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Abstract: The thrombopoietin receptor agonist eltrombopag was successfully used against human
cytomegalovirus (HCMV)-associated thrombocytopenia refractory to immunomodulatory and
antiviral drugs. These effects were ascribed to the effects of eltrombopag on megakaryocytes.
Here, we tested whether eltrombopag may also exert direct antiviral effects. Therapeutic eltrombopag
concentrations inhibited HCMV replication in human fibroblasts and adult mesenchymal stem
cells infected with six different virus strains and drug-resistant clinical isolates. Eltrombopag also
synergistically increased the anti-HCMV activity of the mainstay drug ganciclovir. Time-of-addition
experiments suggested that eltrombopag interfered with HCMV replication after virus entry.
Eltrombopag was effective in thrombopoietin receptor-negative cells, and the addition of Fe3+

prevented the anti-HCMV effects, indicating that it inhibits HCMV replication via iron chelation.
This may be of particular interest for the treatment of cytopenias after hematopoietic stem cell
transplantation, as HCMV reactivation is a major reason for transplantation failure. Since therapeutic
eltrombopag concentrations are effective against drug-resistant viruses, and synergistically increase
the effects of ganciclovir, eltrombopag is also a drug-repurposing candidate for the treatment of
therapy-refractory HCMV disease.

Keywords: human cytomegalovirus; antiviral therapy; eltrombopag; thrombopietin receptor agonist;
drug resistance; iron chelation

1. Introduction

Eltrombopag is a thrombopoietin receptor (also known as c-Mpl or MPL) agonist that is used for the
treatment of thrombocytopenia, including hepatitis C virus-associated thrombocytopenia [1–3]. Its use
has also been suggested for the treatment of cytopenias after hematopoietic stem cell transplantations
and case reports support its safety and efficacy [4–9].
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Human cytomegalovirus (HCMV) reactivation and HCMV-associated disease are leading
reasons for the failure of hematopoietic stem cell transplantations [10–12]. Anti-HCMV drugs,
including ganciclovir, cidofovir, and foscarnet, are available, but their use is associated with severe
side effects [13]. In particular, the use of ganciclovir (and its prodrug valganciclovir), the mainstay
treatment for cytomegalovirus disease, is associated with severe hematological side effects, including
thrombocytopenia [14–16].

A case report described the use of eltrombopag in an immunocompetent patient who suffered from
human cytomegalovirus (HCMV)-associated thrombocytopenia [17]. Immunosuppressive treatment
for thrombocytopenia (prednisone, intravenous immunoglobulin, dapsone), in combination with
antiviral therapy (ganciclovir/valganciclovir, HCMV hyperimmune globulin), only resulted in a
temporary platelet response with subsequent relapse. A change to eltrombopag, intended to increase
platelet counts without immunosuppressive therapy, resulted in a durable increase in platelet levels, no
evidence of HCMV viraemia, and the resolution of symptoms [17]. The observed effects were attributed
to eltrombopag overcoming HCMV-induced suppression of platelet production [17]. However, we
hypothesized that direct antiviral effects may also have contributed to the beneficial outcome in the
case report of the patient with HCMV-associated thrombocytopenia [17]. Indeed, we found that
eltrombopag exerts anti-HCMV effects via iron chelation.

2. Materials and Methods

2.1. Drugs

Eltrombopag (the orally active ethanolamine salt of eltrombopag olamine) was purchased from
Selleck Chemicals (via Absource Diagnostics GmbH, Munich, Germany), deferasirox and ganciclovir
from MedChemExpress (via Hycultec, Beutelsbach, Germany), and cidofovir from Cayman Chemical
(via Biomol GmbH, Hamburg, Germany).

2.2. Cells and Viruses

Primary human foreskin fibroblasts (HFFs) and adipose-derived adult mesenchymal stem cells
(ASCs) were cultivated as previously described [18,19].

The wild-type HCMV strain, Hi91, was isolated from the urine of an AIDS patient with HCMV
retinitis, as described previously [20]. HCMV strains Davis and Towne were received from the
American Type Culture Collection (ATCC) (Manassas, VA, USA). Virus stocks were prepared in HFFs
maintained in minimal essential medium (MEM), supplemented with 4% fetal calf serum (FCS). The
U1, U59, and U75 are patient isolates, which were isolated as previously described [20,21]. Virus stocks
were prepared in HFFs maintained in MEM supplemented with 4% FCS.

