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THE UNIQUENESS OF
PLETHYSTIC FACTORISATION

CHRIS BOWMAN AND ROWENA PAGET

Abstract. We prove that the plethysm product of two Schur
functions can be factorised uniquely (modulo some trivial cases)
and classify homogeneous and indecomposable plethysm products.

Introduction

Let sλ and sµ denote the Schur functions labelled by the partitions
λ and µ. There are three ways of “multiplying” this pair of functions
together in order to obtain a new symmetric function; these are the
Littlewood–Richardson, Kronecker, and plethysm products. The pri-
mary purpose of this paper is to address the most fundamental question
one can ask of such a product: “does it factorise uniquely?”. For the
Littlewood–Richardson product, this question was answered by Rajan
[Raj04]. We solve this question for the most difficult and mysterious of
these products, the plethysm product (which we denote ◦) as follows.

Theorem A. Let µ, ν, π, ρ be arbitrary partitions. If sν ◦ sµ = sρ ◦ sπ
then either ν = ρ and µ = π; or we are in one of five exceptional cases,

s(2,12) ◦ s(1) = s(12) ◦ s(12), s(3,1) ◦ s(1) = s(12) ◦ s(2),
s(2,12) ◦ s(2) = s(12) ◦ s(3,1), s(2,12) ◦ s(12) = s(12) ◦ s(2,12),
sν ◦ s(1) = s(1) ◦ sν .

In general, the decomposition of a plethysm product will have very,
very many constituents. We ask: “when is the plethysm product of
two Schur functions indecomposable?”. We prove that in fact such
a product is always decomposable, and even inhomogeneous, except
for some obvious exceptions. The analogous result for the Kronecker
product was obtained by Bessenrodt and Kleshchev [BK99].

Theorem B. Let µ, ν be partitions. The product sν◦sµ is decomposable
and inhomogeneous except in the following exceptional cases:

s(12) ◦ s(12) = s(2,12), s(12) ◦ s(2) = s(3,1), sν ◦ s(1) = sν = s(1) ◦ sν .

2000 Mathematics Subject Classification: 05e05, 20c30
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2 CHRIS BOWMAN AND ROWENA PAGET

Understanding and decomposing the Kronecker and plethystic prod-
ucts of pairs of Schur functions was identified by Richard Stanley as
two of the most important open problems in algebraic combinatorics
[Sta00, Problems 9 & 10]. Almost nothing is known about general
constituents of plethysm products; however the maximal terms in the
dominance ordering are now well-understood [PW]. Our proof of The-
orems A and B proceeds by careful analysis of these maximal terms.

Outside of combinatorics, plethysm products arise naturally in the
representation theory of symmetric and general linear groups. In quan-
tum information theory, the positivity of constituents in a plethysm
product of two Schur functions is equivalent to the existence of quan-
tum states with certain spectra, margins, and occupation numbers
[AK08, BCI11]. Decomposing Kronecker and plethystic products of
Schur functions is the central plank of Geometric Complexity Theory,
an approach that seeks to settle the P versus NP problem [MS01]; this
approach was recently shown to require not only knowledge of the pos-
itivity but also precise information on the actual multiplicities of the
constituents of the products sν ◦ sµ [BIP19].

Acknowledgements. We would like to thank Cedric Lecouvey for
bringing to our attention the question of unique factorisability of prod-
ucts of Schur functions and in particular for introducing us to Rajan’s
result for Littlewood–Richardson products.

1. Partitions, symmetric functions
and maximal terms in plethysm

We define a composition λ � n to be a finite sequence of non-negative
integers (λ1, λ2, . . .) whose sum, |λ| = λ1 + λ2 + . . . , equals n. If the
sequence (λ1, λ2, . . .) is weakly decreasing, we say that λ is a partition
and write λ ` n. Given λ a partition of n, the Young diagram is defined
to be the configuration of nodes

[λ] = {(r, c) | 1 6 c 6 λr}.

We say that a partition is linear if it consists only of one row, or one
column. The conjugate partition, λT , is the partition obtained by
interchanging the rows and columns of λ. The number of non-zero
parts of a partition, λ, is called its length, `(λ); the size of the largest
part is called the width, w(λ); the sum of all the parts of λ is called its
size.

Given two partitions λ and µ, we let λ + µ and λ t µ denote the
partitions obtained by adding the partition horizontally and vertically
respectively. In more detail,

λ+ µ = (λ1 + µ1, λ2 + µ2, λ3 + µ3, . . . )
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and λ t µ is the partition whose multiset of parts is the disjoint union
of the multisets of parts of λ and µ. We have that

λ t µ = (λT + µT )T .

