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Abstract

Eating function consists of a number of highly complex and interconnected physical and

psychological processes that govern food intake, volume, satiety, and help to protect the

respiratory system during eating. Disruption of these processes by a number of physiolog-

ical, environmental, and social factors can effect normal eating and influence our choices

of when, what and how much to consume, leading to life limiting disorders, disturbed

eating habits or contribute to sustained over eating and high BMI.

In order to properly understand and formulate methods of treating high BMI, eat-

ing disorders, or functional eating impairments it is imperative that we fully understand

the interaction between eating processes and various sources of stimuli. Current research

is burdened by reliance upon self-report and manual monitoring, and the inherent error

and bias in these techniques. This research aimed to reduce this burden through use of

measurement of physiological signals of the body for automated eating function detection

and monitoring. This has great potential for automated monitoring of eating and other

activity, and while normally reliant upon bulky and expensive equipment and expert eval-

uation, recent trends in wearable sensing modalities make such sensing a viable direction

of research for mobile and continuous activity tracking. To achieve the research aims this

thesis sought to answer the following questions:

1. How can physiological sensing be used for the accurate sensing of chewing and swal-

lowing?

2. How can automated eating detection be used to detect eating characteristics and

food content?

3. How can sensed eating data and characteristics be applied for studying eating be-

haviour function and behaviour, and for motivating eating change?

i
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This work focused on Electromyography (EMG): the measurement of signals related to

muscular activity. In the first main study in this research, EMG was applied for detection

and classification of swallowing, and to drive swallow training biofeedback. A threshold

based swallow detection algorithm was developed, which exhibited high accuracy despite

the relatively simple approach. Following this, an investigation of classifiers to distinguish

between dry, liquid, and extended swallows demonstrated up to 99% accuracy for detecting

extended swallows and 92% for differentiating between dry and liquid swallows. Feature

importance analysis indicated that the long duration of extended swallows made these

easier to classify than other types. In the final part of this study biofeedback driven

by the swallow detection algorithm was evaluated in a user trial of 3 male and 3 female

participants revealing response accuracy, and user acceptability of sensors and biofeedback.

However, concerns regarding the robustness of the detection algorithm directed research

efforts in the remainder of this thesis towards classification approaches better able to

handle unexpected behaviour.

The second main study reported here focused on chew and swallow classification and

food type content detection, based on detected eating in lab conditions. This resulted in

algorithms, capable of robust and generalisable classification of chewing with 94% accu-

racy, and swallowing with 86% accuracy. Evaluation of eating characteristics and their

impact upon eating classification demonstrated the importance of signal segmentation in

respect to the timings of chews and swallows: long duration swallow events requiring a

larger window (1.6 seconds) to capture a swallow in its entirety, and a small window (0.5

seconds) more important during chewing detection to avoid misclassification of between-

chew periods. In the second part of this study models trained on an individual basis

demonstrated dietary content prediction with an average of 99% accuracy for distinguish-

ing between solids and liquids, and for differentiation between 3 solid foods. Further

evaluation of the impact of eating characteristics upon food classification led to the con-

clusion that models trained to recognise chewing patterns of individuals help to improve

classification accuracy, but was less useful for liquid swallowing differentiation which did

not exhibit individual differences.

In the final study of this research, a system for driving haptic eating rate feedback and

studying chewing characteristics was developed, and applied in a study of chewing rate

in response to self-moderation and feedback. Measurement of 16 participants (8 male, 8
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female, between 18-50), revealed a significant negative correlation between chewing rate

and moderation, more pronounced in the presence of chewing rate feedback. Analysis

of collected data revealed that this was the result of pauses introduced between chews,

and did not impact chewing thoroughness. Participant self-reflection upon eating also

demonstrated that self-moderation increased awareness of and focus upon the processes

of eating, but feedback did not have any significant effect upon this. This indicates that

chewing rate feedback has an influence over eating rate, without increasing perceived effort

or awareness.

This thesis has demonstrated the development of a number of techniques for automated

detection and sensing of eating behaviour, and for driving feedback. In the course of

developing these techniques, this work has outlined a number of areas for consideration

when developing classifiers for the detection of eating, classification of foods, and for

extracting characteristics of chewing activity. These techniques were then applied for the

study of eating, highlighting an important contribution to the understanding of eating

moderation processes. This work has important implications for future study of eating

and evaluation and treatment of eating, eating disorders, and BMI related conditions.
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Definitions and Terminology

Terminology

Within this thesis there are a number of terms and abbreviations used throughout, many

of which use similar terms for distinct concepts. Many of these terms are identified and

discussed within the literature (chapter 2), however some are relatively unique to this

document. This section provides some brief definitions for many terms used throughout

this document. In no particular order these are:

Aliasing An effect whereby two signals with differing frequencies can appear to be

indistinguishable when improperly sampled [3]. Usually occurring if the signal is sampled

above the Nyquist Frequency[4]

Nyquist Frequency The maximum frequency at which a signal may be sampled given

the original sampling rate, beyond which aliasing will occur. The nyquist frequency is

generally defined as half of the sampling rate [4].

Bioimpedance A measure of body composition based on levels of tissue impedance, or

resistivity.

Mastication The act of chewing to process food with the teeth in preparation for swal-

lowing.

Deglutition The process of swallowing of a bolus of food.

Bolus A mixture of food particles and saliva formed during mastication of food, in

preparation for swallowing.

xi
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HCI Human Computer Interactions

Physiological Sensing Refers to measurement of signals related to physiological pro-

cesses of the body.

Epidermal Electronics A class of electronics systems with a similar level of thickness,

elasticity, and flexibility equivalent to the epidermis; the outer non-sensitive layer of the

skin.

EMG Electromyography, refers to the measurement of bioelectrical activity of the mus-

cles. This measurement technique is used extensively throughout the research reported

here and is the main physiological sensing technique focused upon.

EMG Burst A period of EMG signal from the onset to termination of EMG activity

related to a burst of muscle activity [5].

Chew Burst An EMG burst related to a single chew action.

Swallow Burst An EMG burst related to a single swallow action.

Chew Cycle A period of EMG signal capturing the entirety of a single chew, from the

onset of EMG burst until the onset of the next burst [6].

Eating Event An eating event defined for the purpose of this document as a period

of EMG activity predicted by a classification model as being part of a chew or swallow

burst, and consisting of an onset and termination time-stamps. Closely correlated to EMG

bursts, however they reflect the predicted onset and termination.

Chew Sequence Chew Sequences are defined in this document as a continuous sequence

of chewing events. The onset and termination of these sequences are determined here by

a significant period between the termination of a chewing event and the onset of the next.
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Machine Learning Algorithm Abbreviations

A number of abbreviations are also used to refer to machine learning algorithms within this

document. These algorithms are discussed in chapter 2, but this section briefly outlines

some of these:

SVC Support Vector Classifier machine learning algorithm.

lSVC Support Vector Classifier algorithm using a linear kernel. Primarily for identifying

linear relationships in data.

DT Decision Tree classifier algorithm.

RF Random Forest classifier algorithm.

ET Extra Trees classifier algorithm.

LDA Linear Discriminant Analysis classifier algorithm.

MLP Multi-layer Perceptron classifier algorithm.

Abbreviations are also used to refer to many features extracted for use with these

algorithms, but are not defined here. A full list of features and feature equations is given

in table 2.2.



Chapter 1

Introduction

Overweight and obesity is currently recognised as one of the leading health threats world-

wide [7], and high BMI is widely acknowledged as contributing to a number of health

risks; primarily cardiovascular disease and diabetes, but also including an increased risk

of kidney disease or some cancers, amongst other conditions 1 2. With increasing trends

in high BMI and the prevalence of obesity, it has been considered a global epidemic by

the Worldwide Health Organisation since 1997 [8].

A pooled analysis 2416 population based studies by an NCD Risk Factor Collaboration

[7] analysed worldwide trends in BMI between 1975-2016 amongst over 128 million chil-

dren, adolescents, and adults. The findings of this analysis demonstrated a global increase

in the prevalence of obesity by 4.9% in children and adolescent girls and 6.9% in boys dur-

ing this time period. Although they state that the rate of increase has plateaued in high

income countries, they also identified accelerated trends in increasing BMI in parts of Asia

[7]. Furthermore, although the rate of BMI increase has reduced significantly in wealth-

ier countries, it remains at a high level with the average overweight rate for European

countries converging at 77% for females and 82% for males [9].

The prevalence of high BMI is considered a major problem and a risk factor for many

weight related disorders, and contributed to an estimated 4 million deaths, and 125 million

disability-adjusted life-years world-wide between 1980-2015 [10]. Of weight related deaths,

cardiovascular disease was the leading cause, contributing to 70% of deaths, followed by

diabetes related deaths, and then only 10% of deaths related to kidney disease or cancers

1U.S. Department of Health and Human Services, Health Risks of Being Overweight: https://www.

niddk.nih.gov/health-information/weight-management/health-risks-overweight
2NHS overview of obesity: https://www.nhs.uk/conditions/obesity/

1
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[10].

The proportional increase in weight gain compared to height in western culture is re-

ported to have begun during the 20th century due to the incline in available dietary sugars

and fats introduced to working class populations in order to improve industrial productiv-

ity [8]. However, eating function and behaviour is driven by a number of interconnected

physiological and psychological processes driving the intake of food and influencing eating

choices, and it is important to understand how these interact and are effected by external

influences in order to understand the factors contributing to increased or sustained high

levels of BMI or other health conditions.

Physiologically, eating is driven by a number of highly complex sequences of muscu-

lar activity controlling food ingestion. This includes the simultaneous activity of masseter

muscles and other masticatory muscles involved in mastication, driving cycles of mandibu-

lar motion involved in breaking food into particles; movement of the tongue involved

controlling food positioning and manoeuvring; and contraction of muscles to opening the

oesophageal sphincter and a peristaltic wave through the oesophageal muscles to facilitate

swallowing (otherwise known as deglutition) [11]. Meanwhile, the simultaneous modifi-

cation of breathing patterns, and movement of the larynx and other muscles are vital

during these processes to help protect the airway during eating, with many of these pro-

cesses occurring in the shared Pharyngeal space, which is used for both eating and by the

repository system [12, 13].

Disruption of this delicate sequence of processes can lead to severe repercussions,

resulting in food retention in the oral cavity, “nasal regurgitation” [14, 13], and putting

patients at risk of aspiration pneumonia, the bacterial infection of the lungs resulting

from aspiration (inhalation of food) [13, 12]. Swallowing disorders, such as dysphagia, are

one of the main conditions leading to such disruption, estimated to effect approximately

8% of the worlds population, with the elderly at particular risk [15]. As well as leading

to aspiration pneumonia, these conditions also result in difficult or painful swallowing,

“nasal regurgitation” or retention of food in the pharynx [14, 13], and resulting in patient

social withdrawal and reduced self-esteem [16, 17, 14]. Furthermore, in extreme cases the

disruption of these processes can result in the inability to voluntarily consume enough

food to sustain life [16, 17, 14].

Although the muscular activity and other physiological processes involved in mastica-
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tion and deglutition have been quite extensively studied and mapped out, the mechanisms

involved in the control of eating patterns, speed, intake volume, satiation, and dietary

choices are more complex and there are many possible factors that have been identified

as influential. Many theories suggest that these are reciprocal and automated processes

influenced by environmental conditions [18, 19, 20], such as atmospherics, music, noise,

and lighting which can impact comfort and disinhibition, meal duration, and consumption

volume [21].

Wansink [21] also emphasises the effect of social eating, which can influence perceived

consumption norms, effect meal duration, and thus intake volume, and can be a major

contributor to overeating or the development and maintenance of eating patterns associ-

ated with eating disorders [22]. The contribution of these environmental and social factors

have upon intake volume and overeating is also thought to be partly related to oral ex-

posure time [23, 24], and eating rate and thoroughness has been identified as a factor

contributing to obesity [25, 26, 27, 28], diabetes [29], or even as an important component

in stress management [30].

These are just some of the influences of over eating function and behaviour, and this

topic is discussed in more detail in the next chapter (chapter 2). To understand and help

manage unhealthy BMI or weight related or eating disorders, it is important to understand

these eating processes and influencing factors fully, however, many researchers agree that

further detailed research is necessary to fully understand these and their impact on eating

disorders, intake volume, and BMI [22, 25, 26, 31, 28]. A principle limitation of research

into eating behaviour is a reliance upon self-reported measures of weight, height, or intake

[25, 26, 31, 28]. Such measures are widely considered biased and inaccurate [32, 33], for

instance, a number of researchers analysing the accuracy of self-report for logging physical

parameters found participants reported biased estimates of weight and height [33, 34,

35, 36], or misreported intake due to social desirability [32]. This inhibits confidence

in the results of such studies and provide only limited insight into eating activity, and

it is suggested here contributes to the lack of definitive conclusions regarding influences

upon eating behaviour, and misdiagnosis of eating disorders or difficulty assessing patient

treatment progress.

As well as a necessary tool for analysing and studying eating function and intake

choices, self-report is also one of the main techniques employed in monitoring and treat-
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ment of eating disorders [20] and as a part of weight loss and management programs [22].

The accuracy and reliability of tracked meals is an important part of weight management

programs and treatment of weight related disorders and as such the limitations of self-

reporting make clinicians reluctant to rely solely upon such a measure [37]. In addition to

monitoring accuracy, behavioural therapies also rely upon adherence to monitoring, and

patient self-efficacy and engagement with treatment [20]. These are areas which are diffi-

cult to ensure using traditional self-monitoring, and although there has been an increase

in portable self-logging tools over recent years [38, 39, 40, 41, 42, 43], and these have been

found to help ensure adherence to calorie tracking [44] and exercise logging [45], these are

still reliant upon user logging and findings are conflicted, indicating for further research

into methods for improving adherence and engagement.

In order to help combat the increased prevalence of obesity, there are two significant

areas to resolve. Firstly it is important to gain a better understanding of the functional and

behavioural processes involved in eating, and determine how to apply this understanding

to the support of behaviour change for adoption of healthier eating patterns and dietary

choices. Furthermore, the inherent bias and error of self-report is of particular detriment

to the reliable monitoring of eating and diet, impacting studies involved in expanding our

knowledge of eating [25, 26, 31, 28], or clinical weight management [22, 46].

The overarching goals of this research is to support weight management and eating

behaviour change in a clinical setting, however this is far outside the current work at

present. This thesis instead takes the first steps towards this goal, through investigating

the use of automated sensing to aid in monitoring eating, overcoming the burden of error

associated with self-report, and the application of such sensing for understanding eating

function and disorders.

1.1 Related Work and Challenges

Wearable sensors and physiological sensing of eating processes is a promising research area

ideally suited to the development of technology for reducing the inherent limitations of

typical monitoring techniques which limit treatment of abnormal eating and hold back

research into the complexities of eating function.

Physiological sensing refers to the measurement of signals from the human body that
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capture patterns that reflect physiological responses and has applications within many

fields of research or clinical study. These often involve measurement of bio-electrical ac-

tivity related to the function of the heart (Electrocardiography), targeted muscle activity

(Electromyography), or of neural activity related to processes of the brain (Electroen-

cephalography). Applications using these techniques are principally medical in nature,

involving the diagnosis, evaluation, and monitoring of heart conditions, neuromuscular

diseases, or neurological conditions such as epilepsy, or strokes [47]. However, there is also

a trend towards the use of physiological signals for the purpose of a human-computer inter-

action. In particular, Electroencephalography and Electromyography signals are used for

the control of wheelchairs [48, 49], mobile devices [50, 51], for other assistive technologies

[52], or for rehabilitation support [53, 54]. Computer games using commercial physiolog-

ical sensors are also becoming more popular for the enhancement of user experience by

varying game difficulty implicitly or via explicit control of game mechanics [55, 56].

Electromyography (EMG), in particular, has been used in the research and evaluation

of eating function and processes. For instance, considerable research has been carried out

using EMG to assess the muscles involved in mastication and deglutition [57] and the

development of characteristic eating patterns in early life [5]. EMG has also been used to

asses textural differences between food [58, 59]. Most significantly however, EMG has been

researched for use in the evaluation of dental performance and its impact upon mastication

and intake [6, 60], and has been suggested as an inexpensive and easy alternative for the

evaluation and monitoring of swallowing disorders; permitting fast initial screening and

eliminating the need for further evaluation where unnecessary [61, 62]. EMG has also

been demonstrated for the purpose of supporting rehabilitation exercise through the use

of biofeedback [63, 64].

While Electromyography has a proven background for the study and evaluation of

eating, there is a lack of research into the development of complete electromyographic

systems for monitoring of eating. However, it is suggested here that sensing techniques

such as EMG are ideal for automated logging of eating behaviour and related information,

and are be useful for studying influences upon eating behaviour, or for clinical monitoring

and treatment of eating disorders. However, EMG systems used in eating related research

or eating disorder evaluation typically consist of immobile or obtrusive equipment which

make them unsuited to long term monitoring or monitoring outside of clinical or research
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environments without the use of alternative wearable sensing modalities [62].

A number of wearable sensing solutions have also been proposed as an alternative to

traditional monitoring, involving a range of different sensing technologies. These include

the use of gyroscopes and accelerometers to detect hand and head motions related to

eating [65, 66], in ear or throat worn microphones for the detection of food sounds for the

detection of eating or assessment of food texture [67, 68], through use of strain sensors to

detect surface skin motion related to chewing [69], or through multi-sensor combinations

of these [70, 71, 72].

While these systems all attempt to resolve the error inherent in self-reporting and

overcome the limitations of bulky and immobile sensing equipment, they still require

use of specialist equipment, and do not offer solutions for assessment of signals from

small, exposed, and flexible areas of the body. Areas which are vital for assessing eating

function [73]. However, these demonstrate the potential of wearable solutions for mobile

monitoring of eating parameters. Furthermore, new sensing modalities, such as the ultra-

light, robust and flexible “Epidermal Electronics” [74], make wearable solutions using

proven sensing techniques such as EMG more viable for mobile and continuous sensing.

In conjunction with automated processing techniques, such modalities make such sensing

ideal for the study of eating function or as an adjunct for clinical behaviour change or

disorder treatment. However there are a number of questions that still require addressing

before this end goal can be made a reality.

1.2 Research Questions and Aims

The motivations and background given thus far highlight the limitations of traditional

clinical and research techniques for monitoring of eating function, dietary intake, and the

relationships between eating and obesity. As well as indicating the potential of automated

sensing solutions as a viable alternative to traditional monitoring methods. As such,

the research aims of the work carried out within this thesis can be defined: To sense

and measure eating function to remove burden and error inherent in self-report, and to

demonstrate how this can be applied to improve our understanding of the processes of

eating.
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1.2.1 Research Questions

In outlining the background and motivations of this work a number of research questions

became apparent that must be answered in order to work towards the overall goals of this

research and meet the specific aims of this thesis. These are:

1. How can physiological sensing be used for the accurate sensing of chewing and swal-

lowing?

Firstly, in the background in this chapter physiological sensing and wearable sensors are

proposed as a viable and potentially accurate alternative to self-monitoring of eating

information. However, while this chapter outlines a number of such approaches, these

technologies and the associated research all have their own limitations, discussed in detail

in chapter 2, which prompts further research regarding the best approach and alternative

techniques for accurate sensing and processing techniques for the detection of chewing and

swallowing. This question is answered throughout this thesis, with chapter 2 discussing

the limitations of current research and potential areas to pursue, and chapter 3, chapter 4,

and chapter 5 investigating new techniques for the detection of chewing and swallowing

using Electromyography and classification.

2. How can automated eating detection be used to detect eating characteristics and

food content?

As described in the motivation section, there are a number of complex inter-connected

processes and external influences associated which control and impact eating function and

decisions. In order to understand these and properly leverage them to support weight

management or influence eating, it is important to detect as much additional information

relating to eating beyond just chewing and swallowing. For instance dietary content

and eating patterns are considered important components contributing to high BMI or

obesity [22, 25, 26, 27, 28]. A detailed discussion of these factors is given in chapter 2,

while chapter 4 and chapter 5 begin to investigate methods for detecting such information:

specifically the detection of food types and eating speed, respectively.

3. How can sensed eating data and characteristics be applied for studying eating be-

haviour function and behaviour, and for motivating eating change?
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Continuing on from research question 2, the detection of eating, eating patterns, and

ingested food type are all important parts of improving our understanding of the complex-

ities of eating function, and have potential for manipulating eating and affecting behaviour

change towards healthier eating behaviour. The final research question seeks to answer

how detected eating information might be applied in this way. In answering this question

chapter 2 details many measurable parameters of eating identified in the literature and

how they influence intake and BMI, then chapter 3 presents the use of swallow biofeed-

back for encouraging swallow training, and chapter 5 presents a means for monitoring and

studying eating moderation in response to feedback.

1.3 Scope

The work within this thesis focuses upon the use of physiological sensing for the purpose

of automated eating activity detection, extraction of other information regarding eating

and dietary content, and the provision of health related biofeedback. Physiological sensing

refers to the measurement of signals relating to any physiological process within the body,

for the work carried out here, bioelectrical signals related to the neuromuscular activity of

skeletal muscles are targeted via Electromyography. Electromyography of face and neck

muscles may provide information regarding facial expressions, or eating behaviour such

as food mastication (chewing) or deglutition (swallowing), which can be classified for the

purpose of driving biofeedback. Biofeedback involves the provision of feedback (often

visual or auditory) regarding a biological process, for the purpose of improving voluntary

control over the process.

1.4 Contributions

In meeting the aims of this thesis and answering the research question a number of major

and minor contributions have been made to the state of the research surrounding eating

detection technology and for the study of eating function. A full discussion of these

contributions is given in chapter 6, but in brief the contributions of this work were as

follows.

The two main contributions of this thesis can be outlined as:
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1. The development of techniques for chew and swallow sensing and more accurate

detection of eating

2. Improving the understanding of eating processes moderation in response to feedback

In addition to these, a number of minor contributions were also made as part of the

major contributions, or in their own right:

� The development of more accurate classifier techniques for chew and swallow detec-

tion

� Improving the understanding of classifier techniques for chew and swallow classifi-

cation

� Development of techniques for more accurate classification of food type

� Improving the understanding of techniques to classify food type

� The design and evaluation of prototype systems for the study and investigation of

eating function

� Summary and discussion of the literature surrounding the physiological parameters

and clinical applications of sensing of muscles related to eating, for clinical and

research purposes.

� The collection of proprietary data sets that are retained and available for use in

research on request

1.5 Thesis Structure

Excluding this introduction, there are 5 major chapters within this thesis. These consist

of the Literature chapter, chapters reporting the findings of three major studies involved

in this research, and a chapter discussing the findings of the research and conclusions. A

summary of each chapter follows:

Chapter 2 provides a review of the literature surrounding this research, within three

major topics of discussion. Firstly, eating behaviour and physiological function

is discussed, and limitations of current monitoring approaches and treatment of

disorders identified. The use of physiological sensing and EMG in the literature, for
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eating evaluation and detection, is then considered. Finally, possible consideration

regarding EMG measurement of muscles related to eating, and signal processing and

classification, are discussed. This includes a review of the literature surrounding

the use of Electromyography for sensing of muscle activity involved in chewing,

swallowing, and other facial motion, in the context of eating and clinical research,

summarised in table 2.1.

Chapter 3 presents findings of the first major study in this research, using Electromyo-

graphy for the detection and classification of swallowing, and to drive game-based

feedback. The first part of this study involves the development and evaluation of

a swallow detection algorithm. Classification algorithms and feature selection are

then investigated for classification of swallow types. Finally, game-based feedback

was developed for the purpose of engaging users in swallowing practice exercises and

a user-evaluation conducted. The findings of this chapter demonstrate the viability

of discreet modalities of EMG for physiological sensing of eating and the potential

of physiological sensing for driving feedback towards swallow exercise.

Chapter 4 builds upon prior work to investigate the use of classification algorithms for

the purpose of eating detection and the detection of food. The chapter demon-

strates a classification technique for the detection of chewing and swallowing using

Electromyography and support vector algorithms, capable of detecting chewing with

an accuracy of 94% and swallowing with an accuracy of 87%. A new approach for

the detection of food content is then proposed, based on EMG and sensed chewing

and swallowing and a new feature set, amalgamating data relating to chewing and

swallowing derived through EMG sensing. An evaluation of these different tech-

niques is then carried out. This evaluation provides enriched understanding of the

processes involved in food classification, and the findings demonstrated superior ac-

curacy for the newly proposed technique, with an accuracy of 99.1% accuracy when

distinguishing between 3 solid foods types.

Chapter 5 presents the findings of the final major study in this research. The classifica-

tion techniques developed thus far are adapted for the purpose of real-time chewing

detection, to study and understand eating behaviour. In this chapter, a prototype

system is presented for in depth monitoring of chewing function using Electromyo-
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graphy and automated chew detection. This system is used to study the processes

involved in eating moderation in response to haptic feedback regarding eating speed.

The findings of this study reveal a positive correlation between the use of feedback

and chewing rate moderation along with details of the processes of eating and their

response to moderation, and highlight the potential of EMG driven feedback for

encouraging eating behaviour change.

Chapter 6 is the final major chapter of the thesis. This chapter consists of a review of the

three major studies conducted as part of this research, and discusses the findings

in the context of this thesis and the overarching research goals. The conclusion

chapter also details the major contributions of this work along with implications

and directions for future research for research, improving our understanding of eating

processes, and potential for clinical application.

The overall structure of this thesis may be seen in figure 1.1. Excluding the Introduc-

tion and Conclusion chapters, there are 5 major chapters within this thesis. The chapters

reporting major studies involved in this research are highlighted, and the contribution of

each of these chapters to answering the three main research questions (summarised in the

diagram)

Swallow Detection 
and Feedback

(Chapter 3)

Eating and Food
Classification

(Chapter 4)

Eating Rate
Intervention
(Chapter 5)

Discussion
and Conclusions

(Chapter 6)

Literature
Review

(Chapter 2)

Introduction
(Chapter 1)

1) Classification Techniques for 
Chew and Swallow

Detection

2) Detection of Additional
Eating Information

3) Applications of sensed
eating data and characteristics 

Figure 1.1: Summary of thesis structure. Main chapters are highlighted,
and chapters answering respective research questions are indicated, with a sum-
marised form of each of these questions.
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1.6 Collaborations and Publications

Some of the work reported in this thesis was partially the result of collaboration with the

Yeo Research Group [75] working out of Virginia Commonwealth University. Specifically,

the study reported in chapter 3 was conducted as a part of this collaboration permitting

use of the “epidermal” electrode sensors reported in chapter 3, which is the main focus

of the collaborating researchers. Due to proprietary restrictions with this technology,

the members of the collaborating research group conducted initial data collection and

provided the data for use by myself. I was solely responsible for the development of the

swallow detection algorithm and feedback interface involved in this study, although due

to equipment restrictions the collaborating researchers also aided in testing the feedback.

The user study was also conducted, in part, by members of this group. During this

analysis, the data collection protocol and interview questions were formulated by myself,

but the protocols and interviews were conducted by members of the group. Video footage

of these sessions was recorded, and all analysis of the user analysis and interviews carried

out by myself.

In addition to the work reported in this thesis, this study resulted in a number of

publications. A list of the publications and description of author contributions follows:

1. Yongkuk Lee, Benjamin Nicholls, Dong Sup Lee, Yanfei Chen, Youngjae Chun, Chee

Siang Ang, and Woon-Hong Yeo. “Soft Electronics Enabled Ergonomic Human-

Computer Interaction for Swallowing Training”. In: Scientific Reports 7 (Apr. 2017),

p. 46697

2. B. Nicholls, C. S. Ang, C. Efstratiou, Yongkuk Lee, and W. H. Yeo. “Swallowing

Detection for Game Control: Using Skin-like Electronics to Support People with

Dysphagia”. In: 2017 IEEE International Conference on Pervasive Computing and

Communications Workshops (PerCom Workshops). Mar. 2017, pp. 413–418. doi:

10.1109/PERCOMW.2017.7917598

Publication 1. [1] reported the results of the study detailed in chapter 3, as well

as additional comparison of the functional performance of the epidermal sensors used

in chapter 3 with standard rigid surface electrodes. In this paper the reported swallow

classification algorithm and the feedback interface were developed by myself, B. Nicholls,



Chapter 1. Introduction 13

as described above, with the aid of research collaborators Y. Lee, D. Sup Lee, Y. Chen, and

Y Chun, under the supervision of W.H. Yeo, for the collection of data and to conduct a

user study. These authors were also responsible for carrying out and reporting the findings

of functional comparison of sensor types. Finally, C.S Ang helped guide the development

of the user study protocol, and analysis of data by myself, and contributed to the paper.

The paper was written jointly by all involved, with authors responsible for providing detail

regarding their respective responsibilities in the research.

Publication 2. [2] similarly reported the development of the swallowing classification

algorithm and user study results reported in chapter 3, with an emphasis on these compo-

nents of the research and without the comparison of sensor types reported Publication 1..

The work involved in the study was distributed as described above. For the contribution

to this publication, B. Nicholls was the lead author for the paper, guided by C.S Ang, and

with a significant contribution in review and rewriting by C. Efstratiou. In this publica-

tion W.H. Yeo and Y. Lee also contributed to the review of the paper, providing context

regarding the epidermal sensors used in the study.



Chapter 2

Literature Review

The main aim of this thesis is to explore the use of physiological sensing for monitoring of

eating behaviour and to drive health related feedback. This chapter provides a review of

relevant literature to reinforce the motivations of this research and provide a theoretical

and practical background regarding the behavioural, functional, and physiological pro-

cesses involved in feeding and potential abnormalities, human-physiological sensing, and

its application for the automated tracking of eating. To this end, this chapter is divided

into three main sections: Feeding Anatomy and Physiological Processes, Physiological

Sensing and Technology for Automated Feeding Detection, Support of Rehabilitation and

Health-Related Change, and Considerations for EMG Measurement and Intake Classifi-

cation.

Figure 2.1 shows an overview of the internal structure of, and connections between,

these sections. Section 2.1 discusses the anatomy and physiological processes of feeding,

influences upon our eating behaviour, the causes of potential physiological, functional, or

behavioural abnormalities, and limitations of typical treatment approaches. In addition to

the use of biofeedback for rehabilitation of physical disorders, or mobile technology for the

support of behaviour change type interventions. Section 2.2 then discusses physiological

sensing for detection of eating behaviour, wearable sensing solutions, Electromyography

for the evaluation of eating and physiological abnormalities and detection of eating and

other information related to eating, and health-related and game applications of such

eating technology. Finally, section 2.3 brings together many of these topics and intro-

duces new literature to provide an overview of areas which should be considered for EMG

measurement and classification.

14
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Eating Behaviour 
& Physiology

(Section 2.1)

Eating Physiology

Feeding Anatomy 
& Physiology

(Section 2.1.1)

Swallowing 
Disorders

(Section 2.1.2)

Technology for 
Therapy

(Section 2.1.3)

Physiological 
Sensing Overview

(Section 2.2.1)
Eating Behaviour

Eating Influences

(Section 2.1.4)

Eating Disorders

(Section 2.1.5)

Self-Reporting & 
Limitations

(Section 2.1.6)

Mobile Tech for 
Treatment Support

(Section 2.1.7)

Body Wearables for 
Eating Detection

(Section 2.2.2)

EMG for Eating 
Evaluation

(Section 2.2.3)

EMG for Eating 
Detection

(Section 2.2.4)

Sensing for 
Eating Detection

(Section 2.2)

Considerations for EMG & 
Classification

(Section 2.3)

Sensor Placement

(Section 2.3.1)

Signal Processing

(Section 2.3.2)

Signal 
Classification

(Section 2.3.4)

EMG, Eating & Food 
Features

(Section 2.3.4)

Classifier Algorithms

(Section 2.3.4)

Literature Review 
Structure

Activity Detection

(Section 2.3.3)

EMG for Eating 
Detection

(Section 2.2.4)

Figure 2.1: Overview of the literature review structure. Indicates the three
main section, coloured separately: Feeding Anatomy and Physiological Processes,
Physiological Sensing and Technology for Automated Feeding Detection, Support
of Rehabilitation and Health-Related Change, and Considerations for EMG Mea-
surement and Intake Classification. Shown are the internal structure of the main
sections and the inter-connections between these topics.

2.1 Behaviour and Physiology of Feeding

In this section eating physiology and behaviour are discussed, with an emphasis upon the

current understanding of eating and influencing factors, and the monitoring and treatment

of behavioural and physiological disorders. In this section, the anatomy and physiological

processes involved in feeding are described in Section 2.1.1, before discussing swallowing

impairments, including typical techniques and limitations of swallow disorder treatment,

in section 2.1.2. Finally, section 2.1.3 provides a discussion of feedback type technology

in support rehabilitation of physical disorders such as these.

The behaviour of eating and possible behavioural or functional abnormalities are then

discussed. Section 2.1.4 describes the development of eating disorders and typical treat-

ment approaches and associated limitations, followed by a review of potential influences

upon eating behaviour and the effect on health, in section 2.1.5. Section 2.1.6 discusses
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limitations of self-reporting, a technique used in numerous studies of eating behaviour or

disorders, discussed throughout this section. Finally, section 2.1.7 discusses the use of

technology and mobile devices for overcoming these issues, and their use in interventions

of healthcare.

2.1.1 Feeding Anatomy and Physiological Processes

Human feeding relates to the mastication (chewing) of food to break it into a consumable

bolus, followed by the deglutition (swallowing) of the bolus. While eating is a predom-

inantly voluntary behaviour, many of the physiological processes involved in ingestion

of food are automatic. Below, the anatomy and physiological processes of different eat-

ing stages and airway protection are discussed. Figure 2.2, adapted from [76], gives an

anatomical overview of the face and neck, indicating muscles related to mastication and

swallowing.

Overview of Feeding Processes

The two main models of feeding, as described by Matsuo and Palmer [13], are the Four

Stage model and the Process Model of Feeding. In the four stage model feeding is separated

into the oral preparatory and propulsive, pharyngeal, and esophageal stages of feeding.

The oral preparatory stage refers to holding of liquid bolus within the floor of the mouth or

upon the tongue, with the oral cavity sealed to contain the bolus and prevent leakage into

the oropharynx. During the oral propulsive stage, the tongue moves upwards removing

the seal and transporting the bolus into the pharynx. However, this does not accurately

represent the consumption of solids, as there is considerable overlap between these two

stages and the pharyngeal stage of swallowing [13]. Instead, the Process Model described

for human feeding processes by [11], is considered a better representation.

In this model, the processes involved in processing and consuming food is known as

the “masticatory sequence” [11]. In the oral stages of eating, “Stage I” transport occurs

on food entry into the mouth and involves tongue transporting food into the posterior oral

cavity and placement onto the teeth for processing. The food is broken down into smaller

particles and softened by saliva via mastication: rapid and regular cycles of mandibular

motion, during which the masseter muscles (and temporalis to some extent) are active,

contracting to close the mandible and relaxing to permit suprahyoid muscle contraction
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[REDACTED]

Figure 2.2: Overview of the muscles related to the processes of chewing and
swallowing. Muscles related to mastication include the masseter, temporalis, and
other adductor muscles of the jaw and face (upper cross-section). Muscles related
to swallowing include the submental triangle (digastric and mylohyoid) and the
sternohyoid muscle. Adapted from Ref. [76].
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to open the jaw [11]. There are also regular motions of the tongue during mastication,

helping control the position of food [13]. Mastication is followed by “Stage II” transport,

during which the mandible closes and tongue moves back and increases contact with the

palate to move prepared food backwards to the oropharynx ready for swallowing. This

transport action can occur across multiple food processing cycles, moving more food back

during each cycle of processing [13, 11]. When ingesting liquids transport occurs without

separate cycles, with only a brief pause in the oral cavity [11, 13].

The masticatory sequence culminates with the Pharyngeal and Oesophageal stages of

swallowing. The pharyngeal stage usually begins during the oral transport phase, and

involves propulsion of the bolus through the pharynx to the oesophagus while preventing

food from entering the airway [13]. During this stage the tongue retracts and the pharyn-

geal constrictor muscles contract to move the bolus to the upper oesophageal sphincter,

which is opened to permit bolus entry via the relaxation of cricopharyngeus muscles,

which normally hold the sphincter closed, and contraction of the suprahyoid and thyro-

hyoid muscles to open the sphincter [13]. Finally, the Oesophageal stage of swallowing

involves a peristaltic wave, relaxing and tensing the oesophageal muscles to propel the

bolus downwards, followed by relaxation of the lower oesophageal sphincter, normally at

tension to prevent regurgitation, to allow the bolus to enter the stomach [13].

Airway Protection Mechanisms

During mastication and transport stages, the pharynx is exposed to the oral cavity and

a bolus is formed on the orophyrangeal surface of the tongue, and there is potential

for inhalation of food particles (known as aspiration) through the pharyngeal airway.

Matsuo and Palmer [12] suggest that nasal breathing during mastication, closure of vocal

folds, and bolus cohesion during transport are all important for preventing inhalation of

food particles. During swallowing, the soft palate elevates to close the nasopharynx and

prevent bolus regurgitation into the nasal cavity [13], and to prevent aspiration the hyoid

and thyroid muscles contract to move the larynx under the base of the tongue to help

protect the larynx [13]. Matsuo and Palmer [12] also suggest that a pause in respiratory

cycle during swallowing, typically followed by exhalation following swallowing, also aids

in airway protection.

Monitoring of these processes is of vital importance for evaluating functional per-
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formance and potential impairments which lead to impairment of airway protection, or

inability to consume food. The next section discusses such impairments (swallowing dis-

orders), and their treatment.

2.1.2 Swallowing Disorders

Swallowing disorders, such as Dysphagia and Odynphagia, are associated with difficulty

swallowing, painful swallowing, or other disruption of normal function, and are estimated

to effect approximately 8% of the global population [15]. They can be the result of

structural or functional impairment of oral and pharyngeal stages of swallowing [13, 14],

and may develop following the onset of Parkinson’s Disease [77, 78], other neurological

conditions [79], following a stroke [80, 81, 82], as a result of treatment for cancer [83, 84,

85], or due to gastroesophageal reflux disease [86].

Symptoms and Complications

Difficulty chewing, drooling, leakage of food bolus into the pharynx due to insufficient

tongue pressure, or food retention in the oral cavity are all symptoms characteristic of

Oral phase abnormalities. In pharyngeal phase disorders, impaired transport of food the

pharynx or incomplete transfer of food to the oesophagus, can instead result in food

retention within the pharynx or “nasal regurgitation” [14, 13]. Such conditions are also

reported to reduce quality of life, with patients feeling embarrassed to eat during social

meals, withdrawing socially, or suffering from reduced self-esteem due to difficulty eating

and help required during eating [16, 17, 14]. Moreover, impairment of swallowing or

regurgitation of food can occur to the extent that patients are incapable of voluntarily

consuming enough food to sustain life[16, 17, 14].

The main danger of swallowing disorders is impaired airway protection. This can

lead to two main complications: laryngeal penetration and aspiration [13]. Laryngeal

penetration refers to the passage of food from the mouth or regurgitated from the oe-

sophagus into the larynx above the vocal cords, while aspiration is the inhalation of food

which then passes through the vocal cords themselves [13]. Figure 2.3, reproduced from

[13], shows Videoflouroscopy capturing the flow of Barium laced food entering the airway

during aspiration and laryngeal penetration. Section 2.1.1 describes the airway protection

mechanisms involved during eating, and impairments characteristic of swallowing disorder
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patients, resulting in increased chance of food particle inhalation (aspiration) or laryngeal

penetration. These usually result in coughing and choking, and aspiration can also lead

to airway obstruction or aspiration pneumonia [13, 12].

Swallow Evaluation and Disorder Screening

The development of swallowing disorders can vary over time, patients developing problems

up to 6 month following a stroke or other causal factor [87], making then difficult to

recognise and diagnose. Screening, diagnosis and clinical assessment techniques are also

reported to vary highly [82], leading to imprecise diagnosis [87].

Figure 2.3: Example of Videoflouroscopy during swallowing, showing laryn-
geal penetration (A) and aspiration (B) in dysphagic individuals. Arrows show
Barium flow in the airway. Reproduced from [13]

Currently however, Videoflouroscopy is recognised as the “gold-standard” for assess-

ment of swallowing function during the assessment of swallowing and diagnosis of swal-

lowing disorders or aspiration [14, 82, 87, 88]. Videoflouroscopy is an imagine procedure

involving the consumption of Barium laced food and x-ray recording swallowing, per-

mitting the evaluation of swallowing functionality (see figure 2.3) [14]. Although this

technique is important for such assessment, its complex procedure, equipment expense,

and the necessity of a radiological suite and multiple specialist personnel make it un-

suited to non-clinical evaluation, or when patients are unconscious or immobile [89]. The

procedure is also unsuited for evaluation of patients who are bed-bound, or who are un-

able to consume food [90]. Repeated exposure to radiation during assessment of ongoing

conditions has also been highlighted as a potential danger [90, 89].

Alternative procedures for evaluating swallow function include Endoscopy and surface

Electromyography. Endoscopy involves passing a fiberoptic endoscope through the nasal

cavity and through the nasal floor, to permit observation and evaluation of swallowing
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[89]. Endoscopy is a fast and cheap alternative, suited for patients who are bed-bound

or unable to eat [90], and has been reported as a safer procedure [91], which is poten-

tially more sensitive for aspiration detection [91, 92]. However, it still requires specialist

interpretation, is invasive, and has been reported as less useful for assessing oral and

oesophageal phases of swallowing [92]. Surface Electromyography (EMG), on the other

hand, involves the measurement of bioelectrical signals related to activity of the muscles

[47]. EMG has been recommended as a fast an inexpensive technique for swallow assess-

ment [61], although from the review of the literature it does not appear widely used, and

current solutions still requires bulky equipment and indiscreet sensor placement as can be

seen in figure 2.12, later in this chapter, reproduced from [62]. A more detailed discussion

of EMG for the evaluation of swallowing and swallowing function is given in section 2.2.3.

Swallow Disorder Treatment

Treatment following diagnosis also varies considerably, and is specific to the underlying

causes [14, 93]. Reviews of medical treatment, such as non-oral feeding and medication,

warn that they are not ideal for long term recovery [81], and behavioural therapies are

instead recommended when possible [14]. Alongside these, personalised dietary modifica-

tion diets, such as specific food consistencies, are prescribed depending on the underlying

cause of the disorder [14].

Swallowing therapies involve compensatory manoeuvres, or indirect and direct swal-

lowing exercises [14]. Compensatory techniques are designed to help swallow food [94,

14], and include the “chin-tuck” and “double swallow”, to help patients with mild cases

to continue oral feeding, or “chin-down” and “rotated-head” positions to help overcome

tongue weakness [95]. Swallow exercises instead focus on improving the performance of

swallowing function or increasing swallow strength and include direct exercises such as the

effortful swallow [63], extended swallow (“Mendelsohn Manoeuvre”) [96], or the tongue

hold manoeuvre [97]. Of these techniques, the effortful swallow involves swallowing with

maximal effort, the extended swallow involves the patient holding the larynx at the peak

of a swallow for a given time, and the tongue-hold involves swallowing while the tongue is

held between the teeth [97]. Indirect exercises, such as expiratory muscle strength training

[98], or head lift exercises [99], have also been described as useful for strengthening related

muscles [97].
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A study by Carnaby et al. [100] evaluated the benefit of behavioural therapies through

a comparison of high intensity ( daily strength training and dietary modification) and low

intensity (dietary modification, advice, and compensatory strategies) behaviour interven-

tions. They found favourable outcomes across 306 patients, with high-intensity therapy

associated with a return to normal diet and swallowing functionality within 6 months.

These findings were supported by a review of 59 behaviour intervention studies by Speyer

et al. [93], who reported that the majority of studies found positive results for these types

of treatments.

On the other hand, DePippo et al. [80] conducted a similar study evaluating different

intervention intensities over a three year trial of 115 patients, and reported finding no

significant difference between interventions of differing intensity levels. The findings of

this study demonstrated that patients were able to manage their own conditions with

minimal guidance and instruction, or daily swallowing practice. A recent review of the

literature by Foley et al. [81], also report a lack of evidence for behavioural therapies and

a need for further research investigating their effectiveness.

Evaluation and Treatment Limitations

Quality of life and health care questionnaire based studies by Ekberg et al. [17] and

McHorney et al. [16] have reported the impact of swallowing disorder on patient quality

of life, along with a concerning degree of under-diagnosis or lack of treatment. This is

in part due to a lack of standardised swallowing disorder screening conformity, agreed by

many to be an issue [82, 88, 14, 81]. However, these authors also found that patients

believed that their symptoms were untreatable and they felt embarrassment discussing

them. To combat this, Ekberg et al. recommend efforts be made to increase recognition of

swallowing disorders, symptoms, and treatment options amongst clinicians and patients.

Smithard et al. [87] similarly highlights a need for more precise assessment and monitoring

techniques over the long term. These limitations extend to the treatment of swallowing

disorders through behavioural therapies.

There is a clear need for more in depth studies to better understand swallowing disor-

ders, the benefits of different treatments and how the conditions evolve over time. How-

ever, this is difficult with current equipment which is not suited to ongoing evaluation

due to expense, obtrusiveness, or repeated exposure to radiation. EMG instead provides
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an easy to use and unobtrusive solution to these issues, but further research is needed to

evaluate the effectiveness of its, develop systems using equipment that is more portable

and discreet (discussed further in section 2.2.3).

2.1.3 Feedback Supported Rehabilitation Therapy

Rehabilitation therapy involved in regaining voluntary control of muscles and other func-

tions is a process which varies considerably depending on the underlying cause and severity

of impairment. Many patients undergoing rehabilitation therapy lack motivation, engage-

ment, or have difficulty identifying progress and establishing self-efficacy [101]. Technol-

ogy may be useful for health related feedback and assistive systems (discussed further

in section 2.2), and two approaches which have particular significance for rehabilitation

therapy, and for exercises related to swallowing rehabilitation in particular, are discussed

here. These include biofeedback, and the use of simulated virtual and game environments

to enhance such biofeedback therapy. The benefits of biofeedback and game environments

for improving patient skill, motivation and self-efficacy are discussed below.

Biofeedback Therapy

Human-computer Interactive technology has a history of use in physical therapy, through

Biofeedback. Biofeedback for therapy has basis within the Control Theory of behaviour

[102], which proposes that human behaviour is based upon feedback loops, and this is

modified to minimise discrepancies between an individuals goal state against and their

current state [103]. In this way biofeedback provides some form of feedback regarding

an individuals ability to achieve a physiological function goal, allowing them to modify

their efforts accordingly, regaining function of impaired capacity, or relieving symptoms

of related illnesses [102].

Applications of biofeedback include obtaining control over the symptoms of headaches,

asthma, epilepsy, gastrointestinal disorders or even cardiovascular disorders [102]. There

has also been research demonstrating the beneficial qualities of biofeedback for rehabili-

tation following a stroke [104, 105, 106, 107].



Chapter 2. Literature Review 24

Biofeedback Therapy for Swallowing Disorder Treatment

More closely related to the work presented thus far, however, is the use of biofeedback

therapy to support swallow training and rehabilitation as part of dysphagia treatment.

Huckabee and Cannito [63] evaluated the change in swallowing performance and diet level

tolerance of 10 patients suffering from dysphagia following a stroke, after completing 1

week of biofeedback sessions. A similar study was conducted by Crary et al. [64], and

they reported similar findings for a retrospective analysis of 45 dysphagia patients. Other

studies have also evaluated the use of accelerometry based biofeedback therapy for patients

with poor laryngeal elevation [108] and surface EMG based biofeedback as an adjunct to

normal swallowing disorder therapy [109]. The authors of all these papers reported a

functional improvement in oral intake over the course of the therapy and conclude that

biofeedback is a useful method for supporting swallow rehabilitation. However, these

all involved case studies of a relatively small number of patients and did not compare

biofeedback therapy with traditional therapies.

A more recent study by Carnaby-Mann and Crary [110] attempted to resolve procedu-

ral issues of previous research, proposing a new standardised biofeedback based therapy

and reporting its effectiveness through the comparison of case studies from 24 patients;

16 of whom took part in traditional therapy with biofeedback and 8 who received the

new standardised treatment protocol. All patients suffered from chronic dysphagia, and

biofeedback therapy patients all failed to respond to traditional therapy prior to biofeed-

back. Traditional biofeedback therapy focused upon using the Mendelsohn Manoeuvre and

exceeding an EMG activity threshold, encouraged home practice, and assessed progress

based on their capacity to meet the EMG threshold; while the new standardised approach

did not encourage home practice, and assessed improvement based upon clinical signs of

aspiration. The authors reported that patients in the standardised group demonstrated

significant physiological and functional swallow performance, and were much more likely

to demonstrate improvement than the traditional therapy. They conclude that the stan-

dardised approach of biofeedback was superior to traditional treatment, however they also

note that further controlled trials would be necessary to support their findings.
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Virtual Environments and Gameplay to Support Rehabilitation

When relating to physical activity of behaviour, game and virtual environments can be

used as an extension of biofeedback type techniques; the interaction between user and a

virtual environment providing feedback regarding user activity. Biddiss and Irwin [111]

reviewed 12 studies examining the use of activity encouraging video games, and concluded

that games are an engaging medium for encouraging light to moderate intensity activity,

although they highlighted a need for long term study. The benefits of video games have

also been discussed by Baranowski et al. [112], who described them as skill development

through modelling and feedback theory, and that they encourage engagement and improve

user self-efficacy regarding specific goals; key components of behaviour change theories. As

such, game technology is a promising approach for ensuring engagement in the treatment

of conditions which normally make use of biofeedback.

Burke et al. [101] discusses these factors from the perspective of stroke rehabilitation

using video capture technology, virtual worlds and games. They describe the limitations

of traditional stroke rehabilitation: exercises that can be difficult to focus upon, potential

errors in traditional therapy, the need for one-on-one sessions to guide patients through

exercises, and the need to travel for these sessions. They instead suggest webcam games

as a platform for rehabilitation which provides long term motivation, and is challenging

but achievable, ensuring self-efficacy and engagement (an example of a webcam game

proposed by Burke et al. [101] is shown in figure 2.4). Supporting these results, a review

by Saposnik et al. [113] reported that amongst 12 rehabilitation studies, all unanimously

demonstrated improvement of motor function in rehabilitation using immersive and non-

immersive virtual environments. A similar review of 72 therapy trials involving interaction

with virtual environments by Laver et al. [53] supported these findings, suggesting that

therapy supported by such technology in addition to usual care resulted in significant

motor function improvement.