Murine cytomegalovirus (Smith strain, catalogue number VR-1399) was obtained from ATCC,
and virus stocks were prepared in NIH/3T3 mouse fibroblasts (ATCC) maintained in MEM
supplemented with 4% FCS.

DNA isolation, amplification, and sequencing were performed as previously described [21], using
established primers [22].

2.3. Virus Infectivity Assay

In 96-well microtiter plates, confluent cultures of HFF cells or ASCs were incubated with HCMV
at the indicated multiplicities of infection (MOIs). After incubation for 1-h, cells were washed with
phosphate-buffered saline (PBS) and incubated in MEM containing 4% FCS and serial dilutions of the
indicated substances.

As described previously [18,23], cells producing HCMV-specific antigens were detected 24 h
post infection by immunoperoxidase staining, using monoclonal antibodies directed against the
UL123-coded 72 kDa immediate early antigen 1 (IEA1) (Mouse Anti CMV IEA, MAB8131, Millipore,
Temecula, CA, USA), and 120 h post infection by immunoperoxidase staining, using monoclonal
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antibodies directed against UL55-encoded late antigen (LA) gB, (kindly provided by K. Radsak,
Institut für Virologie, Marburg, Germany), as previously described. Drug concentrations that reduced
HCMV antigen expression by 50%, inhibitory concentration (IC50), were calculated using Calcusyn
(Biosoft, Cambridge, UK).

Effects of eltrombopag on murine cytomegalovirus were determined by visual scoring of
cytopathogenic effect (CPE) formation (detected 120 h post infection) in MOI 1-infected murine
NIH/3T3 fibroblasts.

2.4. Drug Combination Studies

Drugs were combined at equimolar concentrations or used as single agents. Combined effects
were determined by staining for HCMV LA. Combination indices (CIs) were calculated at different
levels of inhibition (50% inhibition, CI50; 75% inhibition, CI75; 90% inhibition, CI90; 95% inhibition,
CI95) by the method of Chou and Talalay [24], using CalcuSyn software version 1.0 (Biosoft, Cambridge,
United Kingdom). Weighted average CI values (CIwt) were calculated as (CI50 + 2 × CI75 + 3 × CI90

+ 4 × CI95)/10. CIwt values ≤0.7 indicate synergistic effects, CIwt values >0.7 and ≤0.9 moderately
synergistic effects, CIwt values >0.9 and ≤1.2 additive effects, CIwt values >1.2 and ≤1.45 moderately
antagonistic effects, and CIwt values >1.45 antagonistic effects [24].

2.5. Viability Assay

Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) dye reduction assay as described previously [23]. Five thousand cells were seeded per well
in 96-well microtiter plates and incubated with culture medium containing serial dilutions of the
indicated substances. After five days of incubation, MTT (1 mg/mL) was added, and after an
additional 4 h, cells were lysed in a buffer containing 20% (w/v) sodium dodecyl sulfate (SDS) and 50%
N,N-dimethylformamide adjusted to pH 4.5. Absorbance was determined at 570 nm for each well
using a 96-well multiscanner. After subtracting background absorbance, cell viability was expressed
in percent relative to untreated control cells. Drug concentrations that reduced cell viability by 50%
(CC50) were calculated using CalcuSyn (Biosoft, Cambridge, UK). The MTT assay measures metabolic
activity in the mitochondria. To confirm viability results by a second assay, the CellTiter-Glo assay
(Promega, Walldorf, Germany), which measures cellular ATP production, was used according to the
manufacturer’s instructions.

2.6. Virus Yield Assay

The amount of infectious virus was determined by virus yield assay in a single-cycle assay format,
as previously described [23]. Virus titres were expressed as 50% of tissue culture infectious dose
(TCID50/mL), 120 h post infection.

2.7. Immunoblotting

Immunoblotting was performed as previously described [23]. In brief, cells were lysed in a
Triton X-100 sample buffer and proteins separated by SDS-polyacrylamide gel electrophoresis (PAGE).
Proteins were detected using specific antibodies against ß-actin (3598R-100-BV, BioVision via BioCat,
Heidelberg, Germany) or HCMV 45 kDa LA (MBS320051, MyBioSource via Biozol, Echingen, Germany),
and were visualized by enhanced chemiluminescence using a commercially available kit (Thermo
Scientific, Schwerte, Germany).