Finally we remark that, in this paper, the partition λ t µ is usually
equal to

(λ1, λ2, . . . , λ`(λ), µ1, µ2, . . . , µ`(µ)).

In other words, we often do not need to reorder the multisets of parts
— this is simply because λ`(λ) ≥ µ1 in most cases.

We now recall the dominance ordering on partitions. Let λ, µ be
partitions. We write λ Q µ if∑

16i6k

λi >
∑
16i6k

µi for all k > 1.

If λ Q µ and λ 6= µ we write λ�µ. The dominance ordering is a partial
ordering on the set of partitions of a given size. This partial order can
be refined into a total ordering as follows: we write λ � µ if

λk > µk for some k > 1 and λi = µi for all 1 6 i 6 k − 1.

We refer to� as the lexicographic ordering. We now define the transpose-
lexicographic ordering as follows:

λ �T µ if and only if λT � µT .

We emphasise that this total ordering is not simply the opposite order-
ing to the lexicographic ordering; minimality with respect to � is not
equivalent to maximality with respect to �T .

Let λ be a partition of n. A Young tableau of shape λ may be defined
as a map t : [λ] → N. Recall that the tableau t is semistandard if
t(r, c − 1) 6 t(r, c) and t(r − 1, c) < t(r, c) for all (r, c) ∈ [λ]. We let
tk = |{(r, c) ∈ [λ] | t(r, c) = k}| for k ∈ N. We refer to the composition
α = (t1, t2, t3, . . . ) as the weight of the tableau t. We denote the set
of all tableaux of shape λ by SStdN(λ), and the subset of those having
weight α by SStdN(λ, α). The Schur function sλ, for λ a partition of n,
may be defined as follows:

sλ =
∑
α�n

|SStdN(λ, α)|xα where xα = xα1
1 x

α2
2 x

α3
3 . . . .

The plethysm product of two symmetric functions is defined in [Sta99,
Chapter 7, A2.6] or [Mac15, Chapter I.8]. The plethysm product of two
Schur functions is again a symmetric function and so can be rewritten
as a linear combination of Schur functions:

sν ◦ sµ =
∑
α

p(ν, µ, α)sα
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such that p(ν, µ, α) > 0. We say that the product is homogeneous if
there is precisely one partition, α, such that p(ν, µ, α) > 0; we say that
the product is indecomposable if, in addition, p(ν, µ, α) = 1.

1.1. Uniqueness of representation theoretic products. Let λ be
a partition of r into at most d parts. The simple GLd(C)-modules
are given by ∇λ(Cd) where ∇λ is the associated Schur functor for λ;
through Schur–Weyl duality these correspond to the simple modules
S(λ) for the symmetric group Sr. The formal character of the simple
GLd(C)-module, ∇λ(Cd), is given by the Schur function sλ.

The usual multiplication of two symmetric functions is called the
outer/Littlewood product. The outer product of two Schur functions is
again a symmetric function and so can be rewritten as a linear combi-
nation of Schur functions: for ν ` n and µ ` m,

sν × sµ =
∑

α`n+m

c(ν, µ, α)sα (1.1)

such that c(ν, µ, α) > 0; these coefficients are known as the Littlewood–
Richardson coefficients. The outer product is the formal character of the
tensor product of simple modules for the general linear group GLd(C):

∇ν(Cd)⊗∇µ(Cd) ∼=
⊕

α`n+m

c(ν, µ, α)∇α(Cd) (1.2)

for d suitably large. Through Schur–Weyl duality this corresponds to
the module

ind
Sn+m

Sn×Sm
(S(ν)� S(µ)) ∼=

⊕
α`n+m

c(ν, µ, α)S(α) (1.3)

obtained from inducing a simple module, S(ν) � S(µ), from the sub-
group Sn×Sm up to Sn+m. In [Raj04], it is proven that the symmet-
ric function/tensor product/induced module on the right hand sides
of equation (1.1) to (1.3) uniquely determines the left hand sides of
equation (1.1) to (1.3). On the other hand, the plethystic product

sν ◦ sµ =
∑
α`mn

p(ν, µ, α)sα (1.4)

is the formal character of the GLd(C)-module

∇ν(∇µ(Cd)) ∼=
⊕
α`mn

p(ν, µ, α)∇α(Cd) (1.5)

