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VII. Abstract

The RNA-guided Cas9 (CRISPR associated protein 9) endonuclease enzyme, is a

powerful  tool  to  mediate  defined  genome  alteration.  Cas9-based  genomic

intervention such as gene knock-down attained through DNA double-strand breaks

(DSBs) in the genomic area of interest. DSBs are one of the most genotoxic lesions.

Historically,  studies  were  centred  in  the  identification  of  genes  involved  in  DNA

damage repair  and control.  However,  these approaches include the  use of  DNA

damaging agents such as ionising irradiation or genotoxic drugs. They induce DSBs

at  random and non-predictive  genome sites  where  damage dosage is  difficult  to

control. Such interventions are unsuitable for studying specific DSBs sites and how

the different DNA damage recognition and repair pathways invoke in response to

them in  the  context  of  the  local  chromatin  state.  This  project  demonstrates  that

controlled  in  vitro CRISPR/Cas9  assays  in  conjunction  with  promiscuous  gRNAs

capable  of  targeting  multiple  sites  is  possible  to  inflict  multiple  DSBs at  defined

genomic sites in the human breast epithelial cell line MCF10A. Here, CRISPR/Cas9

introduced DSBs at defined quantities and locations across the human genome using

custom-designed gRNAs based on  in  silico predictions.  The titratable  damage is

backed by data presented in this project. The current methodology conceived in this

project is anticipated to be a point of reference for more sophisticated and optimised

in vitro transfections. Furthermore, using a well-defined system for controlled DNA

aberrations  can be a  powerful  tool  to  monitor  epigenetic  events  occurring  in  the

context of different drug-resistant cancer cell lines adapted to genotoxic drugs.
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1. Introduction

One of  the  most  critical  processes  for  living  organisms is  to  maintain  the

integrity of its genome to preserve their cellular homeostatic processes and deliver

their  genetic  information,  unchanged,  to  the  next  generation  (1).  There  are

approximately ~1013 cells in the human body, in circulation, each containing ~6 billion

DNA base pairs  and they suffer as

much as tens of thousands of DNA

lesions (per cell) in a given day  (1–

3).  These  lesions  are  capable  of

inhibiting  genome  replication  and

transcription  during  the  G1/S,  G2/M

(Figure  1)  and  spindle  assembly

checkpoints (M phase)  (4–6). These

surveillance  mechanisms  have

evolutionarily adapted to prevent the

cells  from  progressing  to  division

processes and carry on the defective

genome  to  daughter  cells  (4).  If

these  repairing  processes  do  not

repair  the  lesions  effectively  or

correctly, mutations can accumulate to the wider-scale genome often leading to cell

senescence,  ageing  and  even  cancer  and  neurodegeneration,  essentially

14

Figure 1: Simple schematic of a typical mammalian
eukaryotic cell cycle.

A typical  interphase cycle consists of the growth gap
(G1),  DNA  synthesis  (S),  growth  gap  (G2)  phases.
Consequently,  the  cell  division  takes  place  at  the
mitotic  phase  (M).  Resting  gap  phase  (G0)  is  only
observed  in  quiescent  cells  (e.g.  neuron  cells).
Depending  on  the  cell  cycle  phase  at  which  DNA
damage occurs, cells can be blocked in the G1/S or G2/
M checkpoint borders. Most cancer cells are defective
at the G1 point. Created with BioRender.
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endangering cell’s and organism’s viability in the long term as illustrated in Figure 2

(1, 7–11).   A cell  must  be able to cope with DNA damage, that is tolerable and

sustainable  by  invoking  its  DNA  repair  pathways  (12).  Alternatively,  apoptotic

mechanisms are  invoked  in  response  to  excessive  DNA damage that  is  beyond

repair  (Figure  2)  (12).  The  DNA  damage  principle  is  often  exploited  by  current

cytotoxic  drugs such as bleomycin or  cisplatin  by inducing significant  aberrations

within the DNA structure, pushing cancer cells to undergo apoptosis.

15

Figure 2: Cancer and ageing in the context of DNA damage in replicating and non-replicating
cells.

DNA damage is an inseparable part of the cell experience and an ongoing threat to cell viability and
survival.  Damage  to  the  genetic  material  imposes  great  risk  in  its  faithful  transmission  to  the
offspring. DNA repair proteins are activated upon sustainable DNA damage. Excess of unrepaired
DNA  damage  triggers  apoptosis  to  prevent  cancer  and  additional  senescence.  Ultimately,
depending on the cell type, accumulating DNA damage from exogenous or endogenous sources
can lead to carcinogenesis or senescence. Adapted from Bernstein et al. (2013).
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1.1 Types of DNA lesions and cellular response

1.1.1 Types of DNA damage 
DNA lesions (or  DNA damage) are  sites within  a  given section of  a  DNA

molecule containing alteration in its structure or base-pairing components (13). DNA

damage  definition  includes  but  not  limited  to  base  deletion  or  alteration,  sugar

alteration and strand breaks primary caused by endogenous (spontaneous – e.g.

reactive oxygen species, replication errors) or exogenous (environmental– e.g. UV-A,

UV-B,  ionising radiation,  genotoxic  chemicals)  forces  (14,  15).  DNA lesions often

refer  to  a  chemical  and  physical  abnormality  in  DNA.  It  prevents  the  replication

machinery performing and functioning correctly to proceed to genome replication. In

contrast, mutations is a change within the DNA sequence’s base pairs. For example,

inaccurate  repairs  within  the  DNA  sequence  can  lead  to  mutations.  Both  DNA

damage  and  mutation  are  types  of  errors  that  occur  in  the  DNA,  but  they  are

fundamentally different in regards to the DNA context (structure vs sequence) and

the biological consequences that they produce. Within cells, DNA damage rate is a

vital pathology determinant, and if it exceeds the DNA repair rate, the cells become

diseased.

In  mammalian  cells,  DNA  replication  is  regulated  by  the  intra  S-phase

checkpoint  (ISC)  (16).  The  detection  of  DNA  aberrations  is  achieved  through

Phosphatidylinositol-3  kinase-like  protein  kinases  (PIKKs),  composed  of  ataxia

telangiectasia  and  Rad3  related  (ATR)  and  ataxia  telangiectasia  mutated  (ATM)

which they bind to the damaged DNA sites and activating p53, checkpoint kinase 1

(Chk1) and checkpoint kinase 2 (Chk2) (17–21). Both Chk1 and Chk2 can arrest the

16
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cell  cycle  and  trigger  the  repair  pathways  and  phosphorylate  p53,  a  major

transcription factor for bax and p21 to promote cell cycle arrest and pro-apoptotic

pathways  (22). Then, ISC suppresses cyclin-dependent kinase 2 (CDK) and Dbf4-

dependent  kinase  (DDK)  kinase  pathways  preventing  replication  machines  from

copying the damaged DNA template (16, 23, 24). ATM and ATR signalling pathways

are critical  in radiation-induced damage triggered during cell cycle checkpoints as

ATR activates Chk1 and ATM activates both Chk2 and ATR (through crosstalk)  (25).

In  return,  these  components  to  recruit  non-homologous  end  joining  (NHEJ),

homologous  repair  (HR),  microhomology-mediated  end  joining  (MMEJ),  DNA

interstrand crosslinks (ICL) repair, and nucleotide excision repair (NER) to contribute

positively on genome integrity, repair, maintenance and cell survival (26, 27). These

assembled networks of cellular components and pathways sensing and responding

upon  the  DNA  damage  are  often  named  with  the  umbrella  term  DNA  damage

response (DDR).

Different  types  of  damages  can  occur.  Abasic  sites  are  generated  by

depyrimidination  and depurination  processes occurring  500-700 times and 2,000-

10,000  times  per  mammalian  cell  per  day, respectively  (28–30).  These  types  of

damages are often the result of N-glycosidic bonds destabilisation favoured by pH

decrease,  temperature  increase  or  presence  of  alkylations  within  the

apurinic/apyrimidinic  (AP)  site  of  interest.  Additionally,  oxidative  damage  allows

chemical modifications in the DNA bases (such as guanine) happening due to the

lower electron reduction within a molecule (31, 32). An example of a well researched

oxidative  lesion  is  8-oxo-2'-deoxyguanosine  (8-oxo-dG)  (32).  Reportedly,  10,000-

17
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11,500 oxidative adducts occur per cell per day in humans while specific oxidative

damage such as 8-hydroxyguanine (8-oxo-Gua), 5-(hydroxymethyl) uracil (5-HMUra)

and 8-hydroxydeoxyguanosine (8-oxo-dG) occur 2,800 times per human cell per day

(33–36).  Furthermore,  cytosine  deamination  and  O6-methylguanines  (O6MeG)

alternations occur 192 and 3,120 times mammalian per cell per day (3).

Single-strand  breaks  (SSB)

are one of the most common lesions

that  can  be  found  in  the  genome

where  one  helix  strand  is  severed

(Figure  3).  In  contrast,  DSBs  are

considered  as  one  of  the  most

genotoxic DNA damages.  They are

capable  of  leading  to  an

unsustainable  level  of  genomic

instability  within  a  cell  since  both

helix strands are severed (Figure 3). SSBs and DSBs lesions have reported rate of

occurrences at 55,200 SSBs per mammalian cells per day and ~10-50 DSBs per cell

cycle  in  humans,  respectively  (3,  14,  37).  SSBs can be repaired  accurately  and

relatively easy using the undamaged complementary strand under the base excision

repair (BER), single-strand break repair  (SSBR), nucleotide excision repair  (NER)

mismatch repair (MMR) cellular mechanisms (38). 

18

Figure 3: Differences between SSBs and DSBs in
the context of DNA sugar-phosphate backbone.

A  cell  will  regularly  experience  SSBs  during  its
lifetime and is  capable of  repairing them effectively
due  to  the  presence  of  an  undamaged
complementary template in the opposite strand. This
is not the case for DSBs as such lesions are more
difficult  to  repair  and  create  unrejoined  strands
causing  cytotoxicity  and  cell  death.  Created  with
BioRender.
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1.1.2 Methods of repairing DSBs
DSBs lesions are more difficult to repair compared to SSBs since the absence

of  viable  template  for  repair  can  lead  to  insertions,  translocations,  deletions  and

chromosome fusions furthering genome instability. HR and NHEJ are the two primal

mechanisms exist to repair DSBs in eukaryotic cells (39). However, it is unclear from

the current literature which mechanisms or conditions govern the choice to repair the

damage through HR or  NHEJ  (39).  While  the  ATM/ATR-p53-p21-apoptosis/arrest

axis  is an essential  player  for  DDR and DSBs detection, findings in the last two

decades,  has  witnessed  that  specialised  DNA  damage  sensing  and  signalling

orchestrate  the  DDR network  capable  of  detecting  chromatin  complications  (40).

Chromatin  signalling  is  an  important  factor  to  facilitate  recognition  of  DSBs  in

eukaryotic  organisms  that  use  histone  modifications  as  docking  sites  to  ease

effective damage response and repair.  This  often results  in  propagating complex

protein  phosphorylation  and ubiquitin  pathways to  execute  appropriate  but  highly

specific DNA damage responses (40).

19
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1.2 Chromatin and signalling in the context of DNA DSBs and 
γH2AX

1.2.1 Structure and function of chromatin and histones
 An  unwound  DNA  from  a

human diploid cell can span in length

as  much  as  1.8m,  which  suggests

that  the  genome  is  tightly  packed

within  its  ~10μm  nucleus.  It  is

compacted  into  the  chromatin

structure  consisting  of  DNA  and

protein  complex  forming  the

nucleosome as its primary structural

unit. Each nucleosome comprised of

~100kDa octamer built  from histone

proteins  which  are  capable  of

wrapping  146bp  of  DNA  in  a  left-

handed superhelical turn around the

core  octamer  particle  ~1.7  times

(Figure 4) (41, 42). 

In the eukaryotic organisms, five main families of histones exist H2A, H2B, H3,

H4, and H1/H5 (Figure 4) (43). The octamer consists of two copies each of the four,

H2A,  H2B,  H3,  H4 proteins (Figure 4) (43). The histone H1 is known as the linker

histone,  which  is  responsible  for  maintaining  the  integrity  and  stability  of  the

20

Figure 4: Schematic of DNA’s packaging 
structures.

A total of three levels of chromatin organisation of the
DNA can be observed.  1) DNA is anchored around
the  nucleosomes  creating  the  “beads  on  a  string”
structure which is also known as the euchromatin. 2)
Multiple  histones  arrays  create  the  histone  fibre
wrapping around each other to create the 30nm fibre
and  its  most  compact  form  is  known  as  the
heterochromatin.  3) Finally,  higher-level supercoiling
of the 30nm fibre and chromatin produces the main
structure  for  the  mitotic/meiosis  metaphase
chromosome. Created with BioRender. 
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nucleosome core particle, including, tertiary structures of higher-order  (44, 45). The

construction  of  the  octamer  nucleosome core  is  based  on  the  interaction  of  the

associated H3-H4 tetramer complex with two H2A-H2B dimer complexes (Figure 4)

(43). Helix dipoles in H2B, H3, and H4 cause a net positive charge in the nucleosome

that favours the negatively charged phosphate group of DNA to wrap around the

histone creating the “beads on a string” structure (43). This allows the chromatin to

undergo higher levels of condensation to form the secondary structure comprised of

the  30nm  fibre  (Figure  5)  (43).  Interactions  between  neighbouring  nucleosomes

within their N-terminal domains, allows the 30nm fibre structure to form fibre-fibre

interactions  creating  tertiary  chromatin  loops  and  stabilised  by  H1  (43).  Luger,

Dechassa and Tremethick suggest that apart from H1 histone, methyl-CpG-binding

protein  2  (MeCP2),  heterochromatin  protein  1  (HP1)  and  poly  (ADP-ribose)

polymerase  1  (PARP1)  architectural  proteins  may  also  contribute  to  the  higher

chromatin assembly (43).

