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Abstract

In this thesis, we ascertain the amount of economic capital which Defined Benefit

(DB) pension schemes should potentially hold to cover their economic and mor-

tality risks exposures. Recent financial crisis such as the dot com bubble and the

2008 financial crisis has led to funding levels of many DB pension schemes to

worsen. Moreover, increasing longevity of pensioners raises further questions on

the sustainability of DB pension schemes.

Unlike insurance companies or banks, there is no formal regulatory require-

ment to quantify the risks of DB pension schemes. Given the increasing uncer-

tainty around the solvency of DB pension schemes, there is an urgent need for

such a framework. In this respect, we propose a framework for risk quantification

of individual DB schemes across different countries. For our analysis, we focus

on three countries; UK, US and Canada.

We implement economic and mortality models to quantify financial risks un-

derlying large DB pension schemes. In particular, we develop an Economic Sce-

nario Generator (ESG) using a graphical modelling approach. We focus on eco-

nomic variables relevant to pension schemes e.g. price inflation, wage inflation,

dividend yield, dividend growth and long term bond yield. The dependence be-

tween variables is represented by "edges" in a graph connecting the variables or

"nodes". The graphical model approach is fairly easy to implement, is flexible

and transparent when incorporating new variables, and thus easy to apply across
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different datasets (e.g. countries). We also show that the results are consistent

with well-established ESGs such as the Wilkie Model in the UK context.

We also compare quantitatively seven stochastic models explaining improve-

ments in mortality rates. In particular, we use the Bayes Information Criteria to

choose a model which provides a good fit to mortality data from UK, US and

Canada.

We use the graphical model alongside the mortality model to examine the risks

of UK, US and Canadian pension schemes. Although the modelling methodology

remains the same, we fit the economic and demographic models to data from all

three countries.

We then implement our framework to calculate the economic capital for exist-

ing and “stylised" pension schemes.For the UK, we carry out risk assessment of

the Universities Superannuation Scheme (USS). For the US, we use a US stylised

scheme for our analysis. The US stylised scheme is based on the membership

profile and benefits of the USS but adapted to be representative of a US pension

scheme. For Canada, we carry out risk assessment of the Ontario Teachers’ Pen-

sion Plan (OTPP). Both the USS and the OTPP are very large pension schemes

with over 300,000 members.

We further carry out sensitivity analysis by varying the mortality assumptions

and the asset allocations of the pension schemes. The overall aim of the exercise

is to determine and compare the long-term sustainability of pension schemes in

different countries.

The interaction between population structure, investments and asset returns

will be of interest to pension funds, actuaries and policy-makers, all of whom are

interested in the overall health of both public and private pension schemes.
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Chapter 1

Introduction

1.1 Background and Motivation

A pension scheme can be thought as a long-term savings arrangement to transfer

wealth from youth to old age. There are two main types of pension arrangement:

pay-as-you-go (PAYG) and funded schemes. Most state pension schemes are on

a PAYG system. In a PAYG system, the pensions of the retired generation are

paid from the contributions of the current working population. For this system to

be viable on a long run, it requires sufficient people in work, making sufficient

contributions to pay for those who have retired.

A funded pension scheme in contrast is composed of a pension fund plus and

pension annuity. While different types of funded pension schemes exist, what

differentiates one type of funded pension scheme to another is the set of rules

which govern the calculations of the benefits when an individual retires. The

simplest type of funded scheme is a Defined Contribution (DC) scheme which

uses the full fund value at the time of retirement to determine the pension payment.

The investment risk lies entirely with the individual with a DC scheme.

A Defined Benefit (DB) scheme is another type of funded pension scheme in
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which an employer/sponsor promises a pension payment to an employee based

on the employee’s earnings, number of years of service and age. Unlike a DC

scheme, the pension payment does not depend directly on the total fund value at

the time of retirement. The investment risk lies entirely with the sponsor with a

DB scheme.

In addition to DB and DC schemes, a wide range of other funded pension

schemes exist. While DB and DC represent the two extremes of a “spectrum",

other funded pension schemes typically have features which lie somewhere in

between DB and DC schemes and are commonly referred as hybrid schemes. We

discuss hybrid schemes in Appendix A.2 and A.3. This thesis however focuses

primarily on DB schemes.

Years of high inflation, good investment returns and surplus generated dur-

ing the 1970s and 1980s created the illusion that DB pension schemes are easily

affordable. Due to the creation of large surpluses during those years, pension

risks have generally been excluded from a sponsor’s general risk management

processes. For example, in the 1990s, UK pension schemes were enjoying high

level of funding and actuaries were advsing some schemes to take contribution

holidays. In the US, several multiemployer schemes were fully funded in the mid

1980s and 1990s.

The funding of DB schemes fell drastically in the year 2000 when the price of

technology stocks went down. Moreover, the 2008 global recession led to fund-

ing levels of many schemes to plummet. DB systems in UK, Australia, Ireland

and US saw large increases in deficits following the crisis. Moreover the cri-

sis triggered a large increase in employer and employees’ contributions in many

countries including Canada and the Netherlands.

The problem of DB pension schemes has been further accentuated with popu-

lation ageing taking place as a result of birth rates going down and longevity going
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up. As the baby boomer cohort enters old age, i.e. individuals born between 1946

to 1964, there is a shift in population demographic with the proportion of older

people getting larger. With pensioners also living longer, one can expect this shift

to persist in the future. Based on a report prepared by the UK’s Government Office

for Science, the proportion of people aged 60 and above in the UK in 2014 was

23%. By 2039, this proportion is expected to rise to 29%.1 An ageing population

means greater demand for public services and fewer workers to provide for this.

It also means fewer workers to generate taxes to provide for the services.

The increasing longevity of pensioners and the declining returns on assets raise

critical questions regarding the sustainability and riskiness of pension schemes. In

this thesis, we propose a flexible and transparent approach for quantifying the risks

of DB pension schemes for different countries.

Porteous et al. (2012) performed a risk assessment of the UK’s Universities

Superannuation Scheme (USS) based on the 2008 USS valuation report. In this

thesis, we update and extend that earlier work and propose a framework which

follows the following basic steps for a representative pension scheme:

• Step 1: Fix an appropriate start date and develop a model of the representa-

tive pension scheme that adequately reflects the scheme’s membership and

liability profile as of that date.

• Step 2: Choose a suitable, ideally stochastic, Economic Scenario Generator

(ESG) to project the scheme assets and liabilities forward from the start date

identified in Step 2.

• Step 3: Choose a suitable, possibly stochastic, mortality model to project

forward the mortality experience of the scheme members.

• Step 4: Quantify the pension scheme risks using appropriate risk measures.
1Future of Ageing Population prepared by the Government Office for Science
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For our analysis, we quantify and compare the risks of pension schemes from

three countries: UK, US and Canada. For the UK, we have decided to base our

analysis on a representative model of UK’s USS as of March 31, 2014, and project

its assets and liabilities forward from that date onward. The start date chosen is

based on the latest available valuation report at the time we started this research.

For the US, we analyse a US stylised scheme based on the UK’s USS. The

scheme is based on the same model points as the USS but with a number of

changes to the benefit structure and contribution rates to account for the differ-

ences in typical US schemes.

Finally for Canada, our analysis is based on a representative model of the

Ontario Teachers’ Pension Plan (OTPP) using January 1, 2018 as the start date.

Again, our choice for the start date is based on the latest valuation report available.

The publicly available data from the actuarial valuation reports and other docu-

ments typically provide summarised data on membership profile, accrued benefits,

average salary/pension, past service, age and gender distribution, and actuarial li-

ability. As we do not have access to the full underlying membership data, we need

to build a representative model for the pension schemes under consideration, with

appropriate model points for active members, deferred members and pensioners,

to broadly match the published summarised data as of the chosen start date.

Recent regulatory developments within the banking, insurance and pensions

sectors have been key drivers towards a formal economic capital approach towards

financial risk management. Moreover, the financial crisis of 2008 and the after-

math felt worldwide have added to the additional scrutiny of the risk assessment

practices of the financial sector. So any study of the financial risk assessment of

pension schemes needs to be set within this wider framework.

The banking sector started the initiative towards economic capital based fi-

nancial risk management through Basel 1, in 1988, followed by a revised accord,
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Basel 2, which came into force on 1 January 2007. Following the financial cri-

sis of 2008, a lot of banks had gone bankrupt and others were barely surviving.

The Basel Committee on Banking Supervision issued its first version of Basel 3,

in late 2009, in response to the global financial crisis. In order to aid an effec-

tive and timely adoption, the Basel committee has recommended a timeline of

phase wise implementations to give banks the time to build quality capital and

appropriate standards. The final Basel 3 minimum requirements are expected to

be implemented by 1st January 2022 and will be fully phased in by 1st January

2027. Basel 3 has a “three pillar" structure and is built on upon Basel 1 and Basel

2 framework. The three pillars focus on quantitative and qualitative requirements

to promote greater resilience of the banking sector.

Solvency 2 is an EU insurance regulation which focuses primarily on eco-

nomic capital requirement of insurance and reinsurance companies. Similar to

Basel 3, Solvency 2 is based on a “three pillar" structure summarised below:

• Pillar 1: Quantitative requirement to calculate technical provisions and sol-

vency capital requirement covering all risks.

• Pillar 2: Qualitative requirements covering rules of governance and super-

visory review process.

• Pillar 3: Transparency and disclosure requirements.

The Solvency 2 directive became fully applicable on 1 January 2016. Similar

to Basel 3, Solvency 2 aims to set solvency standards to match risk and encourage

proper risk controls. Other salient features of Solvency 2 are as follows:

• harmonise standards across the EU to avoid the need for Member states to

set higher standards;

• bring valuation of assets and liabilities on a “fair" value basis;
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• bring greater level protection to policyholders and beneficiaries compared

to previous solvency directives;

• not be too onerous for smaller companies.

In order to be consistent with banking and insurance sectors, we propose to use

economic capital to quantify pension scheme risk. Unlike the banking and insur-

ance sectors however, no established definition of economic capital exists for risk

assessment of pension schemes. We therefore propose the following definition of

economic capital for our purpose:

The economic capital of a pension scheme is the proportion by which

its existing assets would need to be augmented in order to meet net

benefit obligations with a prescribed degree of confidence. A scheme’s

net benefit obligations are all obligations in respect of current scheme

members, including future service, net of future contributions to the

scheme.

We show our results at a number of different confidence levels, including

99.5% degree of confidence which is consistent with both the analysis of Porteous

et al. (2012) and Solvency 2. Policymakers can choose the level of confidence as

is deemed appropriate.

Before we begin our analysis, we provide a literature review on similar work

which deals with measuring and managing pension risks.

1.2 Literature Review

Porteous et al. (2012) perform a risk assessment of the USS based on the valuation

report 2008. They model stochastic economic variables using a graphical model
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and model stochastic mortality rates following Sweeting (2008). The solvency

capital requirement of the USS is determined in a Solvency 2 framework. As at

2008, the economic capital was estimated at 61% of the best estimate of liabilities.

The work by Porteous et al. (2012) was extended by Yang and Tapadar (2014).

They apply economic capital techniques to the UK’s Pension Protection Fund

(PPF) which takes over eligible schemes with deficit in the event of sponsor in-

solvency. The authors then compare the relative size of the economic capital for

the PPF and individual schemes. They show that for individual schemes, solvency

capital varies between 66% and 134% of its liabilities and for the PPF, economic

capital is estimated at 10% of the liabilities. This reduction is explained by the

PPF benefiting from pooling of risks of a large number of schemes.

Devolder and Piscopo (2014) model a DB scheme based on final salary using

a single model point and model the cashflows for a life aged 35 who retires at 65.

Assets are modelled using a Geometric Brownian motion. The paper observes the

probability of insolvency of the DB scheme over a 30-year horizon. The proba-

bility of default follows an exponential decay and varies between 0% - 40%. The

authors further show the solvency capital requirement over time which varies be-

tween 0 - 30% of liabilities. The solvency capital requirement is calibrated at a

99.5% Value-at-Risk (VaR).

Ai et al. (2015) also use the Solvency 2 framework and measure the solvency

capital requirement of a pension scheme using two approaches. The first approach

treats the pension scheme as a group annuity product offered by an insurer and

applies established insurer factors to the pension scheme. The risks considered

are default and market risk, pricing risk, interest rate risk and operational risk.

These risks are then quantified using the Standard and Poor’s Capital Model fac-

tors 2010. The second approach directly simulates the risk drivers of the pension

scheme and develops a framework for calculating the pension risk given a desired
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confidence level. Results are comparable under the two approaches. For example,

the equity investment capital charge is 38% using the Standard and Poor’s factor

approach and 35.52% using the simulation approach.

Although the Solvency 2 framework and the VaR approach are popular ways

of quantifying the risks of a pension scheme, there are other ways of quantifying

these risks. Boonen (2015) examines the consequences of using Expected Short-

fall instead of VaR to calculate the solvency capital requirement. The argument

for using Expected Shortfall is that it considers the size of worst case events while

VaR uses only the quantile. The paper assumes a portfolio of 100,000 deferred

life annuities and focusses on three risk classes: equity risk, interest rate risk and

longevity risk. In their analysis, the 98.78% Expected Shortfall corresponds to the

99.5% VaR. This is consistent with certain types of distribution such as the normal

distribution.

Devolder and Lebegue (2016) use ruin theory to estimate the solvency cap-

ital requirement for long term life insurance and pension products, arguing that

the Solvency 2 framework may not be appropriate for products with long term

horizons given that the framework takes a one-year view on risk. They allow for

different terms of contract with a single payment at maturity. For the base case

scenario, only equity risk is taken into account. Under the Solvency 2 framework,

solvency capital is understated at shorter durations (less than 60 years) and over-

stated at longer durations (greater than 60 years). For example, for a product with

a 30-year horizon, solvency capital is 43% higher if using the ruin theory frame-

work. For a product with a 90-year horizon however, solvency capital is 29%

lower using the ruin theory approach. This is due to the benefits of equity invest-

ments over long horizons, which are not properly allowed for under the Solvency

2 framework.

Devolder and Lebegue (2017) further expose the issues of using the Solvency
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2 framework for measuring pension risks. The authors compare the Solvency 2

framework to a dynamic risk measure where dynamic risk measures are defined

according to the amount of information disclosed through time. They assume the

pension fund consists of maturity guaranteed benefits and members make a single

contribution at the start. The paper shows that solvency capital is independent of

the term of the contract under the Solvency 2 framework. This is not the case

with a dynamic risk measure. Moreover, solvency capital can be much higher

with a dynamic measure. For example, applying a life cycle investment strategy

to a 30-year contract, the solvency capital is 40% of the initial contribution under

the Solvency 2 framework. In contrast, the solvency capital is 100% of the initial

contribution using the dynamic risk measure.

In this section, we have only reviewed literature which has direct relevance to

our research. However risk assessment of pension schemes can be addressed using

a wide variety of approaches and literatures is extensive in this area of research.

So a more detailed literature review is provided in Appendix A to cover these

broad areas of research. There we consider literature considers at the relative

significance of factors driving pension risks such as equity risk, interest rate risk

and longevity risk. Papers that have addressed these issues include Butt (2012),

Liu (2013), Karabey et al. (2014) and Sweeting (2017). Other literature has

compared the impact of different economic scenario generators on pension risks

(such as Devolder and Tassa (2016) and Abourashchi et al. (2016)) and the impact

of different mortality models on pension risks (such as Lemoine (2015) and Arik

et al. (2018)).

We also look at literature on managing risks from the sponsor’s point of view.

Some papers have used financial instruments to hedge or transfer the risk. Exam-

ples of the instruments used include natural hedging (Li and Haberman (2015));

longevity hedges (Lin et al. (2014, 2015)); and pension buyouts (Cox et al.
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(2018)). Some papers have also focused on risk management based on the scheme’s

structure, as in Kleinow (2011), Aro (2014) and Platanakis and Sutcliffe (2016).

Moreover, some researchers have used optimisation techniques to see the extent

to which the sponsor’s risk can be reduced. Some of the techniques they have

discussed include dynamic asset allocation (Liang and Ma (2015)) and automatic

balancing mechanisms (Godinez-Olivares et al. (2016)).

Finally, we have also looked at pension risks from the point of view of scheme

members. Among these, a number of papers have focused on solving optimi-

sation problems to maximise the expected utility of scheme members. For ex-

ample, Devolder and Melis (2014) examined the benefits to scheme members of

having both funded and unfunded public pensions. Alternatively, Chen and De-

long (2015) studied the asset allocation problem to maximise scheme members’

utility in a defined contribution scheme. Other papers have proposed innovative

pension structures to reduce scheme members’ risks. Structures analysed and

examined included hybrid structures (Khorasanee (2012)) and TimePension (Lin-

nemann et al. (2014)). Intergenerational risk sharing and the benefits to scheme

members/pensioners have also been areas of ongoing research interest (as in Chen

et al. (2014) and Wang et al. (2018)).

1.3 Structure of Thesis

The structure of this thesis is as follows: In Chapter 2, we develop the ESG which

we use to project the assets and liabilities of DB pension schemes. In Chapter

3, we discuss the mortality models we use to project the longevity for members

in the schemes. In Chapter 4, we outline the methodology we propose to use to

quantify the pension scheme risks. In Chapters 5, 6 and 7, we present the risk

assessment of the UK’s USS, the US stylised scheme and the OTPP respectively.
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Finally, in Chapter 8, we draw our conclusions and propose future work.
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Chapter 2

Economic Scenario Generators

2.1 Introduction

Projecting pension plan assets and liabilities requires simulation of future eco-

nomic scenarios. Typically actuaries rely on ESGs to produce reasonable simula-

tions of the joint distribution of economic variables relevant for asset and liability

valuations.

A wide range of ESGs are currently used in the industry. These models have

varying levels of complexity and are often proprietary. Among the few published

models for actuarial use, the most well-known is the Wilkie Model first published

in Wilkie (1986). This reduced-form vector auto-regression model for UK eco-

nomic variables, relies on a cascading structure, where the forecast of one or more

variables is used to generate values for other variables, and so on. This model has

been periodically validated and recalibrated in Wilkie (1995) and Wilkie et al.

(2011).

In this research, we want to carry an analysis of UK, US and Canadian pension

schemes. The Wilkie models (Wilkie (1986), Wilkie (1995) and Wilkie (2011))

however are only calibrated to UK data. Although there are research papers which
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calibrate the Wilkie Model to other countries (e.g. Zhang et al. (2018) have

parameterised the Wilkie Model to US data), we do not make use of these models

in this research. This is because we want to develop a modelling framework which

can be easily calibrated for any country as long as relevant data is available. In

this respect, we develop an ESG using a graphical approach calibrated to UK, US

and Canadian data.

Graphical models rely on capturing the underlying correlation structure be-

tween the model variables in a parsimonious manner, making them useful for

simulating data in high dimensions. In these models, dependence between vari-

ables is represented by edges in a graph connecting the variables or nodes. This

approach allows us to assume conditional independence between variables and to

set their partial correlations to zero. Two variables could then be connected via

one or more intermediate variables, so that they could still be weakly correlated.

Graphical models have also been used in Porteous (1995); Porteous and Tapadar

(2005, 2008a,b); Porteous et al. (2012); Yang and Tapadar (2015).

In section 2.2, we provide a brief overview of the Wilkie Model. We then dis-

cuss in Section 2.3 the ESG we have developed for this research using a graphical

approach.

2.2 The Wilkie Model

2.2.1 Background and Motivation

In 1984, David Wilkie first presented his work on a stochastic investment model

for actuarial use in the UK. The work was formally published in Wilkie (1986).

Periodically, David Wilkie has updated and recalibrated his model in Wilkie (1995)

and Wilkie et al. (2011). He has also co-authored other recent papers Wilkie and

Sahin e.g. 2016, 2017a, 2017b, 2017c, 2017d, which focus on certain specific as-
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pects of the Wilkie Model e.g. the relationship between price inflation and salary

inflation or small extensions of Wilkie et al. (2011). We will only focus on Wilkie

(1986), Wilkie (1995) and Wilkie et al. (2011) however.

The original purpose of the Wilkie Model was to develop a sufficient economic

and investment model which actuaries could use for long term simulations of fu-

ture economic scenarios without being too concerned with very short-term fluctu-

ations. Model variables were specifically chosen keeping in mind the long-term

nature of a life insurance company or a pension scheme’s assets and liabilities.

The actual constituents of the model and the model parameters have been updated

periodically (Wilkie (1995), Wilkie et al. (2011)) but the overall approach and

structure have broadly remained the same.

2.2.2 Model Structure

Since the the Wilkie Model was first proposed in 1984, the notations have under-

gone some changes over time. We will present the notations used in Wilkie et al.

(2011) to avoid confusion.

In the first paper, Wilkie (1986) presented a model for the following four vari-

ables:

I(t): annual rate of price inflation;

Y (t): dividend yield on an index of ordinary shares;

K(t): annual rate of dividend increase;

C(t): bond yields on government bonds.

The variables were related to each other in a cascade structure, as depicted in

Figure 2.1, where price inflation impacted all the other variables in that model.
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Among the other variables, dividend yield affected dividend growth and govern-

ment bond yields. The variables enclosed within the dashed area of Figure 2.1 are

the original variables included in Wilkie (1986). The remaining variables were

added in Wilkie (1995) and are defined below.

Salary

Inflation

Price

Inflation

Dividend

Yield

Dividend

Growth

Bond

Yield

Real

Yield

Cash

Yield

Wilkie (1986)

Wilkie (1995)

Figure 2.1: Wilkie Models: Cascade structure.

The original four variables were then used to define the following:

Q(t): retail price index: Q(t) = Q(t− 1)× exp [I(t)];

D(t): index for dividends: D(t) = D(t− 1)× exp [K(t)];
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P (t): price index of ordinary shares: P (t) = D(t)/Y (t).

