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Abstract

By tuning the tolerance factor, t, of the Ruddlesden–Popper oxide Ca2MnO4 through isova-

lent substitutions, we show that the uniaxial coefficient of linear thermal expansion (CLTE) of

these systems can be systematically changed through large negative to positive values. High-

resolution X-ray diffraction measurements show that the magnitude of uniaxial negative ther-

mal expansion (NTE) increases as t decreases across the stability window of the NTE phase.

Transitions to phases with positive thermal expansion (PTE) are found to occur at both the

high-t and low-t limits of stability. First-principles calculations demonstrate that reducing t

enhances the contribution to thermal expansion from the lowest frequency phonons, which
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have the character of octahedral tilts and have negative mode Grüneisen parameter compo-

nents along the NTE axis. By tuning t to the lower edge of the NTE phase stability window,

we are hence able to maximise the amplitudes of these vibrations and thereby maximise NTE

with a CLTE of -8.1 ppm/K at 125 K. We also illustrate, at the other end of the phase diagram,

that an enhancement in compliance of these materials associated with the rotational instability

provides another mechanism by which NTE could be yet further enhanced in this and related

systems.

Negative thermal expansion (NTE) is the rare phenomenon whereby a material contracts with

an increase in temperature. In ceramics, NTE has been found to occur due to several different

mechanisms; electronic,1,2 magnetic3–5 and vibrational6,7 in origin. As such, many studies on

NTE systems focus on deducing the origin of NTE.8–10 However, there have also been attempts

to investigate methods of controlling NTE, for example by including guest species11,12 or varying

composition.13–17 The means to tune the magnitude of thermal expansion would be especially

useful for device applications: both to match the coefficient of linear thermal expansion (CLTE)

between components (preventing the build up of thermal stresses) or to develop materials with near

zero thermal expansion (ZTE).1 The desire to control thermal expansion is paradigmatic of a wider

trend in the field of functional oxides to develop materials with tunable properties. However, for

the most part, attempts to date have led only to a suppression of the magnitude and/or temperature

window of NTE.

Ruddlesden–Popper (RP) oxides are layered perovskites with general formula An+1BnO3n+1

whose structures consist of blocks of n BO6 octahedra separated by a single AO rock salt layer

(see examples of RP1, i.e. n = 1, phases in Figure 1). Certain compounds of RP1 (Ca2MnO4,18,19

Sr2RhO4,20,21 Sr2IrO4
22 and Ca2GeO4

23) and RP2 (Ca3Mn2O7
24) oxides exhibit uniaxial NTE

(along their layering axis only) over a particularly wide temperature range, often exceeding 1000 K.

In all of these cases the NTE is unique to a particular phase, with frozen-in rotations of octahedra

about the layering axis but no frozen tilts about in-plane axes – the well-defined layering axis in

RP structures means that it is customary to distinguish between rotations and tilts in this man-
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Figure 1: Coefficient of linear thermal expansion (CLTE) along the layering axis as a function of
tolerance factor, t, computed by numerical differentiation at 125 K of c lattice parameters extracted
using high-resolution X-ray diffraction. Qualitative phase diagram at this temperature also shown
with frozen octahedral distortions to the I4/mmm aristotype illustrated and labelled according to
the irreducible representation (irrep) they transform as. The precise nature of the secondary phase
in the low-t two-phase samples could not be established, yet there is evidence it has a frozen
octahedral tilt (with character of the X+