The dynamic  alteration  of  the  chromatin  structure  is  a  barrier-like  function

which moderates genome replication, transcription and repair based on the open or

closed  access  to  the  DNA  (Figure  5)  (43).  It  is  achieved  through  chromatin

remodelling  using  histone  modification  enzymes  and  ATP  dependent  chromatin

remodelling  complexes,  which  are  the  dominant  factors  to  accomplish  this

remodelling process in eukaryotes (41, 46).
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1.2.2 Histone variants, H2AX and damage sensing 
During  the  S  phase  histones  are  deposited  independently  to  aid  for  the

chromatin stabilisation by replacing the canonical S-phase histones with the histone

variants behind the replication forks  (47). Two of the nucleosome histone families

H2A and H3 have highly conserved and functionally specialised histone variants (48).

H2A includes the H2AX and H2AZ variants  (47). Specifically, H2AX is encoded by

the H2AFX gene and represents 2-25% of the H2A histones found in mammals (49).

While  it  maintains  the  characteristic  H2A Histone  Functional  Domain  (HFD)  (18-

91aa)  when  compared  to  H2A,  is  characterised  by  its  longer  14  amino  acid  C-

terminal and the four amino acid C-terminal SQEY motif whose serine residue can

phosphorylate (Figure 6A and 6B)  (50). This phosphorylation event is generated in

response to the DSBs occurred in the given DNA strand by the activated PIKKs (PI3-
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Figure 5: Chromatin remodelling achieving primary, secondary and tertiary structure 
organisation.

Interaction between adjacent nucleosomes and 30nm fibre-fibre interaction allows chromatin to adjust
to  higher  levels  of  condensation  (primary,  secondary  and  tertiary).  This  flexible  potential  allows
chromatin to be remodelled for repair, transcription and replication with the aid from ATP dependent
chromatin  remodelling  complexes  and  histone  modification  enzymes.  From Luger,  Dechassa  and
Tremethick (2012).
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family) of protein kinases ATM, ATR and DNA-dependent protein kinase (DNA-Pkcs)

(Figure 6B and 6C)  (50). The study from Rogakou et al. revealed that exposure to

irradiation results in the γH2AX formation as part of the DDR within 20 seconds (49).

This activity occurs within minutes following the exposure to irradiation and results in

a sequence of events to occur (51). 
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Figure 6: Composition of H2A, its variant H2AX, and the nucleosome core model.

(A) H2AX is one of the evolutionary well-conserved variants of H2A which retained most of the H2A
sequence, including the HFD except a small portion of the C-terminus. (B) Upon DSBs, kinases of the
PI3-family  phosphorylate  H2AX  which  is  known  as  γH2AX  at  Ser139  in  the  SEQY  motif.  (C)
Schematic  drawing  of  the  histone  octamer  including  the  H2AX  variant  and  the  phosphorylation
location. Adapted from Henikoff and Smith (2015), Kinner et al. (2008) and atlasgeneticsoncology.org
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Since its  discovery,  γH2AX has been utilised in  assays to  understand the

different pathways involved in DNA damage recognition and repair. A sophisticated

network of novel proteins is enrolled by interacting and co-localise with γH2AX. Upon

extension  of  the  γH2AX domain  to  several  mega-bases  in  mammalian  cells,  the

mediator of DNA damage checkpoint protein 1 (MDC1) binds to the γH2AX, forming

the  γH2AX/MDC1 complex  (Figure  7)  (52,  53).  Next,  the  γH2AX/MDC1 complex

recruits the MRN (comprised of Mre11, Rad50 and Nbs1 proteins) complex and ATM

proteins to create a positive amplifying feedback cascade to allow γH2AX extension

to surrounding chromatin (Figure 7)  (54). This propagates a new wave of proteins

into the DSBs location such as ubiquitin ligases RNF8 and RNF168 which initiates

the poly-ubiquitylation of the H2 histones (H2AX, H2A, H2B) at DSB sites (Figure 7)

(54).  Further  concentration  of  protein  components  such  as  RAD51,  RAD52  and

RAD54 reversibly interact with the γH2AX site of interest to assist for the DNA repair

and  recombination  (Figure  7)  (55,  56).  The  cascade  nexus  employs  the  breast

cancer type 1 susceptibility protein (BRCA1) and p53-binding protein 1 (53BP1) to

mediate cell-cycle arrest and employ the DNA repair mechanisms such as HR and

NHEJ (Figure 7)  (57). Additionally, EXPAND1 interacts with 53BP1 to maintain the

chromatin structure in a relaxing state to promote cell survival (Figure 7) (58). 

While  γH2AX  is  not  unequivocal  evidence  for  DSBs,  γH2AX-derived  foci

formation  based  on  the  current  literature  consensus  is  capable  of  stimulating

checkpoint and DNA repair activation, and sister chromatid cohesion and chromatin

remodelling  (54, 59).
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Figure 7: Initiation of repair foci upon exogenous damage in the context of DDR.

Upon  DSBs  from exogenous  sources,  MRN complex  recruits  ATM,  ATR and  DNA-PK which
propagates the phosphorylation of H2AX and in return employs MDC1. MDC1 forms a complex
with γH2AX which allows it to spread to surrounding chromatin territory. This promotes the proper
concentration of the DDR cascade proteins and other protein effectors to stabilise and repair the
DSB. From Ivashkevich et al. (2012).
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Notably,  H2AX−/− knock-out  causes  radiation  and  damaging  agents

sensitivity, genomic instability, cell-cycle arrest, immunological deficiency and growth

retardation in mice (60–63). The number of chromosome breaks increases between

the  H2AX+/+,  to  haploinsufficient  H2AX+/− and further  to  H2AX−/−  (63,  64).  The

H2AX−/− p53−/− is the most severe phenotype where the tumorigenesis increases;

apoptosis induction is severed and unable to repair spontaneous DSBs effectively

and efficiently (64). Therefore, H2AX plays a vital role in the DNA homeostasis and

protection  of  the  genetic  information  by  propagating  sophisticated  chromatin

modification to recruit DDR.  

1.3 Past and current methods investigating and mediating DNA 
damage (DSBs)

1.3.1 Indirect induction of DSBs
Past and current studies with the intent to better understand how cells respond

upon mediated DNA damage have involved the use of exogenous DNA damaging

agents.  Such studies aimed to  understand which genes are involved in the DNA

repair pathways and sensitivity  towards DNA damage agents (1, 65). However, the

extent  and  the  way  these  pathways  are  interconnected  in  the  context  of  DNA

damage investigation and sensing in the different genomic locations based on the

local chromatin state is not well understood (66, 67).

Specific  frequencies  bands  within  the  electromagnetic  spectrum  can  be

considered as the most pervasive exogenous sources of DNA damage. Ultraviolet

(UV) light (10-400nm) can induce thousand of lesions with the residual UV-A and UV-

B spectrum (UV-C absorbed mostly in the ozone layer). In lab, UV-irradiated cells
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with  induced  DSB  have  been  a  common  practice  for  mutagenesis  and

carcinogenesis based studies for a long time (68, 69). DSBs can be produced under

heavy UV-B irradiation and potentially from UV-B based reactive oxygen species

(ROS) (70–72). However, Rizzo et al. show that UV-A may not be as capable as UV-

B to form DSBs in primary skin fibroblasts (73). There is not sufficient evidence that

UV-A has a pivotal  role  in  DSBs formation.  Nonetheless,   there  is  a  consensus

between these studies that DSBs are not produced directly by the UV wavelength

bands itself but from the already generated DNA photoproducts such as cyclobutane

pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts (6-4PPs)

(74–76). UV-induced cell cycle arrest in the xeroderma pigmentosum variant (XPV)

led to the accumulated Mre11/Rad50/Nbs1 complex, prominent nuclear γH2AX foci

and stalled replication forks (77, 78). Also, UV is capable of forming interstrand DNA

cross-links during the cell’s interphase. Specifically, replication forks stalled in the S

phase can cause DSBs when they try to replicate the DNA.

Ionising radiation (IR) is defined as the emission of energy capable of ionising

atoms or molecules by losing or gaining electrons. In this definition, the upper part of

the UV spectrum, X-rays and γ-rays are included. Historically there was an interest in

the  effects  of  IR,  especially  in  the  aftermaths  of  World  War  II  since  it  produces

various types of lesions within cells (79). High linear energy transfer (LET) is capable

of producing SSBs and DSBs by creating radiolysis radicals that intervene against

the DNA backbone  (80–82). Nowadays, IR is used by numerous studies to invoke

and  study  repair  pathways  and  their  mechanisms.  IR  is  a  technique  to  mediate

chromosomal aberrations such as translocations, deletions and dicentrics  (83). For
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each IR-induced DSB, there are approximately 10 SSBs, and such breaks usually

leave terminal nucleotides and phosphoglycolates that cannot be easily ligated by

repairing mechanisms (82, 84). 

Clastogens  are  DNA damaging  and  DSBs inducing  capable  agents  which

include  but  not  limited  to  anticancer  chemotherapeutic  drugs.  Chemotherapeutic

drugs such as DNA-alkylating agents have been designed to attach to a DNA alkyl

group defined as CnH2n+1. Such agents intervene against the cancer cells’ genome,

causing genotoxicity and cytotoxicity to cancer cells leading to apoptosis. Example of

such drugs is temozolomide and methanosulfonate (85, 86). Other drugs capable of

forming a covalent linkage between adjacent nucleotides include cross-linking agents

cisplatin,  mitomycin  C,   and  radiomimetic  compounds  such  as  phleomycin  and

bleomycin (85, 86). Topoisomerase inhibitors, such as etoposide and camptothecin,

are classes of drugs capable of stalling the DNA cleavage-topoisomerase complexes

and generate DSBs and SSBs, respectively (87).

In recent  years, studies have utilised hydrogen peroxide (H2O2)  to mediate

ROS related damage through superoxides and hydroxyl radicals to induce DSBs,

causing approximately one DSB in every 30 SSBs (88–93). Such studies attempt to

generate free radical  damage since their  mutagenic  potency may lead to  certain

types  of  cancers  (88).   The  radical  hydroxyl  mechanism starts  by  attacking  the

deoxyribose DNA sugar-phosphate backbone and bases. In both cases, reactivity

starts by hydrogen obstructions which leads to strand breakage or by creating new

adducted  products  in  π electron-rich  bonds  at  N7-C8  in  purines  and  C5-C6  of

pyrimidines (68, 94, 95). 
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In conclusion, all of the above methods have been important in the study of

DNA damage in different cellular contexts. However, these methods suffer from two

main disadvantages. They induce many lesions other than DSBs, and they are not

capable of inducing targetted DNA damage.

1.3.2 Direct induction of DSBs
Targeted breaks are necessary  to  investigate how DDR varies in  different

chromatin  regions.  Initial  studies  used  restriction  enzymes  such  as  the  intron-

encoded  endonucleases  I-PpoI  and  I-Sce1  (96).  These  homing  endonucleases

interrogate specific  base-pair  contents  of  a  given length  approximately  15bp and

18bp, respectively. These enzymes cleave the DNA through DSBs, which target a

minimal number of sites within the genome of interest (96). Next, DSBs inducible via

AsiSI restriction enzyme (DivA) transformed human cell line allows one to mediate

hundreds of DSBs located in euchromatin only since DNA methylation is capable of

inhibiting AsiSI activity (97). This method is capable only to interrogate the promoter

and the gene body only (97). Eventually, there was a need to develop new methods

to target all  types of chromatin and induce programmed DSBs on demand. Thus,

engineered  restriction  enzymes  transcription  activator-like  effector  nucleases

(TALENs) and zinc-finger nucleases (ZFNs) were created. 

ZFNs  are  nucleases  derived  from  the  fusion  of  zinc  finger  DNA-binding

domain proteins with the DNA-cleavage domain, FokI type II restriction endonuclease

(98). The DNA binding domain contains between three and six individual zinc finger

repeats that are capable of recognising specific genomic motifs spanning from 9bp to

18bp in length (98). Each zinc finger in an optimal scenario is capable of identifying
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3bp sequences in the form of 5′-(GNN)N-3′ and FokI imposes DSBs in the designated

region  in  either  strand  (Figure  8)  (99,  100).  Similarly,  TALENs  contain  the  FokI

endonuclease which is capable of DNA-cleavage and the TALE proteins derived from

Xanthomonas bacterium type  III  secretion  system which  act  as  the  DNA-binding

region (Figure 8) (98, 101, 102). TALE proteins can contain up to 33-35 amino acid

domain repeats each capable of recognising a single base pair in the DNA sequence

of  interest  (Figure  8)  (98).  TALENs  mechanism  is  not  well  understood,  but  the

TALEN’s Repeat Variable Diresidues (RVD) 12th and 13th seem to be associated

with nucleotide recognition (103).  

While  TALENs  and  ZFNs  make  more  site-specific  DSBs  compared  to

irradiation, chemotherapy drugs and previously mentioned restriction enzymes, they

are  prone  to  potential  problems  in  regards  to  undesired  cleavage  and  high

engineering costs. To further complicate matters, TALENs and ZFNs are not base

sequence  addressable.  The  CRISPR/Cas9  system  attempts  to  solve  the  above

problems with its ability to induce highly specific targeting cleavage of an interrogated

DNA sequence guided by a complementary ribonucleotide sequence.
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Figure 8: Visual comparison of the ZFNs and TALENs systems.

Both ZFNs and TALENs are capable of exhibiting DSBs with higher precision in desired
genomic  locations  when  compared  to  traditional  methods  of  DSBs  induction  like
chemotherapy drugs, irradiation and other restriction enzymes. The figure demonstrates
the ability of the individual compartments of ZFNs and TALENs to recognise three base
pairs and single base pair, respectively. Created with BioRender. 
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1.4 Targeted genome editing using the CRISPR/Cas9 system

1.4.1 The CRISPR system
Clustered  regularly  interspaced  short  palindromic  repeats  (CRISPR)

endonucleases have evolved to be an effective adaptive immune system for both

bacteria and archaea against foreign genetic elements such as conjugative phages

and plasmids (104–108). CRISPR sequences of the prokaryotic chromosomal DNA

are well-characterised loci containing identical palindromic repeats ranging from 21-

40bp  in  length  (Figure  9)  (109,  110).  In  between  them,  spacer  sequences,  also

known as protospacers spanning 20-58bp in length (Figure 9)  (110).  Each of the

protospacers  at  the  CRISPR array  locus  have  unique  sequences,  and  they  are

considered  to  be  an  archive  of

past  viral  infections  that  do  not

match with spacers found in other

bacterial species (Figure 9) (109).