2.8. Statistics

Values presented are the mean ± S.D. of three independent biological repeats. Comparisons
between two groups were performed using the Student’s t-test, three and more groups were compared
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by ANOVA, followed by the Student–Newman–Keuls test. Data groups were considered significantly
different at p < 0.05.

3. Results

3.1. Eltrombopag Inhibits HCMV Replication in Human Foreskin Fibroblasts by Interference with Late
Processes of the Replication Cycle

Eltrombopag did not affect HCMV Hi91-induced immediate early antigen (IEA) expression
(Figure S1), but inhibited HCMV Hi91-induced LA expression with an IC50 of 415 nM in HFFs
(Figure 1A,B). Eltrombopag concentrations of up to 25 µM did not reduce the viability of proliferating
HFFs by 50%, as determined by MTT assay (Figure 1A). Cell viability determination by CellTiter-Glo
resulted in similar results (HFF viability at 25 µM: 53 ± 4 µM). Hence, the selectivity index, cytotoxicity
concentration (CC50)/IC50, is higher than 60.2 (Figure 1A). Higher MOIs were associated with higher
IC50 values (Figure 1C). At MOI 1, the highest MOI investigated in HFFs, the eltrombopag IC50

was 3844 nM. The observed eltrombopag concentrations are within the range of therapeutic plasma
concentrations, which have been described to exceed 45 µM [25,26].
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Figure 1. Effects of eltrombopag on human cytomegalovirus (HCMV) late antigen (LA) expression
in primary human foreskin fibroblasts (HFFs). (A) Representative dose–response curves showing
the effects of eltrombopag on HCMV LA expression and HFF viability (as determined after 120 h
of incubation). Eltrombopag concentrations that reduce HCMV LA expression by 50% (inhibitory
concentration (IC)50) or 90% (IC90) and cell viability by 50% (cytotoxicity concentration (CC)50) relative
to untreated controls are also provided. Eltrombopag was continuously present from the time of virus
infection. (B) Representative photographs and Western blots demonstrating the effects of eltrombopag
on HCMV LA expression. In (A,B), HFFs were infected with HCMV strain Hi91 (multiplicity of
infection (MOI) 0.02). HCMV LA expression was detected 120 h post infection. (C) Representative
dose–response curves and IC50 values indicating effects of eltrombopag on HCMV LA expression in
HFFs infected with different MOIs of HCMV strain Hi91 as detected 120 h post infection.
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Eltrombopag-induced inhibition of HCMV LA translated into reduced virus replication as
indicated by virus yield assay (Figure 2A). At a concentration of 10 µM, eltrombopag reduced virus
titres by 1.8 × 104-fold and at 500 nM still by 15-fold.
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Figure 2. Effects of eltrombopag on HCMV replication and at different stages of the viral replication
cycle. HFFs were infected with HCMV strain Hi91 (MOI 0.02). HCMV LA expression and virus
titres were detected 120 h post infection. (A) Virus titres in the absence or presence of eltrombopag.
(B) Representative dose–response curves and IC50 values indicating the effects of eltrombopag on
HCMV LA expression after 24 h of pre-treatment, after treatment during the 1-h adsorption period,
after drug addition post infection following the 1-h virus adsorption period, after drug addition 24 h
post infection, and after drug addition 48 h post infection. * p < 0.05

The HCMV replication cycle is divided into three phases characterized by the expression of
immediate early, early, and late viral genes. Immediate early genes are transcribed immediately after
infection and do not depend on synthesis of viral DNA or transcription of proteins. Delayed early
proteins are represented by the viral DNA polymerase, and other viral functions required for viral
DNA synthesis, and some viral structural proteins. Late genes encode mostly structural proteins used
in viral assembly and packaging, and are generally expressed subsequent to delayed early genes [27].