3 irrep) Vertical grey dashed line indicates pure Ca2MnO4.
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ner. Transformation with temperature to a higher20–22 or lower24 symmetry phase corresponds to

a switch from negative to positive thermal expansion (PTE). In a previous work, we found that

uniaxial NTE in RP1 Ca2GeO4 is driven by both (i) active octahedral tilt vibrations and (ii) a high

elastic compliance,25 caused by an atomic corkscrew mechanism in RP phases with a frozen oc-

tahedral rotation.26 The Goldschmidt tolerance factor, t, is a metric that has been linked with the

propensity for BO6 octahedra to tilt in ABO3 perovskites. Chemical substitution has been used to

control various RP properties in several experimental and computational studies.27–31 Increasing

the proportion of the Sr on the Ca site – thus increasing t – in (n = 2) Ca3−xSrxMn2O7 has previ-

ously been found to reduce the magnitude of uniaxial NTE, with a switch to PTE above x = 1.5

correlating with a transformation to the undistorted parent phase.32 A more recent computational

study of ours predicted that NTE should be greatest in the RP rotation phases with the lowest n.33

In this work, we realise this prediction by using chemical substitution to engineer an RP1

system that spans the full low-temperature stability range of the NTE phase. We form two solid

solutions based around Ca2MnO4: the first by substituting Sr onto the Ca-site and the second by

replacing Mn with Ti. Introducing these larger cations onto Ca or Mn sites allows us to both

increase and decrease the tolerance factor, respectively. Finding that the magnitude of uniaxial

NTE at 125 K is greatest just before the transition to a region of two-phase coexistence, we reason

that we have maximised uniaxial NTE with respect to composition for this system. We go on to use

the results of first-principles simulations to demonstrate the mechanism through which chemical

control acts to tune the CLTE. We show that the frequency of octahedral tilt vibrations drop as

t is reduced, suggesting that these NTE-driving modes more greatly impact the overall lattice

dynamics. The compliance to cooperative strains associated with uniaxial NTE also drops as t is

lowered. However, a peak in this compliance predicted at values of t just below the transition to

the undistorted parent phase (in which the frozen octahedral rotation is lost) is consistent with a

large enhancement in experimental uniaxial NTE observed in Ca2Mn0.4Ti0.6O4 as this transition is

approached with temperature.
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Experimental

Polycrystalline samples of the first solid solution, Ca2−xSrxMnO4 (0 ≤ x ≤ 1) were prepared via

conventional solid state synthesis methods. Ca2Mn1−yTiyO4 has recently been reported as being

prepared by this method,34 yet in practice we found it hard to achieve phase pure sample, yielding

high proportions of RP2 and ABO3 perovskite impurities. For y = 0− 0.7 1.8g ≈ 9 mmol were

instead prepared using a sol-gel method in which stoichiometric amounts of Ca(NO3)2·4H2O and

Mn(NO3)2·4H2O were dissolved in a HNO3 solution (15 ml, 30 %) with constant stirring. A

second solution made by adding stoichiometric amounts of Ti(OC4H9)4 to a solution of 100 ml

ethanol with 10 ml glacial acetic acid, which was then added slowly to the first solution and left

stirring until a transparent solution was obtained. While stirring, additional citric acid was added.

The mixture was then heated up to approx 300 ◦C until the solution formed a gel, and finally a

powder. The powder was pressed into pellets and sintered at 500◦C in air for 12 hours to yield the

precursor powder. This powder was ground and fired at 1250◦C under flowing oxygen three times

for 12 hour periods with intermediate regrinding.

Results and discussion

Figure 1 shows the phase diagram at 125 K as a function of tolerance factor1 for both solid solutions

as established from Rietveld fits to the weak (super)structure peaks. Example XRD diffraction pat-

terns at 300 K may be seen for x= 1.0,0 and y= 0.625,0.7 samples in Figure 2. Compositions with

low and intermediate values of x (x = 0.0,0.2,0.4,0.6&0.8) and y (y = 0.0,0.225,0.425,0.625)

crystallise in the space group I41/acd over the full temperature range studied (100–500 K for

Ca2−xSrxMnO4 and 85–300 K for most Ca2Mn1−yTiyO4 compounds). This phase is a distortion

of the aristotype I4/mmm with an octahedral rotation frozen in about the c-axis (the layering axis)

that is anti-phase between adjacent I4/mmm cells (see Figure 1). Such a rotation has the prop-

agation vector k =
[1

2
1
2

1
2

]
and transforms as the irreducible representation P4 with respect to the
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parent symmetry I4/mmm (setting with Mn at (0,0,0)).