The  numbers  of  repeats  and

protospacers vary  per  locus and

may  contain  as  much  as  120

adjacent  repeats/protospacers

and  as  low  as  two  adjacent

repeats/protospacers  (109,  110).

The CRISPR array locus is superseded by the leader sequence and the CRISPR

associated system (Cas) genes (Figure 9). Some bacterial species may contain more

than one locus (up to 8).  Streptococcus pyogenes possesses multiple CRISPR loci
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Figure 9: Schematic example of a bacterial 
chromosome containing a CRISPR locus.

A CRISPR locus consists of CRISPR associated system
(Cas) genes, the leader sequence  ■, CRISPR repeats  ■
(21-40bp) and CRISPR spacers □ (20-58bp). Created with
BioRender.
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with distinctive repeat units. CRISPR sequences can be found in 50% and 90% of

the sequenced bacterial  and archaea genomes, respectively  (111).  Depending on

their genetic content and structural differences, the CRISPR/Cas system is classified

into three main types, type I, type II, and type III and further twelve subtypes (112).

CRISPR/Cas  prokaryotic  systems  universally  contain  the  cas1  and  cas2  genes,

whereas  type  I,  type  II,  and  type  III  contain  the  cas3,  cas9,  and  cas10  genes,

respectively (112). 

The  most  notable  protein  from CRISPR is  the  RNA-guided  endonuclease

Cas9, a protein complex which relies on RNA cofactor to guide genome intervention

catalysis. CRISPR/Cas9 system defends against a plasmid or phage by incorporating

the foreign invading DNA into the CRISPR array (Figure 10) (113). Then,  a CRISPR

unit containing the matching sequence is transcribed to a CRISPR RNA (crRNA) and

is joined with trans-activating CRISPR RNA (tracrRNA) to generate the guide RNA

(gRNA) sequence (Figure 10). The tracrRNA ribonucleotide sequence is transcribed

from the bacterial genome upstream of the cas genes. Next, the gRNA is inserted

and bound to the Cas9 protein by forming an active protein/RNA-guided complex

(Figure 10). The newly formed activated complex results in a structure conformation

activating  the  two  nuclease  domains,  HNH  and  RuvC.  Upon  interrogating  the

matching sequence of the foreign DNA elements based on the complementary gRNA

template, the protein/RNA-guided complex catalyses the foreign DNA by applying

DSBs (Figure 10). 
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Figure 10: Native CRISPR pathway commonly found in prokaryotic organisms.

The initiation of the CRISPR pathway begins with the invasion of a foreign genetic element (★) (in
this  case,  bacteriophage)  into  the  prokaryotic  cell  (1).  Next,  fragments  from the  foreign  genetic
element are incorporated into the CRISPR Array, which acts as a storage archive of past infections
(2). The cell constitutively transcribes spacer/repeat group containing the foreign element (3) which is
combined with tracrRNA to form the gRNA molecule. The gRNA is joined into the Cas9 protein (4)
forming the Cas9:gRNA activated complex  (5) which binds complementary to the DNA target and
cleaves it through DSBs (6). As a result, this process inactivates the invading DNA inhibiting the viral
infection. Created with BioRender.
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The  CRISPR  pathway  is  an  essential  adaptative  system  to  inhibit  viral

infection in prokaryotic organisms. Nonetheless, current methods for controlling and

manipulating the CRISPR/Cas9 technology has allowed to be emerged as a high

precision  genome engineering  tool.  Three  Cas9  variants  have  been  adopted  for

genome editing purposes. Firstly, the wild-type Cas9, which is capable of inactivating

genes by cleaving DNA through DSBs induction. This results invoking cellular repair

mechanisms either NHEJ which inactivates genes through indels or be repaired by

the homology-directed repair (HDR) if a donor template with the relevant homology is

present  (114, 115). Secondly, Cong  et al. demonstrated that mutant Cas9D10A is

capable of inducing SSBs and invoke only the high-fidelity HDR pathway and not

NHEJ allowing for specific and adjacent DNA nicks to be generated (91, 116, 117).

Lastly, nuclease-deficient Cas9 (dCas9) due to mutations in D10A in the RuvC and

H840A in the HNH nuclease domains allows for specific gene silencing or activation

without cleaving the targeting DNA  (117–119). Chen  et al. also demonstrated that

imaging repetitive DNA sequences or gene loci can be achieved with dCas9 fused

with Enhanced Green Fluorescent Protein (EGFP) (120). 

The CRISPR/Cas9 system has seen wide adoption since its initial application

in 2012 (117, 121). Cas9 is capable of cleaving any sequence that is complementary

to its gRNA cofactor (117). It has been successfully utilised in many cells lines and

genomes including but  not  limited to  bacteria,  C. elegans,  zebrafish,  Drosophilia,

Xenopus tropicalis, yeast, rabbit, pig, zebrafish, plant, rat, mice, monkey and human

genomes (116, 122, 131–133, 123–130). 
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1.4.2 Structure and function of the wild-type Cas9 protein
CRISPR type II Cas9 is one of the most well-studied nucleases in terms of

selectively targeting a specific DNA sequence based on the complementary gRNA

sequence.  The  activated  Cas9:gRNA  positively  charged  heteroduplex  structure

allows identification and cleavage of the desired genomic sequence. The type II Cas9

polypeptide sequence is composed of six core domains (Figure 11A) (134). Jinek et

al. and Nishimasu et al. show that RuvC nuclease domain is composed of a total of

three discontinuous segments, RuvC-I, RuvC-II and RuvC-III (Figure 11A) (134, 135).

Additionally, it contains the HNH nuclease domain coexisting between the RuvC-II

and RuvC-III domains, the recognition domains REC I, REC II and an arginine-rich
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Figure 11: Polypeptide sequence and crystal structure of the S. pyogenes Cas9 protein.  

(A) Proteomic analysis of the Cas9 sequence suggests that the six domains (HNH, RuvC, Bridge
Helix,  REC I,  REC II  and PI domain) can be classified into two categories based on the domain
functions, recognition lobe (REC) and nucleases domain (NUC). (B) This composition gives rise to a
unique nuclease structure where two states can be observed (apo and DNA binding states) due to the
flexible  conformation  interactions  taking  place  between  the  NUC  and  REC  lobes.  Adapted  and
adjusted from Jinek et al. (2014) and Nishimasu et al. (2014). 
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(Arg)  region  known as  the  bridge helix  (BH)  (Figure  11A)  (134).   Finally,  in  the

sequence’s  C-terminal  (CTD),  the  protospacer  adjacent  motif  (PAM)  interacting

domain (PI domain) is located (Figure 11A) (134, 135).

High-resolution  crystal  structure  (2.2  –  2.6Å)  of  Cas9  suggests  a  bi-lobed

conformation which consists of the  α-helical lobe known as the REC lobe and the

nuclease domain lobe known as the NUC lobe (Figure 11A and 11B) (134, 135). The

two-lobe domains are bridged together with a single bridge helix (BH) rich in Arg, and

the given architecture allows the recognition of crRNA-tracrRNA’s stem-loop and its

integration to the ribonucleoprotein complex  (134–136). The gRNA is composed of

three stem-loops or one tetraloop (117).

The initiation of the DNA catalysis starts with the recognition of the DNA’s

PAM sequence,  consisting  of  three  nucleotides 5′-NGG-3 or  5′-NGA-3 by  the  PI

domain in the NUC lobe  (137, 138).  This process initiates the binding of the 20-

nucleotide segment of the gRNA 5’ end with the complementary annealed single-

strand DNA (ssDNA) sequence. The arginine residues Arg1333 and Arg1335 are

responsible  for  interacting  with  the  PAM’s  major  groove  GG  bases  (137).  The

gRNA:ssDNA  complex  is  anchored  in  a  T-shape  like  formation  promoting  tight

conformation packing of the NUC lobe with the REC lobe (134, 135). The unpacked

and the packed states of the Cas9 are known as the apo state (inactive state) and

the DNA bound state (activated complex state).  Evidence of these states are the

three crystal structures published to date, two representing the DNA bound state (by

Anders et al.  and Nishimasu et al.) and one in the apo state (by Jinek et al.)  (134,

135, 137). Next, under the positively charged and tightened cavity state, the REC I

37



Ioannis Emmanouilidis

domain promotes the nucleic acid binding of gRNA (135). The binding is aided by the

phosphate lock loop by the Ser1109,  which hybridises the PAM and target  DNA

backbones  strands  (known as 1-2bp melting)  as  shown in  Figure  12  (137).  The

function and role of REC II are not well understood. However, molecular dynamics

simulations  from Palermo  et  al. suggest  non-REC I  residues  contribute  to  Cas9

plasticity for gRNA recognition and easier switching between the two states for DNA

recognition  as  it  undergoes  significant  conformational  changes  (139,  140).

Eventually,  the  lock  loop  propagates  the  unzipping  of  the  target  DNA  and

gRNA:ssDNA linkage (Figure 12) (137). The above illustrates the high specificity and

efficiency of the Cas9 system as a genome-editing tool.

Ultimately, the HNH domain, one of the least packed areas within the Cas9

protein, along with the RuvC domain exerts an invasive conformation against their

respective DNA strands which results in their cleavage just after the PAM’s upstream

third nucleotide base (141). The epitome of the cleavage activity takes place in in the

Asp10 and His840 residues of the RuvC and HNH nuclease domains respectively.

Both His840 and Asp10 cleaves the 3’ - 5’ phosphate bond by activating a nearby

water molecule which attacks the phosphate group of the DNA backbone promoting

the chain of chemical reactions to cleave the DNA strands (Figure 12) (135, 142). 
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Figure 12: Proposed DNA targeting model based on PAM recognition in Cas9 by 
Anders et al. (2014).

There are four fundamental steps by which the Cas9 protein interrogates targeting DNA. The
targeting sequence is recognised by the PI domain through the PAM sequence and forces the
Cas9’s  α-helical  REC I and BH  to undergo to an ideal conformation to accommodate the
phosphate lock loop. This process allows the gRNA:ssDNA to hybridise the ribonucleotide
and propagate the cleavage action. From Anders et al. (2014).



Ioannis Emmanouilidis

1.4.3 Cas9 protein targeting efficiency and off-targeting 
Targeting efficiency is defined as the percentage of the desired mutation one

wants  to  achieve.  It  is  one  of  the  most  crucial  parameters  when  assessing  the

effectiveness of genome editing tools. When compared to traditional techniques like

ZFNs and TALENs, Cas9 is a logistically inexpensive and easier to design alternative

with  relatively higher  targeting efficiency  (143–145).  Additionally,  their  widespread

use is hindered by time-consuming and engineering costs. In human cells, ZFNs and

TALENs have demonstrated efficiencies between 1% and 50% (143–145). However,

the active nucleases in both ZFNs and TALENs may lead to unnecessary off-target

intervention, leading to undesirable DSBs in the genome of interest, random donor

DNA  integration,  chromosomal  rearrangements  and  even  cell  death  (146–149).

Predicting the nuclease activity based on the sequence remains a big challenge for

ZFNs and TALENs based genome engineering before the experimental validation in

the cellular context (150).

Unlike  to  ZFNs  and  TALENs,  which  relies  on  a  protein/DNA  recognition

patterns,  CRISPR/Cas9  relies  on  a  ribonucleotide  to  ribonucleotide  recognition,

essentially allowing gRNAs to target nearly any sequence in the genome of interest.

Additionally, the Cas9’s PAM sequence increases the specificity of  the cutting by

acting as a preliminary sequence. The Cas9 efficiency remains largely, a topic of

ongoing debate. Reportedly, the Cas9 efficiency in plants and zebrafish genomes

can reach up to 70% (127, 151). In humans cells, Cas9 target efficiency depends on

the type of cell line is utilised and what repair pathway is utilised (NHEJ vs HDR vs

knockout) for each case. In induced pluripotent stem cells (iPSC) as low as 2-4% or
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as high as 50% (HDR rate),  in 293T cells  10-25%, in  K562 cells  8-13%, human

mesenchymal stem cells (MSCs) 37.3-80.2% (knockout) (152–154). Zhou et al. were

able to improve the Cas9’s genome target efficiency up to 78% by using dual gRNAs

in the mouse genome (155). Also, CRISPR/Cas9 systems are capable to tolerate up

to  one  base  difference  within  the  PAM  sequence  and  as  many  as  five  bases

mismatches  in  the  protospacer  region  (156,  157).  Currently,  no  studies  are

investigating the efficiency of desirable DSBs only in any given genome. Identification

off-target  mutations  in  order  to  assess  transfection  efficiency  can  be  achieved

through  many  means  including  but  not  limited  to  T7  Endonuclease  I  mutation

detection assay, chromatin immunoprecipitation (ChIP), CUT&RUN in situ genome-

wide profiling and whole-genome sequencing (157–159). 

To combat  the  target  inefficiencies,  redesigning  of  crRNA can change the

target  specificity  and  location  by  predicting  its  genomic  intervention  using

bioinformatics by generating large crRNA libraries based on sequenced genomes

(160).  High  throughput  screening,  sequencing  and  especially  increased

computational power in the last decade have allowed CRISPR target finder tools to

increase  the  easiness  and  precision  of  in  silico designing  of  genomic  targets

including on-target and off-target site predictions. 

1.4.4 Bioinformatics landscape of CRISPR/Cas9
Recent years have seen the development of sophisticated bioinformatics tools

allowing researchers to understand the molecular parameters of the Cas9 system to

optimise it for experimental use. The majority of these tools and their main objective
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is to design and calculate gRNAs with minimised off-target activity and increased on-

target guide efficiency.

Earliest  studies concluded that  despite the 3bp PAM and the 20bp crRNA

sequence specificity, some target sites exhibit different CRISPR/Cas9 activities (116,

117,  161–164).  That  was  problematic  for  the  earliest  designing  tools  since  the

selection of target sites was based only on simple recognition patterns for the PAM

and target  sequence  motif  (165–167).  These  findings  led  to  large-scale  genome

screens testing thousand of candidate sequences to identify these causes (156, 162,

168). By limiting sequence GC content, poly-T sequences and including guanine (G)

upstream of PAM (e.g. 5’ - GNGG – 3’) one can optimise CRISPR/Cas9 and increase

its efficiency across the desired target sites  (161, 163, 169). However, each of the

studies  differs  in  how  they  approach  the  prediction  of  target  sites  and  what

fundamental rules (local and global) included for the gRNA calculation (only 20bp

target sequence, 20bp sequence with the PAM, GC content and chromatin state)

(170, 171). More sophisticated approaches such as from Doench et al. may include

additional information rule sets not related to the sequence such as cut site position

in regards to the transcription start site (TSS) or gRNA thermodynamic stability (168,

171). 