again for d suitably large. Through Schur–Weyl duality this corre-
sponds to the module

indSmn
SmoSn

(S(µ)� S(ν)) ∼=
⊕
α`mn

p(ν, µ, α)S(α) (1.6)

obtained from inducing a simple module, S(µ) � S(ν) (for notation
see [PW]), from the wreath product subgroup Sm o Sn up to Smn.
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Our Theorem A provides the analogous unique factorisation result (to
that of Rajan [Raj04]) for equation (1.4) to (1.6) for arbitrary m and n,
provided d is sufficiently large in equation (1.5). While the Littlewood–
Richardson rule (and its generalisations) gives complete information
about the outer products in equation (1.1) to (1.3), no such algorithm
exists for the plethystic products in equation (1.4) to (1.6). In the
absence of such detailed knowledge, it is perhaps surprising that we
are able to prove the unique factorisability of plethysm.

Our paper is founded solely on the results of [PW, PW16]. While
the techniques of [PW, PW16] rely heavily on the interpretation of
plethysm in equation (1.5), we will not require any explicit representa-
tion theoretic input in our calculations. Therefore for the remainder of
the paper, we will only use the (simpler) symmetric functions notation
and not make reference to the inherent representation theory behind
our proofs.

1.2. Maximal terms in plethysm products. We recall the role con-
jugation – often called the ω involution – plays in plethysm (see, for
example, [Mac15, Ex. 1, Chapter I.8]). For µ ` m, ν ` n, and α ` mn
we have that

p(ν, µ, α) =

{
p(ν, µT , αT ) if m is even

p(νT , µT , αT ) if m is odd.
(1.7)

Throughout this paper we shall let µ, ν, π, ρ be partitions of m,n, p and
q respectively. In order to keep track of the effect of this conjugation
when comparing products sν ◦ sµ and sρ ◦ sπ, we set

νM =

{
ν if m is even

νT if m is odd
ρP =

{
ρ if p is even

ρT if p is odd

Given a total ordering, >, on partitions we let

max>(sν ◦ sµ)

denote the unique partition, λ, such that p(ν, µ, λ) 6= 0 and p(ν, µ, α) =
0 for all α > λ. We shall use this with both the lexicographic � and
transpose-lexicographic �T orderings . By equation (1.7) we have that

max�T
(sν ◦ sµ) = (max�(sνM ◦ sµT ))T .

The following theorems will be incredibly important in our argu-
ments.

Theorem 1.1 ([PW, Corollary 9.1] and [Iij]). Let µ, ν be partitions
of m and n respectively. The unique maximal terms of sν ◦ sµ in the
lexicographic and transpose lexicographic ordering are as follows:

max�(sν ◦ sµ) = (nµ1, nµ2, . . . , nµ`(µ)−1, nµ`(µ) − n+ ν1, ν2, . . . , ν`(ν)),

max�T
(sν◦sµ) = (nµT1 , nµ

T
2 , . . . , nµ

T
µ1−1, nµ

T
µ1
−n+νM1 , ν

M
2 , . . . , ν

M
`(νM )))

T .
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nµ1

nµ2

nµ`−1

ν1

ν>1

nµ` − n

Figure 1. An example of a partition max�(sν ◦ sµ) for
µ ` m and ν ` n with `(µ) = `.

Moreover, we have that

p(ν, µ,max�(sν ◦ sµ)) = 1 = p(ν, µ,max�T
(sν ◦ sµ)).

Example 1.2. When µ = (m), Theorem 1.3 shows that

max�(sν ◦ s(m)) = (nm−n) + ν, max�T
(sν ◦ s(m)) = ((nm−1)t νM)T .

n
µ
T1

n
µ
T2

n
µ
Tk
−

1

n
µ
Tk

−
n

ν
M1

ν
M>
1

Figure 2. An example of a partition max�T
(sν ◦sµ) for

µ ` m and ν ` n with w(µ) = k.

Sometimes we shall use the dominance ordering � to compare the
summands of sν ◦ sµ, and then there will, in general, be many (in-
comparable) maximal partitions. To understand these summands, we
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require some further definitions. We place a lexicographic ordering, ≺,
on the set of semistandard Young tableaux as follows. Let S 6= T be
semistandard µ-tableaux, and consider the leftmost column in which
S and T differ. We write S ≺ T if the greatest entry not appearing in
both columns lies in T. Following [dBPW, Definition 1.4], we define a
plethystic tableau of shape µν and weight α to be a map

T : [ν]→ SStdN(µ)

such that the total number of occurrences of k in the tableau entries
of T is αk for each k. We say that such a tableau is semistandard if
T(r, c − 1) � T(r, c) and T(r − 1, c) ≺ T(r, c) for all (r, c) ∈ [ν]. We
denote the set of all plethystic tableaux of shape µν and weight α by
by PStd(µν , α).

