of 3 
crowns, 14.3 nm apart, with each crown rotated 40° around 
the thick filament (Zoghbi et al. 2008). The 43 nm repeat of 
the MyBP-C stripes therefore corresponds to three MyBP-
C molecules at every third crown (Fig. 3a). For MyBP-C to 
control all myosins in the C-zone it must interact with the 
myosins in two additional crowns along the filament. MyBP-
C affects the packing of myosin heads onto the backbone of 
the filament and that three crowns cooperate in both packing 
and activation such that one MyBP-C is sufficient to govern 
three myosins. EM images of the thick filament suggest pos-
sible interactions between the folded myosin heads and the 
axially adjacent pair of myosin heads away from the bare 
zone (Woodhead et al. 2005), but higher resolution struc-
tures of the thick filament structure are required to establish 
the detail of such contacts. Given the length of MyBP-C 
a strong interaction of the C0–C2 domains with a myosin 
head some distance from the binding site of the C10–C7 
domains in the thick filament could sterically restrict addi-
tional myosins without the need for a specific binding site.

MyBP‑C phosphorylation

The functional effect of phosphorylation of the cMyBP-C 
M domain was first described in intact amphibian muscle 
(Hartzell 1984). Frog myocardium treated with isoproterenol 

Fig. 3   a The molecular arrangement of the thick filament in the 
C-zone. Three molecules of MyBP-C associate via their C-terminal 
regions with myosin S2 at every third crown (orange cylinders) lead-
ing to a 43 nm spacing between MyBP-C zones which matches the 
axial repeat. MyBP-C also interacts with myosin heads/neck through 
the N-terminal regions, although it is clear from the diagram that 
MyBP-C can possibly extend to other myosins in the 14.3 nm heli-
cal repeat therefore the precise myosin that interacts with MyBP-C is 

unknown. Discovering the hinge points of MyBP-C and the geometry 
of its arrangement on the thick filament will be integral for under-
standing how MyBP-C works. b Myosin can exist in two clear config-
urations, left (active. heads-unfolded), right (inactive, heads folded). 
MyBP-C can modulate these forms of myosin, although the mecha-
nism and location of binding sites are not fully known. Image taken 
from (Trivedi et al. 2018)
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to up-regulate phosphorylation showed an increase in ten-
sion which accelerated contraction and relaxation rates. 
The serine residues [Ser-273, Ser-282, Ser-302 and Ser-
307; mouse sequence (Mohamed et al. 1998)] can be phos-
phorylated by an array of protein kinases, including protein 
kinase A (PKA) (Gautel et al. 1995; Mohamed et al. 1998), 
protein kinase C (PKC) (Mohamed et al. 1998), protein 
kinase D (PKD) (Bardswell et al. 2010), CaMKII (Gautel 
et al. 1995) and ribosomal S6 kinase (Cuello et al. 2011). 
cMyBP-C is highly phosphorylated under baseline condi-
tions but phosphorylation is significantly reduced in many 
cardiac conditions like HCM (Sadayappan et al. 2005). This 
supports the physiological importance of cMyBP-C phos-
phorylation. During ischemia, dephosphorylated cMyBP-C 
was more prone to proteolysis than phosphorylated cMyBP-
C (Sadayappan et al. 2005) and recently 29 kDa cMyBP-C 
fragments released during ischemia were shown to be useful 
early indicators of myocardial infarction (Govindan et al. 
2013; Lyngbakken et al. 2019). It is difficult to distinguish 
the functional effects of phosphorylation of cMyBP-C from 
other adrenergic targets in the sarcomere, prioritising the 
use of transgenic models to further enhance our knowledge 
on these effects. One often used approach is to substitute 
the serine for aspartate residues to mimic phosphorylation. 
However it was shown using N-terminal MyBP-C fragments 
(C1-m-C2) that the functional and structural effects of phos-
phorylation in interaction with the thin filament are not mim-
icked by this substitution (Kampourakis et al. 2018). This is 
a point of consideration when analysing future results and 
this result will make the experimental study of phosphoryla-
tion effects significantly more challenging.

