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Abstract

A basic problem in the theory of partially ordered vector spaces is to char-
acterise those cones on which every order-isomorphism is linear. We show that
this is the case for every Archimedean cone that equals the inf-sup hull of the
sum of its engaged extreme rays. This condition is milder than existing ones
and is satisfied by, for example, the cone of positive operators in the space of
bounded self-adjoint operators on a Hilbert space. We also give a general form
of order-isomorphisms on the inf-sup hull of the sum of all extreme rays of the
cone, which extends results of Artstein-Avidan and Slomka to infinite dimen-
sional partially ordered vector spaces, and prove the linearity of homogeneous
order-isomorphisms in a variety of new settings.
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1 Introduction

A fundamental problem in the study of partially ordered vector spaces is to under-
stand the structure of their order-isomorphisms, i.e., order preserving bijections whose
inverses are also order preserving. In particular one would like to characterise those
partially ordered vector spaces on which all order-isomorphisms are affine.

Pioneering research on this problem was motivated by special relativity theory
where the causal order is considered on the Minkowski spacetime. During the 1950s
and 1960s several results were obtained in finite dimensional spaces by Alexandrov and
Ovčinnikova [3] and Zeeman [15], who showed that the order-isomorphisms from the
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causal cone onto itself are linear. Later Alexandrov [2] extended his result to order-
isomorphisms on finite dimensional ordered vector spaces, where every extreme ray of
the cone is engaged, that is to say, each extreme ray of the cone lies in the linear span
of the other extreme rays. Rothaus [11] obtained a similar result where the domain of
the order-isomorphism could also be the interior of the cone, but he assumes that the
cone does not have any isolated extreme rays, which is a stronger assumption than the
one used by Alexandrov. In the 1970s Noll and Schäffer made numerous contributions
to this area in a series of papers, [9, 10, 12, 13]. Like Alexandrov, they considered the
case where the cone is the sum of its engaged extreme rays, but they do not require
the partially ordered vector spaces to be finite dimensional. More recently, Artstein-
Avidan and Slomka [5] obtained a complete description of the order-isomorphisms
between finite dimensional partially ordered vector spaces.

In many natural infinite dimensional settings the results of Noll and Schäffer are
not applicable. A case in point is the space B(H)sa consisting of bounded self-adjoint
operators on a Hilbert H, ordered by the cone of positive (semi-definite) operators.
Even though the cone B(H)+sa contains many engaged extreme rays, namely the rays
through the rank-one projections, it does not satisfy the condition of Noll and Schäffer.
Even so Molnár [7] showed, by using operator algebra techniques, that every order-
isomorphism on B(H)+sa is linear. In this paper we obtain a generalisation of [10,
Theorem A] by Noll and Schäffer that is sufficiently strong to yield Molnár’s result.

Before we outline the main results in the paper, we point out that the domain on
which the order-isomorphisms are considered plays a key role. In the paper we will
work on so called upper sets, i.e, sets which contain all upper bounds of its elements.
Such domains include cones, the interiors of cones, and the whole vector space. It
turns out that without this assumption order-isomorphisms can be more complicated.
Indeed, Šemrl [14] gave a complete characterisation of the order-isomorphisms on
order intervals of B(H)sa, which include maps that are not affine.

Our generalisation of [10, Theorem A] exploits the fact that infima and suprema in
a partially ordered vector space are preserved under order-isomorphisms. Instead of
the conditions imposed by Noll and Schäffer, we assume that the cone, C, is equal to
the inf-sup hull of the positive span of its engaged extreme rays, which is much weaker.
In other words, we require that each x ∈ C can be written as x = infα∈A(supβ∈B xα,β),
where each xα,β belongs to

[0,∞)RE
= {r1 + · · ·+ rn : ri ∈ C is an engaged extreme vector of C for all i},

A and B arbitrary index sets, and for the infimum and supremum we only consider
lower bounds and upper bounds in C. The main result can be formulated as follows.

Theorem 1.1. Suppose U ⊆ (X,C) and V ⊆ (Y,K) are upper sets in Archimedean
partially ordered vector spaces, and f : U → V is an order-isomorphism. If (X,C) is
directed and C equals the inf-sup hull of [0,∞)RE

, then f is affine.

Here f : U → V is affine if it is the restriction of an affine map F : aff(U)→ Y .
A key step in our argument is Theorem 3.10, which says that every order-isomorphism

f from [a,∞) = {a + x : x ∈ C} onto [b,∞) = {b + y : y ∈ K} is the restriction of
an affine map on the affine span of [a,∞)RE

= a + [0,∞)RE
. The proof requires a

careful reworking of some of the ideas in [10].
Of course not every order-isomorphism is affine. Simply consider the space C(K),

consisting of continuous real functions on a compact Hausdorff space K, and the
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map f 7→ f3. On C(K) Schäffer [12] showed that each order-isomorphism, which is
homogeneous (of degree one), is linear. In [13] he strengthened this result to general
order unit spaces. In finite dimensional spaces the existence of a disengaged extreme
ray in the cone is necessary and sufficient to yield a nonlinear order-isomorphism.
This follows from [5, Theorem 1.7] by Artstein-Avidan and Slomka, who showed that
any order-isomorphism in a finite dimensional space has a particular diagonal form.
In Section 5 we obtain an infinite dimensional analogue of this result. We also give an
alternative condition that guarantees that all homogeneous order-isomorphisms are
linear, which can be applied in partially ordered vector spaces without an order unit
such as `p(N) spaces.

2 Preliminaries

Let X be a real vector space and C be a cone in X, so C is convex, λC ⊆ C for all
λ ≥ 0, and C ∩ −C = {0}. The cone C induces a partial order on X by x ≤C y if
y − x ∈ C. The pair (X,C) is called a partially ordered vector space. For simplicity
we write ≤ instead of ≤C if C is clear from the context, and we write x < y if x ≤ y
and x 6= y.

A partially ordered vector space (X,C) is said to be Archimedean if for each x ∈ X
and y ∈ C with nx ≤ y for all n ≥ 1 we have that x ≤ 0. A subset G of X is said to
be directed if for each x, y ∈ G there exists z ∈ G such that x ≤ z and y ≤ z. It is
well known that X is directed if and only if C is generating, i.e., X = C − C. Given
x ≤ y we define the order interval by [x, y] = {z ∈ X : x ≤ z ≤ y}. We denote the
cone with apex a by

[a,∞) = {a+ x : x ∈ C}.