The current standard scores to measure off-target activity include the CFD

(considering 20bp target sequence + PAM) and the MIT-Broad score (considers only

target  sequence)  (164).  These scoring  systems solve  some of  the  long-standing

problems with off-targeting false negatives predictions based on experimental data

where algorithms model  tend to  overestimate  off-target  activity  (172,  173).  Other
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approaches for off-targeting scoring such as CRISTA and Elevation, expand the off-

targeting  assessment  with  genomic  location,  sequence  overlap  with  DNase  1

sensitive regions and gRNA secondary structure criteria (174, 175).

The  bioinformatics  landscape  of  the  CRISPR/Cas9  research  constantly

changes  as  newer  approaches  and  techniques  are  being  developed  to  target

sequences factoring a multitude of parameters to predict on and off-targeting activity

and  other  relevant  factors.  In  silico research  has  made  remarkable  progress

regarding gRNA designing and assessing it  against performance metrics.  Several

CRISPR/Cas9 bioinformatics tools are capable of predicting genome editing based

on machine learning models  (174, 176).  Reintegrating experimental  data and key

rules such as sequence and non-sequence information into the current models has

been and will improve the accuracy of the tools (177).

Further complicating the matter there is no consensus on the current literature

on how to approach solving on-targeting or off-targeting activity for either algorithmic

or  machine  training  models.   Also,  there  is  no  agreement  on  how  to  measure

CRISPR/Cas9 activity. Each of the models makes different assumptions regarding

initial conditions, and machine learning approaches use different training datasets.

These are just a few of the factors hindering current bioinformatics research. This

also suggests that differences in prediction models outcome for CRISPR targeting

success are governed by multifactorial features not well understood to this date. 
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1.5 Project Outline

The  ability  of  histone  proteins  to  undergo  chemical  modification  ensures

control of the DNA metabolism within cells to guarantee chromosomal homeostasis.

Under  abrupt  and extremes changes within  the  histones  such  as  DSBs,  histone

H2AX  is  phosphorylated  at  Ser139  to  form  γH2AX,  which  recruits  epigenetic

responses to repair  and stabilise the damaged DNA strands  (178).  However,  the

majority  of  studies  are  not  able  to  control  the  DSBs dosage  though  the  use  of

genotoxic drugs, irradiation or topoisomerases (179).

The specificity and efficiency of the CRISPR/Cas9 system in regards to DSBs

induction  has  been  demonstrated  by  Berg  et  al. which  they  designed  an

crRNA:tracrRNA duplex capable of cutting the genome as much as 17 times (180).

Nevertheless, the 17 genome cuts gRNA is capable of a limited number of DSBs,

which delays the progression of the cell cycle. It may not be capable of producing the

number of lesions typically found in studies utilising non-Cas9 interventions.

The aim of this project was to therefore to form a new pipeline to design and

transfect  a  Cas9:gRNA  complex  into  a  non  transformed  human  cell  line  and

produced a given dosage of DSBs, at will, at known genomic locations. It is crucial to

demonstrate the feasibility of this project in order to study epigenetic responses in a

controlled amount of DSBs for future experiments. 
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2. Materials and methods

2.1 Human cell culture for Cas9 transfection

Human mammary epithelial cells (MCF10A) were maintained in MCF10A cells

APC  (-/-)  medium  (Sigma-Aldrich  –  CLLS1069).  The  complete  baseline  of  this

solution consists of Dulbecco's Modified Eagle's Medium (DME)/Ham's F-12 Nutrient

Mixture (Sigma-Aldrich – 51448C) supplemented with horse serum with 5% (v/v) final

concentration  (Sigma-Aldrich  –  H1270),  cholera  toxin  10ng/ml  (Sigma-Aldrich  –

C8052), hydrocortisone 0.5mg/ml (Sigma-Aldrich – H6909), hEGF 20ng/ml (Sigma-

Aldrich – E9644) and human insulin 10 μg/ml (Sigma-Aldrich – I9278). Cells were

cultured  at  37°C  in  5%  CO2 incubation  and  grown  to  90-95%  confluent  before

splitting for passaging (maximum 20) occurred every 3 to 4 days (assuming doubling

time of approximately 20 hours). Cells were trypsinised with 0.25% trypsin/EDTA.

2.2 Cell transformation and recombinant expression in E. coli

Plasmid  pET-Cas9-NLS-6xHis  responsible  for  encoding  SpCas9  (wild  type

Cas9  derived  from  S.  pyogenes)  containing  nuclear  localisation  signal  (NLS)

sequence and 6x-Histidine tag fused at the C-terminal, was obtained from plasmid

repository Addgene (#62933). The pET-Cas9-NLS-6xHis was a gift from David Liu

(181). 

Plasmid  purification  achieved  using  QIAprep  Spin  Miniprep  Kit  capable  of

purifying  plasmid  up  to  20μg.  Cell  transformation  achieved by  adding  as  low as
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~200ng of plasmid DNA to 50μL in thawed E. coli BL21 (DE3) competent cells (182).

Cells-plasmid solution incubated on ice for 30 min and heat-socked at 42°C for 45s

and then placed back on ice for an additional 2 min. A total of 250μL of LB (Luria

Broth) medium was added to BL21 (DE3)-pET-Cas9-NLS-6xHis cells and incubated

in  a  shaker  for  1h  at  37°C.  Then,  50μL  of  bacterial  culture  plated  on  LB  agar

containing  50μg/ml  ampicillin  and  35μg/ml  chloramphenicol  and  subsequently

incubated at  37°C overnight  (182).  A  single colony was inoculated in  100mL LB

solution with 1:1,000 dilution of 100 mg/ml ampicillin or 50 mg/ml kanamycin placed

at 37°C in a shaking incubator (250 rpm) overnight. 

Then,  25mL of  the overnight  culture was added in  1L of  LB (total  4  x  1L

expression) and 1:1,000 dilution of 100mg/ml ampicillin or 50mg/ml kanamycin was

put together into the 1L LB incubated at 37°C in a shaking incubator (~13.3 rpm)

(182).  When cell  growth  reached  0.5-0.7  at  600nm (OD600),  protein  expression

induction  was  initiated  by  adding  1mL  of  1mM  M  isopropyl-β-D-1-

thiogalactopyranoside (IPTG)  in  each 1L flask.  Cultures  left  to  grow overnight  at

18°C. Expression cultures were centrifuged at 4°C, 4000rpm in swing-bucket JA-10

rotor for 20 min and resuspended in resuspension buffer (50mM Tris.HCl pH 7.5,

40mM Imidazole, 200mM NaCl, 1mM DTT, 20% sucrose). PMSF inhibitor is added in

1 mM final concentration before storing in -20°C until purification. 

2.3 Nickel-ion and gel filtration chromatography

Freshly  unfrozen  resuspension  solution  was  sonicated  for  5  min  at  30s

intervals at 14 microns to lysate cells. Then, sonicated samples were centrifuged in
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swing-bucket JA-25.5 rotor at 18,000 rpm 4°C for 30 min. Then, the supernatant was

removed to use for affinity chromatography by loading the lysate to the injection loop

system of the chromatography.

Nickel-ion  exclusion  chromatography  achieved  using  prepacked

chromatography column HisTrap 5mL (GE Healthcare  – 17-5248-02) in ÄKTA pure

protein  purification  system  at  4°C.  Buffer  A  (50mM  Tris:HCl  at  pH  7.5,  40mM

Imidazole,  500mM NaCl,  1mM DTT)  was utilised to  elute unwanted proteins and

other debris from the lysate solution and switched to buffer B (50mM Tris:HCl at pH

7.5, 400mM Imidazole) to release Cas9-NLS-6xHis from the nickel-ion column and

eluted  into  1mL  fractions.  The  sodium  dodecyl  sulfate–polyacrylamide  gel

electrophoresis (SDS-PAGE) gel was run by loading 1:1 eluted sample with running

stock solution (2:1:1 SDS Invitrogen NuPAGE LDS Sample Buffer (4X) - NP0007:1M

DTT: PBS) at 120V and 0.03A (for 1h) and scaled up to 180V. Any SDS-Page gel

involving Cas9-NLS-6xHis investigation utilised PageRuler Plus Prestained Protein

Ladder  10  to  250  kDa  (Thermo Scientific  –  26620).  Gels  undergo  a  coomassie

treatment with staining (0.1% coomassie (W/V), 50% methanol and 10 % acetic acid)

and destaining (40% methanol and 10 % acetic acid) solutions.

If SDS-PAGE gel bands show band shadowing, it is recommended to re-run

the eluted protein through size exclusion chromatography to increase the degree of

purification.  Gel  filtration  chromatography  performed  by  using  HiLoad  16/600

Superdex  200  pg  column (GE Healthcare  –  28989335)  in  ÄKTA system at  4°C

utilising gel  filtration buffer  (50mM Tris:HCl  at  pH 7.5,  1mM DTT,  150mM NaCl).

Once again, SDS-PAGE electrophoresis 8% resolving gel was run with mixed 15μL
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eluted sample and 5μL SDS NuPAGE (Invitrogen – NP0007) at  120V and 0.03A

using Bio-Rad PowerPac Basic Power supply to check if gel filtration was successful.

Protein concentration quantification utilised LVis plate from the CLARIOstar  High-

Performance Monochromator  Multimode Microplate Reader by checking the peak

spectra  at  280nm  and  calculated  using  Beer-Lambert  Law.  Extinction  coefficient

value for CRISPR/Cas9 (Entry: Q99ZW2) was adopted from ProtParam -  ExPASy

(assuming disulphide bonds are present – 120575 M -1  cm-1) in order to calculate the

protein concentration for a given fraction. 

2.4 In silico gRNA design for multiple genome interventions

The gRNAs used in this project were designed using FlashFry, a command-

line tool to discover and score viable CRISPR targets within large sets of genomes

developed by McKenna, A. and Shendure, J. (183). The programme was configured

on Xubuntu 18.04 LTS Linux system terminal and was run on Java 8 (1.8.0_201)

configured as follows:

sudo add-apt-repository ppa:webupd8team/java // add relevant PPA
sudo apt update // update system package index
sudo apt upgrade // upgrade to latest packages
sudo apt install oracle-java8-installer // install Java installer script
javac -version // check Java version installed
sudo apt install oracle-java8-set-default // set default variables on Java

FlashFry was downloaded from Github - https://github.com/mckennalab/FlashFry and

configured according to  the author’s recommendations.  The binary database was

created  based on  the  latest  human genome (hg38 build)  in  FASTA format  from

UCSC:
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wget https://github.com/aaronmck/FlashFry/releases/download/1.9.0/FlashFry-
assembly-1.9.0.jar
wget http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz

//Commands to download FlashFry programme and human genome files

mkdir tmp //Create folder directory 
named tmp

java -Xmx4g -jar FlashFry-assembly-1.9.0.jar \ //Execute FlashFry tool

 index \ //Invoke indexing module
 --tmpLocation ./tmp \ //Hold content temporarily at 

tmp while database file is 
generated

 --database hg38_cas9_database \ //Give binary database name
 --reference hg38.fa.gz \ //Source from hg38
 --enzyme spcas9 //Index 23bp targets for 

SpCas9 for NAG or NGG

From version 1.9.0 and onwards, FlashFry allows target extraction capable of cutting

multiple times in the genome. 

java -Xmx4g -jar FlashFry-assembly-1.9.0.jar \ //Execute FlashFry tool

 extract \ //Invoke extract module
 --minInGenome 150 \ //Minimum cuts variable in 

genome (e.g. 150 times)
 --maxInGenome 150 \ //Maximum cuts variable in

genome (e.g. 150 times)
 --subsampleProportion 0.1 \ //Show competent targets at 

p=0.1 population portion
 --binaryOTFile hg38_cas9_database \ //Source from binary database
 --outputFile targets.output //Save results in file named 

targets.output

The project  generated  crRNAs capable  of  inducing  50,  100  and  150  cuts

across the genome. Two crRNA versions for the 50 and 100 targets were designed

capable  of  interrogating  GC  rich  and  TA  rich  contents  in  the  human  genome.

FlashFry scoring annotations include measuring DNA targeting specificity (hsu2013),

on-target  efficiency  (doench2014ontarget),  cutting  frequency  determination

(doench2016cfd)  and  crRNA  efficiency  (moreno2015)  (156,  164,  168,  184).
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Subsequently,  viable  crRNAs  were  selected  based  on  on-target  and  off-target

scoring metrics generated by FlashFry:

java -Xmx4g -jar FlashFry-assembly-1.9.0.jar \ //Execute FlashFry tool

 score \ //Invoke score module
 --input targets.output \ //Read source file to score 

  named as targets.output
 --output targets.output.scored \ //Name output file
 --scoringMetrics doench2014ontarget,doench2016cfd,dangerous,hsu2013,minot \

//Use scoring annotation methods hsu2013, doench2014ontarget, doench2016cfd, 
moreno2015 and GC, Poly Thymine dangerous sequences. 

 --database hg38_cas9_database //Source from binary database

The verification of the newly designed crRNA hits across the human genome

was done in BLAST/BLAT search from Ensembl with adjusted option to report the

maximum number  of  hits  to  report  to  5000,  E-value  for  alignment  report  at  1.0,

match/mismatch scores equal to 1,-1 with filtering low complexity regions and query

sequences options enabled as shown in Figure 13.
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51

Figure 13:  Settings used in Ensembl BLASTN search tool to locate 
where the newly designed crRNAs maps on the human genome 
(GRCh38.p12). 