There is a clear benefit of video games from the perspective of therapy: for long-term

motivation to achieve behavioural goals and as a means to track progress, increase skill,

and to engage subjects and improve self-efficacy. While video games and rehabilitation are

considered effective extensions of well established biofeedback techniques, the literature

highlights a need for further evidence regarding their use for physical rehabilitation and
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Figure 2.4: Example webcam game for supportingstroke rehabilitation exercise,
developed by Burke et al. [101]. Reproduced from [101].

investigating their effects within this domain.

2.1.4 Eating Disorders

In addition to functional impairments resulting in abnormal swallowing function, psycho-

logical conditions can result in eating disorders. These are associated with a range of

negative physical symptoms, in addition to increased mortality rate, usually due to med-

ical complications or suicide [114]. While there has been an incline in reported cases over

recent decades, Fairburn and Harrison [114] suggests that this is the result of increased

awareness, more people seeking help, and a historic difficulty classifying such conditions.

All eating disorders are defined by a disturbance of eating habits or weight-control

behaviour, resulting in impaired physical health or psychosocial functioning [115]. These

can include Anorexia Nervosa (AN), Bulimia Nervosa (BN), Binge-Eating Disorder, and

other atypical eating disorders. AN and BN are both associated with over-evaluation

of body shape or weight and extreme weight-control measures, and both BN and some

forms of AN are associated with compensatory behaviour (excessive exercise, fasting, or

purging) [115, 116, 22]. Due to similarity between BN and AN, some suggest the only

significant difference of Anorexia Nervosa is a body weight less than 85% normal weight,

and amenorrhoea maintained for at least 3 months [116]. Binge Eating Disorder is similar

to BN, involving binge-eating without compensatory behaviours [117], and other atypical

disorders are described as disturbed eating of clinical severity, but which do not meet the
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criteria of anorexia or bulimia [115].

Influences and Risk Factors

From the review of the literature, it appears that the causes or processes of eating disorders

are not entirely understood, and contributing risk factors are a matter of significant debate

within behavioural psychology. However, there are patterns in the distribution of these

conditions which are discussed in the article by Fairburn and Harrison [114]. Of particular

note, eating disorders occur predominantly amongst women in western societies, with

Anorexia Nervosa mostly occurring amongst adolescents and Bulimia Nervosa in young

adults. Fairburn and Harrison [114] suggests that typical onset of Anorexia Nervosa

occcurs during mid-teens as a result of dietary restriction, resulting in its prevalence

amongst adolescents, and suggest that such cases are short lived and only require brief

interventions to treat.

General risk factors for eating disorders include gender, youth, and western culture.

Socioculturally, the idealisation of thinness, and exposure to media is regarded as a prin-

ciple cause of eating disorders [22]. There are a number of other factors which have been

proposed in relation to the onset and maintenance of eating disorder, however Polivy and

Herman [116] suggests that the most likely contributors towards eating disorders are body

dissatisfaction, negative emotions, low-self esteem, and individual personality features.

However, they also conclude that there is not yet enough evidence to identify any partic-

ular factors which are closely related to eating disorders, and that identifying potential

factors does not help to understand the underlying mechanisms. Instead they suggest that

effective treatment does not require a full understanding, but only an awareness of these

contributing risk factors.

Treatment and Behavioural Therapy

Treatment of eating disorders typically includes both medicinal treatment and behavioural

therapy. Reviews of treatment trials demonstrate some benefits of medication for decreas-

ing symptoms of Bulimia Nervosa or Binge Eating disorders, but report that the findings

were tentative [118, 117]. On the other hand, Cognitive Behavioural Therapy based inter-

ventions are reported as effective in treating contributing behavioural and psychological
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factors associated with BN [118], and effective at reducing the number of binge days or

reported binging episode, in addition to psychological symptoms [117].

Cognitive Behavioural Therapy (CBT) is considered the “gold standard” technique

for treating eating disorders [20], and has been found effective for treating a range of

other behavioural disorders such as depression, anger management, panic, and anxiety

disorders [119]. However, Fairburn et al. [120] highlighted that CBT has limitations for

eating disorder treatment, and that in certain patients, perfectionism, low self-esteem,

mood intolerance, or interpersonal difficulties interact with eating disorder mechanisms,

acting as barrier to eating behaviour change.

The principle of CBT based therapies in the treatment of eating disorders is a cooper-

ative effort between patient and therapist to identify, evaluate, and address mechanisms

related to maintaining patient eating disorders [20]. Murphy et al. [20] describes the stages

of this form of therapy. The first stage involving engaging with patients, jointly identify-

ing negative behaviours and behavioural goals, and introducing self-monitoring techniques.

Stage two consists of reviewing progress, giving praise, and making adjustments. Stage

three involves addressing processes and mechanisms maintaining patient eating disorder.

The final stage involves continuing progress through follow up appointments and discon-

tinuation of self-monitoring.

For eating disorder therapies Murphy et al. highlight the importance of participant en-

gagement, understanding and self-efficacy. Self efficacy is considered a core component of

Behaviour Change theories [103], and was introduced by Bandura [121] who proposed that

an individuals belief in their capacity to change contributed to the progress of behaviour

change. Engagement and understanding refer to participants feeling involved and in con-

trol of learning about their disorder and the behaviour change process. Self-monitoring is

indicated as an important part of these factors; helping patients to track progress, encour-

aging self-awareness of their eating behaviour, and helping to establish conscious thought

regarding behaviour that seems automatic, while establishing self-efficacy [20].

Although the act of self-reporting itself is considered an important part of behavioural

therapy [20], the reliability and accuracy of self-reported measures is important for the

purpose of reliable tracking and monitoring of treatment progress. However, the nature

of self-reported measures mean that there is the possibility of error, or bias, particularly

in the case of reporting sensitive or ‘embarrassing’ details. This is discussed further in
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section 2.1.6.

2.1.5 Factors Influencing Eating Behaviour and Implications for Health

The processes of eating behaviour and factors influencing our decisions regarding when to

eat, choice of food, and quantity of food to ingest are have been substantially researched.

However, these are various difficulties related to evaluating such factors and there are

numerous theories describing eating processes. As such, despite substantial research,

eating behaviour is still not well understood. This section discusses some theories of

eating behaviour and factors which influence the various parameters of eating choice and

functional activity.

Automatic Eating and Factors Effecting Eating Behaviour and Function

Many theories of eating, such as the automatic eating theory [18] or frameworks related

to Social Cognitive Theory [19], focus on the impulsive nature of feeding behaviour and

function, suggesting that food intake is a highly automated, or that it involves reciprocal

systems influenced by environmental factors, and that the development and perpetuation

of eating disorders can be related to these. Behavioural therapies support this view,

emphasising reflection upon behaviour to disrupt self-perpetuating negative thoughts and

feelings [20]. Wansink [21] also supports these theories, suggesting that the eating and

food environments can disrupt self-monitoring of food quantity, extend meal duration, or

influence perceived consumption norms (summarised in figure 2.5, reproduced from [21]).

Wansink [21] also demonstrates how ambient environmental factors can influence disin-

hibition, meal duration, and overall consumption volume (see Figure 2.6, reproduced from

[21]). One such ambient influence is music, which can have a significant effect on meal

size and duration, demonstrated by Stroebele and Castro [122], or can influence eating

rate based on tempo, as demonstrated in the study by Bajic [123]. Finally, social factors

are considered to have considerable influence upon eating behaviour and food intake, and

Figure 2.7, reproduced from [21], shows an example of how social eating effects meal dura-

tion and perceived consumption norms. A review of 69 studies related to social influences

upon eating by Cruwys et al. [124], support such theories, and the authors concluded that

there was strong evidence that food choice and intake were influenced by social norms.
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Figure 2.5: An overview of environmental factors described by Wansink [21]
and how they effect perceived consumption norm, intake monitoring, and intake
volume. Reproduced from [21].

Figure 2.6: An overview of ambient environmental factors described by Wansink
[21] and how they influence consumption volume through disinhibition and meal
duration. Reproduced from [21].

These studies indicate that eating behaviour, particularly negative behaviours such

as overeating, or attributed to eating disorders, are heavily influenced by environmental

factors; with ambient distractions disrupting internal self-monitoring, or social and en-

vironmental cues influencing normal consumption norms. As such, it these factors can

be appropriated to correct eating, and influence behaviour change through encouraging

reflection upon eating behaviour, or to disrupt automatic eating, which is possible in the

short term according to Cohen and Farley [18]. Eating disorder treatments enact such

techniques, and are discussed in Section 2.1.4, as do some mobile based behaviour change

interventions, discussed in Section 2.1.7.
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Figure 2.7: An overview of social environmental factors described by Wansink
[21] and how they influence consumption volume through consumption norms
and meal duration. Reproduced from [21].

Food Parameters and Their Effects Upon Eating and Satiation

Textural and taste properties of foods are also potential influences of eating behaviour.

Increased viscosity of food is known to reduce intake and rate of eating [125], and in a

study of 5 male (aged 29.6±3.6) and 10 female (aged 25.1±3.6) subjects, Forde et al. [24]

found that oral exposure time was highly correlated to the number of bites and chews,

concluding that reduced transit time in the oral cavity leads to less sensory stimulation

and reduced satiation cues. A similar study into the effect of food viscosity on hunger

related hormones by amongst 15 male subjects (between 18-40 years of age), conducted

by Zhu et al. [23], found that increased food viscosity reduced hunger while increasing

satiation and satiety hormones. These studies demonstrate that food texture can effect

bite size and increased oral exposure, which in turn can be associated with satiation and

potential intake volume; slower eating leading to higher satiation levels, and faster eating

reducing satiation.

Control of Eating Rate and Effect Upon Satiation and Intake

A number of studies have explicitly investigated the effects of oral exposure on intake

through manipulation of functional parameters such as eating rate. For instance, Kokki-

nos et al. [126] conducted a study on 17 male subjects (aged 29.7± 1.2 years) using timed

eating period and a set food quantity to manipulate eating speed, and measured hunger

stimulating and inhibiting hormone levels in the blood. They reported higher concentra-

tion hunger reducing hormones after a slower meal, and hypothesised that this indicates
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[REDACTED]

Figure 2.8: Mandometer®device used by Ioakimidis et al. [129] and Zandian
et al. [128]. Shows a food weight scale and feedback device included as part of
the system. Device image reproduced from [130].

eating rate as influencing factor related to overconsumption of calories. Similarly, a study

by Zhu and Hollis [127], investigated the effect of controlled chewing thoroughness (chew

count) amongst 18 subject, finding that increased chewing thoroughness was associated

with reduced eating rate and food palatability.

A number of studies have also investigated the effect of eating rate upon food intake

quantity using a “mandometer” as an automated means for analysing food intake and

providing feedback based on food weight change over time (see figure 2.8). In the study by

Zandian et al. [128], 30 linear eaters (eating at a constant rate) and 17 decelerated eaters

(slowing down during the meal) took part in a number of eating sessions with intake

speeds manipulated by feedback. They found that decelerated subjects demonstrated

difficulty maintaining set eating speeds, and that linear eater rated satiation as higher

during reduced intake rate. Ioakimidis et al. [129] conducted a similar study, evaluating

the effect of feedback upon the eating rate of 29 linear eaters, compared with 28 eating

disorder patients. They found that manipulating the eating rate of linear eaters resulted

in modelling of consumption patterns identified in disorder patients. This indicates that

susceptibility to external influences puts linear eaters at risk of eating disorders, but that

feedback is a useful intervention tool to help model desired eating patterns [129].

Other more mobile techniques of measuring eating rate have been proposed. For

instance, Jasper et al. [131] implemented an automated system for monitoring bite rate

based upon hand motion captured by a wrist worn gyroscope, and evaluated it in lab

conditions on 94 participants (62 women and 32 men, aged 19.0 ± 1.6, with a BMI of

23.04 ± 3.6) and during a “free-living” study of 99 participants (56 women and 43 men,
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aged 18.5 ± 3.6). They reported that feedback reduced number of bites, but that this

resulted in compensatory behaviour permitting increased intake. The authors indicate

that although feedback reduces intake, further research was needed for understand the

interaction of feedback, goal setting, and the effect of “real-life” eating [132].

Eating Rate and Thoroughness as an Influencing Factor of Obesity

A number of population studies have been carried out evaluating the association between

eating rate, or speed of eating, and obesity, based mostly upon self-reported surveys.

For example, Takayama et al. [25] collected data about eating habits, rate of eating, and

BMI of 422 diabetes patients, and reported a significant positive correlation between fast

eating rate and high BMI in male diabetes patients. A number of other studies have also

reported a strong correlation between self-reported eating speed and BMI. For instance,

Sasaki et al. [26] recorded data from 1695 18 year old Japanese women, along with a 1-

month diet history recall survey, revealing a correlation between eating rate and BMI. A

study of 3737 middle aged Japanese men and 1005 women, by Otsuka et al. [31], found a

similar correlation, and also collected self-reported recall of BMI at age 20, which revealed

an increase in BMI over time. Finally, Leong et al. [27] evaluated results of a nationwide

survey of 1601 middle age New Zealand women, again report a strong positive correlation

between self-reported speed of eating and higher BMI.

Such studies are not limited to population surveys of adults. Llewellyn et al. [28]

conducted a study investigating eating rate in 254 twin children. This involved recording

height and weight of children and parents, and manual extraction of eating characteristics

from video footage of the children. As in other studies, the researchers found a correlation

between BMI and eating speed, and reported a high degree of heritability for eating rate.

Concluding that it is an example of appetitive heritability.

Although the functional effects of eating rate upon food intake and subsequent impact

upon BMI and health related issues is debated, the majority of these studies suggest a

positive correlation between BMI and self-reported eating rate. However, a number of

these studies emphasise the need for further research to investigate the impact of eating

rate upon body mass [26] or the effect weight gain and eating speed [28]. Additionally,

the majority of these studies highlight their reliance upon self-reporting as a significant

limitation [25, 26, 31, 28]. Issues which are discussed in section 2.1.6.
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Eating Rate and Influence on Other Health Factors

There are a number of other other health factors related to chewing rate, directly or

indirectly. For instance, the study by Yamazaki et al. [29] attempted to identify and clarify

any direct correlation between masticatory performance and diabetes amongst 2283 male

and 4544 female subjects (aged 40-74), concluding that based on their findings masticatory

performance and eating rate should be considered a potential risk factor for identifying

patients with diabetes.

There have even been studies suggesting a link between eating rate and ‘stress-eating’.

The research by Adam and Epel [133] and Epel et al. [134] attempt to identify the rela-

tionship between hunger and stress mechanisms, and they found that amongst 59 women,

those who release a large amount of cortisol in response to stress consumed more calories

following application of high stress tests. The study by Tasaka et al. [30] builds on these

hypotheses, relating salivary cortisol levels to chewing rate amongst 16 male participants

(aged 20-33) after study sessions involving stress loading and chewing at different rates,

reporting reduced cortisol levels after fast chewing. These studies both conclude that

there is an association between psychopathological stress responses and eating behaviour,

and that chewing faster contributes to stress relief.

2.1.6 Techniques for Monitoring Eating, Diet, and Physical

Parameters

Tracking eating behaviour, diet, or various other parameters related to eating or physical

characteristics, is an important part of studies focusing on improving understanding of

eating behaviour (as discussed in section 2.1.5), or as a part of screening for, or monitoring

of, eating disorders (discussed in section 2.1.4). The main two techniques for this are

subject self-legging such information, or through manual observation (usually confined

to eating studies). However, there are considerable limitations of these two techniques

which can severely reduce the extent of information which can be recorded, or impact the

reliability of such data.

Self-reported measures are one of the main methods for collecting information related

to eating behaviour, dietary intake, or physical parameters. Such measures offer easy

logging of diet for tracking eating disorders or weight management [20], or for large scale
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population studies of eating behaviour [31]. However, such measures are considered to

be unreliable or prone to bias. For instance, in a large study of 1870 male (age 37-

74) and 2938 female (age 35-76), participants were asked to compare self-reported and

clinically measured height and weight, Spencer et al. [33] reported overestimated height,

and underestimated weight, which increased with BMI. These results were supported

by a number of other studies [34, 35, 36], and was similarly observed during reliability

assessments of eating disorder screening questionnaires, conducted by Luce and Crowther

[135] and Fairburn and Beglin [115]. Finally, in an evaluation of the reliability of dietary

self-report, Hebert et al. [32] found a bias in reported intake due to social desirability

amongst 41 subjects.

The main limitation of observation based studies is one of time and resource demands,

which restrict the amount of data it is possible to analyse. In any large scale study,

detailed analysis of data from such studies can demand a considerable amount of time

or human-resources as well as requiring lab conditions for recording video footage. For

instance, Llewellyn et al. [28] conducted a study of 254 children to investigate the corre-

lation between eating speed and BMI, and Bajic [123] conducted a study of the effects

of music on eating amongst 103 subjects. Both cases required considerable human and

time resources, with the latter study reporting manual analysis of approximately 52 hours

of footage, which involved detailed evaluation to determine chewing rate. Other studies

overcome such issues through strict experimental protocols to simplifying recorded data

[127], or with a limited number of participants [24]. While such approaches eliminate the

time demands of analyses, they sacrifice detail in the collected data.

There are considerable limitations of all the approaches described above. In the case of

self-reported measures, they are considered a necessary tool for population scale studies or

for treatment of swallowing disorders [32, 35], but are liable to inaccuracy or bias. While

studies involving manual observation restricted to lab conditions and smaller in scale, lim-

ited by demands on time and human resources. Some solutions, such as “mandometer” for

measurement of rate of intake, offer automated systems of eating study, but these are rel-

atively restricted in purpose, immobile, and limited to experimental conditions. However,

technology may provide solutions for improving manual logging of eating behaviour, or

automated alternatives. Mobile technologies and their use for self-logging information are

discussed in the next section, while automated systems are discussed further in section 2.2.
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2.1.7 Technology Support for Health Related Monitoring, Treatment,

and Behaviour Change

Treatment and monitoring of health conditions, particularly those which typically involve

self-reported behaviour tracking or requiring behavioural therapy, is difficult to deliver

consistently and effectively. The use of readily available commercial technology systems

and mobile platforms is one approach to resolve the various issues normally involved in

treatments involving self-reporting. For instance, Glasgow et al. [136] discusses the po-

tential of technology support to alleviate non-specialist tasks associated with behavioural

counselling: to arrange appointments, monitor adherence to treatment, establishing topics

of concern, amongst other areas.

Another conceptual method for healthcare support using technology is through Quan-

tified Self-Tracking. Proposed by Swan [137], Quantified Self is a philosophy involving

self-tracking of information relating to an individuals biology, behaviour, or environment,

with an emphasis on acting upon such information. This can include monitoring of physi-

cal activities, diet, psychological, or other mental states and traits. Swan [138] suggests a

new form of technologically enhanced healthcare models, whereby patients are an active

participant in their own care, enabled by technology to research and self-monitor condi-

tions, symptoms, and treatment progress. The emergence of technology interconnectivity

through the ‘internet of things’, mobile devices, and new technology or sensing modali-

ties, provides an alternative approach for enhancing self-tracking for healthcare purposes

or patient or clinician feedback [139, 137].

Mobile Health Technology

The popularity, prevalence, mobility, and technological capabilities of mobile devices make

them an perfect platform for health-related support, and ideal for delivering interventions.

In a review of 75 intervention trials, Free et al. [140] identified a range of mobile based

applications supporting behaviour change interventions for smoking cessation, physical

activity, reduced calorie intake, and for various disease management purposes. These were

found to be delivered mainly through personalised feedback, goal setting, information, and

other relevant messages.

Particularly prevalent uses of mobile applications include self-monitoring of diet or
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exercise, for interventions, weight loss and management programs, or within the purview

of Quantified Self-tracking [140, 137]. In the commercial domain, there is also a growing

popularity for mobile based self-reporting of dietary content or fitness tracking using

applications and wearable sensors [38, 39, 40, 41, 42, 43].

To evaluate the use of such systems for weight loss Burke et al. [44] describe the trial

of a mobile health based system for enhancing self-monitoring of diet in weight-loss in-

terventions of 210 overweight subjects (78.1% male and 84.8% female, average age 46.8)

over a 24 month period; comparing self-monitoring using paper diaries, Personal Digital

Assistant devices, and Personal Digital Assistant devices with daily feedback. The authors

concluded that daily feedback messages increased adherence to self-monitoring of intake

and aided weight loss. However, a similar study by Turner-McGrievy et al. [45] evalu-

ating mobile applications for diet tracking amongst 78 subjects (18 male and 60 female)

and exercise logging amongst 85 subject (21 male and 64 female), did not corroborate

these findings. They reported mobile usage increasing exercise logging adherence, but no

difference for dietary recording. Comparatively, a meta-analysis of 12 similar trials, by

Flores Mateo et al. [141], reported a correlation between mobile based interventions and

reduced body weight and BMI, but no significant improvement in physical activity.

All these studies indicate that mobile based intervention applications are useful tools

for supporting weight loss and adherence to dietary logging. However, the findings of these

studies are variable, suggesting that further research is needed to determine the extent of

these effects.

2.2 Physiological Sensing and Technology for Automated

Feeding Detection, Support of Rehabilitation and

Health-Related Change

With ongoing research into wearable systems and small and discreet sensing modalities,

physiological sensing has significant potential as a continuous and mobile alternative for

monitoring of physiological processes. Furthermore, through the use of machine learning

based approaches there is potential to automate such monitoring for the purpose of ongo-

ing assessment or for driving assistive systems. Machine learning algorithms, specifically

classification algorithms, may be trained to isolate patterns in data which may be used to



Chapter 2. Literature Review 38

identify given classes of data [142], and are used extensively in conjunction with physiolog-

ical signals in order to recognise patterns which would not otherwise be easily detectable

[143]. These algorithms have been used in conjunction with physiological sensing for the

purpose improvement of control over prosthesis [144, 145, 146], for assistive technology

such as wheelchairs [147, 148, 149, 49], and for improving Human-Computer Interfaces

through emotion based affect recognition [150, 151].

This section discusses physiological sensing for purpose of evaluating and detecting

eating, and extracting information related to eating; focusing on the use of typical signal

processing and machine learning based classification. Firstly, section 2.2.1 provides an

overview of physiological and its use for Human-Computer Interaction. Section 2.2.2 then

provides a review of some wearable solutions and discreet modalities for mobile detection

of feeding, food intake, and monitoring of other health factors. The remaining sections in

this chapter focus on the use of EMG for the study of eating processes and evaluation of

swallowing impairments (section 2.2.3), and the use of EMG for the detection of eating

and classification of food content (section 2.2.4).

2.2.1 Physiological Sensing and Electromyography

An integral component of computer aided evaluation of eating function and behaviour is

physiological sensing. Physiological sensing refers to any method for capturing information

regarding physiological processes, or related to the physical state or biological function of

a living organism.

Biomedical Signals and Physiological Sensing Overview

Physiological signals useful for the evaluation of health are known as “biomedical signals”,

the most common of which are bioelectrical signals used as a vital part of healthcare [47].

These signals are based upon the principle of action potential change of single cells in

response to external stimuli. Such action potential changes are observed within muscle cells

and in neurons, and can be used to evaluate the state of muscles and the central nervous

system. Some well known bioelectrical signals described by Rangayyan [47] include:

Electrocardiography Electrocardiography (ECG) is probably the most well known ap-

plication of biomedical signals, related to heart function. Beating of the heart is

perpetuated by the self-sustained action potential triggering of the sinoatrial node,
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resulting in rhythmic contraction. The firing of this node is normally a very rhyth-

mic event and can be monitored to identify any health conditions such as arrhythmia

(irregular firing), or abnormal function such as tachycardia (high heart rate).

Electroencephalography Electroencephalography (EEG) is the monitoring of the elec-

trical activity of the brain, via measurement of excitation across cortical surface

(beneath the scalp) related to physiological control, thought processes, or external

stimuli. The strength of different frequency bands (rhythms) permit measurement of

different neural activities and evaluation of sleep function, seizures, physical activity,

or used for control systems, virtual world interaction, or feedback.

Electromyography Electromyography (EMG) is the detection of the activity of skeletal

muscle fibres based upon change in action potentials during firing of motor units

(motor neuron, related cells, and muscle fibres). Firing of motor units is triggered

by physical activity, and the shape of measured “single-motor-unit action potential”

(SMUAP) is influenced by force and functionality, or various sources of interfer-

ence. They are also affected by conditions such as swallowing disorders, which were

discussed in section 2.1.2 and later in this chapter (section 2.2.3).

Bioelectrical signals also include electroneurogram (action potentials propagating across

the a nerve) or electrogastrogram (electrical activity of the stomach), or galvanic skin re-

sponse (electrical resistance of the skin in response to stimuli). Other biomedical signals

include any other useful information obtainable regarding the physiology of the body, such

as Phonocardiogram (sound signals resulting from heart contraction) which provides a sim-

ilar function as ECG, Vibromyogram (vibration as a mechanical manifestation of muscle

contraction) often used in conjunction with EMG, or Vibroarthogram for assessment of

joint function [47]. In this section and within the rest of this thesis, Electromyography is

considered the main physiological signal of interest.

Physiological Sensing and Human-Computer Interaction

Human-Computer Interaction (HCI) research has attempted to pave a more direct commu-

nication pathway between human and external devices for various applications, including

the use of physiological sensing for innovative health technology. For instance, for health

related purposes, Pantelopoulos and Bourbakis [152] outline a number of wearable solu-
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tions for health monitoring and prognosis, including wrist-worn devices for the detecting

cardiac-respiratory events, sensing jackets for monitoring activity of elderly patients, or

for other health monitoring and motor rehabilitation purposes. These systems include

Electrocardiogram, blood pressure, respiration, temperature, posture, galvanic skin re-

sponse, electromyography, or accelerometers and gyroscopes. Alternatively, EMG and

EEG are are more commonly being used for assistive technology interaction, such as the

control wheelchairs for those unable to operate conventional devices [149, 49], and have

been demonstrated for the purpose of mobile phone interaction [50, 51].

Along with assessment of health and direct control of hardware and software, the

use of physiological sensing has been reported as a means of enhancing interaction with

technology. Pantic and Rothkrantz [151] argue that future devices should be able to en-

hance engagement by responding to emotional cues as an additional form of interaction, in

gameplay for instance. Nacke et al. [153] determined that, to enhance game interaction,

EMG, body temperature, galvanic skin response (GSR), or heart rate can be used for

direct game manipulation (through voluntary signal responses) or to indirectly adapt the

game environment (through involuntary reactions). Chanel et al. [154] similarly studied

the use of EEG to monitor various emotional states, and found that these could be used

to adapt difficulty in order to maintain engagement. Such applications have particular

relevance within biofeedback and game-based rehabilitation environments, which, as dis-

cussed previously (section 2.1.3), have been shown to engage patients, ensuring treatment

adherence, maintaining motivation, and increasing self-efficacy.

Rezwanul Ahsan et al. [52] discuss the limitations of current biosignal approaches for

the control of assistive technology, outlining a range of increasingly commonly available

assistive technology solutions for disabled people, such as tongue controlled joysticks, head-

worn motion sensors, and eye tracking for mouse cursor manipulation. They highlight a

lack of fine control, or specific disabilities as particular limitations of such devices. They

suggest biosignal systems based upon Electrooculogram (EOG), Electroencephalogram

(EEG), or Electromyogram (EMG), as a viable alternatives. In particular, Rezwanul Ah-

san et al. highlight the benefits of EMG for computer interaction interfaces, as a technique

capable of detecting subtle muscle activation without the complex calibration, learning

procedures, and training required for EOG and EEG interfaces. While Rezwanul Ahsan

et al. mention physiological differences which can affect EMG along with an inherent sig-
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nal instability, there are established methods within the literature for processing EMG

and dealing with such issues (described further in section 2.3).

As newer sensing technologies have become more accessible and affordable, the use of

sensing devices has also become more mainstream and common in day-to-day situations.

Body wearable sensors are becoming prevalent for commercial fitness monitoring [43],

and as technology progresses there is increased potential for Quantified Self-Tracking for

healthcare improvement (discussed in section 2.1.7). The use of automated monitoring

technology via body wearable to support such tracking has been described as an inevitable

outcome and predicted as part of a new form of patient contribution towards their own

healthcare [138, 139, 137].

2.2.2 Body Wearable Sensors for Evaluation and Detection of Food

Intake

Although physiological sensing has considerable potential within health and computer

interfacing, the modality of current mainstream solutions make them unsuited for many

applications. For instance the use of biosignals for evaluation of physiological function

(such as swallowing functionality), or for therapy purposes (such as biofeedback or other

approaches discussed in section 2.1.7), involve bulky expensive equipment (for instance,

in the case of EMG. See figure 2.12), or require specialist interpretation.

Discreet Modalities for Physiological Sensing

Patel et al. [155] and Majumder et al. [156] discuss body-wearable sensors as an alter-

native for monitoring of eating function and other health parameters, proposing a range

of components as part of a complete sensing system, as can be seen in figure 2.9. Other

systems described by Sazonov et al. [157] use a combination of sensing approaches for

the detection of food, such as the use of in-ear or throat mounted microphones for chew

or swallow sound measurement and piezoelectric strain sensors for the detection of jaw

motions associated with eating and talking. Amft and Troster [65] expanded upon this,

describing the use of wrist worn gyroscopes to detect food intake gestures, ear worn mi-

crophones for chew detection, and EMG, microphone, or strain sensors mounted on the

neck via a collar for swallow detection. As well suggesting the detection of gastric activity,

thermic effects, body weight, cardiac responses, and body composition as other parame-
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ters of intake. However, they reported that these were prone to interference from other

behaviour or external noise, or uncomfortable [65].

Figure 2.9: Example of a body wearable sensor system given by Patel et al.
[155]. This system demonstrates Electrocardiogram measurement from a number
of different locations (highlighted red), Electromyography of the biceps, and res-
piration or movement data based on stretching of the fabric. Reproduced from
[155].

Amft and Troster reported results of initial prototypes for some of these systems, tested

using 3 male subjects. Results included 94% accuracy for the differentiation between 4

feeding hand motions, using a motion capture jacket, and 73% accuracy for differentiation

between high and low volume swallowing, using collar mounted microphone and EMG. For

in ear microphone based chewing detection, Amft et al. [158] proposed two classification

algorithms. One for the differentiation between periods of chewing and speech using a

C4.5 decision tree trained using signal fluctuation and frequency features over a rolling

window; reporting 99% accuracy. A second algorithm was developed to discriminate

between food products, using an amplitude threshold based algorithm to isolate chews

(with 90% accuracy) and decision tree algorithm was first employed to isolate individual

chews, for which the authors reported accuracies ranging between 87.2% and 100%.

A later study building upon the results of this work attempted to classify 19 food

types based upon food textural sound properties: “wet, loud”, “dry, loud”, “soft, quiet”

[67]. During this study, 232 frequency spectral features were extracted from a total of 375

chewing sequences, using Fisher discriminant filter for feature reduction. A Naive Bayes

classifier was trained for classification of food types, and an average accuracy of 86.6%
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was reported. Although the results appear promising in these studies, they do not fully

evaluate the robustness of their system within noisy environments, or the capacity of their

classifiers to generalise to data from entirely unknown subjects, nor do they attempt to

address issues of discomfort or impaired hearing which can result from ongoing usage of

in ear worn microphones.

Sazonov et al. [68] demonstrated a similar system for measuring intake, investigating

the use of acoustical data from a mic mounted on the throat for the detection of swallowing.

Using acoustic swallowing signals collected from 21 subjects (12 male and 9 female, BMI

28.98±6.42) during their initial study [157], they implemented a Support Vector Machine

classifier for the classification of swallowing events and demonstrated an average intra-visit

classification accuracy of 84.7%.

In an alternative approach, Sazonov and Fontana [69] evaluated the use of piezoelectric

strain gauge mounted along the jaw for detection of chewing based on jaw motion. They

developed a linear kernel Support Vector Machine based classification model for the de-

tection of chewing, trained to be subject-independent using 20-fold cross validation. They

reported an accuracy of 80.98% for this technique.

More recent research into the use of body wearables for monitoring food intake have

focused on a multi-sensor approach, combining different sensor readings to attempt to

improve eating detection and reduce misclassification. For example, Rahman et al. pre-

sented the use of Google Glass wearable device, collecting sensor data simultaneously from

integrated accelerometer, gyroscope, and magnetometer to assess the motion of the head

during eating [66]. They collected data from 21 male and 17 female participants between

18 and 21 years of age and evaluated the performance of Gaussian Naive Bayes, k-nearest

neighbor, and random forest classifiers trained to detect eating. They made use of a vari-

ety of strategies for training and evaluating their classifiers, but only achieved an F-Score

accuracy of 67.55%. They also suggest the use of photographs taken using the Google

Glass to estimate food type and portion size.

Another study by Fontana et al. [70] demonstrated a complete system for the detection

of food intake, combining a jaw motion sensor (piezoelectric strain sensor) with a watch

worn gyroscope for hand to mouth gesture detection, and an accelerometer for identifying

body motion. This was a “free living” type study, with 6 male and 6 female participants

(aged 26.7±3.7) wearing the system for a 24 hour period, using a push button to indicate
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eating periods and an self-reported diary to corroborate ground truth. The proposed sys-

tem also used combined sensor data to eliminate jaw motion resulting from walking or non

feeding periods. An Artificial Neural Network was trained for subject-independent clas-

sification using features extracted from the sensors, and an accuracy 89.8% was reported

for the detection of food intake. However, in addition to the limitations of self-reported

ground truth, the authors highlighted an inability to detect liquid consumption through

jaw motion detection, and the need to investigate this further.

Other recent multi-sensor approaches have demonstrated a significant improvement in

accuracy of detected eating classifiers. Bi et al. [71] evaluated the combined use of EMG

and microphone for simultaneous collection of behind eat acoustic and EMG signals during

eating, conducting studies on 8 female and 12 ale participants (aged 21-30). They trained

a logistic regression classifier using a Leave-One-Person-Out strategy using the first 10

participants to compare EMG and microphone data for detecting eating. While they

reported accuracies greater than 90% for both combined EMG and microphone sensors,

and for microphone sensor data alone, they concluded that acoustic signals were better

suited to eating detection and repeated the experiment with a further 10 participants, just

collecting acoustic data. They reported a final accuracy of 90.9% for the classification of

chewing using a logistic regression classifier.

Another paper by Bedri et al. [72] presented the ”EarBit”, a wearable system consisting

of a behind ear worn inertial sensor and optical proximity sensor, a back worn inertial

sensor, and a neck worn microphone. However, in their final system they used only behind

ear inertial sensors for the detection of eating and the back worn sensor for eliminating

significant body motions. They trained a Random Forest classifier using a leave-one-out

strategy for two scenarios: a lab study and an ”in the wild” study. In the lab study they

collected data from 9 female and 7 male subjects (age: 19-25), and used data from 10

subjects to produce a classifier capable of detecting chewing with an accuracy of 90.9%.

In the ”in the wild” study they collected data from 10 participants (3 female, 7 male, age:

18-51), and resulted in a classifier with an accuracy of 80.1%.

The systems review here seek to eliminate some of the limitations associated with

traditional sensory systems, but they do not offer solutions for assessment of parameters

from small, exposed, and flexible areas of the body. EMG is an approach that may

be better suited monitoring of eating, but electrodes are typically affixed to the skin
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of the face and neck using adhesive tape, which is indiscreet and not suited to long-

term monitoring. Some wearable solutions, such as collar mounted electrodes, permit

more permanent sensing, but have been described as uncomfortable [65]. One additional

wearable modality of note is that of “skin-like”, or epidermal, sensors. Proposed by Kim

et al. [74], these are lightweight, flexible, conforming robustly and unobtrusively to the

skin surface, and offering intimate integration without causing motion constraints [159].

Chapter 3 explores in more detail the biomedical applications of such sensors for mobile

and long-term sensing, and for overcoming many issues of wearable sensors for detecting

eating.

Differentiating Between Food and Predicting Intake Volume

Although approaches for the detection of intake differ in the studies discussed thus far, they

all have similar goals in mind: the elimination of inaccurate self-monitoring techniques.

The majority of the studies here have focused upon the premise of detecting bites, chews,

swallows, or other eating gestures that signify food intake. In addition to identifying

intake, a possibly important factor to monitor is the content and volume of ingested

food. For food volume estimation, image recognition has been proposed as a means of

estimating food quantity on a plate. For instance, Liu et al. [160] developed a system for

monitoring intake and producing an automated visual intake volume log, using an ear worn

microphone and camera. They developed a feed-forward neural network for classification of

eating based on acoustic signal data captured from 6 participants within a university staff

restaurant, manually annotated with ground truth. They trained the neural network using

60% of the collected data and tested using 40%, and reported an accuracy of approximately

82% for eating detection. For food volume logging, they presented a key frame detection

method, a normalised colour histogram used to determine intake volume. The authors

reported difficult quantifying the accuracy of this approach, but reported a high degree of

correlation between estimate intake volume over time and ground truth.

A similar technique was employed by Okamoto and Yanai [161], using a smartphone

camera to capture food images for calorie estimation. Their system estimated food region

and dish localisation to isolate food in images and determine food quantity, and then

employed a Convolutional Neural Network trained using the ILSVRC 2012 data set of

food images and categories to detect food type. Calorie content was estimated based
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on a quadratic curve estimate of the estimated food size from food images compared to

calorie content, the model trained using 60 food images. They tested this approach using

a further 60 test food images, and reported an error of 21.3% for calorie estimation.

Although image based food content and calorie estimation is an interesting approach

for streamlining dietary intake monitoring, it still relies upon user adherence to self-logging

in order to capture intake accurately. The use of wearable sensors to capture eating

function, as discussed previously in this section, helps to alleviate some of these issues and

track eating in an automated way. The article by Sazonov et al. [162] builds upon this

premise, using data collected in previous work [157] to predict intake volume based upon

detected chews and swallows.

For the detection of eating, their algorithms assumed that a high frequency of swallow-

ing or presence of chewing was an indication of solid food ingestion, while a high frequency

of swallowing and lack of chewing indicated liquid ingestion. Their algorithm was capable

of 93.3% accuracy for intake detection, and 95.5% for the differentiation between solids

and liquids. For determining the mass of food and liquid, the authors describe mathemat-

ical models resulting in an accuracy of 91.8% for estimating the mass of solid food, and

an accuracy of 83.8% for the prediction of liquid mass.

The equation proposed by Sazonov et al. for the estimation of solid food mass was

given as:

MS = 0.5(M̄S
SW ×NSW +MCHEW (2.1)

where M̄S
SW was the average mass of a solid food swallow, NSW was the number of swallows

during food intake, MCHEW was the average mass per chew and NCHEW was the total

chews. The equation for predicted mass of liquid consumed was based upon average mass

per swallow (barML
SW ) and number of swallows (NSW ):

ML = M̄L
SW ×NSW (2.2)

A similar approach was proposed by Amft et al. [163], for the detection of food type

using the pattern of drinking and eating events, based on perceived detection using ges-

ture, chewing, and swallowing sensing. In this approach they modelled eating events as

probabilistic grammars, and their models resulted in an accuracy of approximately 80%

for the classification of 8 food types for an individual subject.
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The studies examined here have a number of limitations. The majority of them pro-

pose initial prototype systems, making use of a relatively small subject pool and data

sets to develop detection algorithms and evaluate the sensing systems. Furthermore, they

vary considerably in approach, technology, and classification techniques, and rely on tech-

nology which is unsuited for long term, comfortable, or unobtrusive monitoring without

further research. The study of different wearable devices and usage adherence amongst 13

participants (6 considered obese, 8 female, and 5 male, with an average age of 32.8±12.5)

by Alharbi et al. [164] highlights some potential issues of such wearables. Their study in-

volved the use of and eating detection suite consisting of cameras worn on the upper torso,

and wrist and neck worn sensors, conducting interviews and evaluating camera footage to

determine how participants managed usage of the suite and privacy concerns. They found

that participants disabled or obscured cameras to maintain privacy and determined that

the size, attachment, ease of use, aesthetics, and perceived stigma of using the device were

all factors that impact adherence.

Although the techniques presented in these studies exhibit some possible limitations

they all demonstrate the potential for automated monitoring eating. In particular, the

models presented by Sazonov et al. [162] and Amft et al. [163] present techniques by which

the volume and type of food content can be predicted, based solely on eating function.

This has significant implications for all approaches of feeding detection which measure

chewing and swallowing.

2.2.3 Physiological Sensing and EMG Evaluation of Chewing and

Swallowing Function

While attempts to produce a complete automated system for eating detection have in-

cluded a variety of different approaches, few of them make use of Electromyography and

muscle activity as the sole means of detecting chewing or swallowing. Instead these rely on

different sensing modalities for the measurement of chewing and swallowing parameters,

arm motion, or a combination of these. However, Electromyography has a long history

for the analysis of muscle activity related to eating function, in addition to the assess-

ment of abnormal swallowing functionality (as described in section 2.1.2). This technique

however, is also widely considered insufficient for reasons of aesthetics and comfort. For

instance, collar mounted EMG has been reported uncomfortable and unsuited to long
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term monitoring by Amft and Troster [65].

Despite this, with the emergence of epidermal electronics [74] and other less obtrusive

modalities for surface electromyography (as described in section 2.2.2) lend themselves

to automated monitoring of eating information. This includes tracking of dietary intake,

eating patterns, or monitoring of information useful for assessment of feeding impairments.

The evaluation of these parameters and potential application described in the literature

are reviewed here.

EMG Characteristics During Chewing and Swallowing

The relationship between muscle activity and mastication or facial expressions has been

investigated using Electromyography for a substantial period of time. An early study

by Ingervall and Thilander [57] evaluated the muscular activity of 25 boys and 27 girls

aged 9-11 years. During this study EMG measurement was recorded from the anterior

and posterior temporalis, masseter (mastication muscles), and orbicularis oris (upper lip),

during chewing, swallowing and maximal contraction. They demonstrated a significant

correlation between the masseter and temporalis during all exercises, but more significant

during chewing and application of maximal force. This demonstrated the temporalis and

masseter as some of the primary muscles of mastication.

Green et al. [5] also studied the association between EMG measurement and eating,

presenting the development of chewing in 4 children between 12-48 months old. For each

subject they recorded EMG of the masseter, temporalis, and anterior belly of the digastric

during eating, and used a threshold derived from the standard deviation of the muscle at

rest as a reference for determining onset of muscle activity bursts. The authors determined

that the basic chewing patterns were established by 12 months of age, and observed that

chewing efficiency improved and muscle activation strengthened throughout the study

period. They also highlight the reciprocal nature of muscle activity patterns associated

with chewing, which became more synchronous and defined during subject development

(as demonstrated in figure 2.10, reproduced from [5])). Along with this, a decrease in

duration and variability of EMG bursts over this period were considered by the authors

to be indicators of an increase in chewing efficiency.
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Figure 2.10: Plots showing the raw and rectified EMG signal of a subject at 12
month old and 24 month old. Shown are EMG measurements from the masseter
muscles (RMass and LMass), the temporalis muscles (RTemp and LTemp) and
the anterior belly of the digastric muscle (ABD). 48 months (below) demonstrates
a characteristic pattern of EMG activity bursts for chewing sequences, and the
rectified signal (bottom right) demonstrates onset and termination points of EMG
burst associated with a single chew. Example reproduced from [5].

Evaluation of Chewing and Swallowing Function

A more in depth evaluation of mastication using EMG was conducted by Kohyama et al.

[6] who studied the effects of age and dental status upon mastication amongst 19 elderly

subjects (13 female and 6 male, aged 58-72 years), using EMG recorded from the masseter

and anterior temporalis muscles during consumption of 6 food types. They determined

that chewing time parameters increased and total EMG energy per chew decreased in

correlation with reduced dental capacity with reduced dental capacity and increased age.

Similarly, Moreno et al. [60] evaluated clenching, chewing and swallowing from 45 sub-

jects (12 male and 33 female, age 22-29) with varying dental capacity during drinking,

chewing of food and clenching of the jaw. They determined a high amplitude of the di-

gastric during swallowing, and high amplitude from the masseter and temporalis during

chewing and clenching, along with differences in muscular activity during mastication and
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contraction, correlating with dental capacity. These masticatory studies demonstrate the

possibility for isolating individual chewing cycles using EMG of the masseter and tem-

poralis muscles. Furthermore, the differences in recorded activity demonstrate potential

application of EMG for evaluation of dental status based on chewing and assessment of

muscle contraction.

Electromyography has also been used fairly extensively to study the physiological pro-

cesses involved in swallowing functionality. This includes a number of studies comparing

normal and abnormal swallowing [165, 166, 167, 168], but of note was an evaluation of

300 adults with normal swallowing function, conducted by [62], Vaiman et al. [169] to

determine typical characteristics of swallowing from various muscles of the face and neck.

Measurements were obtained during dry (saliva) swallow, liquid swallowing, and stress

test liquid swallowing (large quantities of liquid). The authors tentatively concluded that

the initial oral stage of swallowing is associated with the masseter muscle and orbicularis

oris; the final oral stage with the masseter and submental muscles; the pharyngeal stage

with the masseter, submental, and laryngeal strap muscles; and oesophageal stage with

submental and laryngeal strap muscles. Figure 2.11 shows an example given by Vaiman

et al. [169] showing typical pattern of swallowing and the different stages, from the dif-

ferent muscles. Vaiman et al. [169] concluded that timings of swallows, signal amplitude,

and pattern of activity are parameters important for swallowing evaluation.

A study by Schultheiss et al. [170] also attempted to evaluate swallowing function,

using combined EMG and bioimpedance measurement. They conducted an evaluation of

speech, head motion, and swallowing of different solid and semi-solid foods, as well as dif-

ferent volumes of water amongst 31 participants (15 male and 16 female, aged 32.5± 7.8)

using both surface and subcutaneous (needle) electrodes for EMG and bioimpedance mea-

surement. They found significant differences between head motion, speech and swallowing.

Differences were also identified between liquid swallowing and other consistencies, based

on the duration of preparatory stages of swallowing, maximum laryngeal elevation, and

peak EMG amplitude during swallowing. They also identified differences between swallow

volume (saliva swallowing and different water volumes), based on duration and speed of

laryngeal elevation, duration of swallow, and integrated EMG (defined in table 2.2) over

the swallow. The authors conclude that the combined system may be used to identify

differences between head motion and swallowing of different food consistencies and vol-
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Saliva Swallow Water Swallow

Figure 2.11: Example of typical rectified EMG signal pattern during the swal-
lowing of saliva (left) and liquid (right). Shown left : Reproduced from [169] -
upper peak represent the masseter muscle signal, lower peak represents the sub-
mental muscle activity during saliva swallow. Shown right : Reproduced from
[61] - upper peak represents activity of the submental muscles, middle peak rep-
resents activity of the masseter, and lower peak represents the activity of the
infrahyoid muscles during a water swallow.

umes. Together these studies demonstrate potential for the identification and evaluation

of swallowing from recorded EMG signals, and indicate a number of muscles which are

useful for measurement.

EMG for Dysphagia Screening and Monitoring

A natural extension of the study of normal swallowing physiological processes using EMG

is its application towards the assessment of abnormal swallowing. As discussed in sec-

tion 2.1.2, Surface Electromyography has been investigated as an alternative tool for the

evaluation of swallowing physiology and treatment of swallowing disorders. One which is

non-invasive and with potential as an initial screening technique and support for ongoing

monitoring [61].

Crary and Baldwin [165] described an early attempt to fully evaluate and compare

swallowing characteristics using surface electromyography amongst dysphagia sufferers

and healthy subjects. Comparing the swallowing performance of 6 patients with dysphagia

and 6 without, while holding water in the mouth, and during dry (saliva), low volume,

and high volume water swallowing. Compared with normal subjects, they found that

dysphagia patients demonstrated greater amplitude and more variable signal patterns in
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Figure 2.12: Example of EMG equipment and electrode placement for assessing
various muscles related to food swallowing and dysphagia. Reproduced from [62].

the infrahyoid and perioral muscles, as well as reduced swallow duration.

Ertekin et al. [166] similarly made use of EMG to assess swallowing function, describing

development of the “dysphagia limit”, a method for evaluating swallowing function and

screening for dysphagia based on the lower limit of water volume at which piecemeal

deglutition was observed. They found that the “dysphagia limit” amongst 30 normal

subjects was 20ml, while 66 dysphagia patients had a lower limit of between 1ml and 20

ml of water. A follow up study by Ertekin et al. [167] used this approach to evaluate

58 Parkinson’s patients, 31 of whom were determined to be dysphagic. They reported

a significantly greater duration of muscle activity amongst patients with dysphagia than

those without, and a significant delay in swallow triggering time between normal and

Parkinsons patients. Another study, by Potulska et al. [168], also found a significant

difference in dysphagia limit between 18 Parkinson’s dysphagia patients (12 female and 6

male) and 22 healthy subjects (12 female and 10 male), using EMG characteristics of the

submental muscles to determine dysphagia limit [168].

More recent articles by Vaiman, Vaiman and Eviatar [61, 62] discuss the benefits of

surface electromyography as a screening technique for dysphagia, and the need for stan-

dardised procedures; through a review of common practices and observations of surface

EMG amongst 740 normal subject in previous studies. Figure 2.12 demonstrates recom-

mended electrode placement, given by Vaiman, for evaluation of muscles involved in oral,

pharyngeal, and oesophageal phases of swallowing. Vaiman also suggests dry swallowing,

voluntary swallowing of a small quantity of water, swallowing a substantial quantity of
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water, and continuous drinking of 100ml of water as screening tests. Identification of ab-

normal swallowing is also described, based on evaluation of swallow timing, amplitude of

the surface EMG measurement, and shape of the signal during swallowing. Vaiman con-

cludes that surface electromyography is an inexpensive, fast, and non-invasive screening

technique. However, the current state of EMG as a solution still requires bulky equipment

and indiscreet sensor placement, as can be seen in figure 2.12.