Interactions between the N‑terminus 
of cMyBP‑C and myosin

The sarcomeric arrangement of myosin into thick filaments 
provides a large interaction area for cMyBP-C, which is 
mediated by the C-terminal domains as described above. 
However, the positioning of the remainder of the molecule 
is still under debate. Structural data indicates that MyBP-C 
stretches between the thick and thin filaments (Luther et al. 
2011), and measurements of C0 binding to the regulatory 
light chain indicate an interaction of the very N terminus 
with myosin (Ratti et al. 2011). C1 has also been shown 
to interact with myosin adjacent to the light chains (Aba-
bou et al. 2008), and C1–C2 binds S2 in a phosphorylation 
dependent manner (Gruen et al. 1999). These observations 
clearly suggest that the N-terminus of cMyBP-C modu-
lates myosin, however it is not yet clear how and what is 
affected. Studies on the mouse myocardium revealed that 
loss of cMyBP-C resulted in an accelerated stretch acti-
vation response consistent with cMyBP-C suggesting an 

acceleration of the cross-bridge kinetics (Stelzer et al. 2006a, 
c), which was reversed by PKA phosphorylation (Stelzer 
et al. 2006c). Biochemical studies of isolated proteins sug-
gest an enhancement of the actin activated ATPase at low 
MyBP-C concentrations that is offset by a greater reduc-
tion in ATPase at higher concentrations (Belknap et al. 
2014). However, these effects could also be mediated by 
an interaction with actin, described in more detail below, 
rather than a direct effect of MyBP-C on myosin. To make 
the situation more complex, phosphorylation reduces the 
interaction between cMyBP-C and myosin with inotropic 
consequences (Gruen et al. 1999; Nag et al. 2017; Toepfer 
et al. 2013). Such observations would imply that unphos-
phorylated cMyBP-C inhibits myosin. Yet the basal level of 
MyBP-C phosphorylation is quite high (Gresham and Stelzer 
2016). An interaction between cMyBP-C and a population 
of the super-relaxed state (SRX) of myosin likely explains 
this effect. However, the structure of this state still requires 
a clear definition. The SRX was originally defined as a thick 
filament state with suppressed ATPase (Hooijman et al. 
2011), this does not have a defined structural correlate pres-
ently. However, conformations with myosin heads folded 
back onto one another (Fig. 3b) exist: the J-motif, originally 
identified in smooth muscle (Wendt et al. 2001) and the 
Interacting Heads Motif, seen in tarantula (Woodhead et al. 
2005), scallop (Stafford et al. 2001) and limulus (Jung et al. 
2008) and others (Lee et al. 2018) muscle, and correlate to 
turned off muscle. Such structures have also been seen in 
cardiac thick filaments (Zoghbi et al. 2008), suggesting that 
the SRX may correlate with these such structures. How-
ever, the SRX state has been found in HMM and myosin 
(Nag et al. 2017) suggesting that a state not packed onto 
the thick filament but still ‘off’ may exist (Caremani et al. 
2019a). Nonetheless these ‘off’ heads reduce the population 
of force generating heads, decreasing the maximum tension 
that can be generated (McNamara et al. 2016; Spudich 2019; 
Starr and Offer 1978). As long as the number of heads still 
exceeds the duty cycle requirements then the maximum 
velocity will be affected to a lesser extent, if at all. Recently 
the binding site of MyBP-C has been mapped onto myosin in 
more detail and correlated with HCM mutations in MYBPC3 
to suggest an interaction interface across one face of myosin 
(the ‘mesa’) in the ordered relaxed conformation (Nag et al. 
2017). Structural studies have shown that myosins leave 
the ‘off’ state to form the DRX (disordered relaxed state) 
state upon phosphorylation of the RLC (Colson et al. 2010; 
Levine et al. 1996) in striated muscle. These observations 
echo the effects of RLC phosphorylation on the regulation 
of tarantula muscle (Brito et al. 2011), and smooth muscle 
(Lowey and Trybus 2010; Wendt et al. 1999), which are 
exclusively thick filament regulated muscle types and pos-
sess no MyBP-C. However, in striated muscle, formation 
of the DRX is a compound effect of phosphorylation of the 
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RLC (Levine et al. 1996; Stelzer et al. 2006b) and MyBP-C 
(Colson et al. 2010) as well as temperature and the fraction 
of the motor in the pre-powerstroke (M·ADP·Pi) conforma-
tion. The role and timing of each component is of consider-
able interest. RLC and MyBP-C phosphorylation appear to 
result in similar increases in the number of available heads, 
however lattice spacing appears to be affected more by RLC 
phosphorylation than effects of MyBP-C (Colson et al. 2007, 
2010, 2012; Palmer et al. 2004) (although contested in Sad-
ayappan et al. 2006), suggesting a distinct mechanism of 
force enhancement.