Although the superstructure peaks are hard to resolve from the background at higher values of

x, the inset of Figure 2 shows the absence of any weak superstructure peaks at x = 1 which are

characteristic of the I41/acd phase. There is also a discontinuity in the c/a ratios between x = 0.8

and 1.0 (Figure S1 in the SI). This indicates that the x = 1 compound adopts the parent I4/mmm

phase. At the lower end of the t-range, the two highest y samples (y = 0.65,0.7) are well-described

by the I41/acd fit at 300 K. However, at 100 K, although many of the super structure peaks were

fit well by the I41/acd model, substantial asymmetric peak broadening across the entire pattern

suggests a secondary RP phase to be present with symmetry lower than that of the parent structure.

Furthermore, weak additional reflections at 2θ = 21.5◦ (inset bottom panel Figure 2) imply that

the coexisting phase has frozen octahedral tilts with X+
3 character, which is likely to have Pbca

symmetry similar to Ca2RuO4.36 This two phase mixture thus indicates a second boundary to the

low temperature pure I41/acd stability region, however, the precise space group assignment is

beyond the scope of the current study.

We performed temperature-dependent XRD studies on the high resolution powder diffractome-

ter I11 at Diamond Light Source with λ ≈ 0.826 Å to determine lattice parameters and thermal

expansion coefficients. All samples display PTE with respect to the volume and the a lattice pa-

rameter (see Figure S2). From the CLTEs for all compounds presented in Figure 1, we see that

all samples that index as purely I41/acd (those with 0.928 < t < 0.974) exhibit NTE of the c axis

at 125 K. The CLTE – obtained from linear interpolation of c measurements over the range [115,

135] K – varies approximately linearly with tolerance factor, decreasing as t increases. Plots of

axial strain (relative to the 100 K measurement) for x = y = 0 and y = 0.625 samples in Figure

2 demonstrate that NTE persists at all temperatures. As the temperature increases, the magnitude

of uniaxial NTE decreases over the temperature range shown. The transformation to the parent

I4/mmm phase in the high-t sample (x = 1) corresponds with a switch to PTE of the c axis at all

temperatures. Similarly, at low t, the two-phase samples (y = 0.65,0.7) both display large PTE

1Shannon radii35 have been used to compute all A2BO4 tolerance factors, t, based on the mean radii of IX-
coordinate A2+ and VI-coordinate B4+ cations.

6

Page 6 of 18

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



c 
(%

 c
ha

ng
e 

fro
m

 1
00

 K
 v

al
ue

) 0

200000

400000

300 K

(v) 300 K

20 22

0

200000
300 K

(vi) 300 K
P4 rotation
X +

3  tilt

0

200000

400000 300 K

300 K

(vii)

20 22

10 20 30 40 50
2  (degrees)

0

5000

10000

100 K

(viii) 100 K

300 K

0.0

0.1

0.2 x = 1
y = 0

I4/mmm

(i)

0.1

0.0 x = 0
y = 0

I41/acd

(ii)

0.2

0.1

0.0 x = 0
y = 0.625

I41/acd

(iii)

200 400
Temp. (K)

0.0

0.1
x = 0
y = 0.7

I41/acd

two
phase

(iv)

Figure 2: (i)–(iv) Left-hand plots show axial strain relative to c measured at 100 K, with hatch-
ing indicating temperature regimes of non-I41/acd phases. (v)–(viii) Right-hand plots show Ri-
etveld refinement fits to the XRD data (λ ≈ 0.826 Å) of polycrystalline Ca2−xSrxMnO4 and
Ca2Mn1−yTiyO4. The insets show a region where multiple superstructure peaks are present in
the I41/acd phase but absent in I4/mmm (cyan triangles). Superstructure peaks absent in (v) x = 1
evidence I4/mmm symmetry. Purple diamonds evidence additional peaks characteristic of the X+