Extreme rays of the cone play an important role in this paper. A vector e ∈ X\{0}
is called an extreme vector if 0 ≤ e, and 0 ≤ x ≤ e implies that x = λe for some λ ≥ 0,
or, if e ≤ 0, and e ≤ x ≤ 0 implies x = λe for some λ ≥ 0. For an element x ∈ C we
define the ray through x as Rx = {λx : λ ≥ 0}. If e ∈ C is an extreme vector, Re is
said to be an extreme ray. The notion of an extreme ray coincides with the ray being
extreme in the convex sense. Indeed, a ray R in C is extreme if, and only if, for any
two rays R1 and R2 in C satisfying R = αR1 + (1−α)R2 for some α ∈ (0, 1) we have
that R1 = R2, see [4, Lemma 1.43]. Given an extreme ray R we call z+R an extreme
half-line with apex z. The following elementary property of extremal vectors will be
used frequently in the sequel, see [4, Lemma 1.44].

Lemma 2.1. In a partially ordered vector space (X,C) any three extremal vectors in
C that generate three distinct extremal rays are linearly independent.

Another useful basic observation is the following.

Lemma 2.2. Let (X,C) be Archimedean. If x, y ∈ X are such that 0 ≤ y ≤ x, and
for each 0 ≤ λ ≤ 1 we have that y ≤ λx or λx ≤ y, then there exists a µ ≥ 0 such
that y = µx.

Proof. Let x, y ∈ X be as in the statement. We may assume without loss of generality
that x and y are non-zero. Now define µ = sup{λ ≥ 0: λx ≤ y}. By assumption µ is
well-defined and 0 ≤ µ ≤ 1.
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Note that µx ≤ y. Indeed, for n ≥ 1 we have that (µ − 1/n)x ≤ y, so that
n(µx− y) ≤ x, which implies that µx ≤ y, as (X,C) is Archimedean.

To show that y ≤ µx we distinguish two cases: 0 ≤ µ < 1 and µ = 1. In the
case 0 ≤ µ < 1 we have that y ≤ (µ + 1/n)x for all n sufficiently large. Thus,
n(y−µx) ≤ x, which shows that y ≤ µx, as the space is Archimedean. If µ = 1, then
x = y, since y ≤ x by assumption, and x = µx ≤ y as shown before.

Given vector spaces X and Y , a map f : X → Y is called affine if it is a translation
of a linear map, that is, there is a ∈ X such that x 7→ f(x+ a)− f(a) is linear.

Let (X,C) and (Y,K) be partially ordered vector spaces. A set U ⊆ X is called
an upper set if x ∈ U and y ≥ x imply y ∈ U . So, X, C and translations thereof
are all upper sets in (X,C). Let U ⊆ X be an upper set. A map f : U → Y
is called affine or linear if it is the restriction of an affine map F : aff(U) → Y
or a linear map F : span(U) → Y , respectively. If C is generating then we have
aff(U) = span(U) = X. A map f : U → Y is affine if and only if f(λ1x1+· · ·+λnxn) =
λ1f(x1)+· · ·+λnf(xn) for all x1, . . . , xn ∈ U and λ1, . . . , λn ∈ R with λ1+· · ·+λn = 1
such that λ1x1 + · · · + λnxn ∈ U . It is a well-known fact that, if the upper set U
is convex, then f : U → Y is affine if and only if f is convex-linear, that is, for each
x, y ∈ U and 0 ≤ λ ≤ 1 we have that f(λx+ (1− λ)y) = λf(x) + (1− λ)f(y).

An element u in a partially ordered vector space (X,C) is an order unit if for all
x ∈ X there exists a λ ≥ 0 such that −λu ≤ x ≤ λu. If C is generating, then u ∈ C
is an order unit if and only if for every x ∈ C there exists λ ≥ 0 with x ≤ λu. If
(X,C) is Archimedean and u ∈ C is an order unit then the formula

‖x‖u := inf{λ ≥ 0: − λu ≤ x ≤ λu}

defines a norm on X, called the order unit norm. A triple (X,C, u), where (X,C) is
an Archimedean partially ordered vector space and u is an order unit in (X,C), is
called an order unit space. In an order unit space we denote the interior of the cone
C with respect to the order unit norm by C◦. The set C◦ is an upper set and consists
of all order units of (X,C).

3 Linearity of order-isomorphisms

In the sequel (X,C) and (Y,K) will be Archimedean partially ordered vector spaces.
Initially we only consider order-isomorphisms f : [a,∞) → [b,∞), where a ∈ X and
b ∈ Y . However, the main result, Theorem 1.1, holds for more general domains.

A key role in the analysis of order-isomorphisms is played by extreme half-lines.
This idea has been exploited to analyse order-isomorphisms on finite dimensional
partially ordered vector spaces [5] as well as in infinite dimensions in [10]. In infinite
dimensions, however, the extreme half-lines are not as useful, as there are cones that
have none or only very few extreme rays. The following order theoretic characteri-
zation of extreme half-lines is due to Noll and Schäffer, see [10, Proposition 1]. For
completeness we provide a proof.

Proposition 3.1. If (X,C) is Archimedean and x ∈ X, then H ⊆ [x,∞) is an
extreme half-line with apex x if and only if H is maximal among subsets G ⊆ [x,∞)
with x ∈ G that satisfy:
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(P1) G is directed.

(P2) For any y ∈ G the order interval [x, y] is totally ordered.

(P3) G contains at least two distinct points.

Proof. Suppose H ⊆ X is maximal among subsets G ⊆ [0,∞) that satisfy properties
(P1)–(P3). We first argue that H is contained in a half-line. Let y, w ∈ H be given,
so x ≤ y, w. Due to (P1) there exists a z ∈ H such that y, w ≤ z. Since ≤ is preserved
under addition, (P2) guarantees that the order interval [0, z − x] is totally ordered.
Moreover, it contains y − x, w − x, and λ(z − x) for all 0 ≤ λ ≤ 1. Therefore, by
Lemma 2.2 there exist α, β ≥ 0 such that y − x = α(z − x) and w − x = β(z − x).
This shows that y and w are on the half-line through z with apex x. We conclude
that any pair of points in H lie on a half-line with apex x, and hence H is contained
in a half-line with apex x. Let R be a ray in C such that H ⊆ x+R.

By (P3) there exists an r ∈ C\{0} such that x+r ∈ H and x+R = {x+λr : λ ≥ 0}.
Note that x + R satisfies properties (P1) and (P3). We now show that x + R also
satisfies (P2). Consider y = x + λr with λ > 0. Then [x, y] = [x, x + λr] equals the
interval [x, r] up to dilation. We know that [x, x+ r] is totally ordered, as x+ r ∈ H
and H satisfies property (P2). Hence [x, y] is also totally ordered. It now follows
from the maximality assumption on H that H = x+R.