To better define which phases of the viral replication cycle are affected by eltrombopag, the drug
was added at different time points (Figure 2B, Table S1). Pre-incubation and drug addition during
the 1-h virus adsorption period did not, or only modestly, affect virus replication. This shows that
eltrombopag does not primarily interfere with virus binding to host cells and virus internalization,
but needs to be present during virus replication to exert its anti-HCMV effects. Drug addition 1-h or
24 h post infection was sufficient to achieve maximum inhibition of HCMV LA expression (Figure 2B,
Table S1). This, together with the observed lack of inhibition of HCMV immediate early antigen
(IEA) expression, indicates that eltrombopag inhibits the late stages of the HCMV replication cycle
characterized by LA expression. Drug addition 48 h post infection resulted in reduced effects compared
to drug addition 1-h or 24 h post infection (Figure 2B, Table S1).

3.2. Eltrombopag Inhibits HCMV Expression via Iron Chelation

Eltrombopag was developed as a thrombopoietin receptor agonist [1–3]. However, it is unlikely
that eltrombopag inhibits HCMV replication via thrombopoietin receptor activation, because fibroblasts
do not express the thrombopoietin receptor [28]. In agreement, eltrombopag also inhibited murine
cytomegalovirus replication in murine NIH/3T3 fibroblasts (Figure 3A), although eltrombopag does
not target the murine thrombopoietin receptor [29].
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Figure 3. Eltrombopag inhibits HCMV infection by iron depletion. (A) Representative dose–response
curve indicating the effects of eltrombopag on cytopathogenic effect (CPE) formation (detected
120 h post infection), in murine cytomegalovirus (MOI 1)-infected murine, NIH/3T3 fibroblasts,
and eltrombopag concentration that reduces CPE formation by 50% (IC50), relative to untreated
control. The findings indicate that eltrombopag interferes with cytomegalovirus replication by
thrombopoietin-receptor-independent effects, since eltrombopag does not activate the murine
thrombopoietin receptor. The investigated eltrombopag concentrations did not affect NIH/3T3 cell
viability. (B) Representative growth curve indicating the effects of equimolar concentrations of Fe(III)Cl3
on the anti-HCMV effects of eltrombopag, as indicated by HCMV LA expression in HCMV Hi91
(MOI 0.02)-infected human foreskin fibroblasts (HFFs) 120 h post infection. Equimolar Fe(III)Cl3
concentrations circumvent the anti-HCMV effects exerted by eltrombopag.

Eltrombopag is also an iron chelator [2,30,31], and iron chelators have been shown to inhibit
HCMV replication [32–38]. The addition of equimolar Fe3+ concentrations was shown to inhibit
pharmacological action of eltrombopag that are caused via iron chelation [31]. Hence, we investigated
eltrombopag in combination with equimolar Fe(III)Cl3 concentrations to investigate whether iron
chelation is the mechanism by which eltrombopag exerts its anti-HCMV effects (Figure 3B). Equimolar
Fe(III)Cl3 concentrations prevented the anti-HCMV effects of eltrombopag (Figure 3B). This suggests
that iron chelation is the main mechanism of eltrombopag’s anti-HCMV activity. In agreement,
eltrombopag exerted antagonistic effects in combination with the iron chelator deferasirox (Table S2),
which may indicate that both compounds share the same antiviral mechanism.

3.3. Eltrombopag Exerts Synergistic Effects with Ganciclovir

Next, we tested eltrombopag in combination with ganciclovir, the mainstay of anti-HCMV
therapies [13]. The combination of equimolar eltrombopag and ganciclovir concentrations resulted
in synergistic anti-HCMV effects (Figure 4), which is illustrated by a weighted average combination
index (CIWT) of 0.17 ± 0.03, as determined by the method of Chou and Talalay [24]. According to this
method, combined effects are considered to be synergistic at a CIWT of ≤0.7 [24]. The combination of
eltrombopag and foscarnet also displayed synergistic effects (Table S2).
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Figure 4. Antiviral effects of eltrombopag in combination with ganciclovir. (A) Effects of equimolar
drug concentrations on HCMV LA expression in HCMV Hi91 (MOI 0.02) HFFs 120 h post infection.
* p < 0.05 compared to either single treatment; (B) Combination indices (CIs) at different levels of
inhibition and weighted average CI values (CIwt) calculated as (CI50 + 2 × CI75 + 3 × CI90 + 4 ×
CI95)/10 [24]. CIwt values ≤0.7 indicate synergistic effects [24].