EMG for Evaluation of Foods with Different Textural Properties

As discussed in section 2.1.5, food volume, texture, and other properties are known to have

an effect upon eating behaviour, function, sense of satiation, and are also connected with

the physiology of feeding. There has also been a significant amount of research attempt-

ing to evaluate the association between food texture or viscosities and characteristics of

chewing or swallowing using EMG, particularly in the case of mastication [171, 172]. The

article by Horio and Kawamura [172] reported EMG measurement of the masseter muscles

in 29 subjects during consumption of 5 foods with differing hardness qualities, and the

impact of food hardness upon EMG amplitude and chewing characteristics. They found

that signal amplitude increased in correlation with food hardness, along with an increase

in the number of chewing strokes and duration of chewing sequence prior to swallowing.

Based upon this, they concluded that chewing force and thoroughness is related to food

hardness.

Later studies by Lassauzay et al. [58] and Peyron et al. [59] similarly used EMG to

analyse the consumption of four gelatine based foods varying in hardness. 15 male sub-

jects (aged 22.6±1.3 years) underwent simultaneous EMG measurement of the temporalis.

EMG activity bursts were determined using an algorithm based on the premise of signal

activity exceeding amplitude of 10% above the average baseline amplitude, and a required

interval of 0.2-1 seconds between chewing bursts to differentiate between different cycles.

Their findings demonstrated a number significant parameters which increased in correla-

tion with food hardness, including masticatory time (duration), work across a chewing

cycle (the sum of EMG signal during a chewing sequence divided by number of bursts).

Beyond food hardness, some studies have attempted to quantify the effect of food

textures upon chewing using Electromyography. Mioche et al. [173] evaluated EMG mea-

surement of the masseter and temporalis muscles of 36 dental students (19 male and 17
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female, aged between 19-22) during the consumption of 5 foods with differing textural

properties. The findings of this study demonstrated total muscle work and chewing se-

quence duration increasing steadily with food hardness, and an increase in activity of

the non-active masseter and temporalis during chewing of firmer, less elastic food items.

They describe the temporalis muscle as more significantly influenced by food texture than

the masseter muscle, but concluded that further research is needed to evaluate possible

sources of variation in mastication of different food items. Similar findings were described

by Foster et al. [174] who evaluated mastication of plastic (chewy caramel confections) and

elastic (gelatine based confections) food types with differing hardnesses, based on EMG

recordings from 15 male dental students (aged 24.1 ± 1.9 years). Foster et al. concluded

that an increase in food hardness or plasticity resulted in masticatory adaptation via an

increase in muscular activity and frequency of chewing cycles.

Papers by Miyaoka Yozo et al. [175] and Miyaoka Y. et al. [176] extend the find-

ings of previous research, proposing the “TP ” value as a new measurement feature for

the evaluation of EMG properties of different foods. This was calculated by finding the

cumulative sum of the signal amplitude across a cycle of EMG activity and mapping it

onto the normalised duration of the same cycle. As such, TP is defined as the normalised

time point across an EMG cycle at which point P percent of the total cumulative EMG

has occurred; so TP when P = 50 correlates with the time at which 50% of the total

cumulative EMG has occurred during the cycle. Miyaoka Y. et al. [176] made use of this

parameter to evaluate EMG of the masseter muscles of 10 subjects (7 male and 3 female,

average age 20 years) during chewing of 6 foods with varying hardness and fracturability

[176]. The authors reported a positive correlation between TP and food hardness, and a

negative correlation with fracturability. They also reported a reduction in chewing cycles

associated with increased food fracturability and increase in adhesiveness.

Another study by Miyaoka Yozo et al. [175] attempted to evaluate 5 taste qualities

of structurally identical (semi-solid) foods using this parameter. EMG of the suprahyoid

muscles was recorded and TP values calculated for each swallow cycle, with 9 TP between

10-90% of the cumulative EMG. The authors reported a significant difference in TP val-

ues between differing taste qualities during the first data collection, but not the second.

Miyaoka Yozo et al. suggest that the initial differences could result from taste novelty,

indicating that physiological differences associated with taste qualities are not necessarily
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permanent. However, based on the findings of their other study, it can be concluded that

textural properties are more consistent due to necessary physiological function of chewing

activity related to the breakdown of foods with different hardness and fracturability.

2.2.4 EMG for the Detection of Chewing, Swallowing, and Related

Parameters

Although there has been considerable research into evaluating eating function using EMG

and the effects of food and other parameters on muscle activity, there have been fewer

reported attempts to use EMG for automated detection of such activity. One system, re-

ported by Nahrstaedt et al. [177], proposed the use of the combined EMG and bioimpedance

system for the automated detection of swallowing activity. The algorithm consisted of two

parts: segmentation of the recorded signals and detection of swallow onset and termina-

tion, followed by feature extraction and classification. Signal segmentation consisted of

signal valley detection, using a piecewise linear approximation of the bioimpedance signal

and detection of amplitude decline followed by an incline. Features extracted from signal

segments included time and energy parameters of the EMG and bioimpedance signals.

A Support Vector Classifier (SVC) algorithm using a Gaussian radial kernel was trained

using data from 9 subjects (2 female and 7 male, mean age 27.4 years) and tested using 4.

The authors reported 93% accurately detected swallows using the signal segmentation al-

gorithm, but a very high degree of false positives. Inclusion of the classifier model resulted

in a higher degree of accuracy with sensitively of 96.1% and specificity of 97.1%.

Alternative systems have been developed which rely entirely upon EMG measurements.

For instance, a number of recent studies have reported the development of complete eating

detection and intake evaluation systems based upon the use of “smart glasses” [178, 179,

180]. Conceptually, these consist of glasses equipped with electrodes within the arms,

for measurement of EMG from the temporalis muscles (an example can be seen in fig-

ure 2.13), thereby eliminating many limitations of traditional adhesive EMG electrodes.

Using this modality, these studies attempted to detect chewing from EMG recordings,

and also to evaluate dietary content based upon characteristics of chewing sequences and

other parameters.

The first of these system is described in the article by R. Zhang et al. [178]. They

collected EMG measurement from 8 participants (4 male and 4 female, aged 20-56 and
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Figure 2.13: Example of Smart Eyeglasses for EMG measurement of the trapez-
ius muscles, developed by R. Zhang and O. Amft [180]. (a) Overview of the
glasses. (b) Close up of the electrodes embedded within the glasses frame. Re-
produced from [178], © [2018] IEEE.

without dental problems) during eating of 5 foods under controlled lab conditions, to de-

velop an evaluate the performance of their classifier algorithms. The study compared two

chewing detection algorithms: a threshold based algorithm, detecting periods of activity

where the filtered and rectified signal exceeded a given threshold for duration of 0.4-1s;

and the “transition index” onset detection technique described by Abbink et al. [181] (dis-

cussed further in section 2.3.3). For the transition index algorithm they reported recall

and precision of approximately 50%, compared with an approximate recall and precision

of 80% for the threshold algorithm. They attribute the difference in performance between

results reported by Abbink et al. [181] and their own implementation differing electrode

placement.

For detection of food types, they selected 20 unspecified features extracted from “pre-

onset, onset-to-offset, and post-offset” [178] segments of the signal. Random Forest (RF)

and Linear Discriminant Analysis (LDA) classification algorithms were trained using 10-

fold cross validation of all subject data. They obtained an accuracy of 57.2% for the RF

classifier, and 46.8% for the LDA. Applying a voting filter across chewing cycles within

a single chewing sequence resulted in an improved average accuracy of 74.8% for RF and

56.2% for LDA. They concluded that the low accuracy was the result of confusion between

foods with similar hardness textural properties.

A similar system was proposed in the paper by Q. Huang et al. [179]. In this study,

evaluation of the chewing algorithm was conducted using EMG of 4 participants (aged
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between 20-30, BMI between 19-32) during seated consumption of food over a 40 minute

period. The chewing detection algorithm reported in this paper was based on two stages

of detection: the use of data variance analysis to determine periods of potential eating

activity, where variance exceeded a predefined threshold; followed by chewing detection

based upon given thresholds for peak-to-baseline amplitude, chewing cycle duration, and

a number of chewing cycles in a chewing sequence. The authors report an overall accuracy

of 96% during evaluation of this algorithm, however they also reported false positive chew

detection during speech, laughter, or other activities relating to jaw motion. The authors

conclude that the real time nature of this algorithm would permit the provision of feedback

regarding eating, making it useful for encouraging behaviour change related to eating rate.

For food classification, Q. Huang et al. [179] extracted peak-to-baseline amplitude,

chewing cycle duration, and TP values (as described in previous work by Miyaoka Yozo et

al. [175]), per chew cycle. The number of chewing cycles per sequence was also included.

One fifth of all data was randomly extracted for testing purposes and the remaining

data used to train a J48 decision tree, which resulted in accuracies between 69.2%–94.8%

reported across the different foods.

As follow up to their previous study, R. Zhang and O. Amft [180] presented another

algorithm for the detection of chewing activity, and report attempts to classify food based

on hardness parameters. The developed algorithms were evaluated using data captured

from EMG measurement of 10 participants (6 male and 4 male, aged 25.1 ± 2.1, BMI

23.8± 2.1) during a lab session involving the consumption of 3 different foods, and “free-

living” monitoring sessions involving participants wearing the glasses (shown in figure 2.13)

over the course of a normal day, clenching their teeth repeatedly to indicate the start or

end of a meal, and self-logging activity using a diary.

The chewing detection algorithm reported by R. Zhang and O. Amft was adapted

from the transition index detection method (see section 2.3.3), and resulted in a chew-

ing detection accuracy of approximately 94% across all participants under experimental

conditions. However, during a “free-living” study, involving normal daily activities, this

accuracy of this algorithm was found to drop to approximately 78%. In addition to this,

chewing detection accuracy was reported to be determined by comparison of smart glasses

signals with those collected from reference electrodes. As such, this might instead be con-

sidered a measure of correlation between reference and test electrodes, rather than a true
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accuracy metric. Furthermore, ground truth in the “free-living” scenario was confirmed

using self-logging; which has been reported as unreliable or prone to bias in this paper

[180] and other literature (as discussed in section 2.1.6). For in lab food classification,

features were extracted from the lab recorded EMG for each chewing cycle and averaged

across each chewing sequence. The authors reported 94.7% accuracy for food classification

using a Linear Discriminant Analysis classifier model.

A high degree of accuracy was reported for chewing detection and food classification

in all of these smart glasses based systems. However, these studies only evaluated ac-

curacy based upon a small number of subjects, and mostly under controlled conditions.

In addition to this, for food classification no attempts were made to evaluate classifiers

ability to classify food on a subject-independent basis, making it difficult to determine

the ability of classifiers to generalise to truly unknown subjects. Food classification was

also based purely on detected chews. Swallowing information has been demonstrated as

useful for evaluating foods (section 2.2.3), and reported as important for the prediction of

intake volume by Sazonov et al. [162]. The exclusion of such information in these proposed

systems results in the potential loss of important information for intake assessment.

The systems reviewed here demonstrate the potential of EMG and related approaches

for the evaluation and detection of chewing, swallowing, and even for identifying food con-

tent. However, the approaches reported above are primarily prototypes and are developed

and evaluated using relatively limited protocols. There is a clear need for further investi-

gation into such systems and their impact upon research and within clinical applications.

2.2.5 Eating Technology and Wearables for Support of Rehabilitation

and Health Related Behaviour Change

The previous section (section 2.1.6) outlined issues of existing techniques for monitoring

and feeding and dietary intake, focusing particularly on the inherent error of self reporting.

Thus far in this section, the state of the art of physiological sensing and wearable sensor

modalities have been discussed. These technologies are reaching a stage in which they

can be leveraged in a mobile and continuous manner for ubiquitous monitoring of feeding,

thereby overcoming many issues related to monitoring eating function and behaviour.

Such automated monitoring systems also help to resolve other limitations involved in

the treatment of eating disorders and abnormalities; specifically the lack of motivation,
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engagement and self-efficacy, and problems ensuring adherence to treatment [101].

In particular there is scope for the use of these technologies alongside persuasive and

feedback systems to support adherence to treatment, encourage positive behavioural and

functional change, and motivate and engage users. In their paper discussing persuasive

technology for human well-being, IJsselsteijn et al. [182] describes it as a “class of tech-

nologies that are intentionally designed to change a person’s attitude or behaviour,” in

a voluntary manner. Improvements in sensing and mobile technology (such as that dis-

cussed previously) mean that context specific persuasive feedback is becoming possible for

a range of potential health related applications.

IJsselsteijn et al. suggests that these technologies can be utilized to encourage and

reward healthy behaviours and learning experiences through the “engaging interactivity

and subtle reward structure of computer games”. However, they also highlight challenges

related to sensor and classification algorithm quality, a shortage of long term studies into

their effects and benefits, and a need for ethical debate around persuasive technology.

While there has since been significant research into sensors and detection algorithms, the

discussion of the literature thus far in this chapter still highlights these as challenges in

current research.

Persuasive Technology for Healthy Behaviour Change

A particular health-related use of persuasive technology is for dietary and fitness be-

haviour change. As discussed in section 2.1.7 technology, particularly mobile platforms, is

becoming an increasingly common tool for the logging intake and exercise in research [140,

45, 141], and in the commercial domain [38, 39, 40, 41, 42, 43]. Research into this area

suggests that the use of mobile based applications improve adherence to diet and exercise

self-logging [101, 45], and indicates a correlation between mobile based interventions and

body weight change [141].

In addition to logging fitness activity, persuasive approaches can be used in conjunction

with wearable sensors to encourage attitude change in regards to fitness. Miller and

Mynatt [183] describe the use of a fitness support approach involving wearable pedometers,

weekly social meetings, and a social website displaying daily step counts from users and

hosting a game to which access was granted as a reward to achieving daily activity targets.

They conducted a 4 week deployment of the system, monitoring usage and collecting
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survey data from 42 school students (45% male, 55% female, with a minimum age of

13 years). They found that the combination of wearable sensor, website for socialising

and posting encouraging commentary, and regular socialising meetings improved user

attitudes about fitness and increased sense of social support, and conclude that such

social computing systems can positively influence healthy behaviours.

Games for Persuasive Behaviour Change

As discussed by IJsselsteijn et al. [182], game environments are also useful for persuasive

technology systems. The paper by Erhel and Jamet [184] discusses the benefit of digital

game-based environments for motivation and learning effectiveness using am instructional

and quiz based health related game. They conducted two experiments to determine the

ideal instruction conditions for learning games, and to evaluate the effect of game feedback

upon learning. The first study involved 46 participants (22 male and 24 female, between

18-26 years of age), during which they evaluated two forms of learning game instructions:

instructional and entertaining. In the second study they then evaluated the effect of

correct response feedback upon 44 participants (16 male and 28 female, between 18-26

years old). From the results of the studies the researchers determined that game based

environments can promote learning, and improve motivation and engagement. However,

they determined that learning only improved through use of educational instruction, or

feedback to encourage active processing information.

A number of studies have presented persuasive games for promoting healthy dietary

or exercise behaviour. For example the paper by Grimes et al. [185] presents a learning

game to investigate the use of mobile games to teach adults healthy eating behaviours.

The proposed game was a role-playing game in which players took the role of a server with

the goal of recommending the most healthy meal as quickly as possible; characters losing

health based on how unhealthy the chosen food is, and players presented with “stoplight”

feedback about the selected foods healthiness. They deployed the game in a “in the wild”

environment, providing 12 participants (10 women and 2 men, between 31-55 years old)

with a phone pre-installed with the game. Participants were asked to play at least once a

week over a 3 week period and fill out short diary entries related to their use of the game.

Based on their findings, the authors concluded that the game helped participants engage

in the process of behaviour change.
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Another example of a persuasive game for dietary behaviour change is the mobile based

“LunchTime” game developed by Orji et al. [186]. Intended to affect long term dietary

behaviour and attitude changes, this game employs a combination of goal-based, feedback,

social influence, and reward mechanism techniques. Similar to other designs, players are

presented with a role playing scenario, visiting a restaurant, and tasked with selecting food

choices. Players are rewarded with points based on how well their food selection matches

different health goals, are sent daily “challenges” and performance feedback, and their

scores are presented on a publicly visible leaderboard alongside a custom social account

details. The researchers evaluated this game design using 3 male and 3 female participants

(between 19-40 years of age), all of whom had at least a high school diploma, and all of

whom owned and used mobile devices, computers, and internet on a daily basis. Each

participant made use of the game over a 10 day period and engaged in pre and post

evaluation surveys regarding eating habits and attitudes, and nutritional knowledge. The

researchers found that the game led to a positive attitude change related to eating and an

increase in nutritional knowledge, attributing the positive change to the “slow” nature of

the game permitting players to reflect on their choices. However, they also indicate that

the slow approach of the game is less effective for increasing motivation or engagement,

and acknowledge a need for a long term study of the effects of the game.

Persuasive games has also been demonstrated for motivating physical activity. For in-

stance, Berkovsky et al. [187] presented a system for encouraging physical activity through

two motivators: the chance to obtain extra time to complete the level by performing phys-

ical activity, and a virtual opponent who could be impeded through physical activity. A

wearable sensor was used to capture player physical activity (jumping). The design was

evaluated using 180 primary school participants between 9-12 years old (88 male and 92 fe-

male), and none of whom had prior experience with the game or limitations which would

prevent physical activity. The researchers concluded that engagement with games can

motivate physical activity and that physical activity did not negatively effect game enjoy-

ment. They also reported that direct game motivators (activity to gain more game time)

encouraged more activity than indirect motivators (activity to impede virtual opponent),

and that higher skill level reduced activity.

As well as for encouraging general physical activity, the motivating and engaging at-

tributes of games have also been leveraged for the support of physical rehabilitation,
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discussed in more detail in section 2.1.3. The paper by Biddiss and Irwin [111] reviews a

number of studies, supporting the findings of the activity motivating game described by

Berkovsky et al., and suggesting that games are an engaging medium for encouraing light

physical activity, while Baranowski et al. [112] proposed that they are useful for developing

news skills through modelling and feedback theory. As described in this previous section,

a number of papers have explored these beneficial properties for rehabilitation, such as

the study by Burke et al. [101] and reviews by Saposnik et al. [113] and Laver et al. [53]

both concluded that game based therapies were effective for motor function improvement

as an adjunct to traditional therapy.

Influencing Dietary Choices and Behaviour

The examples so far in this section have demonstrated the use of technology has been

demonstrated to support self-logging of activity and dietary intake, or for encouraging

reflection and an attitude change towards intake and exercise. The wearable technologies

and intelligent sensing solutions described earlier in section 2.2.2 and section 2.2 are also

useful for encouraging context specific eating change. A number of existing studies have

employed forms of eating monitoring technology along with creative persuasive technology

to encourage dietary choice consideration, manipulate satiety, or to encourage adjustment

of eating function via eating rate.

For example, Kadomura et al. proposed a sensing fork system for the detection of eating

behaviours, in combination with a persuasive game for addressing eating problems in

children [188]. The reported system consisted of a sensor fork equipped with accelerometer

and gyroscopes to detect eating hand motions, photocell sensors in the prongs of the

fork for estimation of food type based on color, and electrodes in the fork prongs and

handle, to help determine fork to mouth contact and for measuring food type based on

food resistivity. Using the combination of sensors, the device can detect “at-rest” and

“held” states based on accelerometer and gyroscope motion data, “poking states” based

on photosensor and resistance electrode measurement of food color and resistance, and

“biting state” when a complete circuit is formed between hand and mouth and the fork

orientation and motion are consistent with eating gestures. The authors report 62.5%

accuracy for a food detection support vector machine classifier, based on food color and

resistance data of 12 food types captured through fork tongs.
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In a later paper Kadomura et al. [189] assessed the accuracy of eating action detection

using this same device, on 3 male and 3 female participants aged between 21-28, report-

ing an accuracy of 77% for the detection of biting actions. For food type classification

they expanded on their previous work and trained a support vector machine using 850

samples of 17 food types (stabbed by the fork prongs) trained and tested using 10 fold

cross-validation, reporting an overall F-Score of 87.5%, and an improved accuracy of be-

tween approximately 93%-96% when dividing foods into “Japanese, Chinese, and Western

cuisines”.

They also conducted a user study of a mobile based eating game, called “Hungry

Panda”, driven by the fork sensor device, which was designed to address picky or distracted

eating amongst children by presenting entertaining interaction with a panda character

which responded to food consumption and color of food, presented virtual rewards, and

prompted continuation when the fork was put down. A real-life study was conducted

with 5 mother-child pairs (4 female and 1 male children between 2-8 years old), all of

whom exhibited picky eating and two who were reported to be distracted eaters, over 9

days. Mothers photographed food and recorded meals, took notes of eating behaviours,

and took part in a post-meal survey and interview. The researchers findings indicated

that the game helped improve picky eating and reduce distractions, but they also found

poor accuracy of the system when the parent fed the child, as the device relied upon a

complete circuit between hand, fork and mouth to detect biting.

Other proposed persuasive eating technologies make use of augmented perception of

food to influence eating. For instance, Narumi et al. [190] investigated some theories re-

garding factors that influence intake quantity (such as those discussed in section 2.1.5)

focusing on the concept that serving and perceived food size effects intake quantity [191].

Narumi et al. present the use of augmented reality head mounted display and a custom

algorithm for manipulating the apparent dimensions of held snack food items and investi-

gate the effect upon intake quantity. They evaluated the system using 8 male and 4 female

subjects, between 22-36 years of age, who were healthy and had no dietary restrictions.

Participants were evaluated using a within-subjects design during which participants at-

tended 3 lab sessions (separated by at least 2 days) during which they answered pre and

post meal surveys, and consumed cookies appeared under one of three different conditions

randomly ordered: normal, shrunk, or enlarged. The researcher reported a significant dif-
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ference between cookie apparent size and volume consumed, with participants consuming

more under the shrunk condition than large, with a similar effect reported for apparent

satiety.

A similar study conducted by Sakurai et al. [192] support these findings. In this study,

the researchers instead altered perceived food quantity through manipulation of plate size,

proposed as one of the techniques by which individuals estimate food volume [21]. In the

research by Sakurai et al. they project a virtual dish around food, altering the dish to

change the perceived volume of food. The authors conducted an exploratory study of 20

participants to determine the effect of projected plate size on consumed volume of cheese

pieces when the available food quantity remained constant. Their results indicate that

increasing the apparent size of food by reducing the ratio of projected dish size to food

reduced intake volume, while reducing the apparent food size by increasing dish to food

ratio resulted in increased intake.

Influencing Eating Rate Through Eating Technology and Feedback

As well as manipulating intake choice and manipulating intake volume and satiety, another

line of research has sought to apply persuasive technology and feedback for altering eating

rate. Studies by Zandian et al. [128] and Ioakimidis et al. [129], discussed previously in

section 2.1.5 (page 31), manipulated eating speed through the use of a “mandometer”

which estimated intake volume using a weight scale and provided eating rate feedback.

In these studies they evaluated the effect of faster or slower eating conditions, by asking

participants to eat meals with larger or smaller food portion at the same pace as during

a control meal. They used this technique to evaluate the effect of eating rate (mimicking

eating disorder patients) upon linear and decelerated eating patterns, and concluded that

linear eaters are at risk of developing eating disorder-like eating patterns when subject to

influencing stimuli.

A similar system was proposed by Kim et al. [193] to support patient with metabolic

syndrome in portion control and eating pacing. They presented a “smart tray” equipped

with weight scales and LED’s in 4 sections along with an accompanying smart phone

application. The application could be used to input patient physical details and activity

level to estimate recommended daily calorie and sodium content, and select meal types

from a list of options, as well as set desired eating pace. Calorie and sodium content was
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then estimated based on the measured weight of each food, and the tray LED’s used to

indicate when the portion size exceeds the recommended allowance. During eating the

weight of food and elapsed meal time is used to calculate eating rate, and the mobile

application provides feedback if the eating rate is too fast. The system was evaluated over

a 2 meal experiment with 3 male-female couples (average age = 60.1), where at least 1

member of each couple was a metabolic syndrome patient. Each session consisted of a

period plating up the food, followed by the meal. The researchers reported that the LED

notifications helped prevent “over-plating” food, and the eating rate feedback helped keep

eating pace. However, they also noted that patients tended to keep pace with their spouse,

and a need to further consider social impact upon eating rate pacing.

As well as scale based systems, other approaches have also been used to guide eating

rate. For instance, kim et al. [46] presented a wrist-band and tabletop unit system for

eating speed guidance. This system consisted of a bluetooth wristband equipped with ac-

celerometer and gyroscope sensors for estimating eating rate from detected eating gestures

(based on wrist motion rotation exceeding ±70degrees/sec for 200ms) and a predefined

time for a bite. Feedback is presented by a tabletop hourglass ‘stoplight’ (showing red,

yellow, or green as they complete eating gestures), or via tactile feeedback through the

wristband (a 2 second vibration when they eat faster than the predefined time for eating

gestures). They evaluated the system in a pilot lab study of 22 female and 23 male par-

ticipants between 17-31 years old (mean = 22.68). Participants were divided into control

(no device), tactile feedback, and visual feedback groups, and each took part in a video

recorded session consuming 30 grams of potato chips. The researchers reported a signifi-

cant difference between the control, visual, and tactile groups, and a significant difference

between control and tactile feedback for number of bites. The researchers concluded that

eating rate feedback could contribute to altering eating speed, and tactile feedback leads

to reduced food quantity consumed per bite.

Another approach, proposed by Kim and Bae [194], makes use of smart phone cam-

era to track facial bite gestures (mouth opening) based on the relative position of user

mouth and nose. Mouth opening gestures were used to determine hand motion from food

to mouth, and the time to move from plate to mouth along with time to chew a bite

identified as factors contributing to eating rate. They also proposed animated, emoji

based feedback which could capture eating states and provide alerts when the eating rate
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exceeded predefined levels. However, this paper presented a prototype system and did

not provide details evaluating its performance, which the authors identify as a target for

future work.

Eating Technology for Diet Tracking

The literature discussed above outlines a number of uses for creative eating monitor-

ing technology for encouraging healthy eating, influencing dietary choices and eating be-

haviour, and guiding eating rate towards healthier eating function. Another application

for such technology is for logging of dietary content in consumed meals. As discussed

in section 2.1.4 logging of food intake is one of the main techniques employed in clinical

and personal eating behaviour change and treatment of behavioural therapy for eating

disorders. However, manual logging has an inherent error associated with it and is reliant

upon patient adherence to logging. As discussed in section 2.1.7 and earlier in this section

(section 2.2.5), mobile based applications are also helpful for adherence to food logging,

but do not entirely solve the issue.

Ye et al. [195] suggested a semi-automated approach to improve upon food logging

adherence, through use of hand eating gesture detection. In the proposed system they

used a accelerometer equipped wrist band to detect wrist motion and transmit data via

bluetooth to a smartphone application detected eating gestures using a Support Vector

Machine classifier. Upon detection of eating the wrist band vibrated and displayed a

message to remind the user to visually log food using an associated application, which

they could accept or reject. Ye et al. conducted a 2 week study of 6 male and 1 female

participants, aged between 20-28 with no specifically set dietary change goals. Usability of

the system was estimated daily by a 12 item questionnaire, and was reported to be rated

highly. They estimated precision of eating detection based on the number of reminders

and negative or positive logging responses, which they reported as 31%± 8%. Finally, the

authors reported a high correlation between eating reminders and logging sessions, and

concluded that it helped participants sustain logging.

Fully automated intake monitoring technology can further help to solve many of the

issues involved with food logging. Section 2.2.2 (page 45) discussed some technology based

approaches which have been proposed to aid in food logging, or food type estimation.

For instance, Liu et al. [160] suggested a eating detection system (driven by acoustic
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classification of eating) and camera for producing automated visual logs of consumed food,

and Okamoto and Yanai [161] presented a system for estimating food calorie content based

on smartphone captured images driven by a Convolution Neural Network with an error

of 21.3%.

In an attempt to quantify the clinical benefits of food logging, Kim et al. [37] conducted

a clinician based evaluation of a meal logging system. They interviewed 5 clinician during

the development of their system to identify clinical requirements and determined that

for lifestyle diseases clinicians need to monitor patterns in nutritional content, calorie

intake, and daily distributions from food intake records. While for conditions requiring

weight and food management they need to monitor maintenance of regular diet. They also

determined that clinicians viewed adherence as a major issue in using logging applications.

They then developed a patient mobile application for logging fullness after a meal along

with other user determined food information, which was designed with an emphasis on

high accessibility and low effort to increase adherence. A web interface was developed

alongside the application to permit monitoring of the data by clinicians and researchers.

Kim et al. then conducted an 8 week study was conducted involving 6 clinicians,

who recruited a combined 20 participants (10 male and 10 female between 25-71, with

varying professional demographics), during which patients logged food intake and wore

a fitbit to monitor activity and sleep, and took part in pre study nutritional interviews.

Two checkups evaluating clinician data usage revealed a high rate of data collection and

food journalling adherence, but high adherence was determined to be the result of clin-

ician involvement and a reminder sticker attached to phone devices. From the review

of clinician data usage and interviews, they determined that clinicians were interested

in cross-referencing food intake data with other lifestyle data, but the lack of evidence

regarding such relationships merited further research.

These findings exemplify one of the main issues involved in eating technology for

behaviour change or for research. The studies discussed in this section indicate some

interesting correlations between eating technology and the benefits of such devices for

monitoring intake, or in conjunction with persuasive technology for motivating adherence

to food journalling, or for healthy eating change. But, as in the case of the study by [37],

while there are promising results the lack of evidence and difficulty in collecting data make

it hard to make any final conclusions regarding the influence of these technologies over
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eating, or the benefit for research and clinical treatmet.

2.3 Considerations for EMG Measurement and Intake

Classification

An overview of the principles of EMG was discussed in section 2.2.1, and a more detailed

discussion in section 2.2.3 reported its use for the evaluation of parameters relating to eat-

ing function and food textural properties. However, given the wide variety of techniques

employed in the literature, there are a number of important factors to consider regarding

EMG measurement, sensor placement, signal preprocessing and detection, feature extrac-

tion, and EMG classification. This section encompasses literature recommendation and

reiterates over some previously discussed topics regarding these areas, with a focus upon

implementation and techniques related to measurement, processing and classification.

The first consideration for the acquisition of surface EMG signal is sensor placement.

The selected position for placement of electrodes upon the surface of the skin during

Electromyography is dependent upon the targeted muscle for measurement. The muscles

related to eating, of the face and neck, are relatively interconnected and section 2.3.1

discusses potential muscles of interest outlined within the literature and related position-

ing of sensors. EMG signals are naturally noisy due a number of factors and there are a

number of recommendations for reducing such noise as part of or after acquisition, which

are discussed in section 2.3.2. Section 2.3.3 then reviews a number of approaches for the

detection of muscle activity onset and terminations which have been proposed within the

literature. Finally, machine learning may also be useful as part of the signal processing

process, for the detection of signal activity periods, or for other signal classification pur-

poses. Machine learning, associated algorithms, and feature extraction approaches are

discussed in section 2.3.4.

2.3.1 Sensor Placement

As a means for evaluation or the detection physical activity, Electromyography requires

careful sensor placement to capture muscle activity related to target specific muscles which

are employed in the activities of interest. In the context of this thesis, there are a number of

interconnected muscles relating to chewing and swallowing [76], which are also associated
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with other jaw motion, facial expressions, head motion, and speech [196, 13]. The anatomy

and physiology of eating processes were discussed in section 2.1.1, and figure 2.2, adapted

from [76], shows muscles related to chewing and swallowing.

For EMG placement, Criswell and Cram [73] provide details regarding specific mus-

cles, electrode placement, and exercises which demonstrate activity from these muscles.

Muscles associated with feeding processes are indicated in the figure earlier in this chapter,

and figure 2.14, adapted from [73], shows many sensor placement positions detailed by

Criswell and Cram [73]. They suggest wide placement of electrodes across the temporalis

and masseter for the general measurement of mastication and facial muscles (figure 2.14,

a). The Anterior Temporalis is recommended for information regarding mastication and

mandible motion during jaw clenching, jaw motion, and swallowing (figure 2.14, c). The

masseter provides similar information regarding mandible elevation, jaw closure, grinding,

and mastication, and is active during teeth clenching, swallowing, and talking (figure 2.14,

b). Finally, the muscles of the suprahyoid (or submental space) is also related to mandible

motion (jaw opening), but is more heavily associated with larynx elevation during swal-

lowing activity (figure 2.14, d).

For dysphagia assessment, Criswell and Cram [73] suggest monitoring the suprahyoid

and buccinator muscles (figure 2.14, e). Stepp [196] suggests similar sites for the evalua-

tion of dysphagia, including the buccinator, orbicularis oris and other perioral muscles as

associated with cheek motion. They also suggest masseter muscles, and the digastric (of

the submental space) to a lesser extent, as the primary muscles associated with mastica-

tion, and the suprahyoid or infrahyoid as potential muscles for evaluation of swallowing

with EMG.

Within the literature discussed thus far, EMG has also been used to evaluate eating

function, food textural properties, assess swallowing functionality related to dysphagia,

and to classify chews, swallows and foods. Primarily, the targeted muscles for these sites

align with those discussed here, but vary across the literature. An overview of the main

targeted muscles, associated physical function, and related literature is given in table 2.1.



Chapter 2. Literature Review 70

Table 2.1: Summary of notable observations from the literature regarding EMG

placement for muscles related to eating, physiological characteristics, and notable

clinical and research applications.

EMG Sensor Placement and Clinical and Research Applications
for Notable Muscles Related to Eating

Targeted Muscle Notable

Behavioural

Actions

Physiological

Characteristics

Clinical and Research

Applications

Temporalis

(Anterior)

Mastication,

Maximal force

(clenching jaw)

[57, 5, 73]

� Reduced EMG

amplitude from

impaired dental

status or muscle

function [169, 165,

6, 60]

� Evaluation of

eating [5, 58, 173,

174, 57]

� Dysphagia

assessment [169,

165, 62]

� Chewing detection

[170, 178, 197, 180]

� Food classification

[179, 178, 180, 58]
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Masseter Mastication,

Maximal force

(clenching jaw)

[57, 5, 73, 171]

� Impaired dental

status or muscle

function reduce

amplitude [169,

165, 6, 60]

� Increased

amplitude related

to food hardness

and fracturability

[174, 176]

� Associated with

oral stages of

swallowing [169]

� Evaluation of

eating [57, 173, 174,

6, 60]

� Dysphagia

assessment [62, 169]

� Dental assessment

[6, 60]

� Chewing and food

texture evaluation

[174, 176]

Suprahyoid

Muscles

(Digastric,

Submental

Triangle)

Swallowing, jaw

opening, speech

[73]

� Associated with

final oral,

pharyngeal, and

oesophageal stages

of swallowing [169]

� Evaluation of

swallowing [5, 60,

61, 167]

� Dysphagia

evaluation and

screening [169, 62,

166]

� Swallow detection

[177]

� Food texture and

taste classification

[175]
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Infrahyoid and

Laryngeal Strap

Swallowing [73,

169] � Associated with

pharyngeal and

oesophageal stages

of swallowing [73,

169]

� Evaluation of

swallowing [167,

169, 61]

� Dysphagia

evaluation and

screening [62]

Perioral Muscles

(Orbicularis Oris

and Buccinator)

Mastication

(assistance),

cheek/mouth

motion [73, 57]

� Associated with

initial oral stage of

swallowing [169, 57]

� Dysphagia

assessment [62, 196]

2.3.2 EMG Signal Processing

EMG signal amplitude is inherently unstable due to a range of factors, including the

presence of random amplitude noise related to motor neuron firing rate, noise developed

due to signal propagation through the body, electrical interference from EMG equipment,

ambient electromagnetic radiation, and due to movement artefacts [143]. Cross-talk is an

additional source of interference, activity of nearby muscles contaminating the targeted

signal [198]. Reaz et al. [143] emphasises the need to avoid or eliminate as many sources

of noise as possible, while maximising signal information.

The article by Chowdhury et al. [198] suggests a number of techniques for avoiding

EMG noise. For moderating cross-talk or noise related to signal propagation through

various tissues, the authors suggest using smaller electrodes, minimising electrode spac-

ing, and ensuring electrodes are positioned along the muscle fibre to reduce such noise.

Chowdhury et al. also consider movement artefacts resulting from independent motion

of muscle, skin, and electrode, or artefacts related to skin impedance. To reduce these

artefacts, the authors note use of conductive gel as an intermediary and increasing skin

impedance through light abrasion.
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[REDACTED]

Figure 2.14: Example of sensor placement sites recommended by Criswell and
Cram [73]. Shown are: (a) Temporal/Masseter (wide) placement for general
recording of mastication, (b.) Masseter placement for mastication measurement,
(c.) Anterior Temporalis placement which provides assistance in chewing, (d.)
Suprahyoid placement for measurement of muscles involved in mouth opening
and swallowing, and (e.) placement for measurement of the Buccinator, which
assists in chewing. Adapted from [73].

Digital filtering is also a common practice used to eliminate many signal artefacts

resulting from noise, however the choice of filter and cutoff values vary widely within

the literature, and are partially a matter of application and researcher preference. Slow

changes in signal activity resulting from movement or inherent signal instability usually

appear in the 0-20 Hz range [143, 198, 196, 199], while EMG signal above 500Hz is usually

associated with high frequency noise [196]. As such a number of researchers suggest the

use of a high pass filter with a cutoff of 20Hz and a low pass filter with a cutoff of 500Hz,

for general elimination of these noise sources from EMG signals [198, 196, 199], although

Criswell and Cram [73] instead suggest a band-pass filter with a cutoff range of 100-200Hz.

This would also permit the elimination of ECG contamination within the signal, which

occurs within a frequency range below 100Hz [198].

The frequency selection is also a matter of debate between studies evaluating EMG

related to eating. Vaiman et al. [169] made use of a band pass filter within a range of 25-

450Hz for their evaluation of normal swallowing function using EMG, along with a 60Hz
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notch filter. However, Reaz et al. [143] cautioned against using notch filters in case of lost

signal information. In their evaluations of EMG with different food textures, Lassauzay

et al. [58] and Kohyama et al. [6] instead filtered recorded signals within a pass band of

1-1000Hz, while Miyaoka Y. et al. [176] and Miyaoka Yozo et al. [175] applied a filter with

a high-pass and low-pass cutoff of 10Hz and 30Hz respectively. Of the studies attempting

to classify chewing and food information, R. Zhang et al. [178] applied a band pass filter

of 10-500Hz and R. Zhang and O. Amft [180] used a high pass filter with a cutoff of 20Hz,

but did not specify an upper cutoff frequency.

2.3.3 Activity detection

Another matter of debate is the choice of technique for signal onset and termination

detection. Reaz et al. [143] discusses the common practice of threshold based detectors,

with the simplest form using a “single threshold”, but emphasises that its performance

varies depending on the chosen threshold, signal noise, and targeted muscle. Instead they

suggest the addition of a second or more thresholds and inclusion of additional parameters

which help to improve detection accuracy and reduce misclassification. A typical method

for defining this threshold is by selecting an amplitude several standard deviations greater

than a baseline period, in the following manner:

thr = µ0 + j ∗ δ0 (2.3)

where µ0 is the mean background noise of the signal, or a baseline period when the

muscles are at rest, δ0 is the standard deviation during that same baseline, and j is a

scaler [181, 200].

The value of this scalar, j, is also a matter of debate in the literature. Hodges and

Bui [201] recommend caution in the choice of threshold, which can result it Type I errors

(false positives) if too low, Type II errors (false negatives) if too high. Di Fabio [202]

suggest using j = 3 for this value, and calibrating the threshold in post-hoc processing, by

adjusting the baseline selection window incrementally, until at least 25 consecutive samples

were found to exceed the threshold. On the other hand, Li et al. [200] suggests that the

value of j should instead be selected during processing of the signal. In addition to this, the

duration for which the signal must exceed the threshold can also effect detection accuracy

[201], with too low a duration resulting in potential misclassification of background activity
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bursts as muscle onset, or too long a duration risking the failure to detect short activity

bursts.

Another method recommended by Li et al. [200] was the application of a “Teager-

Kaiser” energy operator to the EMG signal prior to threshold use. Originally proposed

for computing the energy of sound, the TKE operator Ψ is defined in time, for the signal

x as:

Ψd[x(n)] = x2(n)− n(n+ 1)x(n− 1) (2.4)

where x (n) is the EMG signal at sample n. They then suggest the use of a threshold

based approach for detection of muscle activity onset, as described previously.

Alternative methods include the “transition index” proposed by Abbink et al. [181],

which is based upon the principle of determining the approximate onset of jaw opening by

applying a filter to highly smooth a the signal (low pass, cutoff point set to 3Hz) and using

a high threshold. They then define a “search interval” as a period between 200ms prior

to the upward threshold crossing and the next upward threshold crossing. This interval

can be used to find the onset of EMG bursts by searching within this interval (across the

normally smoothed signal) for a transition from amplitudes below a typical threshold to

those above. From the centre of the search interval and moving towards the start of the

interval, the transition index is calculated as Trans(i) = n < (i) + n > (i), where n < (i)

is the count of n samples preceding sample i which exceed the threshold, and n > (i) is

the count of n samples following sample i which exceed the threshold. Burst onset can

then be determined as the maximum transition index, and termination can be determined

by the minimum transition index.

Amongst studies attempting to classify feeding activity (section 2.2.4), R. Zhang

et al. [178] reported a precision and recall of 80% using a threshold based approach for

chewing cycle detection. Q. Huang et al. [179] similarly applied a multiple threshold based

detection algorithm, which resulted in a 96% accuracy during evaluation of this algorithm,

however they also reported false positive chew detection during speech, laughter, or other

activities relating to jaw motion. Finally, R. Zhang and O. Amft [180] implemented an

algorithm based upon the technique proposed by Abbink et al. [181], and reported a 94%

accuracy across all participants. However, as previously discussed, in this study, accuracy

of this algorithm was found to be significantly lower for chewing detection in the presence

of “real-world” activities.
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2.3.4 Machine Learning

Machine learning encompasses a wide range of techniques used for modelling data struc-

tures, and for analysis and prediction of data, and for statistical analysis, pattern recog-

nition, signal processing, bioinformatics and a range of other uses [142]. Such techniques

are also considered particularly useful for the analysis of physiological signals such as

Electromyography, capable of identifying patterns in data not easily detected by other

methods [143]. As discussed previously, this makes them affective for enhancing Human-

Computer Interaction, particularly in regards to the control of prosthesis [144, 145, 146]

and assistive technology [147, 148, 149, 49].

Of particular interest in such tasks is the use of machine learning for classification.

Classifier algorithms are used to identify unknown patterns in data, where data can be

separated into one or more distinct groups. Such models can be trained using supervised

learning, to recognise patterns in known data and permit future data to be divided ac-

cordingly, or through unsupervised learning, in which models attempt to identify patterns

without previous examples, for exploratory analysis of data [142]. The two major areas

involved in producing models for classification tasks are the extraction of information

pertinent and useful for the classification goal, known as feature generation, followed by

the training of a classifier [142]. There are a wide range of possible classification algo-

rithms and features which are relevant for the classification of EMG signals, and this

section discusses some of the commonly available techniques and algorithms which should

be considered.

Classification Algorithms

A large range of classifier algorithms have been proposed for a range of signal analysis

tasks, some of which are described in the books by Theodoridis [142] and Kuncheva [203].

The following are a number of algorithms which have been identified in the literature, and

are used for signal evaluation and recognition, or for computer or device control systems:

Linear Discriminant Analysis Linear Discriminant Analysis (LDA) algorithms are used

for classification purposes or for feature dimensionality reduction. They are based

upon Fisher’s Linear Discriminant [204] and involves a linear transformation tech-

nique, to identify linear discriminants within a feature space to separate two classes
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[142]. For the classification of food based upon EMG measurement, R. Zhang et

al. [178] and [180] implement models based upon LDA algorithms, reporting 56.2%

and 94.7% classification accuracy respectively. [199] describes the benefits of LDA

algorithms, praising their simplicity, lack of specification parameters, and ability

to perform reliably well. However, they highlight that these are only capable of

capturing linear classification problems.

Decision Trees Decision Tree classifiers (DT) are based upon the sequential separation

of items into classes using a series of branching binary tests; each test checking if

a single feature matches a condition. Training of such classification trees involves

finding a structure and tests which are best able to represent a decision making

process for identifying classes of interest [142]. While decision trees are simple to

understand, apply, and are capable of providing insights even with small amounts

of data, they are prone to instability and overfitting [142]. Random Forest classifier

algorithms (RF) are a variant of decision trees proposed by Breiman [205] that use

a combination of bagging to combine a number of separate trees (an ensemble of

decision trees) for variants of the training data set, and random feature selection

for each test node. This thereby overcomes many of the overfitting concerns of

traditional decision trees [142]. Another variant of decision trees is the Extremely

Randomised Decision Tree proposed by Geurts et al. [206], which also creates an

ensemble of decision trees, but fully randomises splitting of the tree’s nodes, resulting

in accurate and computationally efficient classifier models.

Random Forest classifiers are poplar algorithms for classification of physiological

data thanks to their ability to robustly detect both linear and non-linear relationships

in data. R. Zhang et al. [178] report the use of a Random Forest Classifier (RF) for

the classification of foods, reporting an accuracy of 74.8%. While Huang et al. [197]

reported the use of a J48 Decision Tree for the same purpose, reporting per-food

accuracies of 69.2%–94.8%.

Artificial Neural Networks Artificial Neural Networks (ANN) classifiers have their ba-

sis in understanding the functionality of the human brain, and function through

the interaction of multiple simulated neurons (perceptron) layers, learning achieved

through the adjustment of synaptic weights to minimise a cost function [142]. In
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a review of EMG processing techniques Reaz et al. [143] recommends the use of

Artificial Neural Networks in particular as a technique capable of finding pattern

which would otherwise not be easily detected. Nazmi et al. [199] and Chowdhury et

al. [198] support this conclusion, suggesting that their adaptable architecture make

ANNs capable of robust classification in non-linear tasks. Chowdhury et al. describes

these characteristics as making them a popular choice for prosthesis and assistive

robotics control systems, Virtual Reality interaction systems, and rehabilitation ap-

plications. However, Nazmi et al. emphasises that these algorithms require very

careful consideration of system architecture, and can involve long training times.

Support Vector Machine Support Vector Machines (SVM), or Support Vector Clas-

sifiers (SVC), are popular tools for classification and regression tasks, capable of

solving linear or nonlinear classification problems depending on the selected kernel

[199]. SVM are based upon the premise of mapping feature vectors onto a higher

dimensional space and identifying a hyperplane which maximise a margin between

classes within this higher dimension [207]. Chowdhury et al. [198] states that their

reliability, robustness, accuracy, and simple implementation and training require-

ments makes them a popular choice, particularly for disease diagnosis and control

systems. However, they also require careful parameter selection in order to obtain

the best result.

While traditionally these algorithms are designed to identify a linear hyperplane,

using a linear kernel function, Hsu et al. [207] identifies 3 other kernel functions

which permit non-linear solutions for classification tasks: polynomial, radial basis

function (RB), and sigmoid. A gaussian radial kernel has also been recommended

for classification of swallowing using EMG and Bioimpedance by Nahrstaedt et al.

[177]. Hsu et al. [207] recommend use of the RBF kernel, as it is capable of non-linear

classification, with less parameter requirements than the polynomial function, and

capable of non-rlinear classification comparable to the linear kernel. The authors

also suggest carrying out a search for ideal parameters using cross-validation grid

search, prior to training with the full training data.
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Feature Extraction

Another vital component of signal classification, prior to training an algorithms, is the

selection of features that accurately characterise classes of signals. Phinyomark et al.

[208] highlighted the importance of eliminating redundant features and selecting only

those best suited for the task, to maximise the performance of classifier algorithms. A

range of notable features recommended within the literature, or used for the evaluation

or classification of eating or food texture, along with abbreviations (used to refer to the

feature here) and extraction methods, is given in table 2.2.

To recommend useful features and identify redundancies, Phinyomark et al. [208, 209]

conducted an evaluation of 37 common time and frequency domain features, extracted

from EMG of the arm from 20 subjects (10 male and female) carrying out various ges-

tures. Phinyomark et al. [208] categorised time-domain features into 4 groups: amplitude

features, time-frequency features, prediction model methods, and time-dependence meth-

ods. For amplitude features, they recommended the use of features as providing either

energy or complexity information; recommending MAV or IEMG for obtaining energy

information, and WL for complexity information. The second group consisted frequency

features calculated from the time domain, and included MYOP, WAMP, SSC, and ZC.

Of these features, the authors recommended WAMP for this group. However, MYOP was

found to perform comparably and contains similar information. Of the final two groups,

Phinyomark et al. recommended the use of Auto Regressive coefficients for prediction

models, and they suggest the Mean Absolute Value Slope for time-dependence features.

However, the authors reported significantly better performance for classification using

signal amplitude features, compared to prediction models and time-dependence features,

and conclude that amplitude features should be focus in signal classification. They also

suggest that frequency based features are not well suited to EMG signal classification.

A later evaluation by Phinyomark et al. [209] assessed the relationship between an-

thropometric measurements and the performance of select features for the classification

of arm gestures. In addition to EMG, physical measurement of the participants were

made, including body mass (subject weight), standing height, BMI, and various dimen-

sional measurements of the hand and arm. Although many such measurements were not

relevant for the work in this thesis, Phinyomark et al. made a number of interesting ob-
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servations. They determined that WAMP and ZC were particularly robust to random or

electrical interference noise. Detrended Fluctuation Analysis, a fractal complexity feature,

was found to be useful for the classification of weak EMG signals. To characterise strong

signals, they recommended Maximum Fractal Length, and MAV or RMS. Phinyomark

et al. found sample Entropy (quantifying the unpredictability of EMG signals over a time

segment) to be robust for determining the muscle contraction variability, recommending

it as reliable over long-term usage and tolerant to noise. Finally, they recommend the

MNF as a feature for muscle fatigue detection.