N‑terminal interactions of cMyBP‑C 
with actin

MyBP-C’s interaction with actin was discovered shortly after 
its ability to bind myosin was determined (Moos et al. 1978). 
Since then, numerous experimental approaches have collec-
tively shown the N-terminal region of MyBP-C is responsi-
ble for these interactions (Belknap et al. 2014; Harris et al. 
2016; Inchingolo et al. 2019; Kensler et al. 2011; Lu et al. 
2011; Luther et al. 2011; Mun et al. 2011, 2014; Orlova et al. 
2011; Risi et al. 2018; Whitten et al. 2008). The N-terminal 
domains possess some interesting structural attributes; the 
Ig-like C0 domain is specific to the cardiac isoform and the 
proline-alanine rich region between C0 and C1 has sequences 
proposed to bind actin (Squire et al. 2003), that have been 
linked to modulating contractile velocity across species 
(Shaffer and Harris 2009). Also at the N-terminus is the 
M-domain, part of which has been shown to form a tri-helix 
bundle in isolation or with C2 (Howarth et al. 2012; Michie 
et al. 2016) and is structurally perturbed by Ca2+-calmodulin 
binding and phosphorylation (Michie et al. 2016; Previs et al. 
2016). The precise regions of binding to actin are likely to 
vary between isoforms and species (Shaffer et al. 2010; van 
Dijk et al. 2014), therefore an important current goal is to 
clarify these observations. Functionally, the role of interac-
tion with actin is becoming clearer from a combination of 
in vitro and in vivo studies. In vitro motility assays, biochem-
ical ATPase assays and single molecule studies have revealed 
a cMyBP-C induced sensitization of thin filament activation 
to calcium consistent with a left shift of the velocity-pCa 
curve (Belknap et al. 2014; Mun et al. 2014; Previs et al. 
2012; Razumova et al. 2006; Saber et al. 2008). However, at 
high calcium cMyBP-C slowed down actin or thin filament 
sliding and reduced myosin’s ATPase activity. Note, however, 
that these in vitro assays often use high concentrations of 
cMyBP-C resulting in high levels of actin saturation. Alto-
gether this suggests a model where cMyBP-C binding at low 
[Ca2+] displaces tropomyosin towards the “closed” position, 
while at high Ca2+ cMyBP-C blocks or competes with S1 
binding, or creates a viscous load to reduce sliding (Craig 

et al. 2014; Mun et al. 2014; Walcott et al. 2015). The role of 
cMyBP-C competing with myosin binding will be different 
in the sarcomere where the stoichiometry of myosin:cMyBP-
C:actin will limit competition between myosin and MyBP-C. 
Interestingly, in mouse the effects of tropomyosin displace-
ment were highly cMyBP-C domain specific. Only C0C3 
caused displacement and increased sensitivity to Ca2+ while 
shorter N-terminal fragments (C0C1 and C0C1f contain-
ing the first 17M-domain residues) did show thin filament 
binding but no effect on the Ca2+ sensitivity and S1 binding 
(Belknap et al. 2014; Inchingolo et al. 2019; Mun et al. 2014). 
This highlights that a clear definition of both long-lived and 
transient binding sites on actin for cMyBP-C are required.