Wilkie (1995) introduced a few more economic variables:

J(t): annual rate of wage inflation;

B(t): short-term yields on government bonds: logB(t) = logC(t)−BD(t).

BD(t): “log-spread” between bond yield and cash yield;

R(t): real yields on index-linked stocks.

These new variables led to:

W (t): index of wages: W (t) = W (t− 1)× exp [J(t)].

Wilkie (1995) also proposed a model for property indices, but this was later dis-

continued as being unsatisfactory, so we do not consider this here. The detailed

model and the parameterisation is provided in Appendix B.

2.3 Graphical Models

2.3.1 Background

For the purpose of risk calculation over long periods, we propose an alternative

approach of modelling the underlying correlations between the innovations to the

variables e.g. the residuals or the error terms in an autoregression.

Graphical models achieve this in a parsimonious manner, making them use-

ful for simulating data in larger dimensions. In graphical models, dependence

between two variables is represented by an “edge” in a graph connecting the vari-

ables or "nodes". This approach allows us to assume conditional independence

between two variables (that are not directly connected by an edge) and to set their
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partial correlations to zero. The two variables could then be connected via one or

more intermediate variables, so that they could still be weakly correlated.

As a result, we compare different algorithms to select a graphical model, based

on the Akaike Information Criterion (AIC), the Bayesian Information Criterion

(BIC), p-values and deviance.

2.3.2 Graphical Model Framework

A graph, G = (V , E), is a structure consisting of a finite set V of variables (or

vertices or nodes) and a finite set of edges E between these variables. The exis-

tence of an edge between two variables represents a connection or some form of

dependence. The absence of this connection represents conditional independence.

For instance, if we have a set of three variables V = {A,B,C}, where A

is connected to B and not to C, but B is connected to C, A is connected to C

via B. A is then conditionally independent of C, given B. Such a structure can

be graphically represented by drawing circles or solid dots representing variables

and lines between them representing edges. The graphical model described above

with three variables, A, B and C, is shown in Figure 2.2. We can see that there is

a path between A and C, which goes through B. The graphs we consider here are

called undirected graphs because the edges do not have a direction (which would

otherwise be represented by an arrow). Such graphs model association rather than

causation.
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A

B

C

Figure 2.2: A graphical model with 3 variables and 2 edges.

Another way of looking at graphical models is that they are excellent tools

for modelling complex systems of many variables by building them using smaller

parts. In fact, graphical models may be used to represent a wide variety of statis-

tical models including many of the more sophisticated time series models used in

actuarial science today. Recent standard and accessible texts on graphical models

include Edwards (2012) and Hojsgaard et al. (2012). The latter provides detailed

guidance on the use of packages written in R to estimate graphical models. In this

research, we make use of these standard packages wherever possible. Our aim is

to demonstrate the use of the undirected graph to develop a parsimonious repre-

sentation of the economic variables that can then be easily used for simulation.1

Graphical models are non-parametric by nature, but they may be used to rep-

resent parametric settings, a feature that is desirable for applications such as ours.

Due to the easy translatability between the traditional modelling structure (covari-

ance matrices) and the graphical structure in multivariate normal settings, we will

focus on the parametric approach here and show that it leads to reasonable out-

comes with our modelling strategy. Such models are known as Gaussian Graphical

models.
1Although we do not discuss directed graphs here, they are widely applied for causal inference.

For instance, an arrow from A to B and one from B to C in Figure 2.2 would establish an indirect

causal link between A and C (mediated by B), whereas an arrow from A to C would represent a

direct causal link.
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One of our key goals is to be able to represent the covariance structure with di-

mension reduction, and the graphical model will allow us to achieve that by effec-

tively capturing conditional independence between pairs of variables and shrink-

ing the relevant bivariate links to zero while allowing for weak correlations to

exist in the simulated data. For the multivariate normal distribution, if the con-

centration matrix (or inverse covariance matrix) K = Σ−1 can be expressed as a

block diagonal matrix, i.e.:

K =


K1 0 · · · 0

0 K2 · · · 0
...

... . . . ...

0 0 · · · Km

 , (2.1)

then the variables u and v are said to be conditionally independent (given the other

variables) if kuv = 0 where K = (kuv). To achieve this block diagonal structure,

variables may need to be reordered.

As the concentration matrix K depends on the scales of the underlying vari-

ables, it is sometimes easier to analyse the partial correlation matrix ρ = (ρuv),

where:

ρuv =
kuv√
kuu kvv

. (2.2)

Note that ρuv = 0 if and only if kuv = 0.

For our example graphical model in Figure 2.2 the partial correlation matrix

would look like:

ρ =


1 ρAB 0

ρAB 1 ρBC

0 ρBC 1

 , (2.3)

where ρAB 6= 0 and ρBC 6= 0. So, variables A and C are independent given

variable B. Note that this could still generate non-zero unconditional correlation

between A and C.
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Before using this structure, we will first describe the data in the next section.

2.3.3 Data

In order to build a minimal economic model, which can be used by a life insurance

company or a pension fund, we require retail price inflation (I), salary inflation

(J), stock returns and bond returns over various horizons.

For the UK, the data we use has been generously provided by David Wilkie,

who has carried out a range of checks and matching exercises to construct all

the relevant time series. Following his procedure in Wilkie (1986), we model

dividend yield (Y ), dividend growth (K) and Consols yield (C) to construct stock

and bond returns. Consols yield is the yield on perpetual UK government bonds.

Henceforth, we refer to Consols Yield as bond yield. We use the complete dataset

provided by David Wilkie, which consists of annual values from 1926 to 2017 as

at the end of June each year. An excerpt of the data can be found in Wilkie et al.

(2011).

For the US, our data comes from two sources. The first source is from Robert

Shiller who provides online data for the consumer price index, S&P 500 price

index, S&P 500 dividend index, and 10-year government bond yield.2. The second

source of data comes from Emmanuel Saez who provides online data for average

wages in the US. The data we use extend from 1913 to 20153.

For Canada, the data we use range from 1935 to 2015. For price inflation

and salary inflation, the data we use comes from two sources. We use data from

Emmanuel Saez who provides Canadian online data for the retail price index and

average wages up to the year 2000. From 2001 onwards, we use price inflation

2http://www.econ.yale.edu/~shiller/data.htm
3https://eml.berkeley.edu/~saez/
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data and salary inflation data from the Federal Reserve Economic Data4 and Statis-

tics Canada5 respectively. For the Canadian dividend yield, dividend growth and

bond yield, we use data from Statistics Canada which provide data for the Toronto

Stock Exchange (TSE) index, TSE dividend yield and 10-year government bond

yield.

2.3.4 Modelling

We are only interested in simulating the selected variables jointly, so we may

first wish to take a look at the historical pairwise correlations. The UK, US and

Canadian historical correlations are given in Table 2.1. Price inflation appears

to be correlated consistently across all three countries. However, the correlations

between the variables are not all similar across the three countries. A graphical

model promises to provide the flexible framework needed to generate scenarios

consistent with this long-run dependence structure.

4https://fred.stlouisfed.org/series/FPCPITOTLZGCAN
5https://www.statcan.gc.ca/eng/start
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Table 2.1: Historical correlations for UK, US and Canada

UK US Canada

It Jt Yt Kt Ct It Jt Yt Kt Ct It Jt Yt Kt Ct

It 1 1 1

Jt 0.83 1 0.50 1 0.65 1

Yt 0.35 0.28 1 0.11 -0.04 1 0.31 0.50 1

Kt 0.37 0.35 -0.08 1 0.23 0.22 -0.09 1 0.19 0.15 0.03 1

Ct 0.64 0.73 0.17 0.27 1 0.32 0.05 -0.11 0.01 1 0.44 0.02 -0.24 0.10 126



Table 2.2: Time series parameter estimates for univariate AR(1) regressions UK, US and Canada.

UK US Canada

µ β σ µ β σ µ β σ

It 0.0404 0.6102 0.0387 0.0328 0.6211 0.0392 0.0361 0.7105 0.0225

Jt 0.0528 0.7801 0.0282 0.0464 0.4908 0.0643 0.0600 0.5358 0.0415

Yt 0.0468 0.6718 0.0085 0.0413 0.8293 0.0100 0.0367 0.9112 0.0053

Kt 0.0527 0.4263 0.0852 0.0507 0.2746 0.1084 0.0684 0.1044 0.1755

Ct 0.0617 0.9674 0.0083 0.0489 0.9346 0.0091 0.0601 0.9699 0.007527



2.3.5 Correlations in Levels or in Innovations

Our objective here is to provide an adequate model that is as simple as possible.

When simulating, there is a philosophical question as to whether one should pro-

duce scenarios from a tightly structured model of the levels of the variables, or

whether one should focus on the innovations in the time series processes of these

variables. By construction, the innovations should be i.i.d once a well-specified

regression model has been fitted. We take the view that contemporaneous changes

in variables beyond those predicted by their own past values offer a useful handle

on the range of scenarios to be produced.

Over the history of these variables, there have been several events, but one

could still argue that there is long-term mean reversion in most series, albeit at

different rates. This may be a good reason to focus our attention on modelling the

joint innovations in the series. Rather than model the joint dynamics of variables

using a large number of constraints and parameters, we can minimise the num-

ber of constraints required by restricting them to situations that would rule out

inadmissible values.

Given that the aim of our ESG is to emphasise long-run stable relationships

and to generate a distribution of joint scenarios, we take the approach of estimating

the joint distribution of the residuals of individual time series regressions. This

focuses on the dependence between innovations and, we argue, may allow for a

richer set of scenarios generated with relatively simple models. For each variable,

we will first estimate a time series model independently and then we will fit a

graphical model for the time series residuals across variables.

At the annual frequency we consider here, the dynamics of the variables can

arguably be adequately represented by a simple AR(1) process in most cases. For
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each time series Xt, we use the following AR(1) time-series model formulation:

µx = E[Xt] (2.4)

Zt = Xt − µx (2.5)

Zt = βx Zt−1 + ex,t where ex,t ∼ N(0, σ2
x). (2.6)

The parameter estimates from the AR(1) regressions are provided in Table 2.2 for

UK, US and Canada. All AR(1) coefficients are statistically significance at the

1% level.

In addition, the fit appears satisfactory in the sense that there does not appear

to be significant residual dependence in the errors. Partial autocorrelation plots

of the residuals from these regressions are provided in Appendix B.8 for refer-

ence. While an AR(1) fit appears adequate for the purposes of our model, one can

choose an alternative univariate time series model if deemed appropriate, as we

are interested in the innovations from the model.

2.3.6 Fitting a Graphical Model to Residuals

To estimate a Gaussian Graphical Model for the residuals, we assume that:

et = (eIt , eJt , eYt , eKt , eCt) ∼ N (0,Σ).

The correlations between the residuals for the three countries are given in Table

2.3.
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Table 2.3: Correlations of residuals from individual AR(1) regressions for UK, US and Canada.

UK US Canada

It Jt Yt Kt Ct It Jt Yt Kt Ct It Jt Yt Kt Ct

It 1 1 1

Jt 0.56 1 0.38 1 0.66 1

Yt 0.34 0.25 1 0.10 -0.39 1 0.15 0.22 1

Kt 0.31 0.28 0.08 1 0.25 0.06 0.28 1 0.08 0.09 0.24 1

Ct 0.31 0.13 0.43 0.13 1 0.23 0.08 0.12 0.03 1 0.21 -0.01 0.29 0.42 130



Table 2.4: Partial correlations of residuals for UK, US and Canada.

UK US Canada

It Jt Yt Kt Ct It Jt Yt Kt Ct It Jt Yt Kt Ct

It 1 1 1

Jt 0.48 1 0.42 1 0.68 1

Yt 0.16 0.11 1 0.20 -0.47 1 -0.07 0.22 1

Kt 0.18 0.15 -0.06 1 0.17 0.10 0.28 1 -0.11 0.13 0.11 1

Ct 0.20 -0.09 0.37 0.06 1 0.19 0.04 0.12 -0.06 1 0.32 -0.29 0.24 0.40 131



The resulting partial correlation matrices are given in Table 2.4. Clearly, some

of the partial correlations in the matrices are small. Our goal is to identify the

graphical structures with the minimum number of edges, which describe the un-

derlying data adequately.

For each country, as there are 5 variables in the model, the minimum number

of edges required for a connected graph (i.e. where there exists a path between

any two nodes) is 4. The graph with the maximum possible number of edges is

the saturated model with 5C2 = 10 edges. We will call this Model Sat. The

model with no edges is the independence model, i.e. all variables are independent

of each other, and we will call it Model 0 (as there are no edges).

In total, there are 210 = 1024 distinct models possible. But we will focus only

on those models that are optimal, based on certain desirable features.

2.3.7 Model Choice: Desirable Features and Optimality

Selection of a graphical model can be carried out by traditional statistical crite-

ria. This is usually done in an iterative procedure, where we consider our model

selection criterion of choice before and after adding (or removing) an edge be-

tween two variables. One may begin with Model 0 or Model Sat and proceed in

a pre-defined sequence. In each case, disciplined judgement may be applied, for

instance, by plotting the p-values associated with individual edges and choosing

a desired cut-off point. We consider the following statistical criteria: AIC, BIC,

p-values of individual partial correlation estimates, and deviance.6 Below, we pro-

vide a set of tables summarising the results of the estimation procedures, followed

6It is possible to use the graphical model “language” to estimate other standard models such

as Markov switching or latent Markov models. For direct modelling of multivariate time series,

relevant model selection approaches have been proposed by Runge (2013) and Wolstenholme and

Walden (2015) among others.
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by a discussion of the criteria used in the procedures.

In Table 2.5, we present summary statistics for UK, US and Canada of the

following models:

Model 0: The independence model with no edges.

Model BIC: The optimal model according to BIC.

Model AIC: The optimal model according to AIC.

Model SINful: The optimal model using simultaneous p-values at confidence

level α = 0.1 and α = 0.6. We choose two confidence levels in order

to distinguish the significant edges from the non-sinificant ones. However,

the overall structure of the graphical model would only depend on α = 0.6.

Model Sat: The saturated model with all possible edges.

The UK graphical structures using model BIC, AIC and SINful are given in

Figure Figure 2.3. In Figure 2.4, we compare Model SINful for UK, US and

Canada. Note that Models BIC, AIC and SINful have the same structure for US

and Canada.
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Table 2.5: Summary of graphical model fit for UK, US and Canada.

Country Model Edges logL AIC BIC Deviance iDeviance

Model 0 0 1106.48 -2202.96 -2190.25 82.09 0.00

Model BIC 4 1143.82 -2269.64 -2246.75 7.42 74.67

UK Model AIC 5 1145.70 -2271.40 -2245.96 3.66 78.43

Model SINful 6 1146.66 -2271.33 -2243.35 1.73 80.36

Model Sat 10 1147.53 -2265.06 -2226.91 0.00 82.09

Model 0 0 1065.30 -2120.59 -2107.46 63.83 0.00

US Model BIC/AIC/SINful 6 1095.96 -2169.92 -2141.05 2.50 61.33

Model Sat 10 1097.21 -2164.42 -2125.04 0.00 63.83

Model 0 0 955.05 -1900.10 -1888.13 84.70 0.00

Canada Model BIC/AIC/SINful 6 995.66 -1969.32 -1942.98 3.48 81.22

Model Sat 10 997.40 -1964.80 -1928.88 0.00 84.70
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Model BIC: Graphical Model with 4 edges.

Dividend

Yield

Dividend

Growth

Price

Inflation
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Salary

Inflation

Model AIC: Graphical Model with 5 edges.

Dividend

Yield
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Price

Inflation

Bond

Yield

Salary

Inflation

Model SINful: Graphical Model with 6 edges.

Dividend

Yield

Dividend

Growth

Price

Inflation

Bond

Yield

Salary

Inflation

Figure 2.3: Optimal graphical models for UK based on different selection criteria.
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UK model SINful
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US model SINful
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Canadian model SINful
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Figure 2.4: Optimal graphical models for UK, US and Canada based on simulta-

neous p-values. Significant edges are shown in bold.
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Parameter estimation based on the maximum likelihood approach aims to

maximise the likelihood, or log-likelihood logL, of a specified model. Let l̂ be the

maximised value of the log-likelihood. Usually, a model with a higher maximised

log-likelihood is preferred.

In a nested model framework, a model with more parameters will naturally

lead to a higher log-likelihood. This is evident from the logL measures given

in Table 2.5 where the saturated Model Sat has the highest log-likelihood and

the independence Model 0 has the lowest log-likelihood. But, if parsimony is a

desirable feature, a saturated model need not be the optimal model.

In a nested model framework, one can define Deviance of a model, with max-

imised log-likelihood l̂, as:

Deviance = 2((l̂sat − l̂)), (2.7)

where l̂sat is the maximised log-likelihood of the saturated model. So Deviance

represents the log-likelihood ratio relative to the saturated model. On the other

hand, iDeviance of a model, with maximised log-likelihood l̂, measures the log-

likelihood ratio relative to the independence model and is defined as:

iDeviance = 2((l̂ − l̂ind)), (2.8)

From Table 2.5, we can see that in the case of US and Canada, the Graphical

Model is the same for Models BIC, AIC and SINful. We can also see from the

Deviance and iDeviance values in Table 2.5 that Models BIC, AIC and SINful are

much closer to the saturated model than the independence model.

Among these nested models, one can define optimality based on penalised

log-likelihood, where a penalty term is introduced to reflect the number of param-

eters in the model. Typically, this requires minimising the negative of a penalised

likelihood:

− 2 logL+ k × p, (2.9)
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where p is the number of (independent) parameters and k is an appropriate penalty

factor. Different values of k are used in practice, e.g. k = 2 gives the AIC and

k = log n, where n is the number of observations, gives the BIC.

In Tables 2.5 Model BIC is the optimal model according to BIC and Model

AIC is the optimal model according to AIC.

Model SINful is obtained using a special form of thresholding called the SIN-

ful approach due to Drton and Perlman (2007, 2008). The principle here is based

on a set of hypotheses:

H = {Huv : euev | all other variables },

for which the corresponding nominal p-values are P = {puv}. These are then

converted to a set of simultaneous p-values P̃ = {p̃uv}, which implies that if

Huv is rejected whenever p̃uv < α, the probability of rejecting one or more true

hypotheses Huv is less than α.

In particular Drton and Perlman (2007, 2008) suggest two α thresholds to

divide simultaneous p-values into three groups: a significant set S, an intermediate

set I and a non-significant set N and hence the name SINful.

Figure 2.5 shows the simultaneous p-values for UK, US and Canada. We

define the significant set, S, as the edges present at a significant level of α = 0.1.

For the three countries, S includes the edges between price and salary inflation.

This is expected given that the high correlation between price inflation and salary

inflation for the three countries. For UK, S also includes the edges between the

dividend yield and bond yield while for the US, S includes the edges between

the residuals salary inflation and dividend yield and dividend yield and dividend

growth. Finally for Canada, S includes the edges between the residuals of bond

yield and all other variables except dividend yield.

We define the intermediate set, I, as the edges present between a threshold

of 0.1 and 0.6. For the three countries, the inclusion of I leads to the inclusion
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of four extra edges. For the UK, these edges connect price inflation to all other

variables and salary inflation to dividend growth. For the US, the inclusion of I

also connects price inflation to all other variables. Finally for Canada, I connects

bond yield to dividend yield and salary inflation to dividend yield.

The remaining 4 edges for each country form the non-significant set N. The

resulting model using the edges in sets S and I produces model SINful in Table

2.5 and Figure 2.4. Here, we have used judgement from a visual overview of

the p-values to determine that there appear to be three distinct groups of edges

for each country. Moreover, choosing 0.6 as threshold leads to the inclusion of 6

edges for each country and thus brings us some consistency when comparing the

simulations for each country later on. One however could potentially choose 0.4

or 0.5 as the threshold in place of 0.6 as long as the process remains transparent,

potentially justifying it using a plot such as Figure 2.5.
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Figure 2.5: Simultaneous p-values for UK, US and Canada. 1 - Price Inflation, 2

- Salary Inflation, 3 - Dividend Yield, 4 - Dividend Growth, 5 - Bond Yield

.40



2.3.8 Desirable Features in Graphical Model

Our next step will be to use the models above to generate scenarios over long

periods in the future. For this purpose, in addition to dimension reduction, the

modularity feature of the graphical model becomes very important.

A clique is a subset of variables in a graph such that all the variables in this

subset are connected to each other. In other words, the subgraph represented by

the clique is complete or saturated within itself. A maximal clique is one that

is not the subset of another larger clique. When simulating variables using the

multivariate normal distribution, such a clique is the unit from which we simu-

late. As a result, if the maximum size of a clique exceeds 3, then the gains from

dimensionality reduction in estimation are significantly forfeited at the time of

simulation. Graphs with such a preferred structure are referred to as triangulated.

Visual evaluation of the graphical structure to address this is therefore a useful

instance of applying judgement while choosing between models. In Models BIC,

AIC and SINful, the structures are amenable to simulation due to the cliques being

at most of size 3.

Another way to characterise this desirable property is through the graph’s de-

composability, which allows for the derivation of an explicit MLE formula (see

e.g. Edwards (2012) and references therein). Essentially, decomposability implies

the ability to describe the model in a sequential manner, such as in the form of a

set of regressions. When simulating from an estimated model, this allows us to

simulate variables in a sequence, conditional on the realisations of previous vari-

ables. The standard stepwise model selection algorithms usually allow the user to

automatically disregard nondecomposable graphs.
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2.3.9 Scenario Generation

Using UK as an example, we outline below the steps required for simulating future

economic scenarios. Overall, of the three UK models we have identified, Model

BIC is the minimal. However, the addition of the two links to get to model SINful

is intuitively appealing and consistent with economic theory as well as empirical

evidence. Models BIC, AIC and SINful produce qualitatively similar results, so

we show the results for model SINful as it has an intuitively appealing structure.