Within other literature discussed in this chapter, a number of other EMG parameters

were found to be useful for the evaluation of eating and food texture, and as such are

useful for the classification of intake or food content. For instance, the synchronous

pattern of EMG bursts, signal amplitude, timing of chews, and number of chews have

all been reported as associated with chewing efficiency [5, 6, 60]. Signal amplitude and

swallow duration are similarly considered important for swallowing assessment, as well

as for dysphagia [169, 165, 61, 62]. For the evaluation of texture, a number of studies

have found an association between food textural components and increased signal energy

[172, 59, 58, 174, 173], as well as an increased number of chews per chewing sequence [59,

58, 174, 172, 176], or chewing duration [172, 173, 59, 58]. As discussed in section 2.2.4,

Miyaoka Y. et al. [176, 175] also proposed the use of the “TP ” parameter (see table 2.2) to

capture signal complexity information across a given EMG burst, for evaluating textural

differences.

The majority of chewing or swallowing detection techniques employ threshold based

detection algorithms based upon EMG energy information [143, 198, 199, 202, 200], while

other techniques attempt to capture signal complexity information [181]. Of the studies

implementing eating detection and food classification systems, R. Zhang and O. Amft

[180] made use of primarily time-domain features relating to signal energy: MAV, SD, peak

amplitude, RMS, and IEMG. While Huang et al. [197] extracted features characterising

both individual chewing cycles and entire chewing sequences, reporting peak amplitude,

chew cycle duration, and TP values for individual cycles, and included the number of

chewing cycles per sequence.
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Table 2.2: Summary of notable features recommended within the literature,

and equations or extraction techniques.

EMG Classification Feature Summary

Feature Name and

Usage

Method

Mean Absolute

Value (MAV)

[209, 208, 180, 165,

60, 6, 61, 62]

Average of the absolute EMG signal across a sample. Defined

as:

µ =
1

L

N∑
i=1

| xi | (2.5)

where xi is the EMG signal at segment i and N is the number

of segments.

Integrated EMG

(IEMG)

[209, 208, 178, 59,

58]

Related to EMG signal firing point [208]. Defined as the

summation of the absolute EMG signal across a sample:

IEMG =
L∑
i=1

| xi | (2.6)

Variance (VAR)

[209, 208]

Variance of EMG signal across a sample:

VAR =
1

N − 1

L∑
i=1

(x2i − x̄) (2.7)

where x̄ is the mean of the sample.

Root Mean

Square (RMS)

[209, 208, 199, 180]

Square root of the average square of EMG amplitude across a

sample

RMS =

√√√√ 1

N

N∑
i=1

x2i (2.8)

Standard

Deviation (SD)

[209, 208, 180]

Standard deviation (σ) of the EMG signal across a sample:

σ =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2 (2.9)

where x̄ is the mean of the sample.
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Waveform Length

(WL)

[209, 208]

Cumulative length of EMG waveform over signal segment

WL =
N−1∑
i=1

| xi+1 − xi | (2.10)

Peak Amplitude

[197, 60, 6, 165, 61,

62]

The peak amplitude across a given sample of the EMG signal.

Myopulse

Percentage Rate

(MYOP)

[209, 208]

Related to firing of Motor Unit Action Potentials. Average

number of times that the absolute of the EMG signal exceeds

thr

MYOP =
1

N

N∑
i=1

[f(| xi |] (2.11)

f(x) =


1, if x ≥ thr

0, otherwise

Willison

Amplitude

(WAMP)

[209, 208]

Sum of times the absolute EMG exceeds a given threshold thr:

MYOP =
1

N − 1

N∑
i=1

[f(| xi − xi+1 |] (2.12)

f(x) =


1, if x ≥ thr

0, otherwise

Zero Crossing

(ZC)

[209, 208]

Number of times EMG amplitude crosses zero amplitude:

ZC =
1

N − 1

N∑
i=1

[sgn((xi × xi+1))∩ | xi − xi+1 |≥ thr ] (2.13)

sgn(x) =


1, if x ≥ thr

0, otherwise
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Slope Sign

Change (SSC)

[209, 208]

Count of the number of times the EMG signal slope changes:

SSC =
1

N − 1

N∑
i=1

[f((xi − xi−1)× (xi − xi+1)] (2.14)

f(x) =


1, if x ≥ thr

0, otherwise

Mean Frequency

(MNF)

[209, 208, 199]

Average frequency calculated by:

MNF =
M∑
j=1

fjPj/
M∑
j=1

Pj (2.15)

Where fj is the frequency of the power spectrum at frequency

bin j and Pj is EMG power spectrum at frequency bin j and

M is the length of the frequency bin.

Mean Power

Spectrum (MNP)

[209, 208, 199]

Average of the power spectrum of the EMG signal sample:

MNP =
1

M

M∑
j=1

Pj (2.16)

where Pj is the EMG power spectrum at frequency bin j and

M is the length of the whole frequency bin.

Median

Frequency (MDF)

[209, 208, 199]

Frequency at which the spectrum is divided into two regions of

equal amplitude

MDF∑
j=1

Pj =
M∑

j=MDF

Pj =
1

2

M∑
j=1

Pj (2.17)

where Pj is the EMG power spectrum at frequency bin j and

M is the length of the whole frequency bin.

Median Power

Frequency (MPF)

[209, 208, 199]

Band power of the median frequency calculated using Fast

Fourier Transform
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TP Values

[197, 176, 175]

Defined as the normalised time point across a chewing cycle at

which point P percent of the total cumulative EMG has

occurred [175]. Calculated using the following steps:

1. Calculate cumulative sum across sample window.

2. Normalise duration of sample.

3. TP = the normalised time at which P percent of the

cumulative sum of the signal has occurred

Cycle Duration

[197, 169, 60, 6, 165,

166, 61, 62]

Duration of a chew or swallow EMG activity cycle, from onset

to termination

Cycles per

sequence

[197, 176, 162]

Count of the number of chewing cycles within a given chewing

sequence

2.4 Summary and Research Questions

This chapter has discussed and reviewed the current state of research regarding three main

topics: Feeding Anatomy and Physiological Processes, Physiological Sensing and Tech-

nology for Automated Feeding Detection, Support of Rehabilitation and Health-Related

Change, and Considerations for EMG Measurement and Intake Classification.

Section 2.1 highlighted the importance of individual and environmental factors, and

their effect upon eating function, speed, volume, and the effect these parameters have

upon health. However, there is also a need for considerably more research to understand

the intricacies and interconnected influences of different factors upon feeding. A major

limitation in eating studies, and monitoring or treatment of eating disorders is the use of

self-reported weight, height, dietary intake, and factors. Self-reporting is a measurement

technique which is prone to bias [32], and for which it is difficult to ensure accuracy.

Within eating studies or disorder treatment, the main methods of ensuring accuracy is

currently to implement controlled experimental conditions and manual observation of food

weight to determine intake volume, speed, or dietary content [28, 123]. However, this is a
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resource expensive approach in large scale studies, and may itself influence eating. There

is a clear need for an automated method to continuously and discreetly monitor eating

intake in situations outside of experimental conditions, or those where video recording

or manual observation is not appropriate, such as while partaking of normal day-to-day

activities, and without the presence of uncomfortable or intrusive equipment that can

influence results..

Similarly, for the treatment and monitoring of swallowing disorders there is a great

deal of debate regarding screening and treatment procedure, and a notable degree of un-

derdiagnosis [17, 16]. While videoflouroscopy is considered the gold-standard for assessing

swallowing function [14], there is a lack of agreed guidelines for these techniques [87].

Moreover, videoflouroscopy requires expensive equipment, professional assessment, and

certain patient requirements which are not always feasible [89]. EMG has been recom-

mended as an alternative technique for supporting screening and monitoring of swallowing

function, which is fast and inexpensive [61, 62]. This provides a solution to the issues as-

sociated with other screening methods, however currently used methods are still reliant on

specialist electrode placement and assessment, and are unsuited to long term monitoring.

The last topic discussed in this section was the use of technology to enhance treatment

and monitoring. The increasing prevalence, popularity, and power of mobile devices offers

a solution to many of the issues highlighted above. Mobile device based interventions

have been demonstrated as useful for increasing adherence to self-monitoring, and also for

promoting healthy eating behaviour and function [44, 45]. Game-based feedback inter-

ventions have also been reported as useful for increase adherence to treatments, and for

encouraging physical rehabilitation [112]. Biofeedback has been used for similar purposes

in regards to dysphagia rehabilitation, for support of swallowing exercises within interven-

tions [63, 100]. However there are issues of engagement, motivation, and patient training,

which can be significantly improved through the use of fun and simple to understand

game-based feedback.

Section 2.2.1 explores the various approaches of assessment and detection of ingestive

activity. Although there are a number of different technological approaches and sensor

mediums which have been investigated for this purpose, the majority rely upon bulky

equipment or wearable sensors which are inconvenient or indiscreet. While traditional

forms of Electromyography face similar issues, novel modalities such as smart glasses [180]
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or epidermal electronics [74] offer a discreet solution to this problem. The use of EMG for

the detection of eating also has considerable support in its long history of use for evaluation

of eating functionality [57], which provide strong indicators related to characteristics of

EMG signals and how they relate to chewing, swallowing, impaired performance, and food

types.

In addition to EMG for the detection of eating events, Sazonov et al. [162] and Amft

et al. [163] have presented algorithms by which mass of solids and liquids can be pre-

dicted with a high degree of accuracy, which would be integral if automated monitoring

of dietary intake by sensing of eating is to be deemed a valid alternative to self-reporting.

Howevovinger, mass of food alone is relatively meaningless in many applications, such as

dietary monitoring for determining nutritional value or dietary energy content consumed.

In order to determine these factors, any monitoring systems must also be able to perform

robust classification of a wide range of broad food types based on sensory and behavioural

data, and factor in the predicted nutritional value of these foods into the models discussed

here. In this way the mass and nutritional content of foods could be determined given the

automated detection of eating.

The limited selection of foods evaluated in the literature discussed here, along with

suggestions by authors [162], suggest that currently it is only possible to categorise broad

food types using the evaluated techniques. However, the systems presented here and

initial research into food classification demonstrate significant potential for future dietary

tracking systems.

It is suggested here that the conjunction of mobile technology and continuous, un-

obtrusive, and mobile sensing devices provide a platform for accurate intake tracking,

automated provision of feedback for encouraging behaviour change and feedback train-

ing, or for other Human-Computer Interfacing. With this in mind there are a number of

research questions which are identified here. Already listed in chapter 1, these are:

1. How can physiological sensing be used for the accurate sensing of chewing and swal-

lowing?

2. How can automated eating detection be used to detect eating characteristics and

food content?

3. How can sensed eating data and characteristics be applied for studying eating be-
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haviour function and behaviour, and for motivating eating change?

The remainder of this thesis answers these questions, and to explore the potential of

Electromyography for automated detection of eating, extraction of other related informa-

tion, and use for driving real-time health-related feedback.



Chapter 3

Electromyography for Swallow

Detection, Classification, and to

Drive Biofeedback

3.1 Introduction

This chapter reports the first main study of the overarching research of this thesis. Moni-

toring of swallowing is a necessary component for studying the physiology and function of

swallowing, and for evaluation of swallowing for signs of swallowing impairment and for

monitoring and treating swallowing disorders. However, typical techniques for the study

and evaluation of swallowing make use of intrusive or expensive procedures and are not

suited for long term or repeated evaluation. Electromyography has been demonstrated

as a fast and inexpensive alternative for the assessment of swallowing [62], and has been

used to offer biofeedback support for swallow rehabilitation therapy [64]. In conjunction

with new sensing modalities, EMG provides a solution to many of the issues related to

swallowing assessment and disorder treatment, providing a mobile platform for unobtru-

sive sensing of eating function. It is also proposed here that such sensing platforms can be

used in conjunction with feedback to engage and motivate patients undertaking swallowing

rehabilitation exercise.

This chapter aims to establish the first step in achieving the tracking of eating and

its applications, focusing on tracking swallowing activity; for studying swallowing and

assessing function, and for driving game-based feedback for rehabilitation exercise. With

88
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this aim in mind there a number of research goals addressed in this chapter:

� Develop an algorithm for the detection of swallowing using EMG

� Determine features which cab be extracted from swallowing EMG

� Investigate the use of classifier algorithms for detecting swallowing types

� Demonstrate the use of EMG and swallow detection algorithm for driving swallow

exercise biofeedback

To achieve these goals, this chapter is divided into three main sections. Firstly, sec-

tion 3.2 reports the development of a swallow detection algorithm, and evaluates its per-

formance using both conventional electrodes and a alternative sensing format. Section 3.3

then investigates the use of classification algorithms in conjunction with recorded EMG

signal for differentiating between swallow exercises typical in swallow assessment and ther-

apy. Finally, section 3.4 reports the development of game-based biofeedback for swallow

exercising, and reports the findings of a user-evaluation study regarding the viability of

EMG based swallow sensing and game based feedback.

Research Collaboration

The work reported in this chapter is the result of collaboration with the Yeo Research

Group [75], and resulted in publication of two papers as described in the introduction

chapter (section 1.6). This collaboration was pursued to investigate the use of “epidermal”

sensor modalities being developed as a part of the collaborators research (discussed in the

next section), for the purpose of automated swallow detection and as a part of feedback

systems. As there were restrictions imposed on the use of these experimental sensors,

the collaborating researchers were responsible for carrying out study protocols and for

collecting data.

The author of this thesis designed all study protocols, and was responsible for analysis

of the collected sensor data, development of swallow detection algorithms described in

section 3.2, development of swallow classifier algorithms discussed in section 3.3, and the

design and development of the biofeedback system in section 3.4. Throughout this chapter,

details are provided in appropriate procedure sections where members of the Yeo research

group were involved in data collection.
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3.1.1 Electromyography and Epidermal Sensing

Surface EMG has been described as an fast, inexpensive, and non-intrusive alternative

for the evaluation of swallowing function and diagnosis of swallowing disorders [61, 62],

however conventional rigid electrodes are obtrusive and unsuited for continuous sensing

of exposed or flexible areas of the body. Alternative sensor modalities such as “epider-

mal” electronics, proposed by Kim et al. [74], provide a suitable alternative to traditional

sensors.

Epidermal electronics are discreet, comfortable, flexible, robust, and have high con-

formity to the surface of the skin, eliminating the need for electrolytic gel intermediaries

that are used to reduce signal noise [210]. Prior works have demonstrated the use of such

electronics for long-term (greater than 2 weeks) recording of EMG, ECG, and EEG sig-

nals [211], precise temperature mapping [212], thermal conductivity [213], hydration [197],

and muscle stimulation [145]. They have also been demonstrated for EMG measurement

from a number of muscle groups, including measurement of the masseter muscle [210] (see

figure 3.1, c and d).

As seen if figure 3.1 (a), epidermal electronic circuits can include a range of com-

ponents and an integrated system have the capacity for continuous sensing and wireless

data acquisition. To investigate the possibility of this medium, the study reported in this

chapter makes use of epidermal electrodes for the measurement of muscle activity. In

section 3.2 both conventional and epidermal electrodes are used for collection of data and

development of a swallowing detection algorithm, and the capacity of the algorithm to

translate to both sensor types is then evaluated. In the remainder of this study, epidermal

electrodes are used for the purpose of evaluating swallow-driven feedback. A full compar-

ison of these sensors and conventional electrodes is described in an extension of the work

in this chapter, reported in the paper by Lee et al. [1].

3.2 Development of EMG Based Swallow Detection

Algorithm

The first goal in this research was the development of an algorithm for the detection of

swallowing events from measured Electromyographic activity. This served as a vital step

towards the classification of swallow type and for driving real-time biofeedback. This sec-
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a

b

c d

Figure 3.1: Examples of epidermal electronics for sensing purposes. Shown are
(a) example of an epidermal circuit, including a number of components; (b) the
epidermal circuit applied to the skin, demonstrating flexibility; (c) functionally
invisible electrodes applied to the skin over masseter muscles; and (d) EMG signal
recorded from the masseter electrode. a and b are adapted from Kim et al. [74],
and c and d are adapted from [210].

tion reports the collection of data and development of a classification algorithm for the

detection of swallowing. Data was collected using both conventional electrodes and epi-

dermal electrodes. The performance of this algorithm for the detection of swallowing was

then evaluated using the data collected using both conventional and epidermal electrodes

to determine if algorithms developed using one form are transferable to other electrode

types without significant impact.

3.2.1 Data Collection

For the development of swallow detection algorithm and subsequent investigation of swal-

low classification, training and test data was collected. This data consisted of EMG signal

measurement and recording of video footage during a range of swallowing exercises, and
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was used for both the development of a swallow detection algorithm and for training and

testing of swallow classifiers.

Although the protocols outlined below were designed by the author of this thesis, it

should be noted that data was collected by members of the Yeo research group [75], operat-

ing out of Virginia Commonwealth University. As such, they performed all aspects of the

data collection procedure without supervision of the author. This included recruitment

and screening of participants, selection of experimental conditions, setting up experimen-

tal equipment and equipping participants with sensors, and the recording of EMG and

video footage.

Participants

For this stage of the study participants were recruited following the approved protocol at

Virginia Commonwealth University (approved number: HM20001454 ). A total of 3 male

and 3 female participants were recruited for data collection, from the staff and student

body of Virginia Commonwealth University. As advanced age and swallowing difficulties

are known to effect EMG signal quality [62], inclusion criteria required recruited partici-

pants to be between 21 and 40 years of age, have a BMI (between 18.5 and 25), and have

no known medical disorders that would interfere with swallowing function. However, due

to restrictions within the bounds of the research collaboration and recruitment protocol,

it was not possible to share other details about participants. Each participant took part

in EMG measurement of the submental and masseter muscles while carrying out volun-

tary swallowing exercises. In total EMG measurements were recorded over a total of 216

swallows each, for the two sensor types.

Materials and Sensor Placement

Each participant took part in two data collection session, following identical procedure

for each. In a single data collection session participants were equipped with conventional

rigid electrodes, data from which was used to develop the swallowing detection algorithm.

Following this, participants took park in a second session during which they instead had

epidermal sensors affixed to their skin. An example of both conventional electrodes with

snap wiring and epidermal electrodes can be seen in figure 3.2, adapted from [1]. In both

cases EMG data was measured using a Bluetooth enabled wireless data capture device
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(BioRadio; Great Lakes NeuroTechnologies, Cleveland, OH), connected to the epidermal

sensors via ribbon cables. This unit transmitted EMG measurements to a computer system

for recording.

In each session the sensors were affixed across the submental muscles, an area expected

to demonstrate muscle activity during deglutition [73]. The centre of the muscle group was

identified by asking participants to palpate the muscles by swallowing, and the electrodes

were then placed across the muscles. Full details of sensor placement procedures are

detailed in appendix A.1.

Figure 3.2: Example of traditional rigid surface electrodes with typical snap
wiring (a) and epidermal epidermal electrodes with connected ribbon wires (b),
affixed across the body of the submental muscles. Adapted from [1].

Data Collection Procedure

During each data collection session EMG signal measurements were recorded with a sample

rate of 1024Hz. Typically, the highest frequency components of EMG signal are between

400-500Hz, thus the EMG sample rate was limited this sampling frequency to capture

this range and reduce the chance of high frequency noise or aliasing, and could safely be

filtered to obtain the the full EMG frequency spectrum according to Nyquist theorem [4,

196]. At the same time, synchronised video footage was also recorded to permit post-hoc

annotation of ground truth regarding swallowing events.
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Each participant carried out the same sequence of swallowing exercises. These in-

cluded:

Dry Swallow: Participants carried out 15 repetitions of voluntary saliva swallowing, an

action commonly used as a functional test for EMG activity of the suprahyoid and

masseter muscles [73], and for testing and screening of dysphagia [62].

Liquid Swallow: Participants carried out 15 repetitions of voluntary liquid swallowing.

Consuming a small mouthful of water.

Extended Swallow: Known as the Mendelsohn Manoeuvre [96], this involved dry swal-

lowing while paying focusing upon the motion of the Adams apple as they do so. At

the peak of the swallow participants attempted to hold the swallow action for two

seconds. This is an exercise commonly used to help improve swallowing in patients

with swallowing disorders, raising the larynx and opening the oesophagus [97, 214].

Participants carried out 6 voluntary repetitions of this exercise.

Data Processing

For the purpose of ground truth, video footage collected during the data collection sessions

was manually reviewed and coded by the researcher, for the identification of swallowing

ground truth. During this process, the onset and termination time of each swallow action

was identified and recorded.

As discussed in chapter 2, EMG signals are sensitive to movement or electrical inter-

ference. To improve signal quality, band pass filtering was applied to remove noise and

movement artefacts. Many suggestions have been made regarding the frequency range for

optimal signal filtering, and the general consensus is that the usable EMG signal frequency

range is between 20-500Hz, with the signals below this range effected by signal instability,

and exceeding the upper limit resulting in increased chance of signal aliasing (as discussed

in section 2.3.2). For this work, to ensure maximum signal information while eliminating

noise, a Butterworth bandpass digital filter was chosen, with a pass band in the range of

20Hz to 500Hz and a filter order of 5. This was found to provide an effective compromise,

removing signal noise while retaining useful signal features. The signal was filtered and

rectified using following the process outlined in appendix B.1, and the Root Mean Square
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Figure 3.3: Example EMG of the submental muscles during swallowing, showing
raw, filtered, and RMS envelope processing stages. Adapted from [1].

envelope of the signal was calculated. Figure 3.3 shows an example of the raw EMG,

filtered signal, and RMS envelope during three separate swallows.

3.2.2 Swallow Detection algorithm and Results

Following the collection of data using conventional electrodes, the collected data was

evaluated and a swallow detection algorithm developed and performance evaluated. The

developed algorithm was then evaluated using data collected via epidermal sensors to test

the viability of these for swallow detection with other sensor types.

Signal processing made up an important first step in the swallow detection algorithm,

filtering out unwanted signal noise and movement artefacts and providing a smoothed

signal envelope for further assessment. Following signal processing, a swallow detection

algorithm was employed to detect EMG activity bursts pertaining to swallowing. This

algorithm made use of a threshold based approach for identification of EMG bursts. Due

to signal variability between participants, the thresholds were calibrated individually for

each participant based upon observation of the recorded signal, and calculated as:

thr = µ0 + j ∗ δ0 (2.3 revisited)
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where µ0 was the observed mean baseline during a period of calibration, δ0 was the

standard deviation of the signal during this period, and j indicated scaler values which

were manually set for each participant. In this case j was by default set to a value of 3,

as recommended in the literature [202]. However, the calibration period included ground

truth swallow events, and where the threshold was found to result in false positive signal

spikes the value of j, was adjusted following the recommendations of Di Fabio [202]: by

identifying a value of j resulting in no EMG signal spikes exceeding the threshold apart

from activity correlating with recorded calibration swallows, or a value of j resulting in

the minimum non-swallow activity exceeding the threshold while ensuring that at least 25

consecutive signal samples were above the threshold for each recorded calibration swallow.

Figure 3.4: Flowchart providing an overview of the swallow detection algorithm.
In the flowchart, t1 refers to the lower threshold parameter, t2 refers to the upper
threshold parameter, and d refers to the minimum required activity duration.

As a single threshold is generally considered unsatisfactory for the reliable detection of

EMG activity [143], the detection algorithm implemented made use of a double threshold

approach, along with a minimum required activity duration for the identification of such

EMG bursts, and the detection decision flow for this algorithm is described in figure 3.4.

This algorithm detected periods of EMG activity which exceeded the lower threshold for a

given duration and demonstrated an significant peak between onset and termination. Once
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the onset of muscle activity was determined, the same technique was used to ensure that

the burst was considered complete only once the magnitude dropped below the primary

threshold and remained there for the given duration threshold value.

The performance of this threshold technique was evaluated based upon ground truth

obtained from the manually annotated video footage. As shown in table 3.1 although

the scope of the study was relatively limited in scale, the results are very promising with

high accuracy for the detection swallowing during dry and liquid swallows. The detection

of swallows during extended swallowing appeared to be more challenging to detect with

this technique. This can possibly be attributed to difficulty with this swallow exercise,

reported by some subjects; the variable success during this manoeuvre resulting in an

unstable amplitude, indistinct swallows, and leading to unexpectedly low accuracy for

this swallow type.

Table 3.1: Table showing performance of the threshold based swallow detection
algorithm, tested using data collected from conventional electrodes. Included is
the number of successfully detected swallows and false positives for each partici-
pant and different swallow type.

Swallow Detection Results - Conventional Electrodes

Participant Number
Total Accuracy

Swallow
Type

1 2 3 4 5 6

Dry

Total Attempts (Swallows) 15 15 15 15 15 15

92.47%Successfully Detected 15 15 14 15 13 14

False Positives 3 0 0 0 0 0

Liquid

Total Attempts (Swallows) 15 15 15 15 15 15

96.77%Successfully Detected 15 15 15 15 15 15

False Positives 0 1 0 1 1 0

Extended

Total Attempts (Swallows) 7 7 5 5 6 6

87.80%Successfully Detected 7 7 5 5 6 6

False Positives 2 2 0 0 1 0

Reliability of the algorithm was then tested with data collected using the epidermal

sensors. As can be seen in table 3.2, the algorithm demonstrated similar accuracy when

used in conjunction with these sensors. Although comparable in performance, there was

an anomalous increase in false positives for participant 4 during dry swallowing, and an

increase in accuracy during extended swallowing. While in the previous case participants

reported difficulty with extended swallows, in this case participants appear to have become

used to this swallow exercise, improving their ability to achieve the desired result. The
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Table 3.2: Table showing performance of the threshold based swallow detection
algorithm, tested using data collected from epidermal electrodes. Included are the
number of successfully detected swallows and false positives for each participant
and different swallow type.

Swallow Detection Results - Epidermal Sensors

Participant Number
Total Accuracy

Swallow
Type

1 2 3 4 5 6

Dry Total Attempts (Swallows) 15 15 15 15 15 15 88.54%

Successfully Detected 15 13 15 15 12 15

False Positives 0 0 0 1 0 5

Liquid Total Attempts (Swallows) 15 15 15 15 15 15 96.77%

Successfully Detected 15 15 15 15 15 15

False Positives 0 0 1 2 0 0

Extended Total Attempts (Swallows) 7 7 5 5 6 6 90.00%

Successfully Detected 7 7 5 5 6 6

False Positives 0 0 2 0 1 1

performance in this case indicates that the algorithm developed with conventional sensors

are transferable to other sensor types.

3.3 Classification of Swallow Type

Following the detection of swallowing events, using the threshold based swallow EMG burst

detection algorithm, the use of machine learning approaches was then investigated for

differentiating between swallowing types. The accurate classification of different swallow

types is a function that would be useful for accurately determining successful completion

of tasked swallow exercises, such as extended swallows. Such classification has particular

applications in areas such as swallow training as part of eating functionality rehabilitation

following stroke or cancer [97].

3.3.1 Design and Training

For the purpose of this investigation, the data previously collected for development of the

swallow detection algorithm (described in section 3.2.1) was used again for training and

evaluation of classifier algorithms for differentiation between swallow types. While the

swallow detection algorithm demonstrated a high degree of accuracy, to ensure maximum

fidelity the data was segmented according to the swallow ground truth, assuming previous
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and accurate swallow detection. Swallows were labelled according to ground truth as Dry

Swallows (DS), Liquid Swallows (LS), or Extended Swallows (ES). As discussed before, in

this case dry swallowing referred to voluntary saliva swallowing, while liquid swallowing

was associated with swallowing a sip of water, and extended swallowing (“Mendelsohn

Manoeuvre” [96]) was the act of attempting to hold the peak of a normal dry swallow for

a given duration.

Feature Extraction and Classification Algorithms

For the classification of EMG functionality a wide range of signal features have been

investigated. However, in order to maximise the performance of any produced classifica-

tion algorithms, it is important to eliminate redundant features and select a range best

suited to the task. A discussion of the importance of feature selection and extraction

and review of literature describing useful features was provided in the literature chapter

(Section 2.3.4). It is recommended, by Phinyomark et al., that selected features should

include those providing signal energy information, complexity information, and frequency

information [208, 209]. The features investigated in this study were selected based on

these recommendations and are listed in table 3.3. The span (duration) of each swallow

was also determined here to be useful for identifying extended swallows, based on obser-

vation of swallowing and signal characteristics, and was included in the set of investigated

features. In addition to these the full frequency domain was included, extracted using

the Fast Fourier Transform function in 10Hz bins. This was included to investigate the

importance of individual frequency band and its importance is evaluated in section 3.3.3.

All features were extracted from submental EMG for each swallow event separately,

and all features in the feature array were standardised. A summary of included features

is given in table 3.3 and details of these features was given in chapter 2.

In addition to investigating the selection of features, a number of different classification

algorithms were also evaluated to determine their capacity to accurately classify different

types of swallows. Of these, Linear Discriminant Analysis (LDA) and linear kernel Sup-

port Vector Classifier (lSVC) algorithms were selected for their capacity to classify linear

distributions, radial basis function kernel Support Vector Classifier (SVC) and Multi-Layer

Perceptron (MLP) algorithms were selected for their capacity to classify more complex

and non-linear problems. Three decision tree based algorithms were also selected for their
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Table 3.3: List of features investigated for swallow classification. A discussion
and details of these features is given in chapter 2, table 2.2

Swallow Classification Features

MAV Mean Absolute Value

IEMG Integrated EMG

RMS Root Mean Square

SD Standard Deviation

WL Waveform Length

MYOP Myopulse Percentage Rate

WAMP Willison Amplitude

MNF Mean Frequency

MNP Mean Power Spectrum

MDF Median Frequency

MPF Median Power Frequency

freq bins Frequency Domain Bins

Span Swallow event duration

capacity to perform well in the classification of both linear and non-linear distributions:

a basic decision tree classifier (DT), a Random Forest algorithm (RF), and an Extremely

Randomised decision tree classifier (ET). Decision tree algorithms, in addition to offer-

ing flexible classification and good performance, also permitted the exposure of metrics

regarding the contribution and importance of features for classification. During training,

decision trees are grown with the aim of improving the homogeneity of data in child nodes,

using function to determine the ideal split to make.

A common choice of splitting function is the “gini impurity measure” [215, 216], which

is an impurity function effectively measuring the probability pj of sample j being incor-

rectly classified, and is defined as:

φ(p) =
∑
j

Pj = (1− pj) (3.1)

At each node split this gini impurity value is less in the two child nodes than in

the parent node, until such time that there is only one possible element within a node.

In a Random Forest classifier the decrease in gini impurity can be used as an estimate

of feature importance, by calculating the average total decrease in node impurity for a
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feature, weighted by the number of samples reaching the splitting node [217, 218]. While

this is useful for estimating feature importance, caution using this has been advised when

using this for feature selection due a recognisable bias towards categorical features with a

high number of categories [219]. Despite this, mean purity decrease is a useful technique

for exploring feature importances, and is used here for evaluating feature relevance for

swallow classification and as a part of feature elimination.

Classifier and Feature Evaluation and Selection Procedure

During the training and testing of classifier algorithms feature importance was assessed

using Random Forest classifier feature importance, based on decrease in gini impurity,

given by equation (3.1). Recursive feature elimination was employed during the train-

ing phase to iteratively eliminate the worst performing feature according to the feature

importances, with the overall performance of the algorithm recorded.

To fully investigate the classification of swallow types, a nested 5-fold cross validation

algorithm was employed in order to maximise use of the available data. For each fold

of the outer loop a Random Forest algorithm was trained using the training data to

determine feature importances and select the best performing feature combination in the

available data. Overall feature importance and elimination determined by taking the

average of these results across all validation loops. Within the inner cross-validation loop

the training data is further divided for the purpose of parameter tuning. Each classifier

algorithm was then trained using the selected features and parameters, and tested on the

outer cross-validation loop test set. The predictions for each cross-validation test fold were

recorded and a final evaluation of predictive performance carried out upon the combined

predictions.

Three different classification cases were evaluated. Firstly, classifier models were inves-

tigated for the multi-class classification (ES-LS-DS) of all three swallowing classes: Liquid

Swallow (LS), Dry Swallows (DS), and Extended Swallow (ES). Following this, Liquid

and Dry swallows were reclassified as Normal Swallows (S) and a model was trained to

differentiate between Extended Swallows and normal swallows (ES-S). Finally, Extended

swallow classes were entirely removed from the sample pool and a model was trained to

differentiate between Dry and Liquid Swallows (LS-DS). This made it possible to evaluate

the trained models for their capacity to perform binary predictions of extended swallowing
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from other types of swallows, or to differentiate between normal swallowing of saliva or

liquid.

3.3.2 Feature Evaluation and Classifier Performance

Feature Evaluation

During training of the models, the contribution of features to the classification of different

classes was evaluated using Random Forest feature importances. This permitted feature

reduction and evaluation of the validity of frequency domain features, which have been

concluded to be redundant for EMG classification in the literature [208].

This technique was used for training of both models making use of frequency domain

features, in addition to models making use of only features giving a summary of the

frequency domain. Both model types made use of other time-domain features, prior to

feature reduction. Feature importances for each classification task are summarised in

figure 3.5.

In this figure a similar trend in feature contribution can be observed for each clas-

sification task. The span or duration of swallowing event was found to be the most

significant feature for all three classification tasks. Following span the Integrated EMG

and Waveform Length values were found to be the next most important features for each

classification case, reflecting signal energy and complexity respectively. For the Extended

Swallow classifier case the other features demonstrated very little significance when com-

pared with these three. Comparatively, for the liquid and dry swallow classification case

there is a less significant drop in feature importance after these highest ranking features,

particularly when not including frequency features.

The significance of these three features was not unexpected for the multi-class classi-

fication task (ES-DS-LS) and the Extended swallow vs normal swallow classification task

(ES-S). Extended swallows are, by their own definition, characterised by an extended du-

ration, and were expected to demonstrate a significantly greater span of EMG burst than

other swallowing types. IEMG and Waveform Length both capture functionally related

temporal characteristic across the sample span: IEMG defined as the sum of the absolute

signal across the sample, and Waveform Length as the sum of the change in amplitude

across the sample. As such, this explains their high degree of importance.
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Figure 3.5: Relative importances of each feature used in the classification of
swallows, using different models. Importance estimated from normalised gini im-
portance [205], defined by equation (3.1). Shown here: ES-LS-DS shows the
importances of features in 3 way classification of all classes, ES-S shows impor-
tances for Extended Swallow classification, and LS-DS shows the importances
for distinguishing between Liquid Swallows and Dry Swallows.
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In the Dry and Liquid Swallow classification case the frequency based features, My-

opulse and Mean Frequency, demonstrates a similar degree of importance in the model

not including other frequency components. Other signal energy and frequency compo-

nents show a lesser degree of contribution, as a result of correlation with similar more

contributing features.

In all classification models including individual frequency ranges, these bins demon-

strated a similar or lesser degree of contribution to classification than the average repre-

sentations of the frequency features. Moreover, frequency based features are only found

to be significant in the case of dry and liquid swallow differentiation, having very little

contribution to extended swallow detection. This supports reports of the redundancy of

frequency based features, as described by Phinyomark et al. [208]. It also indicates that

the removal of these features has little bearing upon the classification of swallow type.

Feature Reduction

During model training, recursive feature elimination was performed as described in the

previous section. A summary of feature elimination performance results can be found in

figure 3.6. From these, it can be observed that multi-class model (ES-LS-DS) performance

peaks when using approximately 6 features for both the models using frequency bins and

those not. The addition of extra features demonstrated no score improvement beyond

this point, while the inclusion of 12 or more features resulted in an accuracy loss. Cross-

examining the feature importances evaluation, it can be seen that the only frequency

content included in these top features were the myopulse and mean frequency features.

As can be seen in figure 3.6, for Extended swallow detection there was very little

functional difference in F-Score for any number of features, although use of 7 features was

found to give the optimal result with a score of 0.995 (SD=0.001). This was approximately

the same in both the model trained with and the model without full frequency domain. In

both cases, random forest classifier models demonstrated approximate score of 0.99 when

just using span to differentiate between model types. As discussed previously, this was

to be expected with extended swallows being characterised by a significant difference in

swallow duration.

Neither the multi-class, or extended swallow classification cases demonstrated any

improvement through the inclusion of detailed frequency bins. Comparatively, the dry and
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Figure 3.6: Results of feature reduction, using Random Forest Classifier, to
identify the optimal number of features to be used in swallow classification. Plot-
ted is F-Score prediction accuracy against number of features used for classifi-
cation. The top plot shows feature reduction including full frequency domain
features, while the bottom plot shows feature reduction without full frequency
domain. Included are plot lines for: ES-DS-LS model trained for 3 way classifi-
cation of all classes, ES-S model trained for classification of Extended swallows,
and DS-LS model for distinguishing between Dry and Liquid swallows.

liquid classification task models showed some benefit from the inclusion of these features.

Results of recursive feature reduction demonstrate improved classification performance in

correlation with the inclusion of additional features. This trend appears to continue with

the inclusion of specific frequency content bins; peak performance found using 26 features,

with a mean F-Score of 0.927. This demonstrates that classifiers capable of differentiating

between liquid and dry swallows benefit more substantially from the increased complexity

of features representing frequency content.
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3.3.3 Classification Performance

Models were trained, tuned, and tested for each classification algorithm. In addition to this

they were trained and tested for both feature sets: those solely using summarised frequency

content information and those including detailed frequency content. Although the feature

importance evaluation demonstrated negligible importance of frequency content for the

multi-class classification case and the Extended swallow case, there was some indication

that the full frequency content is of use in the dry and liquid swallow classification case. In

order to make a final evaluation regarding the relevance of these features upon classification

performance, models were trained for both feature sets permitting comparison during final

model selection. Figure 3.7 provides a summary of the classifier performance (based on

F-Score) using each classification algorithm, for models using frequency domain features

and models without.

Multi-class classification models for distinguishing between extended swallows, liquid

swallows, and dry swallows were first evaluated using each classification algorithm. Models

trained based on the tree based classifier algorithms demonstrated superior classification

accuracy over the other models, with the high score identified for the Random Forest

based model trained using feature sets excluding frequency domain bin features. Final

results for the model based on a Random Forest algorithm can be seen in table 3.5.

Examining these results for each class (see table 3.4), it was clear that there was a bias

t the extended swallow class over the dry and liquid swallow classes. The high performance

for classification of extended swallows with a low number of features indicates that this

is a substantially simpler classification task on its own, compared to the differentiation

between dry and liquid normal duration swallows. In the dry swallow vs liquid swallow

case, the results follow a trend similar to that demonstrated during the multi-class case.

For extended swallow classification case the performance of all models excluding frequency

bins was very high supporting the conclusion that this was an easy classification task.

The evaluation of feature importances showed that the frequency bin based features

had little contribution to classification, which was supported by the results of the final

model (table 3.5). As can be seen in figure 3.7, for the majority of classification algorithms

the models based upon features excluding detailed frequency bin content demonstrated a

comparable or improved degree of classification accuracy.
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Figure 3.7: Classification performance (F-Score) for classifier models, each
based on one of the investigated classifier algorithms. Top: accuracy of mod-
els including full frequency domain features. Bottom: accuracy without full
frequency domain. Included are bars depicting accuracy of: ES-DS-LS model
trained for 3 way classification of all classes, ES-S model for classification of Ex-
tended swallows, and DS-LS model for distinguishing between Dry and Liquid
swallows.

3.4 Biofeedback and User Evaluation

Viability for the detection of EMG activity bursts during deglutition and classification

of swallowing types based upon these detected bursts was evaluated during the first part

of this research (section 3.2 and section 3.3). The next stage in this research was the

application of EMG measurement and swallow detection for driving feedback designed to

support swallow exercise. As discussed in the literature section (section 2.1.3), biofeedback

is a useful tool for supporting rehabilitation for swallowing disorder patients [64, 109], but

suffers from a lack of standardisation [110], require clinical supervision and interpretation,

and have difficulty maintaining patient engagement and motivation [112]. To overcome
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Table 3.4: F-Score per class accuracy for swallow classification models. Includes
results for: ES-LS-DS multi-class classifier model for prediction between all
swallow classes, ES-S binary classifier for determining Extended swallows from
other swallow types, and LS-DS binary classifier model for determining between
Dry and Liquid Swallows

Random Forest F-Score Per Class

Class ES-LS-DS ES-S LS-DS
S* 0.99
ES 0.99 0.98
DS 0.9 0.92
LS 0.89 0.92

Average 0.93 0.99 0.92

* Combined Dry and Liquid swallows, for classification of Extended swallow

Table 3.5: Average F-Scores for Random Forest based classifier model. Includes
results for each classification case: ES-LS-DS multi-class classifier model for
prediction between all swallow classes, ES-S binary classifier for determining
Extended swallows from other swallow types, and LS-DS binary classifier model
for determining between Dry and Liquid Swallows

Random Forest Average F-Scores

Classification Case No Frequencies Frequencies

DS-LS-ES 0.93 0.9
ES-S 0.99 0.97
DS-LS 0.92 0.88

these issues, this section demonstrates the application of the swallow detection algorithm

developed here to drive a prototype form of biofeedback intended to support swallow

training. As such, the objectives of this third stage of this research were:

� To design and implement swallow driven feedback to engage and motivate partici-

pants in swallow training

� To conduct a pilot study of the prototype to gauge the effectiveness and appropri-

ateness of the sensors and feasability and usefulness of the feedback

3.4.1 Data Acquisition and Biofeedback

Biofeedback Requirements and Design

To achieve the objectives of this stage of research, the swallow detection, monitoring

and feedback system was required to meet a number of specific requirements. Firstly,

the system should make use of the automated swallowing detection algorithm outlined

in section 3.2, in order to drive swallowing feedback and to record EMG data related to
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swallowing along with detected swallows. As well as permitting continuous user interac-

tion with feedback, this also allows post-experimental review of swallowing related EMG

activity and analysis of feedback response performance. The system was required to pro-

cesses EMG and detect and respond to swallowing with minimal possible delay to permit

users to react to feedback in a responsive way.

The detection of swallowing and provision of swallowing biofeedback has particular

implication for rehabilitation and strength training regimes intended for patients with dif-

ficulty swallowing or swallowing disorders. As existing forms of swallow biofeedback suffer

from difficulty maintaining user engagement and motivation, and important requirement

of the biofeedback design was to consider ways to overcome these limitations. Furthermore,

with the long-term vision of providing alternative platforms to support such rehabilita-

tion, it was also important to consider swallw training exercises typical of rehabilitation

regimes as well as other principles of swallow rehabilitation training.

To help motivate and engage participants, a game-based feedback design was selected.

In many forms of biofeedback and behavioural therapies, such as Cognitive Behavioural

Therapy [103], it is considered essential to encourage patients to set goals and to reflect

on progress in order to engage patients and motivate them to pursue improvement, and

to develop self-efficacy [20, 119, 114]. These elements of cognitive therapies are closely

related to mechanisms of modelling and feedback theory involved in biofeedback and

game based learning Baranowski et al. [112]. Games have been demonstrated as useful

for motivating users, which [112] attributes to “meaningful play” and “challenge” of game

design. To achieve these outcomes Baranowski et al. recommends achievable game goals

and providing users with the means to measure success. In addition to this, although the

objectives should be achievable, the authors also emphasise a need to maintain sufficient

difficulty to maintain user interest, as well as providing ongoing success targets and varying

the challenge.

To meet these requirements, a continuous platform type gameplay was selected, involv-

ing a rolling ball which could be controlled to ‘jump’ over gaps between moving platforms

by swallowing to trigger jumps. A continuous score was kept based on the duration of

unbroken gameplay, and displayed at the top of the screen to provide users with feedback

on achievement. A game over screen, displayed upon the game avatar falling between a

platform gap, was also designed to show the players achieved score, along with the mes-
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sage: ‘Game over. Now try to beat your previous score!’. The score display and game

over message were designed to allowed players to reflect on progress, while providing them

with an ongoing goal and motivating them to keep playing. Finally two elements were in-

troduced to vary the gameplay and difficult and maintain engagement and focus. Firstly,

within the game, the speed of movement was varied based on color coordinated platforms:

where purple platforms resulted in normal speed, yellow platforms reduced speed by 50%,

and red increased speed by 50%. Secondly, the size of gaps between platforms was varied

randomly, to present further challenge and reduce game predictability. This final element

was also important for encouraging certain principles of swallow training, discussed below.

Introducing principles of swallow training was the second main requirement of the

biofeedback. As has been discussed previously in this chapter and in the literature chap-

ter (chapter 2), swallow exercises involved in rehabilitation for swallow disorder patients

include repetition of swallowing to train muscle strength as well as practising key swal-

lowing manoeuvres such as the extended swallow (the swallow maintained at the height of

laryngeal elevation) and effortful swallow (with maximal force applied to a swallow) [63,

96, 97]. These three components were all considered and included in the game design.

Repeated swallowing was designed to be a necessity within the gameplay, with continu-

ous moving platforms bypassed via swallow controlled jumping. To encourage effortful

swallowing, the strength of the avatars jump was designed to scale with the magnitude

of the EMG signal measured from the user: increasing swallow magnitude resulting in

continuous increase in jump height. As well as responding to swallow effort, the jump

control was also designed to maintain the elevation of the avatar for the full duration of

the EMG activity associated with a detected swallow. As well as varying user experience,

the varying gap size between platforms was also designed to work in tandem with this

avatar control feature: the ability to maintain jumps helping to overcome the maximal

platform gaps and thus encouraging extended swallowing.

System Specifications

The implemented system for data capture and provision of feedback included a hardware

system for the acquisition of EMG measurements, and a software solution for the real

time monitoring and capture of physiological data and for driving training feedback. An

overview of the full system can and the roles of respective components can be found in
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Figure 3.8: Overview of data capture and biofeedback interface system compo-
nents, developed as a part of the study reported in this chapter. Demonstrates
the capture of data, transfer to a system running the interface software, and the
major tasks of each interface component.

figure 3.8, and figure 3.9 demonstrates the data capture interface and equipment. This

involved the same materials as described in the data acquisition section (section 3.2.1. In

this case, the epidermal electronic sensor type [210] was selected to permit user evaluation

of this sensor format and the feasibility and acceptance of the sensors in comparison with

the other components of the system, which consisted of traditional electronic devices. The

electrodes were mounted upon the surface of the skin over the muscles of the submental

triangle (under the chin) and connected via a flexible ribbon like cable to a Bluetooth

enabled data capture device and wireless transmitter. Data was then distributed wirelessly

to a custom computer interface.

The custom software implemented for this system consisted of three principle compo-

nents: a data acquisition interface for the detection and collection of EMG measurements

from the submental muscles, an integrated swallow detection algorithm for the detection

of EMG bursts associated with swallowing, and a real-time feedback control system for

driving game-based swallow training feedback. All components were integrated into a

single control interface, developed using C# [220] and Microsoft .NET Framework 4.5

[221]. This platform was selected in part because the data capture hardware (BioRadio,

GreatLakes Neurotechnologies1) is provided with a native Microsoft .NET Framework for

1https://glneurotech.com/bioradio/bioradio-specifications/
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application development2, making this a convenient framework for development. In ad-

dition to this, the framework integrates easily with the Unity based games, which was

chosen as the game development environment for this work (described below). Consis-

tency across the software platform was decided upon in an attempt to reduce the latency

of inter-process communication and maintain response timeliness.

The feedback control system monitored the status of connected data acquisition devices

and permitted control and monitoring recorded data. As is indicated in figure 3.9, sum-

marising interface components, this also permitted the control of parameters for streaming

settings (channel selection, and sampling window size), and filter settings (band-pass fre-

quency range and filter order). It could also be used to control the calibration of baseline

measurement and parameters.

During data acquisition, this system could be used to detect swallowing activity using

the same algorithm developed during part one of this research, adapted and integrated

into the custom software. The procedure used by the algorithm for detecting swallowing

activity was the same as that described in section 3.3, and figure 3.4 provides details

of this algorithm functionality. The integrated algorithm resulted in binary detection of

swallowing activity, triggering a flag to indicate a real time change from inactivity to

swallowing activity. For the purpose of real-time monitoring and provision of feedback,

this algorithm had the benefit of providing fast and easily calculated detection with only

negligible processing delays.

The final component of this system was real-time feedback provided for swallow train-

ing, the design of which was discussed previously. The game-based feedback was developed

using Unity Software [222], selected as a flexible game development environment that is

easily extendible to work with external devices and works efficiently with the .NET frame-

work. During use, the swallow detection algorithm results to the game-based feedback.

During swallowing a positive swallow detection resulted in the ball ‘jumping’, where the

elevation scaled based on swallow magnitude, and staying elevated while the swallow is

held, for instance in the case of an extended swallow. Gameplay was continuous with

an updating score relating to the duration the user manages to continue playing without

falling through a platform gap. On this event the player is faced with a game-over screen

and invitation to beat their previous score. Figure 3.10 shows a screenshot of the game-

2http://glneurotech.com/BioRadioSDKDocumentation/html/ffb032ba-5944-4d52-ab89-
448553765c01.htm
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a

b

Figure 3.9: Overview of the hardware setup and software system associated
with the swallow monitoring and biofeedback interface. (a) Overview of the
data capture hardware; EMG measurements captured and transmitted to data
acquisition system via Bluetooth enabled transmitter. (b) Screenshot of the data
capture, swallow monitor and biofeedback control interface, showing the different
components of the interface

based feedback, demonstrating an example of a ball jump in correspondence with a period

of positively detected swallowing activity.

3.4.2 User Evaluation Procedures

In this stage of the research, collaboration with the Yeo research group [75] was continues

to permit use and evaluate the feasibility of “epidermal” sensors with the biofeedback

system. Once again, collaborating researchers, operating out of Virginia Commonwealth

University, were responsible for recruitment and screening of participants, setting up ex-

perimental materials and sensors, and were also responsible for ensuring participant adher-

ence to instructions and for carrying out user interviews. Interview footage was recorded
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Figure 3.10: Screenshot of the game-based feedback environment (a) and ex-
ample of game control via swallowing EMG signal detection (b).

for post-hoc analysis by the author of this thesis at a later date.