The governing role of cMyBP‑C

The role of cMyBP-C is fascinating in its complexity, but 
its function can potentially be distilled into two actions, 
governing activation through thin filament interactions, 
and governing force by controlling myosin head availability 
through the thick filament. As described above, cMyBP-C 
is capable of sensitizing the thin filament to myosin bind-
ing at low calcium; this has been visualized as a shift in 
tropomyosin towards the more active ‘closed’ state (Mun 
et al. 2011, 2014). However, in these studies, despite visual-
izing the tropomyosin shift, cMyBP-C was not observed as 
a clear density instead only the proximal region was visible. 
Recently, cryo-EM studies were able to visualize the whole 
of the N-terminal fragment bound to the thin filament (Risi 
et al. 2018). This difference may be due to the lower levels 
of decoration used in the negative stain experiments result-
ing in loss of apparent density due to averaging, or could 
reflect a dynamic interaction between cMyBP-C and the 
thin filament; the latter has recently been directly observed 
(Inchingolo et al. 2019). Imaging fluorescent C0C3 showed 
a dynamic search along the thin filament, potentially offering 
a mechanism for sensing its activation state. At high calcium 
fewer molecules were observed to diffuse, instead binding 
more strongly, competing with myosin binding and also per-
haps providing a viscous load to slow velocity (Inchingolo 
et al. 2019). These two distinct states, one dynamic and the 
second static may explain the two binding modes observed 
using electron microscopy. Indeed, Risi et al. (2018) sug-
gest that C1 presents a strong interaction with actin further 
enhanced by C0, potentially offering a direct structural 
assignment of these two activities.

Activation of the thin filament provides the trigger to ena-
ble contraction, however the force exerted by the myosins 
is dependent on the number of available heads. This second 
aspect of cMyBP-C’s function is complex and likely involves 
distinct mechanisms to release heads e.g. through phospho-
rylation or force-induced. The precise origin of the latter, 
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force-induced effects are hotly debated. Driven by x-ray 
diffraction and fluorescence polarization studies, it remains 
unclear whether cMyBP-C’s function as a force transducer 
between thick and thin filaments, or simply a modulator of 
myosin head availability (Caremani et al. 2019b; Fusi et al. 
2017; Irving and Craig 2019; Kampourakis et al. 2014; 
Linari et al. 2015; Reconditi et al. 2017). These findings 
are further confounded by the recent observation that heads 
released from the thick filament may not necessarily be in 
an active state (Caremani et al. 2019a).

Clearly cMyBP-C is an important modulator of cardiac 
output, at one level working to release heads to increase the 
force generating capacity of the heart, but then to sequester 
these heads in a low energy usage state when not required. 
However, the extent of cooperative force-dependent head 
release for interaction with the thin filament, and cMyBP-
C’s role in this, is unknown. The differential binding of 
cMyBP-C N-terminal regions to both myosin and to actin 
suggests a very important regulatory role for this protein, 
shuttling between thick and thin filaments, modulated by 
phosphorylation/load. In a very recent study, this was inves-
tigated at multiple levels to demonstrate that hierarchical 
phosphorylation imbues specific properties on cMyBP-C. 
At low phosphorylation levels the myosin heads are released 
and cMyBP-C can participate in thin filament activation, 
whereas at higher phosphorylation levels the activation of 
actin is blunted, facilitating diastole (Ponnam et al. 2019). 
This has added a more nuanced appreciation of earlier 
data showing high levels of phosphorylation decreased the 
interaction between cMyBP-C and the thin filament (Previs 
et al. 2016; Shaffer et al. 2009; Weith et al. 2012a, b). How-
ever, at high calcium levels the structure of phosphorylated 
cMyBP-C reverts to one capable of binding the thin filament 
by direct calcium binding to cMyBP-C (Previs et al. 2016).