1 1

2

1 1

3

1 1

3

1 2

3

1 1

4

1 1

2

1 1

2

1 1

2

1 2

2

1 1

3

Figure 3. Two plethystic semistandard tableaux of

shape (2, 1)(3,2). The former has weight (9, 2, 3, 1) and
the latter has weight (9, 5, 1). The latter is maximal in
the dominance ordering; the former is not.

Theorem 1.3 ([dBPW, Theorem 1.5]). The maximal partitions α in
the dominance order such that sα is a constituent of sν ◦sµ are precisely
the maximal weights of the plethystic semistandard tableaux of shape
µν. Moreover if α is such a maximal partition then p(ν, µ, α) is equal
to |PStd(µν , α)|.

Finally, we recall the one known case in which every term in a
plethystic product is both maximal and minimal in the dominance
ordering. Given α a partition of n with distinct parts, we let 2[α] de-
note the unique partition of 2n whose leading diagonal hook-lengths
are 2α1, . . . , 2α`(α) and whose ith row has length αi+ i for 1 6 i 6 `(α).
(An example follows.) We have the decomposition

s(1n) ◦ s(2) =
∑
α

s2[α], (1.8)

where the sum is over all partitions α of n into distinct parts. This de-
composition is given in [PW16, Corollary 8.6] and [Mac15, I. 8, Exercise
6(d)]. We observe that for n > 2 this product is never homogeneous
(for example α = (n) and α = (n− 1, 1) both label summands).
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Example 1.4. For n = 5 the decomposition obtained is

s(15) ◦ s(2) = s2[(3,2)] + s2[(4,1)] + s2[(5)] = s(42,2) + s(5,3,12) + s(6,14).

We picture these partitions (and the manner in which they are formed)
in Figure 4 below. We remark that

s(15) ◦ s(12) = s(42,2)T + s(5,3,12)T + s(6,14)T = s(32,22) + s(4,22,12) + s(5,15)

by equation (1.7) simply because m = 2 is even.

Figure 4. The partitions 2[(3, 2)], 2[(4, 1)] and 2[(5)]
respectively.

2. Decomposability and homogeneity of plethysm

In this section, we prove Theorem B of the introduction: namely we
classify all decomposable/homogeneous plethystic products of Schur
functions. This also serves to remove the homogeneous products from
consideration in the proof of Theorem A.

Theorem 2.1. Let µ, ν be partitions of m and n, respectively. The
product sν ◦ sµ is decomposable and inhomogeneous except in the fol-
lowing cases:

s(12)◦s(12) = s(2,12), s(12)◦s(2) = s(3,1), sν ◦s(1) = sν , s(1)◦sµ = sµ.

Proof. That the listed products are homogeneous is obvious. We as-
sume that m,n 6= 1 and

max�(sν ◦ sµ) = max�T
(sν ◦ sµ). (2.1)

We shall show that this implies that ν = (12) and µ ` 2. We first
assume that µ is non-linear, that is µ is neither (m) nor (1m). We
set k = `(µ). We draw a horizontal line across the Young diagrams
of max�(sν ◦ sµ) and (max�(sνM ◦ sµT ))T so that the partitions below
each of these lines each have strictly fewer than n nodes in total and
are maximal with respect to this property. For max�(sν ◦ sµ), this line
is drawn between the kth and (k+ 1)th rows (even though the (k+ 1)th

row might be zero). For (max�(sνM ◦sµT ))T , this line is drawn at some

point after the (n(k − 1) + 1)
th

row. Since k < n(k − 1) + 1 for n > 1,
we see that max�(sν ◦ sµ) 6= (max�(sνM ◦ sµT ))T as required.
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It remains to consider the case that µ is linear and we assume (by
conjugating if necessary) that µ = (m). Then, as we saw in Exam-
ple 1.2,

max�(sν◦s(m)) = (mn−n)+ν, (max�(sνM◦s(1m)))
T = ((m− 1)n)+(νM)T .