A small trial user study was conducted using the developed feedback and monitoring

system, the purpose of which was threefold. Firstly, to determine the accuracy and perfor-

mance of swallow detection beyond the initial testing conditions; in this case when applied

for the purpose of driving eating feedback. It was also intended to establish amongst par-

ticipants the acceptability of the epidermal sensor modality in comparison with the other

components during the study, and to gauge participant opinion regarding continuous use

or use in different environments. Finally, the study was intended to determine the user

impression of the feedback itself, and gain an initial idea of its feasibility and effectiveness

for engaging users in swallow training.
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This trial consisted of two parts. Firstly, a user trial, using the epidermal sensors to

control the feedback system. This was then followed by a user evaluation, consisting of

a survey and short follow-up interview to gauge user experience and impression of the

system components.

During this user study, the six participants recruited for the first part of this research

were asked to take part in the evaluation. As such this study involved a small sample of

healthy participants. This was partly due to recruitment restrictions for the collaborators

at the Virginia Commonwealth University. However, in addition to this, although the long

term vision for the developed swallow detection algorithm and feedback was to apply these

to clinical behaviour change and support of rehabilitation, this was an early prototype

and it was important to gauge the acceptance and perceived feasibility of the sensors and

feedback before any further studies involving swallow detection or feedback.

Participants and Equipment Set-Up

The six participants recruited for the first part of this study were asked to take part in the

evaluation. The use of the same participants was in part due to recruitment restrictions

of the collaborating researchers at the Virginia Commonwealth University. However, as

the swallow detection algorithm was developed based on these same participants, it also

permitted a degree of certainty regarding the accuracy of the algorithm for the selected

subjects and permitted evaluation of the continued accuracy of the algorithm during a

separate session, and following repeated calibration.

Participants were briefed in full about the evaluation and were equipped with electrodes

following the same placement and equipment setup procedure as carried out in the previous

stage of the study (section 3.2.1). The supervising researcher then carried out a period of

reference measurement during periods of inactivity and swallowing to ensure signal fidelity

and permit calibration of baseline, filtering, and threshold parameters, as necessary.

User Trial Procedure

The user trial of the system was conducted over a single session per participant. The use

of the feedback was described in full to each participant, and participants were provided

with a short training period, with the researcher demonstrating the control of the feedback

via swallowing.
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Participants were then asked to attempt to control the game-based feedback, and

permitted unlimited time to guide the ball through the game environment, traversing

platforms by swallowing to control ‘jumping’. They were instructed to continue for as

long as possible, but to avoid user discomfort participants were permitted to cease when

they could no longer comfortably dry swallow; allowing the game to end.

To collect a comprehensive amount of data, and to provide an opportunity to chal-

lenge participants to improve and beat their previous scores, participants were asked to

repeat this process 5 times. However, during repeated swallowing there was a risk of

muscle fatigue and it was important to provide a recovery period between each attempt,

to avoid impacting user performance or effecting the EMG measurements and to prevent

compromising swallow detection accuracy and feedback control. Once the ball had fallen

into a gap the game ended and the participants were provided with a drink of water and

given two minutes to rest. At this point the participants were challenged to beat their

previous score, the game restarted and the process repeated. During each session, video

footage of the participants and game-play feedback was recorded, allowing information to

be extracted regarding the game response and participant control accuracy.

Follow-Up Interview

Following the user-trail, each participant was asked to the fill out a short survey and take

part in a follow-up interview. These were designed to investigate user impression of a

number of factors relating to the sensors and feedback. These included user impression

of:

1. The comfort of the sensors and other components of the system

2. How suitable the users felt the sensors would be for use in different environments

(at home amongst family, or in the office with peers)

3. How suitable the users felt the sensors would be for long term and continuous use

4. The users impression of the game-based feedback itself

The users were first asked to rate each topic and their experience with the system

from ‘poor’ to ‘excellent’ using a seven-point scale. The use of scales, such as the Likert-

Scale, for user experience assessment is an approach which is deemed reliable, robust
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and recommended as the standard for user experience studies [223]. Typically, a 5-point

scale is considered sufficient for moderate sample sizes, with more questions resulting

in diminishing returns in terms of the granularity of context of user experience [223].

However, in the case of small sample sizes, the use of a 5-point scale has been found to

have insufficient sensitivity to data variation, only able to partially capture the attitude

range of participants responses [224], and contributing to data loss [225]. A larger number

of user response choices on the other hand has been found to provide increased sensitivity,

with a 7-point scale in particular recommended to provide a better reflection of the true

response of user evaluations [225, 226]. As this study involved a small sample size, a 7-

point scale was selected to provide increased granularity of detail and a better impression

of user opinion regarding the topics of interest.

Following the survey, users took part in a short discussion during which the researchers

asked users to vocalise their thoughts regarding each of these same topics. Researchers

were also instructed to direct their questions to aspects of the sensors and feedback based

on the survey responses, to identify any particular concerns or thoughts about these

aspects. This stage was carried out to provide qualitative insight into the users experience.

Audio of all interviews was also recorded, for post-hoc response transcription and analysis

by the thesis author.

3.4.3 Results and Discussion

Feedback Performance

Following the user evaluation trials video footage was reviewed and data regarding user

swallowing function and feedback response manually extracted to permit assessment of

swallow detection algorithm and game-based feedback response accuracy in real-time,

less experimentally controlled conditions. Extracted data included the total number of

attempts to control the game (observed voluntary swallows), the number of successful

responses, and the number of false positives. The number of successful responses was de-

fined here as the number of game-based feedback responses following an observed swallow,

while false positives were defined as the number of feedback responses without any related

swallowing activity observable. Details of the total recorded successful responses and false

positives across all five gameplay attempts for each participant can be found in table 3.6.
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Table 3.6: Table demonstrating attempts to control real-time feedback by way
of swallowing detection, successful responses, and false positives.

Feedback Control Results

Participant Number Attempts (Swallows) Successful Responses False Positives

1 27 27 17
2 14 11 2
3 20 18 4
4 20 20 0
5 27 26 6
6 52 48 10

The total successful response rate, calculated as the sum of all successful game re-

sponses divided by the sum of all observed attempts to control feedback (by swallowing),

was found to be 93.8%. This shows a very low false negative rate and high feedback re-

sponse across all participants. A false positive rate (total number of false positives divided

by the total number of attempts) of 24.4% was found across all participants and gameplay

trials. This corresponded to a mean of 1.3 false positives per gameplay trial. As shown

in the results, the distribution of false positives was mostly biased to participant 1 and 6.

Exaggerated motions were observed during the trails for these participants, in attempting

to increase their success rate. This added unexpected activity from the tongue, neck, and

head motion, and resulted in an increase in false positives. It is theorised here that this

is an indication that the use of a simple threshold technique is not very robust to minor

fluctuations on the EMG signal. In addition to this, some of the failed responses are also

considered to have resulted from impeded swallowing activity due to participant difficulty

with the repeated swallowing activity, which was reported by some participants.

Evaluation of response time between swallow and feedback response was conducted

across all participants and gameplay trials. This revealed a population average response

delay of 1.033 ± 0.039 (SD = 0.479). However, it should be noted that this delay was

estimated as the period between the earliest time of observed swallow function (from video

footage) and the equivalent feedback response onset, and as such there is potential for

error between observed timestamps and response time. The observed delay is considered

the sum of signal transmission delay, processing time, the period between participant

application of effort (to swallow) and muscle response, and the period between the onset

of EMG response and EMG signal exceeding the threshold. The implications of this delay

are discussed further in the discussion section (section 3.5.3).
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User Evaluation

Following the gameplay trials each participant took part in the user evaluation type inter-

view. Each participant provided rating on a 7-point scale regarding a number of factors

relating to the comfort of sensors, participant perceived psychological comfort using the

sensors in different environments (at home or in the office) and over a long term period,

and their impression of the game-based feedback they were presented with. Follow up

interview questions were asked based upon these scores regarding any particular positive

or negative impressions participants had.

The mean of the numerically coded scores for each of the Likert-scale measured factors

can be found in table 3.7. As can be seen, comfort of the sensors was rated very highly

along with the perceived comfort in different environments. Follow up interviews empha-

sised these results, indicating that this was due to the discreet and flexible nature of the

sensors. However, four participants stated that they were still “aware” of the sensors, and

they felt like they were wearing a “band-aid”. All participants also praised the system

mobility, and all but one stated that they thought the wireless system would permit in-

teresting continuous monitoring of eating activity. On the other hand, the long term use

of such sensors was rated lower, and follow up interviews highlighted concerns regarding

system robustness and restricted motion, although this was limited to the less discreet

and more bulky components of the system such as the wiring and data capture device.

The feedback system was rated above average, and during post-hoc interviews three

participants reported that they found the system “fun” to use, while two stated that it

made repeated swallowing easier, or improved their focus upon the task. However, three

also reported that repeated swallowing was a difficult task to maintain without more

significant recovery periods.

Although the results of this biofeedback control evaluation indicated a high accuracy,

the relatively limited subject pool and difficulty accurately measuring the false negative

rate made it problematic to draw any final conclusions regarding the accuracy of this

system. In addition to this, some negative comments were highlighted, with a bias against

the system hardware. However, it was determined during the interview sessions that

these concerns were primarily focused upon the bulkier, more traditional components of

the system, such as the wiring and wireless transmitter. As such, replacement of these
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Table 3.7: Average numberically coded user-evaluation ratings measured on a
7-point likert scale, for factors of sensor comfort, perceived psychological comfort
wearing the sensor in varying environments, or for long-term usage, and opinion
of the game-based feedback

Average Interview Rating (Likert 7-point Scale)

Sensor Comfort Different Environment Long-Term Use Game Feedback
Mean 6 5.83 4.5 5.16
SD 0.81 0.89 1.38 1.06

components with less obtrusive and more robust components would alleviate these issues.

3.5 Discussion and Limitations

It was proposed in this chapter that Electromyography is an unobtrusive approach for

tracking swallowing, and a useful alternative to current procedures for assessing swallowing

performance. Furthermore it was considered possible that EMG would be useful for the

purpose of rehabilitative feedback applications, with an emphasis on feedback for swallow

exercise. To explore this, the goals of this study were to develop a swallow detection

algorithm, investigate feature extraction and the use of classifier algorithms to differentiate

between swallow types, demonstrate the use of swallow detection for driving swallowing

feedback, and to investigate the viability of EMG for unobtrusive sensing of swallowing

and for driving feedback.

3.5.1 Swallow Detection Algorithm

Section 3.2 described data collection and development of a swallow detection algorithm,

using a threshold based activity onset detection approach. This algorithm demonstrated

a high accuracy of approximately 90% or more for two types of sensors, suggesting that

the algorithm developed with conventional sensors was transferable to other sensor types.

A number of other approaches for swallowing detection, discussed in the literature (in

section 2.2.2 and section 2.2.4), reported variable success for the detection of swallowing.

For instance, the use acoustic signals from throat mounted mic and classifier algorithms

have been proposed for the detection of swallowing, with accuracies of up to 85% [68,

158, 65]. Alternatively, Nahrstaedt et al. [177] used combined EMG and bioimpedance

in conjunction with valley detection and a Support Vector Machine, resulting in an high

detection accuracy. While the approach presented in this chapter did not exceed the results
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of this combined approach, it demonstrated that EMG alone is still a reliable technique

for swallowing detection, outperforming alternative sensing approaches even with simple

threshold based algorithms.

However, the procedure involved for collection of the EMG data used for the devel-

opment and evaluation of the swallow detection algorithm involved strict lab conditions

limiting participant movement or other none-swallowing activity. As such, it was difficult

to assess the robustness of the developed algorithm in the face of such unexpected activ-

ity. Furthermore, unexpected movements enacted by participants during the biofeedback

evaluation resulted in observed anomalous activity and increased false positives further

highlighted the issue of non-robust swallow detection. With the relatively simple algorithm

employed in this stage of the research, it is difficult to account for such unexpected muscle

activity, and it is suggesting that a threshold technique is not the best approach for swal-

low detection. The following chapters investigate alternatives using classifier algorithms

and training with more varied data sets to improve classifier robustness.

3.5.2 Swallow Classification

Expanding upon swallowing detection, section 3.3 explored the identification of features

which are useful for identifying swallow types, and the use of classifier algorithms for

differentiating between these. As shown in table 3.3, 12 main features were investigated

along with detailed frequency domain. Features relevance was evaluated using feature

importances and through conducting feature elimination, and swallow span (duration) was

determined to be the most useful feature for swallow classification, followed by Integrated

EMG and Waveform Length. These features represent signal amplitude and complexity

information, which has been recommneded as the most informative content for EMG

analysis [208].

Detailed frequency content was demonstrated to be fairly redundant for swallow classi-

fication, with 12 features found to be the optimum number for classification of all swallow

types or liquid swallows (see figure 3.6) and only mean frequency and myopulse represent-

ing frequency content in these 12 (as can be seen in figure 3.5). For extended swallow

detection, swallow span (duration) was found to be the most relevant features, and there

was no significant improvement with the addition of more features. This supported ob-

servations that extended swallowing resulted in a predictably increased swallow duration
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than other swallow exercises. A Random Forest classifier algorithm resulted in an ac-

curacy of 0.93 for liquid and dry swallow differentiation, and 0.99 for extended swallow

detection.

3.5.3 Feedback System and User Evaluation

In the final main section of this chapter (section 3.4), use of the swallow detection algo-

rithm for feedback interaction was demonstrated. A system for detecting and monitoring

swallowing was developed (seen in figure 3.9), and demonstrated for the purpose of driving

game-based biofeedback designed to motivate and engage users during swallow exercise

(seen in figure 3.10). A user evaluation was then carried out to test game feedback re-

sponsiveness and to determine viability of the used sensors for monitoring of swallowing

and the feedback for supporting swallow practice. A successful response rate of 93.8% was

demonstrated by the game system, despite repeated swallowing and the chance of this

resulting in difficulty achieving successful swallows.

A post evaluation interview revealed that users felt the sensors were comfortable and

that they would be happy to wear the sensors continuously and in social environments

thanks to their discreet format. However, there were issues highlighted regarding the

combination of epidermal electrodes with more conventional components. Participants

noted concerns regarding robustness of the sensors, but on investigation these concerns

were found to focus on the traditional components of the system. Subjects expressed

concern that wires might become pulled loose or that they were overly aware the data

capture unit. It is considered likely in the discussion that replacing these components

with less obtrusive alternatives would alleviate these concerns, but it is hard to draw any

conclusions without further investigation.

Although the feedback demonstrated a high response accuracy, there was also a notable

response delay of approximately 1 second. The presence of the feedback delay highlights

some significant concerns regarding the system design in itself. As the feedback was,

in part, designed to encourage extended and effortful swallowing to jump between the

platform gaps through varying platform spacing and movement speed, fine control of

the game ’avatar’ and jump timing was important to enable participants to sufficiently

achieve their goals; detrimentally effected by response delay. Furthermore, this implied

some uncertainty in the results of the performance evaluation which was based upon the



Chapter 3. Electromyography for Swallow Detection, Classification, and to Drive
Biofeedback 123

number of successful responses, leading to positive bias in accuracy due to failed game

responses leading directly to user avatars falling through platform gaps and cessation of

the game trial. However, the feedback response accuracy was similar to that obtained in

section 3.2 for the swallow detection algorithm, lending support to the response accuracy

found.

In addition to interaction consideration, feedback delay is known to have significant

implications for user engagement with feedback systems and educational games. For in-

stance, in a discussion of promoting learning through game environments, Charles et al.

[227] emphasises that there delays should be minimised between point acquisition and

feedback to maintain engagement. Likewise, feedback delay minimisation one of the most

significant challenges involved in the design of responsive feedback systems for sports pur-

poses, which can lead to user dissatisfaction if not successfully minimised [228]. However,

while response delay is known to be a significant issue for both functional interaction and

user engagement, during the user evaluation (reported in section 3.4.3), participants did

not highlight any of these issue. Instead users emphasised the engaging aspects of the

feedback and that it aided concentration upon swallowing.

The game-based feedback presented as part of the biofeedback system also demon-

strated promising outcomes during this evaluation, with users reporting that they found

the game entertaining and helpful for focusing on repeated swallowing, although the act of

repeated swallowing itself was viewed negatively. While biofeedback has been previously

used for treatment of swallowing disorders, these usually rely upon forms of feedback which

are unintuitive and thus require therapist supervision or significant patient training [64].

Traditional biofeedback has also been reported to suffer from issues related to patient

motivation and engagement, and game based environments have been recommended a

useful approach for resolving these issues [101]. An early concept for game-based swallow

biofeedback was proposed by Stepp et al. [229], mapping EMG amplitude of the submen-

tal muscles directly to vertical position of a game avatar, to control the avatar and hit

targets. However, performance of their system was determined based on number of targets

hit, which they reported as a limitation, and they found a low success rate and high degree

of variance.

Comparatively, the system presented in this chapter made use of a swallow detection

algorithm to govern when the game would respond. As reported above, this resulted
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in high response accuracy and participants reported that it helped them focus on the

repeated swallowing task. Furthermore, this system presented encouraged participants to

perform extended swallow exercises and swallow repetition with minimal training, through

use of an intuitive platform navigation game environment, and randomly varying platform

sizes. Based of the review of the literature, the use of game environments for feedback in

conjunction with discreet “epidermal” sensors [74] can be concluded to be a mobile and

unobtrusive approach for swallow exercise.

However, there were a number of limitations involved in the evaluation of the perfor-

mance and usability and feedback of this system, as well as involving the user evaluation

design. Firstly, the user evaluation made use of a 7-point scale survey for rating points

relating to the participant experience, followed by an interview, to obtain detailed insight

into the user responses. However, although this approach was chosen to obtain as much

detail as possible regarding experience, the limited selection of survey topics limited the

insight that was possible in this case, particularly with a small participant sample. In

order to fully understand user experience and impression, surveys should provide a range

of questions (rated areas) and response options, so as not to limit user responses and

provide sufficient response details [223]. Future research should take this into account and

include a more in depth analysis of user experience as well as a larger sample pool, to

improve insight and increase response certainty.

There were also a number of question remaining regarding the impact of the response

delay, and whether it has an adverse impact upon evaluation of feedback performance,

usability, or user experience. As well as pursuing further work to improve the performance

of the feedback system and reduce delay, further research is necessary to determine the

extent of the impact of the delay on functional interaction and user interaction. Further-

more, alternative feedback designs approaches should be considered that would be better

able to integrate feedback delay with negligible impact.

3.5.4 Data Collection Limitations

The main limitations of this chapter were related to the relatively limited scope the ex-

perimental protocols used in this study. Data collection and the user evaluation was

conducted in this study with 6 participants, and under experimental conditions during

which the participants were asked to limit non swallowing motion. As such the data used
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for developing and testing of the swallow detection algorithm did not include significant

muscle activity related to non-swallowing actions, meaning that robustness of the algo-

rithm could not be determined here and suggesting that this would not perform well in

response to unexpected noise or head motion.

The design of the user evaluation also presented some limitations for the evaluation

of the feedback and user reception. A single session was conducted for each user, with

repeated trials of the feedback system and rest periods introduced between trials to al-

leviate muscle fatigue which can impact user performance and result in unusual EMG

activity impacting the performance of the system. However, participants still indicated

that repeated swallowing was difficult, which was expected while using feedback designed

to focus on swallow exercise, and there was a danger of this having other unknown influ-

ences over results. In the future, a repeated measurement design over separate sessions

would be better suited for collecting data over multiple trials per participant. This would

also offer the opportunity to study the impact of the game upon user performance over

time. The inclusion of a larger subject sample size would also provide further details

regarding these effects and strengthen the findings.

3.5.5 Implications

The work reported in this chapter has some significant implications for both research and

clinical treatment. The study and evaluation of swallowing function is limited by expen-

sive or intrusive procedures which are not suited to continuous or repeated assessment.

Unobtrusive EMG and activity detection methods such as those described in section 3.2

are useful during continuous studies, permitting continuous monitoring and automated

isolation of swallows for evaluation. Furthermore, section 3.3 has demonstrated the classi-

fication of particular swallow exercises used as part of rehabilitation. This has particular

implications for the treatment of swallowing disorders, permitting easier detection patient

success or failure when attempting specific swallowing exercises. The features extracted as

part of this work is also of particular use as parameters of importance for the identification

of impaired swallowing, as discussed by Vaiman and Eviatar [62].

In addition to swallow detection and classification, this chapter has demonstrated the

use of EMG for driving biofeedback. Biofeedback is a technique which has been used

as part of therapy for swallowing rehabilitation [64], however such biofeedback requires
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patient training, and provides only simple feedback or requires supervision and interpre-

tation of feedback and achievement of goals by a clinician. The game-based feedback

presented in section 3.4 is a step in overcoming these issues, designed to make use of the

motivational and engaging properties of games for therapy [101, 112]. Based on the find-

ings of this research, it is concluded here that this form of feedback can be employed to

encourage users and improve self-efficacy during swallow exercise, and to guide patients

in particular exercises. Combined with automated detection of swallow types this could

provide detailed information regarding goal achievement, thereby reducing the need for

clinician supervision.

3.6 Conclusions and Contributions

The most significant contributions of this chapter were focused around the automated

detection of swallowing and classification. One of the main objectives of this research was

to identify more accurate techniques for the detection of swallowing, and the results of

this chapter made significant progress to achieving this objective. Firstly, the research

outlined here evaluated the use of EMG in conjunction with a threshold based activity

detection technique, resulting in high detection accuracy.

However, the findings of this chapter also led to doubts regarding the robustness of

this approach, and led to the conclusion that alternative approaches better able to handle

unexpected motion or muscular activity when detecting swallowing should be pursued.

For instance, the work outlined here regarding the detection of swallowing demonstrated

that some classifier algorithms, such as decision tree based algorithms, are successful in

evaluating complex classification problems. Based on the findings of this chapter, it is

hypothesised that the use of such algorithms along with a larger subject pool and more

diverse data set would help to provide robust swallow detection, and the next chapter

investigates this in more detail.

As well as outlining techniques for swallow detection outlining the direction for future

research in this thesis, the findings reported here also demonstrate factors involved in

differentiation between swallow types, by way of classifier algorithm. Section 3.3 evaluated

the choice of classifier algorithm and feature importance for swallow type classification and

indicated that, amongst evaluated features, it was important to select features representing
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EMG signal complexity, as well as those providing information about the swallow itself,

such as the duration of an individual swallow. For instance, swallow duration was found

to be particularly important for classification of extended swallows. Interestingly, only 7

features were found to be necessary for optimal detection of extended swallows, which was

found to be consistent across all classifier algorithms evaluated. These findings support the

conclusion that extended swallow detection is a relatively simple classification problem.

Differentiation between dry and liquid swallows, on the other hand, was found to be a

more complex task. Evaluation of features revealed that this benefited from inclusion of a

wider range of information, with a peak classifier accuracy found when using 26 features.

Amongst these features, those including frequency content information were found to be

beneficial. When evaluating classifier algorithm choices, decision tree based algorithms

were found to give superior accuracy for this problem, likely due to the capacity of deci-

sion tree models to handle non-linear classification problems. These factors highlight the

greater complexity involved in differentiating between liquid and dry swallows, compared

to the simple task of extended swallow detection.

The work in this chapter lays the groundwork for subsequent research discussed in this

thesis, particularly that the work focusing on the detection and classification of eating

function; indicating a number of important considerations for classification of swallowing

information. In addition to this, the findings of this chapter suggest that physiological

sensing is a viable approach for on body-sensing, and the biofeedback approach designed

as part of this work is useful for helping to engage and motivate users in swallow exercise.

The next chapter builds upon the results of this chapter, expanding the experimental

protocols and further explores the detection of eating and food types.



Chapter 4

Classifiers for Automated

Detection of Eating and Food

4.1 Introduction

This chapter reports the findings of the second study carried out during this research.

This builds upon results of the previous study (chapter 3) with an expanded protocol to

further develop chew and swallow detection techniques, and to begin investigating the

extraction of other information from eating, such as type of food.

As discussed in chapter 2, the tracking of both eating function and dietary content

is an important component of understanding the processes of eating and eating disorders

(section 2.1.4). One which is reliant upon self-reporting, a measure which is prone to

inaccuracy and bias [32]. Physiological sensing based eating detection offers an automated

alternative to self-reporting. However, automated systems reviewed in the literature for

simultaneous eating detection and estimation of food type only take into consideration

chewing behaviour [178, 180, 179]. The inability of these approaches to detect and include

swallowing activity in evaluation of eating significantly limits the estimation of food type

and other information.

The main aims of this chapter are to build upon the findings of chapter 3 to further

develop automated eating detection techniques, and begin to investigate the extraction of

other information related to feeding from detected eating. The focus of this chapter was

exploring machine learning based approaches to achieve this aim. As such the main goals

of this chapter were to:

128
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� Investigate the use of classifier algorithms to develop robust and accurate models

for the detection of chewing and swallowing

� Adapt and compare techniques described in the literature for classification of food

content

In this chapter, the first step in achieving these goals was the collection of a robust data

set, including a range participants of varied age and BMI, and involving varied activity

to simulate real-world behaviours in addition to eating. As such, section 4.2 describes the

study methodology; including the development of tools and protocol to streamline data

collection and automatically provide detailed ground truth. Following data collection,

section 4.3 investigates the use of classifier algorithms, and reports their performance for

the detection of eating (section 4.3.1) and for detection of food content (section 4.3.2).

Section 4.3.2 also compares two food classification techniques adapted from the literature

with a new approach proposed here.

4.2 Data Collection and Processing Procedures

There were two main goals of this study. Firstly, the development of models for the classi-

fication of eating, capable of generalising to unknown subjects and robust in the presence

of unrelated activity. Following this, was the investigation of potential additional informa-

tion that can be extracted from EMG measurements given the detection of eating events

(individual chews or swallows). This section outlines the methodologies involved in achiev-

ing these outcomes, including details of data collection, processing, feature extraction, and

classification.

4.2.1 Data Collection

To achieve these goals it was necessary to collect EMG measurements during the con-

sumption of food and a range of other activities, such as head motion and speech. More-

over, it was important to collect comprehensive and informative ground truth information

regarding this behaviour. The measurement of such activity and precise ground truth

was carried out to ensure training and test data was available encompassing a variety of

subjects and “real-world” type behaviour, for training algorithms capable of classifying

targeted behaviour in a robust and generalised manner. A purpose built data collection
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procedure was developed along with accompanying hardware and software for the purpose

of streamlining the data acquisition process. These permitted self-reporting of chewing

and swallowing activity, in addition to semi-automated labelling of ground truth for foods

being consumed, head motion, and speech.

Data Collection System

The data collection system consisted of custom hardware and software paired with an phys-

iological data capture device and a standard laptop computer. Participants are equipped

with standard surface electrode sensors (#H124SG, Covidien, Ireland1) connected to a

bluetooth enabled EMG measurement and transmitter unit (Shimmer 3, Shimmer Sens-

ing, Ireland2). Two muscles are targeted during this study, with electrodes sensors placed

across the masseter and submental muscle groups. Placement procedure can be found

in appendix A.1. The data capture device streams the signal to a laptop client running

custom software. Also connected to the laptop is a custom ‘clicker’ type peripheral which

is used by participants to record eating events when paired with the custom software.

Figure 4.1 shows details of the data collection system, and provides example images of the

‘clicker’ device and on screen experimental instructions.

The data collection software was developed using C# .Net platform [220], making

heavy use of the Shimmer API [230] to stream data from the capture device. This software

permits the researcher to view and record streamed sensor data, saving the raw EMG

data streamed from the data capture device while simultaneously recording ground truth

labels. Sensor data from the 2 channels, ground truth, and video footage were all recorded

separately but simultaneously and synchronised. In addition to this, the software also

served to guide participants through the data collection, providing textual and audio

instructions (example seen in figure 4.1, c).

In previous works, including that reported in chapter 3, ground truth is determined via

strict protocols and instructions to perform actions at given times [60, 62], or through post-

collection annotation of the data using markup software and video footage or assessment

of the signal [178, 69, 30]. For some purposes this is a time consuming but acceptable

method, but when identifying complex ground truth for many events occurring in rapid

succession this is resource intensive and infeasible. Inspiration was instead taken from

1Now Medtronic: www.medtronic.com
2http://www.shimmersensing.com/
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Figure 4.1: Components of the data capture system used to collect data during
eating of various foods and head motion. a. provides a flowchart summarising
experimental data collection system and interaction between hardware and soft-
ware, for EMG data acquisition, video footage capture, ground truth collection,
and on-screen instructions. b. shows the custom ’clicker’ peripheral connected
to a laptop via USB connection, to permit ground truth self-logging based on
mouse click events on the application window. c. shows example of experimen-
tal application screen, displaying instructions for this stage of data collection (in
conjunction with audio instructions).



Chapter 4. Classifiers for Automated Detection of Eating and Food 132

studies by Nahrstaedt et al. [177] and Schultheiss et al. [170] in which participants are

asked to record swallows through self reporting using a manual switch. This technique was

adapted to streamline the data collection and annotation processes through participant

self-reporting and automated data labelling.

During data collection, participants are able to self-report individual chews and swal-

lows by performing a short click or long-hold of a ‘clicker’ device respectively (figure 4.1,

b). The custom software is designed to recognise these and record ground truth labels ac-

cordingly. Ground truth labels regarding food content or activity unrelated to eating was

also collected automatically, determined by experimental stage. Figure 4.1, a, provides

details of this process.

Data Recording

During the data collection sessions participants were briefed in full regarding the study

purpose and what would transpire during the collection session. Participants gave written

consent to EMG and video footage collection procedures reported here, and to indefinite

retention of anonymised data for future use beyond the scope of this study. Approval

for the following experimental procedures was granted by the University of Kent Ethics

Committee, on 19th July 20183 (approved reference number: 0721718, at the University

of Kent). Participants were equipped with the sensors which were checked along with the

custom software to ensure it was functioning as expected. The full system and usage was

demonstrated to the participants prior to taking part in the session.

Participants were asked to follow on-screen instructions guiding them through the

experimental procedure: 5 minutes of baseline measurement, 5 minutes speaking aloud,

head motion, and consumption of a small meal. Head motion was also carried out at

times while eating to simulate normal movement during eating. Inclusion of reading and

head motion was included to permit training of classifiers which are robust to unrelated

activity. Full details of the sequence can be found in appendix A.2.

Following completion, the sensors were removed from the participants, replaced, and

the procedure repeated. This allowed the researches to ensure that minor changes in

sensor placement did not adversely impact the quality of data recorded, demonstrating

that the system is usable despite slight variations in sensor position. This also provided a

3University codes of research ethical conduct: https://research.kent.ac.uk/researchservices/ethics/
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significant quantity of data for each participant.

Food Selection

A range of food items were selected in order to provide a variety of textures. This would

provides variation to the EMG signal acquired during consumption of different food items,

thus leading to a more robust classifier. Additionally this permits us to explore the

classification goal of identifying food types from eating EMG.

Given the constraints of the subject pool and availability, it was not possible during

this research to investigate a large number of foods. As such a selection of foods and

liquids were selected to represent different textures and viscosities. For this study food

items selected were: Apple, Jam Sandwich, Pizza, Yoghurt, and Water.

Participants were each asked to consume a total of 18 portions of each food item, over

the two repetitions of the experimental procedure and the various meal sections. Food

items were prepared prior to each study session. Each solid food item was cut into small

bite-size portions, approximately 2.5cm square in the case of pizza and sandwiches, and

apple slices 2cm by 2.5cm. Yoghurt was provided in a small container along with a 5

ml spoon. A portion of yoghurt was defined as a single spoonful. Unlimited water was

provided and a portion was described to participants as a small mouthful.

During recruitment of participants, full information regarding the content of the food

involved in the study was disclosed. Recruitment criteria required that participants find

the foods involved palatable and have no allergies or dietary restrictions that prevent

participants consuming the foods involved in the study.

Participants

Potential participants were recruited from the staff and student body of the University

of Kent. Applicants were considered viable if they were between 18-40 years of age and

had no dietary or eating disorders which would adversely impact eating during the study.

Participants were selected to include a range of physical characteristics and information

including gender and weight, height and BMI was recorded for each participant. This was

done to maximise the range of physical differences in the subject pool in an attempt to

improve robustness of the developed models to generalise to unknown subjects. Recorded

physical information permitted analyses of the impact of these factors on the performance



Chapter 4. Classifiers for Automated Detection of Eating and Food 134

of final classifier models and implications this would have on future research. Each par-

ticipant taking part in the study received a £10 Amazon voucher as compensation.

In total, 16 participants took part in the study, 8 of whom were between the ages of 18-

25, 7 between 26-35, and 1 between 36-40. Of these, 7 were male and 9 female, and 7 of the

16 were considered to be overweight, with a BMI greater than 25 and one was considered

slightly underweight with a BMI of 18.1. Each participant recorded 2 data sets, however

for 3 of these participants only 1 dataset was considered viable due to hardware faults, and

1 participant elected not to return take part in a second data collection session. In total,

28 data sets were collected from 16 participants, each comprising of approximately 20

minutes of EMG data recorded during a combination of activities and food consumption.

4.2.2 Data Preparation and Classification

Data Processing

Following data collection, all data was collected with a sampling frequency of 1024Hz,

filtered and processed to eliminate noise or movement artefacts, and the upper envelope

of each EMG channel extracted. Typically, the highest frequency components of EMG

signal are between 400-500Hz, thus the EMG sample rate was limited to 1024Hz to capture

this range and reduce the chance of high frequency noise or aliasing, and could safely be

filtered to obtain the the full EMG frequency spectrum according to Nyquist theorem

[4, 196]. As discussed in the literature (chapter 2), low frequency signal interference

resulting from movement or inherent signal instability usually occurs between 0-20Hz. To

eliminate these sources of noise, the signal was filtered in the same manner as described

in the previous chapter (section 3.2.1), using a Butterworth band-pass filter with a cutoff

frequency of 20Hz to 500Hz at an order of 5. See appendix B.1 for signal processing

pseudocode.

Ground Truth Correction

Each dataset was collected with self-reported ground truth labels. While this gave a good

indication of individual chew and swallow events, it was only an approximate indicator

of the signal activity ground truth and did not guarantee the identification of uniform

and predictable onset and termination times. To correct this, ground truth for each

dataset underwent automatic and manual review to ensure fidelity. Firstly, automatic
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correction of chewing event onset and termination was applied, using threshold based

activity detection, using EMG of the masseter muscle. Correct ground truth timings could

then be identified, where periods of potential EMG activity intersect or lay within close

temporal proximity to ground truth time stamps, and used to correct ground truth. The

same process was repeated for swallow ground truth correction, using submental activity.

However, as these muscles also exhibited some activity during chewing, manual review of

swallow EMG activity and video footage was also used to confirm swallow ground truth

onset and termination.

Pseudocode demonstrating the procedure for automatic correction of ground truth can

be found in appendix B.2. The threshold value (thr) for this was determined using the

approach suggest by Abbink et al. [181] and Li et al. [200] for EMG detection, as discussed

in section 2.3.3. Given as a point j standard deviations from the baselines mean:

thr = µ0 + j ∗ δ0 (2.3 revisited)

where µ0 is the mean of the baseline, δ0 is the standard deviation of the baseline, and

j = 5.

Eating Event Classification

In the previous chapter (chapter 3), a threshold based algorithms was designed for the

purpose of swallowing detection. However, EMG of facial muscles is sensitive to inter-

muscular cross-talk [196] and prone to interference from speech, head motion, or jaw

clenching [73]. The previous study involved controlled experimental procedures for data

involved in the development of this algorithm, but there were some indications that it

was not robust to unexpected activity. In this chapter, classifier algorithms are instead

investigated. These are alternative approaches widely researched in relation to EMG

analysis as they are capable of identifying patterns in the available data which is not

alternatively be easy to detect [143].

Three classification cases were evaluated for the detection of eating, as outlined in

table 4.1. Firstly, a multi-class classification case was investigated, followed by the pro-

duction of binary classification models for the detection of chewing or swallowing individ-

ually. In the binary cases no data was discarded from the training and test data, but any

activity unrelated to the specific class was relabelled as inactivity.
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Table 4.1: Description of the three classification cases investigated in this chap-
ter, for detection of chewing and swallowing.

Investigated Classification Cases

Classifier Model Details

Multiclass Differentiate between no activity (NA), activity during a Chew
(C), and during a Swallow (S)

Binary Chew Detect activity during a Chew (C). Inactivity, or swallow activity
grouped under unrelated activity label (NA)

Binary Swallow Detect activity during a Swallow (S). Inactivity, or chew activity
grouped under unrelated activity label (NA)

After filtering and rectification of the signal, additional processing was carried out.

The signal was downsampled and features extracted using a sliding, overlapping window

with a non-linear hamming function applied. For each sample, features were extracted

from the two signal channels and the sample was labelled according to the ground truth,

as either belonging to a period of inactivity (NA), or a chew (C) or a swallow (S) event.

During the evaluation of video footage and ground truth certain differences between

chewing and swallowing behaviour were observed, relating to the duration and frequency

of events, which were important to consider when sampling the signal for feature ex-

traction and classification. It was determined that the duration of swallowing events

was significantly greater than that of individual chewing event: chews occurring with a

duration of approximately 0.1s and swallowing events taking up to 2s. Furthermore, chew-

ing behaviour could generally be recognised as a highly periodic sequence of individual

chewing events, and with significantly greater frequency than individual swallows. These

observations were in line with the literature reviewed in chapter 2, both describing the

physiological processes of feeding (section 2.1.1) and the characteristics of EMG during

chewing and swallowing (section 2.2.3).

As such it was desirable to maximise the sampling window to capture as much of an

individual EMG burst as possible, so as to avoid loss of characteristic signal activity in

long duration events such as swallowing. However, a large window was considered likely to

result in an over-generalisation of EMG signal during highly frequent and short duration

chewing events, resulting in a loss of fidelity for the identification of onset and termination

points for individual chews. Therefore, during initial training the accuracy of each model

was evaluated using a range of window sizes from 0.1 seconds to 2 seconds in length to
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Table 4.2: List of features investigated for chew and swallow classification. A
discussion and details of these features is given in section 2.3.4, table 2.2.

Swallow Classification Features

MAV Mean Absolute Value, equation (2.5) Average of the absolute EMG signal
across a signal segment

IEMG Integrated EMG, equation (2.6) Summation of the absolute EMG sig-
nal across a signal segment, reflecting
the EMG signal firing point [208]

RMS Root Mean Square, equation (2.8) Root mean square of a signal segment
SD Standard Deviation, equation (2.9) Standard deviation of a segment of

the EMG signal
MYOP Myopulse Percentage Rate, equa-

tion (2.11)
Average number of times the EMG
signal in a segment exceeds a thresh-
old, relating to EMG motor unit ac-
tion potential [209]

MNF Mean Frequency, equation (2.15) Average signal frequency
MNP Mean Power Spectrum, equa-

tion (2.16)
Average of the EMG signal power
spectrum

Peak Maximum Amplitude Maximum signal amplitude in the
EMG segment

determine an ideal compromise for accurate detection of both chews and swallows.

Features extracted for each sample were selected according to recommendations within

the literature (section 2.3.4) and findings of the previous study (chapter 3). These features

include a combination of signal energy, complexity and frequency content, as recommended

by [209, 208]. A list of these features can be found in table 4.2. Across the 2 channels of

EMG a total of 18 features were extracted per sample for use in the classification of eating

events. The feature extracted during this work assumed a period of individual calibration

for each user. As such features were normalised given the minimum and maximum values

recorded for each participant.

As this study was aiming to create as robust a model as possible, in the face of head

motion, speech, or unexpected and unrelated signal activity, as much of the available data

was retained as possible. All samples unrelated to chewing or swallowing were labelled as

periods of inactivity (NA) despite any other behaviours occurring. This resulted in class

imbalances, towards the inactive class. In the training set this was compensated for by

computing class weights and applying these to data during training of all models, carried

out using the scikit-learn built-in functionality [231]. Class imbalances in the test sets

were also liable to cause anomalous results during testing. To account for this the test

data was resampled, downsampling the majority class to balance with the minority.
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Food Detection Classification

The second main goal of this study was to investigate what additional information re-

garding eating can be determined following the detection of eating events. The detection

of food type from EMG signals and eating events is presented as one such application.

To fully investigate the potential for classification of food content based upon EMG and

eating events, three machine learning based approaches for feature extraction were inves-

tigated to determine the ideal approach for food classification. Two were derived from

the literature and adapted for use with the data collected here [179, 180, 178]. The third

approach, proposed here, amalgamated and extended these other techniques to include

swallowing information.

For all approaches investigated, the EMG signals were filtered and rectified as described

previously (section 4.2.2). All classification approaches investigated in this stage made use

of features describing the EMG signal content during eating events or the pattern of eating

events themselves. As such the EMG signal was then segmented according to ground

truth timestamps for each individual chewing or swallowing cycle, assuming a perfect

accuracy during this stage. Eating sequences were determined given the interval between

termination of chewing or swallowing cycles and onset of the proceeding cycle. An eating

sequence was considered, here, to be complete when an interval of more than 1.5 seconds

was identified between the termination of an eating event and the onset of another. This

value was determined based on manual observation of the data and supporting ground

truth and video footage.

The two techniques adapted from the literature were based upon studies by R. Zhang

and O. Amft [180] and Q. Huang et al. [179], and are discussed in detail in the review

of the literature (section 2.2.4). In both of these studies, “smart-glasses” were used with

built in electrodes for EMG measurement of the temporalis muscles for the detection of

chewing. Features were extracted from the EMG signal during eating, for use in classifying

food content. R. Zhang and O. Amft [180] extracted a number of signal features during

each chew, averaged over the first 10 chews of a chewing sequence. These features were

then used to train and test an Linear Discriminant Analysis classifier model capable of

classifying food types over entire chewing sequences, reporting 94.7% accuracy. Q. Huang

et al. [179] followed a similar approach, but instead treated each individual chew as a
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separate sample, including EMG signal features from individual chew bursts and a count

of chews found in the associated chewing sequence. Thus, this second technique captured

information regarding individual chew signal along with some information regarding the

pattern of chewing. Q. Huang et al. reported training a J48 Decision Tree capable of

classifying food with a 69.2%–94.8% accuracy.

Although both approaches reported a high, if sometimes variable, accuracy, it should

be noted that neither approach reported any attempt to evaluate the capacity of their

models in a subject-independent basis (capable of generalising to unknown subjects). In

addition to this, they did not include the detection of swallowing in their feature sets, with

the temporalis lacking significant activity during swallowing. Furthermore, they made no

attempt to detect liquid intake or differentiate between solids and liquids, likely due to

lack of chewing during liquid intake.

To resolve these issues a third approach was proposed here, making use of sensors

placed across the masseter and submental muscles to take advantage of both chewing and

swallowing detection. A new feature set was also proposed, amalgamating the beneficial

features used in the studies described above while including swallowing information. In

this approach, each eating event was considered a separate sample, as described by Q.

Huang et al. However a more diverse feature set describing both individual events and

the pattern of events within the sequence to which they belong is chosen. Then for each

eating event the features of both the previous techniques are extracted for a total of 22

features across two channels.

Table 4.3 gives a summary of the features extracted from eating sequences or cycles,

for the two techniques adapted from the literature and the newly proposed feature set.

For all approaches features were normalised on an individual participant basis, assuming

a period of calibration for feature extraction with each subject. For all approaches, each

sample was labelled according to the ground truth based on food item being consumed at

the time. Each sample was labelled appropriately as Apple, Pizza, Sandwich, Yoghurt, or

Water.

Classifier Performance Evaluation Methodology

During analyses of classifier performance, all models were trained and parameters tuned

using group based k-fold cross validation (k = 3). Final evaluation and model selection
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Table 4.3: Summary of features extracted for each feature extraction technique
used for food classification. Eating cycle features indicate those calculated over
individual chew or swallow cycles. Eating sequence features indicate those calcu-
lated across entire eating sequences, or as an average of individual cycles across
the entire sequence. More details about the extraction of features can be found
in section 2.3.4, table 2.2.

Feature Extrac-
tion Technique

Eating Cycle Features Eating Sequence Features

R. Zhang and
O. Amft [180]

NA MAV, SD, RMS, Peak, IEMG. - Average
taken for each chew cycle across eating
sequence

Q. Huang et al.
[179]

Peak, eating cycle dura-
tion, Tp values (p = 25,
50, 75)

Count of chewing cycles across eating se-
quence – included for each eating cycle
sample

Proposed tech-
nique

MAV, SD, Peak, RMS,
IEMG, Tp values (p =
25, 50, 75), eating cycle
duration

Chew Count, Swallow Count, IEMG, Du-
ration - Features included for each eating
cycle sample

was performed with a distinct and separate subset consisting of all data from a random

selection of 25% of participants (4 participants).

Following this, further evaluation was also performed to fully evaluate the capacity of

selected models to generalise to unknown subjects and identify any trends in classifier per-

formance related to subject demographics. A leave-one-group-out selection technique was

employed, retaining all data from subject p and training using the remainder. Performance

of the trained model for predicting the data classes for participant p was then evaluated.

This was repeated for each participant retaining the class predictions and actual labels in

each case and producing a final classification report for all predictions.

For each classification task a number of models were assessed prior to final parameter

tuning and selection. In each case a number of different classification algorithms were

assessed, including Support Vector Classifiers (SVC), Linear Discriminant Analysis (LDA),

Decision Tree (DT), and Extra Trees meta estimator (ET), which are discussed further in

section 2.3.4.

For training and testing of all models, the sci-kit learn library was employed [231]. In

each case, full classification reports were produced consisting of precision, recall, and F-

Score accuracy metrics. These permitted evaluation of each models performance predicting

each class and a weighted average of each metric provided an overall performance indicator.
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The F-Score accuracy metric is mostly used here in evaluating and comparing between

the produced models.

4.3 Classifier Development and Performance

Table 4.4: Number of eating events recorded - distribution of chew and swallow
events for each food class.

Recorded Eating Events

Class Label Chew Swallow Total

Apple 3595 369 3964
Sandwich 4282 376 4658
Pizza 6073 395 6468
Yoghurt 230 330 560
Water 0 587 587

Total 14180 2057 16237

Reported here is the development and performance of classification models for the

detection of ingestive behaviour. During data collection 384 minutes of data were collected

over all participants. During this time, 5 minutes sitting still and 5 minutes of speech

were collected for during each session and the remainder of the data was collected during

consumption of a small meal. The total number of chews, swallows, and distribution of

food labels may be found in table 4.4.

4.3.1 Eating Detection

Classification of eating events was investigated making use of various models for different

classification cases, as described in table 4.1. Firstly, multi-class classification (C-S-NA)

of chew (C) and swallow (S) labelled samples from periods of inactivity (NA) was inves-

tigated. Following this, binary classification models were developed for the detection of

chews against unrelated activity (C-NA) and swallows against unrelated activity (S-NA).

Multi-Class Classification

Firstly, a multi-class classification model was developed and evaluation of sample window

size conducted. The effect of varying window size on each class is demonstrated in fig-

ure 4.2. As can be seen a very small sample window (128 observations in length) results in

a very poor result for both chew and swallow classes. The best accuracy for the chew class

was found with a window 512 observations in length (F-Score= 0.91), and with a window
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of 2048 for the swallow class (F-Score= 0.82), using a linear kernel SVC algorithm. Using

the weighted average F-Score as a measure of classification accuracy, a sample window

of 768 observations in length 0.75 seconds) was determined to be the best compromise

between chewing and swallowing. Figure 4.2 demonstrates this compromise for the linear

SVC based model, but this was found to be the case for all algorithms and this window

size was selected for further evaluation and testing of these models.

Table 4.5 shows the predictive performance of all algorithms for identifying chews and

swallows using the unseen test data, in the multi-class case. The linear SVC algorithm

clearly demonstrated the greatest predictive accuracy overall and for each individual class,

with an average F-Score of 0.79 using a window size of 768 observations (0.75 seconds).

Table 4.5: Summary of multi-class eating classifier model performance using
different algorithms. Shows F-Score per chew (C), swallow (S), and periods of
inactivity (NA), along with weighted average. Scores are shown for each classifier
algorithm: Support Vector Machine (SVC), Linear Discriminant Analysis (LDA),
Decision Tree (DT), and Extra Trees algorithm (ET). Sampling window for all
algorithms is 768 observations.

Per-Class F-Score and Weighted Average

Class Label
Classifier Algorithm

SVC LDA DT ET

NA 0.78 0.71 0.69 0.69
C 0.88 0.83 0.8 0.85
S 0.70 0.60 0.46 0.42

Average 0.79 0.72 0.65 0.65

While a compromise in window length was found for classification of chew and swal-

low classes, a bias towards the prediction of inactive (NA) or chew (C) classes was still

observable from the individual class scores. The normalised confusion matrix (figure 4.3)

for the SVC based model highlights this trend, demonstrating considerable confusion be-

tween swallow (S) and inactivity (NA) labels, with approximately 36% of S labels being

misclassified as NA. The results indicated that the selected window, although offering a

the best possible balance between chew and swallow prediction, was not large enough to

provide accurate predictions of swallowing. However, from figure 4.2 it can be seen that

increasing the window size compromises accuracy of the chew class prediction. Instead,

the improvement of accuracy for each class was further investigated through the use of

binary classification models.
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Figure 4.2: Evaluation of sample window sizes for multi-class classification of
chews, swallows, or periods of inactivity (C-S-NA). Shown are the F-Score accu-
racies against window size for: (a) Chew class accuracy for each of the evaluated
classifier algorithms, (b) swallow class accuracy for each of the evaluated algo-
rithms, and (c) class accuracies and weighted average for the linear SVC based
model. In a and b, lSVC refers to linear Support Vector Classifier, LDA to
Linear Discriminant Analysis, DT to Decision Tree, and ET to Extended Tree
algorithms. In c, NA refers to the classification score for detecting periods of in-
activity or unrelated activity, C refers to the score for Chew detection, S to the
score for Swallow detection, and the Weighted Average is the weighted average
of all class scores.
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Figure 4.3: Normalised confusion matrix for the lSVC based model for multi-
class classification of inactivity (NA), chews (C), and swallows (S).