3
irrep in (viii) y = 0.7 (100 K). A small peak due to a CaO impurity (between 0.2 and 2 %) is present
at 19.75◦ in all refinements. Ruddlesden–Popper n = 2 phase forms an impurity 19 % by weight
in (v) x = 1 and 10 % by weight in (viii) y = 0.7.
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along c at 125 K, even though uniaxial NTE is observed in these compounds above their transi-

tions to single-phase I41/acd at around 160 K and 215 K, respectively. We thus demonstrate that

uniaxial NTE is unique to RP phases with frozen octahedral rotations and that the magnitude of

NTE may be controlled by changing t. By tuning the chemistry so as to minimise the tolerance

factor whilst remaining in the single-phase I41/acd region, we have been able to maximise NTE

at 125 K in the y = 0.625 compound, with a CLTE value of -8.1 ppm/K.

To investigate the origin of this dependence of the CLTE upon tolerance factor, we performed

first-principles simulations, modelling changes in composition using the virtual crystal approxima-

tion (VCA). It was not possible to explicitly simulate the Ca2Mn1−yTiyO4 series using the VCA

within a 56-atom I41/acd cell, since the Mn pseudopotential had 15 valence electrons and the Ti

pseudopotential had 12, and therefore no ratio of Mn and Ti could be found that left an integer

number of valence electrons per ion. As a result, we simulated changes in B-site cation radius by

substituting larger, yet isovalent, Tc onto the Mn site, covering the full range of t realised in exper-

iment. Additionally, we also simulated pure Ca2TiO4. All simulations used CASTEP v7.0.337 to

perform density functional theory (DFT), employing the PBEsol functional38 to model exchange

and correlation. We used norm-conserving pseudopotentials (details may be found in Table S1),

with a 1400 eV plane-wave cut-off energy. A grid of k-points was employed with equivalent den-

sity in reciprocal space to a 7× 7× 2 grid in the 14-atom I4/mmm Ca2MnO4 cell. For structural

relaxations, forces were converged to 0.1 meV/Å and stresses to 10 MPa. Each Mn4+/Tc4+ ion

was given an initial spin configuration of 3µB (only co-linear spins were considered) with in-plane

checkerboard anti-ferromagnetic ordering (this configuration was found to be lowest in energy for

I41/acd Ca2MnO4). All Ca2−xSrxMn1−y′Tcy′O4 compositions were found to be insulators (with at

least a small electronic band gap) and therefore no additional Hubbard parameter was employed.

The bottom panel of Figure 3 compares the energy of the I41/acd NTE phase and an or-

thorhombic Pbca phase2 (with frozen X+
2 rotations and X+

3 tilts) to that of the I4/mmm aristotype

as a function of tolerance factor. The lowest energy phase for each composition is denoted as the

ground state. The I4/mmm→ I41/acd → Pbca sequence of predicted ground-state phases with
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Figure 3: (i) a (& b) and (ii) c lattice parameters and (iii) BO6 octahedral rotation/tilt angles (about
ideal B–O bond axes) comparing 100 K experimental measurements (refined as I41/acd) with the
simulated ground-state structure. (iv) Energies of relaxed phases compared to the I4/mmm parent
(in meV/atom). Hashed regions denote non-I41/acd experimental compounds and pairs of vertical
dashed lines represent boundaries between different simulated ground-state phases. Vertical grey
dashed lines indicate pure Ca2MnO4 or Ca2TiO4.
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reducing t (boundaries shown by vertical dashed lines) qualitatively agrees with those of the 100 K

experiment (non-I41/acd phases shown hatched) in the upper three panels of Figure 3, although

the I41/acd stability window is predicted to be narrower in simulations. Structural parameters (lat-

tice parameters and octahedral rotation angle) also agree very closely between the relaxed ground

state and low temperature measurements (treating all compounds as pure I41/acd). We also simu-

lated the Ca2−xSrxGe1−y′′Sny′′O4 series, which previously we had used as proxy for the manganate

system25,32,33 and found qualitatively identical behaviour of this system with changing t (Figures

S3–S5 in the SI).