Therefore row n of max�(sν ◦ s(m)) has length νn which is at most 1,
and row n of (max�(sνM ◦ s(1m)))

T has length at least m− 1. Since we
are considering only m ≥ 2, we conclude that m = 2 and νn = 1, that
is ν = (1n). From the closed formula for the decomposition of s(1n) ◦
s(2) in equation (1.8), and the resulting decomposition of its plethystic
conjugate s(1n) ◦ s(12), we observe that the product is homogeneous if
and only if n = 1, 2. �

Corollary 2.2. If sν ◦ s(1) = sρ ◦ sπ or s(1) ◦ sµ = sρ ◦ sπ then either:
ρ = (12) and π is a partition of 2; or at least one of ρ or π has size 1.

Therefore in the remainder of the paper, we can and will assume that
none of the indexing partitions in our plethystic products are equal to
(1) ` 1.

3. Unique factorisation of plethysm

A quick scan of the diagrams in Figure 2 tells us that the maximal
terms in the product under the lexicographic and transpose-lexicographic
orderings encode a great deal of information concerning the multipli-
cands of the product. We might even think that these maximal terms
are enough to uniquely determine the multiplicands. In fact, this is not
the case (as the following example shows).

Example 3.1. Consider the plethysm products

s(33,2,1) ◦ s(12) and s(2,1) ◦ s(4,14).
Both have the same maximal terms in the lexicographic and transpose-
lexicographic orderings, namely those labelled by (12, 33, 2, 1) and
(15, 32, 2, 1)T . Figures 5 and 6 depict how these two partitions can be
seen to be maximal in the lexicographic and transpose-lexicographic
orderings using Theorem 1.1.

=

Figure 5. Writing (12, 33, 2, 1) as max�(s(33,2,1) ◦ s(12))
and max�(s(2,1) ◦ s(4,14)).
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=

Figure 6. Writing (15, 32, 2, 1) as max�(s(33,2,1) ◦ s(2))
and max�(s(2,1) ◦ s(5,13)).

This puts a scupper on our plans to determine uniqueness solely
using maximal terms in the lexicographic and transpose-lexicographic
orderings. Now, we notice that the plethysm products s(33,2,1) ◦ s(12)
and s(2,1) ◦ s(4,14) can still be distinguished by looking at the maxi-
mal terms for both products in the dominance ordering. For example,
(11, 4, 4, 3, 2) labels a maximal term that appears in s(33,2,1)◦s(12) but it
is not a maximal term in s(2,1) ◦ s(4,14). Similarly, (11, 4, 3, 3, 3) labels a
maximal term in s(2,1) ◦s(4,14), but not a maximal term in s(33,2,1) ◦s(12).

Our method of proof will proceed to distinguish plethysm products
by first using maximal terms in the lexicographic ordering and only
when necessary considering the broader family of terms which are max-
imal in the dominance ordering.

We first consider the case where µ consists of a single row, this serves
as a warm-up to the general case.

Theorem 3.2. Let µ, ν, π, ρ be partitions of m,n, p, q > 1 respectively.
We suppose that µ = (m). If

sν ◦ sµ = sρ ◦ sπ
then either ν = ρ and µ = π or we are in the exceptional case

s(2,12) ◦ s(2) = s(12) ◦ s(3,1).

Proof. From the set-up, we know mn = pq. We set `(π) = c + 1 for
some c > 0. By assumption, we have that

max�(sν ◦ s(m)) = max�(sρ ◦ sπ) (3.1)

max�(sνM ◦ s(1m)) = max�(sρP ◦ sπT ). (3.2)

As a warm-up, we first consider the case where π is linear. If µ = (m)
and π = (p) then (see Example 1.2) equation (3.2) says that (nm−1) t
(νM) = (qp−1) t (ρP ). By comparing widths we deduce that q = n.
This implies m = p and then ν = ρ. Now, suppose that µ = (m) and
π = (1p). Then max�(sν ◦ s(m)) = (nm− n) + ν which, as m > 2 and
ν has size n, has final column of length 1. For equation (3.1) to hold,
the same has to be true of max�(sρ ◦ s(1p)) = (qp−1) t ρ; this implies
p = 2. Similarly, comparing the final columns of max�(sνM ◦ s(1m)) =
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(nm−1) t νM and max�(sρP ◦ s(p)) = (qp − q) + ρP also shows that
m = 2. Hence n = q and we obtain a contradiction from comparing
the widths of (n) t νM and (q) + ρM .