Binary Classification

To investigate this and further improve classifier performance, binary classification models

were then developed for the separate detection of chewing or swallowing from inactivity.

Window size evaluation was repeated as part of the training procedure for the binary

chew classifier models. As expected, results of this evaluation for the binary chew clas-

sification case (figure 4.4, a) follow a pattern similar to that observed in the multi-class

case, with rapidly increasing accuracy until 512 observations in length (0.5 second) for

all algorithms, followed by a gradual decline with increasing window size. For swallowing

detection, a similar pattern to that of the multi-class case was observed, with accuracy

gradually increasing with much greater window sizes (figure 4.4, b). The optimum window

size was found to be 1664 observations (1.62 seconds) for the linear kernel SVC, however

the optimum window size was less uniform in this case, and varied between algorithms.

When evaluated against the test set, the models for binary classification of chews

demonstrated significantly improved performance over the multi-class classification case,

for all algorithms (table 4.6). It was determined that the SVC model once again resulted

in the best predictive performance on the test set, showing a 0.06 improvement over the

multi-class case for the chew class. Accuracy for binary swallow detection (table 4.7)

was also found to improve over the multi-class case, with an improvement of 0.16 for the

swallow class for the linear kernel SVC algorithm with a window size of 1664 observations

(1.625 seconds). For the swallow classifier, the ideal window size for each algorithm differed
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Figure 4.4: Evaluation of sample window sizes for binary chew (C-NA) and
swallow (S-NA) classifier models. Shown are the weighted average F-Score ac-
curacies against window size for: (a) Binary chew classifier accuracy for each of
the evaluated classifier algorithms, and (b) binary swallow classifier accuracy for
each of the evaluated algorithms.

in length, and were listed in table 4.7.

Part of the goal of this work was the production of eating classification models capable

of robustly detecting eating despite the presence of unrelated activity. To help meet this

goal the models developed here were trained using data which included periods of head

motion and speech, labelled as periods of inactivity. The high classification accuracy

achieved in this work suggests that there was little interference in predictive accuracy

caused by this unwanted behaviour. The final selected models were binary classifier models

based upon linear kernel SVC classification algorithms, with a sample window size of 512

observations in length for chewing prediction and 1664 observations (1.625 seconds) for

swallowing prediction.
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Table 4.6: Performance summary for the binary chew classifiers. Shows F-Score
per class and weighted average for each algorithm: Support Vector Machine
(SVC), Linear Discriminant Analysis (LDA), Decision Tree (DT), and Extra
Trees algorithm (ET). Sample window size for all models = 512.

Binary Chew Classifier F-Scores

Lbl
Classifier Algorithm

SVC LDA Decision Tree Extra Trees

NA 0.94 0.90 0.87 0.89
C 0.94 0.88 0.84 0.86

Average 0.94 0.89 0.86 0.88

Table 4.7: Performance summary for binary swallow classifiers. Scores are
shown for each classifier algorithm: Support Vector Machine (SVC), Linear Dis-
criminant Analysis (LDA), Decision Tree (DT), and Extra Trees algorithm (ET).
Sample window sizes: lSVC = 1664, LDA = 1536, DT = 1408, ET = 1152.

Binary Swallow Classifier F-Scores

Lbl
Classifier Algorithm

SVC LDA DT ET

NA 0.85 0.8 0.74 0.73
S 0.86 0.69 0.5 0.43

Average 0.86 0.75 0.62 0.58

Leave-One-Out Subject Evaluation

Selected models were then tested using a leave-one-participant-out selection approach to

permit estimation of the models predictive consistency across different participants, and

permitting the identification of any anomalous outliers. This evaluation was performed

using the binary chew and swallow models based upon linear SVC algorithm, as selected

in the previous section.

For each test case (participant) class predictions were recorded and merged, permitting

a final evaluation of the models performance for all test cases (table 4.8). There was a

slight, but not significant, improvement in F-Score for both classes, with an score of 0.95

for the chewing class and a score of 0.87 for the swallowing class. Evaluating the results for

each individual test case demonstrated in a relatively consistent score for all participants

(as can be seen in figure 4.5), and a low standard deviation of only 0.02 for the chewing

classifier and 0.04 for the swallowing classifier. Persistence of the classification performance

across all subjects and the low standard deviation of the F-Scores support the conclusion

that these models generalise well to entirely unknown subjects. Furthermore, lack of

variation in performance amongst participants despite differences in age, gender, and BMI

value suggest that these factors have little effect upon the detection and classification of
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EMG signals during eating.

Table 4.8: Performance summary for binary chew and swallow classifiers, using
SVC algorithm, on a leave-one-out test case. Shows average precision, recall and
F-Score metrics for individual classes. Sample window size: C = 512, S = 1664

LOO Average Classifier Accuracy Per Participant

Class Precision Recall F-Score

C 0.95 0.95 0.95
S 0.87 0.88 0.87

Average 0.91 0.91 0.91
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Figure 4.5: Plot of average F-Score for each test case (participant) in leave-one-
out evaluation of binary chew and swallow classifiers. Shown are scores for chew
(C) and swallow (S) binary classifiers, using linear kernel SVC classifier, sample
window size: C=512, S=1664.

While there were no definitive correlations observed between score and demographics,

it is interesting to note that for swallowing detection the high performing cases (F-Score

above 0.9) all consisted of individuals with high BMI. For chewing, no test cases resulted

in an F-Score of under 0.91 and the high scoring cases for chewing prediction (with F-

Score above 0.96) were found to be similarly distributed between high and normal BMI.

However, it should be noted that the size of the subject pool was not extensive enough to

make any significant conclusions from these observations.

4.3.2 Food Classification

Following eating detection, classification of the food type of ingested items, given eating

EMG activity, was then investigated, following the procedures laid out in section 4.2.2.

Firstly a multi-class model was developed to investigate the differentiation between all food

types. Following this the classification problem was divided into three: the classification
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of foods as either solids or liquids, and then the classification of different solid foods or

liquids.

Multi-Class Model

Firstly, classifiers were trained for prediction of all food types, investigating models based

upon various classification algorithms, and comparing the three feature sets (table 4.2).

The weighted F-Score accuracy measures for each feature extraction approach and classifi-

cation algorithm may be found in table 4.9. As can be see, for all classification cases SVC

based models using the newly proposed features were found to provide greater predictive

accuracy than the equivalent models using the feature sets adapted from the literature,

or other classifier algorithms.

On examination of the confusion between classes (see figure 4.6) for the SVC based

model employing the proposed features, it can be observed that the majority of confusion

is confined to solid food types and liquid food types. For all solid foods there were very

few cases of class labels being misclassified as liquids, and similarly there are no cases of

liquids being misclassified as solids.

Food Sub-Type Classification

Taking advantage of this, the classification problem was then subdivided into multiple

cases. The observation of distinct separation between solids and liquids in the multi-

class model indicated that a binary classifier model would perform well for differentiating

between solids and liquids. As can be seen in table 4.9 for the Solid vs Liquid case (SVL),

training models with all classes relabelled as either solids (S) or liquids (L) resulted in a

very high classification performance. This was expected, with the consumption of solid

and liquid food types characterised by significantly different eating patterns, as discussed

in the literature section (section 2.2.3).

On the other hand, no significant improvement was found for the average F-Score

performance for the Solids classification model over the average F-Score for the full food

classification model (All), with similar average score for both, using and SVC model with

the newly proposed feature set. Furthermore, on a per-class basis no significant difference

was found between the performance of these two classifiers, as seen in table 4.10. Liquids

also only demonstrated a minor improvement of 0.02 in accuracy for the water class. This
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Table 4.9: Performance summary for classification of food. Shows average F-
Scores for different classifier algorithms and feature sets, for classification of all
foods (All), detecting solids vs liquids (SVL), differentiating between solids, and
differentiating between liquids.

Food Classification F-Score Per Model and Classifier Algorithm

Model Feature Extraction Technique
Classifier Algorithm

SVC LDA DT ET

All
Q. Huang et al. [179] 0.55 0.54 0.50 0.52
R. Zhang and O. Amft [180] 0.48 0.53 0.45 0.50
Proposed Features 0.66 0.62 0.55 0.60

SVL
Q. Huang et al. [179] 0.99 0.96 0.98 0.99
R. Zhang and O. Amft [180] 0.84 0.86 0.76 0.85
Proposed Features 0.99 0.97 0.99 0.99

Solids
Q. Huang et al. [179] 0.55 0.53 0.50 0.51
R. Zhang and O. Amft [180] 0.43 0.44 0.38 0.41
Proposed Features 0.65 0.63 0.56 0.58

Liquids
Q. Huang et al. [179] 0.70 0.73 0.62 0.70
R. Zhang and O. Amft [180] 0.75 0.73 0.69 0.70
Proposed Features 0.74 0.76 0.70 0.71

Table 4.10: Performance summary for food classification accuracy per food
type. Shows F-Score per class label for each food type, for classification of all
foods (All), detecting solids vs liquids (SVL), differentiating between solids, and
differentiating between liquids. Class accuracies for individual foods are left blank
where that foods was not detected by the classifier model.

Food Classification F-Score per Food Type

Food Type
Model

All Food Solids Liquids S Vs L

Solids 0.99
Liquids 0.94

Apple 0.52 0.54
Sandwich 0.60 0.59
Pizza 0.78 0.77

Yoghurt 0.75 0.75
Water 0.71 0.73

Weighted Average 0.66 0.65 0.74 0.99

trend is similarly observable when comparing the class confusion for the liquid classifier

(figure 4.6, b) with the multi-class, both indicating similar accuracies for the yoghurt and

water classes.

Leave-One-Out Subject Food Classification

To further investigate the capacity of selected models to generalise to unknown partici-

pants, a leave-one-out test subject approach was again followed; systematically retaining

all data pertaining to a single subject as a test case, while training on the data from all
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Figure 4.6: Confusion Matrices for Food Classification SVC Model. a. Shows
the confusion scores for classification of all food using the multi-class SVC classi-
fier; the highlighted lines emphasising the distinct separation apparent between
solid and liquid classes, with little distinction between the broad food types.
b. shows the confusion values for classification of liquids, using a binary SVC
classifier.

remaining subjects. As can be seen in table 4.11, summarising the results of this evalu-

ation, the average F-Scores for each model are similar to the previously obtained results

with some improvement, confirming that these models are able to generalise effectively.

However, while the solid vs classifier resulted in a very high accuracy and uniformity

(F-Score= 0.99, SD= 0.01), a number of outliers were found for the liquid and solid

classifier models. While this study did not include a substantial enough subject pool to

draw any significant conclusions from these outliers, there were some interesting points to

note. As can be seen in figure 4.7, the majority of subjects were found to cluster within

the 0.6-0.9 F-Score range for both models. However a single male participant between

18-25 and with a normal BMI was found to have a very poor predictive accuracy for

liquids, but high for solids. No other participants had an accuracy of less than 0.7 for

liquids. Additionally, of three participants who had a poor solid accuracy (less than 0.5),

all were considered to have high BMI. While there appear to be some minor trends in the

performance of these models relating to age and BMI, the subject pool was not significant

or in depth enough to draw any definitive conclusions.
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Table 4.11: Average F-Score and standard deviation for each classification
model (based on Support Vector Classifier algorithm), evaluated on a leave-one-
out subject test cases. Scores are shown for each classifier algorithm: Support
Vector Machine (SVC), Linear Discriminant Analysis (LDA), Decision Tree (DT),
and Extra Trees algorithm (ET).

Leave-One-Out Food Classification F-Scores

All Solids Liquids S vs L
Average 0.682 0.689 0.721 0.993
SD 0.121 0.134 0.200 0.006
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Figure 4.7: Plot of F-Scores for Solid and Liquid classifiers, per participant.
Indicated are outlier participants: one male of normal BMI demonstrating low
liquid prediction accuracy, and three with low solid prediction accuracy who had
high BMI.

Subject Dependant Evaluation

Although the results reported here demonstrate that the models making use of the pro-

posed features outperform those using feature sets adapted from the literature, these

results do not align with those reported in the equivalent studies [180, 179]. However,

neither of these original studies investigated the capacity of these models to generalise

to entirely unknown subjects, with R. Zhang and O. Amft [180] reporting training and

testing on individual participants and Q. Huang et al. [179] selecting a randomised sam-

ple of one fifth of all data. To fully compare the model developed here with the results

reported in the literature a subject dependant evaluation method was employed. This
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time a standard stochastic cross validation approach was used for training and validation

purposes, retaining 25% of all data randomly as a test set.

Performance of the models using this approach much more closely aligned with the

results reported in the literature. It can be seen in table 4.12 that, unlike in the previous

evaluation, the models making use of Extra Trees algorithm mostly performed better or

equally as well as the other algorithms. Comparing the per class accuracy for different

feature selection approaches with Extra Trees based models, results were observed similar

to the previous evaluation in distribution: the newly proposed features outperforming

both the methods derived from the literature.

The impact of attempting to generalise onto unknown participants can be seen when

comparing the per class accuracies of the models when evaluated with a group based

test set or random sample test set. Comparing the results of the ET based model here

(table 4.12) with the subject-independent SVC based model (table 4.9), no significant

difference was found for the Solid vs Liquid classifier classes. As discussed previously

these classes have distinctive differences which make them easy to classify and highly

generalisable, and no significant difference was expected here.

For the classification of solids the subject-dependent model demonstrated an accuracy

far exceeding that of the subject-independent model. The results here demonstrate that

a model can classify these classes with high accuracy if it has previously been trained

to recognise data from the a given participant, but will not necessarily generalise as well

to entirely unknown subjects, indicating subject specific differences in eating pattern.

For the liquid food classes there was a less pronounced difference between the random-

sample and group-based test cases, with a 0.04 loss in F-Score for the yoghurt class and an

improvement of 0.05 for the Water class. This indicated that, unlike solid foods, individual

characteristics are less significant for liquid recognition

4.4 Discussion

This chapter reports the second study included in this research, with the goal of automated

detection of eating and extraction of additional ingestive information. The aim of this

chapter was to build upon previous findings to further develop automated chewing and

swallowing detection, and to investigate the extraction of food content information based
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Table 4.12: Weighted F-Scores for subject-dependent classification of all foods
(All), detecting solids vs liquids (SVL), differentiating between solids, and differ-
entiating between liquids. Shown are results for all feature set extraction tech-
nique and classifier algorithms. Tested on a random subset of 25% data retained
from all subjects.

Subject Dependant F-Scores For Food Classification

Model Feature Set
Classification Algorithm
SVC LDA DT ET

All
Q. Huang et al. [179] 0.66 0.62 0.8 0.78
R. Zhang and O. Amft [180] 0.54 0.51 0.51 0.56
New Features 0.76 0.74 0.95 0.89

SVL
Q. Huang et al. [179] 0.99 0.97 0.99 0.99
R. Zhang and O. Amft [180] 0.87 0.86 0.82 0.89
New Features 0.99 0.97 0.99 0.99

Solids
Q. Huang et al. [179] 0.66 0.63 0.8 0.78
R. Zhang and O. Amft [180] 0.5 0.51 0.59 0.55
New Features 0.77 0.75 0.97 0.92

Liquids
Q. Huang et al. [179] 0.73 0.73 0.72 0.73
R. Zhang and O. Amft [180] 0.7 0.69 0.67 0.69
New Features 0.72 0.71 0.7 0.74

Table 4.13: F-Score per class label and weighted average for each food classifier
type trained on a subject-dependent basis. Includes scores for classification of all
foods (All), detecting solids vs liquids (SVL), differentiation between solids and
differentiation between liquids.

Subject-Dependent F-Scores Per Food Label

Class Label
Classification Model
All Solids Liquids S Vs L

Solid 1
Liquid 0.95

Apple 0.99 0.99
Sandwich 0.99 0.99
Pizza 0.99 0.99

Yoghurt 0.71 0.71
Water 0.76 0.78

Average 0.97 0.99 0.75 0.99
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on detected eating. To achieve this, the goals of this study were to investigate classifier

algorithms for robust and accurate detection of eating, and determine to what extent

detected eating can be used to extract information about food type, and how important

swallowing is for this purpose.

4.4.1 Eating Classification Findings

For the classification of eating events, all classification was conducted using a sliding win-

dow to sample the EMG signal and extract features representing this sample for training

and testing purposes. Observation of chewing and swallowing behaviour from ground

truth and video footage indicated differences between the two behaviours: high frequency

and periodicity of chews, and lower frequency and extended duration of swallows. An

evaluation of windows size was conducted to compromise between capturing the entirety

of swallowing events, while avoiding misclassification of inactive periods between chews

and loss of onset and termination fidelity. This evaluation revealed an ideal window of 0.5

seconds for chewing prediction and up to 2 seconds for swallow prediction. A window of

0.75 seconds was found to give the best compromise between classes (see figure 4.2).

The multi-class case was tested against an unknown subset of data, which revealed

a bias towards the chewing and inactive classes, as can be seen in the confusion matrix

(figure 4.3). As such, binary classification cases were instead considered to permit optimum

selection of window size for each. For the chew classification case a model was trained

capable of 94% predictive accuracy, while for the swallow detection case a predictive

accuracy of 86% was found. The significant increase in accuracy for both cases leads to

the conclusion that window size is a vital consideration for chew and swallow detection,

and while it is difficult to differentiate between chews and swallow given the same sampling

window, it is possible to accurately detect both chews or swallows from periods of inactivity

in a binary manner. The predictions can then be combined post classification for multi-

class prediction.

As discussed in section 4.2.2, unrelated activity or increased subdermal fat results

in noise, or unrelated activity interfering with detection of eating. Factors which were

not considered in the previous study (chapter 3). The current study used an expanded

protocol however, including unrelated activities in the training and test data, collected

from participants with varied BMI and age. Furthermore, the final selected models were
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evaluated with a leave-one-participant-out approach (see figure 4.5). This revealed low

variance between subjects for the chewing classification accuracy, and slightly larger, but

still not significant, variance for swallowing. While the limited number of participants

made it difficult to draw an conclusions regarding these factors, it is interesting to note

that the accuracy of these models appeared to have no correlation with participant BMI

or age range. This indicates that signal processing permits elimination of excess noise

sufficient to permit classifier algorithms to identify signal patterns.

This was also a limitation in related studies reviewed in the literature (section 2.2.4).

Two “smart-glasses” based studies demonstrated comparable performance for chewing

detection using threshold based algorithms [179, 180]. For their algorithm Q. Huang

et al. [179] reported an accuracy of 96%, however they also indicated a high degree of

false positives associated with unexpected activity. Similarly, R. Zhang and O. Amft

[180] reported chewing detection accuracy of approximately 94% for their algorithm in

lab conditions, but only 80% accuracy with real-world interference. Comparatively, the

results of the study reported here were robust and accurate in the presence of unrelated

activities.

However, the swallowing detection classifier in this chapter resulted in an accuracy of

87% (F-Score=0.87), which was significantly lower than the 90% accuracy found using

a threshold based algorithm in the previous chapter (chapter 3), or an accuracy of 93%

reported by Nahrstaedt et al. [177] using a combined bioimpedance and EMG based algo-

rithm. As the current study made use of a subject independent design, the high accuracy

reported in chapter 3 may indicate that it is more difficult to detect swallows for unknown

subjects than it is for chews. Alternatively, the larger subject pool may highlight a bias

in the subject selection of the previous study. However, the higher performance reported

through the use of combined EMG and bioimpedance measurement techniques, proposed

by Nahrstaedt et al. [177], is suggested here to be attributable to a number of factors:

smaller sample size, limited variation between subjects, experimentally controlled bolus

size swallowed, and different sensor placement, across the sternohyoid muscle rather than

submental muscles. Furthermore, the inclusion of both bioimpedance and EMG adds ad-

ditional processing costs to the detection of swallowing activity, while the approach used

here for swallow detection relies solely upon analysis of a single EMG channel. Given

the accuracy achieved for chewing detection here, higher accuracies are expected to be
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achieved in future work for detection of swallowing using EMG alone, in repeated experi-

ments permitting further evaluation of the performance of this classifier, or an analysis of

the use of alternative muscles related to swallowing.

4.4.2 Food Classification Performance Discussion

For the classification of food types, a number of classifier algorithms were investigated

along with three different feature extraction techniques. Outlined in table 4.1, the first

two approaches were adapted from studies by R. Zhang and O. Amft [180] and Q. Huang

et al. [179], and focused on the use of temporalis muscle EMG for detection of chewing

events, while the final approach proposed here amalgamated these two approaches and

included additional features taking advantage detected swallows in addition to chews.

In this investigation models were developed on a subject-independent basis to first

detect all five food items, including solids and liquids. The best model found in this case

resulted in an average accuracy of 66%, and there was considerable confusion between

classes, but not between solid and liquids (figure 4.6). Following this, models were trained

for distinguishing between solids and liquids, or for classifying specific liquids, or specific

solids. While, the accuracies for liquid and solid classifiers were still low, the solid vs liquid

classifier was found to demonstrate an accuracy of 99%. It is proposed here that this is

due to distinct differences in the pattern of eating, with ingestion of solids involving a

sequence of chews followed by a swallow, while drinking exhibits only individual swallows.

The presence of outliers and relatively high variation between subjects in the leave-one-out

evaluation of the solid differentiation classifier or liquid differentiation classifier, indicates

that there are individual differences which effect the prediction of these classes. However,

the subject pool was not significant enough in this case to make any definitive conclusions.

In all classification cases an SVC based model using the newly proposed feature set

was found to give superior results compared to the other algorithms or feature extraction

techniques adapted from other studies. However, the results found for the classification of

solids was found to be significantly lower than those reported by Q. Huang et al. [179] or

R. Zhang and O. Amft [180], who reported 77.2% accuracy for 5 food items and 94.7%

accuracy for 3 food items respectively. However, these studies evaluated the accuracy of

their models on a subject-dependent basis, and it was therefore not possible to establish

the accuracy of their models with unknown subjects.
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Addressing this, additional subject dependent models were trained. These models were

found to have accuracies much closer to those reported in the literature (see table 4.12). In

this case, the newly proposed features were once again found to outperform the alternative

features for all classification cases, when using an Extra Tree algorithm based model. In the

case of solid food classification the accuracy of the trained model increased dramatically,

exceeding those results reported in the literature with an accuracy of 99.1%. This result

demonstrates that the newly proposed feature set, including signal energy information

and eating pattern information regarding both chewing and swallowing, was better able

to detect food type than the equivalent approaches just making use of chewing behaviour.

Although it should also be noted that in this study, different muscles were also targeted

for the detection of chews (masseter) and a different food selection was used. The use of

both chewing and swallowing detection also had the benefit of permitting differentiation

between liquid and solid foods, and allowing estimation of type of liquid. Although there

was also no significant change in the accuracy of either of these in the subject dependent

case, when based on an Extra Trees algorithm.

These results suggests that, with the inclusion of newly proposed features taking ad-

vantage of both chewing and swallowing behaviour, classifier algorithms are capable of

accurately differentiating between solid foods when trained on an individual. However,

these results also suggest that it is much harder to generalise to entirely unknown sub-

jects, and that individual eating characteristics are important for food classification. The

pattern of chewing cycles has been reported to be an important indicator of food hardness

and textural properties [176, 173, 174, 59], and it is concluded here, based on the results of

this study, that not only are chewing patterns important for food classification, but that

they are unique to the individual. Furthermore, swallowing on its own lacks these char-

acteristic patterns and, as such, is less relevant for the classification of liquids, resulting

in generalised and non-generalised models which demonstrate similar accuracies.

4.4.3 Limitations

This study focused on EMG of the masseter and submental muscles. However, alternative

approaches in the literature have focused on alternative muscles, such as the temporalis for

chewing detection [178, 180, 179], or combined bioimpedance and EMG of the sternohyoid

muscle for swallow detection [177]. In latter case, reported accuracy was much higher, and
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this approach should be investigated in the future and compared with the current technique

to determine if the targeted muscles, or bioimpedence alongside EMG are better suited

to eating detection.

For food type classification, it was found to be more difficult to detect liquids or foods

with a generalised model, than other cases. This is in part due to an insufficient number

of feeding events train a model capable of generalising to unknown subjects. This is a

particular issue for liquid foods which involved much fewer feeding events than solids (as

seen in table 4.4). Additional data collection should be investigated to determine if it

improves liquid classification or ability to generalise.

The subject pool in this study was significantly extended from the previous study.

However, all participants taking part in the study were considered healthy, without disor-

ders which effect their eating. Furthermore, unrelated activity was limited to speech and

head motion, and only five foods were consumed during this study. These factors all limit

the capacity to generalise to unknown subjects. Furthermore, a limited food range means

that the capacity of classifier models to detect a range of different foods is still relatively

unknown.

4.5 Conclusions and Contributions

The main goals of this chapter was to help answer research questions 1 and 2 outlined at

the start of this thesis (chapter 1), which focused on determining how to overcome the

inherent error of self-report and other typical techniques for monitoring eating and related

parameters which are vital for research into eating processes and clinical weight manage-

ment or eating behaviour change (discussed in chapter 2). This chapter demonstrated how

physiological sensing can be used for the detection of eating, and for the identification of

other important information related to eating. In this case, this work investigated the

use of EMG in conjunction with classifier algorithms for the detection of chewing and

swallowing, and then explored EMG and eating features for the detection of food type.

The outcomes of this investigation constitute significant contributions to the state of

the art. In the first part of the research, eating detection using classifiers was investigated

and resulted in the development of techniques for training classifier models capable of

accurate detection of both chewing and swallowing. As well as being capable of general-
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ising to unknown subjects without impacting performance, the models also demonstrated

an accuracy and robustness exceeding related threshold based approaches [179, 178, 180],

concluded to be the result of a inclusion of data from a diverse range of subjects and non-

eating activity. As part of the development of these models, this chapter also contributed

an improvement to the understanding of chew and swallow duration and patterns, and

the importance of window size selection when segmenting the EMG signal for chew and

swallow classification. The findings demonstrated that fine segmentation was necessary

for sensitive detection of individual chews, while a broad window was needed to capture

the entirety of EMG patterns related to swallows. Thus it is recommended that separate

models are used for detection of each eating event type.

Similar to eating classification, this chapter also reported techniques for the detection

of a select sample of foods based on EMG and detected chews and swallows. This con-

sisted of a new feature selection strategy combining individual chew and swallow EMG

signal content with chewing sequence pattern information, which have otherwise only been

considered separately and without inclusion of swallow information [179, 178, 180]. This

approach was demonstrated to outperform compared techniques from the literature [179,

180] for classification of solid foods, with a significantly higher accuracy when trained

on a subject-dependent basis. Furthermore, as a part of developing this strategy this

research outlined the impact of food type and individual chewing patterns upon classifi-

cation accuracy: the findings indicating that chewing patterns are indicative of food type

for models trained to recognise individual variations, but that swallowing does not exhibit

similar variation unique to the individual. As such, it can be concluded that chewing can

be leveraged for higher accuracy in classification of solid-foods, but liquids are harder to

distinguish between.

This chapter has demonstrated that eating detection can be applied for the detection

of other information related to feeding, such as food type. This has significant implications

in research and clinical treatment, which is discussed further in chapter 6. While food

detection was investigated in this case, other useful information can be derived for the

evaluation of swallowing (as demonstrated in chapter 3), as well as for researching chewing

parameters. The next chapter investigates the use of chewing detection for one such

purpose: the calculation and monitoring of chewing during a controlled lab study.



Chapter 5

Analysis of Eating Processes in

Response to Moderation and

Feedback

5.1 Introduction

The previous chapters of this thesis have explored techniques for the detection of chewing,

swallowing, and for extraction of other information related to feeding, such as measurement

of swallowing parameters and detection of swallow type in chapter 3, and the classification

of food type based on eating function in chapter 4. This chapter further explores the mea-

surement of eating information, focusing upon parameters of chewing, and demonstrates

an application of such measurement with the aim of studying the effect of visual chewing

rate feedback upon eating processes and eating moderation. This constitutes the final

study reported in this thesis.

As discussed in chapter 2, eating speed is a factor determined to be a causal factor of

obesity and been studied for its connection with a range of health factors such as BMI [28,

31], diabetes [25], as part of stress relief and stress eating [133, 30], or as a contributing

factor for eating disorders [128, 129]. As described in previous chapters, such studies rely

on participant self-monitoring or manual observation in experimental settings. Alternative

approaches to studying eating speed have made use of a “Mandometer”, an electronic scale

measuring the weight of food over time, to estimate intake rate [128, 129], or on body worn

gyroscope detecting food to mouth gestures for determining rate of bites [131]. Although

160



Chapter 5. Analysis of Eating Processes in Response to Moderation and Feedback 161

they give a more quantifiable measure of eating speed, these measurement techniques

do not permit detailed evaluation of eating processes such as chewing and swallowing.

Furthermore, although they made use of feedback to control eating rate, they did not

evaluate the effect of feedback upon eating itself.

The connection between eating speed and health, particularly weight, suggest that

eating speed is a useful feature to target in behaviour change interventions for weight

management and eating disorder treatment. Traditional behaviour change focuses on self-

reporting and reflection [20], to help counter automatic eating, environmental influence

upon eating, and to permit self-reflection of behaviour change goals [18, 232, 233]. Mobile

devices have also been used to support such treatment, providing a platform for self-

reporting intake [43], and using feedback theory [173] to implement behaviour change

through delivery of personalised feedback messages [44]. It is proposed here that such

techniques can also be used to help influence eating speed and promote healthier eating

habits.

The aim of this chapter is to continue exploring the extraction of information related

to eating, and to demonstrate an application of this technique. In this case, there was a

particular focus upon the study of eating speed and its relationship with eating and how

this might be applied for research and behaviour change. To that end the main goals of

this chapter are:

� To demonstrate the use of real-time chewing detection for monitoring of chewing

rate and other parameters of chewing

� To present a system for collecting data on these parameters, and for driving real-time

feedback related to chewing rate

� To investigate the application of this system for behaviour change and the study of

eating

To meet these goals, this chapter first briefly reports the adaptation of chewing de-

tection models developed in the previous chapter for use in this setting (section 5.2).

Following this, section 5.3 describes the development of a system for real-time measure-

ment of chewing and provision of chewing related feedback, including an overview of the

system components, and techniques for calculation of chewing parameters and for driving
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real-time haptic feedback related to chewing speed. Finally, the application of this system

is presented for the study of the processes of eating and the effect of feedback

The main aim of this study was to determine the effect of self-moderated eating

speed upon chewing parameters, and investigate the influence of feedback upon such self-

moderation, to determine if it is a suitable adjunct to eating speed behaviour change. In

meeting these aims, a repeated measure approach is taken, evaluating each participant

under three conditions during a single experimental session: control (normal eating), self-

moderated eating speed, and self-moderated eating with the support of haptic feedback

regarding chewing speed. Section 5.4 describes the procedures and methodology for this

lab study, section 5.5 evaluates the collected data to determine the effect of self-moderation

and feedback, and section 5.6 discusses the study findings.

5.2 Real-time Mastication Classification

For the purpose of this controlled lab study, a continuous measurement system was devel-

oped to permit monitoring participant eating and for the provision of feedback in real-time.

At the core of this system was the requirement of a classification algorithm capable of pro-

viding accurate and robust predictions for detecting chewing events in real-time. These

predictions could, in turn, be used to identify live information regarding the characteristics

of an individuals chewing behaviour.

The classification algorithm developed for this study was heavily based upon the find-

ings of previous chapter, but differed slightly. The classifier was trained using the dataset

previously acquired. Data consisted of two channel EMG collected from 16 participants

over 28 sessions, each session involving activity recorded during head motion, reading

aloud and the consumption of a meal. In the previous work masseter and submental mus-

cles were targeted as muscles known to exhibit activity during chewing and swallowing

respectively [73]. As this study chewing was the specific activity of interest, only the

EMG channel corresponding to the masseter muscle was considered. Additionally, this

minimised the participant exposure to unfamiliar sensors during experimental sessions,

which were considered potential distractions and as such confounding variables in the

feedback study.

Following the same signal processing procedure as in the previous study, the data was
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sampled with a window of 0.5 seconds in length. From each sample the same features were

extracted (as those indicated in table 4.2), with the exception of the Myopulse percentage

rate. This was excluded due to the requirement of an additional calibration phase and

potential redundancy, as it was considered to provide frequency information [208], which

was already represented in these features.

As in the previous study, all available data was included for testing and training

purposes no matter if there was unrelated activity present, to help produce a robust model.

Each entry in the final feature array was labelled according to the ground truth as either

occurring during a burst of EMG activity related to chewing behaviour (C), or as inactivity

or unrelated activity (NA). A linear kernel SVC classifier was then trained using the

available data. Testing was performed using the same approach as described previously,

using a subset of all data from 25% of participants for evaluation of the model. For training

and testing the ‘scikit-learn’ library was used [231] within the Python environment [234].

5.2.1 Classifier Performance Evaluation

For the binary classification of chewing activity in a real-time type scenario, from single

channel EMG, the model resulted in an average recall, precision and F-Score all of 0.93

when tested on the retained test data. This result demonstrates only a minor loss in

accuracy than that reported for the previously developed classifier, which reported in an

average 0.94 for all three of these metrics (section 4.3.1). A full evaluation of the model

performance is given in table 5.1.

The results demonstrated only a minor loss in accuracy with the data and feature

change, and was not considered to impact performance significantly. This also indicated

that the myopulse percentage rate (excluded in this version of the classifier) had only

a minor impact upon the classification of chewing events. Similarly, it indicated that

measurement of EMG from the submental muscles was of little importance for the classifi-

cation of chewing. An observation supported by Criswell and Cram [73] who describe the

masseter muscle as demonstrating significant activity during chewing, but do not report

their use for the detection of swallowing.
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Table 5.1: Accuracy metrics for the real-time chewing classifier based upon
lSVM algorithm. Accuracy scores based upon subset of data from 4 unseen
participants.

Real-Time Chew Classifier Accuracy

Class Label Precision Recall F1-Score

NA 0.94 0.91 0.93
C 0.92 0.94 0.93
Average 0.93 0.93 0.93

5.3 Data Measurement and Feedback System

Having established a real-time classification algorithm capable of detecting chews from

single channel EMG of the masseter muscle, the next step was the development of a real-

time system built around this classification algorithm, for the detection of chewing events

based upon classifier prediction, the extrapolation of chewing rate and other measures,

real-time monitoring, and the provision of near real-time feedback. This system would

permit the effect of feedback upon eating processes to be monitored and recorded.

5.3.1 System Overview

The system consisted of a Bluetooth enabled EMG signal capture device (Shimmer 3,

Shimmer Sensing, Ireland1) connected to standard surface electrodes (#H124SG, Covi-

dien, Ireland2) affixed across the masseter muscles on the dominant side of the user, as

described in the previous chapter (chapter 4) or in appendix A.1. To demonstrate the

applications capacity in a mobile context, the measured signal was streamed live via Blue-

tooth to a mobile device (Samsung Galaxy S6, SM-G920F, Samsung 3) running Android

version 3.0. The mobile device receives signal via a custom application and acts as a local

intermediary between the signal capture device and remote classifier, and also handled

user feedback regarding chewing rate.

Figure 5.1 gives an overview of the chewing detection, monitoring, and feedback sys-

tem. A laptop (Dell, Inspiron 75594) connected to the mobile device via Bluetooth con-

nection acts as a remote server handling signal processing and classification. This server

also calculates chewing rate information, permits live monitoring and recording of live

1http://www.shimmersensing.com/
2Now Medtronic: www.medtronic.com
3https://www.samsung.com/
4https://www.dell.com/
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Figure 5.1: Overview chart demonstrating the flow of data throughout the chew
detection, monitoring and feedback system.

data, and returns live chewing rate information to the mobile device for the purpose of

driving feedback. Feedback was delivered via a Microsoft Band device (Microsoft Band 2,

4M5-00002, Microsoft 5).

5.3.2 Signal Processing and Classification Software

A custom software application hosted on the remote server was considered the most in-

tegral part of the systems software. This application carried out all processing of the

incoming data, including feature extraction and chewing prediction using the algorithm

and techniques previously described. It also conducted chewing event detection based

upon these predictions, calculated chewing rate for the purpose of driving feedback, and

permitted remote, live, monitoring and recording of sensor reading throughout the ses-

sions.

The software was developed using Python 2.7 [234], using TKinter [235] and matplotlib

[236] for creating the graphical user interface and plotting data. The classification model

implements sci-kit learn methods for performing predictions [231]. A Bluetooth connection

was established with the mobile device and the EMG signal streamed. All data was stored

in a fixed size first-in-first-out container (deque) of 512 elements in length, equating to

a sample window of 0.5 seconds in length. This container was then periodically polled

5https://www.microsoft.com/en-gb
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(every 0.1 seconds), filtering and feature extraction carried out upon the data contained

therein. Features for each sample were used to obtain predictions from the classifier model.

Finally, predictions were subject to a voting filter over a small window (of 8 samples), to

reduce the chances of unexpected and individually occurring false positives.

Following the real-time prediction of EMG chew bursts, the detection of chewing event

onset and termination was performed, determined by changes in prediction. The classi-

fication model was designed to return a positive prediction for all samples classified as

occurring during an EMG burst, and a chewing event defined as the period occurring

between the onset and termination of positive predictions, with time stamps recorded

accordingly. Upon the termination of each event, the predicted label, timestamps, and

duration of each event was recorded to an output file.

It was then possible to calculate chewing rate from the detected chewing event onset

and termination timestamps, calculated as the number of chews in 1 second using the

formula:

CR =
1

n

L∑
i=0

f(chew eventi); f(x) =


1, if xonset >= t− n and xterm < t

0, otherwise

(5.1)

giving the average number of chews per second over the last n seconds, and where

chew eventi is a chewing event observed during the session, L is the total number of

chews observed, xonset refers to the onset time of the chew event xterm is the termination

time of the chew event x, t is the current time, and n = 5. The algorithm counts the

number of chews which occurred over the last n seconds, to estimate the number of chews

per second. Any chew events with an onset older than t−n are periodically purged. As the

approximate duration of chewing events has been identified as 0.5 seconds (chapter 4) and

a similar gap between such events in a chewing sequence was estimated here, measuring

chewing rate over the last 5 seconds permitted the timings of approximately 5 chews to be

captured for calculating chewing rate. This was deemed to provide acceptable accuracy

for chewing rate calculation while attempting to minimise the time error for feedback

response.

For the purpose of this study adjusted chewing rate was also calculated for the purpose

of driving feedback in a manner that prompted moderated chewing rate. To achieve this

an offset equivalent to 1% of the maximum chewing rate recorded during a period of

normal eating (recorded using the ‘Calibrate Stats’ function) was applied to the calculated
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chewing rate. During each processing loop the normalised and adjusted chewing rate was

then passed back to the local mobile client via Bluetooth, for the purpose of driving

feedback.

During chewing rate calculation all chew events were recorded to an output CSV file

in along with event duration, and onset and termination times. Following each processing

loop the extracted features, chewing rate values, and predicted activity type for the as-

sociated data sample were similarly recorded to a separate output file. This information

was only recorded when the ‘Record’ option was selected in the applications GUI.

For the purpose of live monitoring user progress, the GUI was also updated in to display

a plot of the processed signal and the users chewing rate. The live plot was updated at

every processing loop with the mean filtered signal point, with a colour change to indicate

predicted chewing events. A textual display on the same plot was also updated at each

loop with the calculated chewing rate values.

5.3.3 Mobile Feedback Application

The mobile device ran a custom application for streaming data from the Shimmer data

capture device and passing it to the remote processor. The mobile applications was

developed using the Android API [237], and made use of the Shimmer API [238] for the

purpose of receiving data from the Shimmer streaming device. Feedback was provided via

the Microsoft Band wearable, which was controlled using the Microsoft Band SDK [239].

Following processing the chewing rate values were then transmitted back to the mo-

bile device via Bluetooth to drive feedback. Typically, according to feedback intervention

theory, feedback permits the improvement of “task performance” through the comparison

of performance feedback with some goal following completion of this task [103]. Discrep-

ancies between performance and the goal motivates subjects to improve their capabilities

[103]. Biofeedback is an application of this theory, closely correlated to the goal of the

controlled lab study carried out here. In this context subjects are trained to gain voluntary

control over some physiological function through the provision of feedback representing

their performance and the application of reinforcement [102].

There are potential, additional, benefits to feedback provided the form selected. Eating

has been previously theorised to be a form of automatic behaviour, with a human tendency

to consume food without conscious consideration [18]. This automatic eating decision



Chapter 5. Analysis of Eating Processes in Response to Moderation and Feedback 168

making has been documented as extended beyond active eating, environmental factors

having a strong influence upon choices such as food selection, quantity, or when to eat

[19]. For instance, the presence of food has been found to result in a desire to eat even

in spite of a lack of hunger [18, 19], while social situations result in eating conformity to

peers [240], and even music has been demonstrated to increase food intake [122] or effect

eating rate [123], likely due to distraction from conscious eating. As such, “mindful eating”

is a technique recommended for weight loss and eating behaviour change interventions,

helping subjects to maintain awareness of their eating, individually examining hunger and

satiation to help override automatic eating [232, 232, 233].

The use of mobile technology based weight loss applications have been demonstrated

as similarly beneficial for adhering to dietary plans or exercise routines [45, 141], and

for behaviour change. Conceptually, such mobile application interventions have a similar

effect to mindfulness interventions, requiring subject to give conscious thought to their

eating habits and helping override automatic eating choices based on personal goals. This

is particularly true in the case of applications which include regular feedback regarding

performance[44], intermittently reminding subjects of their goals and performance thus

far and motivating them to continue meeting these targets.

In addition to helping subjects meet active goals during eating, chewing rate feedback

also helps to reduce automatic eating and focus upon behaviour change goals. While

continuous feedback has the potential to reduce attention of eating or otherwise influence

it, in the same way that music can distract individuals from internal intake monitoring

[21] or affect eating rate based on music tempo [123], a periodic change in feedback and

training relating to the meaning of feedback instead serves to attract users attention to

their eating and remind them of their goals.

While biofeedback systems make use of visual or audio feedback, visual feedback was

disregarded for this study as it would require specific attention when eating, while audible

feedback would be overtly obvious to other individual in social scenarios; considerable

limitations for mobile and discreet self monitoring in social scenarios. Haptic feedback

on the other hand, was considered to provide continually present and relatively discreet

feedback, that would not demand specific attention, but still act to draw users attention

back to their goal. For the purpose of this study, a form of haptic feedback was selected

as a simplified, abstract, and just-in-time representation of chewing rate. The feedback
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application established another Bluetooth connection to a wrist-worn band capable of

providing haptic responses (Microsoft Band).

Differing states of haptic responses were selected to represent magnitudes of chewing

rate. These responses consisted of periodic haptic pulses of different intensities, permitted

by the default notification types provided by the Microsoft Band SDK [239], and governed

by simple threshold levels, using a normalised chewing rate. Four states were selected to

ensure that the feedback was simple and memorable enough for users to clearly under-

stand the meaning of each level after a short period of explanation and training. These

corresponded with normalised chewing rate as follows:

1. 0.0–0.3: Low chewing rate, represented by no haptic pulses.

2. 0.3–0.6: Moderate chewing rate, represented by periodic individual haptic pulses.

3. 0.6–0.8: Fast chewing rate, represented by periodic double haptic pulses.

4. 0.8–1.0: Fastest chewing rate, represented by longer, high intensity double haptic

pulses.

5.4 Lab Study Methodology

To demonstrate the application of eating classification, the live chewing detection al-

gorithm was investigated for driving feedback as a support tool for participant self-

moderation during eating. For this purpose a controlled lab study was designed to in-

vestigate the effect of real-time eating feedback upon chewing rate, as an immediate or

short term influence. Approval for the following experimental procedures was granted by

the University of Kent Faculty of Sciences Research Ethics Advisory Group for Human

Participants, on 19th June 2018 6 (approved reference number: 551617, at the University

of Kent).

A repeated measure study design was selected to measure the effect of self-moderation

of eating speed on chewing, and to compare self-moderated eating speed with and without

haptic chewing rate feedback. Each participant attending in a single study session encom-

passing all treatment types over the course of this session, with each treatment acting as a

repeated measurement factor. This permitted the effects of self-moderation upon chewing

6University codes of research ethical conduct: https://research.kent.ac.uk/researchservices/ethics/
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rate and the difference between self-moderation with and without feedback to be investi-

gated on an individual basis. Moreover, this also maximised the data it was possible to

collect from the subject pool available. As all treatments took place in a single session,

counterbalancing was implemented for the two treatment sections to offset the effect of

time upon eating function due to increasing fullness, or increasing familiarity with the

experimental conditions.

5.4.1 Participants

Participants were recruited from the student and staff of the University of Kent. Potential

participants were screened prior to taking part in the study, and deemed eligible to take

part if they were between the ages of 18-50, and had no dietary restrictions to the foods

provided for the study, and no medical conditions which would interfere with their con-

sumption of food or collection of data given the provided details. Additionally, inclusions

criteria required that participants find the food provided favourable. Participants were

required to sign documentation consenting to the recording of anonymised sensor data

and survey responses, which would be retained beyond the scope of this study.

Demographic details were recorded for each participant taking part in the study, in-

cluding age range, gender and BMI. In total, 20 participants were selected to take part

in study. Of those who took part, there were equal numbers of male and female partici-

pants. The majority of participants were within the a healthy weight range according to

their BMI (13 participants), while 3 were found to be sightly underweight (BMI less than

18.5), and 4 were found to be overweight (BMI greater than or equal to 25). Of selected

participants, the majority (11 participants) were between 26 and 35, while 4 were under

25, and 5 were over 35.

5.4.2 Materials

The components specified in section 5.3 were used during the course of this study. Par-

ticipants had adhesive electrode sensors affixed over their masseter muscles, following the

placement procedure outlined in appendix A.1, and were equipped with a Microsoft Band

wearable for the study duration. The mobile device and remote processing laptop, which

were included as part of this system, were placed nearby, but out of line of sight of the

participants.
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The food selection was duplicated from previous data collection methodology involved

in the development of chewing classification algorithms (chapter 4). This food was selected

again to ensure optimal performance of the classification algorithm and consisted of: two

thirds of a small apple, half a small pizza, one and a half jam sandwiches and unlimited

water. In this case yoghurt was excluded from the selected food, as this study primarily

focused upon the detection of chewing and yoghurt was found to be mostly consumed

without chewing. Water was included during the course of a meal however, as a necessity

for participant comfort. As in the previous study, participants were informed of foods

involved in the study during the recruitment process, to ensure that food was favourable

and did not conflict with dietary restrictions. In this study, participants were permitted

to substitute any of the provided food items with others of the available food. Food

was separated into 3 portions, each portion consisting of food measures which remained

consistent across each portion.

5.4.3 Study Procedure

Each participant took part in a single study session consisting of three phases: a con-

trol phase involving unrestricted normal eating, and two treatment phases involving self-

moderation of chewing rate, with and without feedback. Details of the experimental

procedure for this study are given in appendix A.3.

Prior to these session participants were equipped with the sensing equipment as de-

scribed in the materials section, and the custom software used to ensure the capture of a

clear signal and accurate detection of chewing. Participants were then presented with food

allotted to them for the session and asked if they would like to make any substitutions or

reductions. Following this, the allotted food was divided into three separate portions for

the different stages of the study.

Each participant then took part in the three periods of eating, completely consuming

one portion of food in each period. Firstly, all participants took part in a period of

uncontrolled eating, asked to eat the food normally and try to ignore the researcher.

This permitted a measure of the participants normal eating performance to be assessed,

along with calibration of the software parameters and measurement of reference values.

Following this participants were informed about the study focus upon self-moderation

of chewing rate, and asked to take part in two self-moderated eating speed treatment
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sessions. The treatment phases were as follows:

Self-moderated eating During this period participants were asked to moderate their

chewing rate, trying to estimate their normal eating speed and slow down while

eating the provided food portion.

Self-moderated eating, with haptic feedback Prior to this period the chewing rate

driven haptic feedback was demonstrated to participants, and brief training provided

regarding the response levels. During this period participants were then asked to

moderate chewing rate in the same manner. However, this time they were asked to

try and do so while maintaining awareness of the feedback, providing an abstract

representation of chewing rate.

All participants took part in both treatment sessions, and as such time and relative

fullness were potential confounding variables effecting the results. To minimise their effect,

counterbalancing was applied between treatments, with half of the participants (randomly

selected) taking part in the self-moderation session first, and the other half taking part in

the feedback session first.

Prior to the main study, a trial of these procedures was conducted with 5 participants

to evaluate the methodology, determine the ideal approach for data analysis, and deter-

mine if any significant changes were required before proceeding. The trial was conducted

satisfactorily and the results from these initial 5 participants were included in the data

from the main study.

5.4.4 Chewing Measurement

During each meal phase of the study a range of information was recorded in regarding

eating using the custom software, as described the feedback system design section (see

section 5.3). Most importantly, this included the onset and termination of each individual

eating event. Using this data, it was possible to extract a number of variables that were

hypothesised to be effected by feedback. These included: chewing rate across the entire

eating phase, repeated measures of chewing rate across an eating sequence, the duration

of detected events, and the period between detected events,

During data collection the live chewing rate was calculated and recorded using equa-

tion (5.1). However, this rate was sensitive to pauses between mouthfuls of food and as
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such was not used as an accurate indicator of chewing rate while eating across the entire

meal phase. Instead, during data analysis substantial gaps between chewing events were

considered an indication of a pause following completion of a chewing sequence, or mouth-

ful of food. During such a pause, a participant would swallow food and take in another

portion for processing. Based on this an adjusted chewing rate could be calculated to com-

pensate for such pauses, by attenuating periods between chewing events which exceeded

a given threshold. In this way, corrected values were found for chew event onset, corr on,

and termination, corr off . Simultaneously, this process could be used to identify the onset

of chewing sequences, seq on, and termination times of chewing sequences, seq off . Full

pseudocode outlining this process is available in appendix B.2.1.

Once these corrected times were found, the chewing rate over the whole session,

CRoverall , could be defined as the number of detected chew events, L, divided by the

time, in seconds, between the onset of the first chew event and termination of the last.