3.4. Eltrombopag Is Effective in Different Cell Types and against Different Virus Strains and Isolates Including
Drug-Resistant Ones

Finally, we investigated the effects of eltrombopag against a broader range of laboratory virus
strains and clinical isolates in HFFs, and primary-adipose-derived ASCs, another cell type that supports
HCMV replication [39]. The laboratory HCMV strains included Davis [40] and Towne [41] in addition
to Hi91. The clinical isolates U1, U59, and U75 were isolated from the urine of patients, as previously
described [20,21]. U1 and U59 harbor an A987G mutation in the HCMV DNA polymerase UL54
(Table 1), which is known to confer combined ganciclovir and cidofovir resistance [42,43]. U1 also
displays a C607Y mutation in the HCMV kinase UL97 (Table 1), which is associated with ganciclovir
resistance [44,45]. In agreement, U1 and U59 were characterized by high ganciclovir and cidofovir IC50s
(Table 1), which are typically considered to indicate resistance [46–48]. U75 also displayed resistance to
ganciclovir and cidofovir, although it does not harbor known resistance mutations (data not shown).
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Table 1. Sensitivity of laboratory HCMV strains and patient isolates to ganciclovir and cidofovir as
indicated by HCMV LA expression in human foreskin fibroblasts infected at MOI 0.02 120 h post
infection. Concentrations that reduce LA expression by 50% (IC50) are provided.

IC50 (µM) IC50 (µM)

Virus Strain/Isolate Resistance Mutations Ganciclovir Cidofovir

Hi91 n/a 0.71 ± 0.57 0.31 ± 0.14
Davis n/a 0.72 ± 0.31 0.17 ± 0.02
Towne n/a 0.61 ± 0.12 0.14 ± 0.01

U1 A987G *, C607Y ** 24 ± 10 5.2 ± 1.9
U59 A987G 23 ± 14 1.6 ± 0.5

* mutation in the HCMV DNA polymerase UL54, which confers resistance to ganciclovir and cidofovir [42,43].
** mutation in the HCMV kinase UL97, which is associated with ganciclovir resistance [44,45].

The eltrombopag IC50s ranged from 99 nM (U1 in HFFs) to 4331 nM (Hi91 in ASCs) (Figure 5A,
Table S3). When compared across the two cell types, the different HCMV strains and clinical isolates
displayed similar eltrombopag sensitivity, apart from U1, which appeared to be particularly sensitive
to eltrombopag in HFFs and ASCs (Figure 5A). The average HCMV sensitivity to eltrombopag was
very similar in both cell types.
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Figure 5. Antiviral effects of eltrombopag determined in different cell types infected by different
HCMV strains and clinical isolates. HFFs were infected at an MOI of 0.02 and adipose-derived adult
mesenchymal stem cells (ASCs) at an MOI of 5. HCMV LA expression was determined 120 h post
infection. (A) Eltrombopag concentrations that reduce HCMV LA expression by 50% (IC50). Numerical
values are provided in Table S3. The eltrombopag concentration that reduced ASC viability by 50%
(CC50) was 17,872 ± 1302 nM. (B) Representative growth curve indicating the effects of equimolar
concentrations of Fe(III)Cl3 on the anti-HCMV effects of eltrombopag as indicated by HCMV LA
expression in U1 (MOI 0.02)-infected HFFs 120 h post infection.

To confirm the relevance of iron chelation as mechanism of the anti-HCMV action of eltrombopag
using a clinical virus isolate, U1-infected HFFs were treated with equimolar concentrations
of eltrombopag and Fe(III)Cl3. The presence of equimolar Fe3+ concentrations prevented the
eltrombopag-induced inhibition of HCMV LA expression in U1-infected cells in a comparable fashion
(Figure 5B), as in Hi91-infected cells (Figure 3B).