We now assume that π is non-linear so π1 > 1 and c > 0. By
equation (3.2),

(nm−1) t νM = (qπT1 , qπ
T
2 , . . . , qπ

T
π1−1, qπ

T
π1
− q + ρM1 , ρ

M
2 , . . . ). (3.3)

Since m > 2 and π1 > 1, it follows that n = qπT1 = q(c + 1) and,
as mn = pq, p = (1 + c)m. If νM = (n) then the left hand side of
equation (3.3) is (nm). Since q < n, equation (3.3) shows that ρP = (q)
and that π = (mc+1). This implies that max�(sν ◦ s(m)) is a hook
partition whereas max�(sρ ◦ s(mc+1)) has second row of width at least
q(m−1) > 1, a contradiction. Therefore we can assume that νM 6= (n).
Then equation (3.3) implies that the first m−1 rows of πT are all equal
to n/q = c+ 1 and therefore π = ((m− 1)c+1) + π′ for some π′ ` c+ 1.
In particular, π1 − π2 6 c + 1. We now consider equation (3.1): the
difference between the first and second rows of max�(sν ◦ sµ) is

((m− 1)n+ ν1)− ν2
whereas the difference between the first and second rows of max�(sρ ◦
sπ) is less than q × (π1 − π2 + 1) 6 n + q. Therefore the necessary
inequality

(m− 1)n+ ν1 − ν2 < n+ q < 2n

implies that m = 2. For the remainder of the proof, µ = (2) and
π = (1c+1) + π′ ` 2(c+ 1), and therefore ρP = ρ and νM = ν.

We first consider the case c > 1. Here we have that `(π) = c+ 1 > 2
and so the difference between the first and second rows of max�(sρ◦sπ)
is q × (π1 − π2) = q(π′1 − π′2) ≤ q(1 + c) = n. On the other hand, for
max�(sν ◦ s(m)) = (n) + ν, the difference is at least n. For equality,
we require π′ = (c + 1), that is π = (c + 2, 1c). Then equation (3.1)
becomes (n) + ν = (q(c+ 1) + q, qc−1) t ρ and we find ν = (qc) t ρ.

We now employ the dominance ordering to examine the case

π = (c+ 2, 1c) ν = (qc) t ρ.
A necessary condition for PStd((c + 2, 1c)ρ, α) 6= ∅ is that α1 + α2 6
q(c+ 3). To see this, simply note that if S ∈ PStd((c+ 2, 1c)ρ, α), then

S : [ρ]→ SStdN((c+ 2, 1c))

and the maximum number of entries equal to 1 or 2 in a semistandard
Young tableaux of shape (c + 2, 1c) is equal to (c + 2) + 1 = c + 3
(the sum of the lengths of the first and second rows of (c + 2, 1c)).
Thus p(ρ, (c + 2, 1c), α) = 0 for any α such that α1 + α2 > q(c + 3)
by Theorem 1.3. We shall now construct a plethystic tableau S ∈
PStd((2)(q

c)tρ, β) with β1 + β2 > q(c + 3). This tableau will either be
of maximal possible weight or there exists another plethystic tableau
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of the same shape but of weight β′ � β; in either case, for a partition
for γ ∈ {β, β′}, 0 6= p((qc) t ρ, (2), γ) whereas p(ρ, (c + 2, 1c), γ) = 0
(by Theorem 1.3), providing us with the necessary contradiction. Let
T ∈ PStd((2)(q

c)tρ, β) be the plethystic tableau such that

T(a, b) =

{
2 2 if (a, b) is the lowest removable node of (qc) t ρ
1 a otherwise.

This tableau is semistandard and has weight β with β1 = q(c+ 2)− 1
and β2 = q + 2, and so β1 + β2 = q(c+ 3) + 1 as required.

Finally, we consider the case c = 1. Here µ = (2) and π ` 2(c+1) = 4
is either (3, 1) or (2, 2). In the (22) case, comparing the widths of the
partition on the left and right of equation (3.1) we see that ν1 = 0, a
contradiction. In the (3, 1) case, comparison of maximal terms again
reveals that ν = (q) t ρ. Now

sρ ◦ s(3,1) = sρ ◦ (s(12) ◦ s(2)) = (sρ ◦ s(12)) ◦ s(2).
We observe that max�(sρ◦s(12)) = (q)tρ, but sρ◦s(12) is decomposable
unless ρ = (12) by Theorem 2.1. For ρ 6= (12), we deduce that s(q)tρ◦s(2)
is properly contained in sρ ◦ s(3,1). Thus we have q = 2, ρ = (12) and
ν = (2, 12), as required. �

We may conjugate (applying equation (1.7)) to complete the case
where µ is linear.