Calculated as follows:

CR overall =
1

L
(corr off L − corr on0) (5.2)

In addition to chewing rate, equation (5.2), additional measures of eating were derived

from the detected eating events. These measures included: average duration of chewing

events, average period between chewing events, average duration of chewing sequences,

average period between chewing sequences, and average number of chews per chewing

sequence.

Average duration of chewing events, chew dur , was determined by the following equa-

tion:

chew dur =
1

L

L∑
i=0

(chew offi − chew oni) (5.3)

The average period between chewing events, chew gap, was determined by the follow-

ing equation:

chew gap =
1

L

L∑
i=1

(corr oni − corr offi−1 ) (5.4)

Following identification of chewing sequences based on a threshold for identifying sig-

nificant gaps between chewing events, as discussed previously, the duration of and period

between chewing sequences could also be calculated. For instance, given the identification
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of chewing sequence onset (seq on) and chewing sequence termination (seq off ), achieved

using the process outlined in appendix B.2.1, the average duration of eating sequences,

seq dur , and average period between chewing sequences, seq gap, per meal could be cal-

culated. This was done using the following equations:

seq dur =
1

L

L∑
i=0

(seq offi − seq oni) (5.5)

seq gap =
1

L

L∑
i=1

(seq oni − seq offi−1 ) (5.6)

5.4.5 Eating Awareness Survey

In an attempt to capture this information a short survey was administered after each

phase of the study to encourage participants to reflect on their eating and gauge their

level of self-awareness of their eating activity and food consumed during that phase. In

order to measure such effects, previous studies [128, 233] have employed questionnaires

to encourage self-reflection, such as the “Kentucky Inventory of Mindfulness” to capture

participants degree of mindfulness in day-to-day life [241], and the “Three Factor Eating

Questionnaire” to identify participants dietary restraint, disinhibition and hunger in a

general context [242]. While these give a general context of participant mindfulness and

eating, they do not provide details regarding participant insights of a particular task such

as eating.

For this specific study a custom questionnaire was instead designed. Based upon

other eating questionnaires [242, 241], this consisting of 23 statements asking participants

to reflect on different aspects of eating. Statements were selected that encompassed 4

different categories or topics, selected to provide insight into these areas of interest:

� Awareness of eating environment: The eating environment and various con-

tributing elements, along with social influences has been isolated as one of the main

influences eating disinhibition, meal duration, and overall consumption volume [21]

and as such understanding how eating moderation and feedback effects participant

perceptions of their eating environment was a key area to investigate. In addition to

this, the experimental setting and presence of the researcher in the room were po-

tential confounding variables, and asking participants to reflect on the environment

provided insight into the effect of the setting.
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� Food: Like the eating environment, properties of consumed food, such as salience

and texture, are considered to impact eating rate and intake volume [24, 23]. As

such, it is important to better understand if and how moderation or feedback effect

participant self-reflected impression of food: if it changes their impression of the

food consumed, distracts from enjoying the food, or enriches the experience.

� Eating function: Self-awareness of eating is an area considered to be one of the

key processes involved in self-moderation or eating related behaviour change, with

“mindful eating“ [18, 232, 233] and cognitive behavioural therapy [114, 20] both in-

volving reflection upon the act of eating, during or following meal consumption. As

such, determining the impact of self-moderation and feedback upon participant re-

flection on eating processes themselves has particular repercussions for eating related

behaviour change treatments.

� Eating speed: Finally, the focus of the study was the impact of feedback and self-

moderation upon eating speed, which as discussed previously has particular links to

intake volume, BMI, and other health factors. As such it was considered interesting

to evaluate the impact on participants self-reflected impression of their eating speed

and thoroughness, and how this differs to quantitatively measured parameters of

eating.

In addition to providing insight into each of these areas, the variety of questions ensured

that the participants would not lead the participants to focus overly upon a single research

goal or outcome. All questions were formulated to correspond to one of these categories

by the author of this Thesis, in collaboration with the PhD supervisor, Dr. C.S. Ang. A

full list of the questions and their respective categories can be found in appendix A.3.2.

Following each study phase this questionnaire was immediately presented. Participants

were asked to consider a normal eating scenario and compare their experience with recently

completed eating phase, then score each statement on a 5 point scale from ‘strongly dis-

agree’ to ‘strongly agree’. The responses were numerically coded, between 1 for ‘strongly

disagree’ and 5 for ‘strongly agree’. During analysis each question was considered individ-

ually, but categorical groupings permitted wider observations and conclusions to be made

about the effect of the different treatments on these aspects of participant awareness of

eating.
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5.5 Study Evaluation and Results

Study session were carried out for 20 participants using the data collection and feedback

system described in section 5.3, and implementing the experimental protocol and proce-

dures described in the previous section. Each participant took part in three experimental

conditions over a single session. These consisted of a control eating period (normal eating),

an eating speed moderation period, and a moderation period with the support of chewing

rate feedback. Data was recorded regarding a range of chewing parameters during each

period, along with questionnaire responses regarding participant self-awareness, which was

collected immediately following each treatment period. For the evaluation this data and

comparison between treatment periods, all results were statistically analysed using SPSS

statistical analysis software (Version 25.0) [243].

5.5.1 Measures of Eating

Eating measures for each participant were calculated and statistical tests applied to deter-

mine the differences between treatments. Descriptive statistics regarding these along with

full SPSS statistical test results are available in appendix C.1. Bar charts comparing the

average of each of these measures between treatment sessions can be found in figure 5.2,

figure 5.3, figure 5.4, figure 5.5, figure 5.6, and figure 5.7.

Repeated Measure Analysis of Variance was computed to determine statistical signif-

icances between treatments. Prior to conducting ANOVA, normality was tested using

the Shapiro-Wilk test of normality [244], and sphericity was tested using Mauchly’s Test

of sphericity [245]. Where sphericity was violated, the Greenhouse-Geisser correction for

violations of sphericity [246] was used to measure significance, otherwise sphericity was

assumed. Post-hoc tests were conducted using the Bonferroni correction for multiple com-

parisons [246] to determine the difference and significance between the control (normal)

and moderated eating, and more importantly between the two eating moderation treat-

ments.

During normality testing, some variables were found to not follow a normal distribu-

tion, despite the application of log transforms (results of normality tests available in ta-

ble C.2). As such, non-parametric tests and post-hoc analysis were also applied (reported

in table C.5 and table C.6). However, the results of ANOVA and the non-parametric alter-
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native resulted in very similar findings despite variable normality, or lack thereof. Thus,

only the Analysis of Variance results are reported in this chapter, for eating measures.

Full results of the Analysis of Variance and post-hoc tests are reported in appendix C.1.1.

Chewing Rate
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Figure 5.2: Average overall chewing rate across eating period, for each treat-
ment. With 95% confidence interval.

Overall chewing rate for all subjects was calculated using equation (5.2) for each partic-

ipant, and population averages for each treatment compared. As can be seen in figure 5.2,

there was a significant difference between the control (normal) eating and treatment (mod-

erated) eating periods (F [2 , 38 ] = 58.243, p = 0.000). Post-hoc pair-wise comparison

demonstrated that the control (normal) eating period exhibited a much higher overall

chewing rate than both the non-feedback treatment period and the feedback treatment

period (p = 0.000). Furthermore, comparing the two moderation eating periods, the

non-feedback period exhibited a higher overall chewing rate (p = 0.001).

Period Between Chewing Event and Chewing Sequence

The average period between chews was calculated for each participant using equation (5.4),

along with the average period between chewing sequences, using equation (5.6). Tests of

significance also revealed a significant difference between treatments across all participants

for both the period between chewing events (F [2 , 38 ] = 66.01, p = 0.000), and for period

between chewing sequences (F [1 .30 , 24 .77 ] = 16.65, p = 0.000). As can be seen in the bar

chart for periods between chew events (figure 5.3) the period between chewing events were
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Figure 5.3: Average period between chewing events, with 95% confidence in-
terval
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Figure 5.4: Average period between chewing sequences (time from termination
of one sequence or event to onset of the next), with 95% confidence interval
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Figure 5.5: Average duration of individual chewing events, with 95% confidence
interval

significantly higher in the non-feedback (p = 0.000) and feedback (p = 0.000) treatments

than during the control period. Similarly, the period between chewing events for the

Feedback treatment was found to be significantly higher than the non-feedback treatment

(p = 0.038). For the period between chewing sequences (figure 5.4), no difference was

found between the control and non-feedback treatment (p = 0.073), but the feedback

treatment was found to have a significantly greater period between chewing events than

both the control and non-feedback periods (p = 0.004).

Chew Event Duration and Chew Sequence Duration

For each participant, the average duration of chewing events for each was calculated, equa-

tion (5.3), along with the average duration of chewing sequence, equation (5.5). Figure 5.5

shows the population averages for duration of individual chews, while figure 5.6 shows the

average duration of chewing sequences (between first and last chew of chewing sequence),

during the control and treatment periods. Analysis of Variance indicated a significant

difference between treatments for both chewing sequence duration (F [2 , 38 ] = 31.70,

p = 0.000) and chew event duration (F [2 , 38 ] = 5.84, p = 0.006) measures. Post-hoc test-

ing indicated that the average duration for chewing sequences was significantly shorter

for the control period than both the non-feedback treatment (p = 0.024) and the feed-
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Figure 5.6: Average duration of chewing sequences (time between onset and
termination), with 95% confidence interval

back treatment (p = 0.000), and was significantly higher for the feedback treatment than

the non-feedback treatment (p = 0.000). On the other hand, post-hoc analysis did not

indicate a significant difference for the chewing event duration between the control and

non-feedback treatment (p = 0.160), or between the feedback and non-feedback treat-

ments (p = 0.390). Only the feedback treatment demonstrated a significantly higher chew

event duration than the control period (p = 0.012).

Number of Chews Per Chewing Sequence

The final eating measure recorded was the average number of chew events per chewing

sequence, for each treatment (see figure 5.7). ANOVA tests indicated a significant differ-

ence between the three periods (F [2 , 28 .98 ] = 9 .76 , p = 0.001). However, while post-hoc

tests found that the non-feedback treatment resulted in a reduced number of chew events

per chewing sequence (p = 0.000), no significant differences were identified between the

feedback treatment and the control (p = 0.207) or non-feedback treatment (p = 0.193).

5.5.2 Measures of Awareness

As described previously, participants were required reflect on their eating following each

treatment and rate a number of statements relating to several factors of subject self-
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Figure 5.7: Average number of chews occurring per chewing sequence, with
95% confidence interval. For control and eating moderation treatments.

awareness of their environment, food, eating, and speed of eating. The results from each

of these statements were numerically coded. Each statement was analysed separately, but

grouping into categories permitted some conclusions regarding these factors of awareness

to be made.

Descriptive statistics, tests or normality, and comparison evaluation of differences be-

tween the treatments for each statement are reported in appendix C.2. For each statement,

Shapiro-Wilk test of normality was applied and all statements were found to violate the

assumption of normality (table C.8). As such, a Friedman test was applied for non-

parametric comparison of means to identify differences between treatments (reported in

full in table C.9), followed by a Wilcoxon signed rank test for post-hoc analysis of pairwise

differences between the treatments (reported in table C.10).

Analysis of Different Factors of Awareness

Analysing the different categorical groupings of statements separately, a number of inter-

esting observations could be made. The first category of questions related to the environ-

ment in which participants were consuming food. From visual assessment of the average

scores for these statements (which can be seen in figure 5.8) it can be seen that all of these

scores are approximately centred around an average score of 3, and for statement 1, 3, and

4 the average score for the moderated eating periods were less than the control period.

However, this difference was only significant in the case of statement 4 relating to how

formally the participants felt they were sitting (X2(2) = 6.837, p = 0.033), and post-hoc
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Figure 5.8: Average scores for eating awareness survey statements 1-4, with 95%
confidence interval. Statements are those relating to the eating environment.

analysis revealed that the no-feedback moderation period resulted in a significantly lower

score for this statement (z = −2.053, p = 0.047).

The difference found between treatments statement 4 was the only significant difference

found between treatments for statements related to the environment, eating, and food

awareness. However, there were a number of other interesting observations to be made

about these groups.

The second category of statements considered were those related to eating itself, and

population averages of scores for these statements can be see in figure 5.9. None of these

statements exhibited notable difference between treatment periods, but compared to the

eating environment statements most demonstrated scores consistently below 3, suggesting

that participants were not overly focused on the volume or with their mouths open. This

was with the exception of statements 5 and 9 which both had average scores exceeding 3

and were related to self-conciousness about swallowing and chewing respectively.

Like the statements relating to eating awareness, those related to the participant focus

on the food itself also demonstrated average scores that were relatively consistent and

did not differ significantly between treatments (as can be seen in figure 5.10). Unlike the

eating related category however, these were all scored consistently above 3.
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Figure 5.9: Average scores for eating awareness survey statements 5-12 and 17,
with 95% confidence interval. Statements are those relating to the awareness of
eating itself, excluding those related to eating speed and thoroughness.
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Figure 5.10: Average scores for eating awareness survey statements 18-23, with
95% confidence interval. Statements are those relating to the awareness of food
during eating.
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5.5.3 Awareness of Eating Speed and Thoroughness

When comparing difference between treatment periods statements 13-16, related to eating

speed and thoroughness were more more significant than the results discussed above. Like

the other statements, non-parametric tests of significance and post-hoc pairwise compar-

ison were performed on these (appendix C.2). The specific statements involved in this

category can be found in table 5.2, and a comparison of the population averages for each

treatment group visualised in figure 5.11.

Table 5.2: Excerpt from the Full Eating Survey statements Table (table A.1)
showing statements 13-16, relating to chewing speed and thoroughness of chewing

Excerpt from Survey statement Table

Statement Number Statement

13 I was trying to chew my food thoroughly
14 I felt self-conscious about how quickly I ate
15 I felt I was eating too quickly
16 I was trying to eat slowly

In the case of the statements in this category of awareness, the responses demon-

strated a more obvious variation between experiment periods, for all of the related ques-

tions. These differences were found to be significant between experiment periods for all

of these statements (seen in table C.9. For question 13, relating to impression of chew-

ing thoroughness, post-hoc analysis revealed that scores for the no feedback period were

significantly greater than the control period (Z = −3.346, p = 0.000), as were the scores

of the feedback period (Z = −2.018, p = 0.044). Additionally, participants reported less

focus on chewing thoroughness during the feedback period, although this was not found

to be significant (Z = −1.308, p = 0.254).

For question 14, relating to participant self-conciousness regarding their speed of eat-

ing, the scores for both the feedback and non-feedback treatment periods were found to

be significantly greater than the control period, but not significantly different from one

another (Z = −0.045, p = 0.995). Similarly for statement 15, participants appeared to feel

they ate too quickly following both the no-feedback (z = −2.206, p = 0.034) and feedback

(z = −2.789, p = 0.004) treatment sessions compared to the control period, but pairwise

comparison did not demonstrate a significant difference between treatments (z = −1.222,

p = 0.292). Finally, this trend continues for the final statement, with participants at-

tempts to slow their eating scored significantly higher in the non-feedback (Z = −3.566,
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Figure 5.11: Average scores for eating awareness survey statements 13-16, with
95% confidence interval. Statements are those relating to chewing speed, reported
after control and eating moderation treatments.

p = 0.000) and feedback (Z = −3.559, p = 0.000) treatment periods than during the

control, and once again, while there was some minor difference in the treatments scores

in this case it was not found to be significant (Z = −1.265, p = 0.180).

5.6 Study Findings and Discussion

The main goal of the controlled lab study reported in this chapter was to identify the effects

of feedback upon subject eating parameters and the degree of eating self-awareness. It

was predicted here that there self-moderation would have a significant impact upon such

parameters, particularly the reduction of chewing rate. Furthermore, it was hypothesised

that feedback during self-moderation of eating would result in a more pronounced change

in chewing parameters and self-awareness reports. In this section, measured changes in

chewing activity are discussed, followed by measures of awareness.

5.6.1 Measures of Chewing Activity

Eating speed and chewing thoroughness are considered factors which impact various as-

pects of human health, including effecting satiation [127], increasing possibility of high

BMI [26], or even increasing risk of developing eating disorders [128]. As such, this lab
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study aimed to investigate the effect of eating rate self-moderation upon eating activity,

specifically chewing, and the use of feedback as an adjunct to such moderation. The main

prediction for changes in chewing activity was a reduction during eating moderation, more

significant with the support of feedback to help participants moderate. However, other

measures were also explored to investigate what, if any, difference was observed.

As predicted, participants exhibiting a lower rate of chewing during self-moderation

of eating than during normal eating, and were also found to further reduce chewing rate

during feedback supported moderation. Correlating directly with this was a significant

increase found for the period between chews during treatment periods compared with

the control, which was again larger during the feedback treatment. This implies that

implementing a pause between chews or mouthfuls of food was a technique employed as

a means to control feedback.

Given the reduction in chewing rate and increase in period between chews, a reason-

able assumption could be made regarding chewing sequence duration (time between onset

of chewing and termination). Namely, that this duration would increase as chewing rate

reduced and the period between chews increased, due to the greater time to required

complete a set number of chewing events. This prediction was confirmed by the test of

significance results. Comparatively, no significant difference was found in the duration of

chewing events between the two eating moderation treatment periods. This suggests that

although participants spent longer chewing each mouthful during moderation, particu-

larly when supported by feedback, the duration of individual chews remained relatively

constant.

Related to the chewing sequence duration, was the average number of chewing events

occurring during each chewing sequence, which was considered to indicate chewing thor-

oughness. Like the chewing event duration, for this measure there was no significant

difference identified between the eating moderation treatments. The average number of

chews per chewing sequence instead remained relatively constant, suggesting that a change

in chewing rate does not result in an increase or reduction in the thoroughness of chewing

for experiment participants. Furthermore, the lack of change in number of chews or dura-

tion of chewing events implies that the increase in average duration of chewing sequences,

and chewing rate in general, are primarily a function of the time between individual chews

rather than other factors.
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5.6.2 Measures of Awareness

In addition to quantitative measures of eating being recorded during each session, partici-

pants were asked to reflect their awareness of their environment, food, eating itself, and on

eating thoroughness and speed. Participants rated a number of statements in these cate-

gories using a 5 point scale, to estimate overall levels of eating awareness. Self-reflection is

an important part of eating related behaviour change [114, 20], and awareness of eating,

known as “mindful” eating, has similarly been theorised as a component of such behaviour

change[232, 233, 241]. It was hypothesised here that self-moderation and feedback would

have an impact upon participants self-awareness regarding eating.

The results reported here partially supported this hypothesis. There was a low level of

variation between treatments for the categories related to the eating environment, food,

and eating itself. However, there was a significant difference found for all statements

related to eating speed and thoroughness (specific statements found in table 5.2). For

statement 14 (participant self-consciousness regarding their eating speed) and statement

15 (participant sense that they were eating too quickly), a similar increase in score was

observed for the two treatment periods compared with the control period indicating that

task awareness increased self-consciousness and impression of eating speed, but feedback

had no impact.

Statements 13 and 16, related to effort affected for thorough and slow eating respec-

tively, similarly demonstrated significant increases during eating moderation, but no differ-

ence between treatments. Comparing these results with the reduced chewing rate suggests

that although both feedback and non-feedback moderation increase effort applied to mod-

eration, feedback improves chewing rate reduction task performance without increasing

perceived effort. Interestingly, although moderation increased perceived effort applied to

chewing thoroughness, no difference was found between treatments for number of chews,

this further suggests that applied effort does not necessarily correlate with a functional

difference in this case.

Although the other categories showed no significant differences between treatments,

from the general differences observed between categories (section 5.5.2) it can be tenta-

tively concluded that participant focus on food took precedence over environment or eating

itself. The eating environment was also seemingly of greater concern than of the processes
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of eating itself, with the exception of participant self-conciousness about how they were

eating which was of higher concern to participants than the environment or even the food.

While most statements relating to eating were scored low, suggesting little concern re-

garding the act of eating itself, the statements related to eating speed and thoroughness,

which could also be considered a part of this category, were rated at approximately 3 or

greater during eating moderation. This suggests that participants were more aware of

how they were eating while attempting to moderate eating speed, particularly focusing on

those particular aspects of eating.

Although participants appeared to be more aware of their eating environment during

the control period that during moderation periods, it should be noted that, due to all

meal periods occurring during a single session, the control period was always carried out

prior to the two treatment periods. While counterbalancing was applied between the two

treatment periods to attempt to moderate any temporal effects, the control was always

carried out prior to these. This was done to permit calibration of the system and for

baseline measurement. As such, there is potential that differences between control and

treatment periods was the result of participants becoming familiar with the setting, and

less self-aware regarding their environment.

5.7 General Discussion

This chapter reports the final study carried out as a part of this thesis. The main aims of

this chapter were to continue exploring eating information extraction and to demonstrate

its application for research and behaviour change. To achieve these aims, this chapter

presented a system for monitoring chewing parameters, as a new method for data collection

in eating studies and for provision of behaviour change related feedback. The application

of this system was then demonstrated in a study of eating function.

5.7.1 Findings and Implications

The main component of the chewing monitoring system was a model for the automated

detection of chewing behaviour. The model used as part of this system was adapted

directly from the work carried out in the previous chapter (chapter 4), with minor changes

in signal processing technique to ensure real-time processing and the removal of a feature
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(myopulse percentage rate) to reduce calibration requirement. This resulted in a model

with predictive accuracy for chewing comparable to that found in the previous chapter

(93% accuracy), indicating that myopulse percentage rate had only a minor contribution

to the classification of chewing, or was a redundant feature for this task.

As in the previous study (reported in chapter 4), the accuracy of this technique was

similar to that reported in the literature by R. Zhang and O. Amft [180] and Q. Huang

et al. [179]. However, these studies reported significant false positives or reduction in

accuracy with the presence of real-world type activity. The classifier models in this and the

previous study were trained and tested using data including a range of activity alongside

eating to help improve robustness, and still demonstrated a high degree of accuracy and

ability to generalise to unknown subjects.

This chewing detection technique and classifier model was then used within a complete

chewing monitoring and feedback provision system. Prior studies have used feedback based

systems for the study and control of eating speed, measuring changes in food weight over

time [129, 128], or rate of bites based on hand to mouth food gestures [132]. However,

these solutions permitted the study of intake speed, they did not provide details regarding

eating processes, such as characteristics of chewing.

Comparatively, the lab study carried out in this chapter evaluated chewing behaviour

in detail to study the effect of self moderated eating speed upon chewing behaviour, and

the effect of haptic feedback as an adjunct to this. This demonstrated that chewing rate

feedback significantly reduced chewing speed, achieved through introduction of pauses

between individual chews, but did not effect thoroughness of chewing. These findings

have significant implications on other research, for instance, Zhu and Hollis [127] investi-

gated the effect of experimentally adjusted chewing thoroughness, reporting that increased

thoroughness did not effect meal size, but did reduce eating rate. On the other hand, the

finding here indicate that while self-moderation of eating speed has an impact on chewing

rate, chewing rate did not impact thoroughness. To fully determine the impact of these

findings on such research, these studies should be repeated using the methodologies used

here to fully investigate the relationships between intake rate, chewing rate, and the effects

of moderation.

While there has not been extensive research into the application of feedback as a means

to support chewing rate moderation, a number of researchers are working towards similar
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goals; using rate of intake feedback to manipulate eating speed [128, 129], but without

studying the effect of such feedback upon the mechanics of eating. The system described

in this chapter would also permit estimation of change in chewing parameters over the

course of a single session, and thus allow comparison with “linear” or “decelerated” eating

patterns [128, 129].

In addition to developing systems for chew detection using smart glasses, the papers

by R. Zhang and O. Amft [180] and Q. Huang et al. [179] highlight the development

of a system of chewing evaluation and monitoring as a key direction of their research,

with the goal of oral intake assessment and provision of feedback to support behaviour

change, particularly of chewing rate. Such goals are closely related to those pursuant in

the research reported here, and the system developed was demonstrated for these goals

through the study reported in this chapter. Further implications of the data measurement

and feedback methodology presented here, and potential application, are discussed further

in the next chapter (chapter 6).

5.7.2 Model of Functional Eating Moderation

Based on the findings of this study a model can be formulated representing the effect

of eating moderation and eating feedback. This model can be seen in figure 5.12, and

represents the functional differences in eating resulting from the different treatments, and

the factors that were determined to have influenced these changed. As discussed in sec-

tion 5.6.1, changes in chewing rate was concluded to result from the introduction of pauses

between individual chews (the period between chews). These pauses were also confirmed

to influence chewing sequence duration thanks to consistent chewing thoroughness, which

can be seen in figure 5.12 is not effected by any other factors. It was seen in the eating

study results that eating moderation had a significant effect upon chewing rate, more-so

with the presence of feedback. As chewing rate was demonstrated to be the result of

period between chews it can be concluded that moderation and feedback are primarily

influencers over the duration of this inter-chew period.

In addition to these functional parameters, this model also demonstrates the reciprocal

nature of chewing rate and participant reflection upon chewing. The results of the partic-

ipant eating reflection survey (discussed in section 5.6.2) indicated a significant increase

in focus upon eating speed while focusing upon moderating eating. It was concluded
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that task awareness of eating moderation resulted in participants reflecting upon eating

rate (particularly chewing rate in this case) as well as thoroughness. In particular the

significant difference in the statement related to the effort applied to eating slowly dur-

ing moderation indicates that reflection upon eating speed contributed to chewing rate

reduction, forming a feedback loop as demonstrated in figure 5.12.

Period Between Chews

Chewing Rate

Chew Thoroughness

Chew Sequence
Duration

FeedbackModeration

Chew Speed Reflection

Model of Eating Moderation and Functional Changes

Figure 5.12: Model of the functional effects of eating moderation and feedback.
Shown here are Moderation (the act of eating rate moderation), Feedback (eating
rate feedback) as primary influencers. These have an impact upon the period
between chews, which in turn effects chewing rate and chewing sequence duration.
This also demonstrates the reciprocal processes of chewing rate and chewing speed
reflection.

5.7.3 Limitations

There were three main limitations associated with this research. The chewing monitoring

system used here relied solely upon chewing as a means of measuring eating parameters,

estimating chew sequence termination through significant pauses between chews. This

did not account for unexpected pauses in chewing, and had the potential to effect the

accuracy of calculated parameters, although such occurrences were not observed to occur

frequently enough to do so. In future research the inclusion of swallowing detection in
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this system may not only help to confirm termination of chewing sequences, but would

permit observation of the relationship between moderated eating speed and swallowing.

In addition to eating rate, some related studies also focus upon the effect of eating

rate upon intake volume [132, 131, 127], or rate of intake [128, 129]. Such variables would

provide interesting insight in conjunction with measured chewing parameters, but were not

measured during the study reported in this chapter. The repeated measure approach to

this study meant that meals were consumed across three treatment in a single session and

were tailored to a participants particular appetite to prevent overeating and premature

session conclusion. As such, assessment of intake volume was not possible.

This repeated measure protocol also meant that increasing familiarity with the exper-

imental conditions, or reduced appetite throughout the course of a session might impact

the results. Counterbalancing was applied between self-moderation treatment periods to

help reduce this, but the control period always occurred prior to both treatment to permit

calibration and baseline measurement. As such there was potential uncertainty regarding

observed differences between treatment periods and the control period. In future stud-

ies, separate session should be considered for repeated measures to reduce the impact of

time and consumed food upon appetite and study familiarity, and to permit evaluation of

intake volume in relation to self-moderation and feedback.

5.8 Conclusions and Contributions

The work and findings reported in this chapter was the final significant stage of this

research and answering the research questions outlined in the beginning of this thesis

(section 1.2.1). Firstly, the work in this chapter extended the use of sensing in conjunc-

tion with machine learning techniques (the focus of chapter 4) for detection of chewing in

controlled lab situations, and applying these techniques for monitoring chewing during a

controlled lab study. This helped to answer research question 3, related to how physio-

logical sensing can be used to detect eating; confirming findings of the previous chapter

and demonstrate once again that these techniques were useful for automated and accurate

detection of eating, thus overcoming the inherent error or bias of self-reporting and other

manual monitoring techniques.

However, more heavily focused on in this chapter was answering Research Questions
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2 and 3, which asked what other information related to eating can also be derived from

detected eating events and how this information can be applied in research respectively.

This chapter described how detected chews can be used to derive statistics regarding char-

acteristics of chewing, including chewing rate and thoroughness, the duration of individual

chews and period between chews, and the duration of chewing sequences (per mouthful

of food) and period between chewing sequences. This information was used to drive a

system for monitoring chewing characteristics and driving feedback.

This chapter also demonstrated a minor and major contribution of this research.

Firstly, the system developed here for monitoring chewing and studying the effects of

feedback upon eating moderation is a significant contribution for overcoming a limitation

of many eating studies: the inherent bias an error of self-report, or inaccuracies and re-

source demand of manual observation (as discussed in chapter 2). This system instead

permits accurate and automatic monitoring of detailed chewing characteristics, and was

applied for the purpose of studying the effect of feedback upon chewing and the processes

of moderation in a controlled lab study, resulting in valuable insights and demonstrating

the systems value as a research tool.

The findings of this study encompassed one of the major contributions of this the-

sis, constituting an improvement of the understanding of the processes of eating speed

moderation in response to feedback. By monitoring characteristics of chewing and per-

forming surveys regarding participant reflection upon eating, during a control (normal

eating) period and eating moderation with and without feedback, it was possible to make

conclusions regarding the processes of moderation. The results demonstrated an decrease

in chewing rate and period between chews, but no change in thoroughness, implying that

chewing rate is a function of the time introduced between chews rather than other factors.

The results also demonstrated a more significant reduction in chewing rate with the in-

fluence of feedback, but survey results found no difference between participant reflection

regarding eating speed compared to moderation without feedback. This indicates that

while task awareness increases reflection upon eating speed, feedback does not increase

perceived awareness while remaining an effective influence over chewing rate.

The findings of this study along with the monitoring techniques and system used to

research these processes have considerable implication for future eating research, or even

clinical applications. The following chapter discusses these further, focusing particularly
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on areas for further research which the findings of this chapter in conjunction with the

findings highlighted in previous chapters.



Chapter 6

Discussion and Conclusions

Human eating consists of a number of highly complex, inter-connected and synchronised

processes involved in efficiently managing the intake of food necessary for survival [11,

12, 13]. These processes are essential to proper food ingestion and airway protection [13],

and are closely related to the processes involved in regulating intake volume and satiety

[127, 22]. The disruption of these physiological or behaviour processes of eating can have

a major impact on food intake and lead to functional and behavioural eating disorders,

such as swallowing disorders [13, 14, 15], eating disorders and obesity [114, 22]. As such

it is vital to properly understand these processes, their interaction, and the impact of

abnormalities or other influences. However, typical monitoring approaches such as self-

reporting intake are burdened by inherent human error and bias [32, 33, 33, 34, 35, 36,

32], thereby inhibiting our ability to fully understand the complex processes involved in

eating and treatment of eating related disorders.

The broader ongoing target of this research is to improve the state of the research

surrounding understanding eating function and behaviour and supporting treatment be-

havioural modification for weight management and eating disorders. Specifically, the

work in this thesis focused on overcoming the burden and error inherent in self-report

for eating monitoring. This chapter discusses the findings and outcomes of this research

(section 6.1), provides an overview of the significant research contributions (section 6.2),

and finally highlights areas for further research (section 6.3).

195
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6.1 Discussion

Health informatics and research into health related technology covers a wide range of

fields including the use of technology, information sharing and management, and data to

support and enhance patient care: from bioinformatics studying the molecular processes

of the body, to public informatics studying diseases and health using large scale population

data [247]. Although varied, these fields all share a similar data processing pipeline, as

outlined by Fang et al. [248], consisting of the acquisition, storage, processing and analysis,

sharing, and search of information for utilisation for medical purposes. This pipeline can

be seen summarised in figure 6.1, with a summary of the focus of health technology in two

key stages of interest: Data acquisition and utilisation. The focus of the literature outlined

in chapter 2, and of the work in this thesis, was upon methods of acquisition, processing,

and use of data for eating related research and clinical applications and sensing. While

data management, sharing, and search of data are expansive fields in themselves, this was

outside of the scope of this research, which instead sought to answer questions relating to

the research aim of overcoming the burden inherent in typical data collection techniques

and how to go about applying collected data.

The focus of the work reported in this thesis was upon achieving these aims through

the development and application of automated eating detection techniques, making use of

physiological sensing, particularly Electromyography. EMG of muscles related to eating

has used extensively to evaluate eating function and research the development of eating

characteristics [57, 5, 58, 59, 6, 60]. Although traditional applications of this technology

have been reliant upon specialist equipment and assessment, recent trends in research

towards wearable sensing and electronics systems such as ‘epidermal‘ sensing systems

[74] make wearable solutions using proven sensing techniques such as EMG more viable

for mobile and continuous sensing. In researching this technology and techniques for

achieving the research aims, this work has investigated data collection and processing for

eating detection, and the use of this data for studying eating and to provide feedback,

as outlined in figure 6.1. In researching these areas, this thesis answered the following

research questions:

1. How can physiological sensing be used for the accurate sensing of chewing and swal-

lowing?
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Data Pipeline

Data Acquisition

Storage
Management 
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Data 
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& Sharing

Utilisation

Data Acquisition
● Human Generated
● Social Media
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● Patient Records
● Biometrics
● Sensor Readings

Utilisation
● Computer aided decision 

making
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● Electronic health records
● Telehealth and mobile 

health
● Remote diagnosis, 
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● Treatment and 

Behaviour change

Detection and Processing
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● Classification of swallow 
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Figure 6.1: The Data Pipeline (left) summarises the general data pipeline for
health technology and informatics as described by [248]. The health technology
focus (middle) outlines two areas of interest in relation to this work and provides
some context in relation to health informatics and technology. Data Acquisition
outlines some general sources of data for health related technology, while Util-
isation summarises some applications of this data, as described by Fang et al.
[248] and Hersh [247]. Related Work in this Thesis (right) then outlines the gen-
eral topics involved in this work and shows where these are situated along the
pipeline.
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2. How can automated eating detection be used to detect eating characteristics and

food content?

3. How can sensed eating data and characteristics be applied for studying eating be-

haviour function and behaviour, and for motivating eating change?

These questions are discussed below in the context of the findings of this thesis.

6.1.1 How can physiological sensing be used for the accurate sensing

of chewing and swallowing?

The first question to be answered in this research was how physiological sensing can be

leveraged to accurately and automatically sense eating function, with an emphasis on

chewing and swallowing. Currently available techniques for automated eating detection

have a number of restriction, specifically oriented around limitations of available hardware

and insufficient research to conclusively determine the viability of such approaches (as

discussed in chapter 2 and chapter 4). Through Research Question 1, this thesis attempted

to resolve these issues by exploring the use of EMG for automated eating detection, and

the viability of new modalities for unobtrusive and comfortable sensing of muscle activity

related to eating.

Chapter 3 reported the first stages of answering this research question, through the

development of a threshold based algorithm for detecting swallows based on EMG sig-

nals, which demonstrated a promising accuracy of approximately 90%. This algorithm

demonstrated the reliability of Electromyography for swallow detection, even with a sim-

ple detection algorithm and small sample size, compared with alternative sensor types

such as acoustic signals which may be prone to interference from external noise [68, 65].

The subsequent study, reported in chapter 4, expanded on this research with a larger

subject pool, and varied subject BMI and behaviours; with the aim of improving the

robustness of resulting detection models. This chapter investigated the use of classifier

algorithms for the detection of eating behaviour from EMG of the masseter and submental

muscles, demonstrating a model with an accuracy of 87%, and chewing, with an accuracy

of 94%. Previous literature has reported similar research detecting periods of chewing

using EMG of the temporalis captured using “smart-glasses” [178, 180, 179], but not

using simultaneous detection of both chewing and swallowing. While the studies by R.
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Zhang and O. Amft [180] and Q. Huang et al. [179] reported comparable accuracy to

that of the models developed here, they also reported false positives in the presence of

unrelated behaviour and did investigate the performance of their algorithms on a subject-

independent basis. Comparatively, the models developed in chapter 4 were demonstrated

to be robust and able to generalise to unknown subjects; achieved through use a larger

and more diverse dataset to help improve robustness.

From these findings, it can be concluded that machine learning techniques can be

applied alongside physiological sensing technology for the accurate detection of chewing

and swallowing. Such models are also able to generalise to unknown subjects for this task,

and are robust to non-targeted activities when such activities are included in the training

data and labelled as inactivity.

6.1.2 How can automated eating detection be used to detect eating

characteristics and food content?

Although the detection of chewing and swallowing is an important step towards overcom-

ing the limitations of self-report in research or clinical applications, it is important to

be able to derive more details regarding eating processes and performance, eating habits,

patterns, and food content. Thus this research question was posed to determine what

important information can be derived. Three main types of information were investigated

in this research: 1) dietary content, 2) types of swallow, and 3) characteristics of chewing

sequences.

Dietary content is an area of particular interest for eating behaviour studies, as part

of clinical weight management [22, 116], or for treatment of eating disorders [114, 20].

While evaluation of the relationship between EMG and food content has been studied

extensively, few attempts have been made to automatically detect dietary content from

eating behaviour and EMG [178, 180, 197]. Chapter 4 investigated and compared an alter-

native classification approach which demonstrated an accuracy of 99% for differentiating

between 3 solid foods when trained on a subject-dependant basis, 99% for the differenti-

ation between solids and liquids, and 74% for differentiation between liquid and viscous

liquid (yoghurt). The accuracy of this technique was found to be significantly higher

than the literature based techniques for solid food classification, which only reported be-

tween 69-95% accuracy [179]. Superior accuracy was concluded to be the result of the a
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newly proposed feature set, which included signal content and eating pattern features for

both chewing and swallowing, whereas the literature adapted approaches only made use

of chewing information. The high accuracy for distinguishing between solids and liquids

was also of note, and was concluded to be the result of distinct behavioural differences

observed between solids, which involved chewing sequences, and swallows, which did not.

Other characteristics of eating such as muscular effort involved, duration and timings,

and sequentiality of processes, are also considered important for understanding eating

processes [5, 57, 11, 13]. For instance, swallow effort and duration, as well as success-

ful completion of specific swallowing exercises[97, 63, 96] are important for swallow per-

formance evaluation [170, 165], or for swallow disorder monitoring and treatment [168,

61, 62, 93, 81, 80]. Chapter 3 investigates classification of three swallow types involved

in swallow rehabilitation therapy: dry, liquid, and extended swallows. Trained models

demonstrated an accuracy of 92% for for distinguishing between dry and liquid swallows,

and 99% for identifying extended swallows. Analysis of feature importance revealed that

span (duration) of swallows is important for the relatively simple task of extended swallow

classification, while other signal information is more important for the more complex clas-

sification of liquid and dry swallows. It can be concluded from these results that machine

learning techniques are capable of differentiating between limited swallow types, although

the performance of this for other types of swallow exercises has yet to be determined.

Characteristics of chewing, particularly the sequentiality of chewing and individual

chewing patterns, are also of interest to the research community for their association with

satiety [24, 23, 125, 126, 127], intake volume [128, 129, 131, 132], and links to high BMI

and obesity [25, 26, 31, 27, 28]. To understand the exact nature of these relationships and

if they can be targeted clinical behaviour change interventions it is important to monitor

all the intricacies of these parameters. Chapter 5, outlined the use of chewing detection to

capture chewing rate, chew duration, chew periodicity, muscular effort, chewing duration

per mouthful, time between mouthfuls, and meal duration. These were calculate to inves-

tigate the effect of feedback upon self-moderation of eating speed, and revealed a number

of interesting findings (discussed in the next section, section 6.1.3). This demonstrated

that a range of information can be derived from detected chews, permitting identification

of inter-relationships which otherwise might not be possible, and the study of influencing

factors.
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6.1.3 What are the clinical and research applications of sensed eating

data?

As has been discussed at length, there are a number of shortcomings of typical approaches

for monitoring eating function and intake behaviour in the study of eating or for clini-

cal applications. Answering research questions 1 and 2 outlined the use of sensing and

automated detection methods for overcoming these limitations, while this final research

question relates to how these techniques can be applied in research of for clinical purposes.

One of the main applications explored in this thesis is use of eating sensing for moni-

toring of eating and related parameters, as outlined in answering research question 2. The

implications of this monitoring for research was explored in chapter 5, which investigated

the moderation of eating processes in response to eating rate feedback. A platform was

developed to detect and monitor various parameters of chewing and compare these in

detail with and without feedback. Using this monitoring platform, a statistically signif-

icant reduction in chewing rate was observed during eating speed moderation with the

presence of feedback, and it was concluded that this was a result of the introduction of

pauses between individual chews and did not effect chewing thoroughness (section 5.6.2).

While other research has used feedback to manipulate eating rate [128, 129], or studied

the effects of artificial eating rates upon chewing throughness [127], there has been little

research specifically examining the effects of feedback upon eating processes. This area

of research has particular implications for the study investigation of eating rate and its

association with appetite and satiety [127], intake volume [132], or high BMI [27], offering

a means to study the exact nature of eating rate and its relation to such factors. These

implications and areas for future work are discussed in more detail in section 6.3.4.

As well as exploring the application of sensed eating for monitoring eating parameters

and the study of eating, this thesis has also examined its application for driving feedback.

As discussed in the literature (chapter 2), feedback regarding physiological processes has

been used to help gain control over life-limiting disorders, support rehabilitation, or as

part of implementing behaviour change to encourage healthier eating habits. As part

of the study reported in chapter 5 haptic chewing rate feedback was delivered to par-

ticipants, hypothesised to aid self-moderation of eating speed. This study demonstrated

that, across 20 participants, feedback had a significant affect in supporting voluntary eat-
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ing rate reduction; resulting in a significant difference in eating rate between treatment

groups (F [2, 38] = 66.01, p = 0.000. η2 = 0.78), with an average chewing rate during

feedback based moderation 46.9% slower than with no feedback. As discussed in the lit-

erature, eating speed is considered correlated to a number of health factors, and these

results indicate that the use of such feedback is potentially beneficial for ensuring users

adhere to self-moderation of eating rate.

Feedback can also be used to support swallow rehabilitation or training in cases of

swallowing disorders, and while biofeedback has been applied in the past towards this aim

[63, 64], feedback has been limited to auditory or visual cues without considering tech-

niques for improving motivation or engagement. Chapter 3 instead presented game-based

feedback intended to motivate and engage participants in swallowing practice. Results of

a user-evaluation of the system highlighted a positive impression of the feedback system,

with users reporting that they felt it was fun to use and helped them focus on swallowing

goals. Although clinical applications are beyond the scope of the research in this thesis

(as discussed in section 6.3.1), it is suggested here that this continuous gameplay could

be used to apply key exercise principles: encouraging swallow repetition and varying gap

size to encourage extended swallowing [97]. Furthermore, challenging subjects to surpass

previous scores may motivate users and result in skill improvement, leading to an increase

in self-efficacy [112, 101].

It is the opinion of the author that the monitoring and feedback systems discussed in

this thesis have considerable implications for the research of eating processes and clinical

treatment, far beyond those that were explored as part of this work. Some of these

applications are areas for future work are discussed in more detail in section 6.3.4.

6.2 Contributions

This thesis and the work it reports provide a number of significant contributions. These

can be separated into major and minor contributions to the literature. The following

sections outline these contributions and provide some details.

6.2.1 Major Contributions

This research has made two major contributions:
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1. The development of techniques for chew and swallow sensing and more

accurate detection of eating

The first major contribution of this research was the development of techniques for the

more accurate detection of chewing and swallowing, provided as a part of Research Ques-

tion 1. Models for the detection of swallowing and chewing were developed and reported

in chapter 3, chapter 4, chapter 5, but the focus of the work making up this contribu-

tion was reported in chapter 4. There are a range of techniques which may be used for

the detection of muscle activity using EMG, as outlined in chapter 2, many reliant upon

variations of signal thresholds. However, use of these approaches for automated sensing

of eating has been reported to result in low accuracy or false positives when exposed to

“real-world” activities [178, 180, 179]. The work in chapter 3 instead demonstrated the

use of classification techniques for the production and training of models capable of ro-

bust detection of chewing and swallowing, and able to generalise successfully to entirely

unknown subjects. As discussed in section 6.1.1, this was the result of using data from 16

participants and including a range of behaviour other than chewing or swallowing in the

training datasets along with use of classifiers and careful selection of signal features and

signal segment selection window (discussed in as part of minor contribution 1). This re-

sulted in models capable of more accurate and robust detection in comparison to threshold

based approaches discussed in the literature [179, 178, 180].

2. Improving the understanding of eating processes moderation in response

to feedback

This research also demonstrated a significant contribution towards understanding of the

moderation of eating processes in response to feedback. As part of answering research

question 3, regarding the possible research applications of eating detection, a study was

conducted (reported in chapter 5) using chewing detection to investigate the effect of

feedback upon eating moderation. By examining a number of parameters derived from

detected chews, as discussed in section 6.1.2, it was demonstrated that eating rate reduced

during eating moderation, and did so more significantly when the participants were pre-

sented with feedback. The analysis of these results also highlighted an increase in pauses

between individual chews during moderation, and an increase in chewing sequence dura-

tion. On the other hand, these results demonstrated no significant change in duration
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of individual chews, or any significant changes in number of chews per chewing sequence.

This lead to the conclusion that chewing rate is reduced by chewing speed moderation, and

results from the introduction of pauses between individual chews, but that this process

does not effect chew duration or thoroughness. These results constitute a contribution

to the the understanding of eating moderation, as well as highlighting a number of areas

for follow up research into the processes of eating moderation, or other studies of eating

processes that might benefit from automated monitoring of chewing or swallowing.

6.2.2 Minor Contributions

As part of answering the research questions put forth at the start of the thesis, a number

of minor contributions were also made. These included:

1. Improving the understanding of classifier techniques for chew and swallow

classification

A significant part of the development of new eating detection techniques (major con-

tribution 1) was an investigation into EMG classification techniques, and best practices

for classification of chewing and swallowing activity. Chapter 2 (section 2.3), provides a

critical review of EMG classification for detecting muscle activity, feature selection, and

choice of classification algorithms. This research contributes to the understanding of clas-

sification techniques by explicitly examining some of these parameters for the purpose of

chew and swallow classification. For instance, chapter 3 (section 3.3) reported analysis of

algorithm selection and feature importance swallow type classification, and revealed that

it is important to select features representing the swallow itself along with EMG signal

complexity, in particular the span (duration) of swallows. Comparison of selected features

also revealed that only 7 features were needed to optimally classify the extended swal-

low type due to a clear increased swallow span, but that for the differentiating between

dry and liquid swallows, increased complexity of the problem benefited from additional

features incorporating frequency content. For this problem it was found that tree based

classifiers performed best, particularly for liquid and dry swallow types.

Chapter 4 then explored classifier for detection of chewing and swallowing. It was hy-

pothesised that, due to distinct differences in the duration and frequency of chewing cycles

and individual swallow events, the size of the signal segmentation window would have a
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significant impact upon classification accuracy. Analysis of window sizes demonstrated

that, due to the cyclical and periodic nature of chewing cycles, chewing detection requires

a small window in order to isolate individual chews and prevent misclassification of periods

between chews (optimal window of 0.5 seconds), while a longer window was necessary to

correctly capture the entirety of signal segments pertaining to swallows (optimal window

of 1.625 seconds). Thus separate classifiers were recommended to optimally detect chew-

ing and swallowing. An analysis of classification algorithms also revealed that, for this

problem, a Support Vector Classifier with a linear kernel was optimal for the classification

of chews and swallows, and was able to perform generalised classification using data from

unknown individuals.

2. Development of techniques for more accurate classification of food type

Also related to major contribution 1, as part off the development of eating detection

classifiers this thesis also explored the classification of food types and presented a new

classification technique, comparing this approach against two comparable studies selected

from the literature, which classified foods using EMG of individual chews [180] or fea-

tures reflecting chewing sequence patterns [179]. These studies presented models capable

of 94.7% [180] and 69.2%-94.8% accuracy respectively, but only considered developed

subject-dependent classifier models and made no attempt to classify liquids. As described

in the discussion of research question 2, chapter 4 instead presented an alternative clas-

sification technique combining features consisting of information about individual chew

EMG signals and about the pattern of chewing segments themselves, which resulted in

a subject-dependent classification accuracy for solid foods that was significantly greater

than the compared approaches (99%). The capacity of this techniques for accurate dif-

ferentiation between liquids and solids, or for differentiation between two liquids was also

demonstrated.

3. Improving the understanding of techniques to classify food type

As part of the development of the food classification technique outlined in chapter 4 (mi-

nor contribution 2), an evaluation of the optimal approach for classification of food types

was conducted, contributing to the understanding of the relationship between food type

and eating processes and its impact upon food classification. Furthermore, the accuracy
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of classifiers trained to generalise to unknown individuals was compared to that of models

trained to recognise individual subjects. Together these results lead to some interesting

observations on eating patterns and the impact on food classification. Firstly, a signif-

icantly greater predictive accuracy was found for models trained on an individual basis

rather than those attempting to generalise to unknown subjects. However, no such im-

provement was found for models trained on an individual basis compared to generalisable

modes, when differentiating between solids and liquids, or between different liquids. Chew-

ing patterns are considered important for distinguishing between foods based on texture,

and from these results it can also be concluded that these patterns vary uniquely between

individuals, and making classification of solid foods from unknown subjects a challenging

task. Swallowing on its own, on the other hand, does not exhibit such patterns and so clas-

sification of liquids, without chewing, is reliant upon EMG signal energy information and

does not benefit as significantly from training of models to recognise individual patterns.

4. The design and evaluation of prototype systems for the study and inves-

tigation of eating function

Related to research question 3, one particular contributions of this research applications

was the development of a prototype system for monitoring and study of eating function.

As has been discussed at length (chapter 2), existing techniques for the study of eating

processes are burdened by inherent error and bias, or (it is suggested in this work) do not

provide as much information about the detail of eating function as automated approaches

are capable. The system developed in chapter 5, as discussed for research question 3,

permitted study of eating moderation in response to feedback. As well as leading to

a major contribution (major contribution 2), the system constitutes a contribution in

itself, as a means to study such processes and phenomena with a detail and accuracy that

would not otherwise be possible. The implications for this system in research, along with

applications and recommendations for future research are outlined further in section 6.3.4.