The above BLASTN configuration used to verify on-target hits only in an
attempt  to  establish  a  consensus with  the  FlashFry  discovery  and  hit
metrics.
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2.5 Cas9:gRNA preparation for in vitro transfection

2.5.1 Transfecting Cas9-NLS:gRNA to MCF10A
When MCF10A cell line grown to complete confluency (~1x106 for a complete

timecourse condition) in a petri dish in standard antibiotic-free cell culture reagents

(including serum and supplements), cells were harvested by a quick wash of 37°C

pre-warm  PBS  or  TBS  and  trypsinised  with  0.25%  trypsin/EDTA.  Cells  were

centrifuged at 500 rpm for 5min at 4°C and counted using Bio-Rad TC20 automated

cell counter. Then, cells resuspended in 37°C pre-warm Opti-MEM I Reduced Serum

Medium (Gibco – 31985070). The protocol baseline for the active Cas9:gRNA was

based on Dharmacon’s Cas9 nuclease protein NLS electroporation protocol. Both

crRNA and tracrRNA (Dharmacon Edit-R CRISPR-Cas9 Synthetic  tracrRNA – U-

002005-20)  stock  solutions  (200μM  each)  prepared  by  adding  the  appropriate

volume of RNase-free water. Then, the 100μM solution of crRNA:tracrRNA duplex

was created by combining 200μM stock solutions in a 1:1 ratio. The solution was

gently mixed for 10 min and stored at -20°C for future experiments.

The Cas9 ribonucleoprotein (RNP) complex was created by combining 1.5μM

Cas9 protein and 3μM gRNA final concentration and kept in ice until mixed with the

cell-Opti-MEM  medium.  The  delivery  of  Cas9:gRNA  was  done  through

electroporation using Gene Pulser/MicroPulser Electroporation Cuvettes with 0.2cm

gap cuvettes at in Gene Pulser Xcell Electroporation System. Transfection achieved

using exponential pulse at 300V and 300μF. Cells were left to rest for 5min in the

corresponding well, and complete cell culture media added on top of the Opti-MEM in

1:1  manner.  Transfected  MCF10A  cells  were  incubated  at  37°C  in  5% CO2 on
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Greiner  CELLSTAR  24  well  culture  plates  (Greiner  bio-one  – 662160).  Menzel-

Gläser glass coverslips 13mm diametre (Thermo Scientific  – 15737602) pre-coated

with 50 µg/ml poly-D-lysine (Sigma – P7280) for 1h, 2h, 4h and 6h.

The project utilised HS17 crRNA (5’-CAGACAGGCCCAGATTGAGG-3’) from

Berg  et  al. which  cuts  17  times  in  the  human  genome  based  on  the  RPL12

pseudogenes  homology  sequence  and  Centromeric  crRNA  (5’-

TTTCTTGCCATATTCCACGT-3’)  that  targets  repetitive  sequences  within

chromosomal centromeres  (180). Centromeric crRNA allows for multiple breaks in

the same ~1Mb region. These sequences used as a baseline comparison with the

crRNAs sequences designed  in silico, as explained in section 2.4 of the materials

and methods chapter. 

2.5.2 Validation and optimisation of transfection protocol
Previously purified dCas9-Halo transfected into the MCF10A cells prior using

the functional Cas9 and gRNA to verify that protein can be electroporated inside the

cytoplasm. This step is optional but essential to adjust electroporation protocol for

untested cell lines and assess transfection efficiency. Purified fraction was 6μg/μl and

a  total  of  20μg  (4μL)  and  40μg  (8μL)  dCas9-Halo  protein  was  added  in  400μL

resuspended  pellet  in  Opti-MEM.  Transfection  protocol  adjusted  and  optimised

accordingly with the primary objective to use the minimum possible quantity of Cas9

to be electroporated successfully. The expressed protein was derived from pET302-

6His-dCas9-Halo plasmid and was a gift from Timothée Lionnet and obtained from

Addgene repository (#72269) (185). For Halo labelling, 100nM final concentration of
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TMR ligand (Promega – G8252) used on the MCF10A cells and incubated at 37°C in

5% CO2.

2.6 Cell immunostaining and fixation

Coverslips containing MCF10A cells were washed twice with TBS prior fixing

in 4% (w/v) in paraformaldehyde (PFA) for 10min. PFA was quenched with 50mM

NH4Cl/TBS solution for 15min after a round of three washes with TBS beforehand.

Once again, cells were washed thrice and stored at 4°C overnight.

Then, cells were permeabilised and simultaneously blocked in 2% (w/v) BSA

and 0.1% (w/v) Triton X-100 TBS solution (approximately 0.5ml per well in a 24-well

plate)  for  15min.  Nucleus stained with  Hoechst  33342 (Invitrogen –  H3570)  in  a

1/12300 dilution of 20mM of the Hoechst stock in 2% (w/v) BSA and 0.1% (w/v)

Triton X-100 TBS solution for 1h. Without washing, cells were permeabilised in the

primary γH2AX Ser139 mouse antibody in 1:500 dilution (Sigma-Aldrich – JBW301)

for 1h. The coverslips were inverted on a 50μL drop of the antibody/probe placed on

a parafilm layer. Then, coverslips washed three times with TBS in a beaker and re-

inverted  with  fluorophore-conjugated  (such  as  Alexa  Fluor  555)  anti-mouse

secondary antibody (Abcam – ab150114) for 1h as before. Coverslips washed one

by  one  with  dH2O  three  times  and  mounted  on  Menzel-Gläser  SuperFrost

microscope slides (Thermo Scientific – 12372098) with anti-fading agent 2.5% (w/v)

DABCO supplemented in mowiol (Sigma-Aldrich – D2522). The slides incubated at

37°C overnight and then stored at 4°C.
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2.7 Fixed cell microscopy and quantification

Widefield  immunofluorescence  images  were  obtained  using  CytoVision

Olympus BX61 microscope equipped with Olympus UPlanFI 100 X 1.30 Oil Japan

numerical aperture objective lens, Olympus WH10X-H/22 eyepiece ocular lens and

Hamamatsu Photonics Digital CCD Camera ORCA-R2 C10600-10B-H. Confocal Z

stacking imaging was performed on ZEISS Elyra 7 equipped with the Axio Observer

7 inverse strand microscope,  using Plan-Apochromat 40x/1.4 Oil  (DIC) numerical

aperture  and  Andor  iXon  897  EM-CCD  camera  (SMLM)  using  polarised  laser

modules.

DNA damage foci were evaluated and quantified in Fiji (Fiji Is Just ImageJ) by

splitting  the  RGB channels  (186).  Next,  the  images were  converted  to  binary  to

segment foci particles digitally. Despeckle function was used to remove CCD camera

artefacts from the images such as salt-and-pepper noise. The area of the nucleus

was selected with the Freehand Selection Tool, and the Analyze Particles function

used to calculate the number of  foci  in a given nucleus. In this project,  a foci  is

defined as a particle that has a total area of approximately 15 pixels after filtering out

the background and artefact noise in the widefield images. Foci pixel value intensity

(PVI)  was measured by  first,  splitting  the  channels  and then using  the  Measure

function  in  the  Analyze  menu  of  Fiji.  No  binary  conversion  was  used  for  this

measurement.  The confocal  images analysis  was done by adjusting the intensity

threshold  of  the  conditions  to  the  controls  (electroporated  only  cells)  and  then

merging all the layers of the orthogonal projection. 
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3. Results

3.1 Cas9-NLS-6xHis protein purification

The first step in this project was to purify recombinant Cas9 protein for use on

the transfections. Eluted protein samples from the sharp peaks were collected using

high imidazole buffer and analysed using SDS-PAGE (Figure 14). A sharp peak (at

approximately 100mL) containing the Cas9-NLS-6xHis protein was observed in the

cation  exchange  HisTrap  chromatogram (Figure  14A).  While  major  contaminants

have been eluted in the first  50mL of the elution programme (Figure 14A),  SDS-

PAGE showed band shadowing, indicating that some contaminants were remaining

in  the  expressed  protein  (Figure  14B).  The  eluted  fractions  from  the  nickel  ion

chromatography (1mL each) were combined and eluted through the HiLoad 16/600

Superdex 200 pg column, and the collected peak (Figure 15A) was analysed in SDS-

PAGE (Figure 15B). The eluted samples after the size exclusion chromatography

show minimal contaminants. This two-step purification protocol allows purifying the

Cas9-NLS-6xHis  at  its  highest  degree  possible,  excluding  any  unwanted

contaminants  effectively.  Absorption  spectra  at  280nm show that  the  protocol  is

capable of producing as much as 45.91mg of purified Cas9 protein for a single 1mL

fraction (Table 1).
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Figure 14: Purification of Cas9-NLS-6xHis recombinant protein using nickel ion affinity 
chromatography.

(A) Chromatography profile of Cas9-NLS-6xHis protein using HisTrap chelating HP histidine-tagged
protein purification column at 4°C in ÄKTA pure protein purification system shown as a straight line
(—). The elution gradient of high imidazole (Buffer B) is indicated by the dashed line (---). Elution of
Cas9-NLS-6xHis occurred at 100mL elution indicated by the arrow (↓). The fractions collected were
1mL each.  (B) SDS-PAGE gel (8% resolve) analysis of the peak stained in NuPAGE. M: Thermo
Scientific - PageRuler Plus Prestained Protein Ladder (10 - 250 kDa) S: Bacterial supernatant solution
P: Bacterial pellet. A7-13: Fractions of Cas9 peak. 

Figure 15: Gel filtration of Cas9-NLS-6xHis fractions obtained from nickel-ion affinity 
chromatography.

(A) Chromatography profile of Cas9-NLS-6xHis protein using HiLoad 16/600 Superdex 200 pg column
at  4°C  in  ÄKTA  pure  protein  purification  system.  Elution  and  collection  of  the  Cas9-NLS-6xHis
occurred in at 47mL at the first absorbance peak indicated by the arrow (↓). (B) Eluted samples were
subsequently analysed in SDS-PAGE 8% resolve gel generating a total of 8 high concentration and
viable Cas9 protein fractions.  Each of  the eluted fractions was 1mL each. M: Thermo Scientific  -
PageRuler Plus Prestained Protein Ladder (10 - 250 kDa).
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Table 1: Individually calculated concentrations of Cas9-NLS-6xHis protein fractions after gel filtration
based on absorption spectra defined by Beer-Lambert law.

Fractions Absorbance at 280nm Concentration (M) Concentration (mg/mL)

C2 1.744 2.89 × 104 45.83
C3 1.747 2.90 × 104 45.91
C4 1.075 1.78 × 104 28.25
C5 0.456 7.56 × 105 11.98
C6 0.318 5.27 × 105 8.36
D3 1.285 2.13 × 104 33.77
D4 0.115 1.91 × 105 3.02
D5 0.238 3.95 × 105 6.25

3.2 FlashFry crRNA design and genome hits verification

The FlashFry tool compresses the genome into an organised index for easier

and faster discovery of target sequences for the computer.  This index essentially

contains lookup tables for  the enzymatic  23bp (PAM + sequence)  target  sites in

regards  to  the  desired  genome.  Construction  of  the  index  binary  for  the  human

genome  using  FlashFry  for  targeting  both  5′-NGG-3  and  5′-NGA-3 preliminary

sequences took approximately 5 hours. Next, a total of five sequences were selected

from the generated output list. Sequences were selected based on the predicted cuts

50, 100 and 150 times across the human genome in either PAM sequence NGG or

NGA (Table 2). Specifically, there are two versions for each of the 50 and 100 crRNA

sequences. These variants that target GC-rich sequences 50A (60.9% GC) and 100A

(56.5% GC),  and AT-rich  regions 50B (69.6% AT)  and 100B (60.9%).  All  of  the

sequences intervene orientationally forward in the DNA strand. Neither of the strands

contain  any  dangerous  sequences  features  that  would  be  difficult  to  work  with,

except for the 100B, which shows multiple thymine (T) bases in a row (Poly T).
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FlashFry  allows scoring metrics into  any newly designed sequences list  in

order  to  characterise the sequences  in  silico.  One of  them,  the on-target  activity

score  (doench2014ontarget)  ranges  from  0  (not  active)  to  1  (more  active  guide

sequence)  which  is  not  applicable  for  50A,  50B,  100A,  100B  and  150  crRNA

sequences  (Table  3).  These  crRNAs  are  designed  for  multiple  sequence

interventions and not for single cleavage (knock out). This multiple target property of

these sequences does not create enough sequence context on either side of a guide

for the scoring metric to be applicable. Cutting frequency determination (CFD) score

based on doench2016cfd predict the likelihood of off-target activity from 0 (not active)

to 1 (active) for a given sequence. All of the sequences are highly active, cutting at

the off-target  based on the doench2016cfd metric score (Table 3).  The Hsu2013

scoring is also known as as the crispr.mit.edu score which ranks the specificity of the

sequence in either NGG and NAG Cas9 targets from 0 to 100 (higher score are

better)  (Table 3).  All  of  the sequences showed expected low scores in  Hsu2013

(Table 3).  A high Hsu2013 score is anticipated in a sequence designed to cut a

single  time  in  a  designated  target  in  the  human  genome (knock  out)  (Table  3).

Predicted on count hits from FlashFry and Ensembl show that there is consensus in

the number predicted cuts (Table 3). Visual and quantified overview of the hits is

summarised in Figures 16, 17 and 18 including hits relative to the number of bases

for a given chromosome. Additionally, there are 847 off-target hits for 50A and 452

off-target hits for 50B crRNA sequence  (Table 3). Last but not least, 100A, 100B and

150  crRNA  demonstrated  1200,  753  and  1142  predicted  off-target  hit  count,

respectively (Table 3).
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Table 2: Best selected crRNA sequences in terms of hits which used for in vitro transfections.

Name Sequence Orientation Dangerous GC Dangerous PolyT

50A 5’-ACCCCTGGCAGCTGCGGTTCAGG-3’

Forward None

None50B 5’-TATAATAAGCAAATTGCAATGGG-3’

100A 5’-GGGGCTTCCAGGTCACAGGTAGG-3’

100B 5’-ACTTTAAGTTTTAGGGTACATGG-3’ Yes

150 5’-GTGCCAGAAATCTGGCCACCAGG-3’ None

Table 3: Scoring metrics for crRNA sequences designed in FlashFry

Name Doench2014 Doench2016 Hsu2013 FlashFry Hits Ensembl Hits Off-target Hits1

50A

N/A

1 5.077 54 53 847

50B 0.941 5.291 52 50 452

100A 1 2.772 111 100 1200

100B 1 6.161 100 100 753

150 1 3.798 158 154 1142

1 Off-target defined as having up to four base pairs mismatches.
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Figure 16: Overview of genomic targeting of 50 breaks using 50A and 50B crRNA sequences
based on Ensembl BLASTN g38.