Corollary 3.3. Let µ, ν, π, ρ be partitions of m,n, p, q > 1 respectively.
We suppose that µ = (1m). If

sν ◦ sµ = sρ ◦ sπ
then either ν = ρ and µ = π or we are in the exceptional case

s(2,12) ◦ s(12) = s(12) ◦ s(2,12).

Let µ, ν, π, ρ be arbitrary partitions of m,n, p, q > 1 respectively. We
now consider what the condition

max�(sν ◦ sµ) = max�(sρ ◦ sπ) (3.4)

tells us about this quadruple of partitions. We first suppose that `(µ) =
`(π) = k. This implies that `(ν) = `(ρ) = `, say. Furthermore,

(nµ1, nµ2, . . . , nµk−1, nµk − n+ ν1, ν2, . . . , ν`)

=(qπ1, qπ2, . . . , qπk−1, qπk − q + ρ1, ρ2, . . . , ρ`).
(3.5)

We set d = gcd(n, q), e = gcd(m, p) and set n = n′d, q = q′d, m =
m′e, p = p′e. Since mn = pq, we note that m′n′ed = p′q′ed and so
m′n′ = p′q′. Since m′ and p′ are coprime, as are n′ and q′, it follows
that m′ = q′ and p′ = n′. Thus

m = q′e n = n′d q = q′d p = n′e.
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From equation (3.5), we observe that nµi = πiq implies n′µi = q′πi,
and so we can set αi := µi

q′
= πi

n′
∈ N for all 1 6 i 6 k − 1. Now,

µ ` m = q′e and so the final row length satisfies

µk = q′e−
k−1∑
i=1

q′αi = q′

(
e−

k−1∑
i=1

αi

)
︸ ︷︷ ︸

αk

.

We have a partition (α1, . . . , αk) ` e with q′α = µ, and, in a similar
fashion, we deduce that n′α = π. Without loss of generality, we now
assume that n > q. We plug in our equalities π = n′α and µ = q′α
back into equation (3.5) and to show that

ρi = νi for i ≥ 2 and ν1 = (n− q) + ρ1.

We immediately obtain the following corollary.

Corollary 3.4. Let µ, ν, π, ρ be partitions of m,n, p, q > 1, respectively.
We suppose that `(π) = `(µ). If

sν ◦ sµ = sρ ◦ sπ
then ν = ρ and µ = π.

Proof. By the discussion above, we know that we are dealing with a
quadruple

µ = q′α, ν = ρ+ (n− q), π = n′α, ρ.

Comparing the widths of the partitions on the left and right of

max�(sνM ◦ sµT ) = max�(sρP ◦ sπT )

we deduce that `(µ)n = `(π)q. Thus n = q, ν = ρ, q′ = n′ and thus
µ = π, as required. �

We now consider the case where the lengths of the partitions µ and π
(and hence ν and ρ) differ. We suppose (without loss of generality) that
`(µ) < `(π). We set `(µ) = k and `(π) = k + c for some c > 1. Thus
`(ρ) + c = `(ν) = `, say. Observe that max�(sν ◦ sµ) = max�(sρ ◦ sπ)
if and only if the partitions

(nµ1 . . . nµk−1 nµk − n+ ν1 ν2 . . . νc νc+1 νc+2 . . . ν`)
(qπ1 . . . qπk−1 qπk qπk+1 . . . qπk+c−1 qπk+c − q + ρ1 ρ2 . . . ρ`−c).

coincide. We deduce that

µ = q′(α1, . . . , αk), π = n′(α1, . . . , αk−1) t (πk, . . . , πk+c) (3.6)

for α ` e, (πk, . . . , πk+c) ` n′αk and

ν = (qπk − n(q′αk − 1)) t q(πk+1, . . . , πk+c−1)

t (q(πk+c − 1) + ρ1) t (ρ2, ρ3, . . . ρ`−c)
(3.7)

and, in order for ν to be a partition, we need

qπk − n(q′αk − 1) > qπk+1
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which, rearranging, gives

q(πk − πk+1) > n(µk − 1).

We are now ready to complete our proof of Theorem A.

Theorem 3.5. Let µ, ν, π, ρ be partitions of m,n, p, q > 1, respectively.
We suppose that both µ and π are non-linear and `(π) > `(µ). If

sν ◦ sµ = sρ ◦ sπ
then ν = ρ and µ = π.