5. Summary and discussion of the literature surrounding the physiological

parameters and clinical applications of sensing of muscles related to eat-

ing, for clinical and research purposes

There is a substantial amount of literature surrounding the collection of EMG signals,

their processing and transformation, and potential applications including the study of
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various physiological characteristics of clinical application for assessment and treatment

of conditions. Some of this literature, specifically those studies focusing on the use of

EMG for targeting muscles specifically involved in eating, is reviewed in the literature

(chapter 2). The literature around this area can be difficult to review due to its varied

and distributed nature, with research tending to focus on muscles only for a single avenue

of research depending on the research area and discipline. This is particularly problematic

when researching techniques involved in sensor placement, signal processing, physiological

characteristics that impact the collected EMG signals, and potential applications. For

instance, muscles of the face and neck, are involved in performing facial expressions,

movement of the head, eye motion, speech, and breathing, in addition to eating, and are

important to consider for the assessment of speech [196], swallowing [169], respiration and

airway protection [13], and other facial activity.

To help overcome this challenge, figure 2.14 presents an overview of the reviewed

literature inn the context of EMG and its use in association with the muscles of the

face and neck, with an emphasis on eating processes. This includes a summary of some

of the major muscles of interest (particularly relating to eating), notable behavioural

activities that exhibit muscular activity, some physiological characteristics of those muscles

or effecting those muscles may in turn impact EMG signals, and a brief summary of

research and clinical applications for which EMG of these muscles has been used. This

provides researchers in this area with a single point of reference for looking up these

muscles in context of these points.

6. The collection of proprietary data sets that are retained and available for

use in research on request

Finally, the research in chapter 4 has involved the collection of a substantial data set

as part of the development of classifiers for the detection of chewing and swallowing, and

for classification of foods. This data consisted of 384 minutes of EMG data collected from

the submental and masseter muscles of 16 participants during the consumption of a small

meal, while reading aloud, and during head motion. Of the participants, 8 were between

the ages of 18-25, 7 between 26-35, and 1 between 36-40. Of these, 7 were male and 9

female, and 7 of the 16 were considered to be overweight, with a BMI greater than 25

and one was considered slightly underweight with a BMI of 18.1. This data consisted of
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EMG from 14180 separate chews and 2057 swallows in total, and includes ground truth

indicating: the type of event (chew or swallow), the food being consume at the time of the

event, and labelled speech or head motion when these events were occurring. This data

was retained beyond the scope of this research by signed consent of participants, and will

be made available to other researchers on request and all aid possible offered to help with

interpretation and use of the data and ground truth.

6.3 Future Research Directions

This section reflects on the research reported in this thesis, the scope of the work, and

discusses potential limitations of the three main studies which were carried out (reported

in chapter 3, chapter 4, and chapter 5) along with areas for improvement. Following this,

potential implications of the findings of this research are discussed along with areas for

further development and directions for future research which have been highlighted by

these findings.

6.3.1 Research Scope and Limitations

The research discussed thus far has significant implications within the clinical domain for

weight management and the support of treatment of obesity related conditions, eating

disorders, or swallowing disorders, particularly in respects to encouraging health related

behaviour change using feedback. In the initial stages of this research a particular emphasis

was given to the potential impact of sensing technology for swallow disorder treatment and

for monitoring and feedback for swallow rehabilitation. This was a focus of chapter 3, and

was advised upon by Dr. David Smithard1, a clinician specialising in swallowing disorders

and a leading member of the Dysphagia Research Society2. Dr Smithard was involved

in an advisory capacity during the initial research into this area, and while setting long

term research goals and research questions for this work. However, while the long-term

goal of this research is to target clinical applications of eating sensing, this is far beyond

the scope of the research reported in this thesis, which focuses on sensing and feedback

techniques to better enable research in this area. A vital part of any work going forwards

1Dr Smithard, Research Gate Profile: https://www.researchgate.net/profile/David_Smithard/

info

Dr Smithard, British Laryngological Association Page: http://www.britishlaryngological.org/

dr-david-smithard-0
2https://dysphagiaresearch.site-ym.com/



Chapter 6. Discussion and Conclusions 209

must be the involvement of clinicians to help design the structure of future research and

studies, and assist in studying the clinical benefits of eating sensing.

Moreover, it is vital to investigate the impact of eating monitoring for treatment of

eating eating disorders, swallowing disorders or other conditions. As such, the experimen-

tal procedures employed in this research have some limitations. This was most notable

in the swallow detection, classification, and feedback research reported in chapter 3. As

part of this work, data was collected from 6 healthy subjects under experimental condi-

tions limiting their movement to those necessary for swallowing. The controlled conditions

made difficult to reliably determine robustness of developed swallow detection algorithm

under different conditions or with different BMI measurements. The following chapter

(chapter 4) attempted to resolve this for the development of eating classifiers, with an

expanded data pool including 16 participants with varying BMI and involving eating and

non-eating behaviour, thereby helping to train a more robust detection model. However,

this was still limited to subjects without reported health conditions which might impact

eating, and was restricted to experimental conditions. It is recommended that future

development of eating detection algorithms partially focus upon the effect of real world

conditions upon eating detection using EMG, to ensure the developed techniques are ro-

bust in the face of day-to-day activities. Furthermore, it is important to investigate if

these sensing techniques are effective for monitoring swallowing disorder patients.

There are additional data collection considerations for expansion in the future to better

validate and improve the value of the monitoring and eating detection techniques outlined

in this thesis. Firstly, Chapter 3 examined the classification of three different swallow

types commonly used in swallow exercises [97]. However, other exercises are often used in

the evaluation and rehabilitation of swallow functionality, such as the “effortful swallow”

[97], and must be researched and included in future classifier models before such techniques

can be fully considered for deployment in clinical scenarios. Similarly, the detection of

food types (reported in chapter 4) requires the enrichment of the data and further work to

fully realise the potential of the classification techniques. The models developed as part

of this work demonstrated accuracy of up to 99% for food classification, and provided

valuable insights regarding the classification of solids, liquids, and differentiation between

individual foods. However, this was only for five food types and is insufficient for scenarios

with a wider food selection. Further research should be pursued to study the impact of
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other foods on eating detection and to investigate the classification of a broader range

of foods, and particularly focusing on distinguishing between different liquids. While it

should be the future goal of any food classification research to distinguish between a wide

range of food types, this is not feasible in the near future due to the thousands of possible

foods, as well as eating patterns unique to the individual, as demonstrated in this thesis.

However, differentiation between a set selection of foods would be of particular interest for

clinical applications that involve setting of specific diet plans, such as weight management

or for the treatment of eating disorders [22].

6.3.2 Development of Sensing Technology and Inclusion of Additional

Sensors

There are many levels of wearable devices and other technologies in the literature that

have been discussed in this thesis (chapter 2) for the purpose of monitoring eating or

supporting eating related treatment. This section discusses some of these components in

the context of the techniques developed in this thesis, and their potential use alongside

these techniques and recommends directions for future research investigating these.

The work in this research focuses on the use of EMG for sensing of eating. As has

been discussed, traditional EMG sensing relies upon bulky sensors and immobile sensing

equipment [169] which are unsuited to monitoring eating. However, the emergence of new

sensor modalities make EMG better suited to portable sensing. For instance, epidermal

sensors [74], were used as part of the work reported inchapter 3. The findings of chapter 3

indicated that these were comfortable and considered acceptable by the users for contin-

uous use. User evaluation also highlighted concerns regarding the traditional components

of the sensing system in comparison with the epidermal components. Ongoing research

into the miniaturisation of data capture, wiring, power source, and wireless transmission

components using “epidermal” electronic modality [74, 159] provides a potential solution

for these concerns. However, this modality of component was not used in the remaining

studies reported in this thesis, and it is recommended here that future research should

include a detailed evaluation of the long-term acceptability of epidermal systems for eating

monitoring.

As well as the use of more suitable sensing modalities, the inclusion of additional sens-

ing regarding other physiological parameters is suggested here as a potentially beneficial
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direction for future research. The work in this thesis focused upon the detection of eating

through measurement of masseter and submental muscle activity for the detection of eat-

ing, however there are a number of muscles related to the various physiological processes

of eating, which are considerably inter-related and demonstrate activity during facial ex-

pressions and head motion, alongside eating. In particular, related work has investigated

the use of the EMG of temporalis muscles for detection of chewing [178, 180, 179], or

the use of Bioimpedance in conjunction with EMG of the sternohyoid muscle (one of the

infrahyoid muscles3), for detection of swallowing [177]. Targeting other muscle sites in-

stead of, or in addition to, those focused on in the research reported here may help to

clarify eating detection, provide more detailed information, or permit detection of other

behaviours.

Additionally, in the eating moderation study reported in chapter 5, only chewing

information was considered for evaluating eating processes, and it was hypothesised that

swallowing might provide additional insight to help accurately determine the swallow of

food following chewing, as well as offering a chance to evaluate swallowing as part of eating

moderation processes. As such, it is recommended that future work include a comparison

of different muscle sites for eating detection, as well as including swallowing information

for the study of eating processes involved in moderation.

In addition to this, other sensor types would provide a wider perspective for the study

of eating or assessment of eating related health. The inclusion of alternative sensing

approaches for the detection of food, such as sound based food texture recognition [67],

or food type and quantity logging using image recognition [161] potentially offer a means

to confirm EMG based recognition, while food volume estimation algorithms such as that

described by [157] provide a means for monitoring intake volume in addition to food type.

While the techniques in this thesis provide a means for detecting chewing and swallowing,

they cannot fully evaluate dietary intake at the current time and techniques such as these

must be considered in future work to offer intake estimation in order to provide a means

to completely monitor all aspects of eating.

A particular focus of future development of the techniques outlined in this work should

be on improving performance and investigating their use in conjunction with one another

and with other sensing. Areas of development include refinement of the algorithms and

3see figure 2.2 for the position of the sternohyoid muscle and table 2.1 for a description of the physio-
logical characteristics of the infrahyoid muscles
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techniques, as described above, and research to determine the best approach towards

hosting signal processing and classification models for continuous mobile detection. This

should be carried out in parallel to the development of novel sensing hardware, such

as ongoing development of “epidermal” on body sensing platforms by the Yeo Research

Group [75]. With the combination of these components further research can be carried

out for the use of these systems for a range of research and clinical applications, which

are discussed in the remainder of this chapter.

6.3.3 Clinical Application Research

As described in section 6.3.1, there are a number of possible clinical areas for which eating

sensing has implications and potential applications, which should be explored further in

future work. In addition to necessary research to determine the accuracy and use of the

techniques described in this thesis for use with swallowing or eating disorder patients

(discussed in section 6.3.1), some clinical applications of note for future research include:

weight management, eating disorders, and physiological abnormalities.

As outlined in the thesis introduction, the ongoing epidemic of obesity and prevalence

of high BMI is considered a major health risk [7, 10]. Understanding and tackling the

issue of obesity is the area with the potential to be most significantly impacted by this

research. This thesis has demonstrated techniques for determining chewing speed (chap-

ter 5), detecting food types (chapter 4), and the use of chewing rate feedback to encourage

a change in eating behaviour (chapter 5). These have significant implications for weight

change interventions, as a means for providing of feedback encouraging the adoption of

eating patterns and styles which have been associated with increased satiation and re-

duced intake [127, 24], or for detecting adherence to a set diet plan, using a model trained

to detect specific foods.

Combining such detection with mobile applications would permit goal setting and

progress review, and delivery of targeted feedback messages areas that have been demon-

strated as vital for weight change therapy [20, 44]. These are all practical applications for

for consideration for future research into the use of these techniques to tackle the obesity

problem. In addition to this, future research with these techniques includes improving

understanding of the nature of influences over food intake and obesity.

Related to weight management, there are also considerable implications and scope for
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further research related to eating disorders. Traditionally, screening of eating disorders is

carried out through clinical interviews, questionnaires, and clinical assessment, and it can

be hard to identify many disorders without obvious physical symptoms (see section 2.1.4).

Many disorder sufferers exhibit characteristic eating patterns [129, 128] or compensatory

behaviours [115, 22], and the techniques and technology demonstrated in this thesis should

be researched further to determine if sensing can be used to detect such patterns and

determine their applicability for studying such processes. As with weight management,

eating disorder treatment also involves self-logging, goal setting, and review of progress

[20], and the eating monitoring techniques developed here should likewise be researched to

determine their use as an automated alternative to self-logging, and as a means to identify

patients in need of further treatment.

Finally, a similar area of research is the use of these techniques as part of monitoring,

evaluating, and providing rehabilitation for patients with abnormal eating function, such

as swallowing disorders. EMG has been suggested as a means of assessing swallowing

function and screening for disorders [61], and a number of EMG parameters have been

described for the evaluation of swallowing disorders [62] or dental performance [6, 60].

Techniques are described in this thesis for the detection of swallow type (often used to

assess swallowing performance [97]) and chewing parameters, in chapter 3 and chapter 5

respectively. It is recommended here that further research is also conducted to investigate

the use of classifier algorithms to detect disorder characteristics, potential deviations from

normal healthy function, or for recognition of known life threatening symptoms associated

with swallowing disorders such as nasal leakage or aspiration.

Treatment of swallowing disorders often also involves behavioural therapy, including

swallow exercises or practice of compensatory manoeuvres designed to help consume food

[97, 14, 94], but lacks a standardised treatment approach [87], requires professional super-

vision, and suffers from low patient motivation and engagement. The use of biofeedback

and goal setting potentially reduces the need for in-person assessment and improves moti-

vation [101, 102, 103], and chapter 3 presents the design of feedback meant take advantage

of this. However, this work is in its preliminary stages and it is recommended here that

further research be carried out into the development of such feedback systems and the

impact they might have on treatment of swallowing disorders.
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6.3.4 Researching Eating Processes and Influences

This research also have major implications for studying eating and improving our un-

derstanding of eating behaviour and the various influences upon eating choices of when

to eat, food selection, intake volume, and intake speed. One such research application

was the study outlined in chapter 5. This study examined chewing rate feedback and

its effect upon the processes of eating moderation, using the prototype monitoring and

feedback system developed as a part of the research. This demonstrated a considerable

impact of feedback upon moderation and provided a number of interesting insights into

the processes of chewing, described in section 6.1.3 and section 6.2, but did not study

the impact of moderation upon other eating processes such as swallowing. As was dis-

cussed in section 6.3.2, the inclusion of swallowing information may aid in confirmation of

chewing sequence termination, or provide additional insight into the processes of eating

and their relationship with voluntary eating moderation, and should be another area for

consideration when continuing this line of research.

The focus of this study upon haptic feedback and the impact upon moderation pro-

cesses. Other related work investigating eating rate, or clinical applications of biofeedback

have instead focused on the use of visual or auditory feedback [64, 109, 126, 127]. Al-

though the findings of the work in chapter 5 demonstrated a significant effect resulting

from haptic feedback, another direction for further research should be to extend this study

to investigate the effect other forms of feedback upon eating processes (audio, visual, and

haptic). Studying alternative feedback types and considering potential implications upon

eating is particularly important for determining the ideal approaches for behaviour change

research and interventions, as discussed in section 6.3.3.

There are a range of factors that influence eating processes, and a number of publica-

tions in the literature emphasise that various external and internal influences can effect

out choices of when to eat, food selection, intake volume, and intake speed (described in

chapter 2). In particular, distractions from food and social meals have been suggested

as disrupting internal moderation cues and impacting meal duration and intake volume

[19, 21]. Another suggested direction for future eating research is to adapt the monitor-

ing techniques of chapter 5 to investigate some of these factors, and study the impact of

different distractions from eating (television, music, or other stimuli), social meals, and



Chapter 6. Discussion and Conclusions 215

portions sizes upon eating processes during normal eating or while applying voluntary

eating moderation.

Finally, specific eating patterns have also been connected to high BMI and obesity

[28, 31], diabetes [29], and even stress-levels [30]. It has been suggested that these are

related to the impact of eating patterns, particularly slower eating and increased oral

exposure time, upon hunger and satiety controlling hormones [127, 126]. Eating rate

and other parameters have also been linked to specific eating disorders [129, 128]. With

these factors all potentially effected by eating patterns, it is important to research these

areas further to better understand the relationship between these and eating processes. As

described in section 6.3.3, a better understanding of these processes is also important when

considering the use of automated monitoring and feedback systems clinical applications

related to weight management or the treatment of eating disorders.

Equipping participants with mobile enables sensing and the monitoring system devel-

oped as a part of chapter 5 (with appropriate adaptations) permits the study of some

of these factors and their relationships to the processes of eating, moderation, intake,

other influences, and the relationship of these factors to health risks such as obesity.

Furthermore, it provides a platform for collecting continuous information in an uncon-

strained manner, and with an greater level of detail and potentially reduced impact of

necessary experimental constraints that would otherwise be required when making use of

other monitoring techniques such as video recordings, manual observation, or participant

self-reporting.
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Participant Study Procedures

A.1 Surface Electrode Placement Procedure

EMG signals were collected targeting chewing and swallowing activity. For the purpose

of mastication, the two primary masticatory muscles groups are the Masseter muscles

and the Temporalis muscles used predominantly to control the elevation of the mandible

[76, 249]. In the context of Electromyography Criswell and Cram [73] demonstrate the

similarity of the signals from the two sites during chewing; describing mastication as the

predominant action identifiable from the masseter muscles, and “assistance in chewing”

as an important action of the Temporalis. The masseter has also been described as easy

to identify and reliable, which is a useful consideration for the purpose of reproducibility

of this work [196].

The act of swallowing is a complex procedure carried out over oral, Pharyngeal and

Esophageal stages, and as such involves a number of muscle groups. Of particular import

during the oral and Pharyngeal stages are the muscles connecting to the hyoid (suprahy-

oid and infrahyoid) [24, 97, 76]. The the suprahyoid and submental muscle group are

considered particularly important for the purpose of EMG evaluation during swallowing

action [196, 62], and for the purpose of assessment and treatment of swallowing disorders

[62, 64, 169].

The masseter muscle was targeted for measurement of EMG associated with mastica-

tion. For the masseter muscle group the voltage input and measurement electrodes were

placed approximately 2cm along the direction of the fibres of the masseter muscle belly.

The approximate position of electrode placement is indicated in figure A.1, a. The belly

216



Appendix A. Participant Study Procedures 217

[REDACTED]

Figure A.1: Surface electrode placement positions for EMG measurement of
the Masseter muscles (a) and Suprahyoid muscles (b). Adapted from [73]

was found by asking the participant to palpate the muscle through clenching the teeth

[73, 62]. The paper by Jeong et al. [210] also demonstrates this position for placement

of electrodes for this group. This sensor placement methodology was used for the studies

reported in chapter 4 and chapter 5.

The submental muscles were targeted for measurement of EMG associated with deglu-

tition. For the detection of the submental muscle group activation electrodes were placed

under the chin on one side of the midline in an anterior to posterior direction. The approx-

imate position of electrode placement is indicated in figure A.1, b. The area was chosen

by palpating the muscle group by swallowing a few times, and the electrodes placed across

the mass [73, 62]. This sensor placement methodology was used for the studies reported

in chapter 3 and chapter 4.

A.2 Eating Classification Data Collection Procedure

The following procedure was used in the collection of data for use in the development of

classifiers for the detection of eating behaviour and food content, reported in chapter 4.

Participants were guided through the data collection meal sequence by the custom

software application. Participants were asked to carry out the following phases of data

collection, after which the sensors were removed and replaced before repeating this se-
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quence. The actions were carried out in the following sequence:

1. 5 minutes resting – keeping still

2. 5 minutes speech - reading out loud from a provided article 1

3. Moving the head - rocking the head “back and forth” and “side to side”. 10 full

motions of each were carried out.

4. Consumption of a small meal of 5 food and liquid items. This was further divided

into the following sequence:

� 3 eating phases (bite-chewing-swallow), or a single sip-swallow phase (head

stationary).

� 3 eating phases (bite-chewing-swallow), or a single sip-swallow phase (head

moving side to side).

� 3 eating phases (bite-chewing-swallow), or a single sip-swallow phase (head

moving up and down).

Water was consumed between each of stages of the meal sequence.

A.3 Eating Moderation Intervention Procedure

The following procedures and materials listed were used for the feedback based eating

speed moderation intervention type study reported in chapter 5.

A.3.1 Experimental Procedure

Participants are equipped with standard surface electrode sensors (#H124SG, Covidien,

Ireland2) connected to a bluetooth enabled EMG measurement and transmitter unit

(Shimmer 3, Shimmer Sensing, Ireland3). Participants are also equipped with a Microsoft

Band device (Microsoft Band 2, 4M5-00002, Microsoft 4), for delivering feedback.

Once the electrodes have been placed and connected, the emg unit may be used to

acquire chewing and swallowing data from the two sites. The data is streamed to a mobile

1https://en.wikipedia.org/wiki/Google
2Now Medtronic: www.medtronic.com
3http://www.shimmersensing.com/
4https://www.microsoft.com/en-gb
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device used to govern feedback, which communicates securely with a laptop which acts as

a remote classification and monitoring service.

The participants take part in three different study phases. Following each phase,

participants immediately filled out a short questionnaire (question for which are given in

appendix A.3.2). The three sessions are carried out in a single sitting. Participants are

instructed to consume all food items they are presented with in each session, but that

they are within their rights to refuse to finish a portion at any time if they feel they have

eaten to much. Similarly, it is explained that they may withdraw from the experiment at

any time without giving a reason.

Participants are shown food portions allotted for each session and asked to confirm

the portion sizes. Participants may request more or less food, or substitution of one food

type for more of another. The food items consisted of: an apple, a slice of pizza, low-fat

yogurt, jam sandwich and water.

Prior to each study phase the participants carry out a short period of calibration

involving maximum voluntary contractions – clenching and releasing the jaw, and dry

swallowing. The first phase consists of the participants simply consuming the first food

portion normally. They are given unrestricted time to eat the allotted food. During this

period eating rate is recorded and used to tune feedback parameters.

During the second phase, participants are asked to repeat the previous study phase,

but this time attempt to self-moderate eating rate. Such that they eat half as fast as

they believe they normally would. During the final phase, participants are also asked to

self-moderate eating speed, but are also presented with a form of feedback and asked to

stay mindful of this feedback. However, they are given no specific instructions on how

to interact with it. Eating rate is normalised and offset slightly based on parameters

(tuned during the first phase), which is expected to encourage participants towards a

change in eating behaviour. Participants are given the same quantity of food in each

session and asked to eat it in full. Counterbalancing is carried out between the second

and third study phase for each participant, to randomise their order such that half of the

participants took part in the non-feedback self-moderation phase first, and the other half

took part in feedback self-moderation first.

Prior to the second phase, participants are given a short period of training in the

nature of the chewing rate. Haptic feedback consists of periodic haptic pulses of different
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intensities, related to the chewing rate of the participant, relative to the recorded chewing

rate in the control period. Participants are instructed in full about the nature of the

feedback and what it represents. The feedback levels are as follows:

1. 0.0–0.3: Low chewing rate, represented by no haptic pulses.

2. 0.3–0.6: Moderate chewing rate, represented by periodic individual haptic pulses.

3. 0.6–0.8: Fast chewing rate, represented by periodic double haptic pulses.

4. 0.8–1.0: Fastest chewing rate, represented by longer, high intensity double haptic

pulses.

A.3.2 Eating Awareness Survey and List of Associated Awareness

Statements

The following table lists the eating intervention survey statements used in the study

reported in chapter 5. All statements used are listed in full, along with ‘awareness factors’

with which they were associated. In each study session, participants took part in three

meal periods, following the procedures outlined in appendix A.3.1. Immediately following

each of these, participants were then asked to fill out a survey, rating each of the statements

in table A.1 on a 5 point Likert-scale, from “strongly disagree” to “strongly agree”.
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Table A.1: Survey questions for measuring subject awareness regarding a num-
ber of different factors. Table shows the specific questions, question numbers
and related factors of awareness. Used in the eating moderation intervention in
chapter 5

Survey Questions and Their Related Factors

Question Number Question Awareness Factors

1 I found myself more aware of the other person in the room

E
n
v
ir

on
m

en
ta

l

2 I felt uncomfortable

3 I felt self-conscious about the way I was sitting

4 I found myself sitting more formally

5 I felt self-conscious about the way I was swallowing

6 I felt self-conscious about how loudly I was swallowing

7 I felt i was swallowing too loudly

8 I was trying to swallow quietly

9 I felt self-conscious about the way I was chewing

E
at

in
g10 I felt self-conscious about how loudly I was chewing

11 I felt i was chewing too loudly

T
ot

al

12 I was trying to chew quietly

13 I was trying to chew my food thoroughly

S
p

ee
d14 I felt self-conscious about how quickly I ate

15 I felt I was eating too quickly

16 I was trying to eat slowly

17 I felt self-conscious about whether I was eating with my mouth open

18 I felt I was focused on the food I was eating

F
o
o
d

19 I was trying to pay attention to the food

20 I was aware of the flavour of the food

21 I was trying to pay attention to the flavour of the food

22 I was aware of the texture of the food

23 I was trying to pay attention to the texture of the food
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Signal Processing Techniques

B.1 EMG Filtering and Rectification

EMG signal is filtered using a uni-directional Butterworth bandpass filter. The filter pass

band is within the frequency range of 20-500Hz and filtered to an order of 5. It is then

rectified to extract the signal envelope.

def FilterAndRectify(signal):

#Filter the signal

FILTER signal with bandpass Butterworth filter; frequency

range = 20-500Hz, order = 5↪→

Let signalm = the mean of signal

for each point t in signal:

Let signal(t) = |signal(t) - signalm|

return signal

B.2 Ground Truth Correction

During the development of chew and swallow classifier models (chapter 4), EMG ground

truth was recorded using a hand held ‘clicker’ type device. Participants were asked to

click the device once for each individual chew action, briefly, and to depress and hold

the button for the duration of each swallow event. Each ‘click’ was recorded as EMG

data ground truth with onset and termination time-stamps, with short depressions of the

button being recorded as chew events, and long depressions recorded as swallows. This

222
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gave an approximation of the EMG signal time-point correlating to each chew and swallow.

As this technique only provided an approximation of the event onset and termination

and was liable to user error or delay, automatic correction of the ground truth was then

carried out. Correction was based upon the detection of potential periods of EMG activity

using a given threshold for signal amplitude. Periods of potential EMG activity and

approximate ground truth are compared and checked for near-simultaneous entries, given

a permissible time error . Appropriate ground truth entries time-stamps are then updated

with the onset and termination times of their EMG burst counterparts. Psuedocode

describing this procedure follows:

def CorrectGT(mass_emg, ground_truth, uJ = 5, time_error = 64,

target_class):↪→

# mass_emg = 1D array containing EMG signal from masseter

muscle group↪→

# ground truth = 2D array containing ground truth label

and onset, termination, and mid_point timestamps↪→

# uJ = threshold scalar

# time_error = maximum time between period of EMG activity

and ground truth for the activity to be considered as

associated with the ground truth

↪→

↪→

# target_class = the ground truth class of interest, for

timestamp correction↪→

baseline = the period of signal indicated by the

ground_truth timestamps for the baseline label↪→

base_mean = MEAN of baseline

base_sd = STANDARD DEVIATION of baseline

threshold = base_mean + base_sd * uJ

onsets, offsets, mid_points = APPLY THRESHOLD to identify

onsets, terminations, and mid points of signal

activity

↪→

↪→

for each ground_truth.label:

if ground_truth.label is not target_class:
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continue

activity_midpoint = ABSOLUTE of

mid_points-ground_truth-mid_point↪→

activity_onset = closest_activity onset

activity_offset = closest_activity termination

if (activity_onset to activity_offset intersects

with ground_truth.onset to

ground_truth_offset) or (activity_midpoint <

time_error):

↪→

↪→

↪→

ground_truth.onset = activity_onset

ground_truth.offset = activity_offset

return ground_truth

B.2.1 Chew Event and Sequence Identification

During the chewing rate intervention type study reported in chapter 5, the developed mon-

itoring system recorded the onset and termination of individual chewing events to permit

calculation of a number of parameters related to chewing, including average chewing rate

over an entire eating meal. However, this was not considered an accurate indication of

average chewing rate while eating, due to the effect of significant pauses associated with

the completion of chewing sequences (mouthfuls of food). As such, it was desirable to

identify the onset and termination times for chewing sequences, and eliminate significant

pauses between these for the purpose of calculating average chewing rate.

To achieve this, the pseudocode below outlines the process used to identify chewing

sequence onset and termination times, and to find chewing onset and termination times

corrected to attenuate the effect of significant pauses between chewing sequences. This

function accepts an array of chew event onset times, chewon, and termination times,

chewoff , and returns corrected onset times, corron, and termination times, corroff , where

the time stamps have been adjusted such that periods between events exceeding a thresh-

old are replaced by the mean period between all gaps. At the same time, the function
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below also identifies and returns chewing sequence onset, seqon, and termination times,

seqoff , based on the same significant periods.

def find_chewsequences(chew_on, chew_off, uJ):

# chew_on = onset times for each chew event

# chew_off = offset times for each chew event

# uJ = threshold scalar for calculating significant

periods between event↪→

# corr_on = corrected onset with significant periods

between chews eliminated↪→

# corr_off = corrected onset with significant periods

between chews eliminated↪→

# seq_on = onset times of identified chewing sequences

# seq_off = termination times of identified chewing

sequences↪→

#Find mean and standard deviation for periods between chew

events↪→

mn_gap = MEAN of (chew_off-chew_on)

sd_gap = STANDARD DEVIATION of (chew_off-chew_on)

# Calculate threshold for identifying significant gaps

between chew events↪→

thr = mn_gap + (sd_gap*uJ)

j = 1

corr_on[0] = chew_on[0]

corr_off[0] = coff_off[0]

seq_on[0] = chew_on[0]

# Loop over all chew event onsets

for i = 1 to LENGTH of chew_on by 1 do
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#Identify significant gaps between offset of

previous chewing event and onset of current↪→

if chew_on[i] - chew_off[i-1] < thr do

# If no significant period found, update

the relative chew onset↪→

corr_on[i] = chew_off[i-1] + (chew_on[i] -

chew_off[i])↪→

else

#If a significant period is found, set the

gap to the mean the period between all

chews, and update the relative chew

onset

↪→

↪→

↪→

corr_on[i] = corr_off[i-1] + mn_gap

#Also, at this time update the termination

of the last chewing sequence, and

onset of new sequence

↪→

↪→

if n > 2 do

seq_off[j-1] = chew_off[i-1]

seq_on[j] = chew_on[i]

j = j+1

# Set the relative termination of the current chew

event↪→

corr_off[i] = corr_on[i] + (chew_off[i] -

chew_on[i])↪→

return corr_on, corr_off, seq_on, seq_off
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Chewing Rate Study Results

Analysis

This appendices provides the SPSS [243] statistical results for the analysis of measures

obtained during the study reported in chapter 5. This includes descriptive statistics,

tests of normality, tests of significance between repeated measures, and post-hoc pairwise

comparison. Appendix C.1 reports these results for measures of chewing recorded during

this study. Appendix C.2 reports results for measures of self-reflection and awareness, as

well as statistical tests, for scores calculated from numerically coded responses to survey

questions provided in appendix A.3.2.

227
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C.1 Chewing Measure Statistical Tests

Table C.1: Descriptive statistics for the measures of chewing.

Chewing Measures: Descriptive Statistics

Treatment Measure
Mean Std. Deviation

Statistic Std. Error Statistic

Control

Chewing Rate 1.60 0.07 0.32

Chewing Sequence Duration 4.84 0.20 0.92

Chewing Event Duration 0.42 0.02 0.07

Time Between Chew Events 0.34 0.04 0.16

Time Between Chewing Sequence 1.56 0.14 0.65

Chew Events per Chewing Sequence 6.50 0.17 0.77

No feedback

Chewing Rate 1.18 0.08 0.34

Chewing Sequence Duration 5.48 0.29 1.31

Chewing Cycle Duration 0.48 0.02 0.11

Time Between Chew Cycles 0.59 0.05 0.23

Time Between Chewing Sequence 1.86 0.13 0.60

Chew Cycle per Chewing Sequence 5.39 0.19 0.85

Feedback

Chewing Rate 0.92 0.08 0.35

Chewing Sequence Duration 7.64 0.48 2.16

Chewing Cycle Duration 0.53 0.03 0.15

Time Between Chew Cycles 0.86 0.10 0.45

Time Between Chewing Sequence 2.72 0.29 1.31

Chew Cycle per Chewing Sequence 6.03 0.25 1.12
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Table C.2: Shapiro-Wilk normality test for measures of chewing.

Eating Measures: Normality Test

Treatment Measure
Shapiro-Wilk

Statistic df Sig.

Control

Chewing Rate 0.986 20 0.987

Chewing Sequence Duration 0.823 20 0.002

Chewing Event Duration 0.888 20 0.025

Time Between Chew Events 0.868 20 0.011

Time Between Chewing Sequence 0.954 20 0.424

Chew Cycle per Chewing Sequence 0.963 20 0.600

No feedback

Chewing Rate 0.927 20 0.136

Chewing Sequence Duration 0.904 20 0.049

Chewing Event Duration 0.813 20 0.001

Time Between Chew Events 0.962 20 0.594

Time Between Chewing Sequence 0.978 20 0.900

Chew Cycle per Chewing Sequence 0.954 20 0.428

Feedback

Chewing Rate 0.891 20 0.028

Chewing Sequence Duration 0.909 20 0.061

Chewing Event Duration 0.851 20 0.006

Time Between Chew Events 0.896 20 0.035

Time Between Chewing Sequence 0.937 20 0.211

Chew Cycle per Chewing Sequence 0.871 20 0.012
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C.1.1 Eating Measure Repeated Measure Analysis of Variance

Table C.3: Results of repeated measure Analysis of Variance to determine
significance of differences between treatments, for each chewing measure

Chewing Measure: Repeated Measure ANOVA Test

df Mean Square F Sig. Partial
Eta
Squared

Treatment

Total Chew Rate 2 0.330 58.243 0.000 0.754

Chew Sequence
Duration

2 0.188 31.696 0.000 0.625

Chew Event
Duration

2 0.045 5.843 0.006 0.235

Period Between
Chew Sequences*

1.304 0.400 16.645 0.000 0.467

Period Between
Chew Cycles

2 0.786 66.007 0.000 0.776

Chew Events per
Chew Sequence*

1.525 0.046 9.775 0.001 0.340

Error
(Treatment)

Total Chew Rate 38 0.006

Chew Sequence
Duration

38 0.006

Chew Event
Duration

38 0.008

Period Between
Chew Sequences*

24.777 0.024

Period Between
Chew Cycles

38 0.012

Chew Events per
Chew Sequence*

28.981 0.005

*. Sphericity Violated Greenhouse-Geisser determines significance
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Table C.4: Analysis of Variance post-hoc comparison of treatments for each
measure of chewing. Bonferroni adjustments applied to significance measures.

Chewing Measure: Post-Hoc Pairwise Comparisons

Measure Mean Difference
(I-J)

Std. Error Sig.b
95% Confidence Interval for Differenceb

Lower Bound Upper Bound

Total Chewing
Rate

Control
No Feedback 0.425* 0.051 0.000 0.292 0.558

Feedback 0.676* 0.063 0.000 0.510 0.842

’No Feedback Feedback 0.251* 0.054 0.001 0.109 0.393

Duration of
Chew Sequence

Control
No Feedback -0.641* 0.216 0.024 -1.207 -0.074

Feedback -2.807* 0.465 0.000 -4.027 -1.586

’No Feedback Feedback -2.166* 0.401 0.000 -3.219 -1.114

Duration of
Chew Event

Control No Feedback -0.062 0.030 0.160 -0.142 0.017

Feedback -0.111* 0.034 0.012 -0.199 -0.022

’No Feedback Feedback -0.048 0.030 0.390 -0.128 0.032

Period Between
Chew Sequence

Control No Feedback -0.302 0.123 0.073 -0.626 0.022

Feedback -1.161* 0.306 0.004 -1.965 -0.358

’No Feedback Feedback -0.859* 0.231 0.004 -1.465 -0.253

Period Between
Chew Event

Control No Feedback -0.249* 0.038 0.000 -0.349 -0.149

Feedback -0.521* 0.089 0.000 -0.754 -0.288

’No Feedback Feedback -0.272* 0.080 0.009 -0.482 -0.062

Chew Events per
Sequence

Control No Feedback 1.107* 0.207 0.000 0.563 1.651

Feedback 0.473 0.245 0.207 -0.171 1.117

’No Feedback Feedback -0.634 0.323 0.193 -1.482 0.213

Based on estimated marginal means

*. The mean difference is significant at the .05 level.
b. Adjustment for multiple comparisons: Bonferroni.

C.1.2 Chewing Measure Non-Parametric Tests

Table C.5: Results of Friedman test of significance between treatment periods,
for chewing measures.

Chewing Measures: Friedman Test of Difference

N Chi-Square df Sig.

Total Chewing Rate 20 32.7 2 0.000

Average Duration of Chew Sequence 20 21.7 2 0.000

Average Duration of Chew Cycle 20 8.4 2 0.014

Average Time Between Chew Sequence 20 24.1 2 0.000

Average Time Between Chew Cycles 20 33.6 2 0.000

Average Chew Cycles per Chew Sequence 20 16.3 2 0.000
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Table C.6: Chewing Measure Wilcoxon Pairwise Comparison

Chewing Measure: Post-Hoc Pairwise Comparisona

Measure Z Sig

Total Chewing Rate
Control

No Feedback -3.883b 0.000

Feedback -3.920b 0.000

No Feedback Feedback -3.509b 0.000

Average Duration of
Chew Sequence

Control
No Feedback -2.427b 0.014

Feedback -3.808b 0.000

No Feedback Feedback -3.472b 0.000

Average Duration of
Chew Cycle

Control
No Feedback -1.792b 0.076

Feedback -3.173b 0.001

No Feedback Feedback -1.045b 0.312

Average Time Between
Chew Sequence

Control
No Feedback -2.725b 0.005

Feedback -3.584b 0.000

No Feedback Feedback -3.509b 0.000

Average Time Between
Chew Cycles

Control
No Feedback -3.920b 0.000

Feedback -3.920b 0.000

No Feedback Feedback -3.211b 0.001

Average Chew Cycles
per Chew Sequence

Control
No Feedback -3.733b 0.000

Feedback -1.904b 0.058

No Feedback Feedback -1.643c 0.105
a. Wilcoxon Signed Ranks Test
b. Based on positive ranks.
c. Based on negative ranks.

C.2 Question of Awareness Statistical Tests

Table C.7: Descriptive statistics for awareness related questions

Awareness Questions: Descriptive Statistics

Treatment Question Number* Mean Std. Deviation Std. Error of Mean

Control

1 3.350 0.745 0.167

2 2.900 0.852 0.191

3 3.150 1.089 0.244

4 3.050 0.759 0.170

5 3.550 1.099 0.246

6 2.700 1.031 0.231

7 2.400 1.095 0.245

8 2.550 1.146 0.256

9 3.800 0.616 0.138
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10 2.900 0.788 0.176

11 2.650 0.933 0.209

12 2.600 1.046 0.234

13 3.050 0.759 0.170

14 3.300 0.923 0.206

15 3.100 0.968 0.216

16 2.850 1.089 0.244

17 2.300 1.129 0.252

18 3.750 1.118 0.250

19 3.750 1.164 0.260

20 3.850 0.745 0.167

21 3.550 0.826 0.185

22 3.950 0.759 0.170

23 3.300 1.031 0.231

Total 72.350 9.449 2.113

Feedback

1 2.800 0.768 0.172

2 2.950 0.945 0.211

3 2.500 0.761 0.170

4 2.450 0.826 0.185

5 3.250 0.910 0.204

6 2.800 0.834 0.186

7 2.800 0.834 0.186

8 2.750 0.910 0.204

9 4.000 1.298 0.290

10 2.800 1.056 0.236

11 2.450 0.999 0.223

12 2.250 1.020 0.228

13 3.750 1.118 0.250

14 4.100 1.071 0.240

15 4.100 0.968 0.216

16 4.500 0.607 0.136

17 2.650 1.182 0.264

18 3.600 1.095 0.245

19 3.600 1.046 0.234

20 3.500 1.000 0.224

21 3.400 0.995 0.222

22 3.500 1.051 0.235

23 3.200 1.196 0.268

Total 73.700 9.863 2.205

No Feedback

1 2.950 1.099 0.246
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2 2.600 0.940 0.210

3 2.600 0.821 0.184

4 2.700 0.865 0.193

5 3.350 1.089 0.244

6 2.800 0.951 0.213

7 2.500 0.889 0.199

8 2.550 1.099 0.246

9 3.700 1.218 0.272

10 3.100 1.373 0.307

11 2.250 0.910 0.204

12 2.500 1.235 0.276

13 4.100 0.912 0.204

14 4.000 1.170 0.262

15 3.700 1.218 0.272

16 4.200 1.005 0.225

17 2.500 1.147 0.256

18 3.500 1.192 0.267

19 3.550 1.234 0.276

20 3.500 1.235 0.276

21 3.400 1.273 0.285

22 3.650 1.182 0.264

23 3.350 1.348 0.302

Total 73.050 14.500 3.242

*. Related questions may be found in Table A.1

Table C.8: Shapiro-Wilk test of normality for questions of awareness

Awareness Questions: Tests of Normality

Question Number* Treatment Statistic df Sig.

1 Control 0.765 20 0.000

Feedback 0.800 20 0.001

No Feedback 0.908 20 0.047

2 Control 0.869 20 0.011

Feedback 0.851 20 0.006

No Feedback 0.876 20 0.015

3 Control 0.887 20 0.024

Feedback 0.843 20 0.004

No Feedback 0.863 20 0.009

4 Control 0.816 20 0.002

Feedback 0.875 20 0.015
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No Feedback 0.867 20 0.010

5 Control 0.872 20 0.013

Feedback 0.859 20 0.007

No Feedback 0.887 20 0.024

6 Control 0.878 20 0.017

Feedback 0.804 20 0.001

No Feedback 0.902 20 0.046

7 Control 0.845 20 0.004

Feedback 0.804 20 0.001

No Feedback 0.875 20 0.014

8 Control 0.860 20 0.008

Feedback 0.877 20 0.016

No Feedback 0.906 20 0.043

9 Control 0.771 20 0.000

Feedback 0.890 20 0.026

No Feedback 0.871 20 0.012

10 Control 0.809 20 0.001

Feedback 0.874 20 0.014

No Feedback 0.939 20 0.493

11 Control 0.887 20 0.023

Feedback 0.885 20 0.022

No Feedback 0.859 20 0.007

12 Control 0.869 20 0.011

Feedback 0.865 20 0.010

No Feedback 0.884 20 0.021

13 Control 0.816 20 0.002

Feedback 0.858 20 0.007

No Feedback 0.836 20 0.003

14 Control 0.857 20 0.007

Feedback 0.790 20 0.001

No Feedback 0.785 20 0.001

15 Control 0.916 20 0.082

Feedback 0.753 20 0.000

No Feedback 0.829 20 0.002

16 Control 0.849 20 0.005

Feedback 0.723 20 0.000

No Feedback 0.742 20 0.000

17 Control 0.877 20 0.015

Feedback 0.882 20 0.019

No Feedback 0.894 20 0.032
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18 Control 0.858 20 0.007

Feedback 0.874 20 0.014

No Feedback 0.908 20 0.048

19 Control 0.934 20 0.048

Feedback 0.876 20 0.015

No Feedback 0.881 20 0.018

20 Control 0.809 20 0.001

Feedback 0.879 20 0.017

No Feedback 0.886 20 0.023

21 Control 0.875 20 0.015

Feedback 0.839 20 0.004

No Feedback 0.898 20 0.037

22 Control 0.816 20 0.002

Feedback 0.845 20 0.004

No Feedback 0.890 20 0.027

23 Control 0.878 20 0.017

Feedback 0.796 20 0.001

No Feedback 0.881 20 0.019

*. Related questions may be found in Table A.1

Table C.9: Results of Friedman test of significance for differences between
treatment periods, for eating awareness questions

Awareness Questions: Significance
Question* Chi-Squared sig
1 3.652 0.161
2 3.040 0.219
3 4.955 0.084
4 6.837 0.033
5 2.351 0.309
6 0.146 0.929
7 3.950 0.139
8 1.800 0.407
9 1.500 0.472
10 0.150 0.928
11 2.286 0.319
12 0.828 0.661
13 15.600 0.000
14 11.444 0.003
15 14.182 0.001
16 26.339 0.000
17 3.000 0.223
18 0.167 0.920
19 0.122 0.941
20 0.500 0.779
21 1.018 0.601
22 0.824 0.662
23 0.129 0.938
*. Related questions may be found in Table A.1
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Table C.10: Results of Wilcoxon Signed-Rank test for pairwise differences be-

tween treatment periods, for questions of awareness

Awareness Questions: Pairwise Comparisona

Question* Treatment Z Sig. (2-tailed)

1
Control

NoFeedback -1.198b 0.255

Feedback -1.964b 0.070

NoFeedback Feedback -.363b 0.746

2
Control

NoFeedback -1.255b 0.285

Feedback -.225c 0.960

NoFeedback Feedback -1.146c 0.277

3
Control

NoFeedback -1.854b 0.072

Feedback -2.356b 0.023

NoFeedback Feedback -.302b 1.000

4
Control

NoFeedback -1.461b 0.195

Feedback -2.053b 0.047

NoFeedback Feedback -1.311b 0.258

5
Control

NoFeedback -.677b 0.553

Feedback -.868b 0.438

NoFeedback Feedback -.550b 0.620

6
Control

NoFeedback -.060c 1.000

Feedback -.364c 0.811

NoFeedback Feedback -.061c 1.000

7
Control

NoFeedback -.513c 0.789

Feedback -1.270c 0.237

NoFeedback Feedback -1.732c 0.148

8
Control

NoFeedback -.214b 0.852

Feedback -.676c 0.590

NoFeedback Feedback -.777c 0.512

9
Control

NoFeedback -.292b 0.826

Feedback -.936c 0.353

NoFeedback Feedback -.777c 0.502

10
Control

NoFeedback -.811c 0.531

Feedback -.312b 0.836

NoFeedback Feedback -.984b 0.379

11
Control

NoFeedback -1.725b 0.125

Feedback -.794b 0.410

NoFeedback Feedback -.559c 0.616

12
Control

NoFeedback -.333b 1.000

Feedback -1.382b 0.250



Appendix C. Chewing Rate Study Results Analysis 238

NoFeedback Feedback -.905b 0.563

13
Control

NoFeedback -3.346c 0.000

Feedback -2.018c 0.044

NoFeedback Feedback -1.308b 0.254

14
Control

Feedback -2.405c 0.013

NoFeedback -2.725c 0.007

NoFeedback Feedback -.045c 0.995

15
Control

NoFeedback -2.206c 0.034

Feedback -2.789c 0.004

NoFeedback Feedback -1.222c 0.292

16
Control

NoFeedback -3.566c 0.000

Feedback -3.559c 0.000

NoFeedback Feedback -1.265c 0.180

17
Control

NoFeedback -.710c 0.531

Feedback -1.160c 0.344

NoFeedback Feedback -.497c 0.633

18
Control

NoFeedback -.726b 0.502

Feedback -.465b 0.745

NoFeedback Feedback -.241c 0.914

19
Control

NoFeedback -.539b 0.631

Feedback -.640b 0.619

NoFeedback Feedback -.104b 0.941

20
Control

NoFeedback -1.038b 0.336

Feedback -1.412b 0.166

NoFeedback Feedback .000d 1.000

21
Control

NoFeedback -.546b 0.597

Feedback -.882b 0.489

NoFeedback Feedback -.121b 0.938

22
Control

NoFeedback -1.127b 0.255

Feedback -1.656b 0.100

NoFeedback Feedback -.620b 0.584

23
Control

NoFeedback -.144c 0.896

Feedback -.233b 0.868

NoFeedback Feedback -.540b 0.642

*. Related Questions can be found in Table A.1

a. Wilcoxon Signed Ranks Test

b. Based on positive ranks.

c. Based on negative ranks.

d. The sum of negative ranks equals the sum of positive ranks.



Bibliography

[1] Yongkuk Lee et al. “Soft Electronics Enabled Ergonomic Human-Computer Inter-

action for Swallowing Training”. In: Scientific Reports 7 (Apr. 2017), p. 46697.

[2] B. Nicholls et al. “Swallowing Detection for Game Control: Using Skin-like Elec-

tronics to Support People with Dysphagia”. In: 2017 IEEE International Confer-

ence on Pervasive Computing and Communications Workshops (PerCom Work-

shops). Mar. 2017, pp. 413–418. doi: 10.1109/PERCOMW.2017.7917598.

[3] D.S. Wilks. “Chapter 9 - Time Series”. In: Statistical Methods in the Atmospheric

Sciences. Ed. by Daniel S. Wilks. Vol. 100. International Geophysics. Academic

Press, 2011, pp. 395–456. doi: https://doi.org/10.1016/B978-0-12-385022-

5.00009-9.

[4] Enwenode Onajite. “Chapter 8 - Understanding Sample Data”. In: Seismic Data

Analysis Techniques in Hydrocarbon Exploration. Ed. by Enwenode Onajite. Ox-

ford: Elsevier, 2014, pp. 105–115. isbn: 978-0-12-420023-4. doi: https://doi.org/

10.1016/B978-0-12-420023-4.00008-3.

[5] Jordan R. Green et al. “Development of Chewing in Children From 12 to 48 Months:

Longitudinal Study of EMG Patterns”. In: Journal of Neurophysiology 77.5 (1997).

PMID: 9163386, pp. 2704–2716. doi: 10.1152/jn.1997.77.5.2704.

[6] K. Kohyama, L. Mioche, and P. Bourdio3. “Influence of age and dental status

on chewing behaviour studied by EMG recordings during consumption of various

food samples”. In: Gerodontology 20.1 (2003), pp. 15–23. doi: 10.1111/j.1741-

2358.2003.00015.x.
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