To see that x+R is an extreme half-line, we note that [0, r] is totally ordered, as
[x, x+ r] is totally ordered. It follows from Lemma 2.2 that r is an extreme vector.

Conversely, suppose H = x + R is an extreme half-line. Clearly, H satisfies
properties (P1)–(P3). Suppose G ⊇ H also satisfies (P1)–(P3) and y ∈ G. Since G
is directed, there exists a z ∈ G with z ≥ y, x+ r. Moreover, [x, z] is totally ordered
by (P2) and, hence, [0, z − x] is totally ordered and y− x, r ∈ [0, z − x]. If y− x ≤ r,
then there is a µ ≥ 0 such that y − x = µr, as r is extreme, so that y = x+ µr ∈ H.
Otherwise, we have r ≤ y − x and for each 0 ≤ λ ≤ 1 we have λ(y − x) ∈ [0, z − x],
so r ≤ λ(y − x) or λ(y − x) ≤ r. By Lemma 2.2 it follows that there is a σ ≥ 0 such
that r = σ(y − x). Then σ 6= 0 and y = x+ σ−1r ∈ H.

We note that property (P3) is only a necessary condition if C does not have any
extreme rays and can be dropped otherwise.

As a direct corollary we obtain the following result.

Corollary 3.2. If f : [a,∞) → [b,∞) is an order-isomorphism, then f maps an
extreme half-line with apex x ∈ [a,∞) onto an extreme half-line with apex f(x) ∈
[b,∞).

Proof. Suppose that R is an extreme ray of C. Then f(x + R) ⊆ [f(x),∞) and
satisfies properties (P1)–(P3), as f is an order-isomorphism. So by Proposition 3.1
we find that f(x+R) = f(x) + S, where S is an extreme ray of K.

Our next step is to show that order-isomorphisms f : [a,∞) → [b,∞) possess an
additive property on extreme half-lines, which was proved in [10, Lemma 1]. For the
reader’s convenience we include the proof.

Lemma 3.3. Let R and S be distinct extreme rays of C and f : [a,∞) → [b,∞) be
an order-isomorphism. For each x ∈ [a,∞), r ∈ R and s ∈ S we have that

f(x+ r + s)− f(x+ s) = f(x+ r)− f(x). (3.1)
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Proof. The equality in the statement holds trivially if either r or s equals zero. As-
sume r 6= 0 and s 6= 0. Then Rj = x+js+R for j ∈ {0, 1, 2} are three distinct parallel
extreme half-lines. Due to Corollary 3.2, their images f(Rj) are extreme half-lines
in Y and they are distinct as f is injective. For each λ ≥ 0, the set x + S + λr is
an extreme half-line that intersects Rj for each j ∈ {0, 1, 2}, so, by Corollary 3.2,
f(x+ S + λr) is an extreme half-line and

f(x+ S + λr) intersects f(Rj) for each j ∈ {0, 1, 2} and λ ≥ 0. (3.2)

We obtain that f(x + S + λr) is not parallel to any of the f(Rj), as R and S are
distinct and f is injective.

We aim to show that f(R0), f(R1), and f(R2) are parallel. We do so in two
steps. As a first step we show that if two of them are parallel, then all three of them
are parallel. Indeed, assume that f(Rj) and f(Rk) are parallel, with j, k ∈ {0, 1, 2},
j 6= k. Since f(Rj) and f(Rk) are distinct parallel half-lines, it follows from (3.2)
that the half-line f(x + S + λr) is in their affine span for every λ ≥ 0. Then the
half-line f(Ri) with i ∈ {0, 1, 2} \ {j, k} is in that affine span, too, as it intersects
f(x+S+λr) for two distinct values of λ. Thus, f(x+S), f(Ri), and f(Rj) are three
extreme half-lines in the affine plane spanned by f(Rj) and f(Rk). By Lemma 2.1, it
follows that at least two of the half-lines f(x+S), f(Ri), and f(Rj) must be parallel,
which yields that f(Ri) and f(Rj) must be parallel. Thus, f(Ri), f(Rj), and f(Rk)
are parallel.

As a second step we argue by contradiction that at least two of the half-lines
f(R0), f(R1), and f(R2) are parallel. For i ∈ {0, 1, 2}, take wi ∈ Y such that

f(Ri) = {f(x+ is) + λwi : λ ≥ 0}.

Suppose that no two of the three extreme half-lines f(R0), f(R1), and f(R2) are
parallel. After translation they correspond to three distinct extremal rays, so that
Lemma 2.1 yields that w0, w1, and w2 are linearly independent. Define

W0 = f(x) + span{w0, w2},
W2 = f(x+ 2s) + span{w0, w2},
`1 = {f(x+ s) + λw1 : λ ∈ R}.

f(x+ S)•

f(x)
•

f(x+ s)
•

f(x+ 2s)

f(R0)
f(R1)

f(R2)

We observe that W0 and W2 are parallel and distinct planes. Moreover, f(R0) ⊆W0,
f(R2) ⊆ W2 and f(R1) ⊆ `1. The affine span aff(W0,W2) of W0 and W2 is three
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dimensional and contains `1. Indeed, for every z ∈ f(R1) there is λ ≥ 0 with z =
f(x + s + λr), and by (3.2), aff(W0,W2) contains the half-line f(x + S + λr). This
shows that f(R1) ⊆ aff(W0,W2), and hence `1 ⊆ aff(W0,W2). Since w1 is linearly
independent of w0 and w2, we conclude that `1 intersects W0 and W2.

We proceed by showing that the half-line f(R1) intersects W0 or W2. Loosely
speaking, the point f(x+ s) on `1 lies between W0 and W2 and, therefore, the points
where `1 intersects W0 and W2 cannot be both at the same side of f(x+ s). To make
this idea precise, let v ∈ Y be such that

f(x+ S) = {f(x) + λv : λ ≥ 0}.

Observe that v ∈ K, as f(x+ S) ⊆ [f(x),∞). Then

aff(W0,W2) = {f(x+ s) + λw0 + µw2 + σv : λ, µ, σ ∈ R}.

As f(x + s) + w1 ∈ f(R1) ⊆ aff(W0,W2), there are λ, µ, σ ∈ R such that w1 =
λw0+µw2+σv. By linear independence of w0, w1 and w2, we have σ 6= 0. Consider the
case σ < 0. Then f(R1) intersects W0, so there is a t > 0 such that f(x+s+tr) ∈W0.
As f(x + R) = f(R0) ⊆ W0, it follows that the half-line f(x + S + tr) contains two
distinct points of W0, so that f(x + S + tr) ⊆ W0. Therefore f(x + 2s + tr) ∈
W0 ∩ f(R2) ⊆ W0 ∩W2, which is a contradiction. Otherwise, in case σ > 0, then
f(R1) intersects W2, and we similarly arrive at a contradiction. Hence at least two
of the half-lines f(R0), f(R1), and f(R2) are parallel, so by the first step all three of
them are parallel.