In this respect, henceforth in this thesis, the term Graphical Model will be used to

mean Model SINful. The steps for the simulation are as follows:

Step 1: The initial values of the economic variables, i.e. (I0, J0, Y0, K0, C0) are

set at their respective observed values at the desired start date.

Step 2: To simulate (It, Jt, Yt, Kt, Ct) at a future time t, given their values at time

(t−1), we first need to generate the innovations: et = (eIt , eJt , eYt , eKt , eCt).

For UK model SINful, as can be seen from Figure 2.3, (eIt , eJt , eKt) and

(eIt , eYt , eCt) are the two cliques with eIt being the common variable. We

choose one of the cliques, say (eIt , eJt , eKt), and simulate it from the un-

derlying trivariate normal distribution. Then the other clique, (eIt , eYt , eCt),

is simulated using a bivariate conditional normal distribution (eYt , eCt) for

given values of eIt already simulated for the first clique. This shows how

a graphical model approach can help reduce the computationally intensive

task of simulating from a five-dimensional normal distribution to two sim-

pler tasks of simulating from a trivariate and a bivariate normal distributions.

Using the simulated innovations (eIt , eJt , eYt , eKt , eCt),

the values of (It, Jt, Yt, Kt, Ct) can then be calculated using Equations 2.4–

2.6.
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Step 3: Step 2 is repeated sequentially for the required time horizon to obtain a

single realisation of a simulated future scenario.

Step 4: Steps 1–3 are then repeated for the desired number of simulations.

2.4 Results

We generate simulated values starting from the last data point available, which is

2017 for UK and 2015 for US and Canada. We have produced 10,000 paths for

the joint set of variables.

For the UK, in addition to the scenarios generated through the graphical model,

we also simulate the same number of paths based on the Wilkie Model as a bench-

mark.

2.4.1 Marginal Distributions - UK Graphical Model and Wilkie

Model

The simulation results can be viewed in terms of the marginal distributions of the

variables and also in terms of their joint realisations. As a first sense check, we

look at “fan charts” of the distributions of the five variables over the length of

the simulations. These charts, based on the UK Graphical Model are presented in

Figure 2.6. For each variable, we place the chart from the Wilkie Model alongside

for easy visual comparison.

The different speeds of convergence to the long-term mean are clearly vis-

ible across the different series. However, this is not simply an artefact of the

different AR(1) estimates. While correlations in innovations feed into the cross-

autocovariances of the series, the impact is varied on account of the different levels

of memory in the processes. This is consistent with what we would expect over the
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Figure 2.6: Fanplots of simulations of UK price inflation, salary inflation and

dividend yield from the Graphical Model and the Wilkie Model.

44



Graphical Model

Year

D
iv

id
en

d 
G

ro
w

th

1925 1975 2025 2075 2125

−
0.

30
−

0.
15

0.
00

0.
15

0.
30

10%

30%

50%

70%

90%

Wilkie Model

Year

D
iv

id
en

d 
G

ro
w

th

1925 1975 2025 2075 2125

−
0.

30
−

0.
15

0.
00

0.
15

0.
30

10%

30%

50%

70%

90%

Graphical Model

Year

C
on

so
ls

 y
ie

ld

1925 1975 2025 2075 2125

0.
00

0.
05

0.
10

0.
15

10%

30%

50%

70%

90%

Wilkie Model

Year

C
on

so
ls

 y
ie

ld

1925 1975 2025 2075 2125

0.
00

0.
05

0.
10

0.
15

10%

30%
50%
70%

90%

Figure 2.7: Fanplots of simulations UK dividend growth and Bond yield from

the Graphical Model and the Wilkie Model.
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short-term when starting the simulation from the current values of the series. In

the long run all series have marginal distributions around their long-term means.

It also appears that the overall long-term picture of the marginals from our

model are broadly similar to those from the Wilkie Model. The main differences

(albeit small) appear in the slower rate of mean reversion of the forecasts for salary

inflation. The graphical model also generates a wider distribution of bond yield

and dividend yield than the Wilkie Model.

The fan charts offer a useful sense-check as they can help identify potential

violations of common sense economic constraints that one would like to avoid in

the simulations. For instance, due to the exceptionally low long-term bond yields

in the recent environment, we have imposed a constraint that the long-term yield

does not fall below 0.05%. Should a value below this be predicted, it is simply set

at the minimum value instead. While we have chosen this value to be consistent

with current practice, recent experience suggests that the modeller may choose to

lower the boundary or even do away with this constraint altogether. The model

without the constraint does not preclude negative yields.

These types of constraints may have an impact on the correlations among the

simulated variables, so it may also be useful to check the correlations, which we

do next.

2.4.2 Distribution of Correlations along Simulated Paths - UK

Graphical Model and Wilkie Model

In Figure 2.8, we provide the pairwise correlations among the simulated versions

of the variables based on the Graphical Model and the Wilkie Model. For each

simulation path we calculate one estimate of the correlation. We then plot the dis-

tribution of these correlation estimates across the simulations. While many of the

correlation profiles are very similar between the two approaches, there is a pro-
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nounced difference in the case of price and salary inflation. One might argue that

the correlation in the Wilkie Model is constrained due to the model structure, it is

also the case that the graphical model produces a very wide range of correlation

values for the two variables.

The differences in correlation profiles may partly be explained by the differ-

ences in persistence and variability between retail price inflation and salary infla-

tion, and partly as a consequence of the Gaussian structure of the graphical model

and its focus on innovations (as compared to the Wilkie Model’s approach). How-

ever, it is not clear that one outcome is preferred to the other, so we do not consider

any remedies.

2.4.3 Bivariate Heat Maps - UK Graphical Model and the Wilkie

Model

The policy-oriented user is ultimately interested in the joint values of stock and

bond returns indices, inflation and wages that the models generate. To discuss

the output in this context, we plot the bivariate heat maps generated by the sim-

ulations for Graphical Model and the Wilkie Model. The pairs we consider are:

first, annual stock returns and annual bond returns; and second, annual price in-

flation and annual salary inflation. We overlay the map with annual observations

of the relevant pairs from the historical data available. These plots are provided in

Figures 2.9 and 2.10 respectively. Only very subtle differences can be observed

across the models, and they all do an arguably reasonable job of capturing the

historical distribution. The correlations between price and salary inflation appear

tighter for the Wilkie Model than the graphical models, which is to be expected

from the different approaches taken. However, the models generate the right shape

and apply appropriate mass to the relevant areas of the distribution by comparison

to historical data.
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An additional check we can perform is to look at the (annualised) total returns

of stocks and bonds over different horizons. We do this in Figure 2.11 for the

Graphical Model and Figure 2.12 for the Wilkie Model.

As expected, the shape/sign of the bivariate correlation appears to be more

stable for the graphical model than the Wilkie Model. This is because we identi-

fied this type of long-run stable dependence as an objective for our models. An

interesting outcome, however, is the mass placed by the Graphical Model on an

extreme zone during the shorter horizons that does not appear in the Wilkie Model.

Given the recent history of exceptional policy intervention by developed countries

that exceeded the GDP of most countries in the world, this is not a surprising re-

sult. It is mainly driven by exceptionally low yields so that small absolute changes

in yields can lead to very high returns. As the yields bounce away from a lower

bound, they may be pushed back down by developments in other variables such

as price inflation. It also speaks to the ability of the simple model with AR(1)

dynamics and dependent innovations to capture shorter-term risks.
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Figure 2.8: Correlations of variables for simulations from the UK Graphical Model and the Wilkie Model.

49



−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

2
0.

0
0.

2
0.

4
0.

6

Graphical Model

Share total return

C
on

so
ls

 to
ta

l r
et

ur
n

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

2
0.

0
0.

2
0.

4
0.

6

Wilkie Model

Share total return

C
on

so
ls

 to
ta

l r
et

ur
n

Figure 2.9: Plots of simulated share and bond total returns from the UK Graphical

Model and the Wilkie Model, where the black dots represent historical observa-

tions.
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Figure 2.10: Plots of simulated price and salary inflation from the UK Graphical

Model and the Wilkie Model, where the black dots represent historical observa-

tions.
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Figure 2.11: Plots of simulated share and bond total returns from the UK Graph-

ical Model.
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Figure 2.12: Plots of simulated share and bond total returns from the Wilkie

Model.
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2.4.4 Marginal Distributions - Results for US and Canada

In Figures 2.13 and 2.14, we compare the marginal distributions for UK, US and

Canada generated by the Graphical Model for each country. Recall that by Graph-

ical Model, we mean the Graphical Model as estimated by the SINful approach.

Also note that the UK graphs are slightly different from their relevant counterparts

in Figures 2.6 and 2.7. This is because the data used in Figures 2.6 and 2.7 are

up to 2017 while the data used in Figures 2.13 and 2.14 are up to 2015 (where

2015 is the latest data available for Canada). We observe a wider fan chart for

US compared to UK and Canada for price inflation, salary inflation and dividend

yield. This is expected given the higher standard deviation, σ for these three US

variables compared to their UK and Canadian counterparts (see Table 2.2). In par-

ticular, we note that US salary inflation was very volatile before the 1950s with

very high and low peaks.

The fan chart for Canadian dividend growth is wider compared to UK and US

dividend growths. This is due to the autoregressive parameter, β, being smaller

for Canada compared to UK and US (0.1044 for Canada compared to 0.4263 for

UK and 0.2746 for US). This also means the Canadian dividend growth moves

back to the average value faster compared to UK and US dividend growths. This

property seems to be reflected in the historical time series.

The fan charts for bond yields are broadly comparable for the three countries.

Bond yield takes a relatively long time to revert back to the mean compared to the

other four variables. This is expected given that the autoregressive parameter, β is

larger than 0.9 for all three countries (see Table 2.2).
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Figure 2.13: Fanplots of simulations for price inflation, salary inflation and divi-

dend yield for UK, US and Canada from the Graphical Model.
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Figure 2.14: Fanplots of simulations for dividend growth and long bond yield for

UK, US and Canda from the Graphical Model.
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2.4.5 Bivariate Heat Maps - Comparison between UK, US and

Canada

Figure 2.15 compares the bivariate heat maps for UK, US and Canda for simulated

share and bond returns. The black dots on the graphs represent the historical data

and we label the years where returns were unusally high or low. We note that the

Graphical Model does a reasonable job in capturing the historical distributions

for all three countries. Canada seems to have the largest spread of share returns

compared to UK and US. This may be due to the large standard deviation on

the marginal distribution for Canadian dividend growth compared to UK and US.

Canada also has the smallest spread of bond returns. This is expected given that

the paramter σ is smallest for Canadian long bond yield (see Table 2.2). The heat

map shows that UK share and bond returns are more highly correlated compared

to US and Canada.

Figure 2.16 shows the bivariate heat map for simulated price inflation and

salary inflation for UK, US and Canada. Again, the Graphical Model for each

country seems to do a reasonable job in capturing the historical distribution of

price and salary inflation. US has the biggest spread of price and salary inflation

which is expected given the marginal distributions observed from Figure 2.13.

From the heat maps, the correlation between price and salary inflation seems fairly

high for all three countries. This is in line with findings from other authors such

as Kwasi (1988) and Fuhrer and Moore (1995).
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Figure 2.15: Plots of simulated share and long bond total returns for UK, US and Canada.
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Figure 2.16: Plots of simulated price and salary inflation for UK, US and Canada.
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2.5 Summary

We have seen that the simple time series model with AR(1) dynamics combined

with graphically modelled innovations can generate rich and reasonable distribu-

tions for use in long-term risk management.

There are undoubtedly other, more structural, models in the large vector au-

toregression literature that could effectively capture the joint dynamics of vari-

ables. However, such models must by necessity be tightly parameterised and ul-

timately require some dimension reduction approach as the number of relevant

variables increases. In this chapter, we presented a simple application of statisti-

cal graphical models to simulate economic variables over long time horizons. The

fitted model performs comparably to the established benchmark and has the addi-

tional advantage of easy portability to new datasets, transparency, and flexibility.

Although for ease of exposition, we have considered only five economic variables

for each country, the model can easily accommodate extensions to a wider range

of economic variables and also for many different countries. We do recognise

however that computational issues may arise with very large structures.

Despite relying on a simple dynamic and a multivariate normal distribution for

the innovations, the model captures some of the essential features simply through

the design of a suitably reduced form dependence structure. In the next chapters,

we will use these models to quantify the economic risks of DB pension schemes.
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Chapter 3

Mortality Models

3.1 Introduction

To project the cashflows of a pension scheme, we require a mortality model to

determine the longevity of pensioners and hence estimate the length of time they

receive a pension. There is a wide literature available on mortality models. Early

papers on stochastic mortality models by McNown and Rogers (1989) and Lee and

Carter (1992) have been followed by work of, among others, Booth et al. (2002a,b,

2005), Cairns et al. (2006b) (CBD), Renshaw and Haberman (2006) and Cairns et

al. (2009). The stochastic models vary according to a number of elements such as

inclusion and exclusion of cohort effects, assumptions of smoothness in ages and

the number of sources of randomness driving improvements in future mortality

rates.

A number of papers have sought to draw comparisons between various mod-

els. A notable example is Cairns et al. (2009) who compare eight stochastic mor-

tality models using data from England and Wales and US. We review the work by

Cairns et al. (2009) and update the results based on more recent data in Section

3.2. The analysis by Cairns et al. (2009) was carried out on male lives. For our
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analysis, we present the results for both male and female lives.

Pension scheme actuaries typically use deterministic mortality tables for pen-

sion scheme valuations. This is the case for the UK’s USS and the OTPP, two

pension schemes for which we carry a risk assessment in later chapters. How-

ever, using these deterministic tables directly is not suitable for our purpose as

we are interested in the full distribution of the scheme assets and liabilities for

which stochastic projection of mortality is favoured. Therefore, in Section 3.4,

we explain how we adjust simulations from a stochastic mortality model such that

the central path from the simulations matches with the mortality rates from a de-

terminsitic table. In this way, we can make our mortality assumptions consistent

with the assumptions used by the valuation actuary of the pension schemes that

we want to model and quantify the risks.

3.2 Cairns et al. (2009)

Cairns et al. (2009) make a quantitative comparison of eight stochastic mortality

models using data from England and Wales and the US. We review seven of those

models and compare them by fitting UK, US and Canadian mortality data. Cairns

et al. (2009) refer to the models as Model M1-M8. All of models M1-M3 and M5-

M8 share the same underlying assumption that the age, period and cohort effects

are qualitatively different in nature. In contrast, model M4 uses B-splines and

P-splines to fit the mortality surface. The model assumes that there is smoothness

in the underlying mortality surface in the period effects as well as in the age and

cohort effects. For our purpose, we do not include model M4 for our comparisons

given that the model is very different from models M1-M3 and M5-M8.

Cairns et al. (2009) use England and Wales data between 1961 and 2004 and

US data between 1968 and 2003 for ages 60 to 89 inclusive. Given that more
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recent data is now available, we re-fit the seven stochastic models to UK and US

data between 1968-2011. We also fit the models to Canadian data. The data we

use comes from the Human Mortality Database (HMD). Note that more recent

data is available for UK and US but the latest data available for Canada is 2011.

To keep things consistent, we use data up to 2011 for all three countries. Cairns

et al. (2009) only use data for male lives for their analysis but we carry out the

analysis for both genders.

Figure 3.1 shows the log of the crude death rates of UK, US and Canada for

ages 65, 75 and 85. From Figure 3.1, we observe a downward trend in mortality

rates over time. This is expected given that many countries have been experiencing

improving longevity over many years (Costa (2005)). We can also observe the

higher mortality rates of males compared to females for all ages although the

mortality improvement for male lives seem to improve at a higher rate compared

to females over the years. At the age of 85, the difference in the log of the crude

death rates between males and females is smaller.

3.2.1 Age-Period-Cohort Mortality Models

We assume that the force of mortality remains constant over each year of integer

age and over each calendar year. The number of deaths at age x in year t is

assumed to follow one of the following models:

(a) D(t, x) ∼ Binomial [N(t, x), q(t, x)].

(b) D(t, x) ∼ Poisson [E(t, x)× µ(t, x)].

where:

D(t, x): The number of deaths at age x and year t.

N(t, x): The number of individuals alive aged x at the beginning of year t.
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Figure 3.1: Log of crude death rates for UK, US and Canada for ages 65,75 and

85
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E(t, x): The total exposure of individuals aged x during the calendar year t.

q(t, x): The probability that an individual aged x at time t will die between t and

t+ 1.

µ(t, x): The force of mortality, defined as the instantaneous death rate, at exact

time t for individuals aged exactly x at time t.

The general form of the mortality models we consider here is given by:

log µ(t, x) (or logit q(t, x)) = β(1)
x κ

(1)
t γ

(1)
t−x + β(2)

x κ
(2)
t γ

(2)
t−x + .....+ β(i)

x κ
(i)
t γ

(i)
t−x

(3.1)

where:

• β captures the age effect

• κ captures the period effect

• γ captures the cohort effect

For example, consider the Lee and Carter model:

log µ(t, x) = β(1)
x + β(2)

x κ
(2)
t (3.2)

In this case, i=2, κ(1)t =1, γ(1)t−x=1 and γ(2)t−x=1.

The formula of the seven mortality models are provided in Table 3.1.

3.2.2 Parameter Estimation

Pension schemes are exposed to two types of risks, specific risk and systematic

risk, which arise from the actual mortality experience of the scheme members

being different from the expected.

Given the values of parameters, µ(t, x), variation in the actual mortality ex-

perience is referred to as the specific risk. In other words, if we assume that
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Table 3.1: Structure of mortality models

Model Formula

M1 - Lee and Carter log µ(t, x) = β
(1)
x + β

(2)
x κ

(2)
t

M2 - Renshaw and Haberman log µ(t, x) = β
(1)
x + β

(2)
x κ

(2)
t + β(3)

x γ
(3)
t−x

M3 - Currie log µ(t, x) = β
(1)
x + κ

(2)
t + γ

(3)
t−x

M5 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x)

M6 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x) + γ

(3)
t−x

M7 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x) + κ

(3)
t ((x− x)2 − σ̂2

x) + γ
(4)
t−x

M8 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x) + γ

(3)
t−x(xc − x)

µ(t, x) is known, then given the relevant exposures to risk, the number of deaths

is a random variable. For example, if for a certain age and time, the exposure

to risk is 10,000 and the probability of death is 0.01, then the number of deaths

can be . . . , 98, 99, 100, 101, 102, . . . with certain probabilities (with a mean of

100). This is known as specific risk. For a large pension schemes like USS with

400,000 scheme members, specific risk does not pose a significant threat, as it is

diversified away through pooling. So we primarily focus on systematic risk in this

thesis

For all models, the log-likelihood is:

l(φ,D,E) =
∑
t,x

D(t, x) log[E(t, x)µ(t, x;φ)]−E(t, x)µ(t, x;φ)− log[D(t, x)!].

(3.3)where:

φ is the full set of paramters for a given model.

The parameters are then estimated by maximum-likelihood. A number of con-

straints are applicable when estimating the parameters. The constraints are not

discussed here; please refer to Cairns et al. (2009) for more details on the param-
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eter constraints. We provide the parameter estimates for Model M3 (see Figure

3.2) for male lives for ages 60 to 89 as an example.

As the parameter β(1)
x captures the age effect on mortality, as expected the

mortality rate (and hence β(1)
x ) increases with age.

The parameter κ(2)t captures the period effect on mortality. For all three coun-

tries, we note that the κ(2)t s become smaller with time which imply an improve-

ment in mortality rates over time. UK had the highest average mortality rate in the

1970s compared to US and Canada. UK mortality improvement since 1970 has

however been more significant compared to US and Canada. Consequently, the

κ
(2)
t for UK is the largest of the three countries in 1970 but the smallest in 2010.

Finally, γ(3)t captures the cohort effect on mortality. Unlike for the age or

period effect, there isn’t a consistent trend for the cohort effect. Note that the first

five and last five cohorts are excluded in the analysis given lack of data. This

explains the horizonal line at the start and end of the plot for γ(3)t in Figure 3.2.

3.2.3 Model Fit

In order to quantitatively compare the mortality models, Cairns et al. (2009) use

the Bayes Information Criterion (BIC). The BIC provides a mechanism for bal-

ancing the quality of fit and parsimony of the model. It also allows us to compare

models which are not nested. Table 3.2 shows the BIC and rank of the models

for male and female lives using the fitted model for UK, US and Canada for ages

30-105.

For male lives, Model M7 is the highest ranked model for UK while Model

M2 is the highest ranked for US and Canada. As noted in Cairns et al. (2009),

Model M2 however has the problem of being over-parameterised and this may

result in over-fitting. For female lives, Model M8 has the highest rank for UK and

Canada and Model M2 has the highest rank for US. A problem with Model M8
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Figure 3.2: Parameter estimates of model M3 for UK, US and Canada fitted using

males mortality data ages 60-89 and years 1968-2011
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Table 3.2: Models’ BIC and Rank

Males Females

Model UK US Canada UK US Canada

M1 -10925 (6) -17362 (5) -8299 (7) -12289 (6) -17772 (5) -7444 (3)

M2 -8644 (3) -11132 (1) -7645 (1) -8597 (2) -11391 (1) -7401 (2)

M3 -9767 (5) -15107 (5) -7803 (5) -10076 (5) -15842 (4) -7579 (5)

M5 -11876 (7) -30134 (7) -8216 (6) -13227 (7) -50550 (7) -9970 (7)

M6 -8783 (4) -14474 (4) -7654 (2) -9160 (4) -19988 (6) -7732 (6)

M7 -8501 (1) -12834 (2) -7698 (4) -8687 (3) -12862 (2) -7472 (4)

M8 -8503 (2) -13161 (3) -7672 (3) -8587 (1) -13808 (3) -7363 (1)

however is that it sometimes takes a very long time for the parameters to converge.