Introducing a defined number of breaks  in silico  with the 50A and 50B set of crRNAs. Red arrows
represent only the overlapping genes matched the query crRNA sequence, which may suggest a toxic
intervention. Bar charts depict all the hits across individual chromosomes, including hits per Mbp for
the given crRNA sequence. Sequences generated on FlashFry. 
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Figure  17:  Overview  of  genomic  targeting  of  100  breaks  using  100A  and  100B  crRNA
sequences based on Ensembl BLASTN g38.

Introducing a defined number of breaks in silico with the 100A and 100B set of crRNAs. Red arrows
represent only the overlapping genes matched the query crRNA sequence, which may suggest a toxic
intervention. Bar charts depict all the hits across individual chromosomes, including hits per Mbp for
the given crRNA sequence. Sequences generated on FlashFry. 
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Figure 18: Overview of genomic targeting of 150 breaks using 150 crRNA sequence based on
Ensembl BLASTN g38.

Introducing a defined number of breaks in silico with the 150 crRNA. Red arrows represent only the
overlapping genes matched the query crRNA sequence, which may suggest a toxic intervention. Bar
charts depict all the hits across individual chromosomes, including hits per Mbp for the given crRNA
sequence. Sequences generated on FlashFry. 
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3.3 Microscopy Results
3.3.1 Transfection of dCas9-Halo protein to assess electroporation efficiency 
and qualitative validation (widefield microscopy)

To optimise and validate the feasibility of the electroporation protocol, TMR

ligated dCas9-Halo protein was electroporated  in vitro into confluent MCF10A cell

culture (Figure 19). The transfection was assessed in widefield immunofluorescence

microscopy by transfecting 20μg (Figure 19B) and 40μg (Figure 19C) of dCas9-Halo

to MCF10A cells.  The transfection  efficiency for  20μg and 40μg was 38.3% and

33.5% on average, respectively. In some instances, the delivery of the dCas9-Halo

system  achieved  above  50%  (Figure  19D).  The  control  (electroporation  without

dCas9-Halo) did not provide any immunofluorescence feedback as expected (Figure

19A and 19D). This part of the pipeline did not involve any gRNA integration to the

dCas9-Halo system as this part of the project focuses on creating a starting point for

the transfection protocol, which has been optimised in subsequent trials.
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Figure 19: CRISPR imaging of transfected MCF10A cells with dCas9-Halo protein ligated with
the TMR ligand.

Widefield immunofluorescence imaging with MCF10A cells electroporated without (A) dCas9-Halo, (B)
with 20μg electroporated dCas9-Halo and (C) electroporated 40μg dCas9-Halo. (D) Quantification of
the dCas9-Halo transfection widefield images for control (n=1727), 20μg (n=3246) and 40μg (n=1977).
Transfection efficiency at 300V and 300μF reaches approximately less than 40% on average. Bars
indicate the mean with SD error bar. Nuclei fixed with 4% (w/v) PFA and quenched with with 50mM
NH4Cl/TBS solution. Nuclei blocked with 2% (w/v) BSA and stained with Hoechst 33342 (1:12300) and
100nM final concentration of TMR ligand. Imaging was done on Olympus BX61 microscope with DAPI
and Cy5 filters.
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3.3.2 Widefield microscopy IF qualitative data
The delivery of the active Cas9 into the MCF10A cells is necessary in order to

carry the desired genetic modifications. For this part of the project, electroporation of

Cas9:gRNA ribonucleoprotein complex is needed to investigate a single aspect of

DNA damage through γH2AX foci fluorescence feedback and assess the success of

the assay. Apart from the testing the newly designed gRNAs 50A, 50B, 100A, 100B

and 150, the HS17 and centromeric gRNAs were used as a point of reference to

assess the damage both quantitatively and qualitatively.  

To  visualise  the  nuclear  location  of  the  DSBs  based  on  the  γH2AX foci,

MCF10A  cells  were  grown  tο complete  confluency  and  electroporated  with  the

designated Cas9:gRNA complex at  300V and 300μF.  Following the PFA fixation,

cells  were  quenched  with  NH4Cl/TBS,  permeabilised  with  2%  (w/v)  BSA  and

immunofluorescence was performed with  anti-γH2AX (1:500),  which then labelled

with  Alexa  Fluor  555  red  (ex:555nm,  em:580nm)  conjugated  secondary  antibody

(1:500).

The results are seen in Figure 20 for all the transfection conditions for all time

courses.  Upon  delivery  of  the  Cas9:gRNA  complex  into  MCF10A  cells  through

electroporation, the formation of γH2AX foci can be observed from the first hour of

incubation (Figure 20). This suggests that within an hour of incubation, Cas9-NLS is

imported  to  MCF10A  nuclei  from  the  cytoplasm.  Between  two  and  four  hours

following transfection, the highest level of broken DNA is observed (Figure 20). At six

hours post  electroporation,  these breaks are decreased in  numbers or  no longer

present (Figure 20). This reveals that several of the MCF10A cells are in various
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stages of DNA damage repair, ranging from small and distinct γH2AX particles to

large  and  diffused  foci.  The  exception  is  the  transfection  involving  the  first  hour

Cas9+Centromere gRNA post-transfection, which does not show any or minimal foci

formation possibly correlating to chromatin accessibility  (Figure 20).  Transfections

involving the control (electroporation without any Cas9 or gRNA) and Cas9 without

any gRNA attached showed minimal to none foci formation. Figure 21 shows only the

red channel,  which  depicts  the  γH2AX foci  (TRITC)  without  the  Hoechst  (DAPI).

Additional repeats were conducted in order to perform quantification and statistical

analysis.
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Figure 20: Widefield immunofluorescence shows localisation of γH2AX foci in stained MCF10A
nuclei utilising the HS17, centromere, 50A, 50B, 100A, 100B and 150 gRNAs with active Cas9
(Merged). 

Nuclei staining reveal MCF10A cells recruiting γH2AX DSB damage repair foci in four different time
courses 1h, 2h, 4h and 6h post-transfection with the respective Cas9:gRNA complex. Control involves
MCF10A cells that were electroporated without any Cas9 or gRNA. Cas9 only involves transfections
without any gRNAs involved. Utilisation of HS17, centromere, 50A, 50B, 100A, 100B and 150 shows
formation of  γH2AX foci. To form the gRNAs the HS17, centromere, 50A, 50B, 100A, 100B and 150
crRNAs combined with the Dharmacon Edit-R CRISPR-Cas9 Synthetic tracrRNA. Nuclei fixed with
4% (w/v) PFA and quenched with with 50mM NH4Cl/TBS solution. Nuclei blocked with 2% (w/v) BSA
and stained with Hoechst 33342 (1:12300) anti-γH2AX-Ser139 (1:500) primary antibody. Anti-γH2AX-
Ser139 labelled with Alexa Fluor 555 dye-conjugated secondary mouse antibody (1:500). Imaging
was done on Olympus BX61 microscope with DAPI and TRITC filters.
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Figure  21:  Widefield  immunofluorescence  showing  only  γH2AX foci  without  the  Hoechst-
stained MCF10A nuclei for electroporated only, Cas9 only and Cas9 with HS17, centromere,
50A, 50B, 100A, 100B and 150 gRNAs conditions (Red channel only – TRITC).

The  red  channel  shows  none  or  minimal  γH2AXactivity  occurs  for  all  time  courses  for  control
(electroporation  only)  and  Cas9  only  transfections.  Additionally,  Cas9+Cenromere  gRNA  at  1h
incubation shows no  γH2AX activity as well. In certain cases, Cas9+HS17, Cas9+Centromere and
Cas9+50A  show  a  visual  reduction  of  foci  count,  especially  in  the  longest  incubation  6h  post-
transfection cases. Utilisation of HS17, centromere, 50A, 50B, 100A, 100B and 150 shows formation
of γH2AX foci. To form the gRNAs the HS17, centromere, 50A, 50B, 100A, 100B and 150 crRNAs
combined with the Dharmacon Edit-R CRISPR-Cas9 Synthetic tracrRNA. Nuclei fixed with 4% (w/v)
PFA and quenched with  with  50mM NH4Cl/TBS solution.  Nuclei  blocked with  2% (w/v)  BSA and
stained  with  anti-γH2AX-Ser139  (1:500)  primary  antibody.  Anti-γH2AX-Ser139  labelled  with  Alexa
Fluor 555 dye-conjugated secondary mouse antibody (1:500). Imaging was done on Olympus BX61
microscope with DAPI and TRITC filters.  Dotted lines represent the extent  of  the nuclei  for  each
condition based on Figure 20. 
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3.3.3 Widefield microscopy IF particle quantification
To investigate the induction of DSBs quantitatively, γH2AX foci were detected

using  antibody immunofluorescence (Figure  20 and 21)  and quantified  by  image

analysis  using  Fiji.  This  was  achieved  by  converting  the  red  channel  (TRITC)

containing the γH2AX foci of all  of the immunofluorescence cell  images to binary

mask and filtering out the artefact noise.

Similarly, when compared to Figure 20 and 21, the induction of DSBs within

the  MCF10A  nuclei  is  accumulated  at  increasing  DSBs  dosages  for  HS17,

centromere, 50A, 50B, 100A, 100B and 150 gRNAs. The majority of the untreated

cells (control) and transfected only with the active Cas9 protein show minimal DNA

damage with few exceptions for all time courses (Figure 22). Quantification in Figure

22 also verifies that Cas9+Centromere gRNA formation is minor or none for the first

hour of  incubation. The single most  conspicuous observation to  emerge from the

data  comparison  from  the  overview  Figure  22  is  that  each  of  the  transfections

conditions  has  different  DNA  damage  trends  over  6  hours.  For  example,  DNA

damage in 100B transfected MCF10A cells remains the same across the incubation

time  course,  while  100A  transfected  cells  demonstrate  a  downtrend  in  the  DNA

damage  (Figure  22).  In  contrary,  50B  shows  an  upward  DNA  damage  trend

compared to the 50A transfected cells (Figure 22).  However, all of the conditions are

capable of retaining a large number of γH2AX foci within the 6h time frame.
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Figure 22: Overview of the γH2AX foci particle quantification for control, Cas9 only
and Cas9 with HS17, centromere, 50A, 50B, 100A, 100B and 150 gRNAs for all of the
time course conditions. 

Quantification  of  the  number  of  nuclear  foci  for  γH2AX  from  combined  data  from
independent  experiments  for  each  condition  and  relevant  time  course.  The  figure
demonstrates  the  accumulation  of  γH2AX  for  the  conditions  utilised  the  HS17,
centromere, 50A, 50B, 100A, 100B and 150 gRNAs.  Error bars represent 95% CI, and
middle points represent the mean. Quantification was done in Fiji.

Control:  1h (n=516), 2h (n=458), 4h (n=412), 6h (n=449) 
Cas9: 1h (n=301), 2h (n=260), 4h (n=288), 6h (n=291)
Cas9+HS17: 1h (n=187), 2h (n=212), 4h (n=197), 6h (n=145)
Cas9+Centromere: 1h (n=51), 2h (n=62), 4h (n=44), 6h (n=51)
Cas9+50A: 1h (n=57), 2h (n=53), 4h (n=48), 6h (n=43)
Cas9+50B: 1h (n=39), 2h (n=45), 4h (n=52), 6h (n=53)
Cas9+100A: 1h (n=33), 2h (n=28), 4h (n=76), 6h (n=79)
Cas9+100B: 1h (n=65), 2h (n=54), 4h (n=73), 6h (n=75)
Cas9+150: 1h (n=48), 2h (n=33), 4h (n=69), 6h (n=48)

Note:  The number of nuclei  shown here also apply to the data shown in subsequent
Figures 23, 24 and 25.  Data presented here are from one experiment each except for
Cas9+HS17 which was repeated 3 times. 
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Figure  23:  Normalised percentage distribution frequency of nuclear γH2AX foci number for
HS17, centromere, 50A, 50B, 100A, 100B and 150 transfections compared to the control and
Cas9 only conditions.

All time courses have been pooled together to assess the distribution of the data compared to the
control and Cas9 only transfection for  (A) HS17,  (B) Centromeres,  (C) 50A,  (D) 50B,  (E) 100A,  (F)
100B,  (G) 150. The figure shows that in average 0 to 6 foci in a given nucleus may be considered
background noise based on the control and Cas9 repetitions (histogram skewed to the right). The bin
size for histograms was configured to five.

To asses the distribution of the measurements between the different gRNA

conditions  used,  normalised  frequency  distribution  was  utilised  (Figure  23).  The

distributions were created by stacking all of the time course conditions for a given

transfection together. Based on the sample population gathered, the bin width was

configured to five (Figure 23). These distributions revealed that the majority of the

electroporated only MCF10A cells (control) and the ones transfected only with Cas9

demonstrate  between  zero  to  six  foci  on  average.  The  techniques  utilised  from

electroporation to immunofluorescence demonstrated that zero to six foci could be

considered interference artefacts from background noise. Figure 22 further suggests

that  gRNAs  with  increasing  predictive  cuts  highlights  broader  distribution  in  the

number of γH2AX foci (Figure 23). The overall cell response to the cuts shows that

only a particular population is capable of reaching the predicted number of cuts like

HS17 and  few in  50A  and  50B (Figure  22A,  22C  and  22D).  However,  extreme

caution must be exercised in interpreting these findings as a high number of foci are

challenging  to  measure,  especially  under  a  single  focal  plane.  The  frequency

distribution for the centromeric gRNA transfection is similar to the HS17 despite its

ability  to  involve  multiple  breaks  in  the  same  ~1Mb  sequence  region  within  the
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chromosomal compartments. This comes in consensus when comparing HS17 and

centromeres in the overview Figure 22 as they reveal the same number of cuts on

average within the context  of  95% CI.  An explanation for this observation is that

widefield microscopy is unable to resolve structures less than 200nm thus potentially

merging distinct γH2AX foci into a single and larger one.

Further  analysis  confirms  that  under  the  one  focal  plane,  only  certain

individual transfected cells display the predictive number of  γH2AX foci (Figure 24).