Now we complete the proof. As f(R0) and f(R1) are parallel, we have that the
vectors f(x + r) − f(x) and f(x + s + r) − f(x + s) have the same direction. By
interchanging the roles of R and S we obtain that the vectors f(x + s) − f(x) and
f(x+ s+ r)− f(x+ r) have the same direction. Thus, f(x), f(x+ r), f(x+ s+ r),
and f(x + s) are the consecutive corners of a parallellogram, which concludes the
proof.

It is interesting to note that the proof of Lemma 3.3 does not work if the do-
main of the order-isomorphism is bounded. In fact, there exist examples of order-
isomorphisms on bounded order intervals for which equation (3.1) does not hold, see
for example [14] where order-isomorphisms on order intervals in B(H)sa are studied.

The following observation is a simple consequence of the previous lemma.

Corollary 3.4. Suppose r, s ∈ X are extreme vectors with r 6= λs for all λ ∈ R and
f : [a,∞)→ [b,∞) is an order-isomorphism. If x ∈ [a,∞) is such that x+ r+ s, x+
r, x+ s ∈ [a,∞) then

f(x+ r + s)− f(x+ r) = f(x+ s)− f(x).

Proof. We only discuss the proof for the case r ≤ 0 and s ≤ 0, and leave the other
two remaining cases to the reader, as they are proved in a similar way. By writing
y = x+ r + s, we get

f(x+ r+ s)− f(x+ s) = f(y)− f(y− r) = f(y− s)− f(y− r− s) = f(x+ r)− f(x)

by Lemma 3.3.
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Using this corollary we now show the following lemma.

Lemma 3.5. Let f : [a,∞)→ [b,∞) be an order-isomorphism. Suppose s1, . . . , sn, r ∈
X are extreme vectors such that r 6= λsi for all λ ∈ R and i = 1, . . . , n. If
x, x+ s1 + · · ·+ sn + r, x+ s1 + · · ·+ sn, x+ r ∈ [a,∞), then

f

(
x+ r +

n∑
i=1

si

)
− f

(
x+

n∑
i=1

si

)
= f(x+ r)− f(x).

Proof. By relabelling we may assume that there exists k ∈ {0, . . . , n} such that si > 0
for all i ≤ k and si < 0 for all i > k. Then x+ r+

∑m
i=1 si ∈ [a,∞) and x+

∑m
i=1 si ∈

[a,∞) for m = 1, . . . , n. By Corollary 3.4 we have

f

(
(x+

n−1∑
i=1

si) + sn + r

)
−f

(
(x+

n−1∑
i=1

si) + sn

)
= f

(
x+

n−1∑
i=1

si + r

)
−f

(
x+

n−1∑
i=1

si

)
.

Repeating this argument yields the desired conclusion.

We can use Lemma 3.5 to get the following identity.

Lemma 3.6. Let f : [a,∞) → [b,∞) be an order-isomorphism. Suppose x ∈ [a,∞)
and s1, . . . , sn are extreme vectors in X such that si 6= λsj for all λ ∈ R and i 6= j,
x+ s1 + · · ·+ sn ∈ [a,∞), and x+ si ∈ [a,∞) for all i = 1, . . . , n, then

f

(
x+

n∑
i=1

si

)
− f(x) =

n∑
i=1

(f(x+ si)− f(x)) .

Proof. By relabelling we may assume that there exists k ∈ {0, . . . , n} such that si > 0
for all i ≤ k and si < 0 for all i > k. Then x +

∑m
i=1 si ∈ [a,∞) for m = 1, . . . , n.

Using a telescoping sum and Lemma 3.5 we obtain

f

(
x+

n∑
i=1

si

)
− f(x) = f

(
x+

n∑
i=1

si

)
− f

(
x+

n−1∑
i=1

si

)
+ · · ·+ f(x+ s1)− f(x)

=
n∑

m=1

(f(x+ sm)− f(x)).

Let R denote the collection of all extreme rays in C, and define

[a,∞)R = {a+ r1 + · · ·+ rn ∈ [a,∞) : ri ∈ C is an extreme vector for all i}.

Lemma 3.7. Let f : [a,∞) → [b,∞) be an order-isomorphism and x, y ∈ [a,∞)R.
Suppose that y−x = s1 + · · ·+sn, where si ∈ X is an extreme vector for i = 1, . . . , n.
If r ∈ X is an extreme vector with r 6= λsi for all λ ∈ R and i = 1, . . . , n, and
x+ r, y + r ∈ [a,∞), then

f(x+ r)− f(x) = f(y + r)− f(y).
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Proof. Note that

f(y + r)− f(y) = f(x+ (y − x) + r)− f(x+ (y − x))

= f(x+ s1 + · · ·+ sn + r)− f(x+ s1 + · · ·+ sn)

= f(x+ r)− f(x)

by Lemma 3.5.

In the setting of Lemma 3.7, if r = λsi for some λ and i, and r ∈ span{s : s ∈
S and S ∈ R \ {R}} where R = {λr : λ ≥ 0}, then one could replace si by a linear
combination of extreme vectors not contained in R ∪ −R and thus obtain y − x =
s′1 + · · · + s′m with r 6= λs′j for all λ and j. Then the conclusion of Lemma 3.7 still
holds. This motivates the following definition from [10].

Definition 3.8. Let S be a collection of rays in a cone C in a vector space X. A ray
R ∈ S is called engaged (in S) whenever

R ⊆ span(S \ {R}) = span{s : s ∈ S and S ∈ S\{R}}

holds, and R is called disengaged (in S) otherwise.

It can be shown that an extreme ray of a finite dimensional cone is disengaged (in
the set of extreme rays) if and only if the cone equals the Cartesian product of the ray
and another subcone. Cones that do not allow such a decomposition are considered
in [2].

Recall that R denotes the collection of all extreme rays of C. We denote the
collection of all engaged extreme rays in R by RE and the collection of all disengaged
extreme rays in R by RD. We remark that being an engaged ray is relative to the
collection it is viewed in. Nevertheless, we have that the elements of RE are again
engaged in RE . For simplicity we say that an extreme vector r ∈ R ∪−R is engaged
if R ∈ RE .

Lemma 3.9. If r ∈ X is an extreme vector, then the following assertions hold:

(i) f(x+λr)− f(x) is a scalar multiple of f(x+ r)− f(x) for every x ∈ [a,∞) and
λ ∈ R such that x+ r, x+ λr ∈ [a,∞);

(ii) If r is engaged and x, y, x+ r, y + r ∈ [a,∞) and y − x ∈ spanR, then

f(x+ r)− f(x) = f(y + r)− f(y).