For both genders, Model M7 seems to provide a reasonably good fit. The

model also converges fairly quickly and is not over-parameterised. FOr consis-

tency, we use Model M7 for all countries and both genders for the rest of this

thesis to project mortality rates forward. Model M5 seems to have the worst fit to

the data overall.

3.3 Projection of Parameters

Projecting future mortality rates involves projecting the time series κ(t) and γ(t−

x) forward. Systematic risk arises from the uncertainty surrounding the estimate

of the underlying parameters µ(t, x). This is the uncertainty involved in projecting

the time series κ(t) and γ(t − x) forward. For example, if the mortality rates

improve faster than expected then future µ(t, x) will be lower, which in turn will

result in lower deaths. This risk cannot be diversified away and thus poses a bigger
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threat. So ideally the uncertainty, or randomness, in the projections of µ(t, x)

needs to be recognized and incorporated in a stochastic mortality model.

Cairns et al. (2009) suggest possible approaches to project mortality param-

eters forward based on the historical estimates of these parameters. For our pur-

pose, we project κ(t) linearly over time. Given that we are not interested in future

cohorts (but only on existing ones), therefore we do not project γ(t− x) forward.

Figure 3.3 shows the simulated mortality rates for males and females for ages

65, 75 and 85 from Model M7. For each plot, we show the median and the 90%

confidence intervals.

From Figure 3.3, we make the following observations:

• The mortality rate of younger lives is lower compared to older lives showing

that the age effect is captured in the simulations.

• The mortality rate goes down with time showing that the period effect is

also captured in the simulations.

• The mortality improvement for male lives is steeper compared to female

lives. This trend was also observed in the log of the historical crude death

rates in Figure 3.1.

• The longer the time horizon, the wider the fan charts. This shows the greater

uncertainty when simulating over longer horizons.

3.4 Adjusting Stochastic Mortality Rates

Actuaries typically use determinstic mortality tables to carry pension scheme val-

uations. For example, the USS used the S1NA “light" mortality table for its tri-

ennual valuations in 2014.The S1NA “light" is a mortality table published by the

Institute and Faculty of Actuaries and is based on mortality experience of UK
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Figure 3.3: Simulated mortality rates under Model M7 for UK, US and Canada for

males and females for ages 65, 75 and 85 along with the 90% confidence interval.
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self-administered pension schemes between 2000 - 2006. Moreover, the S1NA

“light" table is based on lives whose mortality experience is lower than the gen-

eral population1. The use of the S1NA “light" is justified by the USS by that fact

that academics generally exhibit longer longevity than the general population2.

There is also the issue of adverse selection; individuals who purchase annuities

are generally in better health than individuals who do not purchase annuities. The

choice of the “light" mortality table is justifiable in that regard.

The mortality rates from the S1NA “light" table are projected forward using

projections suggested by the Continuous Mortality Investigation (CMI). The USS

used the CMI-2014 table with a long term rate of 1.5% p.a. Figure 3.4 shows the

S1NA “light" mortality rates for male lives for ages 65, 75 and 85 projected for-

ward using the CMI-2014 table. On the same graphs, we show the corresponding

projections from Model M7 for comparison purposes.

We note that the projected mortality rates using S1NA and CMI-2014 are

lower than the projected mortality rates using Model M7. This is expected given

that Model M7 is calibrated to the UK’s total population while the S1NA “light"

table is a based on lives with lighter mortality experience than overall population.

This mismatch in mortality rates between Model M7 and the CMI projections

means that it may not be appropriate to use Model M7 directly when modelling

a pension scheme like the USS as doing this will entail a large mismatch in the

mortality rates we use and those used by the valuation actuary. To avoid this, we

adjust the central projection from Model M7 to match the projections using tables

S1NA “light" and CMI-2014.

In other words, given a deterministic mortality and projection tables used by

1actuaries.org.uk/system/files/field/document/

cmiworkingpaper35.pdf
2https://www.cass.city.ac.uk/__data/assets/pdf_file/0019/

293311/COUGHLAN-Guy-L11.pdf
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the valuation actuary, the adjustment required is:

adj(x,t) =
qval(x,t)

qM7
(x,t)

. (3.4)

where qval(x,t) is the projected valuation mortality rate and qM7
(x,t) is the central projec-

tion from Model M7.

In this way, by multiplying qM7
(x,t) from Model M7 by adj(x,t), the simulated

mortality rates, henceforth denoted by qadj(x,t), will have its central projection corre-

spond to qval(x,t).

Using Model M7 calibrated to UK data and the CMI-2014 as our valuation

projection table, we show in Figure 3.4 the adjustments adj(x,t) for males for ages

65, 75 and 85. We also show the plots for qadj(x,t) for males for ages 65, 75 and 85

in Figure 3.5. As expected, the central projection for qadj(x,t) matches the projection

from the deterministic CMI 2014 projection. We do not observe any anomalies

regarding the uncertainty around the central projection of qadj(x,t) which is reassur-

ing.

We do similar adjustments to the mortality rates for US and Canadian pension

schemes. This will be discussed in more details in Chapter 6 for US and Chapter

7 for Canada.

3.5 Summary

In this chapter, we have compared different stochastic mortality models. In partic-

ular, we have looked at seven mortality models from Cairns et al. (2009). We have

seen that the different stochastic models have varying strengths and weaknesses.

We believe that Model M7 from Cairns et al. (2009) is adequate for our purpose.

The model provides a good fit for both UK, US and Canadian data for both males

and females. Moreover, it does not take a long time for parameters of the model
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Figure 3.4: Projected mortality rates for UK males for ages 65, 75 and 85.
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to converge and the model is not over-parameterised which are desirable features.

In this respect, we will use Model M7 to project future mortality rates in Chapters

5, 6 and 7 in which we carry out risk assessments of DB pension schemes in UK,

US and Canada respectively.
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Chapter 4

Risk Quantification of Pension

Schemes

4.1 Introduction

In this chapter we explain the methodology we use to carry risk assessment of DB

pension schemes. As discussed in Section 1.2, there is a wide literature on mea-

suring and managing pension scheme risks. Although the methodology for mea-

suring pension risks varies according to the research objective, most researchers

agree that the two most significant risks for pension schemes are economic risks

and mortality risks. We also focus on these two risks for this research although

we do recognise that pension schemes are exposed to more than these two risks

e.g. operational risk, liquidity risk and expense risk.

For the purpose of valuing its liabilities, the USS assumes that the scheme re-

mains open to existing members but is closed for new entrants. This is generally

referred as a Closed Group with Future Accruals. In this way, current members

continue to contribute and accrue future benefits and their salaries are assumed

to increase in line with wage increases. In order to be consistent with the figures
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reported in valuation report of the USS, we also assume a Closed Group with Fu-

ture Accruals for our risk assessment. Other types are schemes include Closed

Group without Future Accruals (where the scheme is closed to new members and

where existing members make no further contributions and accrue no further ben-

efits) and Open Group (where the scheme is open to new members and exisiting

members continue to contribute and accure future benefits). The other two types

of schemes are not explored further in this thesis.

4.2 Methodology

We will use the following notation to explain the methodology:

At: Value of pension scheme assets at time t.

Lt: Value of pension scheme liabilities at time t.

Xt: Net cash flow of the scheme at time t (excluding investment returns), i.e.,

benefit payments net of contributions.

I(s,t): Accumulation factor (accumulated value at time t of 1 invested at time s).

These are obtained directly from the simulations of the underlying stochas-

tic economic model.

D(s,t): Discount factor, i.e., I−1
(s,t).

Given the long-term nature of pension scheme risks we propose using a run-

off approach, so that the time horizon of our analysis is set until the time when the

last of the current scheme members dies. Assuming that cashflows and valuations

are carried out on an annual basis so that any surplus/deficit is determined at the

end of each year, we define the profit vector, Pt, at time t, as:

Pt = Lt−1 × I(t−1,t) −Xt − Lt, where P0 = A0 −X0 − L0. (4.1)
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Under this set-up the current present value of future profits, PV FP , is:

V0 =
T∑
t=0

Pt ×D(0,t) (4.2)

where T is the run-off time horizon. As there will be no residual liabilities after

the last of the current members die, LT = 0.

Using the relationship:

I(0,t−1) × I(t−1,t) = I(0,t) ⇒ I(t−1,t) ×D(0,t) = D(0,t−1), (4.3)

along with the fact that D(0,0) = 1, Equation 4.2 can be rewritten as follows:

V0 =
T∑
t=0

Pt ×D(0,t), (4.4)

= (A0 −X0 − L0) +
T∑
t=1

(
Lt−1 × I(t−1,t) −Xt − Lt

)
×D(0,t), (4.5)

= (A0 −X0 − L0) +
T∑
t=1

(
Lt−1 ×D(0,t−1) −Xt ×D(0,t) − Lt ×D(0,t)

)
,

(4.6)

=A0 −
T∑
t=0

Xt ×D(0,t). (4.7)

An intuitive interpretation of Equation 4.7 is that PV FP represents the present

value of the final surplus/deficit, i.e. whether the current level of assets, A0, along

with the future contributions, are adequate to pay all future benefits. Note that

the value of the liabilities do not play a direct role in this measure; rather, the

liabilities are reflected as part of the discounted cashflows, Xt.

Because future cashflows and asset returns are random variables that depend

on the future random realisations of the underlying economic and mortality vari-

ables, the present value of the final surplus/deficit, i.e. V0, is also a random vari-

able. In contrast, a valuation actuary provides a single point estimate of the current

value of future actuarial liabilities, i.e. L0.
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From this perspective, V0 can be partitioned and expressed as:

V0 = [A0 − L0 ]︸ ︷︷ ︸
Current valuation deficit

+

[
L0 −

T∑
t=0

Xt ×D(0,t)

]
︸ ︷︷ ︸
Emerging actuarial gains (or losses)

. (4.8)

Note that the point estimate of the value of actuarial liabilities, L0, does not play

a direct role in the calculation of V0. For instance, a prudent valuation basis

would produce a conservative high value forL0 leading to a large current valuation

deficit, but it will then be compensated by a corresponding rise in the emerging

actuarial gains, and vice versa.

Note that Xt represents the benefit payments net of contributions. There are

instances however where other significant cashflows need to be considered when

looking at DB pension schemes. For example, it is a common for sponsors to in-

ject additional funds in pension schemes facing a deficit (i.e. liabilities are higher

than assets). The purpose of the additional funds is to reduce the pension deficit

and we refer to this as an amortisation. The number of years during which the

sponsors inject additional funds into the scheme is referred to as the amortisation

period.

If the amortisation period is 1, i.e. there is an immediate cash injection from

the sponsor to fully cover any deficit, then we can modify Equation 4.7 to:

V0 = A0 −
T∑
t=0

Xt ×D(0,t) + Y0 (4.9)

where Y0 is the cash injection at time 0, so that Y0 = L0 − A0. We thus have the

following equation:

V0 = A0 −
T∑
t=0

Xt ×D(0,t) + (L0 − A0) (4.10)

which simplifies to:
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V0 = L0 −
T∑
t=0

Xt ×D(0,t). (4.11)

If the amortisation period is over n years, we have:

V0 = A0 −
T∑
t=0

Xt ×D(0,t) +
n−1∑
t=0

Yt ×D(0,t) (4.12)

where Yt is the cash injection at time t.

We will look at amortisation in more details in Chapter 6 where we will con-

sider a pension scheme in deficit.

We use V0 as the starting point for quantifying risk in a defined benefit pension

scheme. However, it would be helpful to use some form of standardisation so that

the measure does not depend on the following:

currency: as one of our main goals in this thesis is to compare pension scheme

risks in different countries, namely the UK, US and Canada;

scale: as different benefit structures would imply different magnitudes of scheme

assets and liabilities. Comparing absolute values of the risks for different

types of pension schemes will not be meaningful.

Standardised PV FP , which we will denote by V ∗
0 , can be defined in many

ways; two approaches are listed below:

• V ∗
0 = V0

A0
: Conceptually, this amount can be interpreted as the proportional

increase in assets required to meet all future benefit obligations.

• V ∗
0 = V0

L0
: Conceptually, this amount can be interpreted as the proportional

loading that needs to be added to the liabilities so that if we had assets

equal to the “loaded" liabilities we would be able to meet all future benefit

obligations.
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The information contained in V ∗
0 is the same for either of the above approaches,

as long as the same standardisation is used consistently throughout. We will use

the standardisation V0/A0 for the rest of this thesis.

4.3 Economic Capital

A risk measure in terms of economic capital can then be defined as:

Definition: The economic capital of a pension scheme is the amount

by which its existing assets would need to be augmented in order to

meet net benefit obligations with a prescribed degree of confidence.

A scheme’s net benefit obligations are all obligations in respect of

current scheme members including future service, net of future con-

tributions to the scheme.

Due to the long-term nature of pension schemes’ benefit obligations, it is im-

portant to use the entire run-off period as the time horizon.

The actual quantification of economic capital, using the distribution of the

random variable V ∗
0 , can be carried out in one of the following ways:

Value-at-Risk (V aR): V aR is defined as P [V ∗
0 ≤ V aR ] = p, for a given prob-

ability p. V aR represents the amount of additional initial assets required

at time 0 (on top of existing assets) for the pension scheme to meet all its

future obligations with probability, or confidence level, (1− p).

Expected shortfall (ES): ES is defined as the average of all losses which are

greater than or equal to the value of V aR, for a given probability level p,

i.e. E [V ∗
0 |V ∗

0 ≤ V aR ]. In other words, ES provides an estimate of the

expected value of losses in the worst p proportion of cases.
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These definitions of V aR and ES are applicable for continuous random vari-

ables only and are based on McNeil et al. (2015). For our results in later chapters,

we will present representative values of V aR and ES.

4.4 Summary

In this chapter, we propose a methodology to quantify risks of DB pension schemes.

In particular, we propose a run-off approach by projecting cashflows of the scheme

until the last current member of the scheme dies. We define the PVFP as the differ-

ence between the current level of assets of the pension scheme and the projected

discounted cashflows of the scheme. We propose standardising the PVFP so that

the quantified risks does not depend on the currency and the magnitude of pension

scheme assets and liabilities. As PVFP gives a full distribution of results, it might

be useful to present the underlying VaR and ES as the required economic capital

providing a measure of risk.
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Chapter 5

Risk Assessment of the UK’s

Universities Superannuation Scheme

5.1 Introduction

In this chapter, we perform a risk assessment of the USS. The USS is one of

the largest DB pension scheme in the UK. The USS was established in 1974 to

administer the principal pension scheme for academics and administrative staff in

UK universities and other higher education and research institutions. It is now one

of the largest open DB pension schemes in the UK. It has over 350,000 members

and assets worth over £45 billion.

Porteous et al. (2012) performed a risk assessment of the USS based on the

2008 USS valuation report. That risk assessment was carried out by determining

the economic capital requirements of the scheme using a framework similar to

Solvency 2. Several things have changed for the USS since 2008. In particular, in

2011, the USS was subject to significant changes, the main ones being:

• USS closed its final salary scheme to new members, replacing it with a

career average revalued earnings (CARE) scheme for new members.

84



• Future benefits of existing members was changed from final salary basis to

CARE basis.

• The indexation of deferred pensions and pensions in payment was changed

from the retail price index to the less generous consumer price index, and

uprating of accrued benefits was capped.

The changes were the subject of ‘heated public controversy’ between USS’s

institutional sponsors and the scheme’s members, represented by the University

and College Union, and involved lengthy industrial actions.

Further, in 2014, the USS took a decision to de-risk the scheme’s investments

over the next 20 years by moving equities to alternative and less risky investments.

The strategy has so far proven to be controversial as it has locked the USS in

long-term low rates of return, which could be damaging and potentially further

destabilising.

We update the risk assessment of Porteous et al. (2012) in light of these recent

changes. Our analysis is based on the most recently available valuation report.

We perform the analysis using a stochastic ESG calibrated to the UK economy

(see Chapter 2). The analysis also employs a stochastic mortality model, similarly

calibrated to the UK experience (see Chapter 3).

We show our results at a number of different confidence levels, including

99.5% degree of confidence which is consistent with both the analysis of Porteous

et al. (2012) and Solvency 2.

We start by presenting a brief overview of the membership profile, benefit

structure, contribution rates to reflect the characteristics of a UK pension scheme,

valuation basis and asset allocation of USS. The numbers presented here are based

on the latest valuation carried out for the scheme as at 31 March 2014. As we do

not have the full underlying valuation data, we will create a “model” of USS, using

model points, capturing the broad membership profile.
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5.2 Membership Profile

Table 5.1: Membership profile as per the 2014 USS valuation report

Active Number 167,545

Average pensionable salary £42,729

Average age 43.8

Average past service 12.5

Deferred Members Number 110,430

Average deferred pension £2,373

Average age 45.1

Pensioners Number 70,380

(including dependents) Average pension £17,079

Average age 71.1

Table 5.1 shows the membership profile as presented in the 2014 USS val-

uation report. As can be seen from the table, only a single average age is pro-

vided for the active members, which is not sufficient to capture the overall risk

characteristics of the scheme. We need a range of model points to capture the

inter-generational risk dynamics. The 2014 USS Reports and Accounts provides

information on the proportion of active members in different age bands, based on

which, we assume an age distribution of active members in Table 5.2.

Table 5.2 also shows the past service and salary assumptions for active mem-

bers for each model point. These have been set so that the average past service

and average salary of active members broadly match the figures from Table 5.1.

We use a single model point to represent deferred members. The average ac-

crued pension is relatively small compared to the average accrued pension of ac-
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Table 5.2: Model points, past service and salary of active USS members

Age Proportion Number Past service Salary

30 30% 50,264 7 £25,500

40 30% 50,264 11 £42,500

50 20% 33,509 15 £52,500

60 20% 33,509 19 £58,500

Total 100% 167,545

Average 12.2 £42,600

tive members and using more model points to represent deferred members would

not have a significant impact on our results. We also use a single model point to

represent pensioners given the smaller number of pensioners relative to active and

deferred members. We also assume a 50:50 gender split and no salary differential

between genders.

5.3 Benefit Structure – USS Scheme

5.3.1 Pension Benefits

Pension and cash lump sum at retirement are calculated as follows:

Annual pension = Pensionable salary × Pensionable service × Accrual rate.

Lump Sum = 3× Annual pension.

In the valuation report, members’ salaries are assumed to grow in line with a

general pay growth which is assumed to be equal to price inflation plus 1%. In our

model, we assume members’ salaries increase in line with future salary increases
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as generated by our ESG. In addition to salary inflation, there is an explicit age-

based promotional salary scale, which is based on the LG59/60 promotional salary

scale. LG59/60 promotional salary scale is widely used for actuarial valuation of

eligible schemes, see for example, the 2015 actuarial valuation of the superannua-

tion arrangements of University of London 1. An excerpt of the LG59/60 is shown

in Table 5.3.

Table 5.3: Promotional salary assumptions based on LG59/60 promotional scale.

Age Male(%) Female(%)

35 3.8 3.1

45 2.0 1.8

55 1.1 1.4

Until October 2011, accrual rate was set at 1/80th and pensionable salary was

on final salary (FS) basis and defined as “the highest of either the best inflation

adjusted 12 months’ salary over the last 36 months’ membership; or the average

of your best consecutive inflation adjusted three years’ salary during the last 13

years” for all members. For practical implementation purposes, we will assume

that for FS, the pensionable salary is the member’s salary in the final year of

service.

From 1 October 2011, the FS scheme was closed to new entrants, who joined

a separate scheme based on the CARE basis. For the CARE scheme, the pension-

able salary is an average inflation-adjusted salary over the member’s career. For

instance, consider a member who has worked 3 years in the USS, with inflation at

3% over year one, 4% over year two and 5% over year three. Then the pension-
1https://london.ac.uk/sites/default/files/2017-10/

financial-statements-2015-2016.pdf
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able salary for that member is the average of the inflation adjusted salary, £25,359

as shown in Table 5.4.

Table 5.4: Career Revalued Benefit example

Year Salary Inflation adjustment Inflation adjusted salary

1 £21, 000 ×3%× 4%× 5% £23, 620

2 £24, 000 ×4%× 5% £26, 208

3 £25, 000 ×5% £26, 250

Average £25, 359

On 1 April 2016, the FS scheme was closed and all existing members were

moved to the CARE scheme, with an enhanced accrual rate of 1/75th. For mem-

bers originally on the FS scheme, they would receive the final salary benefits,

built up until the 31 March 2016 in the FS scheme, as a service credit which will

be added onto any benefits accrued under the CARE scheme from April 2016

onwards.

To keep our model of USS simple, we propose a simplified approach where

we assume that all members accrue benefits on the FS basis up to 31 March 2014.

All members then move to the CARE basis from 1 April 2014 onwards.

5.3.2 Withdrawal Benefits

For members who withdraw from the scheme, a deferred inflation-linked pension

is provided based on accrued service. RPI indexation of salary is provided be-

tween the date the member withdraws from the scheme and the date of retirement.

Table 5.5 shows a sample of the withdrawal rates, which are 270% of the

LG59/60 table for males and 113% of the LG59/60 table for females.
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Table 5.5: Withdrawal assumptions based on LG59/60 table.

Age Male(%) Female(%)

25 14.42 19.28

35 9.19 11.40

45 3.79 3.83

5.3.3 Death Benefits

On death of an active member, a lump sum payment of 3 times the annual salary

is paid at the time of death along with a spouse’s pension of half the amount of

pension that the member would have received if the member survived until normal

retirement.

On death of a deferred pensioner, a lump sum equal to the present value of

deferred lump sum payable at normal retirement is provided along with a spouse’s

pension of half the amount of the deferred pension payable at normal retirement.

On death of a pensioner, a spouse’s pension of half the amount of member’s

pension is payable.