Despite that, all of the transfection conditions carrying the relevant Cas9:gRNA are

highly significant when compared to the control based on the one-way ANOVA test,

which utilises Tukey’s multiple comparison (Figure 24).  The majority of  the cases

express strong significance, either P ≤ 0.001 or P ≤ 0.0001 (Figure 24). Occasionally,

there are cells like in HS17, 50A and 50B that display twice the number of predictive

cuts, suggesting arrest in G2/M with duplicated genome (Figure 24). As expected,

non-gRNA bearing Cas9 conditions are not significant when compared to the control

for any time course experiment, as well as the 1h condition of Cas9+Centromere, as

shown in Figure 24A.

Based on the above, the correlation between the average measured foci count

and predicted in silico cuts were tested, as shown in Figure 25. All of the time course

conditions  show  a  positive  correlation  of  the  average  number  of  foci  with  the

predicted number of  cuts.  Despite the positive correlation,  the conditions do not

agree with the mean number of measured foci  with the predicted number of cuts

(Figure 25). Apart from this non-alignment, only the 4h hour post-transfection period

show no correlation (Figure 25C). 
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Figure 24: Quantification of nuclear γH2AX foci number for HS17, centromere, 50A, 50B, 100A,
100B and 150 transfections in respect to individual time course conditions.

Traced DNA damage foci formation for the (A) 1h, (B) 2h, (C) 4h and (D) 6h time course conditions for
each of the transfection conditions. Cas9 without gRNA is not significant in all time points. Additionally,
Cas9+Centromere does not show any significant foci formation compared to the control. Error bars
represent 95% CI,  and middle points represent the mean. One way ANOVA with Tukey’s multiple
comparisons test was performed to asses the significance of the transfection condition compared to the
control (electroporation only). ns=not significant, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, **** P ≤ 0.0001
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Figure 25: Summary of mean γH2AX foci particle count for HS17, 50A, 50B, 100A, 100B and 150
gRNAs based on the predicted in silico cuts in respect to individual time course conditions.

Linear correlation summary plots of mean foci count and predicted in silico cuts for the (A) 1h, (B) 2h,
(C) 4h and (D) 6h time course conditions based on Figure 22. All conditions show positive correlation
except the 4h, which shows zero correlation. Error bars represent 95% CI and points represent the
mean foci  count.  Circle  (●)=  Non GC/AT-rich targeting gRNAs (HS17,150),  Square (■)  = GC-rich
targeting gRNAs (50A, 100A), Triangle (▲) = AT-rich targeting gRNAs (50B, 100B).
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3.3.4 Widefield microscopy IF nuclear intensity quantification
The  first  set  of  immunofluorescence  widefield  microscopy  analysis

investigated  the  quantitative  aspect  of  DNA damage through  particle  analysis  in

regards to  γH2AX.  Unfortunately, it is not possible to take into account all of the

possible  γH2AX foci in a given cell due to the technical limitations of the widefield

microscopy. Optical microscopy is limited to one focal plane of focus, which is prone

to  out-of-focus  blur.  This  may  potentially  blur  out  foci  not  accounted  during  the

particle quantification process. Acknowledging this limitation, this project made use of

measuring the pixel  value intensity  (PVI)  of  the TRITC channel  that  includes the

γH2AX in greyscale (8-bit integer) by designating an overall mean value based on

the brightness of the selected pixels from 0 (black) to 255 (white). The main objective

of  this  measurement  is  to  take  into  consideration  the  blurred  background

fluorescence feedback from γH2AX. This is because nuclear intensity measurement

can  work  better  since  γH2AX  foci  are  designated  units  of  damage  capable  of

luminous emission of light (due to fluorescence) which are additive.

In  a  similar  manner  to  the  nuclear  foci  particle  quantification,  PVI  also

produced  γH2AX  overview  plot  (Figure  26),  normalised  percentage  distribution

frequency (Figure 27) and quantification (Figure 28) and summary plots (Figure 29).

There were no significant differences between foci particle quantification and the foci

PVI plots in regards to overall trends and comparisons, with certain exceptions. The

Cas9+Centromeres transfection is not statistically significant for both the 1h and 4h

post-transfection incubation periods (Figure 28) instead of the 1h only (Figure 24).

Nonetheless, the linear correlations between the mean PVI and predicted cuts are
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positive  for  all  time  course  conditions  (Figure  29)  except  for  the  4h,  which

demonstrates a negative correlation (Figure 29C). In contrast, the linear correlation

for the 4h foci particle condition shows no correlation (Figure 25C). 

However, a closer inspection revealed that the 150 gRNA transfection could

be considered an outlier in the majority of the nuclear intensity quantification cases

since it lies in an abnormal distance from the other values of the dataset (Figure 29).

For that reason, the correlation line was computed not involving any outliers for any

time course (Figure 29E, 29F 29G and 29H). Comparing Figure 25 and Figure 29

that  possible  outliers  happen  in  certain  conditions  (i.e.  100’s  and  150  gRNAs)

because  γH2AX  foci  formation  occurred  relatively  rapidly,  peaking  shortly  after

MCF10A cells incubated with Cas9:gRNA for the first 2h, followed by a decline during

the 4h and 6h of incubation. This could be a result of extensive initial  repair foci

formation at 2h. 
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Figure 26: Overview of the γH2AX foci nuclear intensity quantification for control, Cas9 only
and Cas9 with HS17, centromere, 50A, 50B, 100A, 100B and 150 gRNAs for all of the time
course conditions. 

Quantification of the overall pixel value intensity of the γH2AX nuclear foci derived from combined
data of independent experiments for each condition and relevant time course which they show DNA
damage  accumulation.  The  figure  demonstrates  the  accumulation  of  γH2AX  for  the  conditions
utilised  the  HS17,  centromere,  50A,  50B,  100A,  100B  and  150  gRNAs.  Nuclear  intensity
measurement was utilised to measure the γH2AX fluorescence intensity, including the ones outside
the desired single focal plane of the widefield microscope.  Error bars represent 95% CI, and middle
points represent the mean. Nuclear intensity measurement was done in Fiji.

Control: 1h (n=198), 2h (n=193), 4h (n=159), 6h (n=222)
Cas9: 1h (n=216), 2h (n=201), 4h (n=216), 6h (n=194)
Cas9+HS17: 1h (n=70), 2h (n=83), 4h (n=82), 6h (n=55)
Cas9+Centromere: 1h (n=54), 2h (n=56), 4h (n=48), 6h (n=51)
Cas9+50A: 1h (n=57), 2h (n=45), 4h (n=44), 6h (n=45)
Cas9+50B: 1h (n=43), 2h (n=45), 4h (n=64), 6h (n=50)
Cas9+100A: 1h (n=36), 2h (n=28), 4h (n=84), 6h (n=70)
Cas9+100B: 1h (n=69), 2h (n=59), 4h (n=74), 6h (n=77)
Cas9+150: 1h (n=66), 2h (n=40), 4h (n=57), 6h (n=48)

Note: The number of nuclei shown here also apply to the data shown in subsequent Figures 27, 28
and 29.  Data presented here are from one experiment  each except for Cas9+HS17 which was
repeated 3 times. 
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Figure  27: Normalised percentage distribution frequency of nuclear intensity of γH2AX foci
(PVI)  for  HS17,  centromere,  50A,  50B,  100A,  100B and 150  transfections  compared  to  the
control and Cas9 only conditions.

All time courses have been pooled together to assess the distribution of the data compared to the
control and Cas9 only transfection for  (A) HS17,  (B) Centromeres,  (C) 50A,  (D) 50B,  (E) 100A,  (F)
100B,  (G) 150.  The  figure  shows  that  in  average  5  PVI  in  a  given  nucleus  may  be  considered
background noise based on the control and Cas9 repetitions (histogram skewed to the right). This
come in consensus with the particle quantification histogram in regards to the background noise. The
bin size for histograms was configured to five.
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Figure 28: Quantification of nuclear intensity γH2AX foci (PVI)  for HS17, centromere, 50A, 50B, 
100A, 100B and 150 transfections in respect to individual time course conditions.

Traced DNA damage foci formation for the (A) 1h, (B) 2h, (C) 4h and (D) 6h time course conditions for
each of the transfection conditions. Cas9 without gRNA is not significant in all time points. Similarly to
the particle quantification in Figure 24, Cas9+Centromere does not show any significant foci formation
compared to the control. Error bars represent 95% CI, and middle points represent the mean. One
way ANOVA with Tukey’s multiple comparisons test was performed to asses the significance of the
transfection condition compared to the control (electroporation only). ns=not significant, *P ≤ 0.05, **P
≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001
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Figure 29: Summary of mean nuclear intensity γH2AX foci for HS17, 50A, 50B, 100A, 100B and 
150 gRNAs based on the predicted in silico cuts in respect to individual time course 
conditions.

Linear correlation summary plots of mean nuclear intensity and predicted in silico cuts for the (A) 1h,
(B) 2h,  (C) 4h and  (D) 6h time course conditions based on Figure 22. All conditions show positive
correlation except the 4h, which shows a negative correlation. In addition, (E) 1h, (F) 2h, (G) 4h and
(H) 6h shows adjusted linear correlations not taking into consideration the outlier data points.  Linear
correlation for a given dataset is indicated as a solid straight line (––). Straight linear start trend lines
are indicated as (····) to assess possible outliers on the dataset. Error bars represent 95% CI and
points  represent  the  mean foci  count.  Circle  (●)  =  Non GC/AT-rich targeting gRNAs (HS17,150),
Square (■) = GC-rich targeting gRNAs (50A, 100A), Triangle (▲) = AT-targeting gRNAs (50B, 100B).
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3.3.4 Confocal microscopy IF qualitative and quantitative data
Induction  of  DSBs  under  widefield  microscopy  leads  to  the  formation  of

micrometre-sized DNA-repair foci unable to take into account the organisation on the

nanometre scale due to  its  diffraction limitation at  ~200nm. This project  provides

considerable insight into the DNA damage generation in the MCF10A nuclei from the

FlashFry designed sequences with the use of laser confocal microscopy (Figure 30).

Based  on  the  widefield  microscopy  results,  the  maximum  extent  of  γH2AX  foci

number  is  well  conserved  within  the  2h  hour  incubation.  Additionally,  the  blur

formation from widefield microscope obfuscates potential  γH2AX foci  out of focus

due to the single focal plane.  For these reasons, confocal was chosen to visualise

(Figure 30) and quantify the DNA damage at 2h to address the limitations of widefield

microscopy (Figure 31).  Both fixation and immunostaining protocols remained the

same as the widefield.

The  most  remarkable  result  to  emerge  from  the  data  is  that  the  greater

resolution  and  increased  signal-to-noise  ratio  of  the  super-resolution  microscopy

show that the control demonstrates minimal fluorescence feedback from the Alexa

Fluor 555 red γH2AX conjugated antibody activity (Figure 30). There are two possible

explanations for this observation. Either the antibody cross-reacts with other nuclear

structures, or there is small H2AX phosphorylation activity taking place for any of the

transfection conditions (Figure 30).  Additionally,  in Figure 30, MCF10A cells were

transfected with 50A, 50B, 100A, 100B and 150 gRNAs and foci can be observed

with the higher resolution under the z-stack (Figure 30). Both large and small foci

(nanofoci)  particles  can  be  observed  within  the  MCF10A  nuclei  for  all  of  the

87



Ioannis Emmanouilidis

transfected conditions (Figure 30). Both merged and individual DAPI (nucleus - blue),

and  TRITC  (γH2AX  -  red)  channels  are  provided  to  contrast  the  induced  DNA

damage (Figure 30) better. No significant visual difference was observed between

the transfected conditions in regards to the number H2AX foci formation, and thus

quantification of the merged z-stack was employed.

The damage was quantified in regards to nuclear foci number (Figure 31A),

total foci area covered within the MCF10A nuclei measured (Figure 31B), average

individual  foci  area  (Figure  31C)  and  nuclear  intensity  (Figure  31D).  Statistical

significance refers to the comparisons among conditions using one-way ANOVA test

that makes use of Tukey’s multiple comparison method. In the confocal microscopy,

the number of  γH2AX foci  is  much more numerically  close to  the predicted cuts

compared to the widefield and only one instance it matches exactly. The 50A and

50B transfections have on average 50.4, and 31.6 γH2AX foci, respectively, whereas

100A and 100B have 58.3 and 63.5 γH2AX foci on average (Figure 31A). The 150

gRNA transfection produces 62.1 foci on average (Figure 31A). The statistical test

states foci count significance only between 50B vs 100A, 50B vs 100B, and 50B vs

150 conditions in Figure 31A. All conditions except for the AT-rich targeting gRNAs

50B and  100B show bimodality  in  regards to  foci  count  (Figure  31A).  This  may

suggest that the rest of the cells are in different stages of arrest during DNA damage

repair.

Likewise, wide dataset distributions can also be observed for the quantified

total foci area covered within the MCF10 nuclei (Figure 31B). Specifically, only 50A

and 50B are significant to the 100A in regards to total foci area (Figure 31B). Apart
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from that, no significant difference was found among the different conditions in terms

of the predicted cuts, i.e. 50A/50B vs.100A/100B vs 150 (Figure 31B). Despite the

higher predicted cuts, the total foci area within the nuclei remains mostly the same for

the  merged  z-stacks  at  the  2h  interval.  In  contrast,  the  average  foci  area  per

MCF10A nuclei at increasing targeted cuts do not show bimodality distribution, and

the conditions  do not  express any statistical  significance with  each other  (Figure

31C). No statistical significance among the transfection conditions can also be seen

in the context of nuclear intensity, but bimodality can be observed among conditions

in 2h post-transfection (Figure 31D).

Overall, the experiment in this project is in good agreement with the current

literature (such the one from Pilch et al., Bewersdorf et al., Sak et al.) as the diameter

of  γH2AX foci in super-resolution fluorescence microscopy is within 0.5-1  μm  (51,

187, 188). However, nanofoci particles have also been detected that are less than

0.5  μm in diameter correlating favourably with the research done by Sisario  et al.

(189). 