Proof. Assertion (i) follows from Corollary 3.2. Remark that if r is engaged then
there exist extreme vectors s1, . . . , sn with y−x = s1 + · · ·+ sn such that r 6= λsi for
all λ ∈ R and i = 1, . . . , n. So (ii) follows from Lemma 3.7.

The following result is an extension of [10, Theorem A]. Recall that RE denotes
the collection of engaged extreme rays in R. We define

[a,∞)RE
= {a+r1+· · ·+rn ∈ [a,∞) : ri ∈ C is an engaged extreme vector for all i}.

Theorem 3.10. If f : [a,∞) → [b,∞) is an order-isomorphism, then f is affine on
[a,∞)RE

.
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Proof. Let R be an engaged extreme ray of C and fix r ∈ R\{0}. Let λ ∈ R and take
x ∈ [a,∞)R such that x + λr ≥ a. Then x, x + r, x + λr ∈ [a,∞). So, by Lemma
3.9(i), there exists a unique gr,x(λ) ∈ R such that

f(x+ λr)− f(x) = gr,x(λ)(f(x+ r)− f(x)). (3.3)

As r is engaged, it follows from Lemma 3.9(ii) that gr,x(λ) does not depend on x. Thus
there exists a unique function gr : R→ R such that for every λ ∈ R and x ∈ [a,∞)R
with x+ λr ≥ a we have

f(x+ λr)− f(x) = gr(λ)(f(x+ r)− f(x)). (3.4)

Clearly, gr(1) = 1 and gr is a monotone increasing function. For λ, µ ∈ R there exists
an x ∈ [a,∞)R such that x+ λr ≥ a, x+ µr ≥ a, and x+ λr + µr ≥ a. Moreover

gr(λ+ µ)(f(x+ r)− f(x)) = f(x+ (λ+ µ)r)− f(x)

= f(x+ λr + µr)− f(x+ λr) + f(x+ λr)− f(x)

= gr(µ)(f(x+ λr + r)− f(x+ λr)) + gr(λ)(f(x+ r)− f(x)).

Since r is engaged, Lemma 3.9(ii) gives f(x+ λr+ r)− f(x+ λr) = f(x+ r)− f(x).
Note that f(x+ r)− f(x) 6= 0, as r 6= 0 and f is injective, and hence

gr(λ+ µ) = gr(λ) + gr(µ).

As gr is monotone increasing, additive, and gr(1) = 1, a result by Darboux (see [1,
Theorem 1 in Section 2.1]) yields that gr(λ) = λ for all λ ∈ R.

To show that f is affine it suffices to show that f is convex-linear on [a,∞)RE
.

Let x, y ∈ [a,∞)RE
and 0 ≤ t ≤ 1. Then x = a +

∑n
i=1 λiri and y = a +

∑n
i=1 µiri

where each ri ∈ C is an engaged extreme vector and ri 6= λrj for all λ ∈ R and
i 6= j. Moreover, λi, µi ≥ 0 and λi + µi 6= 0 for all i. Put si = (tλi + (1− t)µi)ri. As
a+ si ∈ [a,∞) for all i, we can apply Lemma 3.6 to get

f(tx+ (1− t)y)− f(a) = f

(
a+

n∑
i=1

si

)
− f(a)

=
n∑
i=1

(f(a+ si)− f(a))

=
n∑
i=1

(f(a+ (tλi + (1− t)µi)ri)− f(a))

=
n∑
i=1

(tλi + (1− t)µi)(f(a+ ri)− f(a))

= t

n∑
i=1

λi(f(a+ ri)− f(a)) + (1− t)
n∑
i=1

µi(f(a+ ri)− f(a))

= t

n∑
i=1

(f(a+ λiri)− f(a)) + (1− t)
n∑
i=1

(f(a+ µiri)− f(a))

= t

(
f

(
a+

n∑
i=1

λiri

)
− f(a)

)
+ (1− t)

(
f

(
a+

n∑
i=1

µiri

)
− f(a)

)
= tf(x) + (1− t)f(y)− f(a), (3.5)
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where we have used (3.4) and the fact that each ri is engaged in the forth and sixth
equality, and Lemma 3.6 in the seventh one. This completes the proof.

Remark 3.11. It is interesting to note that in the proof of Theorem 3.10 we have
only used the assumption that r is an engaged extreme vector to show that the map
gr : R → R satisfying (3.3) is independent of x and additive. However, if r is a
disengaged extreme vector, then (3.3) still holds. In Section 5 we will exploit this
observation. Moreover, we remark that it is necessary to work with the positive linear
span of engaged extreme vectors, [a,∞)RE

. Indeed, to apply Lemma 3.6 we need for
each i that a+ si is in the domain of f .

Let us now see how we can use Theorem 3.10 to generalise [10, Theorem A]. Fix
a ∈ X. For V ⊆ [a,∞) and x ∈ [a,∞) we say that x = inf V in [a,∞) if x is the
infimum of V in [a,∞), that is, x ∈ [a,∞) is a lower bound of V and for every other
lower bound z ∈ [a,∞) of V we have x ≥ z. Note that we only consider lower bounds
in [a,∞) here. An infimum where all lower bounds in X instead of all lower bounds
in [a,∞) are considered may be different. Similarly, we write x = supV in [a,∞) if
x is the least upper bound of V in [a,∞).

As order-isomorphisms preserve infima and suprema, the following definition will
be useful.

Definition 3.12. Given a ∈ X and V ⊆ [a,∞) the inf-sup hull of V in [a,∞) is the
set

{x ∈ [a,∞) : there exist vα,β ∈ V for α ∈ A and β ∈ B such that

x = inf
α∈A

(sup
β∈B

vα,β) in [a,∞)},

where A and B are arbitrary index sets. The defining condition is understood to
include the existence of the infimum and supremum.

Note that the inf-sup hull of a set D ⊆ [a,∞) in [a,∞) can be obtained by
translating the inf-sup hull of D − a in C over a.

If V ⊆ C and x and y are in the inf-sup hull of V in C, then x = infα∈A(supβ∈B xα,β)
and y = infσ∈S(supτ∈T yσ,τ ) in C, with all xα,β and yσ,τ in V , and hence for all λ, µ ≥ 0
we have, in C, that

λx+ µy = inf
α∈A

(sup
β∈B

λxα,β) + inf
σ∈S

(sup
τ∈T

µyσ,τ ) = inf
α∈A

(sup
β∈B

λxα,β + inf
σ∈S

(sup
τ∈T

µyσ,τ ))

= inf
α∈A

( inf
σ∈S

(sup
β∈B

λxα,β + sup
τ∈T

µyσ,τ )) = inf
α∈A

( inf
σ∈S

(sup
β∈B

(sup
τ∈T

λxα,β + µyσ,τ )))

= inf
(α,σ)∈A×S

( sup
(β,τ)∈B×T

λxα,β + µyσ,τ ), (3.6)

which shows that λx + µy is also in the inf-sup hull of V in C. In particular we see
that the inf-sup hull in C of a convex subset of C is again a convex set.