Proof. We set `(µ) = k > 2 and `(π) = k+c for c > 1. We first see what
can be deduced from max�(sν ◦ sµ) = max�(sρ ◦ sπ). Equations (3.6)
and (3.7) hold. From these we deduce that |ρ| < |ν| and so q = q′d <
n′d = n, which implies q′ < n′. From equation (3.6) this implies that
µ1 = q′α1 < n′α1 = π1; in other words `(µT ) < `(πT ).

We now see what can be deduced from max�(sνM ◦sµT ) = max�(sρP ◦
sπT ). We have already concluded that `(µT ) < `(πT ). Therefore ap-
plying equation (3.6) (but with the partitions µT , νM , πT and ρP ) we
deduce that

µT = q′(β1, . . . , βµ1) πT = n′(β1, . . . , βµ1−1) t (πTµ1 , . . . , π
T
π1

) (3.8)

for some β ` e and (πTµ1 , . . . , π
T
π1

) ` n′βµ1 .
From equation (3.6) and (3.8) we deduce that µ can be built from

boxes of size q′ × q′. In other words,

µ = q′(γ1, γ1, . . . , γ1︸ ︷︷ ︸
q′

, γ2, γ2, . . . , γ2︸ ︷︷ ︸
q′

, . . . ).

for some γ ` m/q′2. Since γ might have repeated parts, we write γ in
the form

γ = (ab11 , a
b2
2 , . . . , a

bx
x )

where a1 > a2 > · · · > ax, so

γT = ((b1 + · · ·+ bx)
ax , (b1 + · · ·+ bx−1)

ax−1−ax , . . . , b1
a1−a2).

Now, equation (3.6) reveals that

π = (n′a1, . . . , n
′a1︸ ︷︷ ︸

b1q′

, n′a2, . . . , n
′a2︸ ︷︷ ︸

b2q′

, . . . , n′ax, . . . , n
′ax︸ ︷︷ ︸

bxq′−1

, πk, . . . , πk+c)

(3.9)
where (πk, . . . , πk+c) ` n′ax and, from equation (3.8),

πT =((n′(b1 + · · ·+ bx))
q′ax , (n′(b1 + · · ·+ bx−1))

q′(ax−ax−1), . . . ,

(n′b1)
q′(a1−a2)−1) t (πTµ1 , . . . , π

T
π1

)
(3.10)
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where (πTµ1 , . . . , π
T
π1

) ` n′b1. By looking at the first row of πT we deduce
that, provided x 6= 1, the last part of π is q′ax and that it appears with
multiplicity n′bx. This implies that

(πk, . . . , πk+c) = (. . . , q′ax, . . . q
′ax︸ ︷︷ ︸

n′bx

) ` n′ax.

But the sum over these final n′bx rows is q′aa × n′bx which implies
q′ = 1 and bx = 1 and that

(πk, . . . , πk+c) = (ax, . . . , ax︸ ︷︷ ︸
n′

) ` n′ax.

Now we input this into equation (3.9) to deduce that

`(π) = b1 + · · ·+ bx − 1 + n′.

On the other hand by equation (3.10) we know that

`(π) = πT1 = n′(b1 + · · ·+ bx).

Therefore

n′(b1 + · · ·+ bx − 1) = b1 + b2 + · · ·+ bx − 1

and thus n′ = 1 or b1 + b2 + · · · + bx = 1. If n′ = 1 then n = q,
contrary to our earlier observation that q < n. If b1 + b2 + · · ·+ bx = 1,
then `(γ) = `(α) = `(µ) = 1, contrary to our assumption that µ is
non-linear.

Finally, it remains to consider the x = 1 case. This is the case in
which γ = (ab) is a rectangle. Here we have that µ = q′(aq

′b), µT =
q′(bq

′a) and therefore both

π = ((n′a)q
′b−1) t (πk, . . . , πk+c) for (πk, . . . , πk+c) ` n′a (3.11)

π = ((q′a− 1)
n′b

) + (πTµ1 , . . . , π
T
π1

)T for (πTµ1 , . . . , π
T
π1

) ` n′b. (3.12)

Now, recall that q′ < n′; and so

q′b− 1 < q′b < n′b

and so the rectangle in equation (3.11) is at least 2 rows shorter than
that in equation (3.12). This implies that one such rectangle has zero
area: q′ = 1 and either a or b equals 1, and so µ is linear, a contradic-
tion. �

We have now classified all possible equalities between products sν ◦
sµ = sρ◦sπ where neither, one, or both of π and µ are linear partitions.
This completes the proof of Theorem A.
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