Summary  of  the  distribution  of  the  nuclear  foci  data  from  the  confocal

microscopy  is  shown in  Figure  32.  Interestingly,  higher  than  predicted  values  of

nuclear foci detected only for 50A, which may suggest these particular cells arrested

in the G2/M checkpoint with the duplicated genome. This forms the characteristic

“dual peaks” in the normalised percentage distribution in Figure 32A, and creating the

characteristic bimodal necks in the violin plots in Figure 31A. Similar observations

can be seen in 100A and 150 transfection conditions (Figure 31A).  Only AT-rich

targeting gRNAs do not demonstrate distribution dual peaks (Figure 30) and have a
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much more refined non-bimodal data distribution as per Figure 31A. Figure 32 was

configured with a bin width of 10.
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Figure  30:  Confocal  immunofluorescence  with  merged  orthogonal  Z-stack  shows  the
localisation of γH2AX foci in greater resolve in stained MCF10A nuclei utilising the 50A, 50B,
100A, 100B and 150 gRNAs with active Cas9 (only for 2h time course condition).

The utilisation of 50A, 50B, 100A, 100B and 150 gRNAs shows the formation of γH2AX foci in merged
confocal planes only for the 2h condition. Low activity of γH2AX can be observed in the control in the
split red channel. A total of 6-10 z-stack series have been captured per image. To form the gRNAs, the
50A,  50B,  100A,  100B  and  150  crRNAs  combined  with  the  Dharmacon  Edit-R  CRISPR-Cas9
Synthetic  tracrRNA.  Nuclei  fixed  with  4%  (w/v)  PFA  and  quenched  with  with  50mM  NH 4Cl/TBS
solution. Nuclei blocked with 2% (w/v) BSA and stained with Hoechst 33342 (1:12300) anti-γH2AX-
Ser139 (1:500) primary antibody. Anti-γH2AX-Ser139 labelled with Alexa Fluor 555 dye-conjugated
secondary  mouse  antibody  (1:500).  Imaging  was  done  on  ZEISS  Elyra  7  using  polarised  laser
modules. Imaging processing was done in Fiji and Zeiss ZEN blue.  Dotted lines represent the extent
of the nuclei for each transfection condition based on the nuclei periphery.
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Figure 31: Overview for the confocal imaging at 2h incubation for particle quantification, total
and average foci area and nuclear intensity for the transfected 50A, 50B, 100A, 100B and 150
gRNAs.

The confocal microscopy and its higher resolve allow the quantification to take into consideration the
multiple focal planes from the merged z-stack.  (A) Accumulation of DNA damage is observed per
increasing  prediction  gRNA  hits  but  reaches  a  stage  where  there  is  no  further  change  on  the
measured foci number for the 100’s and 150 cuts gRNAs. All conditions except 50A and 100A show
bimodality. (B) Despite the increase of targeted cuts and the number of foci in the MCF10A nuclei,
the  total  area  of  MCF10A foci  per  cell  did  not  change  during  the  2h  interval  post  Cas9:gRNA
transfections  (C-D)  When  comparing  all  conditions  with  each  other  in  regards  to  (C) average
individual foci area and (D) nuclear intensity, they are not significant. However, only the latter shows
bimodal  distribution.  One way ANOVA with  Tukey’s  multiple  comparisons test  was performed to
asses the significance of the transfection conditions with each other. ns=not significant, *P≤ 0.05, **P
≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. Solid dashed lines (---) represents the median, and grey dotted
lines (...) shows the 25th and 75th percentiles in the violin plots. 50A  (n=14),  50B  (n=16),  100A
(n=16), 100B (n=16), 150 (n=15).
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Figure 32: Normalised percentage distribution frequency of nuclear γH2AX foci
number for 50A, 50B, 100A, 100B and 150 transfections.

The distribution shows the maximum extent of the nuclear foci counts for any of the
conditions is no more than 100. All transfections except for AT-rich targeting 50B and
100B gRNAs show double peaks. The bin size for histograms was configured to ten.
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4. Discussion

This project describes that by using a programmable Cas9 system along with

tractable γH2AX immunostaining is possible to induce titratable DNA damage (DSBs)

which is backed by a multitude of data, including but not limited to bioinformatics,

widefield and confocal microscopy. This project is an expansion upon the work of

Berg  et  al.  in  an attempt to  establish a functional  proof  of  concept  for  designing

gRNAs that have multiple recognitions points for DSBs intervention at lower logistical

cost.  Although  the  performance  was  optimal  in  regards  testing  and  verifying  the

programmable DNA damage induction, this project is governed by limitations that

need to be addressed for future improvements.

4.1 Recombinant Cas9 protein purification

Protein samples were collected at every stage of the purification process and

subsequently analysed using SDS-PAGE. Both chromatograms from ion exchange

and then size exclusion chromatography shows efficient Cas9 purification with high

protein  yields.  SDS-PAGE  also  highlights  that  major  contaminants  have  been

excluded from the main protein successfully. This suggests the protocols followed

here can express and purify the recombinant protein in high yields. Most importantly,

the two-step purification protocol followed in this project does not seem to affect the

protein  in  any  way  according  to  γH2AX  qualitative  data gathered  from  the

microscopy.  Nevertheless,  potential  improvements  for  this  part  of  the project  can

utilise an independent in vitro nuclease assays to further confirm the functionality of
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the purified Cas9 protein by using known gRNAs against  in vitro DNA target in a

similar manner to Rajagopalan et al. (190). Then, the competent functionality of Cas9

can be confirmed by analysing the DNA products using agarose gel electrophoresis

(190).

4.2 CRISPR bioinformatics

FlashFry was the primary computational tool used to assist for the design and

scoring of  the  crRNA sequences capable  of  multiple  DNA damage interventions.

FlashFry allows one to have more granular control on how to design the CRISPR

targets compared to online web interfaces such as CRISPOR. This project was able

to compute competent crRNA sequences with multiple recognition points.  However,

despite the advancement in the CRISPR bioinformatics landscape and the verified

controlled  DNA  damage  induced  in  the  MCF10A  cells’  nuclei,  the  designing  of

efficient multiple targeting gRNAs remains an area for further improvement.

Firstly, it is crucial to refine crRNA sequences to increase their on-targeting

and limit off-targeting activity. Future work can focus on further refining the crRNA

sequences  by  imposing  more  strict  filtering  rules  in  the  scoring  metrics  of  the

produced  set  of  sequences.  Specifically,  future  investigations  can  take  into

consideration the flanking bases and calculate the on-targeting activity in regards to

multiple  points  of  intervention.   In  other  words,  investigate  whether  the  multiple

targeting  site  itself  varies  or  it  is  part  of  a  bigger  sequence  repeat.  This  was

something  not  able  to  calculate  during  this  project  with  the  doench2014ontarget
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metric. Future work should also take into consideration the broad distribution of cuts

per chromosome. In this project, 50A and 50B gRNAs end up favouring cuts into

smaller chromosomes in terms of cuts per Mbp. Design effort should look at a wider

variety of gRNA sequences in the context applying DSBs uniformly and in different

regions levels (intronic or exonic).

Additionally, Bowtie and BWA tools can be used instead of BLAST in order to

verify  the  number  of  off-target  hits  and  assess  the  off-targeting  activity  (like  in

doench2016 score  metric)  (177).  These tools  are  better  suited  at  handling  short

sequences compared to other traditional tools such as BLAST. BLAST was designed

to assess the similarity between longer sequences adequately. Sequences with a

lower number of base pairs are prone to hit  random background noise in BLAST

algorithms. However, it is unknown how Bowtie and BWA tools will handle gRNAs

with many recognition points and how they will score the newly designed sequences.

Another strategy to utilise in future work is to use dual  gRNAs to facilitate

multiple DNA damage in an additive way in a similar manner to Zhou  et al. which

could increase the efficiency of DNA damage induction (155). This way, by designing

gRNAs with lesser cuts and thus with lesser off-targeting activity, it might be possible

to make more efficient DNA damage inductions.

It is important to state that certain limitations govern the bioinformatics aspect

of this project in regards to our current understanding of driver variables of CRISPR-

Cas9 activity and technical ones, as most of the tools today have been designed with

the perspective of single gene sequence knockouts.
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4.3 Cas9 in vitro delivery

Originally, dCas9 was used to assess its delivery into the MCF10A cells and

subsequently optimise the transfection protocol. This allowed to deliver the functional

Cas9:gRNA complex through electroporation at 300V and 300μF effectively to carry

out  the  anticipated  multiple  DNA  damage.  The  electrotransfer  delivery  of  large

proteins such as Cas9 has high versatility and can be applied to almost any cell line

without any prior cell line engineering. While this method is quick, cheap and capable

to transfect eukaryotic cells, there may be potential limitations using it. The protocols

followed in the project achieved 40% transfection rates of dCas9 in the MCF10A cell

line. 

According to the distribution frequency of the widefield microscopy both the

controls (electroporated only cells) and Cas9 only conditions exhibit between 0 to 6

foci within the MCF10A nuclei, albeit the 40% transfection efficiency. These DSBs

foci may be yielded due to electroporation apart from the  γH2AX anti-body cross-

reaction. Electroporation could stress the cells through the application of current and

voltage in the Opti-MEM solution containing the MCF10A cells. Additionally, limited

γH2AX activity  can be observed in  the cells  of  the control  group in  the confocal

microscopy.  Potentially,  electroporation  protocol  causes  some  unwanted  DNA

damage in the MCF10A cells. However, based on the data presented in this project,

the unwanted DNA damage may be limited. This could be a problem if future work

wants  to  quantify  and  verify  the  DNA  damage  or  study  specific  protein-DNA

interactions with much more refined gRNAs. Such quantification can be achieved

through ChIP-seq or with its cheaper alternative, CUT&RUN sequencing (191–194).
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Additionally,  only  a  small  and  sporadic  number  of  cells  were  apoptotic  (whole

MCF10A nucleus was positive to γH2AX staining) using the electroporation protocol

method used here. 

Future work could utilise the iCut system used in Berg et al. study to induce

multipoint DNA damage without electroporation (180). The iCut system allows one to

tune the expression levels of the Cas9 (through pCW-Cas9 plasmid such as the one

from Eric Lander and David Sabatini addgene plasmid repository #50661) in both the

transcription  and  protein  level  through  doxycycline  and  SHIELD-1  agonists

respectively inside the cell line of interest  (180, 195). This utilisation of this system

will give control of the amount of Cas9 residing inside the cells, something which is

not possible through electroporation. The application of defined electrical field in a

cell  solution  does  not  guarantee  a  uniform  amount  of  protein  transfection.

Nevertheless, the engineering of each cell line with the iCut system can increase lab

costs.

4.4 Immunostaining and microscopy

Immunostaining was an integral part of this project to visualise DNA damage

by detecting γH2AX repair foci by Alexa Fluor 555 secondary antibody fluorescence

feedback. The majority of qualitative and quantitative data of transfected MCF10A

cells derived from widefield microscopy. They are consistent with DSBs observation

by  previous  studies  using  either  non-specific  induction  (i.e.  ionising  radiation)  or

specific DNA damage induction using the Cas9 system in a similar manner like in the

99



Ioannis Emmanouilidis

study from Berg  et al. (1, 180).  This project also shows the first demonstration of

targeted  induction  of  DSBs  using  confocal  microscopy,  which  shows  a  clearer

depiction of γH2AX nuclear localisation, including nanofoci. 

Based on the data from widefield microscopy, the kinetics of Ser139 H2AX

phosphorylation  occurs  following  at  least  an  hour  post  Cas9:gRNA  transfection

except for Cas9 transfection utilising the centromere gRNA. This condition showed its

first  foci  formation during the 2h incubation at 37ºC which may occur due to the

dense packing  of  this  chromatin.  The maximal  γH2AX foci  induction is  observed

within the 2h followed by a progressive decrease from the four hours and onwards

post Cas9:gRNA complex transfection. Data comparison from the mean number of

foci and mean intensity over time suggest a tendency towards γH2AX foci diffusion

as a result of extensive foci repair and fusion at the 2h incubation. 

These γH2AX kinetic observations bear close resemblance on the results from

Ding  et al.  which they irradiated (X-rays) in  human peripheral  blood lymphocytes

(HPBLs) and showed maximal γH2AX foci at 2h post-exposure (196). Other studies

using UVB induce maximal γH2AX foci formation at 30min after exposure (50). In this

project’s  results  is  important  to  take  into  consideration  the  kinetics  of  Cas9

importation to the nucleus through the NLS signalling. Future work could utilise more

time course conditions, including half-hours, to better understand the kinetics of Cas9

based DNA damage inductions.

Additionally, future work could benefit from scanning additional images using

confocal microscopy in different post-transfection time points and not only 2h. This is
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useful to study the kinetics of inducible DNA damage at higher resolution images.

This can be aided by performing 3D foci counting utilising tools such as FociPicker3D

which do not require merging the z-stack and thus collapsing underneath foci (197).

Collapsing foci  beneath each other through z-stack merging could be a source of

error for the quantification process. The third dimension could also help for imaging

the  chromatin  experiencing  specific  DNA  damage  induced  by  the  Cas9  assays.

Confocal microscopy data can be backed up by semi quantifying the γH2AX through

western blotting at increasing DNA damage from the corresponding gRNAs similarly

to Revet et al. and Bouquet et al. studies (198, 199).

4.5 Conclusions

To  recapitulate,  while  this  project  clearly  has  some  limitations  such  as  in

CRISPR  designing  and  the  γH2AX  quantification  of  multiple  foci,  the  evidence

presented in this report has demonstrated its feasibility and sets a springboard for

further development and improvement of the overall pipeline. 

Yet  the  most  intriguing  finding  of  this  project  has been found through the

γH2AX immunostaining  in  conjunction  with  the  confocal  microscopy.  Active  Cas9

with  custom-designed  gRNA  for  multiple  genome  interventions  is  capable  of

producing clusters of  nanofoci present in the majority of the transfected MCF10A

cells. This observation has been only shown in cells induced by non-Cas9 methods

such as irradiation. Nonetheless, the designing of gRNAs with unique properties such
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as with multiple recognition points as presented here is becoming more accessible

and granular than ever before.

This  project  has led  to  the  formation  of  a  new pipeline  that  is  capable  of

designing Cas9 assays inducing titratable DSBs at defined positions in the human

genome. The amount of DNA damage can be regulated with the proper designing of

the crRNA sequence by using computational tools such as FlashFry. Taken together,

such procedure under the proper improvements and optimisations can be suitable to

study the epigenetic response in the context of chromatin.
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