Lemma 3.13. Let f : [a,∞) → [b,∞) be an order-isomorphism and let D ⊆ [a,∞)
be convex. If f is affine on D, then f is affine on the inf-sup hull of D in [a,∞).

Proof. We first assume that a = 0 and b = 0. Suppose V ⊆ C and v ∈ C are such
that v = sup(V ). Then f(v) is an upper bound of f(V ) in K. Moreover, if w ∈ K is
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another upper bound of f(V ), then f−1(w) ∈ C is an upper bound of V , since f−1 is
order preserving. As v = sup(V ) in C we deduce that v ≤ f−1(w), so that f(v) ≤ w.
This implies that f(v) = sup(f(V )) in K. In the same way it can be shown that if
W ⊆ C and w ∈ C are such that w = inf(W ) in C, then f(w) = inf(f(W )) in K. In
short, f preserves infima and suprema in the cone.

To complete the proof in this case, it suffices to show that f is convex-linear on
the inf-sup hull E of D in C. Indeed, E is a convex set by (3.6). Suppose that
x, y ∈ E and 0 ≤ t ≤ 1. Write x = infα supβ xα,β and y = infσ supτ yσ,τ in C, with
xα,β, yσ,τ ∈ D for all α, β, σ and τ . By repeatedly using the fact that f preserves
infima and suprema in the cone we get

f(tx+ (1− t)y) = inf
α∈A

(sup
β∈B

( inf
σ∈S

(sup
τ∈T

f(txα,β + (1− t)yσ,τ ))))

= inf
α∈A

(sup
β∈B

( inf
σ∈S

(sup
τ∈T

tf(xα,β) + (1− t)f(yσ,τ ))))

= tf( inf
α∈A

(sup
β∈B

xα,β)) + (1− t)f( inf
σ∈S

(sup
τ∈T

yσ,τ )) = tf(x) + (1− t)f(y),

where all the infima and suprema are taken in C or K.
To deal with the general case, consider the translations S(x) = x + a, x ∈ C,

and T (y) = y − b, y ∈ [b,∞). Then S : C → [a,∞) and T : [b,∞) → K are both
affine order-isomorphisms. Hence f̃ = T ◦f ◦S : C → K is an order-isomorphism and
therefore it is affine by the first part of the proof. It follows that f = T−1 ◦ f̃ ◦ S−1
is affine.

Combination of Theorem 3.10 and Lemma 3.13 yields the next conclusion.

Proposition 3.14. Every order-isomorphism f : [a,∞) → [b,∞) is affine on the
inf-sup hull of [a,∞)RE

in [a,∞).

We can now prove our main result Theorem 1.1.

Proof of Theorem 1.1. Let a ∈ U be given. As C is the inf-sup hull of [0,∞)RE
in

C, we get that the interval [a,∞) equals the inf-sup hull of [a,∞)RE
in [a,∞). So it

follows from Proposition 3.14 that f is affine on [a,∞). As X is directed the cone C
is generating, and hence C − C = X. This implies that there exists a unique affine
map g : X → Y such that g restricted to [a,∞) coincides with f .

In the same way we find that for any b ∈ U the map f is affine on [b,∞). Using
that C is directed, we know there exists c ∈ U such that c ≥ a, b. We remark that the
intersection [a,∞) ∩ [b,∞) contains the interval [c,∞). Therefore, f and g coincide
on [b,∞) for all b ∈ U . Since U =

⋃
b∈U [b,∞), we conclude that g coincides with f

on U , which completes the proof.

Theorem 1.1 is a generalisation of [10, Theorem A] by Noll and Schäffer. It
would be interesting to have a complete characterisation of the (infinite dimensional)
directed Archimedean partially ordered vector spaces (X,C) for which every order-
isomorphism f : C → C is linear. To our knowledge, Theorem 1.1 is the most general
result at present. It can, however, not be applied in a variety of settings such as
the space C([0, 1]) ⊕ R with cone {(f, α) : ‖f‖∞ ≤ α}. In this space the cone has
exactly two disengaged extreme rays: {λ(1, 1) : λ ≥ 0} and {λ(−1, 1) : λ ≥ 0}, where
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1(x) = 1 for all x ∈ [0, 1], but it has no engaged extreme rays. We believe, however,
that each order-isomorphism on the cone is linear in this space.

We end this section with a simple observation concerning direct sums. Let
(X1, C1) and (X2, C2) be directed Archimedean partially ordered vector spaces. Then
the direct sum X1⊕X2 is a directed Archimedean partially ordered vector space with
cone C1 × C2. Moreover (r, s) ∈ C1 × C2 is an (engaged) extreme vector if and only
if r is an (engaged) extreme vector and s = 0, or, s is an (engaged) extreme vector
and r = 0. It is straightforward to infer that if (X1, C1) and (X2, C2) satisfy the
conditions on (X,C) in Theorem 1.1, then so does (X1 ⊕X2, C1 × C2).

4 Self-adjoint operators on a Hilbert space

Let H be a Hilbert space and B(H)sa be the space of bounded self-adjoint operators
on H, ordered by the cone B(H)+sa of positive semi-definite operators. In this section
we show that B(H)sa satisfies the conditions of Theorem 1.1.

It is easy to show that the extreme rays of B(H)+sa are the rays spanned by rank-
one projections. We will denote the collection of all extreme rays of B(H)+sa by R.
Furthermore, for a closed subspace V of H we denote the orthogonal projection onto
by V by PV , and for x ∈ H we write Px = Pspan({x}).

Theorem 4.1. If H is a Hilbert space, with dimH ≥ 2, and U,W ⊆ B(H)sa are
upper sets, then every order-isomorphism f : U →W is affine.

Proof. We verify that B(H)sa satisfies the conditions of Theorem 1.1. Evidently,
B(H)sa is directed and Archimedean. We first show that all extreme rays of B(H)+sa
are engaged. So, suppose P ∈ R. Then there exists an x ∈ H such that P = Px. As
dimH ≥ 2 we can find non-zero y, z ∈ H such that y and z are orthogonal and x, y, z
lie in a two-dimensional subspace V . Then PV = Py + Pz, so that

Px = PV − (I − Px)PV = Py + Pz − P{x}⊥PV = Py + Pz − Pw,

where w ∈ {x}⊥ ∩ (V \{0}). We conclude that Px can be written as a linear combi-
nation of rank-one projections different from Px and, hence, the ray spanned by Px
is engaged in R.