Table 5.6 shows a sample of the proportion married which are 109% of the

Office for National Statistics 2008 table for both males and females.2

2The following link provides access to ONS 2008:https://webarchive.

nationalarchives.gov.uk/20160107162445tf_/http://www.ons.gov.

uk/ons/rel/pop-estimate/population-estimates-by-marital-status/

mid-2010/index.html.Bear in mind that the table is updated from time to time.
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Table 5.6: Proportion married based on ONS 2008 table.

Age Male(%) Female(%)

25 10.90 10.90

35 53.41 53.41

45 69.76 69.76

5.4 Contributions

As at 31 March 2014, employers contribute 16% of salary while employees con-

tribute 6.5% of salary amounting to a total contribution of 22.5% of salary.

5.5 Valuation Method

The USS uses the Projected Unit Method (PUM) to estimate the liabilities of the

scheme. The PUM is a prospective valuation method where liabilities are esti-

mated based on the past service accrued on the valuation date taking into account

future salary inflation. FRS17 requires future cashflows to be discounted at the

yield available on AA-rated corporate bonds, interest rate swaps and other fixed

interest or index-linked bonds.

The PUM formula for the pension element is given by:

Accrued Liability =

[
P S
Acc

][
1 + e

1 + i

]NRA−x

aNRA, where

• P is the number of years of past service at the date of valuation

• S is the pensionable salary at the date of valuation

• Acc is the accrual rate
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• e is the rate of future salary increase

• i is the discount rate

• x is the current age

• NRA is the normal retirement age

• aNRA is the value of an annuity payable from age NRA.

When projecting liabilities for future years, the FS and CARE schemes are

treated separately. Benefits built up under the FS scheme will increase in line with

increases in official pensions. Official pensions increase are those paid to retired

public sector employees such as teachers, civil servants or National Health Service

(NHS) employees. Benefits built up under the CARE scheme will be based on an

inflation adjusted average salary between 31 March 2014 and the future valuation

dates.

USS 2014 valuation uses a discount rate is 5.2% p.a. decreasing linearly to

4.7% p.a. over 20 years. To check that our liabilities braodly matches the liabilities

of the USS, we use a constant discount rate of 5.0% p.a.

5.6 Valuation Results

USS 2014 valuation reports a liability of £46.9 billion. Using our model of USS,

based on the relevant model points, we obtain a liability value of £48.7 billion,

which is not very far from the figure provided in the actuarial valuation report.

One of the reasons behind the value of liability from the model being slightly

higher is due to our assumption that all members remain under the FS scheme

until 2014 while the valuation report does take into account the fact that new

entrants between 2011 and 2014 have already moved to the CARE scheme.
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5.7 Assets and Liabilities

The starting values of assets and liabilities as at March 31, 2014 are:

• A0 = £41.6bn;

• L0 = £46.9bn;

giving an initial valuation deficit of £5.3bn. We assume there is no amortisation

of the initial deficit. We note that the USS invests 73% of assets in real assets and

27% of assets in fixed assets. For our model, we assume that 70% of assets are

invested in equities and 30% of assets are invested in bonds. Table 5.7 provides

both actual and benchmark distribution of assets as given in the 2014 Accounts

and Reports.

Table 5.7: USS investment mix.
Assets Actual Benchmark

UK equities 15 16

Overseas equities 28 31

Alternative assets 23 19

Property 7 7

Total real 73 73

Fixed interest 28 27

Cash -1 0

Total fixed 27 27
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5.8 Economic Scenario Generator

To project assets and liabilities forward, we need an ESG. In this chapter, we use

and compare the impact of two ESGs. The first ESG is the Wilkie Model (Wilkie

et al. (2011)). The second ESG is the Graphical Model. Both ESGs are discussed

in detail in Chapter 2.

5.9 Mortality Model

The USS uses the S1NA (light) mortality table adjusted down by 1 year for fe-

males and unadjusted for males. Mortality projections are carried out using the

CMI-2014 projections table. As discussed in Chapter 3, to capture the mortality

risk, we use Model M7 from Cairns et al. (2009) calibrated to UK data. As dis-

cussed in Chapter 3, we need to adjust the projected mortality rates from Model

M7 such that the central projection from Model M7 matches the projection table

used by the valuation actuary (which in this case is the CMI-2014 table).

In other words, for the case of the USS.

qadj(x,t) = qM7
(x,t) × adj(x,t) (5.1)

adj(x,t) =
qval(x,t)

qM7
(x,t)

. (5.2)

where qval(x,t) is the mortality projection using CMI-2014 and qM7
(x,t) is the central

projection from Model M7.
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5.10 Results

5.10.1 Base Case Results

For our projections, we assume that the USS is closed to new entrants so that

we can quantify the risks pertaining to the existing members of the scheme. We

project the cashflows up to the point in time when all members have died and

no more benefits are paid. As discussed in Chapter 4, we then discount back the

projected cashflows back to present value and compare the results to the asset

value of the USS as at March 31, 2014. We have a surplus if the assets are greater

than the discounted projected cashflows, otherwise we have a deficit.

Our base case results, using 100,000 simulations, are presented in Figure 5.1,

which shows the full distribution of V ∗
0 i.e. PV FP as a % of A0. Representative

values of V aR and ES are presented in Table 5.8. Note that the ES measure is

calculated based only on the simulated data and hence will be under-estimated, as

the entire tail of the distribution cannot be captured through simulations. While

it is possible to use approximations to compensate for this under-estimation, we

have not employed them here.

We make the following observations:

• The differences in the results between the Wilkie Model and Graphical

Model reflect the different dynamics of the economic variables modelled

in these two modelling approaches.

• The median value of V ∗
0 is 25% and 14% of A0 for Graphical Model Sinful

and the Wilkie Model, respectively. This reflects that on average, both mod-

els suggest a positive present value of surplus (of about £10bn and £6bn

under the Graphical Model and Wilkie Model, respectively).

• For a 90% level of confidence for meeting all future benefit obligations,
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the V aR measure requires that 31% (approximately £13bn) and 36% (ap-

proximately £15bn) additional assets (on top of the available £41.6bn) will

be required under the Graphical Model and Wilkie Model, respectively.

Moreover, at that level of confidence, if the loss exceeds V aR, the aver-

age amount of loss, i.e. expected shortfall ES, will be 74% and 55% of A0

under the Graphical Model and Wilkie Model, respectively.

• As expected both Table 5.8 and Figure 5.1 show that for higher confidence

levels (or equivalently lower percentiles), greater amounts of additional as-

sets are required; and the expected shortfall increases substantially.

Table 5.8: Base case economic capital (as a percentage of A0 = £41.6bn) at

different probability levels for both Wilkie Model and Graphical Model.

Graphical Model Wilkie Model

Confidence Level V aR ES V aR ES

50 25 -13 14 -14

90 -36 -74 -31 -55

99.5 -153 -198 -101 -126

5.10.2 Sensitivity to Asset Allocation Strategies

In this section, we change the base case asset allocation strategy from (70% equi-

ties, 30% bonds) to (30% equities, 70% bonds). Using only the Graphical Model,

we present our findings in Table 5.9 and Figure 5.2, which show the base case

results alongside the results for changed asset allocation strategy for ease of com-

parison. All other assumptions are kept the same as that of the base case. We

make the following observations:
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• For increased bond investment, the distribution of V ∗
0 has moved to the left

and has greater dispersion.

• The leftward shift of the distribution indicates a greater probability of larger

deficits. This is reflected in the median (50th percentile) of V ∗
0 which shows

a loss of 21% of A0 in terms of V aR (as compared to a surplus of 25% of

A0 for the base case results). In fact Table 5.9 shows that both V aR and ES

has increased at ever increasing rate at all percentile levels.

• The sensitivity patterns can be explained by the fact that the expected returns

from bonds are lower in the long term compared to equities. So a higher

bond investment can lead to potentially larger losses, which is reflected in

the leftward shift and greater dispersion in the distribution.

• Moreover, fixed interest bonds are poor match for real liabilities. Hence

increased fixed interest bond investment has exacerbated the risk.

• The fact that the distribution of V ∗
0 has a wider spread for higher bond in-

vestment, it reflects greater underlying uncertainty compared to higher eq-

uity investment. This highlights that the perception of de-risking by moving

to more bonds may be flawed.

5.10.3 Sensitivity to Contribution Rates

In this section, we analyse the impact of changes in the base case contribution

rate of 22.5%. We consider two cases – an increased contribution rate of 25% of

salaries and a decreased contribution rate of 20%. All other assumptions are the

same as the base case, including the asset allocation strategy of 70% equities and

30% bonds.
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Table 5.9: Economic capital (as a percentage of A0 = £41.6bn) for the base case

and for the asset allocation strategy of 30% equities and 70% bonds at different

probability levels using the Graphical Model.

Equity/Bond 70/30 Equity/Bond 30/70

Percentile V aR ES V aR ES

50 25 -13 -21 -72

90 -36 -74 -103 -149

99.5 -153 -198 -245 -296

We present our findings in Table 5.10 and Figure 5.3. Note that we have also

included the base case results in Table 5.10 for ease of comparison. Similarly

in the two plots of Figure 5.3, we have included the distribution of V ∗
0 for the

base case as the grey coloured density in the background. We make the following

observations:

• Compared to the impact of change in asset allocation strategy, changes in

contribution rates have a much reduced effect on the overall risk.

• As an example, at 90% level of confidence (i.e. percentile level of 10%), a

decrease in contribution of 2.5% (i.e. reduced from 22.5% to 20% of salary)

results in an increase of loss from 36% to 41% of A0 in terms of V aR. On

the other hand, increasing the contribution rate to 25%, produces a loss of

30%.

• This leftward and rightward shifts of the distribution of V ∗
0 for decreased

and increased contribution rates, respectively, can also be observed in Fig-

ure 5.3. However, note that the magnitude of the shifts are relatively small

compared to the impact of changes in the asset allocation strategy.
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Table 5.10: Economic capital (as a percentage of A0 = £41.6bn) for three dif-

ferent contribution rates of 20%, 22.5% (base case) and 25% of salary at different

probability levels using Graphical Model.

Contribution rate as a percentage of salary

20% 22.5% 25%

Percentile V aR ES V aR ES V aR ES

50 21 -18 25 -13 29 -8

90 -41 -80 -36 -74 -30 -68

99.5 -160 -208 -153 -198 -146 -191

5.11 Summary

In this chapter, we have carried out a risk assessment of the USS. For the base

case results, using an asset allocation of 70% equity and 30% bonds and Graph-

ical Model for projections, we found a median surplus of 25% of the asset value

and a deficit of 153% at the 99.5th percentile. In comparison, using 30% equity

and 70% bonds, the median deficit is 21% of the asset value and the deficit at the

99.5% percentile is 245%. From these results, it can be argued that the scheme

has a lower risk for a higher proportion of equities. This shows that de-risking is

a far more complex issue than the conventional wisdom of simply moving assets

from risky assets (equity) to less risky assets (bonds). Other considerations such

as asset-liability matching and accounting for the term of the investment also need

to be taken into account when deciding on an investment strategy. We have also

noted that the magnitude of the PV FP shifts with respect to changes in contri-

bution rates are relatively small compared to the impact of changes in the asset

allocation strategy.
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Figure 5.1: Base case distributions of standardised PV FP (as a percentage of

A0 = £41.6bn) for both Graphical Model and Wilkie Model.
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Figure 5.2: Distributions of standardised PV FP (as a percentage of A0 =

£41.6bn) for the base case and for the asset allocation strategy of 30% equities

and 70% bonds at different probability levels using the Graphical Model.

101



−300 −250 −200 −150 −100 −50 0 50 100

0.
00

0
0.

01
0

0.
02

0

Contribution rates reduced to 20% of salary

PVFP (as a % of A0)

D
en

si
ty

Percentiles

50th
90th
99.5th

−300 −250 −200 −150 −100 −50 0 50 100

0.
00

0
0.

01
0

0.
02

0

Contribution rates increased to 25% of salary

PVFP (as a % of A0)

D
en

si
ty

Percentiles

90th
90th
99.5th

Figure 5.3: Distributions of standardised PV FP (as a percentage of A0 =

£41.6bn) for decreased contribution rate of 20% and increased contribution rate

of 25% (base case assumption is 22.5% of salary) using Graphical Model. The

grey coloured density in the background shows the base case.
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Chapter 6

Risk Assessment of US Stylised

Scheme

6.1 Introduction

In this chapter, we present a US stylised scheme based on the UK’s USS. We as-

sume that the membership profile is the same as the USS as at the valuation date of

March 31, 2014. As before, we also assume that no new members join the scheme

after this date, so that the risk analysis applies solely to the current membership of

the scheme. We discuss benefit strucuture, contribution rate, valuation basis and

assets and liabilities of the US stylised USS in Sections 6.3 - 6.6. Using economic

and demographic models calibrated to US data (as discussed in Chapters 2 and 3),

we carry out a risk assessment of the US stylised scheme and present the results

in Section 6.7.
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6.2 Membership Profile

We assume the same membership profile as used for the UK’s USS for the US

stylised scheme. The mebership profile of the USS was discussed in Section 5.2.

Tables 6.1 and 6.2 show the membership profile and the model points used for

active members for the US stylised scheme.

Table 6.1: Membership profile

Active Number 167,545

Average pensionable salary $42,729

Average age 43.8

Average past service 12.5

Deferred Members Number 110,430

Average deferred pension $2,373

Average age 45.1

Pensioners Number 70,380

(including dependents) Average pension $17,079

Average age 71.1

6.3 Benefit Structure

To reflect the specific characteristics of US pension schemes, we modify the bene-

fit structure, contribution rates and investment strategies. These modified assump-

tions are outlined in this section.
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Table 6.2: Model points, past service and salary of active members of the US

stylised scheme

Age Proportion Number Past service Salary

30 30% 50,264 7 $25,500

40 30% 50,264 11 $42,500

50 20% 33,509 15 $52,500

60 20% 33,509 19 $58,500

Total 100% 167,545

Average 12.2 $42,600

6.3.1 Pension Benefits

Pension and cash lump sum at retirement are calculated as follows:

Annual pension = Pensionable salary × Pensionable service × Accrual rate.

Lump Sum = nil.

For the US stylised pension scheme, we assume that pensionable salary is the

member’s salary in the final year of service. Pensionable service will be all years

of service, and the accrual rate is set to 1.5%. We assume no lump sum payment

for the US stylised scheme. Moreover, there is no indexation to the pension during

the payment period.

6.3.2 Withdrawal Benefits

For members who withdraw from the scheme, a deferred pension is provided

based on accrued service. No indexation of salary is provided between the date

the member withdraws from the scheme and the date of retirement. Also, there is
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no indexation during the payment period.

6.3.3 Death Benefits

On death of an active member, a lump sum payment is paid at the time of death

equal to the present value of the pension that the member would have received if

the member survived until normal retirement.

On death of a deferred pensioner, a lump sum equal to the present value of the

pension that the member would have received if the member survived until normal

retirement.

On death of a pensioner, a spouse’s pension of half the amount of member’s

pension is payable.

6.4 Contributions

To the US stylised scheme, we assume that employees do not contribute, while the

employer contributes an amount equal to the current level of the normal actuarial

cost, expressed as a percentage of salary. Based on our calculations, this amounts

to 10.8% of the final salary.

6.5 Valuation Method

For the US stylised scheme, we use the same valuation method as the USS which

is the PUM. The PUM was described in Section 5.5.

6.6 Assets and Liabilities

The starting values of assets and liabilities as at March 31, 2014 are:
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• A0 = $26.1bn;

• L0 = $32.6bn.

Assets are assumed to be at 80% of the value of liabilities as at 31 March 2014

(and hence there is a 20% deficit).

To project our assets and liabilties, we use an ESG and a mortality model. For

the ESG, we use the Graphical Model calibrated to US data. This was discussed

in Chapter 2. For the mortality model, we use Model M7 calibrated to US data

from the HMD. This was discussed in Chapter 3.

6.6.1 Investment Strategy

It is assumed that the asset allocation for the US stylised scheme is 50% equities

and 50% bonds.

6.7 Results

6.7.1 Results with no Amortisation

Our first results, using 10,000 simulations, are presented in Figure 6.1, which

shows the full distribution of V ∗
0 based on the assumption of no amortisation of

the initial deficit. Representative values of V aR and ES are presented in Table

6.3. We make the following observations.

• The median value of V0 is -25% of A0. This corresponds to a median deficit

of $6.5m which is expected.

• As expected both Table 6.3 and Figure 6.1 show that for higher confidence

levels (or equivalently lower percentiles) greater amounts of additional as-

sets are required; and the expected shortfall increases substantially.
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6.7.2 Base Case Results

As discussed in Section 6.6, there is a 20% deficit between assets and liabilties.

For our base case, we assume that this deficit will be amortised over a period of

seven years (i.e., n = 7), during which the sponsor injects a total of L0−A0 spread

evenly over those seven years, i.e., Yt = 1
7
(L0 − A0) where t = 0, 1, 2, ...6. Note

that for our case, this represents an additional contribution of approximately 4%

of members’ salaries.

Our base case results are also presented in Figure 6.1, which shows the full

distribution of V ∗
0 . Representative values of VaR and ES are presented in Table

6.3. We make the following observations:

• With the amortisation cash flows, the distribution of V ∗
0 has moved to the

right and has less dispersion.

• Note that if the amortisation period is 1, there is an immediate cover for the

deficit amount and the average of V ∗
0 will be approximately zero because the

base contribution is equal to the expected future benefit accruals. When the

amortisation period is seven years, however, there is a time lag in covering

the deficit, so on average V ∗
0 is a small negative value.

6.7.3 Sensitivity to Asset Allocation Strategies

Recall that the base case asset allocation strategy is assumed to be 50% bonds and

50% equity. To test the impact of asset allocation strategies, we now consider two

cases: 75% equity and 25% bonds, and 75% bonds and 25% equity. Table 6.4

and Figure 6.2 show the results for different asset allocation strategies. All other

assumptions are kept the same as those for the base case. We make the following

observations:
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Table 6.3: Economic capital (as a percentage of A0 = $26.1bn) for the base case

and for the asset allocation strategy at different probability levels.

No Amortisation With Amortisation

Percentile V aR ES V aR ES

50 -25 -88 -1 -60

90 -121 -187 -92 -156

99.5 -339 -444 -305 -415

• For increased equity investment, the distribution of V ∗
0 has moved to the

right. Moreover, from Figure 6.2, we note that the distribution has a higher

peak and a steeper tail compared to the base case and is thus less dispersed.

This further highlights that de-risking the investment portfolio does not nec-

essarily serve the purpose of improving the solvency position of a pension

scheme. The fact that, on a long horizon, the expected return on equity

is higher than bonds outweights the impact of increased volatily on equity.

Overall, equity offers a better match to the long term liabilities of the pen-

sion scheme.

• The rightward shift of the distribution is reflected in the median (50th per-

centile) of V ∗
0 which shows a surplus of 6% of A0 in terms of VaR (com-

pared to a deficit of 1% of A0 for the base case). The greater dispersion is

reflected by the 99.5th percentile which is much larger than the base case.

• For increased bond investment, the distribution of V ∗
0 has significantly moved

to the left. The dispersion is again greater than than the base case but less

dispersed than that with higher equity.

• The median of V ∗
0 under the increased bond investment shows a loss of 54%
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of A0 in terms of VaR. The sensitivity patterns can be explained by the fact

that the expected returns from bonds are lower in the long run compared to

equities. So a higher bond investment can lead to a potentially large losses

which is reflected in the leftward shift.

Table 6.4: Economic capital (as a percentage of A0 = $26.1bn) for the base case

and for the asset allocation strategy at different probability levels.

Equity/Bond 75/25 Equity/Bond 50/50 Equity/Bond 25/75

Percentile V aR ES V aR ES V aR ES

50 6 -58 -1 -60 -54 -119

90 -92 -169 -92 -156 -154 -224

99.5 -343 -478 -305 -415 -387 -505

6.7.4 Sensitivity to Contribution Rates

In this section, we analyse the impact of changes in the base case contribution

rate of 10.8%. We consider two cases; an increased contribution rate of 13.3%

of salaries (an increase of 2.5%) and a decreased contribution rate of 8.3% (a

decrease of 2.5%). All other assumptions are the same as the base case, including

the asset allocation strategy of 50% equities and 50% bonds. We present our

findings in Table 6.5 and Figure 6.3.

• Compared to the impact of changing the asset allocation to 25% equity and

75% bonds, changes in contribution rates have a much reduced effect on the

overall risk.

• For example, at 99.5% confidence level, a decrease in contribution of 2.5%

(i.e. reduced from 10.8% to 8.3% of salary) results in an increase of loss
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from 305% to 326% of A0 in terms of V aR. On the other hand, increasing

the contribution rate to 13.3%, produces a deficit of 286%.

• This left and right shifts of the distribution of V ∗
0 for decreased and in-

creased contribution rates respectively can also be observed in Figure 6.3.

However, the magnitude of the shift at the median is roughly an eighth of

the impact of changes in the asset allocation strategy. The magnitude of the

shift at the 99.5th percentile is roughly half of the impact of changes in the

asset allocation strategy.

Table 6.5: Economic capital (as a percentage of A0 = $26.1bn) for different

contribution rates at different probability levels.

Contribution rate as a percentage of salary

13.3% 10.8% 8.3%

Percentile V aR ES V aR ES V aR ES

50 7 -50 -1 -60 -9 -70

90 -80 -142 -92 -156 -104 -170

99.5 -286 -396 -305 -415 -326 -433

6.7.5 Sensitivity to Mortality Tables

We consider the sensitivity of changing the mortality assumptions to be determin-

istic one. It is quite common for pension schemes actuaries to use deterministic

mortality tables rather than stochastic ones. We use the RP-2006 mortality ta-

ble and the AA projection scale instead of model M7 calibrated to data from the

HMD. Unlike the other sensitivity tests, the mortality rates are deterministic in

this case. All other assumptions, however, remain unchanged from the base case,
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and the economic assumptions are still stochastic. Note that the results presented

are based on the same set of economic simulations as in the previous sections.