These complex interactions make it difficult to tease apart 
the distinct roles of cMyBP-C, and to understand their impor-
tance with the context of the stoichiometric and spatial con-
straints of the sarcomere. The latter are further exacerbated 
by the inconsistent alignment between thick and thin filament 
periodicities (43 and 36 nm, respectively) resulting in clear 
landing zones for these proteins, as demonstrated for myo-
sin and actin using laser tweezers (Steffen et al. 2001). To 
more adequately extract an understanding of this complex 
system will require an appreciation of the activation time-
scales induced by force, RLC phosphorylation and cMyBP-C 
phosphorylation. Disentangling this time response may well 
clarify the roles of thick and thin filament responses to stimu-
lation. In addition, these timescales need to be woven into the 
thin filament state switching which occurs rapidly, consistent 
with a similar affinity of TnI for TnC (McKay et al. 1997) in 
response to Ca2+ and myosin binding (McKillop and Geeves 
1993). Phosphorylation of MyBP-C (and other thick and thin 
filament components) is likely a slower response resulting in 

a gross change in the contractile capacity of the sarcomere, 
calcium sensitivity and rates of activation and relaxation. 
Altogether, these observations highlight the complex role of 
cMyBP-C in the sarcomere and explain why this protein is 
such a prolific target of pathogenic mutation.

Does MyBP‑C co‑orchestrate actomyosin 
interactions?

The more we seem to understand about cMyBP-C the more 
challenging a model is required to describe its function. We 
have summarised many of the observations in Fig. 4, show-
ing how the relaxed state is a continuum of states capable of 
modulating the force once the thin filament is activated. The 
highlighted mechanisms of activation show how the interac-
tion between the thick and thin filaments are inter-dependent 
and how cMyBP-C lies at the core of this. Since cMyBP-
C has the ability to bind both myosin and actin with simi-
lar affinities, the mechanisms employed in vivo to regulate 
its binding partners are crucial to understand (Wang et al. 
2016). The stoichiometry and cooperativity of the contacts 
between cMyBP-C and myosin/actin need to be determined 
across a range of conditions. This will reveal if release of 
heads from the thick filament is cooperative and also how 
titin plays a role in this (presumably as a force conductor). A 
long-established difference exists between the cooperativity 
of velocity (e.g. in vitro motility) and tension. The latter has 
a Hill coefficient typically above 5 and motility is usually 
below 2. Perhaps the activating effects of cMyBP-C on the 
thin and thick filaments can reconcile this difference, but 
how is this regulated? Is there a direct effect of calcium on 
the thick filament or is this via a different mechanism?

Despite these potential mechanisms of activation, other 
fundamental questions regarding the localisation of cMyBP-
C in the C-zone also need to be addressed. The diversity of 
cMyBP-C binding partners might suggest a role in sarcom-
eric organisation and repair, or to offset the calcium gradient 
in the cardiac sarcomere (Previs et al. 2015). The latter is 
of interest when considering other muscle types where the 
T-tubules are located away from the Z-line.

Finally, the molecular picture provided in this review pro-
vides a framework that will ultimately require explanation at 
the physiological contraction level. Such observations show 
inconsistencies between studies possibly due to the method 
of study or sample preparation which may affect lattice spac-
ing (Irving and Craig 2019), or inhomogeneities due to phos-
phorylation between myocyte preparations. To achieve such 
connectivity on multiple scales will require uniform sample 
preparation from one source and computational models that 
scale between such levels (Chase et al. 2004; Mijailovich 
et al. 2016; Niederer et al. 2019; Tanner et al. 2008; Walcott 
et al. 2015; Wang et al. 2016).
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The continuing story of cMyBP-C is providing a revela-
tion in our understanding of muscle, both in normal and 
disease conditions. With the advancements in imaging and 
spectroscopy technologies across a range of resolutions both 
in vivo and in vitro it is hoped that these can be provide a 
detailed time-resolved view of cMyBP-C function. Reconcil-
ing a stronger molecular understanding with physiological 
observations using computational methods offers a mecha-
nism to solve the remaining questions of how cMyBP-C 
modulates contraction and why it is such a prolific site of 
mutation in disease.
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