It follows from [6, Corollary 3] that for each 0 ≤ A ≤ I we have

A = sup{λPx : λ ≥ 0 and x ∈ H such that λPx ≤ A}.

Note that for each B ∈ B(H)+sa there exists µ > 0 such that 0 ≤ µB ≤ I, and hence
the inf-sup hull (or indeed the sup hull) of the engaged extreme rays of B(H)+sa equals
B(H)+sa.

We remark that Theorem 4.1 was first proved, using different arguments, by
Molnár [7] for order-isomorphisms from B(H)sa onto itself, and in this situation
one cannot apply [10, Theorem A]. It is also interesting to note that in Theorem
4.1 we only require U and V to be upper sets in B(H)sa. In fact, this can be
exploited to recover another result by Molnar [8], which says that there exists no order-
isomorphism from B(H)sa onto the interior of B(H)+sa, as such an order-isomorphism
would need to be affine by Theorem 4.1. There are potentially other interesting upper
sets, such as the set {A ∈ B(H)sa : 〈Ax, x〉+ 〈Ay, y〉 ≥ α} for x, y ∈ H and α ∈ R, to
which Theorem 4.1 can be applied.
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5 Order-isomorphisms in related problems

In this section we proceed the discussion of Section 3 and relate to results by Artstein-
Avidan and Slomka and Schäffer in settings somewhat different than in Theorem 1.1.
We obtain three results. First, we present a “diagonalization formula” for order-
isomorphisms between cones, see (5.1) below. Second, we apply the results of Section
3 to positively homogeneous order-isomorphisms between cones and obtain that they
must be linear if one of the cones equals the inf-sup hull of the positive span of its
extreme rays. Third, we consider separable complete order unit spaces where in one
of them the inf-sup hull of the positive linear span of the engaged extreme rays is big
enough to intersect the interior of the cone. In that case we derive from Theorem 1.1
that every order-isomorphism between upper sets must be affine.

We begin with the following infinite dimensional analogue of a result by Artstein-
Avidan and Slomka [5, Theorem 1.7].

Proposition 5.1. Let (X,C) and (Y,K) be Archimedean partially ordered vector
spaces and suppose that f : C → K is an order-isomorphism. Let (vα)α∈A be a
collection of linearly independent extreme vectors in C. Then there exist corresponding
monotone increasing bijections gα : [0,∞) → [0,∞), for α ∈ A, such that for all
λ1, . . . , λn ≥ 0 and α1, . . . , αn ∈ A we have

f

(
n∑
i=1

λivαi

)
=

n∑
i=1

gαi(λi)f(vαi). (5.1)

Proof. Note that f(0) = 0. Let r ∈ C be an extreme vector. According to Corollary
3.2, f maps the extreme ray through r bijectively onto the extreme ray through f(r).
Hence there exists a nonnegative scalar gr(λ) such that f(λr) = gr(λ)f(r), for all
λ ≥ 0. Moreover, the function gr : [0,∞)→ [0,∞) is a monotone increasing bijection.
Equation (5.1) now follows from Lemma 3.6.

In [5, Theorem 1.7], also the finite dimensional cases f : X → X and f : C◦ → C◦

are considered. In the situation of Proposition 5.1, if f is an order-isomorphism from
X to Y and f(0) = 0, then one can easily verify that the maps gr are actually defined
on R and that (5.1) holds for all λ ∈ R. The infinite dimensional version of the
case where f : C◦ → K◦ is not so strong. Indeed, if (X,C) and (Y,K) are infinite
dimensional order unit spaces, then one can adapt the proof of Proposition 5.1 to show
that for each order-isomorphism f : C◦ → K◦ and each collection (vα)α∈A of linearly
independent extreme vectors of C, there are linearly independent extreme vectors
(wα)α∈A of K and monotone increasing bijections gα : [0,∞) → [0,∞), α ∈ A, such
that for all λ1, . . . , λn ≥ 0 and α1, . . . , αn ∈ A we have (5.1) where f(vαi) is replaced
by wai , provided that

∑n
i=1 λivαi ∈ C◦. However, in general infinite dimensional

order unit spaces most elements of the interior of the cone cannot be written as a
positive linear combination of finitely many positive extreme vectors and, thus, the
use of this result is limited.

Let us next consider positively homogeneous order-isomorphisms. If U ⊆ X and
V ⊆ Y are such that λu ∈ U and λv ∈ V for every u ∈ U , v ∈ V , and λ > 0, then
a map f : U → V is called positively homogeneous if f(λu) = λf(u) for every u ∈ U
and λ > 0. If U and V are generating Archimedean cones, then this condition implies
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that f(0) = 0, which yields the more common definition that includes λ = 0. The
definition given here also applies to maps on interiors of cones.

In [13, Theorem B], Schäffer provides the next result.

Theorem 5.2 (Schäffer). Let (X,C, u) and (Y,K, v) be order unit spaces. Then
every positively homogeneous order-isomorphism f : C◦ → K◦ is linear.

The results of Section 3 yield the following alternative statement, in which the
requirement of an order unit is replaced by a condition involving extreme rays.

Theorem 5.3. Let (X,C) and (Y,K) be Archimedean partially ordered vector spaces
such that (X,C) is directed and C equals the inf-sup hull of [0,∞)R in C. Then every
positively homogeneous order-isomorphism f : C → K is linear.

Proof. We first show that f is additive on [0,∞)R. Let s1, . . . , sn be extreme vectors
in C. It suffices to show that f (

∑n
i=1 si) =

∑n
i=1 f(si). In order to apply Lemma 3.6,

we combine terms of si that lie on the same ray. Indeed, for j = 1, . . . ,m, let Ij ⊆
{1, . . . , n} be disjoint with

⋃m
j=1 Ij = {1, . . . , n} such that for every i, k ∈ {1, . . . , n}

we have si = λsk for some λ ≥ 0 if and only if there exists j ∈ {1, . . . ,m} with
i, k ∈ Ij . Denote rj =

∑
i∈Ij si and for every i ∈ Ij let λi be such that si = λirj .

Then
∑

i∈Ij λi = 1 for j = 1, . . . ,m. With the aid of Lemma 3.6 and the positive
homogeneity of f we obtain

f

(
n∑
i=1

si

)
= f

 m∑
j=1

rj

 =

m∑
j=1

f (rj) =

m∑
j=1

∑
i∈Ij

λif (rj)

=
m∑
j=1

∑
i∈Ij

f (λirj) =
n∑
i=1

f(si).