Technically, using different assumptions would mean that L0 and contributions

would be slightly different. For consistency, we do not make any changes to the

contribution rates or the liabilities when changing the mortality table. Note that

RP-2006 has lower mortality rates compared to model M7 calibrated to HMD

data. We present our findings in Table 6.6 and Figure 6.4. As it can be seen, the

differences are minor but nonetheless interesting.

• Compared to the base case, the median of the distribution has moved slightly

to the right.

• Given that RP-2006 has lower mortality rates than M7, it has the following

effects:

– There is more cash inflow at the start, as benefit payments are smaller

given fewer deaths among active members.

– The cash outflow is higher toward the end, as pensions paid are higher

given that pensioners survive longer..

– As higher contributions occur sooner than higher pension payments,

the impact of contributions on V ∗
0 is larger. This is reflected in the

median increasing to 6% of A0 in terms of VaR.

• The dispersion has significantly reduced. The deficit at 99.5% percentile

level is 209% of A0 in terms of VaR compared to 305% for the base case.

This is due to:

– mortality rates being deterministic and;

– higher stochastic positive cashflows at the beginning making the dis-

tribution less negatively skewed.
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Table 6.6: Economic capital (as a percentage of A0 = $26.1bn) based on deter-

ministic RP-2006 mortality table and AA projection scale at different probability

levels.

Base Case RP-2006 Table

Percentile V aR ES V aR ES

50 -1 -60 6 -44

90 -92 -156 -73 -117

99.5 -305 -260 -209 -261

6.7.6 Comparison with UK’s USS

We now compare the results for the UK’s USS and the US stylised scheme. Table

6.7 summarises the results from the UK’s USS and the US stylised scheme.

• As a percentage of starting assets, the US stylised scheme is more volatile

than the USS. The US stylised scheme requires over three times its start-

ing asset value as an economic capital buffer to provide 99.5% certainty of

providing the pension benefits. The USS scheme requires roughly half this

percentage of starting assets. Also, even though the US stylised scheme is

smaller in currency terms, the absolute size of the required economic capital

buffer is larger.

• The reduction in economic capital requirement of a larger allocation to long

bonds is greater in the US stylised scheme than in the USS. Largely, this

is because the USS benefits increase completely in line with either wage

increases or price inflation. The US stylised scheme benefits reflect wage

increases while individuals are accruing benefits, but otherwise the scheme

grants no inflationary increases.

113



• The effect on economic capital (for either of the schemes) is much larger for

changes in asset allocation than for changes to scheme contributions. The

comparison between the two pension schemes incorporates the differences

in between UK and US demography and economy. One might argue that a

more interesting comparison might be only to change the benefit structure

of the USS but not the economic and demographic assumption. This would

reflect the impact of only changing the benefit structure. In this respect, in

Appendix C, we present the results of the US stylised scheme using UK’s

economic and demographic assumptions.
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Table 6.7: Economic capital (as a percentage of A0) for UK’s USS and US stylised scheme.

UK’s USS US Stylised Scheme

70% Equity (Base Case) 30% Equity 50% Equity (Base Case) 25% Equity

Percentile V aR ES V aR ES V aR ES V aR ES

50 25 -13 -21 -72 -1 -60 -54 -119

90 -36 -74 -103 -149 -92 -156 -154 -224

99.5 -153 -198 -245 -296 -305 -415 -387 -505

20% Contribution Rate 25% Contribution Rate 8.3% Contribution Rate 13.3% Contribution Rate

Percentile V aR ES V aR ES V aR ES V aR ES

50 25 -13 -21 -72 -9 -70 7 -50

90 -36 -74 -103 -149 -104 -170 -80 -142

99.5 -153 -198 -245 -296 -326 -433 -286 -396
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Figure 6.1: Distributions of standardised PV FP for Starting Case with no amor-

tisation and for Base Case distributions (as a percentage of A0 = $26.1bn).
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Figure 6.2: Distributions of standardised PV FP (as a percentage of A0 =

$26.1bn) for different asset allocation strategies. Base case distribution is super-

imposed in grey for comparison.
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Figure 6.3: Distributions of standardised PV FP (as a percentage of A0 =

$26.1bn) for different contribution rates. Base case distribution is superimposed

in grey for comparison.
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tribution is superimposed in grey for comparison.
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Chapter 7

Risk Assessment of the Ontario

Teachers’ Pension Plan

7.1 Introduction

In this Chapter, we carry out a risk assessment of a Canadian Pension Scheme,

the OTPP. The OTPP is a large open DB scheme operating in Canada with over

300,000 scheme members. The numbers presented here are based on the latest

available valuation carried out for the scheme as at January 1, 2018. The $ sign in

this chapter represents Canadian dollars.

7.2 Membership Profile

Table 7.1 shows the membership profile as presented in the 2018 valuation report.

As can be seen from the table, only a single average age is provided for the active

members, which is not sufficient to capture the overall risk characteristics of the

scheme. We need a range of model points to capture the inter-generational risk

dynamics. The valuation report also provides information on the proportion of
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Table 7.1: Membership profile

Active Number 144,325

Average pensionable salary $90,468

Average age 44.4

Average past service 14.6

Deferred Members Number 71,205

Average deferred pension $1,965

Average age 45.1

Pensioners Number 129,785

Average lifetime pension $41,154

Average age 71.1

active members in different age bands, based on which, we propose to use an age

distribution of active members given in Table 7.2.

Table 7.2 also shows the past service and salary assumptions for active mem-

bers for each model point. These have been set so that the average past service

and average salary of active members broadly match the figures from Table 7.1.

For deferred members and pensioners, we use single model points to represent

each of these membership categories. We also assume a 50:50 gender split and no

salary differential between genders.

7.3 Benefit Structure – OTPP

7.3.1 Pension Benefits

The annual pension is equal to:
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Table 7.2: Model points, past service and salary of active OTPP members

Age Proportion Number Past service Salary

30 15% 21,649 5 $75,000

40 35% 50,514 12 $85,000

50 35% 50,514 17 $95,000

60 15% 21,649 25 $105,000

Total 100% 144,326

Average 14.7 $90,000

• 2% of the member’s highest 5-year average salary (i.e., the average salary in

the 5 (not necessarily consecutive) school years with the greatest annualized

pensionable salary) multiplied by the number of years of credited service

LESS

• 0.45% of the lesser of:

– the member’s highest 5-year average salary, or

– the average of the maximum pensionable earnings under the Canadian

Pension Plan in the year of cessation of employment and the four pre-

ceding years.

For simplicity, we assume that the annual pension is 1.7% of the member’s

final salary multiplied by the number of years of credited service.

From the valuation report, it is assumed that all pensions increase in line with

CPI 1. The increase in CPI is assumed to be 2%. Members’ salaries are assumed
1Pension increases are not fully guaranteed but we have assumed that they will be granted in

any event.
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to increase in salary grids based on:

• an assumed inflation rate of 2.0% per year, and

• an assumed real increase of 1.0% per year, based on historical real economic

growth.

In our model, we assume future pension increases and salary increases are in

line with the price inflation and salary inflation as generated by our ESG. The

OTPP valuation also allows for experience-related salary increases. This is shown

in Table 7.3. We also allow for the experience-related salary increases in our

model.

Table 7.3: Experience-related increases assumptions for OTPP members.

Years of credited service Experience-related increase

1 7.00%

2 6.60%

3 6.10%

4 5.70%

5 5.30%

6 5.30%

7 4.30%

8 3.90%

9 3.00%

10 2.00%

11 1.10%

12-35 0.40%

36+ 0.00%
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7.3.2 Withdrawal Benefits

Members who withdraw from the scheme are entitled to a deferred pension. The

deferred pension is fully indexed between the time of withdrawal and the time it

becomes payable. Table 7.4 shows the withdrawal assumptions for the OTPP.

Table 7.4: Withdrawal assumptions for OTPP.

< 5 years of service 5-10 years of service 10+ years of service

Age Males Females Males Females Males Females

20-29 4.5% 4.5% 1.0% 1.5% 0.5% 0.5%

30-39 4.0% 6.0% 1.0% 1.5% 0.5% 0.5%

40-49 5.5% 5.5% 1.0% 1.5% 0.5% 0.5%

50+ 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

7.3.3 Death Benefits

When a member dies prior to receiving a pension, a benefit equal to the value of

the deferred pension entitlement with respect to post-1986 service is payable. In

addition, a refund equal to the excess of the member’s contributions (made after

1986) plus interest over one-half of the commuted value of the post-1986 pension

is payable.

On death of a pensioner, a spouse’s pension of half the amount of member’s

pension is payable. It is assumed in the valuation report that 85% of male members

and 75% of female are married.
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7.4 Contributions

Both employers and employees contribute to the OTPP. Each party contributes

10.4% of pensionable earnings up to the Year’s Maximum Pensionable Earnings

(YMPE) and 12.0% of pensionable earnings in excess of the YMPE. For 2018,

the YMPE $55,900 for 2018. From the valuation report, the assumed increase in

the YMPE is 3% per year (an assumed inflation rate of 2.0% and an assumed real

increase of 1.0% per year). In our model, we assume the YMPE increases in line

with salary inflation as generated by our ESG.

7.5 Valuation Method

The valuation method of the OTPP was prescribed by the Teachers’ Pension Act

prior to the Regulations being amended to permit other actuarial cost methods.

This method is not considered by the Regulations to be a “benefit allocation

method". The method takes into account the benefits determined as of the time

they are assumed to become payable, based on a teacher’s projected earnings and

service. Based on this valuation method, the liabilities amount to $217bn. The

liability value based on the PUM is also calculated for reporting purposes. The

liabilities using the PUM are $155bn.

7.6 Assets and Liabilities

The starting values of assets and liabilities as at January 1, 2018 are:

• L0 = $155.0bn (based on the valuation report using the PUM and a discount

rate of 4.8% per annum);

• A0 = $227.5bn (based on the valuation report).
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giving an initial valuation surplus of $72.5bn. The OTPP invests approximately

54% in real assets and 46% in fixed assets. Table 7.5 shows the asset allocation

of the OTPP as given in the 2017 Accounts and Reports. For purposes of our

calculation, we assume an asset allocation of 55% equity and 45% bonds for the

base case.

Table 7.5: OTPP investment mix.

Assets Allocation (%)

Equities 36

Inflation sensitive assets 14

Real estate and infrastructure 25

Money market instruments (21)

Total real 54

Fixed interest 33

Credit and absolute return strategies 13

Total fixed 46

7.7 Economic Scenario Generator

To project assets and liabilities forward, we use the graphical model calibrated to

Canadian data. This has been discussed in Chapter 2.
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7.8 Mortality Model

For future mortality rates forward, the OTPP uses the 2014 OTPP Generational

Mortality Table and Projection Scale TT (two dimensional tables), which was

developed by the University of Waterloo based on a study of the scheme’s experi-

ence to the end of 2013. These tables are deterministic tables and provide a single

projection path. To capture the mortality risk, we use Model M7 calibrated to

Canadian data from the HMD. We then adjust the projected mortality rates such

that the central projection from M7 matches the projection from the 2014 OTPP

Generational Mortality Table and Projection Scale TT.

7.9 Results

In the following subsections, we discuss the results for the OTPP.

7.9.1 Base Case

Our first results, using 10,000 simulations, are presented in Figure 7.1, which

shows the full distribution of V ∗
0 . Representative values of V aR and ES are

presented in Table 7.6. We make the following observations.

• The median value of V ∗
0 is 36% ofA0. This corresponds to a median surplus

of $82bn.

• As expected both Table 7.6 and Figure 7.1 show that for higher confidence

levels greater amounts of additional assets are required; and the expected

shortfall increases substantially.
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Table 7.6: Economic capital for Base Case (as a percentage of A0 = $227.5bn)

at different probability levels.

Percentile V aR ES

50 36 -3

90 -25 -70

99.5 -164 -227

7.9.2 Sensitivity to Asset Allocation Strategies

In this section, we change the base case asset allocation strategy. We consider

two cases: 75% equity and 25% bonds; and 75% bonds and 25% equity. We

present our findings in Table 7.7 and Figure 7.2 in which we show the results for

the changed asset allocation strategy. All other assumptions are kept the same as

that of the base case. We make the following observations:

• For increased equity investment, the distribution of V ∗
0 has moved to the

right and has greater dispersion compared to the base case as more exposure

to equities leads to greater expected returns and higher volatility.

• The rightward shift of the distribution is reflected in the median (50th per-

centile) of V ∗
0 which shows a surplus of 46% of A0 in terms of VaR (com-

pared to a surplus of 36% of A0 for the base case). The greater dispersion

is reflected by the 90th and 99.5th percentile which are much larger than the

base case.

• For increased bond investment, the distribution of V ∗
0 has moved to the left.

The dispersion is again greater than than the base case but less dispersed

than that with higher equity.
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• The median of V ∗
0 under the increased bond investment shows a loss of 10%

of A0 in terms of VaR. The sensitivity patterns can be explained by the fact

that the expected returns from bonds are lower in the long run compared to

equities. So a higher bond investment can lead to potentially large losses

which are reflected in the leftward shift.

• The base case is less dispersed compared to the case of increased equity

investment and to the case of increased bond investment. This may be due

to the fact that the base case benefits from a more appropriate mix of equities

and bonds in a diversified portfolio.

Table 7.7: Economic capital (as a percentage of A0 = $227.5bn) for different the

asset allocation strategies at different probability levels.

Equity/Bond 75/25 Equity/Bond 55/45 Equity/Bond 25/75

Percentile V aR ES V aR ES V aR ES

50 46 0 36 -3 -10 -59

90 23 -80 -25 -70 -86 -135

99.5 -213 -313 -164 -227 -237 -288

7.9.3 Sensitivity to Contribution Rates

In this section, we analyse the impact of changes in the base case contribution

rate of 20.8%. We consider two cases; an increased contribution rate of 23.3%

of salaries (an increase of 2.5%) and a decreased contribution rate of 18.3% (a

decrease of 2.5%). All other assumptions are the same as the base case, including

the asset allocation strategy of 55% equities and 45% bonds. We present our

findings in Table 7.8 and Figure 7.3.
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• Compared to the impact of change in asset allocation strategy, changes in

contribution rates have a much reduced effect on the overall risk.

• For example, at 99.5% confidence level, a decrease in contribution of 2.5%

(i.e. reduced from 20.8% to 18.3% of salary) results in an increase of loss

from 164% to 169% of A0 in terms of V aR. On the other hand, increasing

the contribution rate to 23.3%, produces a deficit of 160%. As a rough

approximation, eliminating all contributions would not result in as a large

shift in the 99.5% confidence level as the shift with a 75% equity and 25%

bond asset allocation.

• This leftward and rightward shifts of the distribution of V ∗
0 for decreased

and increased contribution rates respectively can also be observed in Figure

7.3. However, note that the magnitude of the shifts are relatively small

compared to the impact of changes in the asset allocation strategy.

Table 7.8: Economic capital (as a percentage of A0 = $227.5bn) for different

contribution rates at different probability levels.

Contribution rate as a percentage of salary

23.3% 20.8% 18.3%

Percentile V aR ES V aR ES V aR ES

50 39 -1 36 -3 35 -6

10 -22 -67 -25 -70 -27 -73

0.5 -160 -223 -164 -227 -169 -231
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7.9.4 Comparison to the UK’s USS and the US Stylised Scheme

We now compare the OTPP’s results to that of the UK’s USS and the US stylised

scheme. Table 7.9 summarises the results for the three schemes.

• Given that the liabilities for the OTPP are real, the results of the OTPP are

more consistent with the UK’s USS than the US stylised scheme.

• As a percentage of starting assets, the OTPP has the largest median surplus

compared to the to the UK’s USS and the US sylised scheme. This is not

surprising given that based on its valuation report, the OTPP has a starting

surplus of $72.5bn. In contrast, the UK’s USS has a deficit of £5.3bn also

based on its valuation report.

• Despite a larger median surplus, the OTPP requires slightly more capital

buffer (as a percentage of asset values) than the UK’s USS to provide 99.5%

certainty of providing pension benefits. This is because UK’s USS has a

higher proportion of real assets compared to the OTPP (55% for the OTPP

compared to 70% for the UK’s USS). This observation further shows that

equities are better matched for real liabilities. It also further highlights the

importance of an asset-liability modelling exercise.

• With a 75% equity allocation, the economic capital at the 99.5th percentile

for the OTPP is still larger than the base case of the UK’s USS where the

equity allocation is comparable. This is consistent with the results from

Chapter 2 where we observed a higher volatility on Canadian equity returns

compared to UK equity returns.

• Given the large volatility on Canadian equity, it might be worthwhile to

explore other real asset allocation for Canada such as index-linked bonds.
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Table 7.9: Economic capital (as a percentage of A0) for OTPP, UK’s USS and US stylised scheme.

OTPP

75% Equity 55% Equity (Base Case) 25% Equity

Percentile V aR ES V aR ES V aR ES

50 46 0 36 -3 -10 -59

90 23 -80 -25 -70 -86 -135

99.5 -213 -313 -164 -227 -237 -288

UK’s USS US stylised scheme

70% Equity (Base Case) 30% Equity 50% Equity (Base Case) 25% Equity

Percentile V aR ES V aR ES V aR ES V aR ES

50 25 -13 -21 -72 -1 -60 -54 -119

90 -36 -74 -103 -149 -92 -156 -154 -224

99.5 -153 -198 -245 -296 -305 -415 -387 -505
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Figure 7.1: Distribution of the standardised PV FP (as a percentage of A0 =

$227.5bn) for the Base Case.
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Figure 7.2: Distributions of standardised PV FP (as a percentage of A0 =

$227.5bn) for asset allocation strategy. Base case distribution is superimposed

in grey for comparison.
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Figure 7.3: Distributions of standardised PV FP (as a percentage of A0 =

$227.5bn) for different contribution rates. Base case distribution is superimposed

in grey for comparison.
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Chapter 8

Conclusions

8.1 Summary

In this thesis, we propose a flexible and transparent approach for quantifying the

risks of DB pension schemes for different countries. Our analysis focuses on

pension schemes in UK, US and Canada. Moreover, our analysis focuses on two

risks; economic and mortality risks.

To quantify the economic risks of DB schemes, we develop an ESG using

a graphical modelling approach. The ESG is transparent and flexible and can

be easily adapted for different countries. The graphical ESG was discussed in

Chapter 2.

To quantify the mortality risks, we use Model M7 from Cairns et al. (2009).

The model is adequate for our purpose as it takes into account three main drivers

of mortality namely the age effect, the period effect and the cohort effect. The

model also provides a good fit to data for UK, US and Canada. We discussed

model M7 along with other mortality models in Chapter 3.

In Chapter 4, we discussed the framework we use to quantify DB pension

schemes risks. The approach we use is a run-off approach. We use the graphical
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ESG along with Model M7 to project forward future cashflows of a chosen DB

scheme and discount them back to obtain a present value. This gives a distribution

of PV FP which is the difference between the current level of assets and the

discounted value of the stochastic projected cashflows of the scheme. We then

use this framework to carry risk assessment of pension schemes in UK, US and

Canada which we discuss in Chapters 5, 6 and 7 respectively.

In Chapter 5, we carry out risk assessment of the UK’s USS. For example,

for the base case, the median of the PV FP distribution shows that the USS has

a surplus of 25% of the current value of assets, A0. In contrast, at the 99.5th

percentile, the USS has a deficit of 153% of A0. We also analyse the impact

of asset allocation on DB pension scheme risks. For example, by increasing the

bond allocation from 30% to 70%, we observe a median deficit of 21% of A0 and

a deficit of 245% of A0 at the 99.5th percentile. One might thus argue that bonds

are a poor match to the real liabilities of the USS. Finally, we analyse the impact

of contribution rates by increasing and decreasing the contribution rates by 2.5%

but the impact on the PV FP distribution proved to be very small.

In Chapter 6, we carry out risk assessment of a US stylised pension scheme.

The US stylised scheme is based on the UK’s USS. The membership profile and

the benefit structure are the same as the USS but adapted to be representative of

a US pension scheme. The two main changes are that the pension benefits are

not indexed to price inflation and there is no lump sum payment at retirement.

It is also assumed that there is a 20% deficit and this deficit is amortised over a

period of seven years. With an asset allocation of 75% equities and 25% bonds,

we observe a median surplus of 6% of A0 and a deficit of 343% at the 99.5th

percentile. In contrast, with an asset allocation of 25% equities and 75% bonds,

we observe a median deficit of 54% and a deficit of 387% at the 99.5th percentile.

Given the median and lower expected returns on bonds, the deficit at the 99.5th
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percentile is not excessively large with a bond allocation of 75%. This is because

the liabilities are fixed for the case of the US stylised scheme and bonds offer a

good match for fixed liabilities.

Finally, in Chapter 7, we carry out risk assessment of the OTPP. Like the

UK’s USS, the liabilities for the OTPP are also real. The results for the OTPP

are therefore more consistent with the UK’s USS than the US stylised scheme.

With a 75% equity allocation, the OTPP has a larger median and also a larger

economic capital requirement at the 99.5th percentile compared to the base case

of the USS with a comparable equity allocation. The larger median is due to

the funding levels of the OTPP being higher than the USS. The larger economic

capital requirement is due to more volatile returns on Canadian equities compared

to UK equities. This was discussed in Chapter 2.

In summary, we propose a framework which accounts for economic and mor-

tality risks to quantify DB pension scheme risks. We hope that the framework and

the range of results presented in this thesis will help with discussions on measur-

ing and managing DB pension schemes across countries. Moreover, we hope that

the results can also assist on discussions regarding de-risking of pension schemes

and in particular, on discussions with asset allocation and asset-liability matching.

8.2 Future Research

In this section, we discuss possible avenues for extending this research.