We have previously shown that uniaxial NTE in (n = 1) Ca2GeO4 arises from two ingredients:

(i) low-frequency octahedral tilt modes that drive axial NTE and in-plane PTE and (ii) highly

anisotropic elastic compliance (which may be explained by an atomistic corkscrew mechanism26)

that causes the in-plane expansion to couple to uniaxial NTE.25 To decouple which of these effects

is most strongly influenced by changes in composition, Figure 4 compares the Γ-point phonon

frequencies and the eigenvalues of the elastic compliance matrix against t. Since the I41/acd

stability window is wider in experiment, all simulations in Figure 4 were performed on the I41/acd

phase (unless this relaxed to the I4/mmm parent) even if Pbca is the ground-state at low t. For

such compositions the compliance and frequency curves are dashed.

Within the I41/acd NTE phase, octahedral tilt modes (whose eigenvectors have character of

the X+
3 , X+

4 or P5 parent irreps - coloured green in Figure 4) generally soften as t is reduced, indi-

cating that the population of these modes increase and they contribute more strongly to the overall

lattice dynamics. This echoes past results in Ca3−xSrxMn2O7.32 Simulations on non-magnetic

Ca2−xSrxGe1−y′′Sny′′O4 (see SI) show that the magnitude of the anisotropic Grüneisen parameters

(a measure of how much each phonon contributes to the total thermal expansion) of these lowest

frequency tilts become very large as these modes soften. In both systems, the softest tilt frequency

is lowest and the anisotropic Grüneisen parameter is greatest just before the boundary at which the

2Freezing X+
3 tilts into I41/acd also creates a Pbca (P4⊕X+

3 ) phase. However, this was found in simulations on
Ca2TiO4 and Ca2GeO4 to be higher in energy and has double the unitcell volume compared to Pbca (X+

2 ⊕X+
3 ). To

the best of our knowledge, it is also not found as the experimental low-temperature phase for any RP1 compound,
unlike Pbca (X+

2 ⊕X+
3 ).
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Figure 4: (i) Phonons computed at the Γ-point of a 56-atom I41/acd cell (
√

2×
√

2×2 supercell of
I4/mmm). Octahedral tilts (having eigenvectors with the character of X+

3 , X+
4 or P5 irreps for the

I4/mmm cell) are coloured green and rotations (X+
2 or P4 irreps) are coloured blue with all other

modes grey. (ii) Eigenvalues to the elastic compliance matrix coloured according to their associated
eigenvector. In both plots, I41/acd phases are simulated at low t, even for t where the ground state
was found to be Pbca. Pairs of vertical dashed lines represent boundaries between different simu-
lated ground-state phases and vertical grey dashed lines indicate pure Ca2MnO4 or Ca2TiO4. High-
temperature diffraction patterns at (iii) 1000 K and (iv) 1272 K showing transition from I41/acd
NTE phase (peaks indicated by cyan triangles) to I4/mmm parent in Ca2Mn0.4Ti0.6O4. (v) Change
in c measured using high-resolution XRD relative to 300 K value (black dashed region indicates
I4/mmm).
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Pbca phase becomes the ground-state. At this boundary, the softest tilt frequency becomes imag-

inary (shown as negative) and the system becomes most compliant to orthorhombic distortions.

We may hence conclude that the magnitude of uniaxial NTE is controlled by the proximity to this

low-t phase boundary.