4. Discussion

Here, we show that the approved thrombopoietin receptor agonist eltrombopag exerts anti-HCMV
effects in various cell types infected with a range of different virus strains and clinical isolates, including
drug-resistant ones. The observed IC50 values ranged from 99 nM to 4331 nM, which is in the range of
therapeutic plasma concentrations that have been reported to exceed 45 µM [25,26]. Eltrombopag also
synergistically increased the activity of the approved anti-HCMV drug ganciclovir.
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Our findings are in agreement with a case report on an immunocompetent patient, who suffered
from HCMV-associated thrombocytopenia and recovered after eltrombopag therapy [17]. This response
had originally been attributed to effects of eltrombopag on platelet production [17]. The possibility that
eltrombopag may exert antiviral affects was not considered. Our current data show that therapeutic
eltrombopag levels interfere with HCMV replication, which may have contributed to the beneficial
clinical outcome. Notably, eltrombopag has also been shown to inhibit the replication of severe fever
with thrombocytopenia syndrome virus, a member of the genus Banyangvirus (Phenuiviridae) [49].

The anti-HCMV effects of eltrombopag are unlikely to be caused by action on the thrombopoietin
receptor, since eltrombopag was effective in cell types that do not express the thrombopoietin
receptor, which is expressed in hematopoietic cells [28,29]. In agreement, eltrombopag also exerted
antiviral effects in mouse fibroblasts infected with murine CMV, although the hematological effects of
eltrombopag are known to be species-specific and to not affect mice [28,29].

Eltrombopag is also known to be an iron chelator [30,31]. The addition of Fe3+ prevented the
eltrombopag-mediated anti-HCMV effects in strain Hi91 and clinical isolate U1-infected cells. Hence,
our data suggest that eltrombopag inhibits HCMV replication via Fe3+ chelation.

A number of different iron chelators, including desferrioxamine, diethylenetriaminepentaacetic acid
(DTPA), and ethylenediaminedisuccinic acid (EDDS), were shown to inhibit HCMV replication [32–38].
However, the iron chelators tiron and ciclopirox olamine were not found to inhibit HCMV strain
AD169 replication in MRC5 cells [50]. The experimental setup differed, as MRC5 cells were infected at
a high MOI of 3, and no dose–response relationships were determined. Hence, a direct comparison
is not possible. Notably, specific antiviral activity can easily be missed if the therapeutic window
between antiviral and cytotoxic effects is relatively small. For example, desferrioxamine was found to
inhibit HCMV replication at concentrations that did not decrease the viability of confluent fibroblasts
but affected dividing cells [32]. In contrast, eltrombopag inhibits HCMV replication in concentrations
that do not affect cell proliferation. Hence, the size of the therapeutic window that discriminates
between anti-HCMV activity and antiproliferative and cytotoxic effects substantially differs among
iron chelators. Eltrombopag seems to be an iron chelator that possesses a particularly preferential
therapeutic window in terms of its anti-HCMV activity.

Due to its effects on platelet counts and hematopoietic stem cells [2], however, the anti-HCMV
effects of eltrombopag are primarily of relevance for anemia patients at risk of HCMV disease,
for whom eltrombopag is indicated. Eltrombopag has been suggested for the treatment of cytopenias
after hematopoietic stem cell transplantations and case reports support its safety and efficacy [4–9].
Since HCMV reactivation and HCMV-associated diseases are leading reasons for the failure of
hematopoietic stem cell transplantations [10–12], antiviral effects exerted by eltrombopag may also
contribute to improved therapy outcome. Notably, eltrombopag was effective against resistant clinical
HCMV isolates, and resistance formation to the approved drugs is a major challenge after stem cell
transplantation [11,12].

5. Conclusions

Therapeutic eltrombopag concentrations inhibit HCMV replication via chelation of Fe3+ ions.
Eltrombopag is effective against drug-resistant viruses and synergistically increases the effects of the
mainstay anti-HCMV drug ganciclovir. The anti-HCMV activity of eltrombopag may be of particular
interest for its use for the treatment of cytopenias after haematopoietic stem cell transplantation,
as HCMV reactivation and disease is a major reason for transplantation failure.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/1/31/s1,
Figure S1: Effects of eltrombopag on HCMV immediate early antigen (IEA) expression in primary human foreskin
fibroblasts (HFFs), Table S1: Effects of eltrombopag addition at different time points during the HCMV replication,
Table S2: Effects of eltrombopag in combination with deferasirox and foscarnet, Table S3: Effects of eltrombopag
on HCMV late antigen (LA) expression in different cell types infected with different virus strains and isolates.

http://www.mdpi.com/2073-4409/9/1/31/s1
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