• Many academics are currently looking at relationship between asset prices

and demographic factors such as old-age dependency ratio. In this respect,

our graphical model could be extended to include a demographic factor.

This would also allow us to quantify the impact of changing population

demographics on pension schemes.
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• Our graphical model could also be extended for other asset classes such as

property, infrastructure, index-linked bonds amongst others. In this way,

one could replicate more realistic asset allocations of a DB pension scheme.

• We have only considered risk assessment of DB pension schemes for this

research. This research could be extended for other types of schemes such

as DC schemes or hybrid schemes, Pay-As-You-Go systems, Pension Pro-

tection Funds and social security systems.

• Our analysis is based on the USS’s and the OTPP’s membership profile.

These are large well established schemes. Analysis of smaller DB pension

schemes can produce very different results. The effect of a different mem-

bership distribution could be further investigated.

• We have not considered the impact of a dynamic investment strategy. This

venture could be explored to see how a dynamic investment strategy impacts

DB pension scheme risks.

• Moreover, one may also want to investigate the impact of using more so-

phisticated investment instruments such as longevity swaps and other hedg-

ing tools on DB pension schemes risks.

• Other ESGs and mortality models could be used to quantify DB pension

risks. This could bring more light on the underlying model risk.

• Our research could be extended to accomodate for more risks. In this re-

search, we have only quantified and accounted for the economic and mor-

tality risks. In reality, DB pension schemes are exposed to more risks such

as operational risks, liquidity risks and expense risks. Hence, our model

could be extended to allow for these additional risks.
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Appendix A

Literature Review

This Appendix provides a continuation of the literature review provided in Section

1.2 on measuring and managing pension risks. The review is divided in three

sections. In Section A.1, we look at papers which deal with risk assessment of

pension plans. In Section A.2, we look at papers which focus on managing the

sponsor’s risks. In Section A.3, we look at papers which focus on managing the

scheme members’ risks.

A.1 Measuring Pension Risks

Kemp and Patel (2012) explore the application of Enterprise Risk Management

(ERM) style techniques to pension funds. The paper argues that ERM is as ap-

propriate to pension funds as it is to other types of entities such as insurance

companies. According to the authors, the reason for encouraging pension funds

and their sponsors to be more rigorous in their adoption of ERM techniques is the

fact that the entities do not exist in isolation.

Ventura-Marco and Vidal-Melia (2014) present an Actuarial Balance Sheet for

DB pay-as-you-go pension systems with disability and retirement contingencies.
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The authors develop a theoretical base for applying a Swedish-type Actuarial Bal-

ance Sheet and use the principles of double-entry to show any actuarial imbalance

in the pension system. The authors suggest that the model they propose makes it

possible to assess the degree of solvency from the integrated perspective of both

retirement and disability contingencies.

Butt (2012) uses stochastic economic and demographic variables to simulate

assets and liabilities of a pension scheme over a 30 year horizon. He compares

the relative significance of the factors driving the funding risk of the scheme,

defined as the risk that the funding ratio of the scheme is less than 1. Demographic

factors such as mortality rates and withdrawal rates do not significantly affect

funding risk. Investment factors account for most of the risk. The paper assumes

a pension scheme of deferred annuities. Economic and demographic variables are

parameterised using Australian data. Assets and liabilities are then simulated over

30 years. During the first year, movements in discount rates accounted for 46.4%

of the funding risk while movements in investment returns accounted for 33.3%

of the risk. Movements in mortality rates or withdrawal rates however accounted

for less than 1% of the risk.

Liu (2013) investigates the impact of the two systematic risk factors, the mor-

tality risk and the interest rate risk on the distribution of the annuity rate. The

Lee-Carter and the Cairns-Blake-Dowd models are used to model mortality risk,

and the one and two-factor Cox-Ingersoll-Ross models are used to model interest

risk. Liu (2013) shows that the distribution of the annuity rate is more sensitive

to the long-term mean-reverting rate parameter of the interest rate model than to

other parameters. For example, if the mean-reverting parameter is increased by

40% from the benchmark value, the 95% VaR decreases by 18.42%. In contrast,

if the drift parameter of the Lee-Carter model is decreased by 40%, the 95% VaR

only decreases by 4.7%. The author suggests that it is critical to adopt a suitable
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interest model in pricing and reserving for annuity-related products.

Karabey et al. (2014) estimate the contribution of different risks to the total

risk in an annuity portfolio. The risks considered are investment risk, mortality

risk and the co-movement risk. They compare the risk contributions for a 25 and

45-year annuity and observe that investment risk is dominant. For example, using

variance decomposition approximations, 89% and 63.5% of the total risk results

from the investment risk for a 25 and 45-year annuity respectively.

Sweeting (2017) explains how investment risk can translate into increased fi-

nancial burden to a sponsor. He compares the cost of employing an individual on

a DB scheme compared to a DC scheme in the UK. Between 1996 to 2016, the

annual average DB total cost has been around 1.0% of earnings higher compared

to DC. As a result, having employees accruing benefits under DB schemes has

resulted in a growing financial burden for firms in this position. This increase in

financial burden is explained by a low growth and low interest environment.

De Rosa et al. (2017) consider the impact of basis risk. They compare static

and dynamic longevity-risk hedging with and without basis risk. Basis risk is

defined as the co-movement between the portfolio and the reference population’s

longevity. They compare a static swap-based hedge for an annuity to a dynamic

Delta-Gamma-Theta based hedge. They calibrate their model on a UK individual

aged 65. When basis risk is ignored, the mean hedging error over a 30 year horizon

is similar under both strategies. With basis risk however, the mean hedging risk is

approximately 88% higher under a static hedging strategy.

Trottier et al. (2018) also highlight the importance of basis risk for pension

schemes. Basis risk here is defined as the imperfect correlation of returns from

the pension fund and returns from futures used to hedge the financial risks. They

compare the riskiness associated with a variable annuity policy with and without

basis risk. A key observation stemming from the paper is that the omission of
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basis risk leads to severe risk under-estimation. For example, using a minimal

variance investment strategy, the capital requirement is 215% higher if basis risk

is allowed for.

Given that economic risks contribute significantly to pension risks, we look at

some literatures which focus on comparing different economic scenario genera-

tors and their impact on pension risk quantification.

Devolder and Tassa (2016) use ruin theory to quantify the risks of a DB

scheme. They compare the probability of ruin and solvency capital using a simple

Brownian motion and a variance gamma process. To illustrate the differences,

they assume a DB scheme with a single lump sum payment at retirement linked to

the final salary of the member. They note that a variance gamma process requires

more capital than a simple geometric Brownian motion. For example, for a 5-year

horizon, using a simple Brownian motion as the economic scenario generator, the

solvency capital is around 30% of liabilities, but using a variance gamma process,

the solvency capital is around 35% of liabilities. This difference arises because

the variance gamma process takes into account the risks related to sudden crashes

of financial markets.

Abourashchi et al. (2016) quantify the funding risk of a DB scheme defined

as the probability that liabilities are greater than assets. They argue that a simple

lognormal process does not sufficiently capture the fat-tailed properties of asset

returns. Moreover, a lognormal process does not allow for time-varying asset re-

turn variances. The process therefore underestimates extreme market movements

and the true spread of portfolio values. To address this problem, they examine

multivariate Markov regime switching models. The Markov regime switching

processes assume an economy where multiple states exist (e.g. low asset return

state, bull state, low volatility state, crash state) and where transition between the

states is possible. Transition probabilities can be interpreted as the proportion of
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time the economy spends in each state. The funding risk of a DB scheme for a

single state model is compared to a 4-state Markov regime switching model. Over

a 12-year time horizon, the funding risk increases between 2.5% to 4.5% using

the 4-state model compared to the single state model.

Aas et al. (2018) investigate whether the choice of the interest rate model

has an impact on the valuation of the best estimate of pension liabilities. The

interest rate models compared are the CIR++ model, the G2++ model and the

LIBOR Market model. They observe that for low and medium durations, the

interest rate models produce similar results for the best estimate of liabilities. For

long durations however, the differences in the best estimate can be quite large. The

differences are due to different long-term interest rate distributions generated from

the 3 models. They recommend the use of the G2++-model, which represents a

good trade-off between accuracy and complexity.

Slipsager (2018) analyses the effect of having a stochastic view on inflation

compared to the deterministic view often favoured by regulators. The paper as-

sumes an individual who contributes an amount of $50,000 as a lump sum and

the fund accumulates for 35 years when the individual retires. The author then

estimates the real value of the portfolio at retirement. Deterministic inflation is

prone to producing heavily over-optimistic forecasts and the expected real port-

folio value is thus overstated. Moreover, the deterministic inflation framework

ignores correlation between portfolio returns and consumer price levels and this

may lead to an excessively heavy-tailed distribution. For example, assuming the

fund invests 60% in equity and 40% in bonds, the mean real portfolio value at

retirement is $387,421 using stochastic inflation compared to $427,240 using de-

terministic inflation. The interquartile range is $328,950 using stochastic inflation

and $377,859 using deterministic inflation.

Finally, we look at literatures which compare mortality models and the impact
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on pension risks. Lemoine (2015) explores the existence of regimes in mortality

evolution and measure their implications for a portfolio of life annuities by cap-

turing the distribution of the mortality time index with a regime-switching model

within a Poisson log-bilinear framework. The author applies regime-switching

models to French mortality data from 1947 to 2007 within a Poisson Lee-Carter

framework. The author finds that French mortality is characterised by two persis-

tent and distinct regimes over the period 1947-2007. The first regime refers to a

strong uncertainty state, which corresponds to the longevity conditions observed

during the two decades following World War II. The second state relates to the

low volatility of longevity improvements observed during the last 30 years. The

author then investigates the implications of mortality regimes for a portfolio of

life annuities and finds that the risks of the life annuity portfolio as well as the

capital requirements are affected by regime switching in the mortality evolution.

The author then discusses the potential costs for a life annuity portfolio by ignor-

ing the changes of trends. For example, if the first regime is active again, a single

state mortality model would under-estimate the probability of ruin by 0.9% for

men and by 1.4% for women.

Arik et al. (2018) examine the pricing of pension buy-outs under dependence

between interest and mortality rate risks with an explicit correlation structure in a

continuous time framework. Stochastic interest rates are modelled using the Va-

sicek and the Cox-Ingersoll-Ross models and stochastic mortality rates are mod-

elled using the Lee-Carter model and Ornstein-Uhlenbeck process. They note that

changing the correlation coefficient between interest rate risk and mortality risk

does not significantly affect the pension buy-out price. However, they highlight

that the choice of the mortality model is essential for pricing of the buy-out deal

and note that the price of the buy-out is 60% higher using the Lee-Carter model

instead of the Ornstein-Uhlenbeck process.
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A.2 Managing Sponsor’s Risks

In this Section, we look at papers that focus on risks from the sponsor’s point of

view. We start with papers which discuss ways a sponsor can hedge or transfer

pension risks to another party.

Kling et al. (2014) compare two types of financial guarantees; the guaranteed

annuity options and the guaranteed minimum income benefits. For guaranteed

annuity options, the insurer guarantees to convert the funds at a pre-specified rate;

while the guaranteed minimum income benefit guarantees a fixed minimum an-

nuity. Economic scenario generators and stochastic mortality models are used to

compare the risks on the two guarantees and consider a single life aged 50 who

pays a single premium at inception and retires at the age of 65. The 99.5% VaR is

estimated at 1.5% of the premium paid for the guaranteed annuity option and 60%

of the premium paid for the guaranteed minimum income. The risk on guaranteed

minimum income can however be reduced to 14% of the premium by hedging the

financial risks.

Lin et al. (2015) examine 3 hedging strategies: longevity hedge, pension buy-

in and pension buyout and compare them in terms of their hedging costs. They

assume a pension scheme that consists of a retired cohort and which invests in the

SP 500 index, the Merrill Lynch corporate bond index and the 3-month Treasury

bill. Numerical examples from the paper show that if counterparty risk is low, it is

desirable to implement a longevity hedge or a buy-in strategy. When counterparty

risk is high however, a buy-in strategy is more sensitive to counterparty risk than

the longevity hedge as more assets are tied to the buy-in.

Li and Haberman (2015) examine the effectiveness of natural hedging between

annuity and life products. Natural hedging exploits the opposite movements in

the values of annuities and life insurances when mortality changes. The authors

assume a constant investment return of 3% and consider two products; a whole-
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life insurance payable from age 65 or a life annuity issued at age 65. They then

consider 101 portfolio compositions of annuity and life products by varying the

weights of the annuity and life policies. Different mortality models are used to

investigate the reduction in risk which the natural hedging brings. Using the Lee-

Carter model for example, the maximum reduction in the standard deviation for

a portfolio of 100,000 policies is 49%. Li and Haberman (2015) thus suggest the

level of risk reduction is too significant to be overlooked in practical work such as

reserving and capital allocations.

Regarding longevity hedging, Lin et al. (2014) compare two longevity hedg-

ing strategies; a ground-up hedging strategy and an excess-risk hedging strategy.

The ground-up hedging strategy transfers a proportion of total pension liability to

the hedge provider while the excess-risk hedging strategy cedes only the longevity

risk above some predetermined level. Although advocates for the excess-risk

hedging strategy (Blake et al. (2006 ); Lin and Cox (2008 )) argue that the strategy

has a more attractive structure and lower cost, Lin et al. (2014) argue that when

basis-risk cost is high, the ground-up hedging strategy may be better. Basis risk is

caused by the mismatch between a scheme’s actual longevity risk and the risk of

a reference population underlying a hedging instrument. Lin et al. (2017) further

advocate for ground-up longevity hedging strategy by presenting the cost of pen-

sion for a start-up company in an ERM framework. They show that in an ERM

framework, the pension excess-risk de-risking strategy is less capital intensive but

it underperforms compared to the ground-up strategy in terms of value creation.

Blackburn et al. (2016) investigate the impact of longevity risk management

on shareholder value for a life insurer issuing life annuities. They use a multi-

period stochastic shareholder value model and analyse how longevity risk man-

agement can reduce the default probability of the insurer. Strategies for reducing

the longevity risk include survivor bonds and survivor swaps. Both instruments
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reduce the volatility of the portfolio, however survivor swaps are more effective

in reducing the risk as they also hedge the idiosyncratic risks.

Li (2018) suggests that a pension scheme provider can reduce longevity risk

exposure by trading longevity-linked derivatives. The standard deviation of the

hedging error, defined as the deviation of the market value of assets from the mar-

ket value of liabilities, is calculated assuming zero coupon bonds and longevity

bonds are traded weekly. The impact of increasing the trading frequency of the

longevity bond is then investigated. The standard deviations of the hedging er-

ror increase by 3.7%, 18% and 53% when the trading frequency is increased to 2

years, 5 years and 10 years respectively. Moreover, the standard deviation of the

hedging error would be about 7.44 times higher without any longevity hedging.

Cox et al. (2018) argue that pension buyouts can be more effective at im-

proving a firm’s value compared to longevity hedges. This is because pension

buyouts, unlike longevity hedges transfer the entire pension risk including invest-

ment risk, interest rate risk and longevity risk. Pension buyouts are however far

more capital intensive compared to longevity hedges particularly for underfunded

schemes. To counter the problem of high costs of pension buyouts, they propose a

pension buyout option which can be triggered when funding levels are low. They

create a pension funding index calculated from observed market indices and pub-

licly available mortality tables and assume that the funding level of a scheme will

be correlated with the funding index. Underfunded schemes can exercise their

pension buyout option when the funding index falls below a trigger level. The

advantage of having the pension funding index is that it removes the risk of moral

hazard from sponsors. Pay-outs from the buyout option can then help sponsors to

make up for funding deficits.

Zhu et al. (2018) study dynamic hedging strategies for Cash Balance pen-

sion schemes. Cash Balance schemes represent one of the fastest growing pen-
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sion scheme designs in the United States and are classified and regulated as DB

schemes. Cash Balance schemes are however hybrid schemes and work as fol-

lows: if the actual investment return earned in a particular year is less than the

minimum guaranteed level, the employer will make further contributions to top

up each member’s fund to the minimum guaranteed level; if the achieved invest-

ment returns are higher than the minimum guaranteed level, the employer may

hold back some, or all, of the excess from individual members’ funds and then

use this amount to top funds up in future years, when the minimum guaranteed

investment return is not achieved. This structure means that it is the employer,

and not the members, who is exposed to the scheme’s investment risk during the

period up to retirement. Zhu and al. (2018) argue that the persistent low interest

environment means that hedging the cash balance liability has become an urgent

question for employers. By comparing a delta hedging strategy to a more tradi-

tional investment strategy, defined as 60% equity and 40% bonds, they show that

over a 10-year horizon, the hedged portfolio targets the terminal liability, while

the unhedged portfolio may end up being vastly over or underfunded.

Other authors have looked at how the sponsor’s risks can be managed based

on how the scheme is structured. Kleinow (2011) discusses Conditional Index-

ing schemes as a way to reduce pension scheme risks in the UK. Conditional

Indexing schemes are similar to DB schemes. The difference between DB and

Conditional Indexing schemes is that the increase in guaranteed pension benefits

is conditional on the availability of sufficient funds. To illustrate the benefits of

Conditional Indexing schemes, the author assumes a scheme where workers make

a single contribution now and are entitled to receive a lump-sum pension payment

at retirement. The available assets are a bank account and a zero-coupon bond

maturing at the time of retirement. From the author’s calculations, a worker earns

an average return on the contribution of 4.71% per annum and the corresponding
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mean hedging error of the scheme is -1.17%, defined as the percentage differ-

ence between the scheme’s assets and liabilities. Given that the hedging error is

small, the scheme is almost self-financing. He concludes that Conditional Index-

ing schemes represent a possible solution for dealing with funding risks of DB

schemes.

Aro (2014) examines risk pooling in a pension scheme consisting of female

members aged 65. Using a Solvency 2 framework, the author investigates how

the required capital per person changes as the number of members in the scheme

increases. The capital requirement per person decreases exponentially per person

showing that the impact of risk pooling is strong.

Platanakisa and Sutcliffe (2016) discuss the impact of the redesign of the USS

in October 2011. The USS has been subject to several changes in 2011 includ-

ing higher contribution rates and less generous indexation of benefits. The rule

change will result in a transfer of wealth of around £32.5 billion from members

to the sponsor during the period 2011 to 2065. This has effectively resulted in a

substantial pay cut for future pensioners. It is estimated that for future members

of the USS, pension wealth has reduced by 65% while for the sponsor, pension

costs have reduced by 26%.

Some authors use optimisation techniques in order to see the extent to which

the sponsor’s risk can be reduced. Cox et al. (2013) propose a model to identify

the optimal contribution, asset allocation and longevity risk hedging strategies that

minimise total funding risk for a DB scheme throughout the life of a single pension

cohort. Given a target expected total pension cost constraint and a Conditional

VaR constraint on unfunded liability, the scheme’s total funding variation across

all years before and after retirement until the death of the last pension participant

is minimised. As pensioners live longer, the scheme has to make a higher normal

contribution, invest more in the low-risk asset, and pay a much higher expected
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total pension cost.

Sweeting et al. (2015) provide a methodology for minimising a DB scheme

portfolio’s losses in the event of a fall in value of the sponsor. The paper suggests

that a sponsor’s financial health may be positively linked to the return on assets

backing its pension scheme. They use the example of an oil company for which

the pension scheme’s assets are exposed to energy and industrial risks. They de-

fine the cross conditional VaR 95 as the average return of sponsor’s portfolio in

the worst 5% of years for oil prices and show that through better diversification

of the pension scheme’s assets, the cross conditional VaR 95 can be increased by

changing the underlying portfolio of the DB scheme.

Liang and Ma (2015) compare an optimal dynamic asset allocation of a pen-

sion fund with and without two non-hedgeable risks, the mortality risk and the

salary risk. In the absence of mortality and salary risks, an exact optimal invest-

ment strategy is derived to hedge the investment risk. Liang and Ma (2015) then

derive an approximate investment strategy using a dynamic programming princi-

ple when the two non-hedgeable risks are included. The exact and approximate

solutions are compared using a constant relative risk aversion utility function on

wealth and the results demonstrate that the exact and approximate solutions are

very close to each other.

Godinez-Olivares et al. (2016) propose a solution to restore the long-term sus-

tainability of a pay-as-you-go system using Automatic Balancing Mechanisms,

defined as a set of measures established by law to be applied immediately based

on an indicator reflecting the financial health of the system. Using non-linear op-

timisation techniques, they calculate the optimal path of the contribution rate, age

of retirement and indexation of pensions to maintain sustainability of the system.

If contribution is the only decision variable, it will need to increase from 20% to

31.43%; while if age of retirement is the only variable, it will need to increase
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from 70 to 78.04 years. Finally, if indexation of pension is the only variable, the

benefits would need to decrease at an annual rate of 5.15% instead of an annual

increase of 5%.

Ferrer-Fernandez and Boado-Penas (2017) use the Automatic Balancing Mech-

anism proposed by Godinez-Olivares et al. (2016) to determine the sustainability

of pay-as-you-go system in the presence of demographic uncertainty. The authors

use projections of population structure of Japan, Germany and India to determine

the optimal path for contribution rate, normal retirement age and pension indexa-

tion for each country. They discuss that the values for the three variables are the

highest for Japan given that Japan has a higher proportion of older people. For ex-

ample, for India, Germany and Japan, the contribution rates need to increase from

15% to 16%, 17.5% and 20% respectively. The normal retirement age should in-

crease from 65 to 65.4, 67 and 68 and the indexation of pension should decrease

from 2% to 1.2%, 0.6% and -2% respectively.