In contrast with the octahedral tilt modes, the eigenvalue associated with the elastic compliance

eigenvector relevant for NTE, that couples in-plane expansions to out-of-plane contractions (also

green in Figure 4) is less sensitive to changes in t and even shows the opposite trend to that expected

from the experimental data, decreasing as t is reduced. There is also a large increase in the value of

this eigenvalue approaching the I41/acd→ I4/mmm phase boundary. In practice, experimentally

we do not observe an enhancement in uniaxial NTE approaching the I41/acd → I4/mmm phase

boundary in Figure 1. Figure 3 shows that we also do not observe experimentally a dip in c

approaching this boundary or very low values of the rotation angle, θ , both predicted by DFT. This

may be due to a more coarse sampling of compositions. However, high-temperature measurements

performed on the y = 0.6 sample (Figure 4) evidence a surge in uniaxial NTE, which reaches a

maximum (negative) CLTE of −11.5 ppm/K at 1130 K, just below a switch in the sign of thermal

expansion around 1205 K (see Figure S7). This NTE→ PTE switch is accompanied by the loss of

superstructure peaks characteristic of the I41/acd phase (also shown in Figure 4) indicating that

this phase boundary is crossed in temperature. This is consistent with previous high-temperature

measurements on Sr2IrO4 that show the same phase transition on warming22 and in which a similar

enhancement of uniaxial NTE can be observed. The anomalous behaviour seen in the compliance

eigenvalue is expected with increasing temperature (or tolerance factor) across second-order co-

elastic transitions,39 which we demonstrate for our system using a Landau expansion in the SI. In

this sense, we have shown tolerance factor to be analogous to temperature in this study, not only

because we capture the co-elastic behaviour in proximity of this high-temperature/high-tolerance

factor phase transition. In addition, the steadily decreasing magnitude of the measured CLTE as

temperature increases up to around 800 K implies a reduced thermodynamic driving force for

NTE. This reduction is concurrent with the hardening of octahedral tilt modes with increasing

12

Page 12 of 18

ACS Paragon Plus Environment

Chemistry of Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



t in simulations. Hence, by considering both the soft mode energy and elastic compliance, our

computational experiment explains the enhancement of NTE at both phase boundaries whether

they be crossed in composition or temperature.

In this study we have maximised NTE by selecting a Ruddlesden–Popper system with the

lowest layer thickness, n = 1 (which had previously been shown to be optimal for compliance33)

and then tuning tolerance factor to the low-t edge of NTE phase stability window, where the CLTE

is most negative. We were thus able to synthesise a compound with a CLTE of -8.1 ppm/K at

125 K, which represents record low-temperature uniaxial NTE in a RP rotation phase (compared

to -7.6 ppm/K in Ca2GeO4 at 150 K23). We also demonstrated that by changing composition,

the CLTE may be tuned smoothly through to positive values. Octahedral tilt frequencies are most

favourable for NTE at the lower t (or lower temperature) stability boundary of the NTE phase,

whereas elastic compliance is greatest at the high-t boundary. If a system could be engineered

that was simultaneously close to both phase transitions and yet where the NTE phase was stable

over a wide temperature range, then this would provide a further route to optimise uniaxial NTE.

Whilst these requirements may appear to oppose one another, engineering composite materials

with different CLTEs may make it possible to operate close to such phase instabilities over a

sustained temperature range. Controlling lattice dynamics in this manner may not only serve for

the design of material with unusual thermal expansion properties, but might also be used as a means

for tuning ionic and thermal conductivity as well as dielectric properties in the broader family of

Ruddlesden–Popper materials.

Associated content

Supporting information

The SI is available free of charge via the internet at http://pubs.acs.org. It contains the SI document

(referenced within the text) alongside crystallographic information files of structures at 100 K and

300 K and lattice parameter versus temperature data for all compounds.
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Simulation output files can be accessed on figshare at DOI:10.6084/m9.figshare/10110953 and

used under the Creative Commons Attribution license.
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