As f is positively homogeneous, it follows that f is linear on [0,∞)R. Due to Lemma
3.13 we obtain that f is linear on the inf-sup hull of [0,∞)R in C, which equals C.

If in Theorem 5.3 f is an order-isomorphism from X to Y and f is homogeneous
instead of only positively homogeneous, then it can be shown along similar lines that
f is affine.

It is useful to compare Theorem 5.2 and Theorem 5.3 and identify the differences.
Let (X,C, u) and (Y,K, v) be order unit spaces. Suppose that f : C → K is a
positively homogeneous order-isomorphism. Then straightforward verification yields
f(C◦) = K◦. Hence it follows by Theorem 5.2 that f is linear on C◦. As C is the
inf hull in C of the convex set C◦, it follows from Lemma 3.13 that f is linear on
C. Thus, any homogeneous order-isomorphism between cones of order unit spaces
is linear. Theorem 5.3 provides a condition, alternative to having an order unit,
that yields the same conclusion. For example, the space `p(N) for 1 ≤ p ≤ ∞ with
coordinate-wise order satisfies the conditions of Theorem 5.3 but fails to have an order
unit. Hence Schäffer’s Theorem 5.2 does not imply our Theorem 5.3.

Our third interest in this section is an intermediate result by Schäffer, which has a
milder homogeneity condition than Theorem 5.2. In [13, Corollary A1] Schäffer shows
for order unit spaces (X,C, u) and (Y,K, v), where either (X, ‖.‖u) or (Y, ‖.‖v) is
separable and complete, that any order-isomorphism f : C◦ → K◦ is linear, provided
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there exists a w ∈ C◦ such that f(λw) = λf(w) for all λ ≥ 0. Compared to [13,
Theorem B], the positively homogeneous condition of f is weakened to only being
positively homogeneous on a ray through the interior of the cone, at the cost of one
of the order unit spaces being separable and complete. In conjunction with Theorem
1.1 this yields the following.

Theorem 5.4. Let (X,C, u) and (Y,K, v) be order unit spaces, and U ⊆ X and
V ⊆ Y be upper sets. Suppose that the inf-sup hull of [0,∞)RE

in C has a non-empty
intersection with C◦, and that either (X, ‖.‖u) or (Y, ‖.‖v) is separable and complete.
Then every order-isomorphism f : U → V is affine.

Proof. Firstly, we consider the case U = C◦ and V = K◦. Let CE denote the inf-
sup hull in C of the positive linear span of the engaged extreme rays of C. By
assumption there exists x ∈ CE ∩ C◦. We recall that an order unit space is directed
and Archimedean. Hence, Proposition 3.14 says that f is affine on CE ∩ C◦. As f
is an order-isomorphism mapping C◦ onto K◦, it is straightforward to infer that f
is in fact linear on CE ∩ C◦. In particular, f(λx) = λf(x) for all λ > 0. Now [13,
Corollary A1] yields that f is linear on C◦.

Next we consider the case U = C and V = K. Just as in the previous paragraph,
there exists an x ∈ C◦ such that f(λx) = λx for all λ ≥ 0. We infer that f(C◦) = K◦.
Indeed, let y ∈ K. As x ∈ C◦ there exists λ ≥ 0 such that λx ≥ f−1(y). This yields
that λf(x) = f(λx) ≥ y. Therefore, f(x) is an order unit in (Y,K) and hence
f(x) ∈ K◦. Now let y ∈ C◦. Then there exists m > 0 such that mx ≤ y. We
get mf(x) = f(mx) ≤ f(y). In particular, f(y) is an order unit and we conclude
that f(y) ∈ K◦. Hence f(C◦) ⊆ K◦. We remark that for all λ ≥ 0 we have
f−1(λf(x)) = λx = λf−1(f(x)), in other words f−1 is positively homogeneous along
the ray through f(x). Therefore, the previous steps applied to f−1 instead of f yield
the converse inclusion K◦ ⊆ f(C◦). By the first part of the proof we obtain that f
is linear on C◦. Since C is the inf hull of the convex set C◦, it follows from Lemma
3.13 that f is linear on C.

Suppose a ∈ X and b ∈ Y are such that U = [a,∞) and V = [b,∞). The
order-isomorphism f̂ defined by f̂(c) = f(c+ a)− b maps C to K. By the previously
considered case f̂ is linear, and hence f is affine.

The general case where U ⊆ X and V ⊆ Y are upper sets follows by arguments
similar to those made in the proof of Theorem 1.1. Indeed, for every a ∈ U , f is
an order-isomorphism from [a,∞) to [f(a),∞), so that f is affine on [a,∞) by the
previous case. Then f |[a,∞) extends to a unique affine map F : X → Y , which is
independent of a ∈ U , as (X,C) is directed.

To conclude the paper we provide an example to which Theorem 5.4 applies, but
not Theorem 1.1. Consider the order unit space (X,C, u) consisting of the real vector
space X = C([0, 1] ∪ [2, 3])⊕ R, the Archimedean cone

C = {(f, λ) : ‖f‖∞ ≤ λ}

and the order unit u = (0, 1) ∈ C. Then (X, ‖.‖u) is complete and separable. The
unit ball

B = {f ∈ C([0, 1] ∪ [2, 3]) : ‖f‖∞ ≤ 1}
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has four extreme points: ±1[0,1] and±1[2,3], where 1[0,1] and 1[2,3] denote the indicator
functions of [0, 1] and [2, 3], respectively. Therefore, C has four extreme rays, namely
the rays through (±1[0,1], 1) and (±1[2,3], 1). As

(1[0,1], 1) + (−1[0,1], 1) = 2u = (1[2,3], 1) + (−1[2,3], 1),

all four extreme rays are engaged, and u which lies in C◦ is contained in the positive
linear span of the engaged extreme rays. We conclude that the order unit space
(X,C, u) satisfies the conditions of Theorem 5.4. However, the inf-sup hull in C of
the sum of the engaged extreme rays consists only of elements of the form (λ1[0,1] +
µ1[2,3], ν), with λ, µ ≥ 0 and |λ|, |µ| ≤ ν, and hence (X,C) does not satisfy the
conditions of Theorem 1.1.

References

[1] J. Aczél and H. Oser, Lectures on functional equations and their applications,
Academic Press, New York, 1966.

[2] A.D. Alexandrov, A contribution to chronogeometry. Canad. J. Math. 19, (1967),
1119–1128.
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[13] J.J. Schäffer, Orders, gauge, and distance in faceless linear cones. II: gauge-
preserving bijection are cone-isomorphisms. Arch. Rational Mech. Anal. 67(4),
(1978), 305–313.
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