Duarte et al. (2017) use multistage stochastic programming to build a dynamic

asset allocation for open pension schemes under Solvency 2 based regulatory con-

straints. The authors use a tree-structure to represent a dynamic decision process

guaranteeing the temporal sequence: a first stage decision, then the uncertainty re-

alisation of the first period, followed by a second stage decision and continuing in

this manner. The time horizon used is 4 years and decisions are taken half-yearly

for the first 2 years and annually for the 3rd and 4th year. Using the Brazilian mar-

ket as an example and a fictitious database of 1000 participants already receiving

a pension, results show the mean excess surplus for the sponsor is almost double

under the dynamic allocation compared to a fixed allocation.

Alonso-Garcia and Devolder (2017) study how a notional DC scheme, defined

as a DC scheme which is pay-as-you-go financed, can achieve liquidity and sol-

vency with a limited set of assumptions in a continuous overlapping generations’
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model. The paper provides a dynamic framework so that the indexation and no-

tional rate, i.e. the rate of increase in contributions, chosen will ensure that the

scheme is both solvent and liquid in the short and long-run, as long as the initial

contribution rate is carefully chosen and the scheme is initially solvent.

A.3 Managing Scheme Members’ Pension Risks

In this Section, we review papers which look at pension risks from the point of

view of plan members. First, we look at literature which discusses plan members’

risks in terms of utility functions. These papers usually focus on solving optimi-

sation problems which would maximise the expected utility of plan members.

Hainaut and Devolder (2006) introduce a numerical method for solving the op-

timal level of annuitisation of pensioners. Three asset classes for the policyholder

are considered; a life annuity, a risky asset and a cash account. A Markov chain

approximation developed by Kushner and Dupuis (2001 ) is used to determine the

proportion of wealth that a policyholder should invest in an annuity depending on

his age and whether he has bequest motives. The paper suggests that the optimal

level of annuitisation is proportional to the pensioner’s age and to the volatility of

the risky asset and inversely proportional to the return on risky asset.

Devolder and Melis (2014) examine the benefits to plan members of having

both funded and unfunded public pensions. The risks considered are financial risk

and optimal fraction to be invested in each pension plan in order to maximise the

expected utility of the pension received at retirement. The paper’s results suggest

that plan members are better off with higher allocations to the unfunded plan as

demographic or financial risks increase. Higher allocations to the unfunded plan

would also be favoured as the risk aversion coefficient of plan members increases.

Chen and Delong (2015) study the asset allocation problem in order to max-
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imise policyholders’ utility in a DC plan. They consider an economy with sev-

eral states or regimes and with different macroeconomic risks. Assets are cate-

gorised as risky and risk-free. The authors then use a backward stochastic differ-

ential equation in order to reach an optimal asset allocation between the two asset

classes. The optimal allocation depends on several factors including demographic

risk and uses a mean-variance approach as optimisation criterion. They determine

the constraints on investment policy, transition intensity from economic recession

to economic boom, the annuity factor, the volatility of the salary process, correla-

tion between assets and the risk aversion coefficients of plan members.

Other authors take a different view on managing policyholders’ risks and pro-

pose innovative pension structures to reduce the policyholders’ risks. Khorasanee

(2013) proposes a new hybrid benefit structure in which the degree of risk sharing

is explicitly defined by parameters controlling the variability of benefits and con-

tributions (referred to as amortisation parameters). The amortisation parameters

can then be chosen such that the sum of the benefit and contribution risk is min-

imised. He assumes a plan which has a single active member at each age from 25

to 64 inclusive. At age 65, each member receives a lump-sum benefit. He then

compares the aggregate risk of the hybrid plan to a DC plan at different switch du-

rations (i.e. the years from retirement when risky assets are switched to risk-free

assets). Based on the paper’s results, the hybrid plan has a lower aggregate risk at

all durations. The main argument for this hybrid pension plan is that it can achieve

a degree of risk sharing between the sponsor and the members which produces an

acceptable level of risks for each party.

Goecke (2013) explores the smoothing of capital market returns and intergen-

erational risk transfer. The author assumes that contributions to the pension fund

are not fully allocated to individual savings accounts. Part of the contributions

goes to a collective fund which is then used to feed the individual savings ac-
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counts in times of low investment returns. Results indicate that in the long run,

the risk-return-profiles are similar with or without a collective fund. In the short-

run however, having a collective fund leads to a risk reduction of more than 50%.

Similarly, Linnemann et al. (2014) compare TimePension, defined as a formula-

based smoothed investment-linked annuity pension plan, to traditional investment-

linked life-cycle products. TimePension allows risky investment throughout the

accumulation and decumulation period with high expected returns along with

great stability in retirement income payments. TimePension works on the basis

of two accounts. The first account is an individual pension benefit account that is

used for calculating the smoothed income payments. The pension benefit account

balance does not fluctuate with realised investment returns. The second account

serves as an investment buffer to smooth out investment returns. The account

balance fluctuates with realised financial returns and can be negative. Unlike life-

cycle products which require switching from equities to bonds, TimePension can

maintain a high equity allocation throughout the horizon. The smoothing mecha-

nism is mathematically defined such that change in annually adjusted retirement

income is small.

Avanzi and Purcal (2014) develop a generalisation of the World Bank (1994)

model of forced saving for retirement. This broader model consists of two tiers

of second pillar savings - mandated and non-mandated (voluntary). The paper

suggests that the non-mandated savings can be used to subsidise the provision

of annuities on mandated savings on more favourable terms as well as guarantee

the accumulation of the mandated savings at a higher interest. This will reduce

the investment risk and annuity risk that retirees face as well as encourage social

redistribution. It will also foster a liquid private market for annuities. For the

system to work however, a substantial level of non-mandated savings is required.

The paper suggests that non mandated contributions can be encouraged through
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tax incentives.

Other authors address the problem of plan members’ risks and intergenera-

tional risk sharing. Chen et al. (2014) compare the UK and Dutch systems using

a holistic balance sheet framework. They suggest that the Dutch policy is better

for the sponsor but worse for the participants compared to the UK policy. This

is because the Dutch system requires participants to share the burden in the event

that the plan is underfunded and solvency levels need to be restored. Regulations

allow Dutch pension funds to cut pensions-in-payment in order to restore solvency

levels. Kurtbegu (2018 ) however argues that the fact that the Dutch system makes

no “hard” benefit promise allows for intergenerational risk sharing.

Chen et al. (2016) explore the benefits of intergenerational risk-sharing through

both private funded pensions and via public debt. Shocks are smoothed via public

debt and variations in the indexation of pension entitlements and pension contri-

butions. The intensity of these adjustments increases when the pension funding

ratio or public debt gets closer to their boundaries. They find that best-performing

pension arrangement is a hybrid funded scheme in which both contributions and

entitlement indexation are simultaneously deployed as stabilisation instruments.

They also compare different taxation regimes and conclude that a regime in which

pension benefits are taxed, while contributions are paid before taxes, is preferred

to a regime in which contributions are paid after taxes, but benefits are untaxed.

Wang et al. (2018) also discuss intergenerational risk sharing. The authors

look at a pension plan where pension benefits are not guaranteed but where a tar-

get level of benefit is set (the paper gives the example of Canadian Target Benefit

Plans). The authors then propose an optimisation which aims at achieving the fol-

lowing objectives; (1) benefits which are adequate (at or above the target benefit),

(2) benefits which are stable (benefits not too far from the target on either side) and

(3) benefits which respect intergenerational equity (limit transfers between gener-
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ations). To achieve this, the authors adopt a combination of linear and quadratic

penalties for deviations from pre-set targets and show that their method provides

justifiable results for a sponsor aiming at providing stable and secure benefits over

time.

Finally, we look at literature where the Hamilton-Jacobi-Bellman (HJB) equa-

tions are used to obtain an optimal asset allocation. Yao et al. (2013) derive the

optimal strategy of a plan member facing stochastic inflation using the Markowitz

mean-variance criterion. Guan and Liang (2014) also consider optimal investment

strategy for DC pension plans in a stochastic interest rate and stochastic volatility

framework. In this case, the optimisation is based on maximising the expected

utility of the terminal value of the pension fund which then serves to purchase an

annuity at retirement. He and Liang (2015) describe an asset allocation of a DC

fund so as to minimise deviations between actual benefit payments and pre-set

targets with more weight given to negative deviations than positive deviations.
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Appendix B

Wilkie Model Parameters

B.1 Price Inflation

A simple auto-regressive process is proposed for annual rate of price inflation:

I(t) = QMU +QA× [I(t− 1)−QMU ] +QSD ×QZ(t), (B.1)

whereQZ(t) ∼ N (0, 1) and (QMU,QA,QSD) are the relevant parameters. The

suggested parameter values are given in Table B.1.

Table B.1: Parameter values for the model for price inflation.

Parameters Wilkie (1986) Wilkie (1995) Wilkie et al. (2011)

QMU 0.0500 0.0470 0.0430

QA 0.6000 0.5800 0.5800

QSD 0.0500 0.0425 0.0400
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B.2 Wage Inflation

For wages, it was proposed that an AR1 process be combined with the effects of

immediate past and present price inflation as follows:

J(t) = WW1× I(t) +WW2× I(t− 1) +WMU +WN(t),

(B.2)

where: WN(t) = WA×WN(t− 1) +WSD ×WZ(t), (B.3)

where WZ(t) ∼ N (0, 1) and (WW1,WW2,WMU,WA,WSD) are the rele-

vant parameters.

In particular, a value of zero was proposed for WA, suggesting that the auto-

regressive part of the model (WN(t)) could be omitted entirely. However that

would mean that the current rate of wage inflation is fully predictable using current

and immediate past values of price inflation.

The suggested parameter values are given in Table B.2.

Table B.2: Parameter values for the model for wage inflation.

Parameters Wilkie (1986) Wilkie (1995) Wilkie et al. (2011)

WW1 – 0.6000 0.6000

WW2 – 0.2700 0.2700

WMU – 0.0210 0.0200

WSD – 0.0233 0.0219
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B.3 Dividend Yield

The proposed model for dividend yield:

log Y (t) = YW × I(t) + log YMU + Y N(t), (B.4)

where: Y N(t) = Y A× Y N(t− 1) + Y SD × Y Z(t), (B.5)

where Y Z(t) ∼ N (0, 1) and (YW, YMU, Y A, Y SD) are parameters of the

model. This model says that the natural logarithm of the yield depends directly on

the current rate of price inflation and also a first order auto-regressive model. The

suggested parameter values are given in Table B.3.

Table B.3: Parameter values for the model for dividend yield.

Parameters Wilkie (1986) Wilkie (1995) Wilkie et al. (2011)

YW 1.3500 1.8000 1.5500

YMU 0.0400 0.0375 0.0375

Y A 0.6000 0.5500 0.6300

Y SD 0.1750 0.1550 0.1550

B.4 Dividend Growth

The model for the annual rate of dividend increase, K(t), is made to depend on

price inflation and also on the residuals from the dividend yield process. It also
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depends on its own lagged residual.

K(t) = DMU +DW ×DM(t) +DX × I(t)︸ ︷︷ ︸
Inflation effect

+DY × [Y SD × Y Z(t− 1)]︸ ︷︷ ︸
Lagged dividend yield residual

+DB × [DSD ×DZ(t− 1)]︸ ︷︷ ︸
Lagged own residual

+DSD ×DZ(t), (B.6)

where DZ(t) ∼ N (0, 1) and

DM(t) = DD × I(t) + (1−DD)×DM(t− 1). (B.7)

The parameter DX is constrained to (1 − DW ) so that there is unit gain from

inflation to dividends. So (DMU,DW,DD,DY,DB,DSD) are the relevant pa-

rameters. The suggested parameter values are given in Table B.4.

Table B.4: Parameter values for the model for dividend growth.

Parameters Wilkie (1986) Wilkie (1995) Wilkie et al. (2011)

DMU 0 0.0160 0.0110

DW 0.0800 0.5800 0.4300

DD 0.2000 0.1300 0.1600

DY -0.0300 -0.1750 -0.2200

DB 0 0.1550 0.4300

DSD 0.1000 0.0700 0.0700
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B.5 Bond Yield

The model proposed for the bond yield consisted of two parts:

C(t) = CR(t) + CM(t), (B.8)

where CR(t) represented the “real” part and CM(t) was an allowance for ex-

pected future inflation.

The models for CR(t) is as follows:

logCR(t) = logCMU + CN(t), (B.9)

where: CN(t) = CA× CN(t− 1) + CY × Y SD × Y Z(t) + CSD × CZ(t),

(B.10)

where CZ(t) ∼ N (0, 1). Note the dependence of CN(t) on the residual of the

current dividend yield.

Table B.5: Parameter values for the model for long-term bond yield.

Parameters Wilkie (1986) Wilkie (1995) Wilkie (2011)

CD 0.0500 0.0450 0.0450

CMU 0.0350 0.0305 0.0223

CA 0.9100 0.9000 0.9200

CY 0 0.3400 0.3700

CSD 0.1650 0.1850 0.2550

The model for CM(t) is:

CM(t) = max [CD × I(t) + (1− CD)× CM(t− 1), CMIN − CR(t)] .

(B.11)

A floor of CMIN = 0.005 is employed so that C(t) cannot be negative in a

simulation exercise. The relevant parameters are: (CD,CMU,CA,CY,CSD).

The suggested parameter values are given in Table B.5.
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B.6 Cash Yield

Short-term bond yield is indirectly modelled through the “log-spread”:

BD(t) = BMU +BA× [BD(t− 1)−BMU ] +BSD ×BZ(t), (B.12)

where BZ(t) ∼ N (0, 1). Then the short-term bond yield, B(t), is calculated

using the relationship: BD(t) = logC(t) − logB(t). The relevant parameters

are: (BMU,BA,BSD). The suggested parameter values are given in Table B.6.

Table B.6: Parameter values for the model for short-term bond yield.

Parameters Wilkie (1986) Wilkie (1995) Wilkie (2011)

BMU – 0.2300 0.1700

BA – 0.7400 0.7300

BSD – 0.1800 0.3000

B.7 Index-Linked Bond Yields

The model for “real” interest rates on index-linked bonds:

logR(t) = logRMU +RA× [logR(t− 1)− logRMU)]

+RBC × CSD × CZ(t) +RSD ×RZ(t), (B.13)

whereRZ(t) ∼ N (0, 1). The relevant parameters are: (RMU,RA,RBC,RSD).

The presence of long-term bond yield residual represents simultaneous correlation

between the residuals. The suggested parameter values are given in Table B.7.

B.8 Partial Autocorrelation of Residuals
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Table B.7: Parameter values for the model for real yield.

Parameters Wilkie (1986) Wilkie (1995) Wilkie (2011)

RMU – 0.0400 0.0300

RA – 0.5500 0.9500

RBC – 0.2200 0.0080

RSD – 0.0500 0.0030
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Figure B.1: Plots of partial autocorrelation functions (PACF) of the residuals for

UK.
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US.
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Appendix C

Results for US Stylised Scheme

based on USS with UK Economic

and Demographic Assumptions

C.1 Introduction

In this Appendix, we present the results for a US stylised pension scheme based

on the UK’s USS. Unlike in Chapter 7 however, we use UK economic and demo-

graphic assumptions. We make the following assumptions for our modelling:

1. We assume the same membership profile as the USS. We assume the mem-

bership profile of the members are as at the valuation date of March 31,

2014. For more details on the membership profile, please refer to Section

7.2. We also assume that no new members join the scheme after this date,

so that the risk analysis applies solely to the current membership of the

scheme.

2. The benefits are the same as the UK’s USS with the following exceptions:
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• There is no lump sum when a member retires.

• Pension benefits are not indexed with inflation rates.

3. The starting values of assets and liabilities as at March 31, 2014 are:

• A0 = £28.7bn;

• L0 = £28.7bn;

i.e. there is no surplus or deficit as at March 31, 2014. This is different from

the UK’s USS which has an initial deficit of £5.3bn.

4. The contribution rate, calculated using the projected unit credit normal ac-

tuarial cost, is set at 15.5%. This is different from the UK’s USS where the

contribution rate amounts to 24%.

5. The asset allocation of the scheme is assumed to be 70% real and 30% fixed.

This is the same as the UK’s USS.

6. We use the Graphical Model calibrated to UK data to project stochastic

economic variables forward.

7. Model M7 calibrated to UK data is used for stochastic mortality projections.

C.2 Base Case Results

For our base case, we compare the results of the US stylised scheme to the UK’s

USS. Our base case results, using 10,000 simulations, are presented in Figure C.1,

which shows the full distribution of V ∗
0 , Representative values of V aR and ES

are presented in Table C.1. We make the following observations:
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• The US stylised scheme has a higher central value (median surplus of 29%

of A0 compared to a surplus of 25% for the UK’s USS) and a lower disper-

sion compared to the UK’s USS (e.g. V aR at 99.5th percentile is a deficit

of 98% of A0 compared to a deficit of 153% for UK’s USS).

• The higher median of the US stylised scheme is due to the fact that the US

stylised scheme has no initial at the start. In contrast, the UK’s USS has an

initial deficit of £5.3bn.

• The lower dispersion of the US stylised scheme may be due to the fact that

the benefits of the US stylised scheme are not indexed to inflation. This

makes the scheme less volatile as it is not exposed to inflationary changes.

Table C.1: Base case economic capital (as a percentage of A0) at different prob-

ability levels for both Graphical and Wilkie models.

US Stylised UK’s USS

Percentile V aR ES V aR ES

50 29 1 25 -13

90 -15 -42 -36 -74

99.5 -98 -128 -153 -198

C.3 Sensitivity to Asset Allocation Strategies

In this section, we change the asset allocation strategy from (70% equities, 30%

bonds) to (30% equities, 70% bonds). Using the Graphical Model, we present our

findings in Table C.2 and Figure C.2, which show the base case results alongside
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the results for the changed asset allocation strategy for ease of comparison. All

other assumptions are kept the same as those of the base case. We make the

following observations:

• From Figure C.2, we can see that the changed asset allocation has made the

distribution of V ∗
0 more centered and less skewed.

• In particular, the median has shifted to the left, from a surplus of 29% to

a deficit of 5%, as shown in Table C.2. However, the shift to the left is

not as pronounced in the tail of the distribution, e.g. at 99.5th percentile,

the deficit, according to V aR, has increased from 98% to 110%, a much

smaller drop compared to the drop in the median.

• The above pattern can be explained as follows. The expected long-term re-

turn on bonds are much lower than those expected from equities which ex-

plains the fall in the median of the distribution. However, as the US stylised

pension scheme’s retirement benefits are not linked to inflation, the bonds

provide a good match for liabilities and hence the risk reduces, which ex-

plains the fall in skewness.

C.4 Sensitivity to Contribution Rates

In this section, we analyse the impact of changes in the base case contribution

rate of 15.5%. We consider two cases – an increased contribution rate of 18% of

salaries and a decreased contribution rate of 13%. All other assumptions are the

same as the base case, including the asset allocation strategy of 70% equities and

30% bonds.

We present our findings in Table C.3 and Figure C.3. Note that we have also

included the base case results in Table C.3 for ease of comparison. Similarly
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Table C.2: Economic capital (as a percentage of A0) for the base case and for the

asset allocation strategy of 30% equities and 70% bonds at different probability

levels using the Graphical model.

Equity/Bond 70/30 Equity/Bond 30/70

Percentile V aR ES V aR ES

50 29 1 -5 -30

90 -15 -42 -44 -65

99.5 -98 -128 -110 -131

in the two plots of Figure C.3, we have included the distribution of V ∗
0 for the

base case as the grey coloured density in the background. We make the following

observations:

• Compared to the impact of change in asset allocation strategy, changes in

contribution rates have a much reduced effect on the overall risk.

• As an example, at the 90% percentile, a decrease in contribution of 2.5%

(i.e. reduced from 15.5% to 13% of salary) results in an increase of deficit

from -15% to -23% of A0 in terms of V aR. On the other hand, increasing

the contribution rate to 18%, decreases the surplus to -7%.

• This leftward and rightward shifts of the distribution of V ∗
0 for decreased

and increased contribution rates respectively can also be observed in Figure

C.3. However, note that the magnitude of the shifts are relatively small

compared to the impact of changes in the asset allocation strategy.
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Table C.3: Economic capital (as a percentage of A0) for three different contri-

bution rates of 13%, 15.5% (base case) and 18% of salary at different probability

levels using Graphical model.

Contribution rate as a percentage of salary

13% 15.5% (Base case) 18%

Percentile V aR ES V aR ES V aR ES

50 23 -6 29 1 34 8

90 -23 -51 -15 -42 -7 -33

99.5 -108 -139 -98 -128 -87 -116

C.5 Conclusion

In this Appendix, we have carried a risk assessment a US stylised scheme. The

US stylised scheme is based on the membership profile of the UK’s USS. The

benefits are also similar to the UK’s USS with the exception that there is no lump

sum and there is no inflation indexation to the benefits. We use the same ESG

and mortality model (both calibrated to UK data) to compare the two pension

schemes. A key result is that the US stylised scheme has a lower dispersion than

the UK’s USS. This is due to the fact that the benefits of the US stylised scheme

are not indexed to inflation and hence is there is less uncertainty with respect to

the benefits payments. Another key result is that the skewness of the distribution

goes down with a higher proportion of bond investment. This result is different

from the results of the UK’s USS (as presented in Chapter 5) where an increased

in bond investment led to an increase in skewness. This is because the benefits for

the US stylised scheme are not linked to inflation and hence bonds provide a good

match for the liabilities. In contrast, the benefits for the UK’s USS are linked to
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inflation and hence bonds do not provide a good match.
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Figure C.1: Base case distributions of standardised PV FP (as a percentage of

A0) for the US stylised scheme and UK’s USS.
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Figure C.2: Distributions of standardised PV FP (as a percentage of A0) for the

base case and for the asset allocation strategy of 30% equities and 70% bonds at

different probability levels using the Graphical model.
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Figure C.3: Distributions of standardised PV FP (as a percentage of A0) for

decreased contribution rate of 13% and increased contribution rate of 18% (base

case assumption is 15.5% of salary) using Graphical model. The grey coloured

density in the background shows the base case.
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